!
l

T

L

AD-A273 158

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A METHODOLOGY FOR SOFTWARE COST
ESTIMATION USING MACHINE LEARNING
TECHNIQUES
by
Michael A. Kelly
Lieutenant, United States Navy
September, 1993
Thesis Advisor: Balasubramanium Ramesh
Co-Advisor: Tarek K. Abdel-Hamid
Approved for public release; distribution is unlimited.

I \\\\l\\l\l\“\\\l\l\\ TTReS 4
\\l\\\lll\ BN > 25 11 29 0°0

g

Form Approved OMB No. 0704]

REPORT DOCUMENTATION PAGE
Publi reporting burden for this collection of infarmation is ostimated Lo avarage 1 Bowx per responie, nchuding the time for reviewing mwtruction. searching existing
dats sources, gatharing and maintaining the dats noeded, and completing and reviewing the collection of mformation. Send comments regarding this burden estimastc aor
ry other sspect of tns collection of imformation, including suggestions for reducing this burden, to Washingilon hesdquanars Services, Directorste for information
perstions and Reports, 1213 Jeffarson Davis Highway, Suite 1204, Arlington, VA 22202-4302, snd 10 the Office of Mansgament and Budget, Paparwork Reduction
Project (0704-0188) Washington DC 20303.

. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
3 Sep 1993 Master’s Thesis, Fmal
. TITLE AND SUBTITLE A Methodology for Software Cost Estimation 5. FUNDING NUMBERS
Using Machine Learning Techniques
6. AUTHOR(S) Michae] A. Kelly
. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
! Monterey CA 93943-5000
0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
f11. SUPPLEMENTARY NOTES The views expressed m this thesis are those of the author and do not reflect the
fofficial policy or position of the Department of Defense or the U.S. Govemment. |
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
pproved for public release; distribution is unlimited. A
13. ABSTRACT (maximum 200 words)
The Department of Defense expends billions of dollars on software development and maintenance annually.

any Department of Defense projects fail to be completed, at large monetary cost to the government, due to

¢ mability of current software cost-estimation techniques to estimate, at an early project stage, the level of

ort required for a project to be completed. One reason is that current software cost-estimation models tend
o perform poorly when applied outside of narrowly defined domains.

Machine leaming offers an alternative approach to the current models. In machine leaming, the domain

ecific data and the computer can be coupled to create an engine for knowledge discovery. Using neural
etworks, genetic algorithms, and genetic programming along with a published software project data set,
everal cost estimation models were developed. Testing was conducted usi.g a separate data set. All three
echniques showed levels of performance that imdicate that each of these techniques can provide software
roject managers with capabilities that can be used to obtain better software cost estimates.

14. SUBJECT TERMS Software cost estimation, neural networks, genetic algorithms, | 15. NUMBER OF PAGES
lgenetic programming, machine leaming, software project management, COCOMO, 143

artificial mtelligence 16. PRICE CODE

117. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT UL

Unclassified Unclassified

"~ Standard Form 298 (Rev. 2-89)
Preacribed by ANSI Std. 239-18

Approved for public release; distribution is unhimited.
A Methodology for Software Cost Estimation Using Machine Leaning Techniques
by
Michael A. Kelly
Lieutenant, United States Navy

B.S., Tulane University, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: W %

~ Michut] A. Kelly

Approved by: 0@'[14 uel

Balasubra‘;mnium Ramesh, Thesis Advisor

“TMNeuy

Tarek Abdel-Hamid, Thesis Co-Advisor

of - &

David R. Whipple, Ehmsn
Department of Administrative Science

ABSTRACT

The Department of Defense expends billions of Jollars on software development and
maintenance annually. Many Department of Defense projects fail to be completed, at
large monetary cost to the government, due to the inability of current software
cost-estimation techniques to estimate, at an early project stage, the level of effort
required for a project to be completed. One reason is that current software
cost-estimation models tend to perform poorly when applied outside of narrowly-defined
domains.

Machine learning offers an alternative approach to the current models. In machine
learning, the domain specific data and the computer can be coupled to create an engine for
knowledge discovery. Using neural networks, genetic algorithms, and genetic
programming along with a published software project data set. several cost estimation
models were developed. Testing was conducted using a separate data set. All three
techniques showed levels of performance that indicate that each of these techniques can

provide software project managers with capabilities that can be used to obtain better

software cost estimates. Accesion For
NTIS CRA&I
LECTED B DTIC TAB
AV Unannounced
J Justification

00—

Dist.ipution|

Avarabriy Codes

Ost

A-|

| Avail ar«i;or
<, ocial

|

TABLE OF CONTENTS

A, BACKGROUNDiiiiiiiiiiiiiiiiiiiiaieeetiiieaneeeteeeteeteeennenenernannnes 1
B. OBIECTIVES ... ittt ittt ete e et eaaeretaarannareeennnns 3
C. THE RESEARCH QUESTIONc.iiiiiiniiniiiiaiaeieeiaaanateaaaenannnes 4
0 0 0) - S N 4
E. METHODOLOGYiiiiiiiiiiiiiiiiiiiiiiiiie e etiiiaa e riaraaeaaeenannans 4
F. ORGANIZATION OF STUDYiiiiiiiiiiiiiiiieiieiiiieieeianaaeeaeeenanns 6
II. MODELS AND MACHINE LEARNING PARADIGMSccc000ee 7
A. THE CONSTRUCTIVECOSTMODELcciiiiiiiiiiiiiiiiiianeinaaaanns 7
1. Development HiStOrycooiiiiiiiiiiii i ettt iiaenean e, 7
2.BasiCCOCOMOouuniiiiiiiiiiit ittt ittt 9

3. Intermediate COCOMOcoiiiiiiiiiiiiiieeiiiieeeeeeeeerannennnnnnaanannnn 9

4. Detailed Cocomocooiiuniiiiiiiiiiiii it e 11

B. NEURAL NETWORKSooiiiiiiiiiiiiiiiiiiiiateeiiaae et tiiaieeaaaeennnnns 12
) 2 1) 12

2 3 - 13

3 APPHCEtIONS i it et 18

C. GENETIC ALGORITHMSoiiiiiiiiiiiiiiiiiiie e aeniiaaeenrenaaaaeaeanns 18
I 1 (1) 18

R N 1T 19

3 APPHCAtIONSt i i aa e aaaaa, 24

D. GENETICPROGRAMMINGccouiiiiiiiiiiiiiieeiieeeniiaeeianaannaaaans 25
L 2 (1 3 P 25

2R ¥ T o 26

3. APPHCALIONScooueiiiiiiiii i e, 33
IIl. DESIGN OF EXPERIMENTS .ccicietctetccesceccccecscceccccnnese 34
A. DATA SELECTION. ... ottt aaeae e eaannnn, 34
B. NEURAL NETWORKPROCEDUREScccoiviiiiiiiiiiienannianeennnnns 36
1. Neural Network Softwarettt it iie e 36

2. Neural Network Designcoiiiiiiiiii i it i eaen 38

3. Preparations For Traimingooiiiiiiiiiiiiiiiiiiiiinaeieiieeenennn. 40

v

4. Automating The Training Processc.oooiiiiiiiiiiiiiiiiiiii e, 41

C. GENETIC ALGORITHM PROCEDUREScoiiiiiiiiiiiiiiiinnn.. 46
1. Genetic Algorithm Goalo e 46

2. Genetic Algorithm Software 46

3. Gaucsd Preparationoiiuiiiiiiiiiiii e 47

4. Initial Genetic Algorithm BenchmarkingoooiiiiiiiiiiiL, 48

5. Genetic Algorithm ConsStraintscciiiiiieiiiiiieeeennrennineennn. 51

6. The Genetic Algorithm Testing Processcooiiiiiiiiiiiiiniiennanns 52

D. GENETIC PROGRAMMING PROCEDURESc...ciiiiiiiiiiiennn. 53
1. Genetic Programming Softwareccoiiiiiiiiiiiiiiiiiii i 53

2. Genetic Programming Preparationccooiiiiiiiiiiiiiiiiiiiiiiiann.. 54
IV. ANALYSIS OF RESULTS ..cciccteeretccncscrscnssescsccscsacenses 39
A. MEASURESOFPERFORMANCEcoiiiiiiiiiiieiiiiiiiiee e, 59
B. NEURAL NETWORKSoiiiiiiiiiiiiiiiittieaeeiiar e reeeaeeaaanenenns 60
LFirstPhase Results i 60

2. Second Phase Results 63

3. Neural Network Structural Analysisccooiiiiiiiiiiiineiiiiiinn... 65

C. GENETIC ALGORITHMS ittt iiiee e eiaaaannnns 68
LFirstPhase Results o it i 68

2. Second Phase Resultsccoiiiiiiiiiiiiiiiiiiiiiiiii e iinaianns 72

3. Genetic Algorithm Structural Analysisccoooiiiiiiiiiiiiiiiiiiinna.., 73

D. GENETICPROGRAMMINGcoiiiiiiiiiiiiiiiiiiniiiieieriaiaanenaannnns 76
1. First Phase Resultsoooiiiiiiiiiiiii it 76
2.Second PhaseResultst 78

3. Genetic Program Structural Analysiscooiiiiiiiiiiiiiiiiiii.... 8]

V. CONCLUSIONS AND RECOMMENDATIONS ...ccccceeevneccesce. 84
A, CONCLUSIONS ... iiiiiiiiiiiiiiiiaiiiaeeteetenaiaaeeeeeuataaesaenareneaennns 84
B. RECOMMENDATIONS FOR FURTHER RESEARCH 87

... 111
APPENDIX G ..cuceieiiirnnnecnteeronesecaeccncccscscascacsssosasscans 116
LIST OF REFERENCESc.ccccveteeeectcisrencrcsetsccncsncacnnacs 135
INITIAL DISTRIBUTION LIST ..ccccieiiecnccecececcccecncnccccnnaes 136

I. INTRODUCTION

A. BACKGROUND
The use of computers and computing technology within the Department of Defense

continues to grow at an accelerating rate. As the use of computers has expanded, so has
the need for computer software. While computer hardware has decreased in cost relative
to its performance, the cost of software continues to increase. It is estimated that the
Department of Defense spends approximately thirty billion dollars annually in the
acquisition and maintenance of software (Boehm, 1987, pg. 43). Virtually no ares within
the military has escaped the "software mvasion." From the million-plus lines of code for
the Seawolf submarine's BSY-2 computer system to the two million lines of code in the
Navy's NALCOMIS Phase II logistics system, software is now one of the driving factors
in the success of the United States military.

Although the technology used to develop software has improved through the use of
such methods as object-oriented programming and computer-aided software engineering
(CASE), one software management area which remains underdeveloped is software cost
estimation. Since the greatest expense in a software development effort is manpower,
software cost estimation models focus on estimating the effort required to complete a
particular project. This estimate of effort required can then be translated into dollars using
the appropriate labor rates. The current cost estimation models available to software

project managers fail to provide sound estimates in a consistent manner, even within their

own narrowly defined domains. Improper estimation of costs is a major reason why many
Department of Defense software projects have failed. With a decreasing budget for
defense, it is of even greater necessity that managers have available to them effective
software cost estimation tools.

There are many models available for software cost estimation. One of the more
popular models is the Constructive Cost Model, or COCOMO, developed by Barry
Boehm while at TRW (Boehm, 1981, pg. 493). This model is based on a database of
sixty-three projects developed at TRW during the 1960’s and 1970's and is described in
detail in Boehm's book, Software Engineering Economics. Part of the reason for the
popularity of COCOMO is that it is-relatively easy to apply and it resides in the public
domain. Other models, such as ESTIMACS, developed by Howard Rubin and currently
the property of Computer Associates, Inc., are proprietary due to the nature of the project
data from which they were developed. A common thread that exists in all of these models
is that they were developed by domain experts and are heavily dependent upon the
judgement of the expert for the determination of the model inputs and relationships
extracted from the software project data.

An alternative approach to model development that can reduce the need for the
domain expert to act solely on judgement is through the use of artificial intelligence (Al),
specifically the use of machine learning. While artificial mtelligence has been a subject of
study since the 1950's, it has periodically been greeted with skepticism for a perceived

inability to deliver at the level of performance promised by its proponents. In recent years,

as both computer hardware and software have grown more powerful and the objectives of
Al have been better defined, the ficld of artificial intelligence has seen a resurgence.
Techniques are now available that have the ability to provide solid results over a range of
problems when appropriately applied. An area of great activity today in artificial
itelligence is machine learning. Knowledge acquisition and classification is a very labor
intensive task. The computer, with its ability to toil without time off for vacations or
holidays, provides a natural platform for the automation of the knowledge acquisition
process, or to at least serve as an assistant in the knowledge acquisition process. The
application of machine learning to the problem of software cost estimation is the focus of
this investigation.
B. OBJECTIVES

Current methodologies for software cost estimation vary widely in their estimates
when presented with identical inputs (Kemmerer, 1987, pg. 416). A common
characteristic of most cost estimation models is that they tend to provide only marginally
useful results within a rigid domain that is often too narrow to be of use when pursuing
new types of software development projects. The emphasis of this thesis is to develop a
methodology for the application of machine leaming techniques to software cost
estimation. The three machine learning techniques ch~sen for this project are neural
networks, genetic algorithms, and genetic programming. The performance of the models
derived from each machine-learning technique are evaluated and compared with respect to

ease of application, accuracy, and extensibility. Additionally, the models are analyzed to

see what insight they can provide into the relative importance of the available mput
variables.
C. THE RESEARCH QUESTION

The primary research question of this thesis is to determine the feasibility of applymg
machine learning to the problem of software cost estimation. This research uses the
COCOMO data set for model training and the COCOMO and Kemmerer data sets for
testing the resulting models. The other important questions of this thesis are to determine
the effectiveness of machine-learning techniques when spplied to the cost estimation
problem and what insight, if any, can be gained from the machine generated models mto
cost-estimation.
D. SCOPE

The scope of this thesis is to apply the three machine learning techniques to the cost
estimation problem using the COCOMO and Kemmerer data sets and to determine the
extent to which they are appropriate and insightﬁxl to the cost estimation process. The
scope of this thesis is not to develop to develop a better model for cost estimation but
instead to develop a methodology for the application of machine learning to this problem.
E. METHODOLOGY

This thesis is divided into four steps. First, the sixty-three projects in the COCOMO
data set are analyzed and partitioned into training and testing data sets. Secondly, the
three machine learning techniques are applied using the training data set as the means for

knowledge acquisition. The resulting models are then tested using the COCOMO data not

included in the training set. A variety of parameters and constraints specific to each
technique are varied. In a second iteration of this process, all of the 63 COCOMO
projects are used as the training set, and a second set of 15 projects, identical to the set
used by Kemmerer in his 1987 article in the Communications of th»r ACM is used as the
testing set. The goal of this sequence of training and testing is to see how well the various
machine generated models can perform across different software development domains.
Since the fifteen projects presentsd by Kemmerer were developed outside of TRW, which
is where Boehm's data was obtained, the capability of the models to generalize can be
tested.

In the case of neural networks, multiple network configurations are tested. The
resulting trained neural networks are ranked on overall performance against actual project
effort and against each other.

In the third step of this thesis, a genetic algorithm is applied to the training data using
the original COCOMO model structure as a fitness function template in order to obtain a
revised COCOMO parameter set. These new values will be used to evaluate the testing
data using the Intermediate COCOMO model structure. Initially, the genetic algorithm is
relatively unconstrained. In further tests, constraints are added to the genetic algorithm
fitness function to determine the effect on the resulting model parameters and on the
model's accuracy with respect to the testing data.

Finally, the relatively new concept of genetic programming is applied to the training

data set to see what algorithmic models for cost estimation can be derived purely from the

e

training data with no preconceived functional form or structure provided. The resulting
models will again be tested using the test data set.

The resulting models from all techniques will also be analyzed to see what insights, if
any, they provide into the overall cost estimation process. The way that the various input
variables are used by the machine generated models may provide an opportunity to
discover relationships previously unnoticed. This is an additional benefit of using the
computer in the knowledge acquisition process and it is explored.

F. ORGANIZATION OF STUDY
Chapter I provides a general background for this study. Chapter 1 discusses the

COCOMO model and the three machine learning techniques in greater detail, including
some history and the basic principles of each. Chapter HI describes the experimentation
process and setup. Chapter IV discusses the results of the various experiments and
compares these results with those obtained using the original COCOMO model in its
various forms. Additional insights into the cost estimation question will be noted and
analyzed at this time. Chapter V is the conclusions and recommer.dations resulting from

this inquiry.

II. MODELS AND MACHINE LEARNING PARADIGMS

A. THE CONSTRUCTIVE COST MODEL
1. Development History

The Constructive Cost Model, commonly referred to as COCOMO, was
developed by Barry Boehm in the late 1970's, during his teaure at TRW, and published in
1981 in his text, Software Engineering Economics. This model, which is actually a
hierarchy of three models of increasing detail, is based on a study of sixty-three projects
developed at TRW from the period of 1964 to 1979. In his text, Boehm describes the
development of COCOMO as being the result of a review of then available cost models
coupled with a Delphi exercise that resulted in the original model. This model was
calibrated using a database of 12 completed projects.

When that model failed to provide a reasonable explanation of project variations
when expanded to a 56 project database, the éoncept of multiple development modes was
added. Three development modes were defined as organic, semidetached, and embedded.
Organic mode refers to relatively small (< 50 KDSI) stand-alone projects with
non-rigorous specifications that typically use small development teams and involve low
risk. Organic mode projects are usually thought to have higher levels of productivity than
the other two modes due to their small size and flexibility in specifications. Semidetached
mode refers to projects of small to medium size (up to 300 KDSI) that involve

characteristics of both organic and embedded projects, such as a system that has some

rigorous specifications and some non-rigorous specifications. Embedded mode refers to

projects of all sizes that typically have rigorous, non-negotiable specifications that are
tightly coupled to either hardware, regulations, operational procedures, or a combination
of these factors. Embedded mode projects generally require innovative architectures and
algorithms and entail greater risk than organic or semidetached projects of similar size.
(Boehm, 1981, pp. 76-77)

Once the three development modes were defined, they were calibrated using the
original 56 project database to provide greater accuracy. Seven more projects were later
added to the project database for a total of sixty-three. Appendix A contains the entire
database. Boehm describes COCOMO as not being heavily dependent on statistical
analysis for calibration due to the inherently complex nature of software development.
Instead, COCOMO relies on empirically derived relationships among the various cost
drivers. These cost drivers are related to attributes associated with the product being
developed, the target computer platform, the development personnel, and the development
environment. (Boehm, 1981, pg. 493)

The COCOMO model is popular since it is easy for managers to apply and it is
widely taught in software management courses. In his text, Boehm provides clear
definitions of the model inputs through a variety of tables and charts. This type of
presentation allows managers to understand what costs the model is estimating and how

the estimates are reached. Therefore, the model can also be used by managers to perform

sensitivity analyses to examine tradeoffs on a variety of different software development

issues. (Bochm, 1984, pg 13)
2. Basic COCOMO
Basic COCOMO is the simplest version of the model. It is designed to provide

a macro level scaling of project effort based on the mode of development and the
projected size of the project in thousands of delivered source instructions (KDSI). Boehm
describes its accuracy as limited though, due to the lack of factors to account for
differences in project attributes, such as hardware constraints and personnel experience.

(Boehm, 1981, pg. 58) The three equations for Basic COCOMO are:

Table 2-1 Basic COCOMO Effort Equations

Mode Effort
Organic MM=2.4(KDSI)' *
Semidetached MM=3.0(KDSI)' ?
Embedded MM=3.6(KDSI)'

The accuracy of Basic COCOMO is only satisfactory. For the sixty-three
projects in the database, Basic COCOMO estimates are within a factor of 1.3 of the

actuals just 29% of the time and within a factor of 2 of the actuals just 60% of the time.

(Boehm, 1981, pg. 84)
3. Intermediate COCOMO
Intermediate COCOMO tries to improve upon the accuracy of Basic COCOMO

by introducing the concept of cost drivers, which act as effort multipliers. Fifteen factors

have been identified by Boehm as attributes that affect the effort required on a particular

project. These fifieen drivers are grouped in four attribute categories and are shown in

Table 2-2.
Table 2-2 Intermediate COCOMO Cost Drivers
Product Computer Personnel Attributes | Project Attributes
Attributes Attributes
LY Required |TIME ACAP MODP
Software Execution Time Analyst Capability Modern Programming
[Reliability Constraint Practices
DATA STOR AEXP TOOL
|Dat= Base Size Main Storage Applications Experience |[Use of Software Tools
Constraint
CPLX VIRT PCAP SCED
Product Virtual Machine Programmer Capability |Required Development
Complexity Volatility Schedule
TURN VEXP
Computer Virtual Machine
Turnaround Time |Experience
LEXP
Programming Language
Experience

These fifteen cost drivers are used in conjunction with a set of scaling equations
similar to those used in Basic COCOMO. This nominal effort is then modified by using
the product sum of the cost drivers (defined as the Effort Adjustment Factor, or EAF) as
defined for a particular project to obtain the Intermediate COCOMO estimate. The

nominal equations for the Intermediate COCOMO model are shown in Table 2-3:

10

g A

Table 2-3 Intermediate COCOMO Nominal Effort Equations

Development Mode Nominal £ffort Equation
Organic (MM),,.=3.2(KDSD)'*®
Semidetached (MM),,=3.0(KDSD)' 2
Embedded (MM, ~2.8(KDSI)'*

The cost drivers are subdivided into literal rating categories that run from Very
Low to Extra High. The method for determining which rating category each driver falls
into for a specific project is outlined by Boehm in his text. (Boehm, 1981, pg. 119) Once

the rating category is determined, the numerical value for the cost driver is obtained from

" atable. This table can be found in Appendix B. The Intermediste COCOMO estimate of

project effort is then given by the equation (MM).;= (MM),,,,*(Effort Adjustment
Factor). The Intermediate COCOMO model serves as one of the bases of comparison for
the various methodologies presented in the thesis. Intermediate COCOMO is chosen for
comparison since the project data published in Bochm's text is only presented at this level

of detail.
4. Detailed COCOMO
Detailed COCOMO is an additional refinement of the model that allows the

effort estimation to be furtk. -+ detailed. This version of the model attempts to improve the
estimate by overcoming two limits of the Intermediate model First, Detailed COCOMO
refines the estimate by introducing cost drivers that vary for the various development
phases and, second, it allows for the distribution of various cost drivers over three vertical
levels: module, subsystem, and system. Due to the nature of the COCOMO database as

11

presented in Boehm's text, the Detailed version of the model will not be used as the basis
of comparison during the evaluation of the various machine leamning paradigms. (Boehm,

1981, pp. 344-345)

B. NEURAL NETWORKS
1. History

The neura! network paradigm has a colorful history dating back to the 1950's.
This paradigm grew out of the efforts of early antificial intelligence (Al) researchers to
construct systems that mimicked the actions of neurons in the human brain. In 1958,
Frank Rosenblatt published a paper that defined s neural network structure called a
perceptron (Eberhart, 1990, pg. 18). This paper outlined the principles that information
could be stored in the form of connections and that information stored in this manner
could be updated and refined by the addition of new connections. This research laid the
foundation for both types of training algorithms, supervised and unsupervised, that are
used in neural networks today.

While work continued in the neural network field during the 1960's and 1970's
their usefulness was in doubt until the publication of a paper by John Hopfield, from the
California Institute of Technology (Eberhart, 1990, pg. 29). Hopfield's work was
important because he identified network structures and algorithms that could be defined in
a general nature and he was the first to identify that networks could be implemented in
electronic circuitry, which interested semiconductor manufacturers. The publication in

1986 of Parallel Distributed Processing by the Parallel Distributed Processing Research

12

Group ensured the rebirth of neural networks by describing in great detail a variety of
architectures, attributes and transfer functions (Eberhart, 1990, pg. 32). Since then, the
variety and spplication of neural networks have grown immensely. The Defense
Advanced Research Projects Agency sponsored a neural network review in 1988 and
published a report on the field (Maren, 1990, pg. 20). This publication tended to validate
the field as being worthy of research funding and now there are a variety of journals and
publications dedicated to this field, as well as an international society (Maren, 1990, pg.
20).

2. Theory

There are a wide variety of neural network models in use today. One of the
most common networks, and the one chosen for use in this thesis, is the backpropagation
network. In this case, backpropagation refers to the training method used for this
network. The network in operation acts in a feed-forward manner. The basic principle of
operation is simple. A backpropagation network is typically constructed of an input layer
of neurons, an output layer of neurons, and one or more hidden layers of neurons. Bias
neurons may also be defined for each hidden layer. Each neuron (or node) is defined by a
transfer function. In the case of the backpropagation network, the function usually has a
sigmoid or S-shape that ranges asymptotically between zero and one. The reason for
choosing the sigmoid is that the function must be continuously differentiable and should be
asymptotic for infinitely large positive and negative values of the mdependent variables.

(Maren, 1990, pg. 93) The neurons in each layer are then assigned a weighted connection

13

to each neuron in the following layer. These connection weights are established randomly
upon initialization of training and then recalculated as the network is presented with the
training patterns until the error of the output is minimized. The method that adjusis the
weights is known as the Generalized Delta Rule which is a method based on derivatives
that allows for the connection weights to be adjusted to obtain the least-mean square of
the error in the output. (Maren, 1990, pg. 99) Bias neurons, if used, simply provide a
constant input signal to the neurons in a particular layer and relieve some of the pressure
from the learning process for the connection weights. A simple network diagram is shown

in Figure 2-1.

A Simplified Backpropagation Network
Bias Weights

Input 1

Output 1

Input 2
Output 2

Input 3

Input Layer Hidden Layer Output Layer

Figure 2-1: A Simple Backpropagation Network

14

A backpropagation network is capable of generalizing and feature detection
because it is trained with different examples whose features become embedded in the
weights of the hidden layer nodes (Maren, 1990, pg. 93). An example of the operation of
a neural network is provided by Maren and involves a neural network designed to solve an
XOR classification problem. The diagram for this network showing the configuration at
initialization and upon completion of training is shown in Figure 2-2 (Maren, 1990, pg.
97).

Tixe example given by Maren is a version of the backpropagation network in
which each hidden layer neuron can have s threshold value which is added to sum of the
mputs to that neuron before the application of the sigmoid transfer function. These
threshold values are found using the same Delta rule that is used to find the connection
weights. During the training process, the connection weights (and threshold values) are
adjusted using the following equation:

Wiknew) = Wixold) + Q. * Delta(w; o1a) — output_activation_level
where w, stands for the new and old values of the connection weight between node i and
node j, and « is a constant that defines the magnitude of the effect of Delta on the weight.
Delta describes a function that is proportional to the negative of the derivative of the error
with respect to the connection weight and output_activation_level is the output of the jth
neuron. This backpropagation of error mechanism allows the weights at all layers to be
adjusted as the training process is performed, including any connections between hidden

layer neurons. (Maren, 1990, pp. 100-101)

15

Initislization with Random Convergence to Stable
Weights and Threshold Values Weights and Thresholds
After Training Interactions

Initial Results: Results After Training
Input Output Input Output
(0,0) 0.590 (0,0) 0.057
©,1) 0.589 0,1) 0.946
(1,0) 0.589 ‘ (1,0) 0.949
(1,1) 0.601 (1,1) 0.052

Figure 2-2 A Neural Network Example of an XCR Problem (Maren, 1990)

16

An example of the operation of a trained network is seen by examming one of
the input combinations in the example provided by Maren (1990) in Figure 2-2. Take the
pattern (0,1). This pattern means that a zero is the input to the bottom left neuron of the
trained network and a one is the input to the bottom right neuron. Proceeding up to the
next layer, a vector multiplication of the inputs and the connection weights is performed to
determine the inputs to the hidden layer. In this example the hidden layer mputs are
(0%(-11.62))+(1*10.99) = 10.99 for the hidden neuron on the left and (0*12.88) +
(1*(-13.13)) = -13.13 for the hidden neuron on the right. The threshold values for these
hidden neurons are added to the inputs and then the sigmoid transfer function is applied.
For the hidden neuron on the left, this means the input to the transfer function is
(10.99+(-6.06)) = 4.94. The activation value of the input 4.94 when applied to a sigmoid
transfer function that ranges between zero and one is approximately one. For the hidden
peuron on the right, the input to the transfer function is (-13.13+(-7.19)) = -20.32. The
activation value when -20.32 is applied to the transfer function is approximately zero. The
hidden layer outputs in this example are one for the left hidden neuron and zero for the
right hidden neuron. The input to the top, or output, neuron is calculated by taking the
product of the hidden layer outputs and the connection weights, or (1*13.34)+0*13.13) =
13.34. The threshold weight of the output neuron is added to the input from the hidden
layer to get the input to the transfer function, which in this case is (13.34+(-6.56)) = 6.78.
This number when epplied to the transfer function yields a value close to one (0.946),

which is the desired answer. (Maren, 1990, pp. 61-62)

17

3. Applications

Neural networks are currently being used in a variety of applications. Some of
the major uses are in the areas of filtering, image and voice recognition, financial analysis,
and forecasting (Zahedi, 1991, pg. 27). Commercial neural network software is available
from a variety of vendors. Specialized programmable hardware boards that contain
chipsets that can mimic the operation of a neural network are also available for very
intensive neural network applications. The neural networks in this thesis were developed

using a product from California Scientific Software, Inc. called Brammaker.

C. GENETIC ALGORITHMS
1. History

Nature's capability to find solutions for complex problems through the process
of natural selection has fascinated researchers fo- generations. The ability of organisms to
adapt to their environment by altering their characteristics through mating, which provides
an opportunity for gene crossover as well as an occasional genetic mutation, has proven to
be a powerful technique of problem solving. Genetic algoritams were an outgrowth of
early work during the 1950's and 1960's that attempted to combine computer science and
evolution with the hope of creating better programs. In the mid 1960's, John Holland
developed the first genetic algorithms that could be used to represent the structure of a
computer program as well as perform the mating, crossover, and the mutation processes.

Since then, genetic algorithms have grown in popularity and have been applied to a wide

variety of problems, especially in the field of engineering design, where optimization

18

mvolving large numbers of independent variables is a common situation. (Holland, 1992,

PB. 66)
2. Theory
Genetic algorithms are in the simplest definition another method for search and

optimization. However, they differ from traditional methods such as hill-climbing and
random walks in at least four ways (Goldberg, 1989, pg. 7). First, genetic algorithms use
codings of the various parameters in a function, not the actual functior parameters
themselves. This coding usually consists of fixed-length strings of characters that are
patterned after chromosomes. Each string, or chromosome, then has a fitness value
associated with it which is a measure of how well it performs in terms of the critenia
defined for the problem. Second, genetic algorithms perform highly paraliel searches
using a population of points vice a single point. Third, genetic algorithms use the
objective function, or actual payoff information, to determine fitness instead of derivatives
or other information. This capability separates the genetic sigorithm from those techniques
that require gradient information about the function to perform their searches. Instead,
the genetic algorithm has the capability to work with the actual function itself. Finally,
genetic algorithms use probabilistic rules to make shifts from onc generation to the next
instead of determimistic rules . (Goldberg, 1989, pp. 7-10)

The easiest way to understand the working of the genetic algorithm is to see it n
action. In the following example, similar to the Hamburger Problem presented by Koza

(1992, pg. 18), the genetic algorithm is used to maximize a function. The coding of

19

characteristics in thus example is done with the binary digits 1 and 0 and the fitness of each
individual is simply the decimal value of the binary representation. The mitial population
of the first generation, typically referred to as Generation 0 in genetic algorithms, is

randomly generated and shown in Table 2-4.

Table 2-4 Generation O of the GA

String # String (X) Fitness f(X)
1 101 5
2 011 3
3 001 1
4 010 2

As can be seen from Table 2-4, the best individual in the initial population has a
fitness of 5, while the worst individual has a fitness of 1. The population average is 2.75.
After the initial population is evaluated, the next step in the genetic algorithm is the
reproduction and crossover process. The method used to determine which individuals
reproduce is normally determined by a method called fitness-proportionate reproduction
(Koza, 1992, pg. 21).

In fitness proportionate reproduction, candidates for reproduction are selected
for the mating pool by assigning each population member a probability of reproduction
based upon each population member's fitness. Under this method, highly fit individuals

have higher probabilities for reproduction than lesser fit individuals and the effect of this

20

reproduction operation is to increase the average fitness of the population. Table 2-5

shows the mating pool for Generation 0 based on fitness-proportionate reproduction.

Table 2-5 Generation 0 Mating Pool Creation

Geaeration 0 Gen 0 Mating Pool
String Fitness Mating Probability Mating | Fitness
‘ (Fitness/Sum of Fitness) Pool
101 5 5/11=0.454 101 5
011 3 3/11=0.273 101 5
001 1 1/11=0.090 011 3
010 2 2/11=0.182 010 2
Total 1 Total 15
Best 5 Best 5
Average 2.75 Average 3.75

Table 2-5 shows that the average fitness of the population has been increased
but that the best-of-generation-individual fitness remains the same. The second genetic
process, crossover, is what allows new individuals to be formed which may have better
fitness. When the reproduction operation is complete, the crossover operation is
performed by selecting two individuals using a uniform random distribution from the
mating pool. Selection through a random distribution is possible since membership in the
mating pool is proportionate to fitness (Koza, 1992, pg. 25). The selected individuals are
separated into fragments by breaking them apart at a randomly selected interstitial point.
The appropriate fragments from the parents are then recombined to form new individuals

that are then tested for fitness. Table 2-6 shows the crossover sequence.

21

Table 2-6 The Crossover Operation

Parent 1 Parent 2
101 011
Crossover Fragment 1(F1) Crossover Fragment 2 (F2)
1- 0-
Remainder 1 (R1) Remainder 2 (R2)
-01 -11
Offspring 1 (F2+R1) Offspring 2 (F1+R2)

001 111

When the crossover operation is complete, two new individuals have been
created and their fitness is evaluated. The mating pool members not selected for crossover
are copied into the next generation. The number of individuals in the mating pool that
undergo crossover, the crossover rate, is determined in advance by the individual using the
genetic algorithm. The mutation operation, if allowed to occur at all, also happens during
the reproduction process. In the mutation operation, a single bit is selected for
transformation based upon the probability of mutation, also established in advance by the
individual using the genetic algorithm. (Goldberg, 1989, pg. 14) The results of the

reproduction and crossover operations in the simple example are shown Table 2-7.

22

Table 2-7 Generation 1 of the Genetic Algorithm

String Fitness Method of Production
001 1 Reproduction/Crossover
111 7 Reproduction/Crossover
101 L Reproduction
010 2 Reproduction

Best Fitness 7
Average 3.78

As can be seen from the table, fitness-proportionate reproduction combined with
the crossover operation has improved the average fitness of the population and the
best-of-generation fitness (in this case reaching the global optimum). This capability to
search and optimize using adaptive techniques without the requirement for an external
interface to the user is one of the strengths of the genetic algorithm.

The engine that gives the genetic algorithm its power is called implicit
parallelism. This implicit parallelism manifests itself in what Holland described as the
Fundamental Theorem. (Goldberg, 1989, pg. 19) The Fundamental Theorem is derived
from the concept of schemata. A population in a genetic algorithm consists of a set of
strings composed of one's and zero's (a binary representation scheme is commonly used).
If the population consists of binary strings, a schema can be thought of as a template that
describes subsets of strings using the notation set {1, 0, *}. The asterisk symbol signifies
a "don't care” or "wild card” value. A string with value {110} is then, as an example, a

member of schema {1**} as well as {*1*}, {11*} and {**0}. In fact, a particular string

23

in a population is s member of 2'*¥*“*™% schema. A schema can be thought of as
representing certain characteristics of a candidate solution to the fitness function. As
populations of strings (or chromosomes) proceed from one generation to the next through
the process of reproduction and crossover, individuals with greater fitness rise in number
at the expense of lesser fit individuals. Schemata behave in a similar manner. A schema
(or characteristic set) grows at a rate proportional to the average fitness of that particular
schema over the average fitness of the population. A schema whose average fitness is
above that of the population average will be represented in greater numbers in the
succeeding generations. A schema whose average fitness is less than the population
average will see its numbers diminish. In fact, above average schema will see their
numbers increase in an exponential manner in succeeding populations. This effect of
simultaneously increasing the fitness of the population and promoting the exponential
growth of beneficial schemata (or characteristics) through the reproduction operation,
coupled with the crossover operation that creates population diversity through an orderly
exchange of characteristics is what gives the genetic algorithm its implicitly parallel nature.

(Goldberg, 1989, pp. 29-33)
3. Applications
The use of genetic algorithms has increased greatly in the past few years as

people have realized :he henefits they bring to certain types of problems that have resisted
solution by more traditional methods. In one case genetic algorithms were used to

develop control mechanisms for a model of a complex set of gas pipelines that transport

24

natural gas across a wide area. Having only various compressors and valves with which to
coatrol the gas flow, and with a large time lag between any action and reaction, this
problem had no standard analytic solution. A genetic algorithm was developed by David
Goldberg at the University of Illinois that was capable of “learning” the control procedure.
In another case, Lawrence Davis used genetic algorithms to design communications
networks that maximized data flow with a minimum number of switches and transmission
lines. General Electric is currently using genetic algorithms in the design of new
commercial turbofan engine components. Using a genetic algorithm, General Electric
engineers were able to reduce the time required to improve the design of an engine turbine
from weeks to days. This is notable since there are at least 100 variables involved in a
turbine design as well as a large number of constraints. (Holland, 1992, pg. 72-73)
Goldberg's text lists additional uses of genetic algorithms ranging from medical imaging to
biology to the social sciences (Goldberg, 1989, pg. 126). There are currently several
conferences, both national and international, devoted to the discussion of genetic
algorithms.

D. GENETIC PROGRAMMING
1. History

Genetic programming is an exciting new field in computing pioneered by John
Koza of Stanford University in the late 1980's. Koza, in his text Genetic Programming:
On the Programming of Computers by Means of Natural Selection, describes the core

concept of his technique as being the search for a computer program of a given fitness

25

from the space of all possible computer programs using the tools of natural selection. This
approach is different from more traditional artificial intelligence techniques in that for any
particular problem using traditional techniques, such as neural networks, the goal is
usually to discover a specialized structure that provides a certain output given certain
inputs. Koza reframes this statement by saying what we truly want to discover is a certain
computer program that will produce the desired output from a given set of inputs. Once
the problem is reframed as that of finding a highly fit program within the space of all
possible programs, the problem is reduced to that of space search. (Koza, 1992, pg.2)

The technique of genetic programming is not the first attempt at using
computers to try to generate programs. Researchers since the 1950's have attempted
using various methods to generate programs ranging from blind random search to asexual
reproduction and mutation. More recently, researchers in the genetic algorithm field have
attempted to use genetic algorithms to generate programs by using ever more specialized
chromosome representation schemes or by using a special type of genetic algorithm
known as a classifier system to generate programs based on if-then rules (Koza, 1992, pp.
64-66). Koza is the first researcher, however, to develop an appropriate representation
scheme and methodology for applying natural selection techniques to the problem of
program generation.

2. Theory
The concept of a "highly fit" computer program as a solution to a particular

problem is disturbing to most people at first. We are accustomed to the idea of a

26

computer program being either “right” or "wrong" when applied to a particular problem.
Koza counters this sentiment and other similar sentiments by saying that the process of
natural selection is neither “right” nor “wrong" but that nature supports many different
approaches to the same problem, sll of which have a certain “fitness”. The key to nature's
approach, according to Koza, is that form follows fitness (Koza, 1992, pp.1-7). The
requisite tools used in Koza's approach are a well-defined function representation scheme,
a method for generating an initial random population of programs, a fitness measurement
technique, and a procedure for applying genetic operations to the members of the
population.

The representation scheme chosen by Koza for genetic programming is based on
a type of structure known as a symbolic expression, or S-expression. Since this type of
structure is a key component of the programming language LISP, this language was
chosen as the platform for developing genetic programming. It is not a requirement to use
this language for genetic programming, but it has many features that facilitated the
development of this technique. (Koza, 1992, pp. 70-71) An example of a LISP
S-expression is shown in Figure 2-3.

As can be seen from Figure 2-3, a LISP S-expression is equivalent to the parse
tree for a particular program, which in this case is 1*(2+3). The ability of LISP structures
to serve as both data (to be manipulated) and programs (to be executed) is another of the
reasons LISP was chosen as the language for the development of genetic programming.

(Koza, 1992, pg. 71)

27

Figure 2-3 A LISP S-expression

In genetic programming, these LISP S-expressions are composed of structures
that are derived from a predefined function set and terminal set. The function set consists
of whatever domain-specific functions the user feels are sufficient to sofve the problem
and the terminal set is the arguments that the functions are allowed to take on (Koza,
1992, pg. 80). For instance, the function set may be comprised of mathematical,
arithmetic, or boolean operators while the terminal set is usually comprised of variables
from the problem domain and an unspecified integer or floating-point random constant.
Since it is impossible to determine in advance what the structures will look like, it is
necessary to ensure in advance that each function possesses the property of closure (Koza,
1992, pg. 81). The closure property requires that the allowable arguments for any
function be well-defined in advance to prevent the function from taking illegal arguments.
While this may seem like an imposing task, it is usually not a serious problem and is easily
rectified by prior planning of the function definitions. As an example, division by zero is

undefined. If the division operator is a member of the function set, then by defining a

28

special division operator in advance that handles this special case, it is possible to ensure
closure on this function. (Koza, 1992, pg. 82)

Once the representation scheme is defined, the initial program structures can be
generated (Koza, 1992, pg 91). In Koza's method, the initial structures are geaerated
randomly using a combination of two techniques, "full” and “grow". The root, or
beginning, of one of the LISP S-expressions, or trees, is always a function, since a root
that consisted of a terminal would not be capable taking any arguments. Once the root
function is selected, a number of lines, equivalent to the number of arguments the function
requires, are created which radiate away from the function. The endpoints of these lines
are then filled by a selection from the combined set of functions and terminals. If another
function is selected as an endpoint, the selection process continues onward until the
endpoints consist of terminals. There is a preset maximum depth that trees may attain.
The terms "full” and “grow" as mentioned above refer to the depth of the trees. In the
“full" method, all trees filled until they are at the specified maximum depth. In the "grow”
method, the trees are of variable depth. In practice, Koza recommends an approach called
"ramped half-and-half" that combines these two approaches (Koza, 1992, pp. 91-92).
Koza additionally recommends that each structure generated for the initial random
population be checked for uniqueness to ensure a range of diversity of genetic material
(Koza, 1992, pg. 93). Figure 2-4 gives a graphical representation of the creation of an

individual in the initial population.

29

@ Step 1
@ Step 2

(s
Step 3 @ °

) (D
ONO ,

Figure 2-4 Graphical Representation of Tree Generation

Once the initial population is generated the fitness of the individuals in the
population must be determined. There are a number of different ways to compute fitness,
but in general, most of the methods involve measuring the performance of a member of the
population in relation to a ﬁredetermined set of fitness cases. As a guide, the set of
fitness cases must be representative of the entire domain since they will serve as the basis
for achieving a generalized result (Koza, 1992, pg. 95).

After the fitness of the initial random population is calculated, the genetic
operations of reproduction and crossover are performed. In genetic programming, the

reproduction and crossover operations are designed to happen as separate events rather

30

than as parts of a two-step process as with the genetic algorithm Reproduction occurs by

copying an S-expression from one generation to the next. Candidates for reproduction
are selected by using the fitness-proportionate method or a second method known as
toumament selection. In tournament selection, a specified number of population members
are randomly selected with replacement. The individual with the best fitness is then
reproduced in the next generation. The sampling with replacement is what ensures that
fitter individuals survive into succeeding generations. (Koza, 1992, pg. 100)

The crossover operation in genetic programming is more complex than that of
the genetic algorithm due to the differences in the structure of the population members.
The crossover candidates are selected using the same method chosen for reproduction.
This ensures that crossover occurs between individuals in a manner proportionate to their
fitness. After two individuals have been selected a separate random number is chosen for
each individual which corresponds to a point in each structure. It is at these points that
the crossover operation takes place by swapping subtrees. (Koza, 1992, pg. 101) Figure
2-4 shows an example of the crossover operation. The previously described property of
closure on the function set ensures that any resulting S-expressions will be legitimate
program representations. Since the points selected for crossover are most likely to be at
diff>rent levels in each structure there are a variety of situations that may result. (Koza,
1992, pg. 103) An individual may reproduce with itself and produce two totally new
structures. If the crossover point happens to be at the root of on S-expression, that entire

S-expression will become a subtree on the other parent. If the root is selected in both

31

Parent 1 Parent 2

©) °
SO «— RO
S\ e T ONE

oo

Child 1

O OIOG

Child 2

Figure 2-5 The Genetic Programming Crossover Operation

parents, they are both just copied into the next generation. The constraint on maximum
structure depth is the only major limit on the crossover operation.

The third genetic operation of mutation is rarely used in genetic programming.
The normal argument for its use, in order to promote genetic diversity, is not as important
when one considers the variety of structures with different sizes and orientations that are
likely to be obtained from the crossover process. Additionally, when the crossover points
in both parents correspond to endpoints in each structure, the effect is sim'lar to a

mutation at a single point. (Koza, 1992, pg. 106)

32

3. Applications
Due to its relative youth as « «echnique, applications usiL.g genetic programming

are currently confined to mostly experimental problems. Koza does present in his text a
copious amount of examples of applying his technique to a wide range of problems,
including symbolic regression, game playing strategies, decision tree induction, and
artificial life (Koza, 1992, pg. 12-14). In each case, a domain specific function set with
the proper closure was determined in advance. Once the function set and the appropriate
fitness measure was specified, all of the problems proceeded in the identical manner using
a domain-independent implementation of the mechanical operations of evolution. An
initial population was generated at random and the genetic operations of reproduction and
crossover were used 1o create succeeding generations. Koza was able to show via
empirical methods that genetic programming succeeded in each case to find a solution that
satisfied the appropriate fitness measure (Koza, 1992, pg. 4). This ability to solve
problems over a wide variety of domains by using a domain-independent method for
searching the space of possible computer programs to find an individual computer
program is what makes genetic programming an exciting new method of discovery (Koza,

1992. pg. 8).

33

IIl. DESIGN OF EXPERIMENTS

" A. DATA SELECTION.
The COCOMO data set used for training and testing the machine learning techniques

examined in this thesis is drawn from pages 496 and 497 of Boehm's book, Software
Engineering Economics. The sixty-three projects used to develop the three versions of
COCOMO are summarized in this data base. This data includes the project type, year
developed, the development language, the values of the 15 cost drivers, the development
mode, and the various COCOMO estimates. The Kemmerer project data was provided by
the author in electronic form and is included in Appendix C. The experimental approach
taken for each machine-leaming technique consisted of a two-step process that required a
different training and testing data set for each step. The first step used only the
COCOMO data partitioned into training and testing data sets. The second step consisted
of using the COCOMO data for training and the Kemmerer data for testing. The
partitioning of the COCOMO data set in the first step required two tradeoff
considerations.

The first tradeoff involved the size of the training and testing data sets. Machine
leaming methods perform at their best when they have a large amount of data available for
training that is representative of the population, or problem domain. In fact a good
guideline is more is always better. However, there are only 63 projects available in the

COCOMO data base in the text. In this case, choosing to use too much data for traiing

34

reduces the number of data sets available for testing and trivializes the results beyond a
certain point. Alternatively, choosing too little data for training reduces the effectiveness
of the machine learning techniques. A balance was struck by deciding to break the data
into thirds, with two-thirds to be used for training and one-third to be used for testing.
This was accomplished by transcribing the data set from the text into a Quattro Pro
spreadsheet and then sorting the projects by size and type. Once the data was sorted in
this manner, a random number between one and three was assigned to each project. The
data was then partitioned into groups based on the random number assigned and each
group was analyzed. This cursory analysis showed that for each group the mean project
size in thousands of delivered source instructions (KDSI), the average year of
development, and the development mode proportions were roughly similar, indicating a
reasonable distribution. After this analysis, 42 of the projects were identified as the
training set and 21 projects were identified as the testing set. These data sets are included
in Appendix D. The same training and testing sets were then used for all of the machine
learning techniques examined. The composition of the training and testing data sets for
each set of experiments was also kept as identical as possible and consisted of the project
size, annual adjustment factor, development mode, and the fifteen COCOMO cost drivers,
with imited exceptions.

One effect of partitioning the data in this manner is that the testing data set may not
be completely characteristic of the "population”. Some testing set projects contained

some cost driver values that were not contained in the training data set. This situation

35

describes the second tradeoff. Hand selecting the data to ensure that every cost driver
value represented in the data base was in the training set -vas initially considered but
rejected for two reasons. First, it would probably be meaningless when considering that
there are, at a minimum, four values for each cost driver. For fifteen cost drivers this
means there are at least 4" possible combinations of cost drivers, and there are only 63
projects in our data set. Secondly, on a more practical basis, several of the cost driver
values are only represented onc. in the project data base, so if they were included in the
training data there would be no way of examining the effectiveness of this measure.
Therefore, there appeared to be no benefit in ensuring that every cost driver value was

fully represented in the training set.

B. NEURAL NETWORK PROCEDURES
1. Neural Network Software

The software used to develop the neural networks in this thesis is BrainMaker
Professional v2.5, which is designed and marketed by California Scientific Software, Inc.
This software is a DOS-based product manufactured for use on IBM-compatible personal
computers. BrainMaker is designed to construct, train, test, and run backpropagation
neurai networks. It is a menu-driven program that provides the user a large range of
control over the design and operation of a neural network. BrainMaker comes with an
extensive manual as well as a companion program called NetMaker which can be used to
prepare the data files needed by BrainMaker. All of the files used by BrainMaker are in

standard ASCII format, so they can be prepared using most any text editor if the user so

36

desires, although using the NetMaker program speeds up the process since it helps
sutomate the generation of BrainMaker's inputs.

BrainMaker requires two files at a minimum to train. The first file is the
network definition file, which tells BrainMaker the key network parameters, such as the
aumber of input and output neurons, the number of hidden layers and hidden neurons, the
mput and output data definitions and ranges, the leamning rate, and the type of transfer
function the neurons will use. An example of a network definition file is shown in Figure
3-1. The second file that BrainMaker requires is the fact file. This is the file that contains
the data the network will use for training. This file consists of alternating rows of data,
with the first row representing one input set and the second row representing one output
set. An example of a fact file is contained in Figure 3-2. Additional input files that may be
included are a testing fact file and a running fact file. The testing fact file consists of
alternating rows of input and output data not included in the training fact file. This data
may be used during the training process to judge the prospective performance of the
aetwork at user-defined intervals during the training process. When a testing fact file is
specified, BrainMaker pauses at the specified interval and tests the current network
configuration using the facts in the testing fact file. The results of these tests along with
some associated error statistics are written to an output file. The training statistics for
each run may also be written to a separate file if this option is activated. The running fact
file provides the user with the capability to test the trained network with new sets of imputs

in a batch manner and write the results to an output file in a user-specified format.

37

2. Neural Network Design

The neural network design and training process is very iterative. Since any
network configuration will learn some training facts to the user-specified level of tolerance
during the training process it is important to have a strategy for determining a broadly

effective configuration when beginning the network design process.

input number 1 20

output number 1 1

hidden 16 19

filename trainfacts c:\brain\test\cltrain fct

filename testfacts ¢:\brain\test\cltrain tst

learnrate 0.9000 50 0.75 75 0.6000 90 0.5000

learnlayer 1.0000 1.0000 1.0000

traintol 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 500

testruns |

function hidden1 sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmeid 0.0000 1.0000 0.0000 1.00000

dictionary input LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP

AEXP PCAP VEXP LEXP MODP TOOL SCED E ORG SD

dictionary output LOG_MMAC

scale input minimum

0.47712 0.43000 0.75000 0.94000 0.70000 1.00000 1.00000 0.87000 0.87000
0.71000 0.82000 0.70000 0.90000 0.95000 0.82000 0.83000 1.00000 0.00000
0.00000 0.00000

scale input maximum

2.66651 1.00000 1.40000 1.16000 1.30000 1.66000 1.56000 1.30000 1.15000
1.19000 1.29000 1.42000 1.21000 1.14000 1.24000 1.24000 1.23000 1.00000
1.00000 1.00000

scale output minimum

0.77815

Figure 3-1: A sample network definition file
There is no way to know which network configuration will be the most

successful in learning the data prior to the training process. At best, some authors

38

recommend general guidelines for network design that can serve as a starting point. The
makers of BrainMaker suggest first that there is no little reason to have a network with
more than two hidden layers (BrainMaker, 1992, pg. 14-4). They state in the'r manual
that they bave never observed a network with more than two hidden layers that could not
also be trained on just two layers. As for the number of neurons in the hidden layers, there
are two suggestions. The makers of BrainMaker (1992) suggest using the sum of the
input and output neurons divided by two, while the authors Eberhart and Dobbins (1990)
suggest using the square root of the sum of the input and output neurons plus a couple.
Both of these guidelines are based on empirical observations, not any underlying principle.
In the end, it is necessary to experiment with a variety of networks to determine a
successful configuration. This is probably the most time-consuming portion of the design

process but BrainMaker has a method for automating this process to a certain extent.

facts

—]

162324 09 14 108 13 148 156 115 094 0.86
082 08 09 1 091 091 1[E

2.78175

——2

1.36172 096 115 108 1 106 1 1 087 1 1
1 1 1 09111 123 [E
2.36172

——3

1.79239 081 14 108 1 148 156 115 107 086 0.82
08 1.1 1071 1 I1[E

3.02653

—

157978 1 115 116 13 115 106 1 087 086 1
086 1.1 108 091 108[E

2.7185

Figure 3-2 A Sample BrainMaker Fact File

39

3. Preparations for Training

A key aspect in preparing to train a network is data preparation. Due to the
nature of neural networks and the way that the training tolerance is calculated, it is
necessary to pay particular attention to the way the data is presented to the network.
First, all input variables should vary over & roughly similar range between the minimum
and maximum values. The reason for this is fairly straightforward. Since every input is
connected to each neuron in the first hidden layer, a single input that varies over a large
range can tend to "drown out" the other inputs, diminishing their contribution. Secondly,
since the inputs and outputs to the network are all normalized, data that varies over a wide
range reduces the ability of the network to distinguish small changes. For example, if a
significant portion of a particular piece of data ranges between 500 and 600 while a few
values range between 10 and 20, the network will have difficulty determining the
difference between 10 anZ 20. As a rule of thumb, smaller changes are better. This
becomes particularly important when understanding the concept of network training
tolerance.

Tolerance is the statistic used to determine the level of precision to which the
network trains. Tolerance is expressed as a percentage of the difference between the
minimum and maximum output values. As an example, if the minimum output is 10 and
the maximum output is 1000, then a tolerance of 0.1 means that any network output that
falls within 0.1*(1000-100) = 90 of the actual output value will be considered correct by

the network. Therefore, if the output training values vary over a large range, the accuracy

40

of the network will be diminished. This required two transformations to the COCOMO

data for use with the neural network. Since the KDSI values and the actual man-months
vary over s large range, logarithms of these two values were used, which greatly reduced
the difference between the minimum and maximum values and increased the ability of the

network to learn and predict project effort.
4. Automating the Training Process
BrainMaker has an option which allows the user to specify a range of network

hidden layer configurations, as well as other parameters, that can be tested in a variation of
a brute force attack (BrainMaker GTO, 1993, pg. 5). This option was used to test three
ranges of network configurations that were used in an iterative process to search for the
best-performing network configurations. The three ranges tested are summarized in Table

3-1:

Table 3-1 Network Ranges Tested

Number of Hidden Neurons ~ Number of Layers
11010 1 and 2 hidden layers
10t0 20 1 and 2 hidden layers
15025 1 and 2 hidden layers

The use of this option requires the user to create an additional input file beyond
the usual training, testing, and definition files. This setup file contains all the network
configuration parameters and the ranges of those that are being varied. In this study, the
only parameters varied were the sumber of neurons and hidden layers, since these two

factors have the greatest effect on overall network performance. The remaining network

41

parameters (which deal mostly with the learning rate associated with the Delta rule) were
fixed with the exception of training tolerance, which was allowed to decrease in a stepwise
pattern from 0.1 to a Limit of 0.04. The stepwise decreases in tolerance are triggered
when the network leams all the training facts at the current training tolerance. The testing
tolerance was specified as 0.2. An example of the setup file for this option is shown in

Figure 3-3:
The training and testing data files consisted of the COCOMO data modified as

mentioned previously by changing the KDSI and effort values into logarithmic values.
There were 42 training patterns and 21 testing patterns. The network definition file
consisted of a generic network definition file that provided the ranges of the input values
and the variable names, similar to the file shown in Figure 3-1.

Once the three ranges of configurations had been tested and all of the results
written to three output files, the top performing networks were selected. The selections
were made by reading all of the output files into Quattro Pro for Windows spreadsheets
and sorting the results based on the number of correct outputs for both the training and
testing dats sets. After the sorting process, the networks shown in Table 3-2 were chosen
for further training at a more detailed level The choice of this iterative process was based
upon several factors that mainly involved hardware and software constraints. The
hardware constraint concemned the disk space required to save the testing results. In the
initial round of testing, the statistics for the testing data set were written to disk every 25

runs. Each of these runs took approximately four to five hours on a 33 MHz 486

42

filenames c:\brain\thesis\citrain.def c:\brain\thesis\citrain fct
c:\brain\thesis\cltrain tst GTO.STA ¢:\brain\thesis\test4 ACC
maxruns 400

testruns 25

separate 0.2000

current 111

starttol 0.10000 0.10000 0.00000 0.10000

endtol 0.04000 0.04000 0.00000 0.04000
tolmuilt 0.80000 0.80000 0.00000 0.80000
tolpet 100 100 0 100

hiddenl 110110

hidden2 110110

hiddenlayers 3 1

decrease 0.10000 0.10000 0.00000 0.10000
addruns 0000

inputmin 0.00000 0.00000 0.00000 0.00000
functionmin 0.00000 0.00000 0.00000 0.00000
gain 1.00000 1.00000 0.00000 1.00000

noise 0.00000 0.00000 0.00000 0.00000
blurring 10

random $.00000 5.00000 0.00000 $.00000
delay 10

learnrate 1.00000 1.00000 0.00000 1.00000
leaminit 0.90000 0.90000 0.00000 0.90000
learnpctl 50 50 0 50

learnratel 0.75000 0.75000 0.00000 0.75000
learmnpct2 7575075

learnrate2 0.60000 0.60000 0.00000 0.60000
learnpet3 90 90 0 90

learnrate3 0.50000 0.50000 0.00000 0.50000
learnlayer! 1.00000 1.00000 0.00000 1.00000
learnlayer2 1.00000 1.00000 0.00000 1.00000
learnlayerout 1.00000 1.00000 0.00000 1.00000
smoothing 0.90000 0.90000 0.00000 0.90000
smoothlayer1l 0.90000 0.90000 0.00000 0.90000
smoothlayer2 0.90000 0.50000 0.00000 0.90000
smoothlayerout 0.90000 0.90000 0.00000 0.90000

Figure 3-3 A sample network configuration testing file

43

Table 3-2 Top Network Configurations

First Hidden Layer Neurons Second Hidden Layer Neuroas
L]
s 9
10 n
16 19
18 15
4 25

computer and took approximately 300 kilobytes of disk space. Saving the results for
every run would have risked filling all the disk space available on the disk and risked
crashing the computer while unattended, which would have wasted a training run.
Additionally, the resulting data files would have been too large to load into a spreadsheet
in order to perform the sorting operations. This is the reason the training was broken intc
two cycles, with the goal of the first cycle being to identify the networks with the best
performance at a macro level. The criteria that was used to determine which networks to
choose for further training was based on which networks correctly predicted all 21
projects in the testing data set at some point during their training period. Six network
configurations met this criteria. Once these six best network configurations were
identified, the second round of training was performed. For this training cycle, network
definition files were created for each of the six configurations. All parsmeters in these
definition files were identical except for the number of neurons in the two hidden layers.

For these networks, the ¢ : -mum number of training runs was set to 500. A run is this

seuse is defined as a pass through the eatire training data set in which fitness statistics are
accumulated for the current configuration and weight vector set. The COCOMO training
and testing files were provided as inputs. Training and testing statistics for all 500 runs
were accumulated in separate files for each of the six configurations. Once this cycle of
training was over, the testing and training statistics files were again read into Quattro Pro
for Windows spreadsheets and analyzed to determine the optimum number of training runs
for each of the six configurations. This optimum point was based on the run where all 42
projects in the training data were correctly predicted and the network training tolerance
was st a8 minimum for the training cycle. When this point was determined for each
network, the training process was repeated from the beginning up to this optimum
performance point. The analysis of neural network performance is based upon the results
obtained from these final versions of the six networks. The definition files for these
networks are shown in Appendix E.

This entire network training process starting with the six network configurations
was repeated a second time in order to test the performance of the neural network on a
data set separate from Boehm's COCOMO data set. In this second round of
experimentation, all of the 63 COCOMO projects were used as the training set, and the 15

projects that make up the Kemmerer data set were used as the testing set.

45

C. GENETIC ALGORITHM PROCEDURES
1. Genetic Algorithm Goal

The goal of the second group of experiments in this thesis was to use a genetic
algorithm to determine an optimum set of values for the cost drivers, coefficients, and
exponerts for the Intermediate COCOMO model In this group of experiments the imputs

to the genetic algorithm included the Intermediate COCOMO model structure,

MM = Effort Adjustment Factor*COEFF*(Adjusted KDSI)**EXP

and the partitioned COCOMO data with two modifications. The first modification to the
COCOMO training and testing data set prior to using the genetic algorithm consisted of
multiplying the annual adjustment factor and KDSI values together to obtain the adjusted
KDSL This action was taken since the Annual Adjustment Factor provided no additional
information to the genetic algorithm process in the absence of information on how it was
derived. The second modification consisted of expressing the cost drivers by their Literal

values, such as HIGH, LOW, or NOMINAL, vice their numeric values.
2. Genetic Algorithm Software
The genetic algorithm software package used was GAucsd 1.4, a C-language

geaetic algorithm developed by Nicol Schraudolph of the University of California, San
Diego, based on previous work by John Grefenstette of the Naval Research Laboratory.
The uncompiled C code for GAucsd 1.4 is publicly available via anonymous fip on the

Internet and can be adapted to any machine that has a C compiler. In this case the target

46

platform was a Sun workstation. The choice of GAucsd 1.4 was based on its availability
and ease of use. This package is well-designed in that the user has only to supply a
chromosome structure and a fitness function (written in C) that defines the problem.
GAucsd 1.4 provides the rest of the functionality required in a genetic algorithm, such as
population initialization, crossover, and mutation. GAucsd 1.4 also provides an awk
language macro that integrates the user defined fitness function and adds in the code
required to implement the genetic algorithm operations. This design feature relieves the
user f the task of code integration. (Schraudoiph and Greffenstette, 1992, pp. 9-12)

3. GAucsd Preparation
TLe chromosome structure defined in the genetic algorithm fitness function used

in this study consisted of a string of 96 numbers that represented all of the cost driver
values, along with the coefficients and exponents for all three project development modes.
Since there are a maximum of six values for each cost driver and a total of fifteen cost
drivers, the first 90 numbers represented the cost drivers. Although most cost drivers
have less than six values, a total of six values were reserved for each driver. This aided in
the structure of the problem by allowing the indexing process to operate as if the first 90
numbers represented a pseudo 6 x 15 array. The excess cost driver values in no way
impeded the finctionality of the genetic algorithm. The numeric values derived by the
geaetic algorithm were substituted for the literal values in the COCOMO training set
which were stored as index values in a C table structure. These first 90 values were

allowed by the fitness function to range from 0.5 to 2.0. The 91st through 93rd numbers

47

represented the coefficients for each development mode and the 94th through 96th
pumbers represented the exponents for each development mode. These last six values
were allowed by the fitness function to range from 0.0 to 4.0. The choice of these ranges
was somewhat arbitrary but allowed for a greater range of values than those expres..2d in
Boehm's Intermediate COCOMO model The actual fitness measure for each member of
the population was initially the average relative error of the actual effort in the COCOMO
training data set versus the estimated effort calculated by the fitness function. This
estimated effort was calculated using the Intermediate COCOMO model as a template.
The genetic algorithm derived numeric values for the literal cost driver values, along with
the coefficient and exponent values appropriate for each project's development mode then
were used as inputs into the Intermediate COCOMO model. The capability to impose
constraints on the values generated by the genetic algorithm was also provided and is

expanded upon later. The GAucsd user-defined fitness function is shown in Appendix F
4. Initial Genetic Algorithm Benchmarking
Along with the user-defined fitness function, the other input to the GAucsd 1.4

program is the default file that specifies population size, crossover rate, mutation rate, and
pumber of generations. The first step in using the genetic algorithm centered on finding an
effective population size and crossover rate to use with the 960 bit chromosome. This
was accomplished by a series of test runs using various population sizes and crossover

rates while keeping mutation rate and number of generations constant. The test runs are

summarized in Table 3-3.

48

Table 3-3 Genetic Algorithm Benchmark Tests

Population Sizes Tested 100, 200, 1000

Crossover Rates Tested 05,15,25,3.0,50
Mutation Rate 0.00002

Number of Generations 2,000

The training data for this benchmarking process consisted of the eatire
COCOMO project data set. The entire set was used to examine how well the values
derived from the genetic algorithm performed with respect to the values determined by
Boehm in his original model. The results of this initial round of benchmarking showed
that a population size of 200 and a crossover rate of either 3.0 or 5.0 performed the best
in almost every case. The crossover rate greater than one meant that the chromosome
underwent several crossovers in each generation. A sample of the genetic algorithm
default file is shown in Figure 3-4.

After the optimum population size and crossover rates were determined, nine
versions of the fitness function were prepared. These versions differed based on how the
fitness of each member of the population was measured and how the previously mentioned
constraints were applied. The three fitness measures used in the experiments were
sverage relative error, mean error, and mean-squared error and these measures were

calculated as shown in Table 3-4.

49

Experiments = |

Total Trials = 2000000
Population Size = 200
Structure Length = 960
Crossover Rate = 5.000000
Mutation Rate = 0.00002000
Generation Gap = 1.000000
Scaling Window = -}
Report Interval = 20000
Structures Saved = 20

Max Gens w/o Eval = 0
Dump Interval = 10
Dumps Saved =]
Options = Axclu
Random Seed = 3436473682
Maximum Bias = 1.990000
Max Convergence = 0
Conv Threshold = 0.990000
DPE Time Constant = 10
Sigma Scaling = 1.000000

Figure 3-4 A Sample Genetic Algorithm Defsult File

Multiple measures of fitness were tested due to the general nature of adaptive
algorithms, of which the geuetic algorithm is an excellent example. Different measures of
fitness cause different behaviors in the algorithms and affect the Jeaming process.

Mean-squared error, for instance, emphasizes large magnitude errors at the expease of

Table 3-4 Genetic Algorithm Fitness Measures

Fitness Measure Formula
verage Relative Error T Abs((Estimated - ActualyActual)
A Number of fitness cases
Z Abs(Estimated — Actual)
Mean Error

Number of fitness cases

Mean-squared Error I(Estimated - Actual)®
Number of fitness cases

S0

smaller magnitude errors. This type of behavior caused the genetic algorithm to focus on
learning the larger software projects that had large errors at the expense of the smaller
projects. This behavior led to poor results. Mean error reduced this tendency to a degree,
but the best leaming performance was found when using average relative error. In these
experiments, this fitness measure equalized the effort the genetic algorithm expended
learning all of the projects since error was expressed as the average percentage difference
between the estimated value and the actual value. A secondary observed benefit of this
measure was that both mean error and mean-squared error were also minimized when
using this fitness measure even though neither of these fitness measures were explicitly

expressed in the fitness function.
5. Genetic Algorithm Constraints

The final aspect of the various fitness functions involved the imposition of
various degrees of constraints on the values generated by the genetic algorithm. An
mnspection of Boehm's COCOMO cost driver, coefficient, and exponen: values reveals
certain patterns or constraints. For example, in the case of the COCOMO exponents, the
magnitude of the exponent increases as the mode shifts from organic to semidetached to
embedded. Conversely, the coefficient decreases as the same mode shifts occur. Similar
patterns can be seen in the values of the cost drivers. When inspecting the cost driver
table, the magnitude of the first seven cost drivers increases when moving from a value of
Very Low to a value of Extrs High. The opposite movement occurs in drivers eight

through fourteen. In this case the magnitude of the driver decreases as the value shifts

51

from Very Low to Very High. The value of the final cost driver, required development
schedule (SCED), moves in a high-low-high manner as the value shifts from Very Low to
Very High. These pattems can be interpreted as constraints that the cost driver values
should obey. To test whether or not these constraints added to the ability of the genetic
algorithm to lean the project data and find an optimal set of values, these constraints were
embedded in three versions of the fitness function. In the first version, no constraints were
placed on the order of the cost drivers, exponents, or coefficients. In the second version,
peaaity measures were introduced on the cost drivers so that if the previously identified
patterns in the first 14 cost drivers (SCED was allowed to vary without constraint) did not
appear in the chromosome, the fitness of the individual was penalized based upon the
degree of non-compliance. In the final version of the constrained fitness function, penalty
measures were introduced on the generation of the exponents and coefficients as well as

the cost drivers.
6. The Genetic Algorithm Testing Process

The nine fitness functions used for training the genetic algorithm were
constructed using the three measures of fitness and the three constraint levels previously
described. Testing was performed using a population size of 200 and crossover rates of
3.0 and 5.0 with the number of generations set at 5000 for all tests. There were 18 total
tests and each test took approximately two to four hours on a Sun workstation. The top
twenty chromosomes in each test were saved to an output file and read into a Quattro Pro

for Windows spreadsheet. The chromosome values with the best fitness in esch run were

52

translated into their associated COCOMO modei values using a previously constructed
series of linked spreadsheets. This table of translated COCOMO model values was then
linked to the test data set in such a manner as to allow for automatic updating of the test
data and its associated performance measures whenever new chromosome data was pasted
into the spreadsheet. The results of all 18 tests were processed in the same manner.

A slightly different procedure to that previously described was used when the
geaetic algorithm was trained using all 63 COCOMO projects and tested with the
Kemmerer project data. In this case, the best parameter set from the original genetic
algorithm benchmarking tests was used along with the full range of constraints in the
fitness function. The use of all of the constraints was based upon the results observed in
the first phase of testing. The number of generations was increased from the
benchmarking level of 2000 i0 5000. The top twenty chromosomes from this run were
again saved to an output file that was loaded into a spreadsheet holding the Kemmerer
data. The performance of the genetic algorithm with respect to the Kemmerer project set

was then calculated.

D. GENETIC PROGRAMMING PROCEDURES
1. Genetic Programming Software

The goal of the final group of experiments in this thesis was to test the ability of
genetic programming to derive an explicit cost estimation model given only the COCOMO
data and » fitness function. The genetic programming software used was SGPC: Simple
Genetic Programming in C by Walter Alden Tackett and Aviram Carmi. This software

53

is based on the original LISP code published by Koza in his book and is available via
anonymous ftp from the Santa Fe Institute and the University of Texas. This software
provides all the functionality required to apply genetic programming to a variety of
problem domains. The genetic operations of popuhtion initialization, crossover,
reproduction, and mutation are fully supported by this software. The user is only
responsible for defining functions specific to the problem at hand, easuring closure of the
functions, and providing the appropriate fitness function and terminal set. This software
also has the capability to train and test simmltaneously, which reduces the
post-experimental processing of the output expressions. Due to the memory requirements
and CPU intensive nature of this application, the target platform for this application was a

Sun workstation.
2. Genetic Programming Preparation
Preparation for the genetic programming process using the SGPC software

involved five steps. In the first step the functions available for use in the S-expressions
were defined. Since this set of experiments was basically a problem of regression, the
standard mathematical operations of addition, subtraction, multiplication, protected
division, and exponentiation were defined as operators in SGPC. The protected division
operator is a specially defined division operator that provides closure for the case of
division by zero. When this event occurs, the operator is defined to retumn a value of one.
In the second step the C-language program structure that provides the terminal

set (variable declarations) and the training data was constructed. This procedure was

54

performed using a script written in perl that took the tab-delimited ASCII file containing
the COCOMO training data and buil a C source code file. This C source code file made
the variable declarations that defined the terminal set and created the table structure
containing the training data. The training data for this set of experiments consisted of the
same projects as those used for the previous experiments. The first round of experiments
used the same 42 COCOMO training projects and 21 COCOMO testing projects. In the
second round of experiments the entire 63 project COCOMO project set was used for
training while the 15 project Kemmerer data set was used as the testing data. The training
data input variables were KDSI, the annual adjustment factor, and the fifteen cost drivers.
The actual effort associated with each project was the dependent variable. The project
mode was not included in the training set since mode is a fixed descriptor of project
classification and not a variable. Consideration was given to partitioning the data by mode
but this idea was discarded, since the resulting training and testing »ets would be so small
no conclusions could reasonably be drawn from the results.

The third step in the genetic programming preparation process was the defmition
of the fitness measure embedded in the “fitness.c” source code file. With the knowledge
gained from the sequence of genetic algorithm experiments, the fitness measure for the
geanetic programming sequence was based on average relative error. The use of average
relstive error is also supported by the fact that some initial genetic programming test runs
performed using the COCOMO data with a different fitness measure, mean-squared error,

showed very poor performance.

55

The fourth step in the process was the preparation of the test data that SGPC
used to test the resulting S-expressions during the training process. The test data
preparation consisted of using a perl script that took a tab-delimited ASCII file containing
the test data and built a C source code file that contained a table of the test data and the
associated table declarations.

The fifth and final step of the genetic programming preparation process was to
compile the program using a makefile that included the user defined training, testing, and
fitness source code files. Once the compilation was complete, the training process was
initiated.

The SGPC program required that a number of parameters associated with the
geaetic programming process be provided by the user in a default file. These parameters
include the population size, random seed, reproduction, crossover and mutation

parameters, and S-expression size limits. A sample default file is shown in Figure 3-4.

seed = 11287
checkpoint_frequency =5
population_size = 2500
max_depth_for_new_trees =3
max_depth_after_crossover = 10
max_mutant_depth = 4
grow_method = RAMPED
selection_method = TOURNAMENT
tournament K = 6
crossover_func_pt_fraction = 0.2
crossover_any_pt_fraction = 0.2
fitness_prop_repro_fraction = 0.2
parsimony_factor = 0.01

Figure 3-4 A Sample Genetic Programming Default File

56

A population size of 2500 was used for all the genetic programming experiments
in this study. Choice of this population size was basically a compromise between the need
to provide a large population to ensure genetic diversity and the memory available on the
Sun workstation. It is important to remember that during portions of the genetic
programming process, two copies of the eatire population are stored in memory. If these
populations begin to contain large S-expressions, the memory requirements can be huge,
easily exceeding SO or 60 megabytes. Tournament selection was used to select
S-expressions for the reproduction process with a tournament size of six. The parsimony
factor included in the default file is an SGPC variable that can be used to reward
S-expressions for size of structure as well as performance, with smaller structures being
viewed as better than larger ones when performance is equivalent. While the use of
parsimony is optional in genetic programming, it was used in the COCOMO runs at
various settings. The crossover and S-expression size parameters were also varied so that
a total of seven runs using the COCOMO training and testing data and seven runs using
the COCOMO and Kemmerer data were completed. The results of each run, which
contained the best structure for each generation and its associsted fitness, were written to
an output file.

Once the testing process was completed the output files were processed by first
running an Ami Pro macro on the output file. This macro substituted the Quattro Pro
spreadsheet coordinates for each of the input variable names. Using this procedure

allowed the best structure from each output file to be pasted directly into a spreadsheet

57

cell, where the performance calculations were made automatically using a set of linked
spreadsheets. This action greatly reduced the processing time required for each output
file.

58

IV. ANALYSIS OF RESULTS

A. MEASURES OF PERFORMANCE
The results of the experiments for all three machine leaming techniques were analyzed

in the same manner to determine each technique’s performance. Three measures of
performance were used for all of the techniques. These three measures consisted of the
average magnitude of the relative error, the standard deviation of the magnitude of the
relative error, and the regression coefficient, R-squared, of the estimated man-months
versus the actual man-months. The choice of these three performance measures was based
upon the work done by Kemmerer (.1987), in which he analyzed the performance of
several popular software cost estimation models using a 15 project data set that he
developed. These are the same 15 projects that were used as one of the sets of testing
dsta in this study. The use of the magnitude of the relative error is intended to measure
the accuracy of each model. The closer this measure is to zero, the greater is the accuracy
of the model. The R-squared measure gives the correlation between the estimates of each
model and the actual project results. A perfect correlation gives an R-squared value of
one. This measure is meant to act as a sort of "reality check” on the models’ outputs in
seeing whether the project estimates track in a predictable manner with the project actuals.
Since each machine leaming experimental procedure involved two phases
corresponding to t»o different software development domains, the measures of

performance are able to provide insight in two distinct manners. In the first phase of each

59

experimental procedure, COCOMO data was used for both training and testing. The
performance measures for each of the methods during this phase gives insight into which
of the machine generated models perform best when operating in a specified development
domain. Where appropriate, comparisons with the estimates provided by Intermediate
COCOMO are made. In the second phase of each experimental procedure, the same
testing data set Kemmerer (1987) used when he made his study of several popular models
was used as the testing data set for the machine generated models. In this phase, it is
possible to compare the estimating capabilities of the models developed by the three
machine-learning techniques with several well-known cost-estimation models by using the
results Kemmerer obtained in his study. These models include SLIM, ESTIMACS,
Function Points, asnd COCOMO. This comparison is useful because it gives an indication
of the ability of the machine generated models to generalize across development domains,
which is critical for a model, or modeling technique, to be successful

The machine generated models were also analyzed to see if their structure could
provide insight into the general relationships between the input variables and the model
outputs. This analysis was performed to see if the machine generated models detected any

relationships among the variables that may have gone unnoticed.

B. NEURAL NETWORKS
1. First Phase Results

The initial phase of neural network training involved the use of the COCOMO

data set for both training and testing. Six networks were trained using 42 projects from

60

the COCOMO daia set. Testing was conducted using the remaining 21 projects. Table

4-1 shows the performance statistics based on the results of these tests for the six best

actworks.
Tabtle 4-1 Neural Net Performance Results
COCOMO Training and Testing Data
Network Configuration | AvgRelErr | Std DevErr R-squared
(%) (%) (act. vs. est)
B 9189 90.17 0.755
T} 89.80 86.26 0.707
11110 105.96 126.06 0.816
16/19 63.10 68.61 0.726
18/15 -136.84 272.63 0.753
24125 110.17 109.93 0.708
|_mcocomo | se3 | s | o |
XX/XX — Hidden Layer 1/Hidden Layer 2
20 Input Neurons - 1 Output Neuron

As Table 4-1 indicates, neural networks are not highly accurate in their
estimates, but their estimates do correlate relatively good 1o the actual project efforts.
Results of this type are consistent with the typical expectations of s neural network. The
strength of neural networks lies in their ability to provide generalized outputs vased on
their inputs. From this perspective, the neural ustwork results from the first phase of the
experiment are positive. The most accurate neural network, with 16 neurons in the first

hidden layer and 19 neurons in the second hidden layer, is capable of providing a general

61

ides of the magnitude of the effort required for a particular project being developed within
the same domain in which the network was trained. The correlation coefficient,
R-squared, of 0.726 indicates that this estimate bas a fairly strong relationship with the
actual project effort. Why this particular network performs better than the others is not
explicitly determinable. In general, a network is successful when it has just enough
neurons to provide a capability for feature detection, but not so many neurons that it just
“memorizes” the training Gata. While not as accurate as the algorithmic model,
Intermediate COCOMO, a network bas the advantage of requiring less analytical skill to
develop and use, and it probably requires less development time. Based on the
performance characteristics as obsel:ved in Table 4-1, the best use of a neural network
would probably be at the early stage of project development, where s manager could
perform “what-if* analyses using various input combinations and obtain results very
quickly with a minimum of setup. Additionally, by continually retraining the model with
new projects the manager could gain further advantages since the network model would
be continually calibrating itself through this retraining process. If the organization also
uses an algorithmic model for cost estimation, and correlates its estimates with those of
the neural network, a sort of "early warning system" that could indicate when recalibration
of the algorithmic mode! is required could be established. A significant drop in the
correlation between the two estimation methods could be an indicator that the algorithmic

model is in need of calibration.

62

The most interesting aspect of this phase of experimentation is the effect
aetwork configuration has on performance. While the accuracy of the estimate varies over
a range of spproximately 70 percent, the standard deviation varies over a range of
approximsately 200 percent. These results indicate that when preparing to use a neural
network a good strategy would be to begin with several candidate configurstions and
continue to maintain and compare them until a statistically sound analysis can be
performed to determine the best configuration. As for finding the best configuration, the
BrainMaker (1992) thumb rule of using the number of inputs and outputs divided by two
or the Eberhart and Dobbins (1990) rule of using the square root of the sum of the inputs
and outputs plus s couple would have both provided networks close to the ones found
using the brute force search. However, with the power available in current personal
computers the BrainMaker brute force search is not an unreasonable or even overly

time-consuming approach to take initially.
2. Second Phase Results

In this phase of the neural network experimentation process the entire 63 project
COCOMO data set was used for training and the 15 project Kemmerer data set was used
for testing. As previously stated, the network configurations from the first phase were
retrained to the optimal performance point for the 63 training projects and then tested.
The results of this phase of tests are shown in Table 4-2.

The second phase results using the Kemmerer testing are very interesting. As

can be seen from Table 4-2, the top performing neural networks are competitive with, and

63

Table 4-2 Neural Net Performance Results
COCOMO Training and Kemmerer Testing Data

Netwerk Avg Rel Err 5td Dev Ery R-squared

Coafiguratios (%) %) (Est va. Act)
58 803.2¢ 937.05 0.557
L 04 1,040.57 1,546.72 0.433
11710 328.84 $55.49 0.761
16/19 451.30 683.10 0.742
18/15 621.00 $29.12 0.651
24/28 33812 691.62 0.598
SLIM®* 771.87 661.33 0.878
Int COCOMO* 583.82 862.79 0.599
Function Points® 102.74 112.11 0.553
ESTIMACS®*t 85.48 70.36 0.134

XX/XX - Hidden Layer 1/Hidden Layer 2
¢ (Kemmerer, 1987, pp. 422-425)
t ESTIMACS statistics based on 9 of 15 projects

in some cases superior to, some of the more popular cost-estimation methods in both
accuracy and correlation factor. The best network in this phase (11/10), has an accuracy
grester than that of either SLIM or Intermediate COCOMO and a correlation factor
higher than all of the models except SLIM. While none of the networks could be
considered truly accurate, the results of this experiment indicate that aetworks are worth
strong considerstion. The best indication that networks deserve attention can be seen by

considering the results of the best networks with those of the Intermediate COCOMO.

Both the networks and Intermediate COCOMO are based on the same 63 project data set,
yet the best networks perform significantly better. These results seem to indicate that the
top networks are capable of capturing some level of meta-knowledge sbout the
relationships between the cost-estimation inputs and the output.

With the relatively small amount of data in both number of inputs and projects
that was used for training these networks, the level of performance obtained is still
significant. However, the seasitivity to configuration is once again apparent. All six
networks “leamned"” the 63 projects in the COCOMO data set but their performance on the
Kemmerer data ranges greatly in both accuracy and correlation. This divergence in the
range of performance results appears to to magnified by the change of development
domains. This reinforces the suggestion that managers should initially maintain multiple

network configurations until some level of confidence is obtained as to which network is

truly the top pr.former.
3. Neural Network Structural Analysis
Although neural networks are relatively easy to construct and operate, it is

difficult to explicitly analyze bow they are processing their inputs. One method, suggested
by a BrainMaker user and posted on Compuserve, can at least provide the user with
insight into which inputs affect the behavior of the network the greatest. In this method
the first step is to extract the complete set of connection weights from the BrainMaker
network definition file andJ strip the bias weights off of each layer. The second step is to
take the absolute value of all the weights. And finally, in the third step, a series of matrix

65

mukiplications are performed, beginning with mukiplying the output layer connection
weights by the connection weights to the second hidden layer. This process is repeated in
8 stepwise manner backward through all of the hidden lsyers until a single weight vector
remains. This resulting weight vector shows the mig:itude of the connection weights that
each input "sees” through the network. Examining this vector can give some indication of
which inputs are affecting the network output to the greatest extent. Unfortunately, these
results do not indicate whether these weights affect the output positively or negatively
since only the magnitudes are used. Still, this approach is useful because the user can at
least see what inputs the network considers important. This matrix multiplication analysis
was conducted on three of the networks derived in the second phase of the neural network
experiments. Two of the top networks, 11/10 and 16/19, along with the worst network,
8/9, were examined using this method. The top 10 connection weight magnitudes for the
input neurons in these three networks are shown in Table 4-3.

The results shown in Table 4-3 provide some interesting insights into how each
of these networks are manipulating the inputs to the network in order to obtain the effort
estimate. For example, the two best networks deemphasize the effect the size of the
project has on the effort estimate while the worst network views size as having the top
effect on the output. The comparison of how these networks view project size
encspsulates the argument made by various researchers that "lines of source code” is in
actuaslity a poor predictor of project effort (Kemmerer, 1987, pg. 418). One factor that all
of the networks examined do have in common though is their emphasis on project

66

Table 4-3 Top Network-Influencing Input Neurons

Network 11/10 Network 16119 Network 8/9
TURN | 26628 PCAP 46270 [LOG_KDs1| 242.06
CPLX 208.23 TURN 45740 SD 238.54
AEXP 181.72 STOR 436.5% TURN 205.07
PCAP 168.38 sD 398.55 PCAP 192.67
ORG 166.97 CPLX 388.80 AEXP 179.717
TIME 163.14 [LOG KDSI| 371.82 E 175.35
ACAP 159.61 TIME 366.50 ORG 169.01
VIRT 157.12 AEXP 363.64 CPLX 164.7%

LOG_KDSI 149.15 ORG 363.12 VIRT 158.68
VEXP 148.42 TOOL 345.72 SCED 141.67

While not conclusive by any measure, this type of analysis can provide a project

67

complexity, computer turnaround time, and programmer capability. This emphasis on

" project complexity and programmer capability is also apparent in the cost driver values
that Boehm assigns to these values but the emphasis that the networks place on computer
turnaround time is not reflected in the values that Boehm assigns to this driver (Boehm,
1981, pg. 118). Looking at these results from the other direction, the emphasis that
Boehm places on the capability of the analyst is not nﬂeaed in the analysis of the
petworks. This driver only appears once in Table 4-3, and is ranked only seveath.

manager some insight into which network inputs are affecting the output to the greatest

degree and can serve as a type of sensitivity analysis that can provide indications of areas
that may possibly require a higher level of attention.

C. GENETIC ALGORITHEMS
1. First Phase Results

The first phase of the genetic algorithm experiments used the COCOMO
training and testing data sets and Intermediate COCOMO as a model template. In this
phase 18 different fitness functions were tested. These fitness functions differed based on
the crossover rate, the measure by which the error was determined, and the degree to
which the constraints on the values generated by the genetic algorithm were spplied.
Table 4-4 provides a summary of all of the tests conducted.

As previously mentioned, different fitness measures were tested in order to see
which fitness measure most effectively forced the genetic algorithm to find the optimal
values of the cost drivers, coefficients, and exponents. The constraints invoked during the
various tests reflected the patterns ncted in Boehm's values for the cost drivers. The "no
coustraints” tests meant that all values were free to seek optimal values independent of
each other. The “cost drivers only” constraint pcnalized the fitness of the genetic
algorithm proportionate to the degree to which the results failed to match the patterns
poted in Boehm's cost driver tables. The "all constraints” constraint extended the “cost
drivers only” penalties to the patterns observed in the coefficients and exponents. A

graphical representation of the results of all of these experiments is shown in Figure 4-1.

68

Table 4-4 Genetic Algorithm Test Series Summary

Test Number | Fitaess Measure Constraiots | Crossover Rate
1 Avg Rel Error None 30
2 Avg Rel Error None 3.0
3 Avg Rel Error Cost Drivers 30
Only

4 Avg Rel Error Cost Drivers 50
Only

5 Avg Rel Error All Constraints 30

6 Avg Rel Ervor All Constraints 50

7 Mean Error None 30

s Mean Error None 5.0

9 Mean Error Cost Drivers 30
Only

10 Mean Error Cost Drivers 5.0
Only

1 Mean Error All Constraints 3.0

12 Mean Error All Constraints 5.0

13 Mean Squared Err None 3.0

14 Mean Squared Err None 5.0

15 Mean Squared Err Cost Drivers 3.0
Only

16 Mean Squared Err Cost Drivers $.0
Only

17 Mean Squared Err All Constraints o

18 Mean Squared Err All Constraints 50

69

Genetic Algorithm Performance
COCOMO Training and Testing

Test Number
(ESAvg.RelEn [$1d Dev Rei Bt)

Figure 4-1 Geaetic Algoritbm Accuracy Performance

Figure 4-1 shows that the best performance in the genetic algorithm experiments
was obtained when relstive error was used ss the fitness measure and the full range of
constraints were applied. These performance results indicate that the genetic algorithm is
an effective tool for determining an accurate set of numerical equivalents for the literal
values in an algorithmic model such as Intermediate COCOMO. The correlation factors
for the genetic algorithm derived values are also excellent , and are shown in Figure 4-2.

The ability shown by the genetic algorithm to derive the values for all of the cost
drivers, coefficients, and exponents given only s model templste, an objective function
requirement to minimize the relative error, and some constraints that describe knowledge
of the domain is an excellent example of the power that this machine learning technique

can provide to the manager.

70

1234856706 0910111219418161710
Test Number

Figure 4-2 Genetic Algorithm Correlstion Performance

Boehm (1981, pg. 524) describes situations where it is desirable for COCOMO
to be tailored to a particular installation. The procedure outlined for calibrating the model
requires solving a system of linear equations. This is time-consuming, tedious work and it
also fails to take advantage of any domain knowl+dge that may have been accumulated by
the organization. The genetic algorithm provides an alternative method to this approach
that is easier, more extensible, and takes advantage of any domain knowledge that the user
wishes to embed in the fitness function. For instance, assuming 8 COCOMO template, in
that the effort required is a function of a particular cost driver set, the project size, and a
particular development mode, a user could easily build a new pseudo-COCOMO model

71

that makes use of any sumber of cost drivers and modes that the user specifies in the
fitness function and chromosome structure. Additionally, the user has the opportunity to
build into the fitness function any identified domain knowledge about the relstionships that
are spplicable.

2. Second Phase Results

In the second phase of the genetic algorithm experimentation process the entire
COCOMO data set was used for training and the Kemmerer data set was used for testing.
The fitness function for this phase ased the magnitude of the relative error and the full set

of constraints, taking advantage of the knowledge gained previously. The results of this

experiment are shown in Table 4-4.
Table 4-4 Phase 2 Genetic Algorithm Performance
COCOMO Traming and Kemmerer Testing Dats
Model Avg. Rel. Error | Sud. Dev. Error | R-squared
(%) (%)
GA Int. COCOMO $31.01 1,363.18 0472
GA Basic COCOMO 95.34 111.75 0.578
Basic COCOMO* 610.09 684.55 0.680
Int. COCOMO* 583.82 862.79 0.599
SLIM* 771.87 661.33 0.878
Function Points® 102.74 112.11 0.553
ESTIMACS® ¢ 85.48 70.36 0.134
® (Kemmerer, 1987, pp. 422-425
1 ESTIMACS suatistics based on 9 of 15 projects

72

The performance of the genetic algorithm-derived values for the cost drivers
fared poorly when estimating the effort required for the Kemmerer projects. In fact, the
correlation coefficient for the Intermediste COCOMO model derived by the genetic
algorithm is lower for the Kemmerer data set than the correlation coeficient between the
KDSI and the actual project man-months for this data set (0.47 vs. 0.53), indicating that in
this case the Intermediste COCOMO model adds little value. The interesting results in
this experiment are obtained by using the Basic COCOMO model which include: just the
coefficients and exponents and uses no cost driver values. The estimates obtained when
using the genetic algorithm derived values for the coefficients and exponents actually give
some of the best results of any model The strongest conclusion that can be made from
these results is that the cost driver va.lues derived by the genetic slgorithm are highly
sensitive to the domain in which the mode! was trained. These results have both positive
and negative impacts. On the positive side, they reinforce the conclusion from the first
phase of genetic algorithm experiments that the genetic algorithm is highly effective at
Jeamning a specific software development domain. On the negative side, they indicate that
any resulting model is likely to be of little benefit if there is a dramatic shift in the

underlying factors in the development environment.
3. Genetic Algorithm Structural Analysis
The surprising accuracy of the Basic COCOMO model as derived by the genetic

algorithm is the most interesting result of this experiment. A possible conclusion that can
be drawn from this result is that the genetic algorithm has observed a different relationship

73

between the coefficients and exponents of the COCOMO model than that observed by

Boehm. Table 4-5 shows the genetic algorithm coeficients and exponent values

compared to those developed by Boehm.

Table 4-5 Comparison of Coefficients and Exponents

Geonetic Algorithm Values vi. Boebm Values
Embedded Semidetached Organic
GA Coefficients 0.429 0.552 225
GA Exponents 127 121 0.510
Boehm Coefficients® 28 30 32
Boehm Exponents® 1.20 112 1.05
* (Boehm, 1981, pg 117)

This comparison between the genetic algorithm derived values and Boehm's
values for the coefficients and exponents indicates that the genetic algorithm detects a
greater diseconomy of scale (exponent greater than one) for both the embedded and
semidetached modes than Boehm does. Also, the genetic algorithm gives a much greater
economy of scale (exponent less than one) to the organic mode than Boehm does. The
difference in coefficients between the genetic algorithm and Boehm is probably
sttributable to the difference in size of the typical projects that are developed in each
mode. The large difference seen in the embedded and semidetached coefficients between

the two versions is more than likely a reflection of the genetic algorithm's detection of a

74

stronger relstionship between the diseconomy of scale in these two modes rather than the

relationship between the scaling effect of the coefficients

The cost driver values derived by the genetic algorithm also show some

noticeable differences from those derived by Bochm. Table 4-6 shows the cost drivers.

Table 4-6 Cost Driver Values from GA snd Boehm* (GA/Boehm)

VLOW LOwW NOM HIGH VHIGH EHIGH

RELY 053/0.75 | 0.72/088 | 095/100 | 1.01/1.15 | 1.38/14

DATA 077/094 | 081/1.00 | 1.06/1.08 | 1.06/1.16

CPLX 079/070 | 080/085 | 104/100 | 3.28/1.15 | 1.39/1.30 |2.00/1.65
TIME 1.06/1.00 § 1.13/1.11 | 1.45/1.30 | 1.97/1.66
STOR 1.16/1.00 | 1.50/1.06 | 1.57/1.21 | 2.00/1.56
VIRT 083/0.87 » 087/100 | 088/1.15 | 1.06/1.30

TURN 096/087 | 099/1.00 | 1.13/1.07 | 1.34/1.15

ACAP 200/146 | 165/1.19 | 1.54/1.00 | 1.15/0.86 | 031 lO.7i

AEXP 1.84/129 { 119/1.13 | 1.19/1.00 | 0.83/091 | 083/082

PCAP 200/1.42 | 1.07/1.17 1.07/1.00 | 1.07/086 | 0.76/0.70

VEXP 172/1.21 | 1.24/1.10 | 1.08/1.00 1.08/09

LEXP 164/1.14 | 1.56/1.07 | 132/100 | 1.25/0.95

MODP 1.23/124 | 099/1.10 | 098/1.00 | 093/091 | 092/082

TOOL 197/1.24 | 144/1.10 | 132/100 | 1.06/091 | 081/083

SCED 192/1.23 | 1.56/1.08 | 1.54/1.00 | 200/1.04 |1.70/1.10

® (Boehm, 1981, pg 118)

The cost driver table shows some similarities in the values derived by the genetic

slgorithm and the results of the analysis performed on the neural networks. For instance,

the geaetic algorithm values allow complexity, programmer capability, application

75

experience, and computer turnaround time to exert a greater variation on the effort
adjustment factor than Boehm's values. These are also factors thst the top neural
networks emphasized. This concurrence of emphasis between two very different machine
Jearning paradigms may be an indication that greater attention should be paid by managers

to these aress.

D. GENETIC PROGRAMMING
1. First Phase Results

The first phase of the genetic programming experiments used the COCOMO
traiing and testing data sets. Several runs using the genetic programming software were
made using various default values of such factors as, the maximum depth for new trees,
the maximum depth after crossover, the crossover factors, and parsimony. The parsimony
factor was tried at various levels to see what effect it had on botb S-expression length and
generalization characteristics of the resulting expressions. The population size was 2500
for all runs, and the total number of generations for each run was 50. For each run, the
fittest structure from each generation was saved to an outfile file. The fitness measure
used in these experiments was the average magnitude of the relative error. The fitness of
both the training and testing data sets were computed each generation.

The results of this phase of experiments were very encouraging and followed a
distinctive pattern. Initially, the best of generation fitness for both the testing and training
data were roughly of the same magnitude. As each run progressed, the sverage relative

error for both the testing and training data tended to decline until a point was reached

76

where a divergence was noticed. At this point, the average relative error of the training
data continued to decline while the average relative error of the testing data would begin
to climb, sometimes in a dramatic manner. It was very apparent from this pattern that the
capability of genetic programming to provide a generalized expression is reduced as it
learns the training data to a greater and greater degree. This behavior is especially
noticeable in the second phase of the genetic programming experience when the
COCOMO and Kemmerer data are used.

As for performance, in every run genetic programming was able to learn an
expression for the estimated effort that was both accurate and well-correlated. A

summary of some of the top performers for the first phase is shown in Table 4-7.

Table 4-7 Genetic Programming Results—Phase One

COCOMO Training and Testing Data
Test Test3 | Test4 | TestS | Test6 Jimt COCOMO
AvgRelErr] 39.39 419 42.37 421 45.32 1633
Std DevErr 36.5 39.73 41.06 33.44 40.26 15.76
R-Squared 0.909 0.31 0.71 0.95 0.69 0.991

As Table 4-7 indicates, the accuracy and correlation of the genetic programming
derived expressions are worthy of strong consideration by any software manag— The
only major hindrance to the easy acceptance of genetic programming as 8 useful technique
comes from examining the expressions that the genetic program generates. These

expressions can be both intriguing and intimidating to the uninformed user. It is important

77

to remember when using genetic programming that the genetic program does not have the
domain knowledge nor the prejudices of the user. This means that the genetic program is
free to use the terminals and functions provided by the user in any way that the genetic
program perceives as "fit”. As an example, Figure 4-3 shows one of the expressions

geaerated by the genetic program during this phase of the experiments.

MM EST = (((MODP* KDSI) + ((TIME ~ CPLX) * (KDS! - LEXP))) “VIRT)
AACAP) + ((ACAP*((STOR"CPLX)*RELY)) + ((ACAP*(PCAP* (TIME* ((KDS!
K((((PCAP*(KDSI “STOR)*DATA+(KDSI ~SCED)* SCED))) ~VIRT) *((DATA+ (KDSI
- SCED)) +KDSI)) +ACAP)) +(KDSI ~STOR))))) + (((KDS! * VEXP)* TIME)Y*VEXP)) -

Figure 4-3 A Sample Genetic Programming Expression

As can be seen from Figure 4-3, the expressions generated by the genetic
program can be complex and somewhat cryptic, but they are also accurate. The
expression shown in Figure 4-3 is the expressit.m used to obtain the Test 1 results shown
in Table 4-7. As Table 4-7 shows, this expression has an average relative error of

approximately 40 percent and an R-squared value of 0.9.
2. Second Phase Results
The second phase of the genetic progamming experiments used the COCOMO

data for training and the Kemmerer data for testing. The same variations in program
parameters such as maximum tree depth, crossover rates, parsimony, etc., were used in

this phase as in the first phase. The same pattern in the fitness measures for both the

78

training and testing data were also observed but in 8 much more pronounced manner. In

fact, the divergence in fitness between the training and the testing data was so pronounced

that the maximum number of generations was reduced from 50 to 20 for this phase of

experiments. A summary of some of the top runs for this phase of experiments is shown

in Table 4-8. The results from Kemmerer's analysis are included for comparison.

Table 4-8 Genetic Programming Performance Results

COCOMO Training and Kemmerer Testing Data

Test Avg Rel Err Std Dev Err R-squared
(%) (%) (Est vs. Act)
Test 2 109.52 125.85 0.78
Test 3 130.97 142.35 0.62
Test 4 59.18 69.5 0.93
Test Xa) 112.01 132.15 0.90
Test %) 144.24 167.9 0.85
Int COCOMO* 583.82 862.79 0.599
Function Points® 102.74 112.11 0.553
ESTIMACS*t $5.43 70.36 0.134
* (Kemmerer, 1987, pp. 422-425)
1 ESTIMACS satistics based on 9 of 15 projects

As Table 4-8 indicates, genetic programming is very capable of deriving

expressions that can provide highly accurate results across development domains. An

79

example of the type of expression generated by the genetic program during this phase is
shown in Figure 4-4.

MMEST = (((TOOL+ VEXP)* RELY)+ (((KDSI®* ACAP)* VIRT)"
(MODP * TIME)))+ (KDSI ~ 5TOR)

Figure 4-4 A Sample Genetic Programming Expression

The expression shown in Figure 4-4 is the expression used to obtain the results
in Test 9(a) shown in Table 4-8. The results obtained from this expression are superior to
most of the models tested by Kemmerer (1987) with the exception of ESTIMACS.
However, one of the expressions generated by the genetic program during this phase is
even superior to ESTIMACS. This expression is the top performer from several of the
runs, and is the same expression used to obtain the results shown in Test 4 of Table 4-8.

The expression is shown in Figure 4-5.

MM EST = (KDS] + (2.336426)) » STOR

Figure 4-8 Top Performing Expression from Phase 2
This expression is extremely simple and yet highly accurate, as the results in
Table 4-8 indicate, yet is highly unlikely that a human domain expert would conceive of an
expression such as this one. This is where genetic programming shows its usefulness. The
ability to conceive of relationships among various factors without the prejudice of one's

80

own knowledge is what allows the genetic program to succeed in its task. The results
from this phase of experiments indicate that genetic programming is an extremely usesful
technique for generating cost-estimation models and should be considered as a leading
candidate for use as s cost-estimation model generator.

The comparison of the a sample of the results of genetic programming with
those obtained by Kemmerer in his study shows that genetic programming is capable of
generating a model that is superior to any of these popular cost-estimation models. In
fact, upon examining the best models from each generation of all of the runs during this
phase showed that during the 20 generation cycle for each run, the genetic program rarely
generated a program with over 400% ervor. This means that at almost any time during
any run, the genetic program was generating expressions that were superior to both SLIM

and Intermediate COCOMO.
3. Genetic Program Structural Analysis
The analysis of the structures generated by the genetic program is a very

complex topic and is currently being studied by a variety of researchers worldwide.
Although researchers are of different opinions about the significance of the structures that
genetic programming produces, there are some basic characteristics that can be observed.

Analyzing the results of a genetic programming run shows that the genetic
programniing paradigm can be very inventive. As an example, when Koza (1992, pg. 242)
first developed his LISP genetic programming software, the capability to generate

constant terms was not included. During an early run involving the discovery of

81

trigonometric identities he observed a peculiar term in the resulting LISP S-expression.

This term is shown in Figure 4-5.

2 - Sin(Sin(Sin(Sin(Sin(Sin(Sin(Sin(1))*Sin(Sin(1)))))))))

Figure 4-5 Genetic Programming Derived Constant

This term evaluates to 1.57, which is very close to the value of Pi divided by
two, & constant that is needed often in trigonometric problems. The discovery of this type
of inventive behavior by the genetic program led Koza to modify the software to allow for
the creation of random constants. Koza (1992, pg. 185) also observed a tendency for the
genetic program to take useful wbu:ees and repetitively use them to perform functions that
the genetic program found useful

The structures derived by the genetic program for the second phase in these
experiments varied widely in their size and composition, although the use of parsimony
apd a reduced maximum tree depth tended to yield shorter structures that performed
better across project domains. Exzmples of some of the structures derived by the genetic
program for cost-estimation are shown in Figure 4-6.

Examining the structures in Figure 4-6, it is apparent that the genetic program
does not find all of the cost drivers useful. While KDSI, MODP, STOR, and TIME
sppear with some regularity, other drivers such as TURN and SCED are not used at all.
This is where genetic programming can be unsettling to a user. While the user can give

copious amounts of data to the genetic program, there is no certainty that all of it will be

82

Test 2 Generation 6
MM EST = ((AAF ~PCAP) + LEXP)+ (((CPLX + ((((1.615063) * KDSI) *
((DATA * TIME) * TOOL)) + ((KDS! ~ TIME) ~ PCAP))) # VIRT) - VIRT)
Validation Fitness= 109.51
Test 3 Geseration 6
MM EST = KDSI1 * (AEXP+ TIME)
Validation Fitness= 130.77
Test 9 Generation 6
MM EST = (TOOL + ((KDS1 ~(MODP* TIME))+ (KDSI ~ STOR))) * VIRT
Validation Fitness= 144.16
Test 9 Geoeration 10
MM EST = (((TOOL + VEXi’) * RELY)+ ((KDSI* ACAP) ~ VIRT) ~(MODP *
TIME))) + (KDSI ~STOR)

Validation Fitness= 112.01

Figure 4-6 Genetic Programming Derived Structures

used. The user has to be prepared to deal with structures that have no resemblence to
relationships that the user believes to exist within the domain. This factor may be a barrier
t0 acceptance for some managers, but if the models derived are statistically significant in

both accuracy and correlation they are herd to dismiss.

83

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The major objective of this thesis was to examine the effectiveness of three machine

learning techniques as applied to the field of software cost estimation. The driving factor
behind the investigation of machine learning in the cost estimation field is that current
software cost estimation models are both inaccurate and not very adaptable across
development domains. These are critical areas of weakness since the Department of
Defense is the largest single software consumer in the world, and it develops software for
a wide variety of domains. Therefore, it is necessary that a software cost estimation
model be both accurate and easily adaptable in order to be considered successful The
premise of this research was that there probably were relationships among the various
software project factors that the current models did not capture and that a machine
Jeaming approach, where the models are derived directly from the data, may prove
superior in both performance and adaptability.

The three machine learning techniques studied in this thesis have all proven through
the experiments conducted to have great usefulness in the area of software cost
estimation. Each technique studied also brings to this field certain particular capabilities.

Neural networks showed a strong capability to capture and leamn the project data, and
make estimates of reasonable sccuracy that exhibited a high correlation with the project

sctuals. When tested with data from outside the domain in which the networks were

developed, the neural networks showed a strong capability to generalize on the data that
was presented to them and make estimates that were superior to those of other
well-known models. This capability to make estimates across domains is critical when
seeking estimates on new projects with different development environments. Given the
bmited amount of data that was available for testing the networks, they performed
surprisingly well. Neural networks also have an advantage in that they are relstively easy
to set up and train, and are certainly within the capabilities of most management personnel
They also have the advantage of being self-calibrating, as long as the network is
maintained by continually retraining with data from newly completed projects. While not
as accurate as some of the algorithmic models, neural networks are certainly worthy of
consideration, especially since they have the ability to deal with non-numeric, or symbolic,
data. The best use of a neural network within an organization is probably at the earliest
stages where estimates that can at least capture the likely magnitude of a project are the
most useful

The genetic algorithm experiments showed that they were higniy effective as a tool
for model optimization and calibration. Given no more than a fitness function, a table of
literal values describing the projects, and a small amount of domain knowledge in the guise
of constraints on the fitness function, the genetic algorithm was able to find a complete set
of values for the cost drivers, coefficients, and exponents in the Intermediate COCOMO
model The resulting model values were shown to provide estimates that had a high

degree of accuracy and correlation for projects developed within the same domain, but

85

their performance was not as good when applied to projects outside of the domain in
which they were trained. Still, the genetic algorithm proved to be effective as a tool for
model calibration and it is easy to apply. The user has only to supply a fitness function
that includes the fitness measure, the model function and whatever constraints the user
feels necessary for the particular domain. The power of evolution bandles the search for
an optimal solution. Additionally, the genetic algorithm is highly extensible due to the
ability of the chromosome structure to be modified to reflect additional characteristics of
the domain. The genetic algorithm is likely to be of the greatest use in a situation where an
organization feels they have a model for how their development process functions but they
need a method for calibrating the model to the data st hand. The genetic algorithm is very
capable in this situation.

In the third set of experiments the very new technique of genetic programming was
used as a means for model discovery. In this case, the only inputs provided were the
fitness measure, the project data, and a set of functions that were allowed to operate on
the data. Upon initializing the population with a random set of programs, the process of
evolution then generated models of greater and greater fitness as the genetic program
evolved through succeeding generations. The models resulting from this technique were
both highly accurate and strongly correlated. These results indicate that genetic
programming shows great usefulness as an exciting new approach to the cost estimation
problem and has probably the broadest range of uses of any of the techniques studied in

this thesis.

86

In all instances, each of the methods examined in this thesis was capable of generating
models that were competitive in both accuracy and correlation with other established cost
estimation models. In one case, the machine generated model outperformed all of the
more well-known and established models. This level of performance exhibited by machine
generated models indicates that they should be given serious consideration by those
imvolved in the software development field, as they offer several advantages. First, they
directly reflect the data they are trained with, which automatically gives them an advantage
over a models that may have been developed outside of the domain in which it is being
applied. Second, they are highly extensible, meaning that any additional knowledge that
becomes available regarding the software development process can easily be incorporated
in these models. This provides an advantage over the more traditional models in that a
machine generated model is easily tailored to the data available. These advantages,
coupled with the performance levels noted in the experiments conducted in this study
indicate that machine leaming is an effective and useful technique for the field of software
cost estimation.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

There are several areas that are candidates for further research based on this study.
First, additional experiments can be conducted to extend the level of knowledge regarding
bow each of the techniques should be applied to achieve the greatest effectiveness.
Secondly, research can be conducted into coupling these machine learning techniques

together in order to create a suite of tools that may be able to provide a superior level of

87

performance. As an example, one could build an expert system front end that could query
a user about project characteristics in order to populate a data base. This expert system
front end could then be coupled to a neural network that could provide general estimates,
or it could be coupled to the genetic program, which could generate candidate models. ht
may also be possible to have a neural network monitor the results of the models the
genetic program develops, and make a selection as to which model is best for a particular
situation based on the user's inputs the expert-system front-end. Finally, a similar set of
experiments to those conducted in this study could be performed using data from a variety
of domains for training. This may prove insightful, since a certain amount of
meta-knowledge about the data would have to be apparent in any models developed using

these techniques.

APPENDIX A

COCOMO DATA SET (Boehm, 1981, pg. 496)

P | MM I|TOTK| A R DlclT]|s|ViT|A|[A|P|V|LIM]|T S IM
r| A D A) 3 AlPiijT]l}jojcje|CclEL|E|O|]O|C|O
o C s r L T|L[MjO|lR|R|A|X|A|X]|X|D|]O|E]|D
JIi T 1 Y AlxlelrlTiN|P]P|P|P|P|{P|L|D|E
e| U

e| A

ti L

1 |]2040| 113 1 088 |1.16] 07 | 1 |1.06{1.15{1.07{1.19{1.13{1.37{ 1.3 | 1| {1.24| 1.1 {1.04| E
2 |1600] 293 | 085S [088 (116 [08S| 1 [1O6] 1 [1.07f } [0O91] 1 [09(095{11 | } 1
31243) 132 1] 116|088 | 1) |0.87|0.94]/0.86{0.82|0.86]| 0.9 |0.95]|091{091]| 1 | SD
4 | 240 60 076 1075 1116} 07 { 1 1 {0.87] 1 [1.19]091]1.42])} |0.95]1.24] 1]|1.04{ORG]
5| 16 1 088 10954 | 1 1 1 1087} 1 1 1 10.86} 0.9 |0.95]1.24] 1 1 JORGY
6| 43 4 1 0.7 1 [085]) 1121}) 1 (146} 1]1.42]/0.91095{1.24]/ 1.1 | 1 JORG
71 8 6.9 1 0751 1) 1|1 |o®os?| 1 {1 |) |09[095]091]091] 1 JORG
8 |1,078] 22] 1.15 1094 | 1.3 |1.66[1.56| 1.3 1 [07]091] 1 [1.21]1.14] 3.1 |1} |[1.08] E
9| 423 3 1 115 1094 | 1.3 [1.3]{1.21{1.1S] 1 {0.86] 1 [0.86] 1.1 |1.07]091] 1§ 1 | E
10} 321 29 063] 14 |054] 13 11.11|1.86] 1 }1.07/]0.86|0.82|/0.86]09| 1} 1 1 1 | E
11] 218 | 32 063 | 14 [094] 1.3 |1.11]1.56] 1]1.07|0.86/0.82|086]09] 1 1 1 1]E
1220 | 3 1 115 [094] 13 [1.11]106] ¥ | 1 lo8s|os2j0.86] 1 10951091 1 (1.08] E
131 79 28 096 | 1.15 (094 | 1.3 {L11{1.06{2.15] 1 [071] 1 {07 21| } [0.82]] 1 {E
“| N 3 1 1.15 1094 | 16513 |1.56]1.18] 1 |086] 1 10.7[1.1]1.07]1.)(1.24]).23
15| 61 39 1 14 |094] 1.3 |13]1.06/1.15]0.87]|0.86/1.13|0.86]1.21}1.14{091} 1 |1.23] E
16| 40 | 61 06 | 14 1 {13]13]156] 1 (087|086} 1 |086f 1 | 2 |} |2 |1]|E
171 9 36 {053 | 14 1 {13]13]1s6] 1 jo87j086jos2io8s] 3 13 1]11 |3]E
18 |11,4001 320 1 1L1S [106 | 1151131211 1 ho7joss| 1 | 1 | 1} 1 |1.24/111.08] E
19 16600| 1,350] 084 | 1.15 108 | 1 [1.11]1.21]0.87/0.94/0.71[091] 3 | 1 1 1 [091{091|) | E
20 {64001 299 [096 | 14 }1.08| 13 {1.11]1.21{1.15/1.07(0.71{0.82/1.08] 1.] [1.07|1.24| 1 [1.08 8D
21 |2,455] 252] 1 |1.16)1.15]1.06/1.14j0.87]087]086] 1 | 1 |1 |1 {091]091]| 1 | E
22| 724 | 118 | 092 | 115]| 2 1 |127]106} 1 | 1 {0.86]0.82{C.86}09] 1 1091| 1 |1.23| E
23(58539| 77 (o098 | 118]| 1 1 108106 1 | 1 {0.86]082,0861091 1 | 1 |) |1.23| E
24 | 453 90 1 0.ss 1 |085(1.06{1.06(1 {0.87] 1 [1.29{ 1 (1.1 |0.95:0.82{0.83! 1 {SD

89

251 %3) 3 1 115 | 116 | 1.3 [1.18|1.06] 1 |087|0.86] 1 [0.86{1.1| 1 [0.82({0.91(1.08
6{387(42 H 094 | 1 [085]1.07(1.061).15/3.07/086} 1 |0.36/1.1} 1 091|1.1]108 E
27| 88 | 94 3 115 1094 [11511351331 1 {087 1 | 1 |1 |5 |1 jo&f1] 108 E
28| 98 13 1 LIS [1081 1.3 {1.1141.21{1.15{1.07]0.86] 1 |0.86]1.111.0711.1)11} 1 JORGy
29]73) 214 1 0sg | 1 1 1]} jrrfreofoss) 1 [1 (0911091123 8D
i 59| 198] o8t | 1 1 111 120f088) 1 | 1 1091/091{123
31 11063] 62 | 081 | 14 [108] 1 |148/1.56/115{1.07{085]082]086]11]107] 1 |1 | |E
327021 39 j067 088 (108(08S| 1 {1 {1 [[oTijoszf 1 {2 {1 (22{2)]) {8D
B/605] 42 | 096] 1.4 | 1.08] 1.3 |1.48/1.56/1.15/0.94]0.836]0.82]0.86)09| 1 [os1j091|) | E
34]20] 23 joss |115|108] 2 [r06[1 |2 fos? 2 |t |3 1] {O9{11{t23| E
I3 n 13 1 075 1094 13 [106/1.2112.25] 3 |) j091} 3 |1 | 1 |1.24]1.24] 2 | E
3] ss 15 | 081 | 088 |108/085| 1 | 1 [0.87/0.87]1.19] 1 [1.17[/ 09 [0.95] 1 [0.91{1.04] SD
Y| &7 60 | 056 {088 (09407 | 1 {106{ } { 1 |086/082[086]) {3 |)] 1 |) KORG
] 12 15 1 1 1 [11S} 1] 1 |087]0.87{0.73{091] 1 |09 [095]0.82]091] 1 IORG
| s 62 1 1 T {LIS{ 1 |} (087{ } |0.71{0.82{07] I 10.95]091]11] } JORG
4] 8 3 0.83 1 jos4} 1311 | 11}]1 |og7joss]o82{117] 1 |1]|31] 1] 1 |ORG
4] 6 33] 088 {0954 1 1 11]0871087} 1 {0.82|0.7109|0.9510.91{0.9)] 1 ORG|
421 45 | 455 [043 { 038 | 1.0411.07] 1 [1.0610.87]1.07]086] 1 093] 0.9 |0.95]0.95{0.95]|1.04JORG]
43] & | 286 | 098 1 1.04 11.07] 1 {).21]0.87/1.07{086{ ¥ [1 [09(095] 1 | I [f.O4ORG
44| &7 | 306 | 098 | 088 [1.04 [2.071.06{1.21{087]2.07] 1 | 3 } 1 109[095/11] 1 [1O4|ORG
451106 | 35 | 091 [088 |104107]| 1 |1.06j087[107} 1 | 1 |) [09[095] 1 {0.95|1.04)ORG]
4611261 73 (078 | 088 {104 |107] | [1.06/087{1.07] 1 | ! 1086/09095] 3 |] |1.O4JORG
477 3 3] 07510941131 1] 1 |087]0.87]0.71]0.82]0.7 (1.1]1.07] 1.1 | 1 |1.04]ORG
48 |1272) 464 | 067 | 088 | 094 {083) | 1 {087 1 {1.19{091({1.17]09{095{L1}| 1 [1.04] SD
491 156 | 91 1]] |o8S) 11111 |087]071]) 07|11] 1 |O.82]|091] 1 |SD
501176 | 24 1 118 | 1 1 §1311211 1 [087j086) 1 j086]1.1({ 1 {3 (1 |2 E
51| 122 10 1 0sg | 1 } 1] 211 [1151119] 1 11.42) 1]0.95]1.24| 1.1 |1.04|ORG]
2] 4 82 1 088 1094 |085| 1 [106{1.15] 1 1 [1 |1 [11]1.07]{124]11| 1 ORG
3| 14 | 83 1 088 [094 | 115 (111{2.2112131) j071] § 107)11]107} 3 |1 {1.08]SD
54120 | 44 1 1 |094] 1 1 11.0611.1510.87] 1 log2] 1 | 1 |095[091|1.1]| 1 |ORG
$s1 18] 63 1 088 (094|071 1 | 1 {087[0.87(0.86]0.82{1.17¢109]095{1.1] 1 | 1 |ORG
56| 958 | 27] 1.5 1094] 13 j13]11211 1 | 1 |0.86j091) 1 |1.1(1.07]11]11]1.08] E
571 237] 17 jom? 1 jos4frasanfi2ifesfr 1 {1 {1 [L1{107(01{11 {123 E
90

ssj130| 28 1 14 094 | 13 f166/2.217 1 | 1 {0.71{082{07|09]09s{091| } |1 [E

55| 3 09 1 [o094]115]106{106] 1 fos7} 2 J 2 [2 |1 |1 [0l 1|} [ORG

60| 87 | 67 1 1.15 [094] 1.3 [1.11]1.06] 1 | 1 [0.86{1.1310.86] 1.1 [1.07{ 1.1 | 1.1 |1.08|ORG

61} S0 28 1 1 Jo94(115| 1]| 1 [087|087]{0.86] 1 |086(09] 1 {082] 1 | 1 JORG

62] 38 | 91 1 088 | 094 | 13 |1.11]1.21{1.15] 1 |0.78|0.82} 0.7 |1.21]1.14j0.91{1.24] 1 | SD

6] 15 10 1 1 |osalias|i1 (1] jomjomnijosajoss| 1 |1 o8] 1 |1 | E
91

APPENDIX B

COCOMO Cost Driver Table (Boehm, 1981, pg. 118)

VLOW LOW NOM HIGH VHIGH EHIGH
RELY 075 0.88 1.00 115 1.4
DATA 0.94 1 1.08 1.16
CPLX 0.70 0.85 1.00 1.15 1.30 1.65
TIME 1.00 1.11 1.30 1.66
STOR 1.00 1.06 1.21 1.56
VIRT 087 1.00 1.15 1.30
TURN 0.87 1.00 1.07 1.15
ACAP 1.46 1.19 1.00 0.86 0.71
AEXP 1.29 1.13 1.00 0.91 0.82
PCAP 1.42 1.17 1.00 0.86 0.70
VEXP 1.21 1.10 1.00 0.9
LEXP 1.14 1.07 1.00 0.95
MODP 1.24 110 1.00 0.91 0.82
TOOL 1.24 1.10 1.00 0.91 0.83
SCED 1.23 1.08 1.00 1.04 1.10

92

APPENDIX C
Kemmerer Data Set
MM K AR Ip Jc It s [v [t Ja |4 [P Vv L M |7 1: M
P Jale ja P 1 v 1 ju |c je Jc | |2 jJo Jo |c |o

A |s FIL T oL M o R IR (A [Xx [o [x |x D jOo (& [D

: 1 cly |Aa Ix | R IT IN jPp P [P [P [P P L [D |E
1 {287 2536 |) {118 |1.08 j1.1S |1 1.06 |0.87 |} 0.86 [1.13 |0.86 |}] 082 |09 |1.02
2 |825 |405 (1 |1 1 1 1] 0871 1 1.07 j0.86 |1]] 1] sD
3 haor.jaso 1 has{t 13 harjosrhr Joss sy |1 {1esjoss 1 [E

3
4 1869 j2144 N 1 {108 092 [1 |1 |087{093 o8 {089 [o8s |o97|o9s|t |1 [102|sD
S |3363 j4499 |1 {1 094 |t 11 |1 lo93los7 078 [1.13 093 {11 {1031 [os {107 |ORG

84 30 11 1.16 |1 1.11 {1.06 N 0.87 10.86 [1.13 {0.86 095 {097]091 |] 123 |E
7 1232 3 Dl has |t fan hos |1 087 [08s 113 07 [o9si07{os 1 (123 [E
8 |1303 (167 1 f1as frae (1 {1 |t |1 Jos3{t [oss{1 Joeslos?fr |1 li1relsD

ne 28 11 r e has infiosfosrfosrft fhashoesia |1 ji |es|E
1072 |39 N1 l1 st hnfr Jossfroes jori i o7 jia [raafies 1 has|sp
nmiser jase2 lae i |1 b b o o Josshazjoss |t {1 |oss 1 has|sp
121237 (1286 1 0 Nae |1 |t |1 087|087 086 107 086 [1 [1.03[1.1 [o9s |108|sD
13 1187 1614 |1 |} 1.16 1.06 |1 0.87 {0.87 {1.19 |1 0.78 {1.21 {097 (1.1 1 1.08 |SD
14 {2469 [164.8 (1 (1 1.16 |1 1 1 0.87 {0.87 [0.86 {1.21 {093 {1.1 11.] 1093 09 |1.0¢4 |ORG
15199 1602 1 pp b P v 1 jom Jom oo |oss |11 [1.03|0o91 [0 |1 |sD

© AAF values ssaumed, no values given by Kemmerer

TR

93

APPENDIX D

COCOMO TRAINING AND TESTING DATA SETS

TRAINING DATA SET

PIMMITOT| A ([RIDIC|T]IS]VITIA]|JA|JPIVILIM{TI|S M
r A K lajrjajPjijrTjijuojcjrejc|rejrjojojcCc|oO
e C DIFIL|ITILIMIO|R|IR]A|[X|A|X|X|{D|O|ERID
| T] Y|A|X]|E|R{T | N P{P|P|{PIP PILI|IDIE
el U) §
€ A
t L
1 J]2040] 113 1 |088]116107 | 1 {1.0611.13[1.0711.19]1.9311.17f 1.1} 1 (124} 1.2 [1.04
3 (243 | 132 ({1 1 116085 1 1 10871094|0861082]086] 0.9 {095]0.91]1091} 1
4] 20 60 10.76]|0.78|1.16] 07] 1 1 087} 1 [1.19]091]142] 1 {095[1.24] 1 |1.04|ORG
3 3 16 1 {0.88]0.94] 1 |-) 1 |0.87] }] 1 |0.86]09 j095]1.24] 1 | IORG
9 | 423 3 1 [1.151094]| 13 |13 [1.21]1.18] 1 |O86] 1 |0.86] 1.1 107|091} 1 1{E
10| 3 29 1063]1.41094]}13311.11]/186} 1 |1.07]0.861082/086]/09]| 1 1 1 1 E
11| 218 32 |063]14094]1311.11(156] 1 {1.07|086|082{086{09 | 1 1 1 1 E
16| 40 6] 106114} 1 113]|13)156] 1 |087]085] 1 |086] 1 1 1 | 1 E
20 | 6400] 299 [096] 1.4 11.08] 13 |1.11{121[1.15{1.07{0.71/0.82{1.08{ 1.1 {1.07{1.24] 1 |1.08] SD
) J2455] 253 | 1 1 J1.1611.15]1.06/1.1410.87]0.87]0.86| 1} 1 1 1 10911091] 1 | E
2} 74| 118 {092(1.15] 1 1 [1.27]1.06] 1 1 [086{0821086{09| 1 (091] 1 |123} E
23| 5 7 j098]1.15] 1 1 11.08§1.06] 1 1 |086)0.82|086] 09| 1 1 1 123 E
4| 45 90 1 {088] 1 [085(1.06{1.061 1 {087] 1 |129] } | 11]095/082/083] 1 | SD

523 b2 1 |1151116] 13 {1.15|1.06] 1 [087{086] } f086]11} 1 (082]091]108] E
% | W 483 1 {094 1 {085/1.0711.06[/1.15]2.07/086]) 1086111} 1 |091]1.]1 |1.08] E
38| 9 13 1 |1.15]1.08] 1.3 [1.11{1.2111.15{1.07]086} 1 [086]1.1{107{11 1)] 1 JORG
31 [1063] 62 {08114 [208] 1 1148(1.56]1.1511.07/086/0.82j0.86] 1.1]1.07} 1} | 1{E
32| 702 | 390 [067]0.88]1.08/0.85] 1) 1] 1 [071]082] 1 1 1 (11]81| 1 [SD
33| 605 42 (096]1.4[1.08]13 }14811.56]1.15]094]/086/082]1085]09] 1 |091|0%1] 1 | E
M 2% 23 |096]1.15[1.08] 1 [106] 1 1 (087} 1 1 | 1 1 |091]11|123] E
kL. 13 1]0.75]0.94] 1.3 |1.06]1.21]1.15] 1 1]091] 1 §11] 1 |124[124]| 1 | E
| 9 15 (0.81j038{1.08{085] 1 1 [087]{087{119) 1 {1.17{ 09 1095] 1 [0.91{1.04] SD

94

wo| s | 3 oo 1 Jose[ss| 1 [1|1 fomrfossfom[rar| s [2 [1a] 1 |1 fome
a6 [3|1 jomfose] 1|1 |1 [omfos| 1 [om]o7]0s [0ss[ost|os] 1 oo
a| s | ass Jows]oss]ro]r07] 1 |r0s]om|r07[0ns] 1 Jos3] 05 [0ss|0ss]oss]ioejore
o] o [as6foss] 1 [10efror] 1 [1a1]om]rorfoss| 1 [1 [os[ass| 1 | 1 [1.04]ome
s o [306 [ossoss|1afiorfrosiafomfror| 1 [1 |1 [ososs|1a] 1 [104ome
as| 106 | 35 [osilossfr04|1.07] 1 [1.06]0o7[107] 1 | 1 | 1 |09 |oss| 1 [o9s|r04foRG
4| 126 | ™ |o7s|oss{ro4[1.07] 1 [1.06[ox[1.07] 1 [1 [o9s[09 Joss[1 [1 [104oRG
ar| 36 | 23 |1 {orsfosef{13] 1 |1 [om{om[onfom|o |11 |107] 12 1 |10sjORG
a8 [1272 ass |oer|oss]osaoas| 1 | 1 [oe7] 1 [1a9fosn[117] 09 Joss| 11| 1 |104] 8D
olss] o [1]]1foss|1|2]1|omlon] 1 forfra]| 1 losfos]| 1 |sD
so 196 | 2¢ |1 has] o |2 fashar| 1 low]oss) 1 Joss|ua| s a1 f1[E
si|1aa | 10 |1 fossf 2 [o[[] [1as]ris| 1 [142] 1 foos[124] 11 [r.04}oRG
s3| 14 | s3 [1 {oss[ose|ras|vafiafus| 1 Jom| 1 {07 |11]107| 1 |11 108 5D
sef 20 [a4 [1] 1 Joss| 1 |1 [r0sf1as[om] 1 Josa] 3 | 1 Jossfos]11] 1 foRe
ss| 18 | 63 |1 |oss|ose|or]| 1 | 1 [osm]|om|oss|om|117] 09 Joss|ra| 1 | 1 jore
se|oss | 27 |1 [raslosef1alrafian] 1 |1 Jossfosma]| 1 [1a|io| 01|11 f108] E
s1| 27 | 17 losm]| 1 fosefnasfinfiafasf s [[[[hofiafrifi]E
ssf130 | 25 |1 |14fosef13[1esf121] 1 [1 [onnfosm|o07 {09 |ossfosi| 1 |1 |E
62| 38 | 91 | 1 losslose] 13 [1nilrzifias| 1 [or8]os} o7 hrarfraa]os|rael 3 fs
63] 1s | 10 | 1|1 Josafras| 2 |1 |1 Josr|on[oszfoss| 1 | 1 fos2] 1 |1 |E

95

COCOMO TESTING DATA SET

PpimmiToTiAa[R|[D|C|[T]|[Ss]Vv]TlalalP]V]ILIM|T S |M
r] A | xlajzlalPr|1iT]|2]|U]jCclRE]jC]R2E|jR2]O]jO]C|O
el ciplrir]|r|LriMlOojrR|IR]A]X]AjXiX|D|O|E|D
) T 8 Yla]xjelR]|]T|N|P|P|PiP|P|P|LID|E
° L 1

[A

¢ L

2 | 1600 | 293 logs]oss]i.1s]oas] 1 {106] 3 J107) 1 [o91] 1 joojoesjia| 1 |1 |E
6] & | « J11]0o75] 1 joss| 1 12| 1 | 1 Jre6] 1 [142{09 |09S{124| 11 1 [ORG
7 6o lrforsfr {1] 1|1 |os7josy| 1 | 2 |1]o9]|osslosrlosn] 1 G
s f{107s| 22 | 1 [1.15{094]13|166{236{23] 1 jom|os] 3 |121)134) 0202) 1) jL08] E
12] 200 | 37)1]11s]ossfrafinnfros) 1 | 1 |ossos2joss| 1 [o9sfos1]| 1 [1.08] E
13] 7 | 25 logs|risjogal 13 [101]1.06]0.08) 1 fom] 3 Jorfra| 1 jos2f 1 | 1 | E
4] 713 0 3 |1 [1a5]094[165] 1.3 [1.56(1.15[1 {oss{ 1 [07}11[107] 1) [1.24]1.23] 5D
15| 61 | 3911 {14{094/23]13]106(115]087]086]1.13]085]1.21]1.14]091] 1 [1.23] E
17] 9 |36]os3lral 1 13113]1%6] 1 Josr]|oss]osfoss] 1 {1 J2 |1 1 {E
18 |11400] 320 | 1 Prashrasiras{aafiar) 1 [1o07jo8s] 1 [3 {1 |1 j124) 10 (108 E
19 | 6600 [1.150{084(1.15{108] 1 [111{1.21{087l094(071]ost] 1 | 2 | 1 loojosi] 1 J E
27| 88 |94 | 1 {raslosef2asl13sa1)) fosr]l 3 J 1 11] 1]) lomjl}io8] E
291 73 J224) 1 Josg] 1 | v v jr)y |1 [ra]r29loss| 1 | 2 [osijosrras
30| s9 [198] 1 joss] 1 | 1 byl v [y |1 {1 [129(086] 1 | 1 [o91{091{1.23|SD
37| 47 | 60 [0.56jo8s{o94[{07| 1 [1.06{ 1 | 1 |08s{o82]o8s] 1 | 1 {1 |1 |) |ORG
sgf 12 f1s |1} 1]1j1as] 2] {oxrjosrioTi|osl] 1 |09 [o9sjos2]o91] 1 JORG
3] 8 ez |11 |1 s |1 josrj1 fonjos2for| 1 jossjosi| 11| 1 JORG
s2| @ |82 1 [oss[osa[oes{ 1 [ro{nas| v {1 [1 |1 {11 107124} 0] 1 foRe
9] 70 | 23 {09 1 {o94[s5.15][106{106{ 2 lo87{ 2 | ¥+ | 1 } 1] 1 Josi) 1]| 1 |ORG
6| 57 671 raslossl13linnros] 1 | 1 Joss|113]oss] 11 |107] 0111 1.oejonc
61| 50 |28 11} 1 Josal1as] 1 |1 Josmrjosrfoss] 1 |oss]o9] 1 [os2) 1 | 1]onc

96

APPENDIX E

BrainMaker Neural Network Definition Files (*.DEF)
COCOMO Training/Kemmerer Testing Version

Lo d Al A2 2 2SI I LI AL DI IR TII I I e d P2 g d T add2 2t tddd

Network 5/8

input number 1 20

dictionary input LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number 1 1

dictionary output LOG_MMAC

hidden 5 8

filename trainfacts c:\brain\test\cokealll.fct

filensme runfacts c:\brain\test\kemmer.in

leamrate 0.9000 50 0.75 75 0.6000 90 0.5000

learnlayer 1.0000 1.0000 1.0000

tramtol 0.1000 0.04 0.8000 100

testto! 0.2000

random 5.0

maxruns 459

function hidden1 sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.09000

LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

ORG

LOG_MMA

scale input minimum

029666 043 075 094 0.7 1 1 087 087 071 082 0.7 09

095 082 083 1000

scale mput maximum

306069 1 14 116 165 166 15 13 115 146 129 142 121
1.14 124 124 123111

scale output minimum

0.77085

scale output maximum

4.0569

97

S SSSPELNSELE LR LRSS RSE S CE SRS EPRLES S LSS HRSSSEHSSEIS VB EEE R

Network 8/9

SESSSES RS SESSESEEESSESESH PSSR RS LSNPSR SSBSSSESEREL LR ERESLBESSSSES

mput number 1 20

dictionary input LOG_KDS] AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number 1 1

dictionary output LOG_MMAC

hidden 89

filename trainfacts c:\brain\test\cokealll.fct

filename runfacts c:\brain\test\kemmer.in

leararate 0.9000 50 0.75 75 0.6000 90 0.5000

leamnlayer 1.0000 1.0000 1.0000

trainto] 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 430

function hidden! sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.00000

LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

ORG

LOG_MMA

scale input minimum

0.29666 043 075 094 0.7 1 1 087 087 071 082 07 09

095 082 0383 1000

scale input maximum

3.06069 1 14 116 165 166 15 13 115 146 129 142 1.2]
1.14 124 124 123111

scale output minimum

0.77085

scale output maximum

4.0569

98

S SSESE VS EB LSS SIS ERS SRS SRS EESSS SRS SS SRS LSS LSS ESEELESEBEBESS

Network 11/10

SECESLAS LSS LS TSRS LSS SRS SES SRS SSESESESS SR ES SRS ES SRS

input number 1 20

dictionary input LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number 1 1

dictionary output LOG_MMAC

hidden 11 10

filename trainfacts c:\brain\test\cokealll.fct

filename runfacts c:\brain\test\kemmer.in

learnrate 0.9000 50 0.75 75 0.6000 90 0.5000

learnlayer 1.0000 1.0000 1.0000

traintol 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 250

function hidden1 sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.00000

LOG_KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

ORG

LOG_MMA

scale input minimum 4

0.29666 043 0.75 094 0.7 1 1 087 087 071 082 07 09

095 0.82 083 1000

scale input maximum

3.06069 1 14 116 165 166 15 13 115 146 129 142 121
1.14 124 124 123111

scale output minimum

0.77085

scale output maximum

4.0569

99

SHESEHCSESSNISSCREESISREE IS ESRLRENS IR SESS SIS SSS L SRS SRI SIS0 009 S

Network 16/19

Lddddd dd a2 d I L2 2 I A T T TR I I PP ITI T PEY P P PP P T S T 7

input number 1 20

dictionary imput LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

outpy* number 1 1

dictionary output LOG_MMAC

hidden 16 19

filename trainfacts c:\brain\test\cokealll.fct

filename nunfacts c:\brain\test\kemmer.in

leamrate 0.9000 50 0.75 75 0.6000 90 0.5000

leamnlayer 1.0000 1.0000 1.0000

trainto] 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 304 .

function hidden} sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.00000

LOG_KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

ORG

LOG_MMA

scale input minimum

029666 043 075 094 0.7 1 1 087 087 071 082 07 09

095 082 083 1000

scale input maximum

3.06069 1 14 116 165 166 156 13 115 146 129 142 121
1.14 124 124 123111

scale output minimum

0.77085

scale ouiput maximum

4.0569

100

SESSRESRILS PSS ISSVSSSNSSES XSS PSH R SHESEBSSS RS SES SRS SR SEERERES

Network 18/18

e d Al L LA g2 L IS A I I TIPS P RSP P YR PRSI P22 P2 22 P2 2

mput number 1 20

dictionary input LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output pumber |1 1

dictionary output LOG_MMAC

hidden 18 15

filename trainfacts c:\brain\test\cokealll.fct

filename runfacts c:\brain\test\kemmer.in

learnrate 0.9000 50 0.75 7S 0.6000 90 0.5000

learnlayer 1.0000 1.0000 1.0000

traintol 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 318

function hidden! sigmoid 0.0000 1.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.00000

LOG_KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

ORG

LOG_MMA

scale input minimum

029666 043 0.7 094 0.7 1 1 087 087 071 082 0.7 09

095 082 0383 1000

scale input maximum

3.06069 1 14 116 165 166 15 13 115 146 129 142 121
1.14 124 124 123111

scale output minimum

0.77085

scale output maximum

4.0569

101

“‘...‘..“““.‘...‘..““‘.‘.‘.C..“"t.“‘f‘..‘..‘..“.‘l‘.‘t‘...tlﬁ

Network 24/28

...“......‘.‘..‘.““"..“‘“‘.“'....O.“.‘...".‘0“‘.‘.“.“.‘.“

input number 1 20

dictionary input LOG_KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number 1 1

dictionary output LOG_MMAC

hidden 24 25

filename trainfacts c:\brain\test\cokealll.fct

filename runfacts c:\brain\test\kemmer.in

learnrate 0.9000 50 0.75 75 0.6000 90 0.5000

Jearnlayer 1.0000 1.0000 1.0000

traintol 0.1000 0.04 0.8000 100

testtol 0.2000

random 5.0

maxruns 417

function hidden] sigmoid 0.0000 }.0000 0.0000 1.00000

function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000

function output sigmoid 0.0000 1.0000 0.0000 1.00000

LOG_KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

G

-G_MMA

scale mput minimum

029666 043 075 094 0.7 1 1 087 087 071 08 07 09

095 082 0383 1000

scale imput maximum

306069 1 14 116 165 166 15 13 1i:5 146 129 142 121
114 124 124 123111

scale output minimum

0.77085

scale output maximum

4.0569

102

e

Brainmaker Neural Network Training and Testing Files
COCOMO Training and Kemmerer Testing Versions

S SR AR RS PR AR RS R LSS USRS EE RN LSRR RS RS LSS SRSV S S B ES RSB S EE S

COKEALLL.FCT

SERESE RS C RS LSS L RB LS LB E S S SR AR SRR AL SRS RS LS SR LIS SRS LSS S S EBRRE

facts

—_—1

205307 1 088 116 07 1 106 115 107 119 113 117 11
1 124 11 104 [E

3.30963

—2

246686 085 088 1.16 085 1 106 1 107 1 091 1 09

095 11 1 1[E

3.20412

—3

212057 1 1 116 085 1 1 087 094 086 082 086 09

095 091 091 1{SD -

2.3856

—

1.77815 076 075 116 07 1 1 087 1 119 091 142

095 124 1 1.04 [ORG

2.38021

——

120412 1 088 094 1 1 1 087 1 1 1 08 09

095 124 1 1[ORG

1.51851

e 6

060206 1 075 1 085 1 121 1 1 146 1 142 09

095 124 11 1[ORG

1.63346

—

083884 1 075 1 1 1 1 087 087 1 1 1 09 095
091 091 1 [ORG

0.90309

134242 1 115 094 13 166 156 13 1 071 091 1 121
114 11 11 108[E
3.0314

——eeeee 9

103

147712 1 115 094 13 13 121 L15S 1 08 1 08 11

107 091 1 1[E

2.62634

—— 10

146239 063 14 094 13 111 15 1 107 086 082 08 09
1 1 1 1[E

2.5065

——11

150515 063 14 094 13 LI1 15 1 107 08 082 08 09
1 1 1 1[E

2.33845

—12

15682 1 115 094 13 111 106 1 1 086 082 08 1

095 091 1 108 [E

2.30319

—13

139794 096 115 094 13 LII 106 1L15 1 071 1 07 11
1 082 1 1[E

1.89762

— 14

047712 1 115 094 165 13 156 115 1 08 1 07 11

107 11 124 123 [SD

1.86332

woaveeee 15

059106 1 14 094 13 13 106 115 087 086 113 086 121
1.14 091 1 123[E

1.78533

e 16

078533 06 14 1 13 13 15 1 087 08 1 08 1
1 1 1 1[E

1.60206

e 17

0553 053 14 1 13 13 15 1 087 08 082 086 1
1 1 1 1[E
0.95424

covenene 18

250515 1 115 116 115 13 121 1 107 08 1 1 1
1 124 11 108[E
4.0569

306060 084 1.5 108 1 111 121 087 094 071 091 1 1
1 091 091 1[E
3.81954

104

e 20

247567 096 14 108 13 1.1
11 107 124 1 108 SD
3.80618

——21

24014 1 1

1 091 091 1[E

3.39005

—22

207188 092 115 1 1 127
1 091 1 123[E

2.85973

—23

188649 098 115 1 1 1.08
1 1 1 123[E

2.73158

—24

195424 1 088 1 085 106
095 082 083 1[SD
2.65609

e 25

157978 1 115 116 13 1.15
1 082 091 108 [E

2.7185

—26

168124 1 094 1 085 1.07
1 091 11 108[E

2.58771

—27

097312 1 115 094 115 13
1 082 11 108[E

1.94448

——28

111394 1 115 108 13 Ll
107 11 11 1[ORG
1.99122

—29

033041 1 088 1 1 1
091 091 123 [SD

0.86332

———-30

029666 1 088 1 1 1
091 091 1.23[SD

1.21

1.06

1.06

1.06

1.06

1.15 1.07 0.71

1

1

1

|

L16 115 106 114 087 087 086 1

0.82 1.08

1 086 082 08 09

1 08 082 086 0.9

087 1 129

087 086 1

1.06 1.15 107 086 1

1.21

1.21

105

1

1.15

1

1

087 1 1

1.07 086 1

1.1

1.29 0.86

1 129 0.86

0.86

0.86

0.86

1

1

1.1

1.1

1.1

1.1

1

1

0.77085
——31

179239 081 14 108 1 148 156 115 107 086 082 086 1.1
107 1 1 1[E

3.02653

e 32

259106 067 088 108 08 1 1 1 1 071 082 1 1
1 1.1 L1 1[SD

2.84633

—33

162324 096 14 108 13 148 156 115 094 086 082 086
09 1 091 091 1[E

2.78175

—34

136172 096 115 108 1 106 1 1 087 1 1 1 1 1}
091 11 123[E

2.36172

e 35

111394 1 075 094 13 106 121 115 1 1 091 1 11
1 124 124 1([E

1.91381

— 36

117609 0.81 088 108 085 1 1 087 087 119 1 117 09
095 1 091 104 [SD

1.74036

e 37

177815 056 088 094 07 1 106 1 1 08 082 08 1
1 1 1 1[ORG

1.67209

38

117609 1 1 1 115 1 1 087 087 071 091 1 09
n9s 082 091 1[ORG

..07918

—— 39

079239 1 1 1 115 1 1 087 1 071 08 07 1
095 091 11 1[ORG

0.90309

e 40

047712 083 1 094 13 1 1 1 087 08 082 117 1
1 1.1 1 1[ORG

0.90309

eeeeee 41

106

072427 1 088 094 1 1 1 087 087 1 082 07 09
095 091 091 1 [ORG
0.77815
— 42
1.65801 043 088 104 107 1 106 087 107 08 1 093 09
0.95 095 095 104 [ORG
1.65321
— 43
145636 098 1 104 107 1 121 087 107 08 1 1 09
095 1 1 104 [ORG
1.91907
e 44
148572 098 088 104 107 106 121 087 107 1 1 1 09
095 11 1 1.04 [ORG
1.93951
—e- 45
1.54406 091 088 104 107 1 106 087 107 1 1 1 09
095 1 095 1.04 [ORG
2.0253
—eemeee 46
1.86332 078 088 104 107 1 106 087 107 1 1 086 09
095 1 1 104 [ORG
2.10037
——e 47
136172 1 075 094 13 1 1 087 087 071 082 07 1.1
107 11 1 1.04 [ORG
1.5563
e 48
266651 0.67 088 094 085 1 1 087 1 119 091 117 09
095 11 1 104[SD
3.10448
e 49
19504 1 1 1 08 1 1 1 087 071 1 07 11 1
082 091 1[SD
2.19312
e 50
138021 1 115 1 1 13 12! 1 087 08 1 08 11
1 1 1 1[E
2.24551
e 51
1 108 1 1 1 1 1 115 119 1 142 1 095
124 11 1.04 [ORG
2.08636

107

—e 52

091381 1 088 094 085 1 106 1L15 1 1 1 1 11
107 124 11 1[ORG

1.61278

— 53

072427 1 088 094 115 111 121 13 1 071 1 07 11
107 1 11 108[SD

1.14612

— 84

064345 1 1 094 1 1 106 115 087 1 082 1 1
095 091 11 1[ORG

1.30103

e §5

079934 1 088 094 07 1 1 087 087 086 082 117 09
095 1.1 1 1[ORG

1.25527

——71

143136 1 115 094 13 13 121 1 1 08 091 1 11
107 11 11 108 [E

2.98136

I

123044 087 1 094 115 111 121 13 1 1 1 1 11
107 1.1 11 123[E

2.37474

—

139794 1 14 094 13 166 121 1 1 071 082 07 09
095 091 1 1[E

2.11394

——

136172 09 1 094 115 106 106 1 08 1 1 1 1
1 091 1 1[ORG

1.84509

—7

082607 1 115 094 13 111 106 1 1 086 113 08 11
107 11 11 108 [ORG

1.75587

e 61

144715 1 1 094 115 1 1 087 087 08 1 08 09
1 082 1 1[ORG

1.69897

e 62

095004 1 088 094 13 111 121 115 1 078 082 07 121
114 091 124 1[SD

108

1.57978

1 1 1 094 1.15 1 1 1 087 0.71 0.82 086 1 1

082 1 1[E
1.17609

b g IS DO L DL I L T I L L L e e P T I T P P P L TP e e 2

XKEMMER.IN

SESSSLLURESERSELLEES RS SRS LRSS R SCEIL RS ISR RSPEL LSS ES RS SEEEEREH

LOG_KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED SD E

ORG

facts run

e |

240414 1 115 108 1.15 1 1.06 0.87 1 08 1.13 086 1
1 082 091 102[SD

ceemeeee 2

1.60745 1 1 1 1 1 1 087 1 1 107 086 1 1
1 1 1[SD

——— 3

2.65321 1 1 1.16 1 13 121 0.87 1 086 1.13 1 1
103 091 1 1[E

D .

2.33122 1 1 108 092 1 1 087 093 08 089 085 097

0.95. 1 1 102 [SD

——eneeee §

2.65311 1 1 094 1 1 1 093 087 078 113 093 1.1
103 1 091 107 [CRG

cvavees §

1.69897 1 1 116 1 111 1.06 1 087 086 1.13 086 0.95

097 091 1 123[E

———cceee 7

1.63346)| 1 1.16 1 111 1.06 1 087 08 113 0.7 0.95
107 091 1 123[E

————oeee §

2.22271 1 115 116 1 1)| 1 093 1 095 1 095
097 1 1 116 [SD

—evaces §

2.46089 1 1 116 115 111 106 087 0.87 1 1.13 106 1.1
1 1 1 108[E

e 10

109

159106 1 1 116 1 L11 1 093 103 071 1 07 11
.14 105 1 123[SD

e 11

240517 1 116 1 1 1 1 1 1 08 113 08 1

08 1 123 [SD

— 12

210924 1 1 116 1 1 1 087 087 08 107 086 1
1.03 1.1 095 108 [SD

—13

2209 1 1 116 1 106 1 087 087 L19 1 078 121
097 11 1 108 ([SD

— 14

221605 1 1 116 1 1 1 087 087 086 121 093 11
1.1 095 091 104 [ORG

— 15

17799 1 1 1 1 1 1 1 087 071 091 086 1.1

103 091 091 1[SD

110

APPENDIX F

SSSSSESSESSCSSS SIS ELLSSSPSSEETERS LSS ESEE SRS LSRR SSESLES LSS

Genetic Algorithm Fitness Function (fit.c)

(Prior to instantiation of awk Wrapper)
S5 LSS SESELE LSS SRS SER S S PEN S LSS SRS SRS LB R S SR ERE

#include <math bh>
struct eatry {
double effort;

double akdsi; . .
int i1,12,i3,14,i5,i6,i7,i8,19,i10,i11,i12,i13,i14,i15; l Variable Declarations I
int ie;

5

struct entry tablef] =

Dimension Table and Include

{
#include “table.c”
}

.
»

Fact File "table.c”

int size = (sizeof table)/(sizeofl struct entry));

double fi(y)

register double *y;
{double res; Dimension Array of 96 numbers for use

double emm, by the fitness function.
double exp;

static double x[96];
register int i,j;

for(i = 0; i < 90; i++) { Constrain cost driver size between 0.5
:[[?] /: {[(2)? 00; and 2.0. Constrain coefficients and
x[i] *= 1.5; exponents between 0.0 and 4.0
xfi} +=.5;

}

111

for(i = 90; i < 96; i++) {
x[i] = yli] + 200;
x{i] /= 100,

)

for(res = 0, i= 0; i < 42; i+=6) (
if(! (x[i}< x[i+1])) res +=1000;
if{! (x[i]< x[i+2])) res +=1000;
iff! (x[i]< x[i+3])) res +=1000;
ifl! (x[i]< x[i+4])) res +=1000;
if{! (x[i]< x{i+35])) res +=1000;
if{! (x[i+1])< x[i+2])) res +=1000,
if{! (x[i+1])< x[i+3])) res +=1000;
if{! (x[i+1]< x[i+4])) res +=1000,
if{! (x[i+1])< x[i+5])) res +=1000,
(! (x[i+2]< x[i+3])) res +=1000,
if{! (x[i+2]< x[i+4])) res +=1000,
if{! (x[i+2])< x[i+S])) res +=1000,
if{! (x[i+3])< x[i+4])) res +=1000,
if{! (x[i+3]< x[i+5])) res +=1000,
if{! (x[i+4]< x[i+5])) res+=1000,

}

for(i=42; i < 84, i+=6) {
if{! (x[i]> x[i+1])) res +=1000,
if{! (x[i)> x[i+2])) res +=1000,
if{! (x[i}> x[i+3])) res +=1000,
if{! (x[i]> x[i+4])) res +=1000;
if{! (x[i]> x[i+5])) res +=1000;
if(! (x[i+1]> x[i+2])) res +=1000;
(! (x[i+1]> x[i+3])) res +=1000;
iff! (x[i+1)> x[i+4])) res +=1000;
if{! (x[i+1]> x[i+5])) res +=1000;
if{! (x[i+2])> x[i+3])) res +=1000;
if{! (x[i+2]> x[i -4])) res +=1000;
if{! (x[i+2]> x[i+5])) res +=1000;
if{! (x[i+3]> x[i+4])) res +=1000;
if{! (x[i+3]> x[i+5])) res +=1000;
if{! (x[i+4]> x[i+5])) res+=1000,

}

/* for(i=90; i < 91; i++) {

Penslty functions to force GA
to obey rules established by
Boehm for the first seven cost
drivers. Comment out if

unconstrained drivers are
desired.

Penalty functions to force GA
to obey rules established by
Boehm for drivers eight through
fourteen. Comment out if

unconstrained drivers are
desired.

112

if{! (x[i] < x[i+1])) res +=1000,

if{! (x[i] < x[i+2])) res +=1000;

if{! (x[i+1] < x[i+2])) res +=1000;
}

for(=93; i < 94; i++) {
if{! (x[i] > x[i+1])) res +=1000;
if(! (x[i) > x[i+2])) res +=1000;
if(! (x[i+1] > x[i+2])) res +=1000;
}

*/

for(i = 0; i < size; i++) {

Penalty functions to force GA
to obey rules established by
Boehm for coefficients and
exponents. Comment out if

unconstrained drivers are
desired.

/* get product of cost drivers - goes from O to 89.. treat as 8 6x15 array*/

emm = x[table[i].i1];

emm *= x[table[i}.i2 + 6];
emm *= x[table[i].i3 + 6*2];
emm *= x[table[i).i4 + 6*3];
emm *= x[table[i).i5 + 6*4);
emm *= x[table[i).i6 + 6*5);
emm *= x[table[i).i7 + 6°6};
emm *= x[table[i].i8 + 6*7];
emm *= x[table[i].i9 + 6*8];
emm *= x{table[i).il10 + 6*9];
emm *= x[table[i].il1 + 6*10];
emm *= x[tablefi].i12 + 6*11];
emm *= x[table[i).i13 + 6*12];
emm *= x[table[i).il4 + 6*13];
*= x[table[i).i15 + 6*14];

emm *= x[table[i).ic+90]; /* coeff */

Bold type is fitness measure

evaluation. Average relative error is

shown.

emm *= pow(table[i].akdsi, x[table[i].ie+93]); /* exponent */

res +=

sqrt(((table[i].effort-emm)/(table]i].effort))*((table[i].effort-emm)/(table|i].effort)));

return res/size;
}

Bold underlined tvpe is GAucsd 1.4 declaration

for the chromosome. Translate as 10 bits per

1 GAeval f] 10:200dg96 */ | pumber, range -200 to 200, 96 numbers total

SRS EPESPEESESSOSRSS OSSO SSSEN LSS PSS SESS S SLESISERES S ESSE0S

Genetic Algorithm Input Data File: COCOMO Training and Testing Version

Format is {(MM_Actual, Adjusted KDSL, 18 Cost Drivers, Mode

Literal Driver Values Defined as:
0= Very Low

1=Low

2 = Nominal

3 = High

4 = Very High

5 = Extra High

Mode Defined as:

0 = Embedded
1 = Semidetached
2 = Organic

"Table.c"

SESES 2SS L LIRSS LSSELEE B ES SRR SIS PSSR SRR S S S LSS RSB UL LS ES S OB SN

(2040, 113, 1, 4,0, 2,3,3,3,1,1,1,1,20,1,3,0},
{243, 132, 2,4, 1,2, 2,1, 1,3, 4,3,3,3, 3,3, 2, 1},
{240, 456, 0,4, 0, 2, 2, 1, 2,1, 3,0, 2, 3, 0, 2, 3, 2},
{33, 16, 1, 1, 2, 2, 2, 1 3 3 2, 2

{423, 30, 3, 1, 4, 4, 4
{321, 18.27, 4, 1 3
{218, 20.16, 4, 1, 4, 3,
{409 3-66’ 4'; y Yy 4y 5’]
{6400, 287.04, 4, 3
{2455, 252, 2, 4, 3,
{724, 108.56, 3, 2, 2, 4, 3, 2,
{539, 75.46, 3, 2,

-

3
(453,90, 1,2, 1, 3, 3
{523, 38, 3, 4, 4, 3, 3, 2,
{387, 48, 1,2, 1, 3,3
(98,13, 3,3,4,3,4,3,3,3,2,3,1,1,1,1, 2, 2),

2

{702, 2613, 1,3, 1,2, 2,2, 2,4,4,2, 2,2,
{605, 40.32, 4, 3, 4,4, 5,3, 1, 3,4,3,3,2

114

{230, 22.08, 3, 3, 2,3, 2,2, 1, 2, 2, 2, 2, 2,

(82, 13, 0, 1,
{55, 12.15, 1
{8, 2.49, 2, 1,
{6, 5.3, 1, 1,

”””

A S RO NSRASTE DS
s oo e 0 s o = . e
SO I I I I I PN P Rl PO
3:2,L.1.2..2..1...3,2,1,L1n2,1,L,2.0,2,
e g T NS J ST g
3,3,3,1.3,1,1n2..2,3,.h1.n3,h.1,3,0.2,
meadNe =N I =Nea g .
12..2..2.2,4,1.4,10,4,2,1,1..44,4,3.

I I e o &
rap NN NN T M T & -

TR PE S T SR S S

L I I T Y ””,”,”
lllllils 1142112422]-.
””” ® " & | L
M NN g SN o o
[I R Y | I .} L R .
NNOOANN - "NYTTNJT T T .
NANANNAN ~ PNTN TGN TONN .
2224’112232041449\.’
.« N A& a o [I) L T)
B e GNMm= SRS
gagwace |, . N7 & ~d
« T T e \D Nt RO gt
989353, PN =N IT TN~ T O
’1)M6 s O ON o o OO . .
w) M~ NOW NN NTOOVMN MO
W 00 00 vt vt () Pt 4 et P o O] e O\ N () e
W Wt ! D g g gt g Y O g gt gl gt S g o gy

115

APPENDIX G

SESSELEL LR L NSRS UL S LS LSS SRS RSSO U S S LSS S S S SRS ISR IRS S8 05ER

Genetic Programming Fitness Function File

"fitness.c"
SECEP LSS LSRR VLRSS SR CLSSEL RS USSP ECHES U SRR E LSS LS LS R E RS ACE SR LTSS %
#mclude <math bh>
r

SGPC: Simple Genetic Programming in C
(c) 1993 by Walter Alden Tackett and Aviram Carmi

This code and documentation is copyrighted and is not in the public domain.
All rights reserved.

- This notice may not be removed or altered.

- You may not try to make money by distributing the package or by using the
process that the code creates.

- You may not distribute modified versions without clearly documentmg your
changes and notifying the principal author.

- The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.

- Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users ever read
sources, credits must appear in the documentation.

- The suthors are not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.

If you make changes to the code, or have suggestions for changes,
let us know: (gpc@ipld01.hac.com)
¢/

#ifndef lint

R ————

static char fitness_c_rcsid[}="$1d: finess.c,v 2.8 1993/04/14 05:19:57 gpc-avc Exp
gpe-ave $”;
#endif
I‘
[]
* SLog: fitness.c,v$ _
* Revision 2.8 1993/04/14 05:19:57 gpc-avc
* just a revision number change
[}

L J

¢/
#include <stdio.h>
#include <malloc.h>
#mclude <ermno.h>
#include “gpc.h"
#mclude EXP
#include VAL_EXP
extern terminal_table_entry terminal_table[];
extern int terminal_table sz ;
extern int total_vars ;
extern int fitness_table_sz;
re */
#ifdef ANSI_FUNC
VOID define_fitness_cases(

int Dumpops,
mt pumgens,

P")P_m“ *pop

#else

VOID define_fitness_cases(numpops,numgens,pop)
int numpops;

int numgens;

pop_struct “*pop;

#endif

{

#f0

/* this template makes all of the fitness cases the same for all
populations, but that isn't necessary */

int p,j;

float range;

pumfc = 10; /* number of fitness or training cases */

pumtc = 10; /* number of test or validation cases */

range = 1.0;

117

fitness_cases_table = (float **) malloc(numpops*sizeofifloat *));
test_cases_table = (float **) malloc{pumpops*sizeofi float *));
fitness_cases_table_out = (float **) malloc(aumpops*sizeofi float *));
test_cases_table_out = (float **) malloc(numpops*sizeofi float *);
for (p=0; p<aumpops; p++) {
fitness_cases_tsble[p] = (float *) malloc(pumfc * sizeofifloat));
tsst_cases_table[p] = (float *) malloc(oumtc * sizeof{float));
fitness_cases_table_out[p] = (float *) malloc(numfc * sizeof{flost));
test_cases_table_out{p] = (float *) malloc(numtc * sizeofl{float)),
for (i=0; i<aumfc; i++) {
/* eveuly spaced zero..'range"”: ¢/
fitnese_cases._table[p](i] = range * (float)i / (float)numfc;
/* evenly spaced ‘range’ about zero:
fitness_cases_table[p](i] = (2.0*range*(float)i/(float)numfc)-range;
*/
fitness_cases_table_out{p][i] =
regression_function(fitness_cases_table[p][i]);
}
for (i=0; i<numtc; i++) {
/* validation test cases same as the training set */
test_cases_table[p][i) = fitness_cases_table[p][i);
/* validation could be random within the range:
test_cases_table[p][i] = random_float(range),
or range centered about zero:
test_cases_table[p][i] = random_float(2.0*range)-range;
*/
test_cases_table_out[p][i] = regression_function(test_cases_tsble[p]{il);
}

H
#endif

/* no processing needed - we've got data! */

}
#ifdef ANSI_FUNC
VOID evaluste_fitness_of populations(

it puUmpops,
mt pumgens,
pop_struct*pop,
int P
)

#else

VOID evaluste_fitness_of " populations(pumpops,numgeas,pop,p)
int pumpops;
int numgens;

118

pop_struct*pop;
int P
#endif
{
int i;

for (=0, i<pop[p].population_size; i++) {
pop[p) standardized_fitness|i] =
evaluate_fitness_of individual(pop,p,pop[p].population{i),i);

H
)
#ifdef ANSI_FUNC
float evaluate_fitness_of_individual(
pop_struct *pop,
int P,
tree e &
int i
)
#else
float evaluate_fitness_of individual(pop, p, t, i)
pop_struct *pop;)
mt P;
tree *t; Bold type defines the fitness
mt 5
Hendif v measure of testing dats set.
{) Average relative error is shown
mt 3
float res,sum = 0.0;

for (=0, j<fitness_table_sz; j++) {
load_terminal_set_values(pop,p,&(fitness_table_t[j][1]));
sum += (float)sqrt((double)(fitness_table_t[j}[0]-eval(t))*
(fitness_table_t[j]1{0]-eval(t)) / fitness_table_t[j][0] / fitness_table_t[j}{0]);
}
res = sum/((GENERIC)fituness_table_sz);
if{fall_vars(pop.p.t)) {
res *= 100;
}
return res;
}
#ifdef ANSI_FUNC
float validate_fitness_of tree(
int nuUmpops,
int numgens,
pop_struct *pop,

119

nt P>
tree *
)
#ielse
float validate_fitness_of _tree(numpops, numgens, pop, p, t)
int BUmMPOpPS;
int numgens;
pop_struct *pop;
mt P
tree he
#endif
{ [3 3
mt)
float res, sum = 0.0;
float ev;

extern int val_fitness_table_sz;
for (=0, j<val_fitness_table sz, j++) {
load_terminal_set_values(pop,p,&(val_fitness_table_t[j][1]));
ev = eval(t); .
sum += (float)sqrt((double)(val_fitness_table_t[j][0]-ev)*
(val_fitness_table_t[j]}[0}-ev) / val_fitness_table_t[j][0] /
va)_fitness_table_t]j}[0]);

)
res = sum/((GENERIC)val_fitness_table_sz),

if!all_vars(pop,p.t)) {
res *= 100,
) Bold type defines the fitness measure of
return res; testing data set. Average relative error
} is shown.

#ifdef ANSI_FUNC
int terminate_earhy(

int numpops,

int numgens,

1)aop.mct *pop

#else

int terminate_esrly(numpops,numgens,pop)
int numpops;

it npumgens;

pop_struct *pop;

#endif

120

{
int p,i;
for (p=0; p<aumpops; p++) {
for (i=0; i<pop[p].population_size; i++) {
if (pop[p].standardized_fitness{i) <= 0.0) {
retum 1,

SRS SRR EES SR LR L S S SRRAB LSS SRR XSS S XSS S EB R LSS E RS E R EE RS 0SS

Genetic Programming Training Data Input File
COCOMO Training and Testing Version

"cotrd2.c"
S SR EE R R YRR RS LR LRSS LSS R B Y PR EE NS LRSS E RS E R SRR SRS SR RS E SR ESS R R EE S
#include <stdio.h>
#include "gpc.h”
#include "prob.h”
#include “cotr42.b"

GENERIC random_constant();

terminal_table_entry terminal_table[] = {
{0, "X0",random_constant}, X0 = KDSI
{1, "X1",random_constant},
{2, "X2",random_constant}, X1 =AAF
{3, “X3",random_constant}, X2 through X16 are the
{4, "X4" random_constant}, .
{5, *X5" random_constant}, cost driver values, RELY
{6, "X6",random_constant}, through SCED.
{7, "X7",random_constant},
{8, "X8",random_constant},
{9, "X9",random_constant},
{10, *X10",random_constant},
{11, "X 11" ,random_constant},
{12, "X12",random_constant},
{13, "X13",random_constant},
{14, "X14",random_constant},
{15, "X15",random_constant},

121

{16, "X 16", random_constant},
{0,FORMAT,random_constant},
IR

int terminal_table_sz = sizeof{terminal_table)/sizeof{terminal_table_entry) - 1;
int total_vars = l-'lTNESS HEIGHT;
GENERIC fitness_table t['l'-'lTNESS WIDTH][FITNESS HEIGHT] = { {2040.0000,

113.0000, 1.0000, 0.8800, 1.1600, 0.7000, 1.0000,
1.0600, 1.1500, 1.0700, 1.1900, 1.1300, 1.1700,
1.1000, 1.0000, 1.2400, 1.1000, 1.0400, },
(243.0000, 132.0000, 1.0000, 1.0000, 1.1600,
0.8500, 1.0000, 1.0000, 0.8700, 0.9400, 0.8600,

0.8200, 0.8600, 0.9000, 0.9500, 0.9100, 0.9100,
1.0000,

{240.0000, 60.0000, 0.7600, 0.7500, 1.1600,
0.7000, 1.0000, 1.0000, 0.8700, 1.0000, 1.1900,
0.9100, 1.4200, 1.0000, 0.9500, 1.2400, 1.0000,
1.0400, },

{ 33.0000, 16.0000, 1.0000, 0.8800, 0.9400,
1.0000, 1.0000, 1.0000, 0.8700, 1.0000, 1.0000,
1.0000, 0.8600, 0.9000, 0.9500, 1.2400, 1.0000,
1.0000,),

{423.0000, 30.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.3000, 1.2100, 1.1500, 1.0000, 0.8600,
1.0000, 0.8600, 1.1000, 1.0700, 0.9100, 1.0000,
1.0000, },

(321.0000, 29.0000, 0.6300, 1.4000, 0.9400,
1.3000, 1.1100, 1.5600, 1.0000, 1.0700, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,
1.0000, },

(218.0000, 32.0000, 0.6300, 1.4000, 0.9400,
1.3000, 1.1100, 1.5600, 1.0000, 1.0700, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,
1.0000, },

{ 40.0000, 6.1000, 0.6000, 1.4000, 1.0000,
1.3000, 1.3000, 1.5600, 1.0000, 0.8700, 0.8600,
1.0000, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000,),

{6400.0000, 299.0000, 0.9600, 1.4000, 1.0800,
1.3000, 1.1100, 1.2100, 1.1500, 1.0700, 0.7100,
0.8200, 1.0800, 1.1000, 1.0700, 1.2400, 1.0000,
1.0800,),

122

-

(2455.0000, 252.0000, 1.0000, 1.0000, 1.1600,

1.1500, 1.0600, 1.1400, 0.8700, 0.8700, 0.8600,
1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 0.9100,
1.0000,),

(724.0000, 118.0000, 0.9200, 1.1500, 1.0000,
1.0000, 1.2700, 1.0600, 1.0000, 1.0000, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 0.9100, 1.0000,
12300, },

(539.0000, 77.0000, 0.9800, 1.1500, 1.0000,
1.0000, 1.0800, 1.0600, 1.0000, 1.0009, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,
12300, },
 {453.0000, 90.0000, 1.0000, 0.8800, 1.0000,
0.8500, 1.0600, 1.0600, 1.0000, 0.8700, 1.0000,
1.2900, 1.0000, 1.1000, 0.9500, 0.8200, 0.8300,
1.0000, },

(523.0000, 38.0000, 1.0000, 1.1500, 1.1600,
1.3000, 1.1500, 1.0600, 1.0000, 0.8700, 0.8600,
1.0000, 0.8600, 1.1000, 1.0000, 0.8200, 0.9100,
1.0800, },

(387.0000, 48.0000, 1.0000, 0.9400, 1.0000,
0.8500, 1.0700, 1.0600, 1.1500, 1.0700, 0.8600,
1.0000, 0.8600, 1.1000, 1.0000, 0.9100, 1.1000,
1.0800, },

{ 98.0000, 13.0000, 1.0000, 1.1500, 1.0800,"
1.3000, 1.1100, 1.2100, 1.1500, 1.0700, 0.8600,
1.0000, 0.8600, 1.1000, 1.0700, 1.1060, 1.1000,
1.0000, },

{1063.0000, 62.0000, 0.8100, 1.4000, 1.0800,
1.0000, 1.4800, 1.5600, 1.1500, 1.0700, 0.8600,
0.8200, 0.8600, 1.1000, 1.0700, 1.0000, 1.0000,
1.0000, },

(702.0000, 390.0000, 0.6700, 0.8800, 1.0800,
0.8500, 1.0000, 1.0000, 1.0000, 1.0000, 0.7100,
0.8200, 1.0000, 1.0000, 1.0000, 1.1000, 1.1000,
1.0000,),

{605.0000, 42.0000, 0.9600, 1.4000, 1.0800,
1.3000, 1.4800, 1.5600, 1.1500, 0.9400, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 0.9100, 0.9100,
1.0000,),

(230.0000, 23.0000, 0.9600, 1.1500, 1.0800,
1.0000, 1.0600, 1.0000, 1.0000, 0.8700, 1.0000,

123

1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 1.1000,
12300,),
{ 82.0000, 13.0000, 1.0000, 0.7500, 0.9400,
1.3000, 1.0600, 1.2100, 1.1500, 1.0000, 1.0000,
09100, 1.0000, 1.1000, 1.0000, 1.2400, 1.2400,
1.0000,),
{ 55.0000, 15.0000, 0.8100, 0.8800, 1.0800,
0.8500, 1.0000, 1.0000, 0.8700, 0.8700, 1.1900,
1.0000, 1.1700, 0.9000, 0.9500, 1.0000, 0.9100,
1.0400,),
{ 8.0000, 3.0000, 0.8300, 1.0000, 0.9400,
1.3000, 1.0000, 1.0000, 1.0000, 0.8700, 0.8600,
0.8200, 1.1700, 1.0000, 1.0000, 1.1000, 1.0000,
1.0000, },
{ 6.0000, 5.3000, 1.0000, 0.8800, 0.9400,
1.0000, 1.0000, 1.0000, 0.8700, 0.8700, 1.0000,
0.8200, 0.7000, 0.9000, 0.9500, 0.9100, 0.9100,
10000, },
(45.0000, 45.5000, 0.4300, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 0.8600,
1.0000, 0.9300, 0.9000, 0.9500, 0.9500, 0.9500,
1.0400, },
{ 83.0000, 28.6000, 0.9800, 1.0000, 1.0400,
1.0700, 1.0000, 1.2100, 0.8700, 1.0700, 0.8600,
1.0000, 1.0000, 0.9000, 0.9500, 1.0000, 1.0000,
1.0400,),
{ 87.0000, 30.6000, 0.9800, 0.8800, 1.0400,
1.0700, 1.0600, 1.2100, 0.8700, 1.0700, 1.0000,
1.0000, 1.0000, 0.9000, 0.9500, 1.1000, 1.0000,
1.0400, },
{106.0000, 35.0000, 0.9100, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 1.0000,
1.0000, 1.0000, 0.9000, 0.9500, 1.0000, 0.9500,
1.0400,),
(126.0000, 73.0000, 0.7800, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 1.0000,
1.0000, 0.8600, 0.9000, 0.9500, 1.0000, 1.0000,
1.0400,),
{ 36.0000, 23.0000, 1.0000, 0.7500, 0.9400,
1.3000, 1.0000, 1.0000, 0.8700, 0.8700, 0.7100,
0.8200, 0.7000, 1.1000, 1.0700, 1.1000, 1.0000,
1.0400,),
124

{1272.0000, 464.0000, 0.6700,
0.8500, 1.0000, 1.0000,
0.9100, 1.1700, 0.9000,
1.0400, },
{156.0000, 91.0000, 1.0000,
0.8500, 1.0000, 1.0000,
1.0000, 0.7000, 1.1000,
1.0000,),
(176.0000, 24.0000, 1.0000,
1.0000, 1.3000, 1.2100,
1.0000, 0.8600, 1.1000,
1.0000,),
{122.0000, 10.0000, 1.0000,
1.0000, 1.0000, 1.0000,
1.0000, 1.4200, 1.0000,
1.0400,),
{ 14.0000, 5.3000, 1.0000,
1.1500, 1.1100, 1.2100,
1.0000, 0.7000, 1.1000,
1.0800, },
{ 20.0000, 4.4000, 1.0000,
1.0000, 1.0000, 1.0600,
0.8200, 1.0000, 1.0000,
1.0000, },
{ 18.0000, 6.3000, 1.0000,
0.7000, 1.0000, 1.0000,
0.8200, 1.1700, 0.9000,
10000, },
{958.0000, 27.0000, 1.0000,
1.3000, 1.3000, 1.2100,
0.9100, 1.0000, 1.1000,
1.0800,),
{237.0000, 17.0000, 0.8700,
1.1500, 1.1100, 1.2100,
1.0000, 1.0000, 1.1000,
12300, },
{130.0000, 25.0000, 1.0000,
1.3000, 1.6600, 1.2100,
0.8200, 0.7000, 0.9000,
1.0000, },
{ 38.0000, 9.1000, 1.0000,
1.3000, 1.1100, 1.2100,

0.8800, 0.9400,
0.8700, 1.0000, 1.1900,
0.9500, 1.1000, 1.0000,

1.0000,
1.0000, 0.8700,
1.0000, 0.8200,

1.0000,
0.7100,
0.9100,

1.1500,
0.8700,
1.0000,

1.0000,
0.8600,
1.0000,

1.0000,
1.0000,

0.8800,
1.0000,
0.9500,

1.0000,
1.1500, 1.1900,
1.2400, 1.1000,

0.8800, 0.9400,
1.3000, 1.0000, 0.7100,
1.0700, 1.0000, 1.1000,

1.0000,
1.1500, 0.8700,
0.9500, 0.9100,

0.9400,
1.0000,
1.1000,

0.9400,
0.8600,
1.0000,

0.8800,
0.8700, 0.8700,
0.9500, 1.1000,

1.1500,
1.0000,
1.0700,

0.9400,
1.0000,
1.1000,

0.8600,
1.1000,

1.0000, 0.9400,
1.3000, 1.0000, 1.0000,
1.0700, 1.1000, 1.1000,

1.4000, 0.9400,
1.0000, 1.0000, 0.7100,
0.9500, 0.9100, 1.0000,

0.8800, 0.9400,
1.1500, 1.0000, 0.7800,

125

0.8200, 0.7000, 1.2100, 1.1400, 0.9100, 1.2400,
1.0000,),
{ 15.0000, 10.0000, 1.0000, 1.0000, 0.9400,
1.1500, 1.0000, 1.0000, 1.0000, 0.8700, 0.7100,
0.8200, 0.8600, 1.0000, 1.0000, 0.8200, 1.0000,
1.0000, },
}

int fitness_table_sz = FITNESS_WIDTH,;
GENERIC fitness_table[FTTNESS_HEIGHT)[FITNESS_WIDTH];

SSLLESHELENESLESSSESPSEHRSE0SSE SR ESS LSS RS ERESESE I IS RIS RS SRE S

Per] Script for Creating Genetic Programming Input Training Data File

""define.pl"
(Author: Ranjan Bagchi)

BEFVEB RSB R R L L AR RS SRS S S SR RS AR SR E SRR SRS RS SR E LRSS RS RS SRS SRS S &

#!/public/gnu/bin/per] --

define - generates static data inst;mtiating all necessary
terminals.

$first = 0;
Soutf = SARGV][0];
open(OUT,">Soutf c");
open(OUT_h,">Soutfh"),
while(<) {
if{/Aw*S/) {
next;
}
@l = split("");
if{$first == 0) {
print OUT
*#include <stdio.h>\n",
“#include \"gpc.h\"\n",
“#include \"prob.h\"\n",
sprintf{"#include \"%s.h\"\n",Soutf),
“nGENERIC random_constant();\n"

print OUT
“terminal table_entry terminal_table[] = {\n";
for(0..$#1-1) {

126

printROUT "t{%d, \"X%d\",random_constant},\n",$,$_);

}
print OUT *\t{0,FORMAT, random_constant},\n";
print OUT "};\n\
int terminal_table_sz = sizeof{terminal table)/sizeof{terminal_table_entry) - 1;\n";

printf (OUT "int total vars = FITNESS_HEIGHT;\n");
printf (OUT "GENERIC fitness_table_t[FITNESS_WIDTH]{FTTNESS_HEIGHT] =
)
Sformat = "\t{"."%8.4£\t"x($#1+1)."},\n";
}
Sfirst ++;
printfl OUT Stormat,@});

}

printROUT “};\n");

print OUT "int fitness_table_sz = FITNESS_WIDTH;\n";

print OUT "GENERIC fitness_table[FITNESS_HEIGHT][FITNESS_WIDTH];";
close(OUT);

printfOUT _h "#define FITNESS_HEIGHT %d\n", $#1+1);
printROUT _h "#define FITNESS_WIDTH %d\n", $first);
printf{lOUT _h "\n\nextern GENERIC

fitness_table[FTTNESS_HEIGHT][FITNESS_WIDTH];\n");
printfOUT_b "\n\nextern GENERIC

fitness_table t[FITNESS_WIDTH][FITNESS_HEIGHT];\n"),
close (OUT_h);
B T L L P T PP LR
Genetic Programming Input Testing Data File
COCOMO Training and Testing Version

"cote21.c"
SRS LSS S EL LSRR ES SRR E LRSS RS SRS LSS LR LR EEEL LRSS E SR USRS S EE %

#include <stdio.h>
#include "gpc.h”
#include "prob.h”
#include “val_cote21.h”

127

GENERIC val_fitmess_table_t[VAL_FITNESS_WIDTH]}[VAL_FITNESS_HEIGHT] = {

{1600.0000, 293.0000, 0.8500, 0.8800, 1.1600, 0.8500,
1.0000, 1.0600, 1.0000, 1.0700, 1.0000, 0.9100,
1.0000, 0.9000, 0.9500, 1.1000, 1.0000, 1.0000,
| 8

{43.0000, 4.0000, 1.0000, 0.7500, 1.0000,
0.8500, 1.0000, 1.2100, 1.0000, 1.0000, 1.4600,
1.0000, 1.4200, 0.9000, 0.9500, 1.2400, 1.1000,
1.0000,),

{ 8.0000, 6.9000, 1.0000, 0.7500, 1.0000,
1.0000, 1.0000, 1.0000, 0.8700, 0.8700, 1.0000,
1.0000, 1.0000, 0.9000, 0.9500, 0.9100, 0.9100,
1.0000,),

{1075.0000, 22.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.6600, 1.5600, 1.3000, 1.0000, 0.7100,
0.9100, 1.0000, 1.2100, 1.1400, 1.1000, 1.1000,
1.0800, },

{201.0000, 37.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.0000, 1.0000, 0.8600,
0.8200, 0.8600, 1.0000, 0.9500, 0.9100, 1.0000,
1.0800,),

{79.0000, 25.0000, 0.9600, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.1500, 1.0000, 0.7100,
1.0000, 0.7000, 1.1000, 1.0000, 0.8200, 1.0000,
1.0000,),

{73.0000, 3.0000, 1.0000, 1.1500, 0.9400,
1.6500, 1.3000, 1.5600, 1.1500, 1.0000, 0.8600,
1.0000, 0.7000, 1.1000, 1.0700, 1.1000, 1.2400,
12300,),

{61.0000, 3.9000, 1.0000, 1.4000, 0.9400,
1.3000, 1.3000, 1.0600, 1.1500, 0.8700, 0.8600,
1.1300, 0.8600, 1.2100, 1.1400, 0.9100, 1.0000,
12300,),

{ 9.0000, 3.6000, 0.5300, 1.4000, 1.0000,
1.3000, 1.3000, 1.5600, 1.0000, 0.8700, 0.8600,
0.8200, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000,),

{11400.0000, 320.0000, 1.0000, 1.1500, 1.1600,
1.1500, 1.3000, 1.2100, 1.0000, 1.0700, 0.8600,
1.0000, 1.0000, 1.0000, 1.0000, 1.2400, 1.1000,
1.0800,),

{6600.0000, 1150.0000, 0.8400, 1.1500, 1.0800,
1.0000, 1.1100, 1.2100, 0.8700, 0.9400, 0.7100,

128

0.9100, 1.0000, 1.0000, 1.0000, 0.9100, 0.9100,
1.0000, 1

(88.0000, 9.4000, 1.0000, 1.1500, 0.9400,
1.1500, 1.3500, 1.2100, 1.0000, 0.8700, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 0.8200, 1.1000,
1.0800,)

{ 7.3000, 2.1400, 1.0000, 0.8800, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.1000,
1.2900, 0.3600, 1.0000, 1.0000, 0.9100, 0.9100,
1.2300, 1R

{ 5.9000, 1.9800, 1.0000, 0.8800, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.2900, 0.8600, 1.0000, 1.0000, 0.9100, 0.9100,
1.2300,),

{47.0000, 60.0000, 0.5600, 0.8800, 0.9400,
0.7000, 1.0000, 1.0600, 1.0000, 1.0000, 0.8600,
0.8200, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000,)

{ 12.0000, 15.0000, 1.0000, 1.0000, 1.0000,
1.1500, 1.0000, 1.0000, 0.8700, 0.8700, 0.7100,
0.9100, 1.0000, 0.9000, 0.9500, 0.8200, 0.9100,
1.0000,)

{ 8.0000, 6.2000, 1.0000, 1.0000, 1.0000,
1.1500, 1.0000, 1.0000, 0.8700, 1.0000, 0.7100,
0.8200, 0.7000, 1.0000, 0.9500, 0.9100, 1.1000,
1.0000, 1

{41.0000, 8.2000, 1.0000, 0.8800, 0.9400,
0.8500, 1.0000, 1.0600, 1.1500, 1.0000, 1.0000,
1.0000, 1.0000, 1.1000, 1.0700, 1.2400, 1.1000,
1.0000,),

{ 70.0000, 23.0000, 0.9000, 1.0000, 0.9400,
1.1500, 1.0600, 1.0600, 1.0000, 0.8700, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 1.0000,
1.0000,)

{ 57.0000, 6.7000, 1.0000, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.0000, 1.0000, 0.8600,
1.1300, 0.8600, 1.1000, 1.0700, 1.1000, 1.1000,
1.0800, 1A

{ 50.0000, 28.0000, 1.0000, 1.0000, 0.9400,
1.1500, 1.0000, 1.0000, 0.8700, 0.8700, 0.8600,
1.0000, 0.8600, 0.9000, 1.0000, 0.8200, 1.0000,
1.0000,)

)

129

int val_fitness_table_sz = VAL_FITNESS_WIDTH,;
GENERIC val_fitness_table[VAL_FITNESS_HEIGHT)[VAL_FITNESS_WIDTH];

SESESEE RSB RS SRS LS SRS RSP LRSS SRR SRS RS S S S S HES NP E R SRS SR ES SRS S

Perl Script for Creating Genetic Programming Input Testing Dats File

"val_define.pl"
(Author: Ranjan Bagchi)

SR SUSL SRS RS SR LSRN U E LRSS S S S SRS SS LSS SELESSSS SRS RSEER RN SR SRR

#!/public/gnu/bin/perl -

define - generates static data instantiating all necessary
terminals.

Sfirst = 0,
Soutf = “val_SARGV[0]";
open(OUT,">Soutf.c");
open{OUT _h,">Soutfh"),
while(<) {

i/ w*8/) {

next,
)

@l = split(' ‘);
if{$first == 0) {
print OUT
"#include <stdio.k>\n",
"#mmclude \"gpc.h\"\n",
“#inchude \"prob.h\"\n",
sprintf{"#include \"%s.b\"\n",Soutf),
*GENERIC
val_fitness_table_t[VAL_FITNESS_WIDTH][VAL_FITNESS_HEIGHT] = {",

Sformat = "\t {"."%8.4£ \t"x($#1+1)."},\n";
}
Sfirst ++;
printOUT Sformat,@});

)

printfOUT "};\n");

print OUT “int val_fitness_table_sz = VAL_FITNESS_WIDTH;\n";

print OUT "GENERIC
val_fitness_table[VAL_FITNESS_HEIGHT}[VAL_FITNESS_WIDTH];";

130

“

close(OUT);

printfOUT _h “#define VAL_FITNESS_HEIGHT %d\n", $#1+1);
printflOUT _h “#define VAL_FITNESS_WIDTH %d\n", $first),

printfl OUT _b "\n\nextern GENERIC
val_fitness_table[VAL_FITNESS_HEIGHT][VAL_FITNESS_WIDTH];\n");
printROUT_h "\n\nextern GENERIC

val_fitness_table t[VAL_FITNESS_WIDTH][VAL_FITNESS_HEIGHT];\n");

close (OUT _h);

SEPERRRX SRR LSRR LSS ES LN E SRR RS RS LR RS R S LSS SRS SR DRSS S SRS RS

SGPC Makefile

COCOMO Training and Testing Phase

ERSEEREB PR LR R SRR ER R R BRI SRS B AXEBB S ERE R B E R LR AL RS E RS RSB SRR R RS EERES R

i

SGPC: Simple Genetic Programming in C

(c) 1993 by Walter Alden Tackett and Aviram Carmi

.

This code and documentation is copyrighted and is not in the public domain.
#4 All rights reserved.

#i

- This notice may not be removed or altered.

#i

#i# - You may not try to make money by distributing the package or by using the
process that the code creates.

#

- You may not distribute modified versions without clearly documenting your
changes and notifying the principal author.

#

- The origin of this software must not be misrepresented, either by

explicit claim or by omission. Since few users ever read sources,

credits must appear in the documentation.

#i

#i - Altered versions must be plainly marked as such, and must not be

#} misrepresented as being the original software. Since few users ever read
sources, credits must sppear in the documentation.

#i

- The authors are not responsible for the consequences of use of this

software, no matter how awful, even if they arise from flaws in it.

131

Wi
#4 If you make changes to the code, or have suggestions for changes,
let us kmow! (gpc@ipld01.hac.com)

SId: Makefile,v 1.1 1993/04/30 05:01:48 gpc-avc Exp gpc-avc §
#

invoke this Makefile with the command: make [TYPE=type]

#

where you have the problem-specific fitness and setup files named
fitness.c and setup.c

#

TYPE should usually equal int or float, but in principle can be anything.
#

SLog: Makefilev$

Revision 1.1 1993/04/30 05:01:48 gpc-avc

Initial revision

#

Revisioa | 7 1993/04/23 01:56:25 gpc-avc

#

TYPE = float

DEBUG=0

EXP = cotr42

VAL_EXP = val_cote21

FLAGS = -0 -DTYPE=$(TYPE) -DDEBUG=$(DEBUG)
-DVAL_EXP=\"§(VAL_EXP).h\" -DEXP=\"S(EXP).b\"

SRCS = setup.c fitness.c S(EXP).c main.c S(VAL_EXP).c

INCS = prob.h

OBJS = $(SRCS:%.c=%.0)

EXE =~ gpe-1S(PROBLEM) Bold type indicates problem specific
#i# NOTE.: last definition wins ## declarations that include the COCOMO
cC ' gec training and testing files created by
CFLAGS = -g-L./Mib define.pl and val_defme.pl

#CFLAGS = -0 -1./lib

CPPFLAGS = S(FLAGS)
LIBS = -L../lib -IgpcS(TYPE) -Im

132

gec cc debug-cc debug-gec purify prof all: $(OBJS)
-(cd ../Mib;\
$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG) \
CC=$(CC) CFLAGS="$(CFLAGS)" $@)
$(CC) -0 S(EXE) $(OBJS) $(LIBS)

clean:
oin/rm -f S(EXE) $(OBJS) Makefile bak

real-clean: clean
(cd .. fhib;\
S(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG) \
CC=$(CC) CFLAGS="$(CFLAGS)" clean)

print:
Wf-57 -] -p"-2 -t" -m -t8 $(SRCS) S(INCS) | Ipr
(cd ../ib;\
$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG)\
CC=3(CC) CFLAGS="$(CFLAGS)" $@)

=co -1 $(SRCS) $(INCS) Makefile

(cd ../hib; \

$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG) \
CC=$(CC) CFLAGS="$(CFLAGS)" $@)

-ci -1 $(SRCS) $(INCS) Makefile

(cd ../lib; \

$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG)\
CC=$(CC) CFLAGS="$(CFLAGS)" $@)

S(LINT.c) $(CFLAGS) $(FLAGS) $(SRCS)
(cd./hb;\

$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG) \
CC=$(CC) CFLAGS="$(CFLAGS)" $@)

depend:
makedepend ~ $(CFLAGS) - S(FLAGS) $(SRCS)
(cd ../lib; \
$(MAKE) TYPE=$(TYPE) DEBUG=$(DEBUG)\

133

CC=$(CC) CFLAGS="$(CFLAGS)" $@)
DO NOT DELETE THIS LINE - make depend depends on it.

setup.o: /usr/mclude/stdio.b ../lib/gpc.h ../lib/proto.h ../ib/random b
setup.o: prob.h .

fitness.o: /usr/include/stdio.h /usr/include/malloc.h /usr/inchude/ermo.h
fitness.o: /usr/include/sys/ermo.h ../lib/gpc.h ../lib/proto.h

fitness.o: ../lib/random h

134

LIST OF REFERENCES

Boehm, B. W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981.

Boehm, B. W. , "Software Engineering Economics,” JEEE Transactions on Software
Engineering, SE-10, 1, pp. 4-21, January 1984.

Boehm, B. W., "Survey and Tutorial Series--Improving Software Productivity,”
Computer, September 1987, pp. 43-57.

California Scientfic Software, BrainMaker Reference Manual, 1992.

California Scientific Software, BrainMaker Genetic Training Option Reference Manual,
1993.

Eberhart, R.C., and Dobbins, R W., Neural Network PC Tools: A Practical Guide,
Academic Press Inc., San Diego CA, 1990.

Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company, Inc., Reading MA, 1989.

Holland, J. H., "Genetic Algorithms," Scientific American, July 1992, pp. 66-72.

Kemmerer, C. F., "An Empirical Validation of Software Cost Estimation Models,”
Communications of the ACM, v. 30, no. 5 (May 1987), pp. 416-429.

Koza, J. R, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, The MIT Press, Cambridge, MA, 1992.

Maren, A., Harston, C., and Pap, R., Handbook of Neural Computing Applications,
Academic Press Inc., San Diego, CA, 1990.

University of California, San Diego, Report CS92-249, 4 User's Guide to GAucsd 1.4, by
N. N. Schraudolph and J. J. Grefenstette, pp. 1-23, 7 July 1992,

Zahedi, F., “An Introduction to Neural Networks and a Comparison with Artificial
Intelligence and Expert Systems,” INTERFACES, 21:2 (March-April 1991), pp. 25-38.

135

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

. Dr. Balasubramanium Ramesh, Code AS/RA 5
Department of Administrative Sciences

Naval Postgraduate School

Monterey, CA 93943-5000

. Dr. Tarek K Abdel-Hamid, Code AS/AH 2
Department of Administrative Sciences

Naval Postgraduate School

Monterey, CA 93943-5000

. LT Michael A. Kelly 3
1216 Syivan Rd.
Roanoke, VA 24014

136

