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ABSTRACT

The Department of Defense expends billions of dollars on software development and

maintenance annually. Many Department of Defense projects fail to be completed, at

large monetary cost to the government, due to the inability of current software

cost-estimation techniques to estimate, at an early project stage, the level of effort

required for a project to be completed. One reason is that current software

cost-estimation models tend to perform poorly when applied outside of narrowly-defined

domains.

Machine learning offers an alternative approach to the current models. In machine

learning, the domain specific data and the computer can be coupled to create an engine for

knowledge discovery. Using neural networks, genetic algorithms, and genetic

programming along with a published software project data set. several cost estimation

models were developed. Testing was conducted using a separate data set. All three

techniques showed levels of performance that indicate that each of these techniques can

provide software project managers with capabilities that can be used to obtain better

software cost estimates. Accesion For
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1. INTRODUCTION

A. BACKGROUND

The use of computers and computing technology within the Department of Defense

continues to grow at an accelerating rate. As the use of computers has expanded, so has

the need for computer software. While computer hardware has decreased in cost relative

to its performance, the cost of software continues to increase. It is estimated that the

Department of Defense spends approximately thirty billion dollars annually in the

acquisition and maintenance of software (Boehm, 1987, pg. 43). Virtually no area within

the military has escaped the "software invasion." From the million-plus lines of code for

the Seawolf submarine's BSY-2 computer system to the two million lines of code in the

Navy's NALCOMIS Phase HI logistics system, software is now one of the driving factors

in the success of the United States military.

Although the technology used to develop software has improved through the use of

such methods as object-oriented programming and computer-aided software engineering

(CASE), one software management area which remains underdeveloped is software cost

estimation. Since the greatest expense in a software development effort is manpower,

software cost estimation models focus on estimating the effort required to complete a

particular project. This estimate of effort required can then be translated into dollars using

the appropriate labor rates. The current cost estimation models available to software

project managers fail to provide sound estimates in a consistent manner, even within their



own narrowly defined domains. Improper estimation of costs is a major reason why many

Department of Defense software projects have failed. With a decreasing budget for

defense, it is of even greater necessity that managers have available to them effective

software cost estimation tools.

There are many models available for software cost estimation. One of the more

popular models is the Constructive Cost Model, or COCOMO, developed by Barry

Boehm while at TRW (Boehm, 1981, pg. 493). This model is based on a database of

sixty-three projects developed at TRW during the 1960's and 1970's and is described in

detail in Boehm's book, Software Engineering Economics. Part of the reason for the

popularity of COCOMO is that it is relatively easy to apply and it resides in the public

domain. Other models, such as ESTIMACS, developed by Howard Rubin and currently

the property of Computer Associates, Inc., are proprietary due to the nature of the project

data from which they were developed. A common thread that exists in all of these models

is that they were developed by domain experts and are heavily dependent upon the

judgement of the expert for the determination of the model inputs and relationships

extracted from the software project data.

An alternative approach to model development that can reduce the need for the

domain expert to act solely on judgement is through the use of artificial intelligence (Al),

specifically the use of machine learning, While artificial intelligence has been a subject of

study since the 1950's, it has periodically been greeted with skepticism for a perceived

inability to deliver at the level of performance promised by its proponents. In recent years,
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as both computer hardware and software have grown more powerful and the objectives of

Al have been better defined, the fitld of artificial intelligence has seew a resurgence.

Techniques are now available that have the ability to provide solid results over a range of

problems when appropriately applied. An area of great activity today in artificial

intelligence is machine learning. Knowledge acquisition and classification is a very labor

intensive task. The computer, with its ability to toil without time off for vacations or

holidays, provides a natural platform for the automation of the knowledge acquisition

process, or to at least serve as an assistant in the knowledge acquisition process. The

application of machine learning to the problem of software cost estimation is the focus of

this investigation.

B. OBJECTIVES

Current methodologies for software cost estimation vary widely in their estimates

when presented with identical inputs (Kemmerer, 1987, pg. 416). A common

characteristic of most cost estimation models is that they tend to provide only marginally

useful results within a rigid domain that is often too narrow to be of use when pursuing

new types of software development projects. The emphasis of this thesis is to develop a

methodology for the application of machine learning techniques to software cost

estimation. The three machine learning techniques cli- sen for this project are neural

networks, genetic algorithms, and genetic programming. The performance of the models

derived from each machine-learning technique are evaluated and compared with respect to

ease of application, accuracy, and extensibility. Additionally, the models are analyzed to

3



see what insight they can provide into the relative importance of the available input

variables.

C. THE RESEARCH QUESTION

The primary research question of this thesis is to determine the feasibility of applying

machine learning to the problem of software cost estimation. This research uses the

COCOMO data set for model training and the COCOMO and Kemmerer data sets for

testing the resulting models. The other important questions of this thesis are to determine

the effectiveness of machine-learning techniques when applied to the cost estimation

problem and what insight, if any, can be gained from the machine generated models into

cost-estimation.

D. SCOPE

The scope of this thesis is to apply the three machine learning techniques to the cost

estimation problem using the COCOMO and Kemmerer data sets and to determine the

extent to which they are appropriate and insightful to the cost estimation process. The

scope of this thesis is not to develop to develop a better model for cost estimation but

instead to develop a methodology for the application of machine learning to this problem.

E. METHODOLOGY

This thesis is divided into four steps. First, the sixty-three projects in the COCOMO

data set are analyzed and partitioned into training and testing data sets. Secondly, the

three machine learning techniques are applied using the training data set as the means for

knowledge acquisition. The resulting models are then tested using the COCOMO data not

4



included in the training set. A variety of parameters and constraints specific to each

technique are varied. In a second iteration of this process, all of the 63 COCOMO

projects are used as the training set, and a second set of 15 projects, identical to the set

used by Kemmerer in his 1987 article in the Communications of the ACM is used as the

testing set. The goal of this sequence of training and testing is to see how well the various

machine generated models can perform across different software development domains.

Since the fifteen projects presented by Kemme;'er were developed outside of TRW, which

is where Boehm's data was obtained, the capability of the models to generalize can be

tested.

In the case of neural networks, multiple network configurations are tested. The

resulting trained neural networks are ranked on overall performance against actual project

effort and against each other.

In the third step of this thesis, a genetic algorithm is applied to the training data uwing

the original COCOMO model structure as a fitness function template in order to obtain a

revised COCOMO parameter set. These new values will be used to evaluate the testing

data using the Intermediate COCOMO model structure. Initially, the genetic algorithm is

relatively unconstrained. In further tests, constraints are added to the genetic algorithm

fitness finction to determine the effect on the resulting model parameters and on the

model's accuracy with respect to the testing data.

Finally, the relatively new concept of genetic programming is applied to the training

data set to see what algorithmic models for cost estimation can be derived purely from the

5



training data with no preconceived functional form or structure provided. The resulting

models will again be tested using the test data set.

The resulting models from all techniques will also be analyzed to see what insights, if

any, they provide into the overall cost estimation process. The way that the various input

variables are used by the machine generated models may provide an opportunity to

discover relationships previously unnoticed. This is an additional benefit of using the

computer in the knowledge acquisition process and it is explored.

F. ORGANIZATION OF STUDY

Chapter I provides a general background for this study. Chapter U discusses the

COCOMO model and the three machine learning techniques in greater detail, including

some history and the basic principles of each. Chapter E] describes the experimentation

process and setup. Chapter IV discusses the results of the various experiments and

compares these results with those obtained using the original COCOMO model in its

various forms. Additional insights into the cost estimation question will be noted and

analyzed at this time. Chapter V is the conclusions and recommemdations resulting from

this inquiry.
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H. MODELS AND MACHINE LEARNING PARADIGMS

A. THE CONSTRUCTIVE COST MODEL
1. Development History

The Constructive Cost Model, commonly referred to as COCOMO, was

developed by Barry Boehm in the late 1970's, during his tenure at ITRW, and published in

1981 in his text, Software Engineering Economics. This model, which is actually a

hierarchy of three models of increasing detail, is based on a study of sixty-three projects

developed at TRW from the period of 1964 to 1979. In his text, Boehm describes the

development of COCOMO as being the result of a review of then available cost models

coupled with a Delphi exercise that resulted in the original model This model was

calibrated using a database of 12 completed projects.

When that model failed to provide a reasonable explanation of project variations

when expanded to a 56 project database, the concept of multiple development modes was

added. Three development modes were defined as organic, semidetached, and embedded.

Organic mode refers to relatively small (< 50 KDSI) stand-alone projects with

non-rigorous specifications that typically use small development teams and involve low

risk. Organic mode projects are usually thought to have higher levels of productivity than

the other two modes due to their small size and flexibility in specifications. Semidetached

mode refers to projects of small to medium size (up to 300 KDSI) that involve

characteristics of both organic and embedded projects, such as a system that has some
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rigorous specifications and some non-rigorous specifications. Embedded mode refers to

projects of all sizes that typically have rigorous, non-negotiable specifications that are

tightly coupled to either hardware, regulations, operational procedures, or a combination

of these factors. Embedded mode projects generally require innovative architectures and

algorithms and entail greater risk than organic or semidetached projects of similar size.

(Boehm, 1981, pp. 76-77)

Once the three development modes were defined, they were calibrated using the

original 56 project database to provide greater accuracy. Seven more projects were later

added to the project database for a total of sixty-three. Appendix A contains the entire

database. Boehm describes COCOMO as not being heavily dependent on statistical

analysis for calibration due to the inherently complex nature of software development.

Instead, COCOMO relies on empirically derived relationships among the various cost

drivers. These cost drivers are related to attributes associated with the product being

developed, the target computer platform, the development personnel, and the development

environment. (Boehm, 1981, pg. 493)

The COCOMO model is popular since it is easy for managers to apply and it is

widely taught in software management courses. In his text, Boehm provides clear

definitions of the model inputs through a variety of tables and charts. This type of

presentation allows managers to understand what costs the model is estimating and how

the estimates are reached. Therefore, the model can also be used by managers to perform

8



sensitivity analyses to examine tradeoffs on a variety of different software development

issues. (Boehnm, 1984, pg 13)

2. Basic COCOMO

Basic COCOMO is the simplest version of the model It is designed to provide

a macro level scaling of project effort based on the mode of development and the

projected size of the project in thousands of delivered source instructions (KDSI). Boehm

describes its accuracy as limited though, due to the lack of factors to account for

differences in project attributes, such as hardware constraints and personnel experience.

(Boehm, 1981, pg. 58) The three equations for Basic COCOMO are:

Table 2-1 Basic COCOMO Effort Equations

Mode Effort

Organic MM=2.4(KDSI)' 0O

Semidetached MM=3.O(KDSI)11 2

Embedded MM=3.6(KDSI)' 20

The accuracy of Basic COCOMO is only satisfactory. For the sixty-three

projects in the database, Basic COCOMO estimates are within a factor of 1.3 of the

actuals just 29% of the time and within a factor of 2 of the actuals just 60% of the time.

(Boehm, 1981, pg. 84)

3. Intermediate COCOMO

Intermediate COCOMO tries to improve upon the accuracy of Basic COCOMO

by introducing the concept of cost drivers, which act as effort multipliers. Fifteen factors

have been identified by Boehm as attributes that affect the effort required on a particular

9



project. These fifteen drivers are grouped in four attribute categories and are shown in

Table 2-2.

Table 2-2 Intermediate COCOMO Cost Drivers

Product Computer Personnel Attributes Project Attributes

Attributes Attributes

RELY Required TIME ACAP MODP

Software Execution Time Analyst Capability Modem Programming

Reliability Constraint Practices

DATA STOR AEXP TOOL

Dat Base Size Main Storage Applications Experience Use of Software Tools

Constraint

CPLX VIRT PCAP SCED

Product Virtual Machine Programmer Capability Required Development

Complexity Volatility Schedule

TURN VEXP

Computer Virtual Machine

Turnaround Time Experience

LEXP

Programming Language

Experience

These fifteen cost drivers are used in conjunction with a set of scaling equations

imilar to those used in Basic COCOMO. This nominal effort is then modified by using

the product sum of the cost drivers (defined as the Effort Adjustment Factor, or EAF) as

defined for a particular project to obtain the Intermediate COCOMO estimate. The

nominal equations for the Intermediate COCOMO model are shown in Table 2-3:

10



Table 2-3 Intermediate COCOMO Nominal Effort Equations

Development Mode Nominal Offort Equation

Ormnic (MM -3.2(KDSI)'"

Semidetached (MM)-3.0(DSI)1'U

Embedded M) -2.8(CDSD)'3

"The cost drivers are subdivided into literal rating categories that ran from Very

Low to Extra High. The method for determining which rating category each driver fils

into for a specific project is outlined by Boehm in his text. (Boehm, 1981, pg. 119) Once

the rating category is determined, the numerical value for the cost driver is obtained from

a table. This table can be found in Appendix B. The Intermediate COCOMO estimate of

project effort is then given by the equation (MM)ýss= (MM)*(Effort Adjustment

Factor). The Intermediate COCOMO model serves as one of the bases of comparison for

the various methodologies presented in the thesis. Intermediate COCOMO is chosen for

comparison since the project data published in Boehm's text is only presented at this level

of detail.

4. Detailed COCOMO

Detailed COCOMO is an additional refinement of the model that allows the

effwt estimation to be futL- Acetailed. This version of the model attempts to improve the

estimate by overcoming two limits of the Intermediate model. Frst, Detailed COCOMO

refines the estimate by introducing cost drivers that vary for the various development

phases and, second, it allows for the distribution of various cost drivers over three vertical

Levels: module, subsystem, and system. Due to the nature of the COCOMO database as

11



presmted in Boelhm's text, the Detailed version of the model will not be used as the basis

of comparison during the evaluation of the various machine learning paradigms. (Boehm,

1981, pp. 344-345)

EL NEURAL NETWORKS
1. History

The neural network paradigm has a colorful history dating back to the 1950Ys.

This paradigm grew out of the efforts of early artificial intelligence (AI) researchers to

construct systems that mimicked the actions of neurons in the human brain. In 1958,

Frank Rosenblatt published a paper that defined a neural network structure called a

perceptron (Eberhart, 1990, pg. 18). This paper outlined the principles that information

could be stored in the form of connebtions and that information stored in this manner

could be updated and refined by the addition of new connections. This research laid the

foundation for both types of training algorithms, supervised and unsupervised, that are

used in neural networks today.

While work continued in the neural network field during the 1960's and 1970's

their usefulness was in doubt until the publication of a paper by John Hopfield, ftom the

California Institute of Technology (Eberhart, 1990, pg. 29). Hopfield's work was

important because he identified network structures and algorithms that could be defined in

a general nature and he was the first to identify that networks could be implemented in

electronic circuitry, which interested semiconductor manufacturers. The publication in

1986 of Parallel Distributed Processing by the Parallel Distributed Processing Research

12



Group ensured the rebirth of neural networks by describing in great detail a variety of

architectures, attributes and transfer functions (Eberhan, 1990, pg. 32). Since then, the

variety and application of neural networks have grown immensely. The Defense

Advanced Research Projects Agency sponsored a neural network review in 1988 and

published a report on the field (Maren, 1990, pg. 20). This publication tended to validate

the field as being worthy of research funding and now there are a variety ofjournals and

publications dedicated to this field, as well as an international society (Maren, 1990, pg.

20).

2. Theory

There are a wide variety of neural network models in use today. One of the

most common networks, and the one chosen for use in this thesis, is the backpropagation

network. In this case, backpropagation refers to the training method used for this

network. The network in operation acts in a feed-forward manner. The basic principle of

operation is simple. A backpropagation network is typically constructed of an input layer

of neurons, an output layer ofneurons, and one or more hidden layers of neurons. Bias

neurons may also be defined for each hidden layer. Each neuron (or node) is defined by a

transfer function. In the case of the backpropagation network, the flmction usually has a

sigmoid or S-shape that ranges asymptotically between zero and one. The reason for

choosing the sigmoid is that the function must be continuously differentiable and should be

asymptotic for infinitely large positive and negative values of the independent variables.

(Maren, 1990, pg. 93) The neurons in each layer are then assigned a weighted connection

13



to each neuron i the following layer. These connection weights are established randomly

upon initialization of training and then recalculated as the network is presented with the

training patterns until the error of the output is minimized. The method that adjusts the

weights is known as the Generalized Delta Rule which is a method based on derivatives

that allows for the connection weights to be adjusted to obtain the least-mean square of

the error in the output. (Maren, 1990, pg. 99) Bias neurons, if used, imply provide a

constant input signal to the neurons in a particular layer and relieve some ofthe pressure

from the learning process for the connection weights. A simple network diagram is shown

in Figure 2-1.

A Simplified Backpropagation Network

Bias Weights

S~Output 2

Inpu 3

Input Layer Hidden Layer Output Layer

Figure 2-1: A Simple Backpropagation Network
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A backpropagation network is capable of generalizing and feature detection

because it is trained with different examples whose features become embedded in the

weights of the hidden layer nodes (Maren, 1990, pg. 93). An example of the operation of

a neural network is provided by Maren and involves a neural network designed to solve an

XOR classification problem. The diagram for this network showing the configuration at

initialization and upon completion of training is shown in Figure 2-2 (Maren, 1990, pg.

97).

The example given by Maren is a version of the backpropagation network in

which each hidden layer neuron can have a threshold value which is added to sum of the

inputs to that neuron before the application of the sigmoid transfer function. These

threshold values are found using the same Delta rule that is used to find the connection

weights. During the training process, the connection weights (and threshold values) are

adjusted using the following equation:

w*,g) = w td) + Ca * Delta(wyad) - output activation_level

where w, stands for the new and old values of the connection weight between node i and

node j, and ca is a constant that defines the magnitude of the effect of Delta on the weight.

Delta descnibes a function that is proportional to the negative of the derivative of the error

with respect to the connection weight and outputactivation level is the output of the jth

neuron. This backpropagation of error mechanism allows the weights at all layers to be

adjusted as the training process is performed, including any connections between hidden

layer neurons. (Maren, 1990, pp. 100-101)
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Initialization with Random Convergence to Stable
Weights and Threshold Values Weights and Thresholds

After Training Interactions

.093 -6.56

".413 .850 13.34 13.13

.909 •-.441• -11.62 -'13.13

Initial Results: Results After Training
Input Output Input Output
(0,0) 0.590 (0,0) 0.057
(0,1) 0.589 (0,1) 0.946
(1,0) 0.589 (1,0) 0.949
(1,1) 0.601 (1,1) 0.052

]Figure 2-2 A Neural Network Example of an XOR Problem (Maren, 1990)
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An example of the operation of a trained network is seen by examining one of

the input combinations in the example provided by Maren (1990) in Figure 2-2. Take the

pattern (0,1). This pattern means that a zero is the input to the bottom left neuron of the

trained network and a one is the input to the bottom right neuron. Proceeding up to the

next layer, a vector multiplication of the inputs and the connection weights is performed to

determine the inputs to the hidden layer. In this example the hidden layer inputs are

(0*(-1 1.62))+(1"10.99) = 10.99 for the hidden neuron on the left and (0"12.88) +

(1*(-13.13)) = -13.13 for the hidden neuron on the right. The threshold values for these

hidden neurons are added to the inputs and then the sigmoid transfer function is applied.

For the hidden neuron on the left, this means the input to the transfer function is

(10.99+(-6.06)) = 4.94. The activation value of the input 4.94 when applied to a sigmoid

transfer finction that ranges between zero and one is approximately one. For the hidden

neuron on the right, the input to the transfer function is (-13.13+(-7.19)) = -20.32. The

activation value when -20.32 is applied to the transfer function is approximately zero. The

hidden layer outputs in this example are one for the left hidden neuron and zero for the

right hidden neuron. The input to the top, or output, neuron is calculated by taking the

product of the hidden layer outputs and the connection weights, or (1"13.34)+(0*13.13) =

13.34. The threshold weight of the output neuron is added to the input from the hidden

layer to get the input to the transfer function, which in this case is (13.34+(-6.56)) = 6.78.

This number when applied to the transfer function yields a value close to one (0.946),

which is the desired answer. (Maren, 1990, pp. 61-62)
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3. Applications

Neural networks are currently being used in a variety of applications. Some of

the major uses are in the areas of filtering, image and voice recognition, financial analysis,

and forecasting (Zahedi, 1991, pg. 27). Commercial neural network software is available

from a variety of vendors. Specialized programmable hardware boards that contain

chipsets that can mimic the operation of a neural network are also available for very

intensive neural network applications. The neural networks in this thesis were developed

using a product from California Scientific Software, Inc. called Brainmaker.

C. GENETIC ALGORITHMS
1. History

Nature's capability to find solutions for complex problems through the process

of natural selection has fascinated researchers fo- generations. The ability of organisms to

adapt to their environment by altering their characteristics through mating, which provides

an opportunity for gene crossover as well as an occasional genetic mutation, has proven to

be a powerful technique of problem solving. Genetic algorithms were an outgrowth of

early work during the 1950's and 1960's that attempted to combine computer science and

evolution with the hope of creating better programs. In the mid 1960's, John Holland

developed the first genetic algorithms that could be used to represent the structure of a

computer program as well as perform the mating, crossover, and the mutation processes.

Since then, genetic algorithms have grown in popularity and have been applied to a wide

variety of problems, especially in the field of engineering design, where optimization
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involving large numbers of independent variables is a common situation. (Holland, 1992,

pg. 66)

2. Theory

Genetic algorithms are in the simplest definition another method for search and

optimization. However, they differ from traditional methods such as hill-climbing and

random walks in at least four ways (Goldberg, 1989, pg. 7). First, genetic algorithms use

codings of the various parameters in a function, not the actual function parameters

themselves. This coding usually consists of fixed-length strings of characters that are

patterned after chromosomes. Each string, or chromosome, then has a fitness value

associated with it which is a measure of how well it performs in terms of the criteria

defined for the problem. Second, genetic algorithms perform highly parallel searches

using a population of points vice a single point. Third, genetic algorithms use the

objective function, or actual payoff information, to determine fitness instead of derivatives

or other information. This capability separates the genetic algorithm from those techniques

that require gradient information about the fimction to perform their searches. Instead,

the genetic algorithm has the capability to work wirh the actual function itself. Finally,

genetic algorithms use probabilistic rules to make shifts from on. generation to the next

instead of deterministic rules. (Goldberg, 1989, pp. 7-10)

The easiest way to understand the working of the genetic algorithm is to see it in

action. In the following example, similar to the Hamburger Problem presented by Koza

(1992, pg. 18), the genetic algorithm is used to maximize a function. The coding of
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characteristics in this example is done with the binary digits I and 0 and the fitness of each

individual is simply the decimal value of the binary representation. The initial population

of the first generation, typically referred to as Generation 0 in genetic algorithms, is

randomly generated and shown in Table 2-4.

Table 2-4 Generation 0 of the GA

String # String (s) Fitness fR)

1 101 5

2 011 3

3 001 1

4 010 2

As can be seen from Table 2-4, the best individual in the initial population has a

fitness of 5, while the worst individual has a fitness of 1. The population average is 2.75.

After the initial population is evaluated, the next step in the genetic algorithm is the

reproduction and crossover process. The method used to determine which individuals

reproduce is normally determined by a method called fitness-proportionate reproduction

(Koza, 1992, pg. 21).

In fitness proportionate reproduction, candidates for reproduction are selected

for the mating pool by assigning each population member a probability of reproduction

based upon each population member's fitness. Under this method, highly fit individuals

have higher probabilities for reproduction than lesser fit individuals and the effect of this
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reproduction operation is to increase the average fitness of the population. Table 2-5

shows the mating pool for Generation 0 based on fitness-proportionate reproduction.

Table 2-5 Generation 0 Mating Pool Creation

Generation 0 Gen 0 Mating POoW

String Fitness Mating Probability Mating Fitness

(Fitness/Sum of Fitness) Pool

101 5 5/11-0.454 101 5

Ol 3 3/11=0.273 101 S

001 1 1/11=0.090 011 3

010 2 2/111=0.182 010 2

Total I I Total 15

Best 5 Best 5

Average 2.75 Average 3.75

Table 2-5 shows that the average fitness of the population has been increased

but that the best-of-generation-individual fitness remains the same. The second genetic

process, crossover, is what allows new individuals to be formed which may have better

fitness. When the reproduction operation is complete, the crossover operation is

performed by selecting two individuals using a uniform random distribution from the

mating pool Selection through a random distribution is possible since membership in the

mating pool is proportionate to fitness (Koza, 1992, pg. 25). The selected individuals are

separated into fragments by breaking them apart at a randomly selected interstitial point.

The appropriate fragments from the parents are then recombined to form new individuals

that are then tested for fitness. Table 2-6 shows the crossover sequence.
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Table 2-6 The Crossover Operation

Parent I Parent 2

101 011

Crossover Fragment I(FI) Crossover Fragment 2 (P2)

1- 0-

Remainder I (RI) Remainder 2 (R2)

-01 -II

Offspring I (F2+RI) Offspring 2 (F1+R2)

001 111

When the crossover operation is complete, two new individuals have been

created and their fitness is evaluated. The mating pool members not selected for crossover

are copied into the next generation. The number of individuals in the mating pool that

undergo crossover, the crossover rate, is determined in advance by the individual using the

genetic algorithm. The mutation operation, if allowed to occur at all, also happens during

the reproduction process. In the mutation operation, a single bit is selected for

transformation based upon the probability of mutation, also established in advance by the

individual using the genetic algorithm. (Goldberg, 1989, pg. 14) The results of the

reproduction and crossover operations in the simple example are shown Table 2-7.
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Table 2-7 Generation I of the Genetic Algorithm

Suting Fitness Method of Production

001 1 Reproduction/Crosamw

111 7 Reproduction/Crossover

101 5 Reprodc-on

010 2 Reproduction

Best Fitness 7

Averae 3.75

As can be seen from the table, fitness-proportionate reproduction combined with

the crossover operation has improved the average fitness of the population and the

best-of-generation fitness (in this case reaching the global optimum). This capability to

search and optimize using adaptive techniques without the requirement for an external

interface to the user is one of the strengths of the genetic algorithm.

The engine that gives the genetic algorithm its power is called implicit

parallelism. This implicit parallelism manifests itself in what Holland described as the

Fundamental Theorem. (Goldberg, 1989, pg. 19) The Fundamental Theorem is derived

from the concept of schemata. A population in a genetic algorithm consists of a set of

strings composed of one's and zero's (a binary representation scheme is commonly used).

If the population consists of binary strings, a schema can be thought of as a template that

describes subsets of strings using the notation set ( 1, 0, *). The asterisk symbol signifies

a "don't care" or "wild card" value. A string with value (110) is then, as an example, a

member of schema (1"*) aswell as (*1*), (11*) and {**0). In fact, a particular string
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in a population is a member of 26'* schema. A schema can be thought of as

representing certain characteristics of a candidate solution to the fitness function. As

populations of strings (or chromosomes) proceed from one generation to the next through

the process of reproduction and crossover, individuals with greater fitness rise in number

at the expense of lesser fit individuals. Schemata behave in a similar manner. A schema

(or characteristic set) grows at a rate proportional to the average fitness of that particular

schema over the average fitness of the population. A schema whose average fitness is

above that of the population average will be represented in greater numbers in the

succeeding generations. A schema whose average fitness is less than the population

average will see its numbers diminish. In fact, above average schema will see their

numbers increase in an exponential manner in succeeding populations. This effect of

simultaneously increasing the fitness of the population and promoting the exponential

growth of beneficial schemata (or characteristics) through the reproduction operation,

coupled with the crossover operation that creates population diversity through an orderly

exchange of characteristics is what gives the genetic algorithm its implicitly parallel nature.

(Goldberg, 1989, pp. 29-33)

3. Applications

The use of genetic algorithms has increased greatly in the past few years as

people have realized rhe benefits they bring to certain types of problems that have resisted

solution by more traditional methods. In one case genetic algorithms were used to

develop control mechanism for a model of a complex set of gas pipelines that transport
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natural gas across a wide area. Having only various compressors and valves with which to

control the gas flow, and with a large time lag between any action and reaction, this

problem had no standard analytic solution. A genetic algorithm was developed by David

Goldberg at the University of Illinois that was capable of "learning" the control procedure.

In another case, Lawrence Davis used genetic algorithms to design communications

networks that maximized data flow with a ninimum number of switches and transmission

lines. General Electric is currently using genetic algorithms in the design of new

commercial turbofan engine components. Using a genetic algorithm, General Electric

engineers were able to reduce the time required to improve the design of an engine turbine

from weeks to days. This is notable since there are at least 100 variables involved in a

turbine design as well as a large number of constraints. (Holland, 1992, pg. 72-73)

Goldberg's text lists additional uses of genetic algorithms ranging from medical imaging to

biology to the social sciences (Goldberg, 1989, pg. 126). There are currently several

conferences, both national and international, devoted to the discussion of genetic

algorithms.

D. GENETIC PROGRAMMING

1. History

Genetic programming is an exciting new field in computing pioneered by John

Koza of Stanford University in the late 1980's. Koza, in his text Genetic Programming:

On the Programming of Computers by Means of Natural Selection, describes the core

concept of his technique as being the search for a computer program of a given fitness
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from the space of all possible computer programs using the tools of natural selection. This

approach is different from more traditional artificial intelligence techniques in that for any

particular problem using traditional techniques, such as neural networks, the goal is

usually to discover a specialized structure that provides a certain output given certain

inputs. Koza reframes this statement by saying what we truly want to discover is a certain

computer program that will produce the desired output from a given set of inputs. Once

the problem is refrained as that of finding a highly fit program within the space of all

possible programs, the problem is reduced to that of space search. (Koza, 1992, pg.2)

The technique of genetic programming is not the first attempt at using

computers to try to generate programs. Researchers since the 1950's have attempted

using various methods to generate programs ranging from blind random search to asexual

reproduction and mutation. More recently, researchers in the genetic algorithm field have

attempted to use genetic algorithms to generate programs by using ever more specialized

chromosome representation schemes or by using a special type of genetic algorithm

known as a classifier system to generate programs based on if-then rules (Koza, 1992, pp.

64-66). Koza is the first researcher, however, to develop an appropriate representation

scheme and methodology for applying natural selection techniques to the problem of

program generation.

2. Theory

The concept of a "highly fit" computer program as a solution to a particular

problem is disturbing to most people at first. We are accustomed to the idea of a
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computer program being either "right" or "wrong" when applied to a particular problemn

Koza counters this sentiment and other similar sentiments by saying that the process of

natural selection is neither "right" nor "wrong" but that nature supports many different

approaches to the same problem, all of which have a certain "fitness". The key to natures

approach, according to Koza, is that form follows fitness (Ko7a, 1992, pp. 1-7 ). The

requisite tools used in Koza's approach are a well-defined function representation scheme,

a method for generating an initial random population of programs, a fitness measurement

technique, and a procedure for applying genetic operations to the members of the

population.

The representation schenme chosen by Koza for genetic programming is based on

a type of structure known as a symbolic expression, or S-expression. Since this type of

structure is a key component of the programming language LISP, this language was

chosen as the platform for developing genetic programming. It is not a requirement to use

this language for genetic programming, but it has many features that facilitated the

development of this technique. (Koza, 1992, pp. 70-71) An example of a LISP

S-expression is shown in Figure 2-3.

As can be seen from Figure 2-3, a LISP S-expression is equivalent to the parse

tree for a particular program, which in this case is 1"(2+3). The ability of LISP structures

to serve as both data (to be manipulated) and programs (to be executed) is another ofthe

reasons LISP was chosen as the language for the development of genetic programming.

(Koza, 1992, pg. 71)
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Figure 2-3 A LISP S-expression

In genetic programming, these LISP S-expressions are composed of structures

that are derived from a predefined function set and terminal set. The function set consists

of whatever domain-specific functions the user feels are sufficient to solve the problem

and the terminal set is the arguments that the functions are allowed to take on (Koza,

1992, pg. 80). For instance, the function set may be comprised of mathematical,

arithmetic, or boolean operators while the terminal set is usually comprised of variables

from the problem domain and an unspecified integer or floating-point random constant.

Since it is impossible to determine in advance what the structures will look like, it is

necessary to ensure in advance that each function possesses the property of closure (Koza,

1992, pg. 81). The closure property requires that the allowable arguments for any

function be well-defined in advance to prevent the function from taking illegal arguments.

While this may seem like an imposing task, it is usually not a serious problem and is easily

rectified by prior planning of the function definitions. As an example, division by zero is

undefined. If the division operator is a member of the function set, then by defining a
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special division operator in advance that handles this special case, it is possible to ensure

closure on this function. (Koza, 1992, pg. 82)

Once the representation scheme is defined, the initial program structures can be

generated (Koza, 1992, pg 91). In Koza's method, the initial structures are generated

randomly using a combination of two techniques, "full" and "grow". The root, or

beginning, of one of the LISP S-expressions, or trees, is always a function, since a root

that consisted of a terminal would not be capable taking any arguments. Once the root

function is selected, a number of lines, equivalent to the number of arguments the function

requires, are created which radiate away from the flmction. The endpoints of these lines

are then filled by a selection from the combined set of fimctions and terminals. If another

function is selected as an endpoint, the selection process continues onward until the

endpoints consist of terminals. There is a preset maximum depth that trees may attain.

The terms "full" and "grow" as mentioned above refer to the depth of the trees. In the

"full" method, all trees filled until they are at the specified maximum depth. In the "grow"

method, the trees are of variable depth. In practice, Koza recommends an approach called

"ramped half-and-half' that combines these two approaches (Koza, 1992, pp. 91-92).

Koza additionally recommends that each structure generated for the initial random

population be checked for uniqueness to ensure a range of diversity of genetic material

(Koza, 1992, pg. 93). Figure 2-4 gives a graphical representation of the creation of an

individual in the initial population.
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Figure 2-4 Graphical Representation of Tree Generation

Once the initial population is generated the fitness of the individuals in the

population must be determined. There are a number of different ways to compute fitness,

but in general, most of the methods involve measuring the performance of a member of the

population in relation to a predetermined set of fitness cases. As a guide, the set of

fitness cases must be representative of the entire domain since they will serve as the basis

for achieving a generalized result (Koza, 1992, pg. 95).

After the fitness of the initial random population is calculated, the genetic

operations of reproduction and crossover are performed. In genetic programming, the

reproduction and crossover operations are designed to happen as separate events rather
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than as parts of a two-step process as with the genetic algorithm. Reproduction occurs by

copying an S-expression from one generation to the next. Candidates for reproduction

are selected by using the fitness-proportionate method or a second method known as

tournament selection. In tournament selection, a specified number of population members

are randomly selected with replacement. The individual with the best fitness is then

reproduced in the next generation. The sampling with replacement is what ensures that

fitter individuals survive into succeeding generations. (Koza, 1992, pg. 100)

The crossover operation in genetic programming is more complex than that of

the genetic algorithm due to the differences in the structure of the population members.

The crossover candidates are selected using the same method chosen for reproduction.

This ensures that crossover occurs between individuals in a manner proportionate to their

fitness. After two individuals have been selected a separate random number is chosen for

each individual which corresponds to a point in each structure. It is at these points that

the crossover operation takes place by swapping subtrees, (Koza, 1992, pg. 101) Figure

2-4 shows an example of the crossover operation. The previously described property of

closure on the fimction set ensures that any resulting S-expressions will be legitimate

program representations. Since the points selected for crossover are most likely to be at

difi-rent levels in each structure there are a variety of situations that may result. (Koza,

1992, pg. 103) An individual may reproduce with itself and produce two totally new

structures. If the crossover point happens to be at the root of on S-expression, that entire

S-expression will become a subtree on the other parent. If the root is selected in both
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Figure 2-5 The Genetic Programming Crossover Operation

parents, they are both just copied into the next generation. The constraint on maximum

structure depth is the only major limit on the crossover operation.

The third genetic operation of mutation is rarely used in genetic programming.

The normal argument for its use, in order to promote genetic diversity, is not as important

when one considers the variety of structures with different sizes and orientations that are

likely to be obtained from the crossover process. Additionally, when the crossover points

in both parents correspond to endpoints in each structure, the effect is sim'lar to a

mutation at a single point. (Koza, 1992, pg. 106)
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3. Applications

Due to its relative youth as, technique, applications usiLg genetic programming

are currently confined to mostly experimental problems. Koza does present in his text a

copious amount of examples of applying his technique to a wide range of problems,

including symbolic regression, game playing strategies, decision tree induction, and

artificial life (Koza, 1992, pg. 12-14). In each case, a domain specific function set with

the proper closure was determined in advance. Once the function set and the appropriate

fitness measure was specified, all of the problems proceeded in the identical manner using

a domain-independent implementation of the mechanical operations of evolution. An

initial population was generated at random and the genetic operations of reproduction and

crossover were used to create succeeding generations. Koza was able to show via

empirical methods that genetic programming succeeded in each case to find a solution that

satisfied the appropriate fitness measure (Koza, 1992, pg. 4). This ability to solve

problems over a wide variety of domains by using a domain-independent method for

searching the space of possible computer programs to find an individual computer

program is what makes genetic programming an exciting new method of discovery (Koza,

1992. pg. 8).
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MI. DESIGN OF EXPERIMENTS

A. DATA SELECTION.

The COCOMO data set used for training and testing the machine learning techniques

examined in this thesis is drawn from pages 496 and 497 of Boehm's book, Software

Engineering Economics. The sixty-three projects used to develop the three versions of

COCOMO are summurized in this data base. This data includes the project type, year

developed, the dev.elopment language, the values of the 15 cost drivers, the development

mode, and the various COCOMO estimates. The Kemmerer project data was provided by

the author in electronic form and is included in Appendix C. The experimental approach

taken for each machine-learning technique consisted of a two-step process that required a

different training and testing data set for each step. The first step used only the

COCOMO data partitioned into training and testing data sets. The second step consisted

of using the COCOMO data for training and the Kemmerer data for testing. The

partitioning of the COCOMO data set in the first step required two tradeoff

considerations.

The first tradeoff involved the size of the training and testing data sets. Machine

learning methods perform at their best when they have a large amount of data available for

training that is representative of the population, or problem domain. In fact a good

guideline is more is always better. However, there are only 63 projects available in the

COCOMO data base in the text. In this case, choosing to use too much data for training
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reduces the number of data sets available for testing and trivializes the results beyond a

certain point. Alternatively, choosing too little data for training reduces the effectiveness

of the machine learning techniques. A balance was struck by deciding to break the data

into thirds, with two-thirds to be used for training and one-third to be used for testing.

This was accomplished by transcribing the data set from the text into a Quattro Pro

spreadsheet and then sorting the projects by size and type. Once the data was sorted in

this manner, a random number between one and three was assigned to each project. The

data was then partitioned into groups based on the random number assigned and each

group was analyzed. This cursory analysis showed that for each group the mean project

size in thousands of delivered source instructions (KDSI), the average year of

development, and the development mode proportions were roughly similar, indicating a

reasonable distribution. After this analysis, 42 of the projects were identified as the

training set and 21 projects were identified as the testing set. These data sets are included

in Appendix D. The same training and testing sets were then used for aU of the machine

learning techniques examined. The composition of the training and testing data sets for

each set of experiments was also kept as identical as possible and consisted of the project

size, annual adjustment factor, development mode, and the fifteen COCOMO cost drivers,

with limited exceptions.

One effect of partitioning the data in this manner is that the testing data set may not

be completely characteristic of the "population". Some testing set projects contained

some cost driver values that were not contained in the training data set. This situation

35



describes the second tradeoff Hand selecting the data to ensure that every cost driver

value represented in the data base was in the training set was initially considered but

rejected for two reasons. First, it would probably be meaningless when considering that

there are, at a minimum, four values for each cost driver. For fifteen cost drivers this

means there are at least 4" possible combinations of cost drivers, and there are only 63

projects in our data set. Secondly, on a more practical basis, several of the cost driver

values are only represented onc,. in the project data base, so if they were included in the

training data there would be no way of examining the effectiveness of this measure.

Therefore, there appeared to be no benefit in ensuring that every cost driver value was

filly represented in the training set.

B. NEURAL NETWORK PROCEDURES

1. Neural Network Software

The software used to develop the neural networks in this thesis is BrainMaker

Professional v2.5, which is designed and marketed by California Scientific Software, Inc.

This software is a DOS-based product manufactured for use on IBM-compatible personal

computers. BrainMaker is designed to construct, train, test, and run backpropagation

neural networks. It is a menu-driven program that provides the user a large range of

control over the design and operation of a neural network. BrainMaker comes with an

extensive manual as well as a companion program called NetMaker which can be used to

prepare the data files needed by BrainMaker. All of the files used by BrainMaker are in

standard ASCII format, so they can be prepared using most any text editor if the user so
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desires, although using the NetMaker program speeds up the process since it helps

automate the generation of BrainMakers inputs.

BrainMaker requires two files at a minimum to train. The first file is the

network definition file, which tells BrainMaker the key network parameters, such as the

number of input and output neurons, the number of hidden layers and hidden neurons, the

input and output data definitions and ranges, the learning rate, and the type of transfer

function the neurons will use. An example of a network definition file is shown in Figure

3-I. The second file that BrainMaker requires is the fact file. This is the file that contains

the data the network will use for training. This file consists of alternating rows of data,

with the first row representing one input set and the second row representing one output

set. An example of a fact file is contained in Figure 3-2. Additional input files that may be

included are a testing fact file and a running fact file. The testing fact file consists of

alternating rows of input and output data not included in the training fact file. This data

may be used during the training process to judge the prospective performance of the

network at user-defined intervals during the training process. When a testing fact file is

specified, BrainMaker pauses at the specified interval and tests the current network

configuration using the facts in the testing fact file. The results of these tests along with

some associated error statistics are written to an output file. The training statistics for

each run may also be written to a separate file if this option is activated. The running fact

file provides the user with the capability to test the trained network with new sets of inputs

in a batch manner and write the results to an output file in a user-specified format.
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2. Neural Network Design

The neural network design and training process is very iterative. Since any

netw?rk configuration will learn some training facts to the user-specified level of tolerance

during the training process it is important to have a strategy for determining a broadly

effective configuration when beginning the network design process.

input number 1 20
output number I 1
hidden 16 19
filename trainficts c:Wbaintest~ltrain.fct
filename testfacts c:b\rain\testtcltrain.tst
learnrate 0.9000 50 0.75 75 0.6000 90 0.5000
learnlayer 1.0000 1.0000 1.0000
traintol 0.1000 0.04 0.8000 100
temol 0.2000
random 5.0
nmaxruns 500
testruns I
function hiddenI siSmoid 0.0000 1.0000 0.0000 1.00000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
function output sigmoid 0.0000 1.0000 0.0000 1.00000
dictionary input LOGKDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP
AEXP PCAP VEXP LEXP MODP TOOL SCED E ORG SD
dictionary output LOQJVIMAC
scale input minimum
0.47712 0.43000 0.75000 0.94000 0.70000 1.00000 1.00000 0.37000 0.87000
0.71000 0.82000 0.70000 0.90000 0.95000 0.82000 0.83000 1.00000 0.00000
0.00000 0.00000
"scale input maximum
2.66651 1.00000 1.40000 1.16000 1.30000 1.66000 1.56000 1.30000 1.15000
1.19000 1.29000 1.42000 1.21000 1.14000 1.24000 1.24000 1.23000 1.00000
1.00000 1.00000
scale output minimum
0.77815

Figure 3-1: A sample network definition file

There is no way to know which network configuration will be the most

successful in learning the data prior to the training process. At best, some authors
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recommed general guidelines for network design that can serve as a starting point. The

makers of BrainMaker suggest first that there is no little reason to have a network with

more than two hidden layers (BrainMaker, 1992, pg. 14-4). They state in the-r manual

that they have never observed a network with more than two hidden layers that could not

also be trained on just two layers. As for the number of neurons in the hidden layers, there

are two suggestions. The makers of BrainMaker (1992) suggest using the sum of the

input and output neurons divided by two, while the authors Eberhart and Dobbins (1990)

suggest using the square root of the sum of the input and output neurons plus a couple.

Both of these guidelines are based on empirical observations, not any underlying principle.

In the end, it is necessary to experiment with a variety of networks to determine a

successful configuration. This is probably the most time-consuming portion of the design

process but BrainMaker has a method for automating this process to a certain extent.

facts
- 1
1.62324 0.96 1.4 1.08 1.3 1.48 1.56 1.15 0.94 0.86
0.82 0.86 0.9 1 0.91 0.91 1 [ E
2.78175
-2
1.36172 0.96 1.15 1.08 1 1.06 1 1 0.87 1 1
1 1 1 0.91 1.1 1.23 [ E
2.36172
-3
1.79239 0.81 1.4 1.08 1 1.48 1.56 1.15 1.07 0.86 0.82

0.86 1.1 1.07 1 1 1 [ E
3.02653
-4
1.57978 1 1.15 1.16 1.3 1.15 1.06 1 0.87 0.86 1
0.86 1.1 1 0.82 0.91 1.08 [ E
2.7185

Figure 3-2 A Sample BrainMaker Fact File
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3. Preparations for Training

A key aspect in preparing to train a network is data preparation. Due to the

nature of neural networks and the way that the training tolerance is calculated, it is

necessary to pay particular attention to the way the data is presented to the network.

FMrst, all input variables should vary over a roughly similar range between the minimm

and maximum values. The reason for this is fairly straightforward. Since every input is

connected to each neuron in the first hidden layer, a single input that varies over a large

range can tend to "drown out" the other inputs, diminishing their contribution. Secondly,

since the inputs and outputs to the network are all normalized, data that varies over a wide

range reduces the ability of the network to distinguish small changes. For example, if a

significant portion of a particular piece of data ranges between 500 and 600 while a few

values range between 10 and 20, the network will have difficulty determining the

difference between 10 anl 20. As a rule of thumb, smaller changes are better. This

becomes particularly important when understanding the concept of network training

tolerance.

Tolerance is the statistic used to determine the level of precision to which the

network trains. Tolerance is expressed as a percentage of the difference between the

minimum and maximum output values. As an example, if the mininmum output is 10 and

the maximum output is 1000, then a tolerance of 0.1 means that any network output that

falls within 0.1"(1000-100) =90 of the actual output value will be considered correct by

the network Therefore, if the output training values vary over a large range, the accuracy
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of the network will be diminished. This required two transformations to the COCOMO

data for use with the neural network. Since the KDSI values and the actual man-months

vary ova a large range, logarithls of these two values were used, which greatly reduced

the difference between the minimum and maximum values and increased the ability of the

network to learn and predict project effort.

4. Automating the Training Process

BrainMaker has an option which allows the user to specify a range of network

hidden layer configurations, as well as other parameters, that can be tested in a variation of

a brute force attack (BrainMaker GTO, 1993, pg. 5). This option was used to test three

ranges of network configurations that were used in an iterative process to search for the

best-performing network configurations. The three ranges tested are summarized in Table

3-1:

Table 3-1 Network Ranges Tested

Number of Hidden Neurons Number of Layers

I to 10 1 and 2 hidden layers

10to 20 1 and 2 hidden layers

15 to25 1 and 2 hidden layers

The use of this option requires the user to create an additional input file beyond

the usual training, testing, and definition files. This setup file contains all the network

configpurtion parameters and the ranges of those that are being varied. In this study, the

only parameters varied were the number of neurons and hidden layers, snce these two

factors have the greatest effect on overall network performance. The remaining network
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parameters (which deal mostly with the learning rate associated with the Delta rule) were

fixed with the exception of training tolerance, which was allowed to decrease in a stepwise

pattern from 0.1 to a limit of 0.04. The stepwise decreases in tolerance are triggered

when the network learns all the training facts at the current training tolerance. The testing

tolerance was specified as 0.2. An example of the setup file for this option is shown in

Flgu 3-3:

The training and testing data files consisted of the COCOMO data modified as

mentioned previously by changing the KDSI and effort values into logarithmic values.

There were 42 training patterns and 21 testing patterns. The network definition file

consisted of a generic network definition file that provided the ranges of the input values

and the variable names, similar to the file shown in Figure 3-1.

Once the three ranges of configurations had been tested and all of the results

written to three output files, the top performing networks were selected. The selections

were made by reading all of the output flies into Quattro Pro for Windows spreadsheets

and sorting the results based on the number of correct outputs for both the training and

testing data sets. After the sorting process, the networks shown in Table 3-2 were chosen

for fiuther training at a more detailed level The choice of this iterative process was based

upon several factors that mainly involved hardware and software constraints. The

hardware constraint concerned the disk space required to save the testing results. In the

Initial round oftesting, the statistics for the testing data set were written to disk every 25

=s Each of these runs took approximately four to five hours on a 33 MHz 486
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fllenames c:rainthesiskitrain.de €: ainniheskitrainfct
c:birain~dhesis•€ltrain.tst GTO.STA c:Wuain~Wsis'Ls4.ACC
muxnm 400
NO= ua25
upwM.e 0.2000
Current U
staol 0.10000 0.10000 0.00000 0.10000
endtol 0.04000 0.04000 0.00000 0.04000
tolmuht 0.80000 0.80000 0.00000 0.80000
tolpct 1001000100
hiddenl 110 110
hiddod 11 0 110
biddenlayers 31
decreUe 0.100000.100000.000000.10000
addruns 0000
inputmin 0.00000 0.00000 0.00000 0.0000
functiosnin 0.00000 0.00000 0.00000 0.00000
pin 1.00000 1.00000 0.00000 1.00000
noise 0.00000 0.00000 0.00000 0.00000
blurring 10
random 5.00000 5.00000 0.00000 5.00000
delay 10
I'Marate 1.00000 1.00000 0.00000 1.00000
learninit 0.90000 0.90000 0.00000 0.90000
earnpctl 5050050

limaratel 0.75000 0.75000 0.00000 0.75000
learnpct2 75 75 0 75
earnrate2 0.60000 0.60000 0.00000 0.60000
learnpcO 9090090
learnue3 0.50000 0.50000 0.00000 0.50000
learwlayerl 1.00000 1.00000 0.00000 1.00000
learnayer2 1.00000 1.00000 0.00000 1.00000
learnlayerout 1.00000 1.00000 0.00000 1.00000
smoothing 0.90000 0.90000 0.00000 0.90000
snoothlayerl 0.90000 0.90000 0.00000 0.90000
smoothlayer2 0.90000 0.90000 0.00000 0.90000

ay 0.90000 0.90000 0.00000 0.90000

Figure 3-3 A sample network configuration testing file
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Table 3-2 Top Network Configurations

First Hidden Layer Neurons Second Hidden Layer Neurons

5 1

8 9

10 11

16 19

18 15

24 25

computer and took approxdmately 300 kilobytes of disk space. Saving the results for

every run would have risked filing !al the disk space available on the disk and risked

crashing the computer while unattended, which would have wasted a training run.

Additionally, the resulting data files would have been too large to load into a spreadsheet

in order to perform the sorting operations. This is the reason the training was broken into

two cycles, with the goal ofthe first cycle being to identify the networks with the best

performance at a macro level The criteria that was used to determine which networks to

choose for further training was based on which networks correctly predicted all 21

projects in the testing data set at some point during their training period. Six network

configurations met this criteria. Once these six best network configurations were

identified, the second round of training was performed. For this training cycle, network

definition fWles were created for each of the six configurations All parameters in these

definition files were identical except for the number of neurons in the two hidden layers.

For these networks, the r,. mum number oftraining runs was set to 500. A run is this
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sense is defined as a pass through the entire training data set in which fitness statistics are

accumulated for the current configuration and weight vector set. The COCOMO training

and testing files wer provided as inputs. Training and testing statistics for all 300 nims

were accumulated in separate files for each of the six configurations. Once this cycle of

tang was over, the testing and training statistics files were again read into Quattro Pro

for Windows spreadsheets and analyzed to determine the optimum number of training runs

for each ofthe six configurations. This optimum point was based on the run waere all 42

projects in the training data were correctly predicted and the network training tolerance

was at a minimum for the training cycle. When this point was determined for each

network, the training process was repeated from the beginning up to this optimum

performance point. The analysis ofneural network performance is based upon the results

obtained from these final versions of the six networks. The definition files for these

networks are shown in Appendix E.

This entire network training process starting with the six network configurations

was repeated a second time in order to test the performance of the neural network on a

data set separate from Boehn's COCOMO data set. In this second round of

experimentation, all of the 63 COCOMO projects were used as the training set, and the 13

projects that make up the Kemmerer data set were used as the testing set.
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C. GENETIC ALGORITHM PROCEDURES
1. Genetk Algorithm Goal

The goal of the second group of experimts in this thesis was to use a genetic

algorithm to determine an optimum set of values for the cost drivers, coefficients, and

exponents for the Intermediate COCOMO model In this group of experiments the inputs

to the genetic algorithm included the Intermediate COCOMO model structure,

MM - Effort Adjustment Factor*COEFF*(Adjusted KDSI)**EXP

and the partitioned COCOMO data with two modifications. The first modification to the

COCOMO training and testing data set prior to using the genetic algorithm consisted of

multiplying the annual adjustment factor and KDSI values together to obtain the adjusted

KDSL This action was taken since the Annual Adjustment Factor provided no additional

information to the genetic algorithm process in the absence of information on how it was

derived. The second modification consisted of expressing the cost drivers by their literal

values, such as HIGH, LOW, or NOMINAL, vice their numeric values.

2. Genetic Algorithm Software

The genetic algorithm software package used was GAucsd 1.4, a C-language

genetic algorithm developed by Nicol Schraudolph of the University of California, San

Diego, based on previous work by John Grefenstette of the Naval Research Laboratory.

The uncompiled C code for GAucsd 1.4 is publicly available via anonymous ftp on the

Internet and can be adapted to any machine that has a C compiler. In this case the target
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platform was a Sun workstation. The choice of GAucsd 1.4 was based on its availability

and case of use. This package is well-designed in that the user has only to suppl a

chromosome structure and a fitness function (written in C) that defines the problem.

GAucsd 1.4 provides the rest of the finctionality required in a genetic algorithm, such as

population initialization, crossover, and mutation. GAucsd 1.4 also provides an awk

language macro that integrates the user defined fitness function and adds in the code

required to implement the genetic algorithm operations. This design feature relieves the

user f the task of code integration. (Schraudolph and Greffenstette, 1992, pp. 9-12)

3. GAucsd Preparation

Tle chromosome structure defined in the genetic algorithm fitness finction used

in this study consisted of a string of 96 numbers that represented all of the cost driver

values, along with the coefficients and exponents for all three project development modes.

Since there are a maximum of six values for each cost driver and a total of fifteen cost

drivers, the first 90 numbers represented the cost drivers. Although most cost drivers

have less than six values, a total of six values were reserved for each driver. This aided in

the structure of the problem by allowing the indexing process to operate as if the first 90

numbers represented a pseudo 6 x 15 array. The excess cost driver values in no way

impeded the functionality of the genetic algorithm The numeric values derived by the

genetic algorithm were substituted for the literal values in th-e COCOMO training set

which were stored as index values in a C table structure. These first 90 values were

allowed by the fitness function to range from 0.5 to 2.0. The 91st through 93rd numbers
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represented the coefficients for eta development mode and the 94th through 96th

numbers represented the exponents for each development mode. These last six values

were allowed by the fitness function to range from 0.0 to 4.0. The choice ofthese ranges

was somewhat arbitrary but allowed for a greater range of values than those exprea.d in

Boehuns Intermediate COCOMO model. The actual fitness measure for each member of

the population was initially the average relative error of the actual effort in the COCOMO

training data set versus the estimated effort calculated by the fitness function. This

estimated effort was calculated using the Intermediate COCOMO model as a template.

The genetic algorithm derived numeric values for the literal cost driver values, along with

the coefficient and exponent values appropriate for each project's development mode then

were used as inputs into the Intermediate COCOMO model. The capability to impose

constraints on the values generated by the genetic algorithm was also provided and is

expanded upon later. The GAucsd user-defined fitness function is shown in Appendix F

4. Initial Genetic Algorithm Benchmarking

Along with the user-defined fitness funiction, the other input to the GAucsd 1.4

program is the default file that specifies population size, crossover rate, mutation rate, and

number of generations. The first step in using the genetic algorithm centered on finding an

effective population size and crossover rate to use with the 960 bit chromosome. This

was accomplished by a series of test runs using various population sizes and crossover

rates while keeping mutation rate and number of generations constant. The test runs are

summarized in Table 3-3.
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Table 3-3 Genetic Algorithm Benchmark Tests

P opulation Sizes Tested 100,200,1000

Crossover RatesTested 0.5,1.5,2.5,3.0,5.0

Mutation Rate 0.00002

Number i f Generations 2,000

The training data for this benchnarking process consisted of the entire

COCOMO project data set. The entire set was used to examine how well the values

derived from the genetic algorithm performed with respect to the values determined by

Boehm bin his original model. The results of this initial round of benchmarking showed

that a population size of 200 and a crossover rate of either 3.0 or 5.0 performed the best

in almost every case. The crossover rate greater than one meant that the chromosome

underwent several crossovers in each generation. A sample of the genetic algorithm

default file is shown in Figure 3-4.

After the optimum population size and crossover rates were determined, nine

versions of the fitness finction were prepared. These versions differed based on how the

fitness of each member of the population was measured and how the previously mentioned

constrints were applied. The three fitness measures used in the experiments were

average relative error, mean error, and mean-squared error and these measures were

calculated as shown in Table 3-4.
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Total Trials - 2000000
Populatio Sine- 200
Strctur Lmopb - 960
Crossover Ras - 5.000000
Mutation Rae - 0.00002000
GeneMion Gap- 1.000000
Scaling Window -=-I
Ripen Interval - 20000
Stuactures Saved - 20
Max Gens wo Eval - 0
Dump Interval- 10
Dump Saved - i
Options - Aawu
Random Seed - 3436473682
Maximum Bias - 1.990000
Max convergenc-=0
Cony Threshold - 0.990000
DPE Time Constant - 10
Sigrna ScalingL- .0000o

Figure 3-4 A Sample Genetic Algorithm Default Fide

Multiple measures of fitness were tested due to the general nature of adaptive

algorithms, of which the genetic algorithm is an excellent example. Different meaures of

fitness cause different behaviors in the algorithms and affect the learning process,

Mean-squared error, for instance, emphasizes large magnitude errors at the expense of

Table 3-4 Genetic Algorithm Fitness Measures

itness Measure Formula

Averag Reativ Error E:Abs((EstmaIed-Actuat)/AetyI)
__________________ Number of fitness ue

Number of Bums camett~ E~Of ZAbs(Efimaled-AchuaI
__Mean___Error__ Numnber of flists can

Mensur ro £(Ef~timated-Aceal) 2

Number of fitness cases
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smaller magnitude errors This type of behavior caused the genetic algorithm to focus on

learning the larger software projects that had lrge errors at the expense of the smller

projects This behavior led to poor results. Mean error reduced this tendency to a degree,

but the best learning performance was found when using average relative error. In these

experiments, this fitness measure equalized the effort the genetic algorithm expended

learning all of the projects since error was expressed as the average percentage difference

between the estimated value and the actual value. A secondary observed benefit of this

measure was that both mean error and mean-squared error were also minimized when

using this fitness measure even though neither of these fitness measures were explicitly

expressed in the fitness function.

5. Genetic Algorithm Constraints

The final aspect of the various fitness functions involved the imposition of

various degrees of constraints on the values generated by the genetic algorithm. An

inspection of Boehm's COCOMO cost driver, coefficient, and exponen values reveals

certain patterns or constraints. For example, in the case of the COCOMO exponents, the

magnitude of the exponent increases as the mode shifts from organic to semidetached to

embedded. Conversely, the coefficient decreases as the same mode shifts occur. Similar

patterns can be seen in the values ofthe cost drivers. When inspecting the cost driver

table, the magnitude of the first seven cost drivers increases when moving from a value of

Very Low to a value of Extra High. The opposite movement occurs in drivers eight

through fourteen. In this case the magnitude of the driver decreases as the value shifts

: 51



from Very Low to Very High. The value of the final cost driver, required development

schedule (SCED), moves in a high-low-high manner as the value shifts from Very Low to

Very High. These patterns can be interpreted as constraints that the cost driver values

should obey. To teog whether or not these constraints added to the ability of the genetic

algorithm to lam the project data and find an optimal set of values, these constraints were

embedded in three versions of the fitness function. In the first version, no constraints were

placed on the order of the cost drivers, exponents, or coefficients. In the second version,

penalty measures were introduced on the cost drivers so that if the previously identified

patterns in the first 14 cost drivers (SCED was allowed to vary without constraint) did not

appear in the chromosome, the fitness of the individual was penalized based upon the

degree of non-compliance. In the final version of the constrained fitness function, penalty

measures were introduced on the generation of the exponents and coefficients as well as

the cost drivers.

6. The Genetic Algorithm Testing Process

The nine fitness functions used for training the genetic algorithm were

constructed using the three me.sures of fitness and the three constraint levels previously

described. Testing was performed using a population size of 200 and crossover rates of

3.0 and 5.0 with the number of generations set at 5000 for all tests. There were 18 total

tests and each test took approximately two to four hours on a Sun workstation. The top

twenty chromosomes in each test were saved to an output file and read into a Quattro Pro

for Windows spreadsheet. The chromosome values wih the best fimess in each run were
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translated into their associated COCOMO model values using a previously constructed

secres of linked spreadsheets. This table oftranslated COCOMO model values was then

linked to the tent data set in such a manner as to allow for automatic updating of the teat

data and its associated performance measures whenever new chromosome data was pasted

into the spreadsheet. The results of all 18 tests were processed in the same manner.

A slightly different procedure to that previously described was used when the

genetic algorithm was trained using all 63 COCOMO projects and tested with the

Kemmerer project data. In this case, the best parameter set from the original genetic

algorithm benchmarking tests was used along with the full range of constraints in the

fitness function. The use of all of the constraints was based upon the results observed in

the first phase of testing. The number of generations was increased from the

benchmarking level of 2000 to 5000. The top twenty chromosomes from this run were

again saved to an output file that was loaded into a spreadsheet holding the Kemmerer

data. The performance of the genetic algorithm with respect to the Kemmerer project set

was then calculated.

D. GENETIC PROGRAMMING PROCEDURES
1. Genetic Programming Software

The goal of the final group of experiments in this thesis was to test the ability of

genetic programming to derive an explicit cost estimation model given only the COCOMO

data and a fitness function. The genetic programming software used was SGPC: Simple

Genetic Programming in C by Walter Alden Tackett and Aviram Carma This software
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is basd on the original LISP code published by Koza in his book and is available via

anonymous ftp from the Santa Fe Institute and the University of Texa This software

provides all the functionality required to apply genetic programming to a variety of

problem domains The genetic operations of population initialization, crossover,

reproduction, and mutation are fully supported by this software. The usa is only

responsdble for defining functions specific to the problem at hand, ensuring closure of the

flnctions, and providing the appropriate fitness function and terminal set. T1his software

also has the capability to train and test simultaneously, which reduces the

post-experimental processing of the output expressionL Due to the memory requirements

and CPU intensive nature of this application, the target platform for this application was a

Sun workstation.

2. Genetic Programming Preparation

Preparation for the genetic programming process using the SGPC software

involved five steps. In the first step the fimctions available for use in the S-expressions

were defined. Since this set of experiments was basically a problem of regression, the

standard mathematical operations of addition, subtraction, multiplication, protected

division, and exponentistion were defined as operators in SGPC. The protected division

operator is a specially defined division operator that provides closure for the case of

division by zero. When this event occurs, the operator is defined to return a value of one.

In the second step the C-language program structure that provides the terminal

set (variable declarations) and the training data was constructed. This procedure was
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performed using a script written in perl that took the tab-delimited ASCII file containing

the COCOMO training data and built a C source code file. This C source code file made

the variable declarations that defined the terminal set and created the table structure

cotai training data. The training data for this set of expeiments consisted of the

sae projects as those used for the previous experiments. The first round of experimints

used the same 42 COCOMO training projects and 21 COCOMO testing projects. 1n the

second round of experiments the entire 63 project COCOMO project set was used for

training while the 15 project Kemmerer data set was used as the testing data. The training

data input variables were KDSI, the annual adjustment factor, and the fifteen cost drivems

The actual effort associated with each project was the dependent variable. The project

mode was not included in the training set since mode is a fixed descriptor of project

classification and not a variable. Consideration was given to partitioning the data by mode

but this idea was discarded, since the resulting training and testing bets would be so small

no conclusions could reasonably be drawn from the result

The third step in the genetic programming preparation process was the definition

of the fitness measure embedded in the "flzness.c" source code file. With the Imowledge

gained from the sequence of genetic algorithm experiments, the fitness measure for the

genetic programming sequence was b-sed on average rekaive error. The use of average

relative error is also supported by the fact that some initial genetic programming test rims

performed using the COCOMO data with a different fitness measure, mean-squared error,

showed very poor performance.
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The fourth step in the process was the preparation of the test data that SGPC

used to tea the resulting S-expressions during the training proces. The test data

preparation consisted of umg a perl script that took a tab-delimited ASCII file comaining

the test data and built a C source code file that contained a table of the test data and the

associated table declarations.

The fifth and final step of the genetic programming preparation process was to

compile the program usgng a makefile that included the user defined training, testing, and

fitess source code fileL Once the compilation was complete, the training process was

initiated.

The SGPC program required that a number of parameters associated with the

genetic programming process be provided by the user in a default file. These parameters

include the population size, random seed, reproduction, crossover and mutation

parameters, and S-expression size limits. A sample default file is shown in Figure 3-4.

seed- 11287
checkpoinftfequency -5
populaion size - 2500
maxdepth fornew trees -3
max._deph..aftercroswver = 10
max mnutant depth - 4
pow method - RAMPED
selctionumethod - TOURNAMENT
tournamientK -6
crasmaerncptfaci6o - 0.2crouoeruiy.. ofrn-tio - 0.2
fitnesjrop repro hctiion - 0.2
parsimo�3 r = o0.01

Figure 3-4 A Sample Genetic Programming Default File
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A population size of 2500 was used for all the genetic programming experiments

in this study. Cboice ofthis population size was basically a compromise between the need

to provide a large population to ensure genetic diversity and the memory available on the

Sun workstation. It is important to remember that during portions of the genetic

programming process, two copies of the entire population are stored in memory. If these

populations begin to contain large S-expressions, the memory requirements can be huge,

easily exceeding 50 or 60 megabytes. Tournament selection was used to select

S-expressions for the reproduction process with a tournament size of six. The parsimony

factor included in the default file is an SGPC variable that can be used to reward

S-expressions for size of structure as well as performance, with smaller structures being

viewed as better than larger ones when performance is equivalent. While the use of

parsimony is optional in genetic programming, it was used in the COCOMO runs at

various settings The crossover and S-expression size parameters were also varied so that

a total of seven runs using the COCOMO training and testing data and seven runs using

the COCOMO and Kemmerer data were completed. The results of each rim, which

contained the best structure for each generation and its associated fitness, were written to

an output file.

Once the testing process was completed the output files were processed by first

fruning an Ami Pro macro on the output file. This macro substituted the Quattro Pro

spreadsheet coordinates for each ofthe input variable names. Using this procedure

allowed the best structure from each output file to be pasted directly into a spreadsheet
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cl, whore the performance calculations were made automatically using a set of linked

preadshedta This action greatly reduced the processing time required for each output

f8.
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IV. ANALYSIS OF RESULTS

A. MEASURES OF PERFORMANCE

The results ofthe experiments for all three machine learning techniques were analyzed

in the same manner to determine each techique's performance. Three measures of

performance were used for all ofthe techniques. These three measures consisted of the

average magnitude of the relative error, the standard deviation of the magnitude of the

relative error, and the regression coefficient, f-squared, of the estimated man-months

versus the actual man-months. The choice of these three performance measures was based

upon the work done by Kemnmerer (1987), in which he analyzed the performance of

several popular software cost estimation models using a 15 project data set that he

developed. These are the same 15 projects that were used as one of the sets of testing

data in this study. The use of the magnitude of the relative error is intended to measure

the accuracy of each model The closer this measure is to zero, the greater is the accuracy

of the model. The f-squared measure gives the correlation between the estimates of each

model and the actual project results. A perfect correlation gives an R-squared value of

one. This measure is meant to act as a sort of *reality check" on the models' outputs in

seeing whether the project estimates track in a predictable manner with the project actuals.

Since each machine learning experimental procedure involved two phases

corresponding to trY, different software development domains, the measures of

perfonmance are able to provide insight in two distinct manners. In the first phase of each

59



experimental procedure, COCOMO data was used for both training and testing. The

performance measures for each of the methods during this phase gives insight into which

of the machine enermaed models perform beat when operating in a specified development

domain. Where appropriate, comparisons with the estimates provided by Intermediate

COCOMO are made. In the second phase of each experimental procedure, the sau

testing data set Kemmerer (1987) used when he made his study of several popular models

was used as the testing data set for the machine generated models. In this phase, it is

possible to compare the estimating capabilities of the models developed by the three

machine-learning techniques with several well-known cost-estimation models by using the

results Kemmerer obtained in his study. These models include SLIM, ESTIMACS,

Function Points, and COCOMO. This comparison is useful because it gives an indication

of the ability of the machine generated models to generalize across development domains,

which is critical for a model, or modeling technique, to be successful

The machine generated models were also analyzed to see if their structure could

provide insight into the general relationships between the input variables and the model

outputs. This analysis was performed to see if the machine generated models detected any

relationships among the variables that may have gone unnoticed.

B NEURAL NETWORKS
1. First Phase Results

The initial phase ofneural network training involved the use of the COCOMO

data set for both training and testing. Six networks were trained using 42 projects from
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the COCOMO da& set. Testing was conducted using the remaining 21 projects. Table

4-1 dMows the performance statistics based on the results of these tests for the six best

Table 4-1 Neural Net Performance Results

COCOMO Training and Testing Data

Network Coefiguratif Ag RIel Err Std Dev Err R-qWared

M)(_ (_. _ _ 40

3/3 91.89 ".17 0.755

8/9 89.40 6.26 0.707

11/10 105.96 126.06 0.816

16/19 68.10 68.61 0.726

3/IS -136.84 272.68 0.753

24/25 110.17 109.93 0.705

mnt COCOMO 16.33 15.76 0.91

XX/XX - Hidden Layer I/Hidden L 2

20 Input Neurons - I Output Neuron

As Table 4-1 indicates, neural networks are not highly accurate in their

estimates, but their estimates do correlate relatively good to the actual project efforts.

Results of this type are consistent with the typical expectations of a neura network. The

strength of neural networks lies in their ability to provide generalized outputs eased on

their inputs From this perspective, the neural Llwork results from the first phase of the

exprment are positive. The most accurate neural network with 16 neurons in the first

hidden layer and 19 neurons in the second hidden layer, is capable of'providin$ a general
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idea of the mapitude of the effort required for a particular project being developed within

the same domain in which the network was trained. The correlation coefficient,

R-squared, of 0.726 indicates that this estimate has a fairly strong relationship with the

actual project effort. Why this particular network performs better than the others is not

explicitly determinable. In general, a network is successful when it has just enough

neuons to provide a capability for feature detection, but not so many neurons that it just

"memorizes" the training cata. While not as accurate as the algorithmic model,

Intermediate COCOMO, a network has the advantage of requiring less analytical skill to

develop and use, and it probably requires less development time. Based on the

performance characteristics as observed in Table 4-1, the best use of a neural network

would probably be at the early stage ofproject development, where a manager could

perform "what-ifr analyses using various input combinations and obtain results very

quickly with a minimum of setup. Additionally, by continually retraining the model with

new projects the manager could gain fu•ther advantages since the network model would

be continual•y calibrating itselfthrough this retraining process. If'the organization also

uses an algorithmic model for cost estimation, and correlates its estimates with those of

the neural network, a sort of early warning system" that could indicate when recalibration

of the algorithmic model is required could be established. A significant drop in the

correlation between the two estimation methods could be an indicator that the algorithmic

model is in need of calibration.
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The most interesting aspect of this phase of experimentation is the effect

network configuration has on performance. While the accuracy of the estimate varies over

a range of approximately 70 percent, the standard deviation varies ova a range of

approximately 200 percent. These results indicate that when preparing to use a neural

network a good strategy would be to begin with several candidate configurations and

continue to maintain and compare them until a statistically sound analysis can be

performed to determine the best configuration. As for finding the best configuration, the

BrainMaker (1992) thumb rule of using the number of inputs and outputs divided by two

or the Eberhart and Dobbins (1990) rule of using the squame root of the sum of the inputs

and outputs plus a couple would have both provided networks close to the ones found

using the brute force search. However, with the power available in current personal

computers the BrainMaker brute force search is not an unreasonable or even overly

time-consuming approach to take initially.

2. Second Phase Results

In this phase of the neural network experimentation process the entire 63 project

COCOMO data set was used for training and the 15 project Kemmerer data set was used

for testing. As previously stated, the network configurations from the first phase were

retrained to the optimal performance point for the 63 training projects and then tested.

The results of this phase of tests are shown in Table 4-2.

The second phase results using the Kemmerer testing are very interesting. As

can be seen from Table 4-2, the top performing neural networks are competitive with, and
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Table 4.2 Neural Net Performance Results

COCOMO Trang anod Kemnerem Testin Doa

Netmek Av Rd Err SBd DV I' 3-equared

C..Amfut (%) (%) (Eat v. Act)

5/8 803.24 937.05 0.557

8&9 1,040.57 1,546.72 0.438

11/10 328.54 555.49 0.761

W19 451.30 633.10 0.742

18/15 621.00 829.12 0.651

24/25 338.12 691.62 0.591

SLIM* 771.87 661.33 0.878

IN COCOMO) 583.82 862.79 0.599

Function Pointso 102.74 112.11 0.553

ESIMACSt 8.5.48 70.36 0.134

XJ/XX - Hidden Layer 1/Hidden Layer 2

"0 (Kemmerer, 1987, pp. 422-425)

t ESTNAACS stistics based on 9 of 15 projects

in some cases superior to, some of the more popular cost-estimation methods in both

accuracy and correlation fictor. The best network in this phase (11/10), has an accuracy

greater than that of either SLIM or Intennediate COCOMO and a correlation factor

higher than all of the models except SLIM. While none of the networks could be

considered truly accurate, the results of this experiment indicate that networks are worth

strong consideration. The best indication that networks deserve attention can be sen by

considering the results of the best networks with those of the Intermediate COCOMO.
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Both the networks and Intermediate COCOMO are based on the same 63 project data set,

yet the best networks pe•fon sgnificantly better. These results seem to indicate that the

top networks are capable of capturing some level of mets-knowledge about the

relationships between the cost-estimation inputs and the output.

With the relatively small amount of data in both number of inputs and projects

that was used for training these networks, the level ofperformance obtained is still

significant. However, the sensitivity to configuration is once again apparent. Al six

networks "learned" the 63 projects in the COCOMO data set but their performance on the

Kenmerer data ranges greatly in both accuracy and correlation. This divergence in the

range of performance results appeaps to to magnified by the change of development

domaim This reinforces the suggestion that managers should initially maintain multiple

network configurations until some level of confidence is obtained as to which network is

truly the top pf.former.

3. Neural Network Structural Analysis

Although neural networks are relatively easy to construct and operate, it is

difficult to explicitly analyze bow they are processing their inputs. One method, suggested

by a BrainMaker user and posted on Compuserve, can at least provide the user with

insight into which inputs affect the behavior of the network the greatest. In this method

the first step is to extract the complete set of connection weights from the BrainMaker

network defition file anJ strip the bias weights off of each layer. The second step is to

take the absolute value of all the weights. And finally, in the third step, a series of matrix
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inhiplicaticms are perfomed, begining with multiplying the output layer connection

weights by the connection weights to the second hidden layer. This process is repeated in

a stepwise manner backward through afl ofthe hidden layers until a single weight vector

remains This resulting weight vector shows the magnitude ofthe connection wights that

each input 'sees through the network. Examining this vector can give some indication of

which inputs are affecting the network output to the greatest extent. Unfortunately, these

results do not indicate whether these weights affect the output positively or negatively

since only the magnitudes are used. Still, this approach is usefu because the usae can at

least see what inputs the network considers important. This matrix multiplication analysis

was conducted on three of the networks derived in the second phase of the neural network

experiments, Two ofthe top networks, 11/10 and 16/19, along with the worst network,

8/9, were examined using this method. The top 10 connection weight magnitudes for the

input neurons in these three networks are shown in Table 4-3.

"The results shown in Table 4-3 provide some interesting insights into how each

of these networks are manipulating the inputs to the network in order to obtain the effort

estimate. For example, the two best networks deemphasize the effect the size of the

project has on the effort estimate while the worst network views size as having the top

effect an the output. The comparison ofhow these networks view project size

eacapsulates the argument made by various researchers that "lines of source code is in

actuality a poor predictor ofproject effort (Kemmerer, 1987, pg. 418). One factor that all

of the networks examined do have in common though is their emphasis on project
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Table 4-3 Top Network-Influencing Input Neurons

Newrk I1/10 Network 16119 Network M/

hVA _ _ __t bhpa~UW W MMaW

TURN 266.28 PCAP 462.70 LOGKDSI 242.06

ClX 208.23 TURN 47.40 SD 238.54

AMXP 181.72 STOR 436.58 TURN 205.07

PCAP 168.38 SD 398.55 PCAP 192.67

ORG 166.97 CPLX 388.80 AEXP 179.77

TnIE 163.14 LOGKDSI 371.82 E 175.35

ACAP 159.61 TIME 366.50 ORG 169.01

VIRT 157.12 AEXP 363.64 CPLX 164.78

LOGKDS! 149.15 ORG 363.12 VIRT 158.63

VEXP 148.42 TOOL 345.72 SCED 141.67

complexity, computer turnaround time, and programmer capability. This emphasis on

project complexity and programmer capability is also apparent in the cost driver values

that Boehm assigns to these values but the emphasis that the networks place on computer

turnaround time is not reflected in the values that Boehm assigns to this driver (Boehm,

1981, pg. 118). Looking at these results from the other direction, the emphasis that

Boehm places on the capability of the analyst is not reflected in the analysis of the

networks. This driver only appears once in Table 4-3, and is ranked only seventh.

While not conclusive by any measure, this type of analysis can provide a project

manager some insight into which network inputs are affecting the output to the greatest
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degree and can setve as a type of sensitivity analysis that can provide indications of areas

that may possibly require a higher level of attention.

C. GENETIC ALGOiT HMS
1. First Phase Results

The first phase of the genetic algorithm experiments used the COCOMO

training and testing data sets and Intermediate COCOMO as a model template. In this

phase 18 different fitness functions were tested. These fitness functions differed based on

the aossover rate, the measure by which the error was determined, and the degree to

which the constraints on the values generated by the genetic algorithm were applied.

Table 4-4 provides a summary of all of the tests conducted.

As previously mentioned, different fitness measures were tested in order to see

which fitness measure most effectively forced the genetic algorithm to find the optimal

values of the cost drivers, coefficients, and exponents. The constraints invoked during the

various tests reflected the patterns meted in Boehm's values for the cost drivers. The "no

constraints' tests meant that all values were free to seek optimal values independent of

each other. The "cost drivers only" constraint penalized the fitness of the genetic

algorithm proportionate to the degree to which the results failed to match the patterns

noted in Boem's cost driver tables. The "All constraints" constraint extended the "cost

drivers only" penalties to the patterns observed in the coefficients and exponents. A

graphical representation ofthe results of all of these experiments is shown in Figure 4-1.
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Table 4-4 Genetic Algorithm Test Series Summary

Test Number ri5amss Measure Censtraints Crosver Rate

I AvgR Error None 3.0

2 Avg Rul Error None 5.0

3 Avg Re Error CAst Driven 3.0

Onl

4 Avg Rd Error Cost Drivers 5.0

_nly

S Avg Rel Error AI Constraints 3.0

6 Avg Rel Error All Constraints 5.0

7 Mean Error None 3.0

8 Mean Error None 5.0

9 Mean Error Cost Drivers 3.0

Only

10 Mean Error Cost Drivers 5.0

Only

S1 Mean Error All Constraints 3.0

12 Mean Error All Constraints 5.0

13 Mean Squared Err None 3.0

14 Mean Squared Err None 5.0

15 Mean Squared Err Cost Driven 3.0

Only

16 Mean Squared Err Cost Driver 5.0

Only

17 Mean Squared Err All Constraints 3.0

18 Mean Squared Err All Constraints 5.0
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Figure 4-1 Genetic Algorithm Accuracy Performance

Figure 4-1 shows that the best performance in the genetic algorithm experiments

was obtained when relative error was used as the fitness measure and the fuil range of

constraints were applied. These performance results indicate that the genetic algorithm is

an effective tool for determining an accurate set ofnumerical equivalents for the literal

values in an algorithmic model such as Intermediate COCOMO. The correlation factors

for the genetic algorithm derived values are also excellent , and are shown in Figure 4-2.

The ability shown by the genetic algorithm to derive the values for all of the cost

drivers, coefficients, and exponents given only a model template, an objective finiction

requiremet to minimize the relative error, and some onstraints that describe knowledge

of'the domain is an excellent example of the power that this machine learning technique

an provide to the manager.

70



.mlsf o U A W 0.UMIS

0.2

oi - S
1 2 3 4 6 6 7 9 10 11 121U314 151617 16

T"s I~NberW

Figure 4-2 Genetic Algorithm Correlation Performance

Boehm (198 1, pg. 324) describes situations m~ere it is desirable for COCOMO

to be tailored to a particular instalation. Thet procedure outlined for calibrating the model

requires solving a system of linear equations. This, is time-consming, tedious work and it

also fis to take advantage of any domain knowftilge that may have been accumulated by

the organization. The genetic algorithm provides an alternative method to this approach

that is earner, more extensible, and takes advantage of any domain knowledge that the user

wishes to embed in the fitness humction. For instance, assuming a COCOMO template, in

that the effort required is a flaiction of a particular cost driver set, the project size, and a

particular development mode, a user could easily build a new pseudo-COCOMO model
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that makes use of ny number of cost drivers and modes that the user speciies in the

finess fuction and chromosome structure. Additionall,, the user has the opportunity to

uild into the fitness function amy identified domain knowledge about the reationships that

ave applicable.

I Second Phase Results

in the second phase of the genetic algorithm experzmntatio process the entire

COCOMO data set was used for training and the Kemmee data set was used for testing.

The fitness function for this phase ased the magnitude of the relative error and the fWll set

of consraints, taking advantage of the knowledge pined previously. The results of this

experiment are shown in Table 4-4.

Table 4-4 Phase 2 Genetic Algorithm Performance

COCOMO Training and Kemmerer Testing Data

Model Avg. Rel. Error Std. Dev. Error R-squared

1 (%) (%)

GA Int. COCOMO 831.01 1,363.18 0.472

GA Basic COCOMO 95.34 111.75 0.578

Basic COCOMO) 630.09 684.55 0.680

Int. COCOMOO 583.82 862.79 0.599

SLIM* 771.7 661.33 0.878

Function Points* 102.74 112.11 0.553

ESTAAiACS 1t 85.48 70.36 0.134

(Kemnerer, 1987, pp. 422-425

t ESTIMACS uzuistics bses an 9 of 15 projects
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The performance of the genetic algorithm-derived values for the cost drivers

fared poorly when estimating the effort required for the Kemmera projects in fact, the

correlation coefficient for the Intermediate COCOMO model derived by the genetic

algorthm W s lowa for the Keumern data set than the corelation coefficient between the

KDSI and the actual project man-months for this data set (0.47 vs 0.53), indicating that in

this case the Intermediate COCOMO model adds little value. The interesting results in

this experiment are obtained by using the Basic COCOMO model which include: just the

coefficients and exponents and uses no cost driver values The estimates obtained when

using the genetic algorithm derived values for the coefficients and exponents actually give

some of the best results of any model The strongest conclusion that can be made from

these results is that the cost driver values derived by the genetic algorithm are highly

sensitive to the domain in which the model was trained. These results have both positive

and negative impacts. On the positive side, they reinforce the conclusion from the first

phase of genetic algorithm experiments that the genetic algorithm is highly effective at

learning a specific software development domain. On the negative side, they indicate that

any resulting model is likely to be of litte benefit if there is a dramatic shift in the

underlying factors in the development environment.

3. Genetic Algorithm Structural Analysis

The surprising accuracy of the Basic COCOMO model as derived by the genetic

algorithm is the most interesting result of this experiment. A possible conclusion that can

be drawn from this result is that the genetic algorithm has observed a different relationship
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between the coefficits and exponmts of the COCOMO model than that observed by

Boehm. Table 4-5 dsows the genetic algorithm coefficients and exponent values

compared to those developed by Boehm.

Table 4-5 Comparison of Coefficients and Exponents

Genet* Algorithm Values v. Boebm Vahles

Emeddid Sendmdedw Or

GA Coefficien- 0.429 0.552 2.25

GA Exponents 1.27 1.21 0.510

Doehm Coefficienu 2.8 3.0 3.2

Doehm ExpOneM 1.20 1.12 1.05

(B"ehm, 1981.P& 117)

This comparison between the genetic algorithm derived values and Boehm's

values for the coefficients and exponents indicates that the genetic algorithm detects a

greater diseconomy of scale (exponent greater than one) for both the embedded and

semidetached modes than Boehm does. Also, the genetic algorithm gives a much greate

economy of scale (exponent less than one) to the organic mode than Boehm does. The

diffeenmce in coefficients between the genetic algorithm and Boehm is probably

attributable to the difference in size of the typical projects that are developed in each

mode. The large difference seen in the embedded and semidetached coefficients between

the two vrsions is more than likely a reflection of the genetic algorithm's detection of a
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Sr'onger relationship between the diseconomy of sale in these two modes rather than the

relationship between the scaling effect of the coefficients

The cost driver values derived by the genetic algorithm also show some

Noticeable differences from those derived by Boehm. Table 4-6 shows the cost drivers

Table 4-6 Cost Driver Values from GA and Boehm* (GA/Beebn)

VLOW LOW NOM HIGH VICGH V.l11GH

RELY 053 /0.75 0.72/0.18 0.9511.00 1.01/1.15 1.31/1.4

DATA 0.77/0.94 0.81/1.00 1.06/1.08 1.06/1.16

CPLX 0.7910.70 0,8010.85 1.04/1.00 1.21/1.15 1.39/1.30 2.00/1.65

TIME 1.06/1.00 1.13/1.11 1.45/1.30 1.97/1.66

STOR 1.1611.00 1.50/1.06 1.57/1.21 2.00/1.56

VIRT 0.83/0.87 0.87/1.00 0.18/1.15 1.06/1.30

TURN 0.96/0.17 0.99/1.00 1.13/1.07 1.34/1.15

ACAP 2.00/1.46 1.65/1.19 1.54/1.00 1.15/0.16 0.11/0.71

AEXP 1.$4/1.29 1.19/1.13 1.19/1.00 0.83/0.91 0.83/0.12

PCAP 2.00/1.42 1.07/1.17 1.07/1.00 1.07/0.86 0.76/0.70

VrXP 1.72/1.21 1.24/1.10 1.081/1.00 1.01/0.9

LEXP 1.64/1 .14 1.56/1.07 1.32/1.00 1.25/0.95

MODP 1.23/1.24 0.99/1.10 0.981/1.00 0.93/0.91 0.92/0.82

TOOL 1.97/1.24 1.44/ 1.10 1.32/1.00 1.06/0.91 0.81/0.33

SCED 1.92/1.23 1.56/1.08 1.54/1.00 2.00/1.04 1.70/1.10

(Boehm, 1981, 1. 118)

The cost driver table shows some similarities in the values derived by the genetic

algorithm and the results of the anslyis performed on the neural networks. For instance,

the genetic algorithm values allow complexity, programmer capability, application
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experience, and computer turnaround time to exert a greater variation on the effort

adjument factor than Boehm's values. These are also factors that the top neural

networks emphasized. This cncurence of emphasis between two very differet machine

learning paradigmns may be an indication that greater attention should be paid by managers

to then areas.

D. GENETIC PROGRAMMING
L. F'wst Phase Results

"7he first phase of the genetic programming experimeats used the COCOMO

training and testing data sets. Several runs using the genetic programming software were

made using various default values of such factors as, the maximum depth for new trees,

the maximum depth after crossover, the crossover factors, and parsimony. The parsimony

factor was tried at various levels to see what effect it had on both S-expression length and

generalization characteristics of the resulting expressions. The population size was 2500

for all nis, and the total number of generations for each run was 50. For each run, the

fittest structure from each generation was saved to an outfile file. The fitness measure

used in these experiments was the average magnitude of the relative error. The fitness of

both the training and testing data sets were computed each generation.

The results of this phase of experiments were very encouraging and followed a

distinctive pattern. Initially, the best of generation fitness for both the testing and training

data were roughly of the same magnitude. As each run progressed, the average relative

error for both the testing and training data tended to decline until a point was reached
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where a divergence was noticed. At this point, the average relative error of the training

data continued to decline while the average relative error of the testing data would begin

to climb, sometimes in a dramatic manner. It was very apparent from this pattern that the

capability of genetic programming to provide a generalized expression is reduced as it

learns the training data to a greater and greater degree. This behavior is especially

noticeable in the second phase of the genetic programming experience when the

COCOMO and Kemmerer data are used.

As for performance, in every run genetic programming was able to learn an

expression for the estimated effort that was both accurate and well-correlated. A

summary of some of the top performers for the frst phase is shown in Table 4-7.

Table 4-7 Genetic Programming Results-Phase One

COCOMO Training and Testing Data

Test i Test 3 Test 4 Test 5 Test 6 Jnt COCOMO

Avgr el Err 39.89 41.9 42.37 42.1 45.32 16.33

Std Dev Err 36.5 39.73 41.06 33.44 40.26 15.76

R-Squared 0.909 0.81 0.71 0.95 0.69 0.991

As Table 4-7 indicates, the accuracy and correlation of the genetic programming

derived expressions are worthy of strong consideration by any software manag,- The

only major hindrance to the easy acceptance of genetic programming as a useful technique

comes from examining the expressions that the genetic program generates. These

expressions can be both intriguing and intimidating to the uninformed user. It is important

77



to remember when usng genetic programming that the genetic program does not have the

domain kmowledge nor the prejudices of the user. This means that the genetic program is

free to use the terminals and finctions provided by the usa in any way that the genetic

program perceives as *fit*. As an example, Figure 4-3 shows one of the expressions

generated by the genetic program during this phase of the experiments.

MM EST - ((((MC)DPO KDSI) + ((TIDE A CPLX) * (KDSI - LEXP ))) AVtrT)

^ACAP) + (((ACAP*((STORP'CPLX)oRELY)) + (((ACAPO(PCAP- ("Ia* ((KDSI

/(((((PCAP*(KDSI AgSOR))4(DATA+((KDSI "SCED). SCED))) AVIRT) *((DATA+ (KDSI

SCED )) +CDSI)) +ACAP)) +(KDSI ASTOR))))) + ((( KDS] * VEXP )r TIMrVEXP)) -

Figure 4-3 A Sample Genetic Programming Expression

As can be seen from Figure 4-3, the expressions generated by the genetic

program can be complex and somewhat cryptic, but they are also accurate. The

expression shown in Figure 4-3 is the expression used to obtain the Test I results shown

in Table 4-7. As Table 4-7 shows, this expression has an average relative eror of

approximately 40 percent and an R-squared value of 0.9.

2. Second Phase Results

The second phase of the genetic pro aimming experiments used the COCOMO

data for training and the Kammerer data for testing. The same variations in program

parameters such as mxinmum tree depth, crossover rates, parsimony, etc., were used in

this phase as in the first phase. The same pattern in the fitness measures for both the
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traiing and testing data were also observed but in a much more pronounced manner. In

fact, the divergence in fitness between the training and the testing data was so pronounced

that the maxdmm number of generations was reduced from 50 to 20 for this phase of

aperments, A summary of some of the top runs for this phase of experiments is shown

in Table 4-3. The results from Kemmere's analysis are included for comparison.

Table 4-8 Genetic Programming Performance Results

COCOMO Training and Kemmewer Testing Dat

Test Avg Rel Err Std Dev Err R-squamred

(%) (%) (Et vs. Act)

Test 2 109.52 125.85 0.78

Test 3 130.Y7 142.35 0.62

Test 4 59.15 69.5 0.93

Tet 9(a) 112.01 132.15 0.90

Test 9(b) 144.24 167.9 0.83

SLUM 771.87 661.33 0.178

lnt COCOMO" 513.82 862.79 0.599

Function Points* 102.74 112.11 0.553

ESTIMACS*t 85.43 70.36 0.134

* (Keminerer, 1917, pp. 422.425)

t ESTIMACS statistics based on 9 of IS projects

As Table 4.8 indicates, genetic programming is very capable of deriving

expressions that can provide high accurate results across development domains. An
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example of the type of expression generated by the genetic program during this phase is

shown 3 FIgure 4-4.

MMEST-(((TQOL+ VEXP) RELY)+ (((KDSI ACAP)A V3�T)A

(MODP TIME)))4 (KDSIA �QB�)

Figure 4-4 A Sample Genetic Programming Expression

The expression shown in Figure 4-4 is the expression used to obtain the results

in Test 9(a) shown in Table 44. The results obtained from this expression are superior to

morn of the models tested by Keminerer (1987) with the exception of ESTIMACS.

However, one of the expressions generated by the genetic program during this phase is

even superior to ESTIMACS. This expression is the top performer from several of the

runs, and is the same expression used to obtain the results shown in Test 4 of Table 4-8.

The expression is shown in Figure 4-5.

MM EST = (KDSI + (2.336426) ) A STOR

Figure 4-5 Top Performing Expression from Phase 2

This expression is extremely simple and yet highly accurate, as the results in

Table 44 indicate, yet is highly uniikely that a human domain expen would conceive of an

expression such as this one. This is wiiere genetic programming shows its usefihiness. The

ability to conceive of relationships among various factors without the prejudice of ones
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owe knowledge is what allows the genetic program to succeed in its task. The results

from this phase of experiments indicate that genetic programming is an extremely usesful

technique for generating cost-estimation models and should be considered as a leading

candidate for use as a cost-estimation model generator.

The comparison of the a sample of the results of genetic programming with

those obtained by Kemmerer in his study shows that genetic programming is capable of

generating a model that is superior to any of these popular cost-estimation models. In

f�ct, upon examining the best models from each generation of all of the nms during this

phase showed that during the 20 generation cycle for each nm, the genetic program rarely

generated a program with over 400% enor. This means that at almost any time during

any nm, the genetic program was generating expressions that were superior to both SLIM

and Intermediate COCOMO.

3. Genetic Program Structural Analysis

The analysis of the structures generated by the genetic program is a very

complex topic and is currently being studied by a variety of researchers worldwide.

Although researchers are of different opinions about the significance of the structures that

genetic programming produces, there are some basic characteristics that can be observed.

Analyzing the results of a genetic programming run shows that the genetic

programming paradigm can be very inventive. As an example, when Koza (1992, pg. 242)

first developed his LISP genetic programming software, the capability to generate

constant terms was not include& During an early run involving the discovery of
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trigonometric identities he observed a peculiar term in the resulting LISP S-expression.

This term is shown in Figure 4-5.

[ 2 - Sin(Sin(Sin(Sin(Sin(Sin(Sin(Sin( !))" Sin(Sin(l)))))))))

Figure 4-5 Genetic Programming Derived Constant

This term evaluates to 1.57, which is very close to the value of Pi divided by

two, a constant that is needed often in trigonometric problem. The discovery of this type

of inventive behavior by the genetic program led Koza to modifly the software to allow for

the creation of random constants. Koza (1992, pg. 185) also observed a tendency for the

genetic program to take useful subtrees and repetitively use them to perform functions that

the genetic program found useful

The structures derived by the genetic program for the second phase in these

experiments varied widely in their size and composition, although the use of parsimony

avi a reduced maximum tree depth tended to yield shorter structures that performed

better across project domains. Examples of some of the structures derived by the genetic

program for cost-estimation are shown in Figure 4-6.

Examining the structures in Figure 4-6, it is apparent that the genetic program

does not find all of the cost drivers useful While KDSI, MODP, STOR, and TIME

appear with some regularity, other drivers such as TURN and SCED are not used at all

Mis is where genetic programming can be unsettling to a user. While the user can give

copious amounts of data to the genetic program, there is no certainty that all of it will be
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Test 2 Gemerabon 6

MM EST- ((AAF A PCAP) + LEXP).4 (((CPLX + ((((1.615063) $ KDSI)

((DATA * TIME) * TOOL)) + ((KDSI A TME) A PCAPV))) A VRrT) - VIRT)

Validtion Fitneas- 109.51

Test 3 Generation 6

MM EST - KDSI • (AEX.P + TIME)

Validation Fitness- 130.77

Test 9 Generatim 6

MM EST - (TOOL + ((KDSI A (MODP * TIME)) + (KDSi A STOA.))) • VIRT

Validation Fitness- 144.16

Test 9 Generation 10

MM EST - (((TOOL + VEXP) . RELY) + (((KDSI * ACAP) A VIRT) A (MODP *

TIME))) + (KDSI - STOR)

Validation Fitness- 112.01

Figure 4-6 Genetic Programming Derived Structures

used. The user has to be prepared to deal with structures that have no resemblence to

relationships that the user believes to exist within the domain. This factor may be a barrier

to acceptance for some managers, but if the models derived are statistically significant in

both accuracy and correlation they are hrrd to dismiss.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The major objective of this thesis was to examine the effectiveness of three machine

learning techniques as applied to the field of software cost estimation. The driving factor

behind the investigation of machine learning in the cost estimation field is that current

software cost estimation models are both inaccurate and not very adaptable across

development domains. These are critical areas of weakness since the Department of

Defense is the largest single software consumer in the world, and it develops software for

a wide variety of domains. Therefore, it is necessary that a software cost estimation

model be both accurate and easily adaptable in order to be considered successful The

premise of this research was that there probably were relationships among the various

software project factors that the current models did not capture and that a machine

learning approach, where the models are derived directly from the data, may prove

superior in both performance and adaptability.

The three machine learning techniques studied in this thesis have all proven through

the experiments conducted to have great usefulness in the area of software cost

estimation. Each technique studied also brings to this field certain particular capabilities.

Neural networks showed a strong capability to capture and learn the project data, and

make estimates of reasonable accuracy that exhibited a high correlation with the project

actuals. When tested with data from outside the domain in which the networks were
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developed, the neural networks showed a strong capability to generalize on the data that

was presented to them and make estimates that were superior to those of other

well-kmown models. This capability to make estimates across domains is critical when

seeking estimates on new projects with different development environments. Given the

limited amount of data that was available for testing the networks, they performed

surprisingly well. Neural networks also have an advantage in that they are relatively easy

to set up and train, and are certainly within the capabilities of most management persomel.

They also have the advantage of being self-calibrating, as long as the network is

maintained by continually retraining with data from newly completed projects. While not

as accurate as some of the algorithmic models, neural networks are certainly worthy of

consideration, especially since they have the ability to deal with non-numeric, or symbolic,

data. The best use of a neural network within an organization is probably at the earliest

stages where estimates that can at least capture the likely magnitude of a project are the

most useful.

The genetic algorithm experiments showed that they were higny effective as a tool

for model optimization and calibration. Given no more than a fitness function, a table of

literal values describing the projects, and a small amount of domain knowledge in the guise

of constraints on the fitness function, the genetic algorithm was able to find a complete set

of values for the cost drivers, coefficients, and exponents in the Intermediate COCOMO

model The resulting model values were shown to provide estimates that had a high

degree of accuracy and correlation for projects developed within the same domain, but

85



their performance was not as good when applied to projects outside of the domain in

which they were trained. Still, the genetic algorithm proved to be effective as a tool for

model calboration and it is easy to apply. The user has only to supply a fitness flmction

that includes the fitness measure, the model fimction and whatever constraints the user

fwels necessary for the particular domain. The power of evolution handles the search for

an optimal solution. Additionally, the genetic algorithm is highly extensible due to the

ability of the chromosome structure to be modified to reflect additional characteristics of

the domain. The genetic algorithm is likely to be of the greatest use in a situation where an

organization feels they have a model for how their development process finctions but they

need a method for calibrating the model to the data at hand. The genetic algorithm is very

capable in this situation.

In the third set of experiments the very new technique of genetic programming was

used as a means for model discovery. In this case, the only inputs provided were the

fitness measure, the project data, and a set of functions that were allowed to operate on

the data. Upon intializing the population with a random set of programs, the process of

evolution then generated models of greater and greater fitness as the genetic program

evolved through succeeding generations. The models resulting from this technique were

both highly accurate and strongly correlated. These results indicate that genetic

programming shows great usefulness as an exciting new approach to the cost estimation

problem and has probably the broadest range of uses of any of the techniques studied in

this thesis.
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In all instances, each of the methods examined in this thesis was capable of generating

models that were competitive in both accuracy and correlation with other established cost

estimtion modelL In one case, the machine generated model outperformed all of the

more wellknown and established models. This level ofperformance exhibited by machine

generated models indicates that they should be given serious consideration by those

involved in the software development field, as they offer several advantages. First, they

directly reflect the data they are trained with, which automatically gives them an advantage

over a models that may have been developed outside of the domain in which it is being

applied. Second, they are highly extensible, meaning that any additional knowledge that

becomes available regarding the software development process can easily be incorporated

in these models. This provides an advantage over the more traditional models in that a

machine generated model is easily tailored to the data available. These advantages,

coupled with the performance levels noted in the experiments conducted in this study

indicate that machine learning is an effective and useful technique for the field of software

cost estimation.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

There are several areas that are candidates for further research based on this study.

First, additional experiments can be conducted to extend the level of kmowledge regarding

how each of the techniques should be applied to achieve the greatest effectiveness.

Secondly, research can be conducted into coupling these machine learning techniques

together in order to create a suite of tools that may be able to provide a superior level of
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performance. As an example, one could build an expert system front end that could query

a user about project characteristics in order to populate a data base. This expert system

frort end could then be coupled to a neural network that could provide general estimates,

or it could be coupled to the genetic program, which could generate candidate models It

may also be possible to have a neural network monitor the results of the models the

genetic program develops, and make a selection as to which model is best for a particular

situation based on the user's inputs the expert-system front-end. Fmally, a similar set of

experiments to those conducted in this study could be performed using data from a variety

of domains for training. This may prove insightful, since a certain amount of

meta-knowledge about the data would have to be apparent in any models developed using

these techniques.
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APPENDIX A

COCOMO DATA SET (Boehm, 1981, pg. 496)

P MM TOTK A R D C T 5 V T A A P V L N T 8 N
A D A 1 A F I T I U C I C Z 1 0 0 C O
C 3 F L T L M O R R A X A X X DO [ D

J T I v A X RUIt T N F P P F F P L D 2
* U

* A
t L

1 2.040 113 1 0.31 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1 1 1.24 1.1 1.04 E

2 1.600 293 0.35 0.33 1.16 0.15 1 1.06 1 1.07 1 0.91 1 0.9 0.95 1.1 1 1 E

3 243 132 1 1 1.16 0.8.5 1 1 0.37 0.94 0.86 0.82 0.36 0.9 0.95 0.91 0.91 1 51)

4 240 60 0.76 0.75 1.16 0.7 1 1 0.37 1 1.19 0.91 1.42 1 0.95 1.24 1 1.04 0

5 33 16 1 0.8 10.94 1 1 1 0.87 1 1 1 0.8610.9 0.95 1.241 1 al

6 43 4 1 0.75 1 0.35 1 1.21 1 1 11.46 1 1.42 0.9 0.95 1.24 1.1 1 1

7 8 6.9 1 0.75 1 1 1 1 0.870.871 1 1 0.9 0.95 0.91 0.91 1 1

1 1.075 22 1 1.15 0.94 1.3 1.66 1.56 1.3 1 0.71 0.91 1 1.21 1.14 1.1 1.1 1.08 E

9 423 30 1 1.15 0.94 1.3 1.3 1.21 1.15 1 0.36 1 0.86 1.1 1.07 0.91 1 1 E

10 321 29 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 E

11 218 32 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.360.32 0.36 0.9 1 1 1 1 E

12 201 37 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 0.82 0.86 1 0.95 0.91 1 1.03 E

13 79 25 0.96 1.15 0.94 1.3 1.11 1.06 1.15 1 0.71 I 0.7 1.1 1 0.32 I 1 E

14 73 3 1 1.15 0.94 1.63 1.3 1.56 1.15 1 0.86 1 0.7 1.1 1.07 1.1 1.24 1.23 SD

15 61 3.9 1 1.4 0.94 1.3 1.3 1.06 1.15 0.37 0.36 1.13 0.86 1.21 1.14 0.91 1 1.23 E

16 40 6.1 0.6 1.4 1 1.3 1.3 1.561 1 0.870.36 1 0.861 1 1 1 1 E

17 9 3.6 0.53 1.4 1 1.3 1.3 1.36 0.8710.60.2 0.36 1 I 1 1 I E

13 111.4 320 1 1.115 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1 1 1.24 1.1 1.08 E

19 6.600 1.150 0.34 1.15 1.08 1 1.11 1.21 0.7 0.94 0.71 0.91 1 1 1 0.91 0.91 1 E

20 6.400 299 0.96 1.4 1.03 1.3 1.11 1.21 1.15 1.07 0.71 0.32 1.08 1.1 1.07 1.24 1 1.08 SD

21 2,455 252 1 1 1.16 1.15 1.06 1.14 0.87 0.37 0.36 1 1 1 1 0.91 0.91 1 E

22 724 i13 0.92 1. 1 1 1.27 1.06 1 1 0.86 0.82 0.86 0.9 1 0.91 1 1.23 E

23539 77 0.91 1.15 1 1 1.03 1.061 1 0.86 0.8210.86 0.91 1 1 1.23 E

24453 90 1 0.31 I 0..5 1.06 1.06 1 0.7 1 1.291 1 1. 0.95 0.120.13 1 SD
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25 523 38 1 1.15 1.16 13 1.1311.06 1 0.8710.86 1 0.36 1.1 1 0.3 0.91 1.06 E

26 337 48 1 0.94 1 0.33 1.071 06 1.15 1.07/0.86 1 0.86 1.1 1 0.91 1.1 1.06 E

27 33 9.4 1 1.15 0.94 1.15 1.351.21 1 0.871 1 1 1 1 0.22 1.1 1.00 E

28 9 13 1 1.15 1.06 1.3 1.11 1.21 .135 1.0710.86 1 0.86 1.1 1.07 1.1 1.1 11 ORQJ

29 7.3 2.14 1 o.33 I I 1 I I 1 1.1 1.290.861 1 0.910.911.23 SD

305 .9 1.96 1 0.33 1 1 1 1 1 1 1." 0.86 1 1 0.910.911.23S

31 3.063 62 0.S 1.4 1.06 1 1.43 1.56 1.15 1.07 0.86 0.32 0.86 1.1 1.07 1 1 1 E

32 702 3O 0.67 0.3 1. 0683 1 1 1 10.7 o 0. 1 1 1 .1 1. 1 SD

33 W30 42 0.96 1.4 1.0i 3.3 1.48 1.56 1.15 0.94 0.86 0.2 0.86 09 1 0.91 091 1 E

34 230 23 0.96 1.15 1.s 1 1.061 1 1 0.71 1 1 1 1 1 0.91 1.1 JM E

35 32 13 1 0.73 0.94 3.3 3.06 1.21 1.15 1 1 0.91 1 11.1 1 1.24 1.24 1 E

36 55 15 0.81 0.31 1.06 0.35 1 1 0.87 0.87 1.19 1 1.17 0.9 0.95 1 0.91 1.041 SD

37 47 60 0.%5 0.33 0.94 0.7 1 3.06 3 1 0.36 0.32 0.36 1 1 1 1 1 R

38 12 Is 1 I 1 1.15 1 1 0.87 0.37 0.71 0.91 1 0.9 0.95 0.M3 0.91 1 11

39 3 6.2 1 1 1 1.135 I 0.37 1 0.7110.3 0.7 1 0.95 0.91 1.1 1 R0

403 3 0.83 1 0.94 13 1 1 1 80.370.860.3 1.171 1 1.1]1 1 RG

41 6 .5.3 1 0.-0 0.94 1 1 1 0.37 0.87 1 0.32 0.7 0.9 0.95 0.91 0.91 1 "K

42 45 45.5 0.43 0.33 1.04 1.07 1 .1.06 0.37 1.07 0.36 1 0.3 0.9 0.9510.95 0.9511.404 RO

43 83 23.6 0.98 1 1.04 1.07 1 1.21 0.37 1.07 0.86 1 1 0.9 0.95 1 1 1.04 1R

44 37 30.6 0.93 0.33 1.04 3.07 1.06 1.21 0.87 3.07 1 1 1 0.9 0.95 1.1 1 1.04 0

45 106 35 0.91 0.83 1.04 1.07 1 1.06 0.7 1.071 I 1 1 0.9 0.95 1 0.95 1.04 1Km

46 126 73 0.78 0.33 1.04 1.07 3 1.06 0.3713.07 1 1 0.36 0.9 0.93 1 1.04 OR

47 36 23 1 0.75 0.94 1.3 1 1 0.37 0.8710.71,0.82 0.7 1.1 1.07 1.1 1 1.04 oKG

43 1,272 464 0.67 0.33 0.94 0.83 1 1 0.37 1 1.19 0.91 1.17 0.9 0.93 3.1 1 1.04 SD

49 16 91 3 1 1 0.8351 1 110370.7110.71.110. 0.911 SD

50 176 24 1 1.15 1 1 1.3 1.21 1 0.87 0.86 1 0.36 1.11 1 1 1

51 122 10 1 0.38 1 1 31 1 1 31.15 1.191 1 i.42 1 0.9.24 1.1 1.04o

52 41 32 1 0.3 0.94 0.35 1 1061.11 1 1 1 1 1.11.071.24 1.1 1 I
53 14 5.3 1 0.33 0.94 1.135 1.11 1.21 3.3 1 0.71 3 0.7 13.1 11.07 1 1.1 1.06 SD

44 20 4.4 1 1 0.94 1 1 1.06.15 0.37 1 0.C3 1 1 0.95 0.91 1.1 1 .

55 18 63 1 0.01 0.94 0.7 1 ! 0.37 0.37 0.36 0.32 3.17 0.9 0.953 1.1 3 O1

M 6 58 27 3 1.13 10.94 1.3 1.3 1.21 1 1 0.8610.91 1 1.1 1.07 1.1 1.1 1.03 E

37 j237 17 0.37 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.3 1.07 1.1 1.1 1.231 E
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so 130 25 1 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9 0.95 0.91 1 1 E

59 70 23 0.9 1 0.94 1.15 1.06 1.06 1 0.371 1 1 1 1 0.91 1 1 ORG

60 57 &7 1 1.13 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.36 1.1 1.07 1.1 1.1 1I.06ORO

61 30 23 I 1 0.94 1.15 I 1 0.87 o.7 0.86 1 0.36 0.9 1 0.M32 I i RCI

62 9.1 1 0.88 0.94 1.3 1.11 1.21 1.15 1 0.73 0.82 0.7 1.21 1.14 0.91 1.24 1 3± D

6 15 10 1 i 0.941 .15 1 !0.70.7110.8210.36 1 1 0.31 1 E!
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APPENDIX B

COCOMO Cost Driver Table (Boehm, 1981, pg. 118)

VLOW LOW NOM HIGH VmGH EHIGH

RELY 0.75 0.88 1.00 1.15 1.4

DATA 0.94 1 1.08 1.16

CPLX 0.70 0.85 1.00 1.15 1.30 1.65

TIME 1.00 1.11 1.30 1.66

STOR 1.00 1.06 1.21 1.56

VIRT 0.87 1.00 1.15 1.30

TURN 0.87 1.00 1.07 1.15

ACAP 1.46 1.19 1.00 0.86 0.71

AEXP 1.29 1.13 1.00 0.91 0.82

PCAP 1.42 1.17 1.00 0.86 0.70

VEXP 1.21 1.10 1.00 0.9

LEXP 1.14 1.07 1.00 0.95

MODP 1.24 1.10 1.00 0.91 0.82

TOOL 1.24 1.10 1.00 0.91 0.83

SCED 1.23 1.08 1.00 1.04 1.10
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APPENDIX C

Kemmerer Data Set

I 1.1 1.03 1.15 1 1.06 0.37 ! 0.36 1 0.32 0.91 1.02

23 82.5 40.5 1 11 1 1 1 1 0.87 1 1 1.0710.861 1 1 1 SD

3 1.107. 450 1 1 1.1611 1.3 1.21 0.37 1 0.86 1.13 1 1 1.03 0.91 1 1 E

31

86.9 214.4 1 1 1.03 0.92 1 1 0.37 0.93 0.8 0.39 0.35 0.97 0.95 1 1 1.02 SD

5 336.3 449.9 1 1 0.94 1 1 1 0.93 0.87 0.78 1.13 0.93 1.1 1.03 1 0.91 1.07 ORG

6 84 so 1 1 1.16 1 1.11 1.06 1 0.1 7 0.86 1.13 0.36 0.95 0.97 0.91 1 1.23 E

7 23.2 43 1 1 1.16 1 I.M1 1.06 11 0.87 0.86 1.13 0.7 0.95 1.07 0.91 1 1.23 E

8 130.3 167 1 11.15 1.16 1 i I 1 0.93 i 0.95 I 0.95 0.97 1 1 1.16 SD

9 116 239 11 1 1.16 1.15 1.11 1.06 0.37 0.37 1 1.13 11.06 1.1 1 1 1 1.08 E

10 72 39 1 1 1.16 1 1.11 1 0.93 1.03 0.71 1 0.7 1.1 1.14 1.05 1 1.23 SD

It 1251.7 254.2 1 1.161 1 1) 1 1 11 0.36 1.13 0.86 1 1 0.86 1 1.23 SD

12 230.7 128.6 1 1 1.16 1 I 1 0.87 0.37 0.36 1.07 0.36 1 1.03 1.1 0.95 1.03 SD

13 157 161.4 1 1 1 .16 I1 1.06 1 0.37 0.87 1.19 1 0.78 1.21 0.97 1.1 1 1.08 SD)

14 246.9 164.8 I 1 1.16 1 1 1 0.37 0.37 0.86 1.21 0.93 1.1 1.1 0.95 0.91 1.04 ORG

15 69.9 60.2 1 1 1 1 1 0.V7 0.71 0.91 0.36 1.1 1.03 0.91 0.91 SD

"AAF valuta mn no valut ivm by R•insw
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APPENDIX D

COCOMO T7]INIMG AND TESTING DATA SETS

TRAINING DATA SET
P MM TOT A R D C T 5 V T A A P V L M T 3 M

vA K A R A FPIT I V CI C 2 100CC0
SC D F L T L M 0 A X A XX D 0 D

T 2 Y A X Z i T M F F P P P P L D I* U i

€ A
t L

1 2,040 113 1 0.3 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1 1 1.24 1.1 1.04 E

3 243 132 1 I 1.16 0.45 1 1 0.87 0.94 0.86 0.32 0.36 0.9 0.95 0.91 0.91 1 SD

4 240 60 0.76 0.75 1.16 0.7 1 1 0.87 1 1.19 0.91 1.42 1 0.95 1.24 1 1.04 RG

5 33 16 1 0.8 0.94 11 1 0.'71 1 1 0.86 0.9 0.95 1.241 1 OR

9 423 30 1.1-5 0.94 1.3 1.3 1.21 1.15 1 0.86 1 0.86 1.1 1.07 0.911 I E

10 321 29 0.63 1.4 0.94 1.3 1.11 1.-56 1 1.07 0.36 0.832 0.86 0.9 1 i 1 1 E

11 218 32 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.832 0.36 0.9 1 I I 1E

16 40 6.1 0.6 1.4 1 .3 1.3 1.56 1 0.8710.86 1 0.86 1 1 1 1 1 F

20 6.400 299 0.96 1.4 1.08 1.3 1.11 1.21 1.15 1.07 0.71 0.82 1.06 1.1 1.07 1.24 1 1.08 SD

21 2.455 252 1 1 1.16 1.15 1.06 1.14 0.37 0.3 0.86 1 1 1 1 0.91 0.911 1 E

22 724 118 0.92 1.13 1 1 1.27 1.06 1 I 0.36 0.82 0.36 0.9 1 0.91 1 12.3 1E

23 539 77 0.93 1.15 1 1 1.0311.06 1 1 0.8610.32 0.36 0.9 1 1 1 1.231

24 453 90 1 0.33 I 0.85 1.061.06 1 0.37 1 1.29 1 1.1 0.95 0.32 0.833 1 SD

25 523 33 1 1.15 1.16 1.3 1.15 1.061 1 0.837 0.86 1 0.86 1.1 1 0.03 0.91 1.08 E

26 337 48 1 0.94 1 0.85 1.07 1.06 1.15 1.07 0.86 1 0.36 1.1 1 0.91 1.1 1.06 E

238 9 13 1 1.15 1.08 1.3 1.11 1.21 1.1-5 1.07 0.86 1 0.86 1.1 1.07 1.1 1.1 1 3R0

31 1063 M 62 0.81 1.4 1.06 1 1.48 1.56 1.15 1.07 0.36 0.83 0.86 1.1 1.07 1 1 1 E

32 702 390 0.67 0.88 1.03 0.351 1 1 1 0.71 0.8321 1 1 1.1 1.1 1 SD

33 603 42 0.96 1.4 1.06 1.3 1.43 1.56 1.15 0.94 0.86 0.83 0.86 0.9 1 0.91 0.91 1E

34 230 23 0.96 1.15 1.0 1 11.061 1 1 0.3 1 1 1 I 1 0.91 1.1 1.31 E

35 3 13 1 0.75 0.94 1.3 1.061.211.15 1 1 0.91 1 1.1 1 1.24 1 E

36 5- 5 15 0.1 0.88 1.08 0.835 1 0.37 0.37 1.19 1 1.17 0.9 0.95 1 0.9131.04 SD
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40 8 3 0.0 1 0.94 13 1 1 1 0.30.3160.382 1.17 1 1 1.1 I K ORG

41 6 5.31 0.3 O 0.94 1 1 1 0.37 0.37 I 0.32 0.7 0.9 0.95 0.91 0.9 1 ORO

42 45 45.5 0.43 0.33 1.04 1.07 1 1.06 0.37 1.07 0.36 1 0.93 0.9 0.95 0.95 0.95 1.04 ORO

4 831 13 1 0.93 1 1.04 1.071 1 .2110.3711.07 0.86 1 1 0.9 0.95 1 1 1.04 0O

44 37 30.6 0.93 0.33 1.04 1.07 1.06 1.21 0.37 1.07 1 1 1 0.9 0.95 1.1 1 1.04 0.O

45 106 35 0.91 0.3 1.04 1.07 1 1.06 0.37 1.07 1 1 1 0.9 0.95 1 0.95 1.04 OR0

46 126 73 0.78 0.W 1.04 1.07 1 1.06 0.371.07 1 1 0.36 0.9 0.95 1 1 11.04 ORO

47 36 23 1 10.73 0.94 1.3 I 1 0.370.7. 0.71 0.32 0.7 1.1 1.07 1.1 1 1.04 0ORG

43 13272 464 0.67 0.3 0.94 0.35 1 1 0.37 1 1.19 0.91 1.17 0.9 0.95 1.1 1 1.04 ED

49 156 91 1 I 1 0.85 1 1 1 0.7 0.71 1 0.7 1.1 1 0.82 0.91 1 SD

50 176 24 1 1.15 1 1 1.3 1.21 1 0. 0.86 1 0.36 1.11 1 1 1 EF

51 122 10 1 0. 1 I I I I 1 1.15 1.19 1 1.42 1 0.95 1.24 .1 1.0410H O

53 14 5.3 1 0.88 0.94 1.15 1.11 1.21 1.3 1 0.71 1 0.7 1.1 1.07 1 1.1 1.06 SID

54 20 4.4 1 1 0.94 1 1.06 1.130.37 1 0.32 1 1 0.9510.91 1.1 1 KOG

35 13 6.3 1 0.3 0.94 0.7 1 1 0.87 0.37 0.86 0.82 1.17 0.9 0.95 1.1 1 1 OitG

56 958 27 1 1.13 0.94 1.3 r.3 1.21 1 1 0.36 0.91 1 1.1 1.07 1.1 1.1 1.08 E

37 237 17 0.87 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.1 1.07 1.1 1.1 1.23 E

38 130 25 1 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9 0.95 0.91 1 1 E

62 38 9.1 1 O.3 0.94 . 1.11 1.21 1.15 1 0.73 0.32 0.7 1.21 1.14 0.91 1.24 1 SD

63 15 10 1 ±10.94 1.151 I I 0.37 0.71 0.82 0.86 1 1 0.82 E
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COCOMO TESTING DATA SET

P MM TOT A R D C T 5 V T A A P V L M T S M
A K A I A P I T I U C Z C R 3 00 Co

* C D L T L M O R R A X A X X D 3 0 D
T 8 V A X U R T N P P P P•P P L D l

* 1. I

* A
L L

2 1A600 293 0.15 0.83 1.16 0.31 3 3.06 1 1.07 1 0.91 1 0.9 0.95 1.1 1 1 E1

6 43 4 1 0.75 1 0.3511 .211 1 1.461 1.42 0.9 0.95 1.24 1. 1 03*

7 a 6.9 1 0.75 1 1 1 1 0.87 0.37 1 1 I 0.9 0.95 0.91 0.91 1 OR0

8 1,075 22 1 1.1510.94 13 1.66 11.56 13 1 0.71 0.91 1 1.21 1.14 1.1 1.1 1.06 E

12 201 37 1 1.15 0.94 1.3 1.11 1.06 1 1 0.36 0.82 0.86 1 0.95 0.91 1 1.08 E

13 79 25 0.96 1.15 0.9411.3 1.11 1.06 1.13 1 0.71 1 0.7 1.1 1 0.82 I 1 E

14 73 3 !1 1.15 0.94 1.65 1.3 1.56 1.15 1 0.86 1 0.7 1.1 1.07 1.1 1.24 1.23 SD

is 61 3.9 1 1.4 0.94 1.3 1.3 1.06 1.13 0.3710.36 1.13 0.36 1.21 1.14 0.91 1 1.23 E

17 9 3.6 0.53 1.4 1 1.3 1.3 1.56 1 0.9710.36 0.32 0.861 1 1 1 1 E

18 11.400 320 1 1.5 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1 I 1.24 1.1 1.08 E

19 6.600 1.150 0.34 1.15 1.08 1 1.11 1.21 0.87 0.94 0.71 0.91 1 I 1 0.91 0.91 3 1 E

27 8 1 9.4 1 1.1530.94 1.15 1.35 1..21 1 0.371 1 1 1 1 1 0.321.1 1.086 E

29 7.3 2.14 1 0.8 I I I I I 1 1.1 1.9 0.86 1 1 0.91 0.91 1.23 SD

30 1.9 1.9 3 1 0.8 I ! I I I 1 1 1.29 0.86 1 I 0.91 0.91 1.23 SD

37 47 60 0.560.3 0.94 0.7 i 1.06 I 1 0.86 0.82 0.36 1 1 3 1 ORO

38 12 15 1 1 1 1.15 1 1 0.37 0.87 0.71 0.91 1 0.9 0.95 0.82 0.91 1 oRr

39 3 6.2 1 1 1 1.15 1 11 0.37 1 0.71 0.8210.7 1 0.9510.91 1.1 I ORG

52 41 8.2 1 0.83 0.94 0.35 1 1.06 1.15 1 1 1 1 1.1 1.07 1.24 1.1 1 DRG

59 70 23 0.9 1 0.94 1.15 1.061.06 1 0.87 1 1 1 1 1 0.911 1 KRG

60 37 6.7 I 1.15 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.86 1.1 1.07 1.1 1.1 1.03 ORG

61 .50128 1 1 0.94 1.151 0.37Y0.7 0.8610.60.9 1 0.821 1G
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APPENDIX E

BrainMaker Neural Network Definition Files (*.DEF)

COCOMO Training/Kemmerer Testing Version

Network /8

input number 1 20
dictionary input LOG KDSI AAF RELY DATA CPLX TAE STOR VIRT TURN
ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number I I
dictionary output LOG MMAC
hidden 5 8
filename trainfacts c:\brain\test\cokeall.fct
Jilename rnfacts c:\brain\test\kemmer.in
leararate 0.9000 50 0.75 75 0.6060 90 0.5000
learalayer 1.0000 1.0000 1.0000
traintol 0.1000 0.04 0.8000 100
testtol 0.2000
random 5.0
maxumms 459
fiuction hidden] siSmoid 0.0000 1.0000 0.0000 1.00000
flmction hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
function output sigmoid 0.0000 1.0000 0.0000 1.0I000
LOGKDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD
ORG
LOGMMA

scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000
scale input madnu
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 111
scale output minimm
0.77085
scale output maMIM
4.0569
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Network 8/9

input number 1 20
dictionary input LOGKDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number I I
dictionary output LOG MMAC
hidden 8 9
filename trainfacts c:\brain\test\cokealll.fct
filename rnfacts c:\brain\test\kemmer.in
learurate 0.9000 50 0.75 75 0.6000 90 0.5000
leamilyer 1.0000 1.0000 1.0000
traintol 0.1000 0.04 0.8000 100
testtol 0.2000
random 5.0
maxrms 430
finction hiddenl sigmoid 0.0000 1"0000 0.0000 1.00000
fumction hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
fimction output sigmoid 0.0000 1.0000 0.0000 1.00000
LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAF AEXP PCAP VEXP LEXP MODP TOOL SCED E SD
ORG
LOG MMA

scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000

scale inpt maximum
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 11 1
scale output minimum
0.77085
scale output
4.0569
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Network 11/10

finput number 1 20
dictionary imput LOGKDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG
output number I 1
dictionary output LOG_MMAC
hidden 11 10
filename trainfacts c:\brain\test\cokealll.fct
filename runfacts c:\brain\tes\kemmer.in
learnrate 0.9000 50 0.75 75 0.6000 90 0.5000
leanlayer 1.0000 1.0000 1.0000
traintol 0.1000 0.04 0.8000 100
testtol 0.2000
random 5.0
maxmms 250
fimction hidden I sigmoid 0.0000 1.0000 0.0000 1.00000
flnction hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
flmction output sigmoid 0.0000 1.0000 0.0000 1.00000
LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD
ORG
LOG MMA
scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000

scale input maximum
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 1 11
scale output minimum
0.77085
scale output maximum
4.0569
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Network 16/19

aput numbe 1 20
dictioary input LOGKDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP AE" PCAP VEXP LEXP MODP TOOL SCED E SD ORG
outpu number I I
dictionazy output LODGMMAC
hiddem 16 19
filaaame trainfacts c:\brain\test\cokeall.fct
filename ninfacts c:\brain\test\kemmer.in
lerniate 0.9000 50 0.75 75 0.6000 90 0.5000
emadyer 1.0000 1.0000 1.0000

traintol 0.1000 0.04 0.8000 100
tesuol 0.2000
random 5.0
nm,•ins 304
fuiction hidden I sigmoid 0.0000 1.0000 0.0000 1.00000
fimction hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
finction output sigmoid 0.0000 1.0000 0.0000 1.00000
LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD
ORG
LOG MMA

scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000

scale input ma xmu
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 11 1
scale output minimum
0.77085
scale ouiput ma.dmum
4.0569
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Network 18115

input mnber 1 20
dictionary input LOGKDSI AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG
output number I I
dictionary output LOGQMMAC
hidden 18 15
filename trainfacts c:\brain\test\cokeall l.fct
filename runfacts c:\brain\test\kemmer.mn
learnate 0.9000 50 0.75 75 0.6000 90 0.5000
learnlayer 1.0000 1.0000 1.0000
traintol 0. 1000 0.04 0.8000 100
testtol 0.2000
random 5.0
maxnms 318
fimction hidden I sigmoid 0.0000 1.0000 0.0000 1.00000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
function output sigmoid 0.0000 1.0000 0.0000 1.00000
LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD
ORG
LOGMMA

scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000

scale input maximum
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 1 11
"scale output minimum
0.77085
scale output maximum
4.0569
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Network 24125

input number 1 20
dictionary input LOGKDSI AAF RELY DATA CPLX TIME STOR VIRI TURN
ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD ORG

output number 11
dictionary output LOG MMAC
hidden 24 25
filetame trainftcts c:\brains\test\cokcalll.fct
filesime runfacts c:\brain\test\kmmer.in
learrate 0.9000 50 0.75 75 0.6000 90 0.5000
learalayer 1.0000 1.0000 1.0000
tritol 0.1000 0.04 0.8000 100
temttol 0.2000
random 3.0
imaxuns 417
function hidden I sigmoid 0.0000 1.0000 0.0000 1.00000
function hidden2 sigmoid 0.0000 1.0000 0.0000 1.00000
function output sigmoid 0.0000 1.0000 0.0000 1.00000
LOG KDS AAF RELY DATA CPLX TIME STOR VIRT TURN

ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED E SD

.-;jO MMA
scale input minimum
0.29666 0.43 0.75 0.94 0.7 1 1 0.87 0.87 0.71 0.82 0.7 0.9
0.95 0.82 0.83 1 000

scale input maximum
3.06069 1 1.4 1.16 1.65 1.66 1.56 1.3 1.15 1.46 1.29 1.42 1.21

1.14 1.24 1.24 1.23 111
scale Output minimum
0.77085
"scale output maximm
4.0569
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Brainmaker Neural Network Training and Testing Files

COCOMO Training and Kemmerer Testing Versions

COKEALLI.FCT

2.03307 1 0.88 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1
1 1.24 1.1 1.04 [ E

3.30963
--- 2

2.46686 0.85 0.88 1.16 0.85 1 1.06 1 1.07 1 0.91 1 0.9
0.95 1.1 1 1 [ E
3.20412
-3
2.12057 1 1 1.16 0.85 1 1 0.87 0.94 0.86 0.82 0.86 0.9
0.95 0.91 0.91 1 [ SD
2.3856

-4
1.77815 0.76 0.75 1.16 0.7 1 1 0.87 1 1.19 0.91 1.42 s
0.95 1.24 1 1.04 [ ORG
2.38021
-5
1.20412 1 0.88 0.94 1 1 1 0.87 1 1 1 0.86 0.9
0.95 1.24 1 1 [ ORG
1.51851
-6
0.60206 1 0.75 1 0.85 1 1.21 1 1 1.46 1 1.42 0.9
0.95 1.24 1.1 1 [ ORG
1.63346
-7
0.83884 1 0.75 1 1 1 1 0.87 0.87 1 1 1 0.9 0.95

0.91 0.91 1 [ ORG
0.90309
-8
1.34242 1 1.15 0.94 1.3 1.66 1.56 1.3 1 0.71 0.91 1 1.21
1.14 1.1 1.1 1.08 [ E
3.0314

-9
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1.47712 1 1.15 0.94 1.3 1.3 1.21 1.15 1 0.86 1 0.86 1.1

1.07 0.91 1 1 [ E
2.62634

-- 10
1.46239 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9

1 1 1 1[E
2.5065
-- 11
1.50515 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9

1 1 1 1[E
2.33845

-- 12
1.5682 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 0.82 0.86 1

0.95 0.91 1 1.08 [ E
2.30319

- 13

1.39794 0.96 1.15 0.94 1.3 1.11 1.06 1.15 1 0.71 1 0.7 1.1

1 0.82 1 1IE
1.89762
-- 14
0.47712 1 1.15 0.94 1.65 1.3 1.56 1.15 1 0.86 1 0.7 1.1

1.07 1.1 1.24 1.23 [ SD
1.86332

-- 15
0.59106 1 1.4 0.94 1.3 1.3 1.06 1.15 0.87 0.86 1.13 0.86 1.21

1.14 0.91 1 1.23 [ E
1.78533
--- 16

0.78533 0.6 1.4 1 1.3 1.3 1.56 1 0.87 0.86 1 0.86 1

1 1 1 I [E
1.60206

-- 17
0.5563 0.53 1.4 1 1.3 1.3 1.56 1 0.87 0.86 0.82 0.86 1

1 1 1 1[E
0.95424

-- 18
2.50515 1 1.15 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1

1 1.24 1.1 1.08 [ E
4.0569
-,- 19

3.06069 0.84 1.15 1.08 1 1.11 1.21 0.87 0.94 0.71 0.91 1 1

1 0.91 0.91 1 [ E
3.81954
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--- 20
2.47567 0.96 1.4 1.08 1.3 1.11 1.21 1.15 1.07 0.71 0.82 1.08
1.1 1.07 1.24 1 1.08 [ SD
3.80618

-- 21
2.4014 1 1 1.16 1.15 1.06 1.14 0.87 0.87 0.86 1
1 0.91 0.91 1 [E

3.39005
-- 22
2.07188 0.92 1.15 1 1 1.27 1.06 1 1 0.86 0.82 0.86 0.9

1 0.91 1 1.23 [E
2.85973

--- 23
1.88649 0.98 1.15 1 1 1.08 1.06 1 1 0.86 0.82 0.86 0.9
1 1 1 1.23[ E

2.73158
-24
1.95424 1 0.88 1 0.85 1.06 1.06 1 0.87 1 1.29 1 1.1
0.95 0.82 0.83 1 [ SD
2.65609
- 25
1.57978 1 1.15 1.16 1.3 1.15 1.06 1 0.87 0.86 1 0.86 1.1

1 0.82 0.91 1.08 [ E
2.7185
- 26
1.68124 1 0.94 1 0.85 1.07 1.06 1.15 1.07 0.86 1 0.86 1.1

1 0.91 1.1 1.08 [ E
2.58771
- 27
0.97312 1 1.15 0.94 1.15 1.35 1.21 1 0.87 1 1
1 0.82 1.1 1.08 [ E
1.94448
- 28
1.11394 1 1.15 1.08 1.3 1.11 1.21 1.15 1.07 0.86 1 0.86 1.1

1.07 1.1 1.1 1 [ ORG
1.99122
- 29
0.33041 1 0.88 1 1 1 1 1 1 1.1 1.29 0.86
0.91 0.91 1.23 [ SD

0.86332
- 30
0.29666 1 0.88 1 1 1 1 1 1 1 1.29 0.86
0.91 0.91 1.23 [ SD
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0.77085
--- 31
1.79239 0.81 1.4 1.08 1 1.48 1.56 1.15 1.07 0.86 0.82 0.86 1.1

1.07 1 1 1 [ E
3.02653

32
2.59106 0.67 0.88 1.08 0.85 1 1 1 1 0.71 0.82 1 1
1 1.1 1.1 1 [ SD

2.84633
-- 33
1.62324 0.96 1.4 1.08 1.3 1.48 1.56 1.15 0.94 0.86 0.82 0.86
0.9 1 0.91 0.91 1 [ E
2.78175
-- 34
1.36172 0.96 1.15 1.08 1 1.06 1 1 0.87 1 1 1 1 1

0.91 1.1 1.23 [ E
2.36172

-- 35
1.11394 1 0.75 0.94 1.3 1.06 1.21 1.15 1 1 0.91 1 1.1
1 1.24 1.24 1 [ E

1.91381
-- 36
1.17609 0.81 0.88 1.08 0.85 1 1 0.87 0.87 1.19 1 1.17 0.9
0.95 1 0.91 1.04 [ SD
1.74036
-- 37
1.77815 0.56 0.88 0.94 0.7 1 1.06 1 1 0.86 0.82 0.86

I I I 1 [ ORG
1.67209
- 38
1.17609 1 1 1 1.15 1 1 0.87 0.87 0.71 0.91 1 0.9
"A95 0.82 0.91 1 [ ORG
1.07918
-- 39
0.79239 1 1 1 1.15 1 1 0.87 1 0.71 0.82 0.7 1
0.95 0.91 1.1 1 [ ORG
0.90309
-- 40
0.47712 0.83 1 0.94 1.3 1 1 1 0.87 0.86 0.82 1.17
1 1.1 1 1 [ ORG

0.90309
-- 41
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0.72427 1 0.88 0.94 1 1 1 0.87 0.87 1 0.82 0.7 0.9
0.95 0.91 0.91 1 [ ORG
0.77815
- 42
1.65801 0.43 0.88 1.04 1.07 1 1.06 0.87 1.07 0.86 1 0.93 0.9

0.95 0.95 0.95 1.04 [ ORG
1.65321
-- 43
1.45636 0.98 1 1.04 1.07 1 1.21 0.87 1.07 0.86 1 1 0.9
0.95 1 1 1.04 [ ORG
1.91907
-44
1.48572 0.98 0.88 1.04 1.07 1.06 1.21 0.87 1.07 1 1 1 0.9
0.95 1.1 1 1.04 [ ORG
1.93951
- 45
1.54406 0.91 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 1 0.9
0.95 1 0.95 1.04 [ ORG
2.0253

- 46
1.86332 0.78 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 0.86 0.9
0.95 1 1 1.04 [ ORG

2.10037
- 47
1.36172 1 0.75 0.94 1.3 1 1 0.87 0.87 0.71 0.82 0.7 1.1
1.07 1.1 1 1.04 [ ORG
1.5563

- 48
2.66651 0.67 0.88 0.94 0.85 1 1 0.87 1 1.19 0.91 1.17 0.9
0.95 1.1 1 1.04 [ SD

3.10448
- 49
1.95904 1 1 1 0.85 1 1 1 0.87 0.71 1 0.7 1.1 1
0.82 0.91 1 [ SD

2.19312
- 50
1.38021 1 1.15 1 1 1.3 1.21 1 0.87 0.86 1 0.86 1.1
1 1 1 I[E
2.24551
-51

I 1 0.88 1 1 1 1 1 1.15 1.19 1 1.42 1 0.95
1.24 1.1 1.04 [ ORG
2.08636
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-- 32
0.91381 1 0.88 0.94 0.85 1 1.06 1.15 1 1 1 1 1.1

1.07 1.24 1.1 1 [ ORG
1.61278
-- 33
0.72427 1 0.88 0.94 1.15 1.11 1.21 1.3 1 0.71 1 0.7 1.1

1.07 1 1.1 1.08 [ SD
1.14612
-- 54
0.64345 1 1 0.94 1 1 1.06 1.15 0.87 1 0.82 1 1

0.95 0.91 1.1 1 [ ORG
1.30103
-- 35
0.79934 1 0.88 0.94 0.7 1 1 0.87 0.87 0.86 0.82 1.17 0.9

0.95 1.1 1 1 [ ORG
1.25527
-- 36
1.43136 1 1.15 0.94 1.3 1.3 1.21 1 1 0.86 0.91 1 1.1

1.07 1.1 1.1 1.08 [ E
2.98136

-57
1.23044 0.87 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.1

1.07 1.1 1.1 1.23 [ E
2.37474

58
1.39794 1 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9

0.93 0.91 1 1 [ E
2.11394

-. 59
1.36172 0.9 1 0.94 1.15 1.06 1.06 1 0.87 1 1 1 1

1 0.91 1 1 [ ORG
1.84509
-- 60
0.82607 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.86 1.1

1.07 1.1 1.1 1.08 [ ORG
1.75587
-- 61
1.44715 1 1 0.94 1.15 1 1 0.87 0.87 0.86 1 0.86 0.9

1 0.82 1 1 [ ORG
1.69897
-- 62
0.95904 1 0.88 0.94 1.3 1.11 1.21 1.15 1 0.78 0.82 0.7 1.21

1.14 0.91 1.24 1 [ SD
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1.57978
ý- 63
1 1 1 0.94 1.15 1 1 1 0.87 0.71 0.82 0.86 1 1

0.82 1 1 [E
1.17609

KEMMERIN

LOGKDS AAF RELY DATA CPLX TIME STOR VIRT TURN
ACAP AEXP PCAP VEXP LEX]P MODP TOOL SCED SD E
ORG
facts nm
- 1

2.40414 1 1.15 1.08 1.15 1 1.06 0.87 1 0.86 1.13 0.86 1
1 0.82 0.91 1.02 [ SD

-2
1.60745 1 1 1 1 1 1 0.87 1 1 1.07 0.86 1 1

1 1 1 [SD
-3
2.65321 1 1 1.16 1 1.3 1.21 0.87 1 0.86 1.13 1 1
1.03 0.91 1 1 [ E
-.-- 4
2.33122 1 1 1.08 0.92 1 1 0.87 0.93 0.8 0.89 0.85 0.97
0.95. 1 1 1.02 [ SD
-5
2.65311 1 1 0.94 1 1 1 0.93 0.87 0.78 1.13 0.93 1.1
1.03 1 0.91 1.07 [ OR.G

- 6
1.69897 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.86 0.95
0.97 0.91 1 1.23 [ E
-7
1.63346 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.7 0.95
1.07 0.91 1 1.23 [ E
- 8
2.22271 1 1.15 1.16 1 1 1 1 0.93 1 0.95 1 0.95
0.97 1 1 1.16 [ SD
-9
2.46089 1 1 1.16 1.15 1.11 1.06 0.87 0.87 1 1.13 1.06 1.1

I I 1 1.08 [ E
- 10
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1.59106 1 1 1.16 1 1.11 1 0.93 1.03 0.71 1 0,7 1.1
1.14 1.05 1 1.23 [ SD
-- 11
2.40517 1 1.16 1 1 1 1 1 1 0.86 1.13 0.86 1

0.86 1 1.23 [ SD
12

2.10924 1 1 1.16 1 1 1 0.87 0.87 0.86 1.07 0.86 1
1.03 1.1 0.95 1.08 [ SD

-13
2.2079 1 1 1.16 1 1.06 1 0.87 0.87 1.19 1 0.78 1.21

0.97 1.1 1 1.08 [ SD
14

2.21695 1 1 1.16 1 1 1 0.87 0.87 0.86 1.21 0.93 1.1
1.1 0.95 0.91 1.04 [ ORG
--- 15
1.77959 1 1 1 1 1 1 1 0.87 0.71 0.91 0.86 1.1
1.03 0.91 0.91 1 [ SD
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APPENDIX F

Genetic Algorithm Fitness Function (fit.c)

(Prior to instantiation of awk Wrapper)

#Anclude <math.h>
ruct entry (
double effort;double akdsi;
double ds; Variable Declarationsint il,i2,i3,i4,i5,i6,i7,i8,i9,ii 0,i11,i12,13,14,il 5;
int ie; ,

struct entry table[]
SeyDimension Table and Include

include "table.c" Fact File "table.c"

int size - (sizeoftable)/(sizeof struct entry));

double fl(y)
register double *y;

double res; Dimension Array of 96 numbers for use

double emm- by the fitness fimction.
double exp;
static double x[96];
register it ij;

for(i =0 ; i < 90; i++) { Constrain cost driver size between 0.5
x[i] - y[i]+200; and 2.0. Constrain coefficients and
x[ij/= 400.0;
x41 * 1.5; exponents between 0.0 and 4.0
x4i] - .5;
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fornin 90; i < 96; i+-4)f
xfij y[iJ + 200;
X[iJ / 100;

ftb(rt- 0, i-0; i< 42; i+-6)(
W I (xiJ< x[i+ I D) res +-1000;
i(.' (x[iJ< x[i+2J)) rea +-1000;____________
i~l (x ni< 41+3])) mc +100; Penalty fimctions to force GA
iftJ (4~i]< x[i+41)) rca +in1000;
if(I (411< xri+sJ)) rea +a.1000; to obey rules established by
i1(! (xfi+lJ< xli+2J)) res +-1000; Boehm for the first severn cost

if(! (41i+11< 41+4])) re +- 1000; drivers. Comment out if
iV! (xli+1j< xfi+5J)) res +.1000; unconstrained drivers are
if(! (x4i+2J< xfi+3J)) res +=I1000;
if(! (x[i+2J< 41i+4])) res +-1000; desired.
if(! (x[i+2J< xfi+5J)) res +-1000;_______________
U(~! (x[i+3]< x[i+4])) res +-1000;
ifi! (x[i+3]< x4i+5J)) res +=I000;
iii! (x[i+4]< x[i+5J)) res+-1000;

foz(i=42; i< 94; i+6-)(
A1! Nxip> x~i+ I D) rcs += 000;_______________
Ai! (x[iJ> x4i+2])) res +-1000; Penalty finctions to force GA

W~! (411l> 41i+4])) res +-1l000; to obey rules established by

if~! (41i]> x[1+S])) res +-1000; Boehmn for drivers eight through
iV! (x~i+ I]> x[i+2])) res +-1000;
A~! (x[1+1J> x~i+3])) res +-1000; fourteen. comment out if

if(! (41i+1]> xfi+4])) rca +-1000; ucntanddie r
W~! (x[1+ Ii> 4~i+SJ)) res +-1000;unosriediesae
i~! (x[i+2]> x[1+3J)) rea +-1000; desired.
if(! (xfi+21> x[i -4])) rca +- 100o;
il(! (41i+21> xli+5J)) res +-1000;
AlI (x~i+3]> x~i+4J)) res +-I000;
if(! (x[i+3J> 41i+5])) res +-I1000;
if(! (41i+4]> x[i+5j)) res+1000;

/0 for(im90; i< 91; i++)(
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if(! (X[i+ IJ <41~+2])) res +-l1000; penalty functions to force GA

) to obey rules established by

for(i-93; i < 94; i++) {Boeham for coefficients and
i~l Wi] > x~i+lJ )res +-IONO; exoet.Comment out if
iW! (x[i] > x4i+2J ))s +-1000O; xnet
iV1 (xli-sI1] > x4i+2J)) res +- 1000; unconstrained drivens are

) desired.

for(i -0; i < size; i++.)(
/0 get product of cost drivers -goes from 0 to 89.. treat as a 6x1IS amy"/
eumm xftable[iJ.ill;
emm x[table[iJ.i2 + 6];
em P x~tablefi].i3 + 6*2];
emm D x[table[iJ34 + 6*3];
emm X[table[iJ.iS + 6*4];
emin xtable[iJ.i6 + 6*5];
emm x[table[iJ.i7 + 606];

e Mm x[tablefi].ig + 6*7J;_________________
emm x[table[i].i9 + 6*8]; Bl yei ins esr
emm 'X[table[iJ.iO + 6*9];Bodtpisfnesmar

umM x[table~i].il 1 + 6* 10J; evaluation. Average relative error is
eum X[table~i].i12 + 6011];

Ius x[table[Q].13 + 6*12]; shown.
emm *ix[table[ij~i14 + 6*13];
910M x[table[i].i 15 + 6*14);
summ~ x[table[i].ie+90J; /0 coeff 0/
em ~pow(table[i].akdsi, x[table[i].ie+93]); 1* exponent1
res +

return realsize; Bold underlined type is GAucsd 1.4 declaration

for the chromosome. Translate as 10 bits per
P* GAteval fl 10:200df96 % number, range -200 to 200, 96 numbers total.
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Genetic Algorithm Input Data File: COCOMO Training and Testing Version

Format is (MMActual, Adjusted KDSI, 1S Cost Drivers, Mode

LAteral Driver Values Defined as:

0 - Very Low
I- Low
2 -Nominal
3- High
4 Very igh
5 Extra High
Mode Defined as:

0 - Embedded
1 - Semidetached
2 - Organic

"Table.c"

(2040, 113, 1, 4, O, 2, 3, 3, 3, ,1, 1, 1, 2, O, 1, 3, 0),
(243, 132, 2, 4, 1, 2, 2, 1, 1, 3, 4, 3, 3, 3, 3, 3, 2, 1),
(240, 45.6, 0, 4, 0, 2, 2, 1, 2, 1, 3, 0, 2, 3, 0, 2, 3, 2),
(33, 16, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 0, 2, 2, 2),
(423, 30, 3, 1, 4, 4, 4, 3, 2, 3, 2, 3, 1, 1, 3, 2, 2, 0),
(321, 18.27, 4, 1, 4, 3, 5, 2, 3, 3, 4, 3, 3, 2, 2, 2, 2, 0),
(218, 20.16, 4, 1, 4, 3, 5, 2, 3, 3, 4, T, 3, 2, 2, 2, 2, 0),
(40, 3.66, 4, 2, 4, 4, 5, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 0),
(6400, 287.04, 4, 3, 4, 3, 4, 3, 3, 4, 4, 2, 1, 1, 0, 2, 1, 1),
(2455, 252, 2, 4, 3, 3, 3, 1, 1, 3, 2, 2, 2, 2, 3, 3, 2, 0),
(724, 108.56, 3, 2, 2, 4, 3, 2, 2, 3, 4, 3, 3, 2, 3, 2, 0, 0),
(539, 75.46, 3, 2, 2, 3, 3, 2, 2, 3, 4, 3, 3, 2, 2, 2, 0, 0),
(453, 90, 1,2, 1,3,3,2, 1,2,0,2, 1,3,4,4,2, 1),
(523, 38, 3, 4, 4, 3, 3, 2, 1, 3, 2, 3, 1, 2, 4, 3, 1, 0),
(387, 48, 1, 2, 1, 3, 3, 3, 3, 3, 2, 3, 1, 2, 3, 1, 1, 0),

(98, 13, 3, 3, 4, 3, 4, 3, 3, 3, 2, 3, 1, 1, 1, 1, 2, 2),
(1063, 50.22, 4, 3, 2, 4, 5, 3, 3, 3, 4, 3, 1, 1, 2, 2, 2, 0),
(702, 261.3, 1, 3, 1, 2, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 2, 1),
(605, 40.32, 4, 3, 4, 4, 5, 3, 1, 3, 4, 3, 3, 2, 3, 3, 2, 0),
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(230, 22.08, 3, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 0, 0),
(82, 13, 0, 1, 4, 3, 4, 3, 2, 2, 3, 2, 1, 2, 0, 0, 2, 0),
(55, 12.15, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 3, 3, 2, 3, 3, 1),
(8, 2.49, 2, 1, 4, 2, 2, 2, 1, 3, 4, 1, 2, 2, 1, 2, 2, 2),
(6, 5.3, 1, 1, 2, 2, 2, 1, 1, 2, 4, 4, 3, 3, 3, 3, 2, 2),
(45, 19.565, 1, 2, 2, 2, 3, 1, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2),
(83, 28.028, 2, 2, 2, 2, 4, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2),
(87, 29.988, 1, 2, 2, 3, 4, 1, 3, 2, 2, 2, 3, 3, 1, 2, 3, 2),
(106, 31.85, 1, 2, 2, 2, 3, 1, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2),
(126, 56.94, 1, 2, 2, 2, 3, 1, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2),
(36, 23, 0, 1, 4, 2, 2, 1, 1, 4, 4, 4, 1, 1, 1, 2, 3, 2),
(1272, 310.88, 1, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 3, 1, 2, 3, 1),
(156, 91, 2, 2, 1,2,2,2, 1,4,2,4, 1,2,4,3,2, 1),
(176, 24, 3, 2, 2, 4, 4, 2, 1, 3, 2, 3, 1, 2, 2, 2, 2, 0),
(122, 10, 1, 2, 2, 2, 2, 2, 4, 1, 2, 0, 2, 3, 0, 1, 3, 2),
(14, 5.3, 1, 1,3,3,4,4,2,4,2,4, 1, 1,2, 1, 1, 1),
(20, 4.4, 2, 1, 2, 2, 3, 3, 1, 2, 4, 2, 2, 3, 3, 1, 2, 2),
(18, 6.3, 1, 1,0,2,2, 1, 1,3,4, 1,3,3, 1, 2, 2, 2),
(958, 27, 3, 1, 4, 4, 4, 2, 2, 3,.3, 2, 1, 1, 1, 1, 1, 0),
(237, 14.79, 2, 1, 3, 3, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0),
(130, 25, 4, 1, 4, 5, 4, 2, 2, 4, 4, 4, 3, 3, 3, 2, 2, 0),
(38,9.1, 1, 1,4, 3,4, 3,2,4,4,4, ,0, 3, 0,2, 1),
(15, 10,2, 1,3,2,2,2, 1,4,4, 3,2,2,4, 2,2, 0),
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APPENDIX G

Genetic Programming Fitness Function File
"fitnes.C"

#include <math.h>
1*

SGPC: Simple Genetic Programming in C
(c) 1993 by Waker Alden Tackett and Aviram Carmi

This code and documentation is copyrighted and is not in the public domain.

All rights reserved.

- This notice may not be removed or altered.

- You may not try to make money by distributing the package or by using the
process that the code creates.

- You may not distribute modified versions without clearly documenting your
changes and noti'ng the principal author.

- The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.

- Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users ever read
sources, credits must appear in the documentation.

- The authors are not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.

If you make changes to the code, or have suggestions for changes,
let us Imow. (gpc@ipldOl.hac.com)0/

#ifadef lint
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static char fitness•tcrcsid[-"Sld: fitness.cv 2.8 1993/04/14 05:19:57 gpc-avc Exp
PC-anc S";

#endif

* SLog: finesLcv S
* Revision 2.8 1993/04/14 05:19:57 gpc-avc
* just a revision number change

#include <stdio.h>
#include <malloc.h>
#include <ermo.h>
#include "gpc.h"
#include EXP
#include VAL EXP
extern terminal tableentry terminal tableD;
exten mt terminal-table sz;
extern int total vars ;
extern int fitnesstablesz;

#ifdef ANSIFUNC
VOID define fitness_cases(
ait numpops,
int numgens,
poputnruct *Pop

)
#else
VOID definefitnesscases(numpopsnumgenspop)

int numpops;
int numsens;
popstruct *pop;

#endif

#if 0
/* this template makes all of the fitness cases the same for all

populations, but that isn't necessary /
hit pj;
float range;
numfc - 10; /0 number of fitness or training cases */
numtc = 10; /* number of test or validation cases /
range 1.0;
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fltuess -cases table - (Bloat =) maCOc~UMPOPOSiZ0(l
test-cases table -(float **) malloc(Dwnpops sizeooffloat *));
fitness casesý table out - (Boat **) malloc(numapops~simC~flost s)
test-cases..table out - (float **) mAlloc~sunpops~siZmofflost))
for (p-0o; p<numwcps; p4-4) (

fitness-cases tablelpJ - (Bloat 0) malioc(onumfc * sizeoIfloat));
ttst -cases tablelp] (float *) malloc(nurntc * sizeof(lOat));
hiwess...cases table out[p] - (float *) mslloc(numfc 0 sizeo1gflost));
test cases tAb k-outlpJ (float *) malioc(nuwmc 0 sizeflifloat));
for (I-mO; iznumfc; i++)(
/0 evenly spaced zero..anwge: 0/
fitnese. cases, tablelp~il range 0 (flostýi / (Bloat nmC;,
* evenly spaced 'Tange' about zero:

fitness; cases tabletpJ[iJ - (2.0*ranges(float)i/(float)nIumfc)-angC,

fitness-cases table -out[pJ[i]
regressionfiuntion(fitness...cases .. tblelp][i]);

for (i0-; i~numtc; i++)
/* validation test cases same as the training set
test cases tablelp][i] - fitness .. cases...tableLp)[i);
I va-idation could be random wihi the range:
test-cases-tabletpllij random float(range);
or range centered about zero:
test -cases -table[p][i] - random float(2.Orange)-range;

test -cases *table - ut[p)[iJ = regression flnction(test-cases...tble[PJ[iJ);

#endif
10 no processing needed - we've got data!?

#ifdef AlSIFUNC
VOiD evaluate ftessoL.fPopulations(

uat JIumpops,
im "1n11gens,

popstrlct~pop.
Mnt p

#else
VOID evahiate~finess of opulbtiofl5(flumlpopsluumge'poptp)

int NUMPOPS;
mnt numgens;
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pop Mtruct opop;

#aadif

for (0-0; i<popIpI population size;i+I
pop[jp].standardized htnessfi -

auate-ftessofindividual4op~ppop[p].population[i],i);

#ifdef ANSI FUNC
flam valuate-fitness of Mniiul

popatruct~'pop,

tree t
int

#eke
Bloat evaluate-fitness of individuop p, t, Q)

pop..struct*pop; - ulpp

tree *t;Bold type defines the fitness
int t

#endifmeamure of testing data set.

j; Average relative error is shown

float ressum = 0.0;
for Q-=0; j<fitness tablce sz;j++) (
load terminal-set values(pop~p,&(flbaessjtablejffl~lJD);
sum += (float)sqrt((double)(fitness -table..tUJ 10ievhl(t))*

(rntness...table...tUjI [O-eval(t)) / fitness table-tUl 101/ fitness table tijI 10);

mms sum/((GENERIC)ritnesu..table 2z);

res *= 100;

return res;

#ifdefANSlFUNC
float validate fitness of tree(

hat numpops,
hat nunagens,
pop-struct *'Pop,
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hit p
tree O

*else
Boat validate-fttnessý_ofyee(nuinpops, num5Sen, pop, p, t)

int numpops;
iat nuagngs;
pop-struct *pop;
eat P
tree

#Cndzf

int
Bloat rs, sm - 0.0;
float ev;
extern mnt vaL fitness table -sz;
for (0=0; j<val fitness-table-sz; j++)(

load termnial-set-values(jpop,p,&.(val-fitness..table...t][ 1]));
ev - eval(t);
sum' 4-m (float)sqrt((double)(valjfitness table tU[0I-ev)*

(vat fitness-table tUl 101-ev) I vai fitness t-able tUl 101I
vai fitness table tjjJ jO);

rums um/((GENERIC)valfitnessjtablejz);
ifi~allvYars(Pop'p,t))

)res *= 100; Bold type defines the fitness measure of

retu= res; testing data set. Average relative error

is shown.

#ifdef ANSI FUNC
int terminate~early(

int numpops,
int nunigns
pop.struct *Pop

#else
int tcrmnateeacrly(numpops~numgens~pop)

iat nunipops;
int numgcns;
pop-;ruct *Pop;

#endif
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intp'i;
for"(in; pcnuqpops; p4-4)(

for (lulO; i<pop[p].population size; i-'4)(
if (pop[p].standardizadjhzness~i] <- 0.0)(
reur 1;

return 0;

Genetic Programming Training Data Input File

COCOMO Training and Testing Version
"tcotr42.c"

#include <stdio.h>
#include gSpc.h"
#include "prob.h"
#include *cotr42.h*

GENERIC random constantO;
terminal table-.entry terminal-tableO=(

(0, WX",random constant), XO = KCDSI
(1, 'Xl ,random constant), X1- =
(2, "X2",random constant),
(3, *MX3"ndom-consant), X2 through X 16 are the
(4, 'X"Wrsndomn constant), cs rvrvleRL
(5, *X3",random constant), Cs rvrvleRL
(6, -X6-,radom constant), through SCED.
(7, "X7',rndom..constant),
(8, "X8",andom constant),
(9, "X9",radom constant),
(10, OXIO",random constant),
(11, "XIIlrandom constant),
(12, "X12",random constant),
(13, "X13",random constant),,
( 14, "X 14",random-constant),
(15, "X1S',random-constant),
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(16, "X16",rdom Constant),
(O,FORMATraudom consant),

iat tennkLtab1e..sz -z sioternanltabley)sizcotctrmimtablc..entry)- 1;
iat total_van - FITNESS_.HEIGHT;
GENERIC fitness tabl.tpFlTNESS.WIDTHJ[FITNESS.HEIGHT] ( (2040.0000,
113.0000, 1.0000, 0.8800, 1.1600, 0.7000, 1.0000,

1.0600, 1.1500, 1.0700, 1.1900, 1.1300, 1.1700,
1.1000, 1.0000, 1.2400, 1.1000, 1.0400,

(243.0000, 132.0000, 1.0000, 1.0000, 1.1600,
0.8500, 1.0000, 1.0000, 0.8700, 0.9400, 0.8600,

0.8200, 0.8600, 0.9000, 0.9500, 0.9100, 0.9100,
1.0000, ),

(240.0000, 60.0000, 0.7600, 0.7500, 1.1600,
0.7000, 1.0000, 1.0000, 0.8700, 1.0000, 1.1900,

0.9100, 1.4200, 1.0000, 0.9500, 1.2400, 1.0000,
1.0400, ),

(33.0000, 16.0000, 1.0000, 0.8800, 0.9400,
1.0000, 1.0000, 1.0000, 0.8700, 1.0000, 1.0000,

1.0000, 0.8600, 0.9000, 0.9500, 1.2400, 1.0000,
1.0000, ),

(423.0000, 30.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.3000, 1.2100, 1.1500, 1.0000, 0.8600,

1.0000, 0.8600, 1.1000, 1.0700, 0.9100, 1.0000,
1.0000, ),

(321.0000, 29.0000, 0.6300, 1.4000, 0.9400,
1.3000, 1.1100, 1.5600, 1.0000, 1.0700, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,
1.0000, },

(218.0000, 32.0000, 0.6300, 1.4000, 0.9400,
1.3000, 1.1100, 1.5600, 1.0000, 1.0700, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,
1.0000,),

(40.0000, 6.1000, 0.6000, 1.4000, 1.0000,
1.3000, 1.3000, 1.5600, 1.0000, 0.8700, 0.8600,

1.0000, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, ),

(6400.0000, 299.0000, 0.9600, 1.4000, 1.0800,
1.3000, 1.1100, 1.2100, 1.1500, 1.0700, 0.7100,
0.8200, 1.0800, 1.1000, 1.0700, 1.2400, 1.0000,
1.0800, ,
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(2453.0000, 232.0000, 1.0000, 1.0000, 1.1600,

1.1300, 1.0600, 1.1400, 0.8700, 0.8700, 0.8600,

1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 0.9100,

1.0000, },
(724.0000, 118.0000, 0.9200, 1.1500, 1.0000,

1.0000, 1.2700, 1.0600, 1.0000, 1.0000, 0.8600,

0.8200, 0.8600, 0.9000, 1.0000, 0.9100, 1.0000,
1.2300, ),

(339.0000, 77.0000, 0.9800, 1.1300, 1.0000,

1.0000, 1.0800, 1.0600, 1.0000, 1.0000, 0.8600,

0.8200, 0.8600, 0.9000, 1.0000, 1.0000, 1.0000,

1.2300, },
(433.0000, 90.0000, 1.0000, 0.8800, 1.0000,

0.18500, 1.0600, 1.0600, 1.0000, 0.8700, 1.0000,

1.2900, 1.0000, 1.1000, 0.9500, 0.8200, 0.8300,

!.0000, },
(523.0000, 38.0000, 1.0000, 1.1500, 1.1600,

1.3000, 1.1300, 1.0600, 1.0000, 0.8700, 0.8600,

1.0000, 0.8600, 1.1000, 1.0000, 0.8200, 0.9100,
1.0800, },

(387.0000, 48.0000, 1.0000, 0.9400, 1.0000,

0.8300, 1.0700, 1.0600, 1.1500, 1.0700, 0.8600,
1.0000, 0.8600, 1.1000, 1.0000, 0.9100, 1.1000,

1.0800, },
(98.0000, 13.0000, 1.0000, 1.1500, 1.0800,

1.3000, 1.1100, 1.2100, 1.1500, 1.0700, 0.8600,

1.0000, 0.8600, 1.1000, 1.0700, 1.1000, 1.1000,

1.0000, },
(1063.0000, 62.0000, 0.8100, 1.4000, 1.0800,

1.0000, 1.4800, 1.5600, 1.1500, 1.0700, 0.8600,

0.8200, 0.8600, 1.1000, 1.0700, 1.0000, 1.0000,

1.0000, ),
(702.0000, 390.0000, 0.6700, 0. 8800, 1.0800,

0.8500, 1.0000, 1.0000, 1.0000, 1.0000, 0.7100,
0.8200, 1.0000, 1.0000, 1.0000, 1.1000, 1.1000,

1.0000, ),
(603.0000, 42.0000, 0.9600, 1.4000, 1.0800,

1.3000, 1.4800, 1.5600, 1.1500, 0.9400, 0.8600,
0.8200, 0.8600, 0.9000, 1.0000, 0.9100, 0.9100,

1.0000, ),
(230.0000, 23.0000, 0.9600, 1.1500, 1.0800,

1.0000, 1.0600, 1.0000, 1.0000, 0.8700, 1.0000,
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1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 1.1000,
1.2300, ,

(82.0000, 13.0000, 1.0000, 0.7500, 0.9400,
1.3000, 1.0600, 1.2100, 1.1500, 1.0000, 1.0000,
0.9100, 1.0000, 1.1000, 1.0000, 1.2400, 1.2400,
1.0000, ),

(55.0000, 15.0000, 0.8100, 0.8800, 1.0800,
0.8500, 1.0000, 1.0000, 0.8700, 0.8700, 1.1900,

1.0000, 1.1700, 0.9000, 0.9500, 1.0000, 0.9100,
1.0400, ),

( 8.0000, 3.0000, 0.8300, 1.0000, 0.9400,
1.3000, 1.0000, 1.0000, 1.0000, 0.8700, 0.8600,
0.8200, 1.1700, 1.0000, 1.0000, 1.1000, 1.0000,
1.0000, ),

( 6.0000, 5.3000, 1.0000, 0.8800, 0.9400,
1.0000, 1.0000, 1.0000, 0.8700, 0.8700, 1.0000,

0.8200, 0.7000, 0.9000, 0.9500, 0.9100, 0.9100,
1.0000, ),

(45.0000, 45.5000, 0.4300, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 0.8600,

1.0000, 0.9300, 0.9000, 0.9500, 0.9500, 0.9500,
1.0400, ),

(83.0000, 28.6000, 0.9800, 1.0000, 1.0400,
1.0700, 1.0000, 1.2100, 0.o700, 1.0700, 0.8600,

1.0000, 1.0000, 0.9000, 0.9500, 1.0000, 1.0000,
1.0400, ),

(87.0000, 30.6000, 0.9800, 0.8800, 1.0400,
1.0700, 1.0600, 1.2100, 0.8700, 1.0700, 1.0000,

1.0000, 1.0000, 0.9000, 0.9500, 1.1000, 1.0000,
1.0400, ),

(106.0000, 35.0000, 0.9100, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 1.0000,

1.0000, 1.0000, 0.9000, 0.9500, 1.0000, 0.9500,
1.0400, ),

(126.0000, 73.0000, 0.7800, 0.8800, 1.0400,
1.0700, 1.0000, 1.0600, 0.8700, 1.0700, 1.0000,

1.0000, 0.8600, 0.9000, 0.9500, 1.0000, 1.0000,
1.0400, ),

( 36.0000, 23.0000, 1.0000, 0.7500, 0.9400,
1.3000, 1.0000, 1.0000, 0.8700, 0.8700, 0.7100,
0.8200, 0.7000, 1.1000, 1.0700, 1.1000, 1.0000,
1.0400, ),
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(1272.0000, 464.0000, 0.6700, 0.8800, 0.9400,
0.8500, 1.0000, 1.0000, 0.8700, 1.0000, 1.1900,

0.9100, 1.1700, 0.9000, 0.9500, 1.1000, 1.0000,
1.0400, V ,

(156.0000, 91.0000, 1.0000, 1.0000, 1.0000,
0.8500, 1.0000, 1.0000, 1.0000, 0.8700, 0.7100,

1.0000, 0.7000, 1.1000, 1.0000, 0.8200, 0.9100,
1.0000, ),

(176.0000, 24.0000, 1.0000, 1.1500, 1.0000,
1.0000, 1.3000, 1.2100, 1.0000, 0.8700, 0.8600,

1.0000, 0.8600, 1.1000, 1.0000, 1.0000, 1.0000,
1.0000, )

(122.0000, 10.0000, 1.0000, 0.8800, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1. 1 500, 1.1900,

1.0000, 1.4200, 1.0000, 0.9500, 1.2400, 1.1000,
1.0400, ),

{ 14.0000, 5.3000, 1.0000, 0.8800, 0.9400,
1.1500, 1.1100, 1.2100, 1.3000, 1.0000, 0.7100,

1.0000, 0.7000, 1.1000, 1.0700, 1.0000, 1.1000,
1.0800, ),

(20.0000, 4.4000, 1.0000, 1.0000, 0.9400,
1.0000, 1.0000, 1.0600, 1.1500, 0.8700, 1.0000,
0.8200, 1.0000, 1.0000, 0.9500, 0.9100, 1.1000,
1.0000, },

(18.0000, 6.3000, 1.0000, 0.8800, 0.9400,
0.7000, 1.0000, 1.0000, 0.8700, 0.8700, 0.8600,

0.8200, 1.1700, 0.9000, 0.9500, 1.1000, 1.0000,
1.0000, ),

(958.0000, 27.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.3000, 1.2100, 1.0000, 1.0000, 0.8600,
0.9100, 1.0000, 1.1000, 1.0700, 1.1000, 1.1000,
1.0800, },

(237.0000, 17.0000, 0.8700, 1.0000, 0.9400,
1.1500, 1.1100, 1.2100, 1.3000, 1.0000, 1.0000,

1.0000, 1.0000, 1.1000, 1.0700, 1.1000, 1.1000,
1.2300, },

(130.0000, 25.0000, 1.0000, 1.4000, 0.9400,
1.3000, 1.6600, 1.2100, 1.0000, 1.0000, 0.7100,
0.8200, 0.7000, 0.9000, 0.9500, 0.9100, 1.0000,
1.0000, ),

(38.0000, 9.1000, 1.0000, 0.8800, 0.9400,
1.3000, 1.1100, 1.2100, 1.1500, 1.0000, 0.7800,
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0.8200, 0.7000, 1.2100, 1.1400, 0.9100, 1.2400,
1.0000, },

(15.0000, 30.0000, 1.0000, 1.0000, 0.9400,
1.1500, 1.0000, 1.0000, 1.000, 0.8700, 0.7100,
0.8200, 0.8600, 1.0000, 1.0000, 0.8200, 1.0000,
1.0000, },

Jnt fitness table sz FITNESS WIDTH;
GENERIC fitnesstablefFITNESSHEIGHTM[FITNESS WIDTH];

Per Script for Creating Genetic Programming Input Training Data File
"derme.pl"

(Author: Ranjan Bagchi)

#!/public/gnu/bin/perl -

# define - generates static data instantiating aU necessary
# terminals.

Sfirst - 0;
Soutf= SARGV[0];
open(OUT,'">Soutf c");
open(OUTh,">Soutfh");
while(o)

il•/~w*$/){
next;

)
@1 = upli(, ');

KUSfMr = 0)(
print OUT

"#include <stdio.h>\n",
"#include \*gpc.h\"1zn,
"#include \"prob.h\\n"',
sprinti"#include \"%s.h\e1n",Soutf),
"\nGENERIC random constanto;\n"

print OUT
"terminal tablemtry terminal table[ = {\n";

for(0..S#1-1) (
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prWtOUT %t(%d, \OXO/d\",random-constant),\n",S-,SJ;

puint OUT -vt(O,FORMATrsndom-coMat),n-;
print OUT *P;\\

ait terminal table zz - sizeo~terimial table)/uzeo~terminal _table cantty) - 1\*

printf (OUT 'lit total-vars -FITNESSIHEIGHT;\u");
Irt (OUT"GENER1C fitness tablect[FITNESS WIDTH[FITNESSYHEIGH1

Sforntat

Si ++;
printOUT Stbrnat,@l);

print OUT "int fitness-table-sz = FITNESSWIDTH;\n";
print OUT "GENERIC fitness_table[FITNESSHEIGHT][FITNESSWIDTH];";
close(OUT);

printf(OUT h "#define FITNESS-HEIGHT %d\n", $#1+l1);
printirOUThb "#define FITNESS WIDTH "/odfn", Shirst);
printf(OUTj h\nWnextern GENERIC
fitness table(fITNESS HEIGHT][FITNESS _WID7TH]\n)
print1(ZOUT) h \n\nexern GENERIC
fitness table tjlTrNESS WIDTH][FITNESSHEIGHTj;\n");

close (OUTý h);

Genetic Programming Input Testing Data File

COCOMO Training and Testing Version

"icote2l.c"

#include <stdio.h>
#include "gpr..h"
#include *prob.h"
#include, "valdcoe2lI.h"
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GENERIC valfi-ess table t[VAL_FNESS WIDTMH](VAL FrrNESSHEIGMHT]
(1600.0000, 293.0000, 0.8500, 0.8800, 1.1600, 0.8500,

1.0000, 1.0600, 1.0000, 1.0700, 1.0000, 0.9100,
1.0000, 0.9000, 0.9500, 1.1000, 1.0000, 1.0000,

},
(43.0000, 4.0000, 1.0000, 0.7500, 1.0000,

0.8500, 1.0000, 1.2100, 1.0000, 1.0000, 1.4600,
1.0000, 1.4200, 0.9000, 0.9500, 1.2400, 1.1000,
1.0000,

( 8.0000, 6.9000, 1.0000, 0.7500, 1.0000,
1.0000, 1.0000, 1.0000, 0.8700, 0.8700, 1.0000,

1.0000, 1.0000, 0.9000, 0.9500, 0.9100, 0.9100,
1.0000,

(1075.0000, 22.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.6600, 1.5600, 1.3000, 1.0000, 0.7100,
0.9100, 1.0000, 1.2100, 1.1400, 1.1000, 1.1000,
1.0800,

(201.0000, 37.0000, 1.0000, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.0000, 1.0000, 0.8600,
0.8200, 0.8600, 1.0000, 0.9500, 0.9100, 1.0000,
1.0800,

(79.0000, 25.0000, 0.9600, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.1500, 1.0000, 0.7100,

1.0000, 0.7000, 1.1000, 1.0000, 0.8200, 1.0000,
1.0000,

(73.0000, 3.0000, 1.0000, 1.1500, 0.9400,
1.6500, 1.3000, 1.5600, 1.1500, 1.0000, 0.8600,

1.0000, 0.7000, 1.1000, 1.0700, 1.1000, 1.2400,
1.2300,

(61.0000, 3.9000, 1.0000, 1.4000, 0.9400,
1.3000, 1.3000, 1.0600, 1.1500, 0.8700, 0.8600,

1.1300, 0.8600, 1.2100, 1.1400, 0.9100, 1.0000,
1.2300,

( 9.0000, 3.6000, 0.5300, 1.4000, 1.0000,
1.3000, 1.3000, 1.5600, 1.0000, 0.8700, 0.8600,
0.8200, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000,

(11400.0000, 320.0000, 1.0000, 1.1500, 1.1600,
1.1500, 1.3000, 1.2100, 1.0000, 1.0700, 0.8600,

1.0000, 1.0000, 1.0000, 1.0000, 1.2400, 1.1000,
1.0800,

(6600.0000, 1150.0000, 0.8400, 1.1500, 1.0800,
1.0000, 1.1100, 1.2100, 0.8700, 0.9400, 0.7100,
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0.9100, 1.0000, 1.0000, 1.0000, 0.9100, 0.9100,
1.0000,

(88.0000, 9.4000, 1.0000, 1.1500, 0.9400,
1.1500, 1.3500, 1.2100, 1.0000, 0.8700, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 0.8200, 1.1000,
1.0800,

4 7.3000, 2.1400, 1.0000, 0.8800, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.1000,

1.2900, 0.9600, 1.0000, 1.0000, 0.9100, 0.9100,
1.2300,

( 5.9000, 1.9800, 1.0000, 0.8800, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.2900, 0.8600, 1.0000, 1.0000, 0.9100, 0.9100,
1.2300,

(47.0000, 60.0000, 0.5600, 0.8800, 0.9400,
0.7000, 1.0000, 1.0600, 1.0000, 1.0000, 0.8600,

0.8200, 0.8600, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000,

(12.0000, 15.0000, 1.0000, 1.0000, 1.0000,
1.1500, 1.0000, 1.0000, 0.8700, 0.8700, 0.7100,
0.9100, 1.0000, 0.9000, 0.9500, 0.8200, 0.9100,
1.0000,

( 8.0000, 6.2000, 1.0000, 1.0000, 1.0000,
1.1500, 1.0000, 1.0000, 0.8700, 1.0000, 0.7100,
0.8200, 0.7000, 1.0000, 0.9500, 0.9100, 1.1000,
1.0000,

(41.0000, 8.2000, 1.0000, 0.8800, 0.9400,
0.8500, 1.0000, 1.0600, 1.1500, 1.0000, 1.0000,

1.0000, 1.0000, 1.1000, 1.0700, 1.2400, 1.1000,
1.0000, ),

(70.0000, 23.0000, 0.9000, 1.0000, 0.9400,
1.1500, 1.0600, 1.0600, 1.0000, 0.8700, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 0.9100, 1.0000,
1.0000,

(57.0000, 6.7000, 1.0000, 1.1500, 0.9400,
1.3000, 1.1100, 1.0600, 1.0000, 1.0000, 0.8600,

1.1300, 0.8600, 1.1000, 1.0700, 1.1000, 1.1000,
1.0800, ),

(50.0000, 28.0000, 1.0000, 1.0000, 0.9400,
1.1500, 1.0000, 1.0000, 0.8700, 0.8700, 0.8600,

1.0000, 0.8600, 0.9000, 1.0000, 0.8200, 1.0000,
1.0000,
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int val fitness, table az - VAL FITNESS WIDTH;

GENERIJC val fitness table[VALITNESS ]HEIGHTJ[VALFITNESS WID)TH;

Perl Script for Creating Genetic Programming Input Testing Data File

"val-define.pi"

(Author: Rmnjan Bagchi)

#!/public/gnu/iainperl -

# define - geneantes static data instantiating all necessary
# terminals,

Sfirst M0;
Soutf = vaI SARGV[0]";
open(OUT,ŽSoutf c");
open(OUTý_h,*>Soutf h");
whll(O>) I

next;

@1 qlk(');
dftSfirst -O)

print OUT
"#include <stdio.h>\n',
"#include \"gpc.h\"\n",
"#include \"prob.h\*\n",
sprintif"#include, \"%s.b\w\n",Soutf),
"GENERIC

val fitness table t[VAL _FITNSSWID7hI[VAL _FITNSS HEIGHT]

Sformat=

S OUr T 44; maO

printf(OUT Sfo\nnt@l)

print OUT lint val fitness table-sz - VALFUNESS. WIDTH,~n";
print OUT "GENEFRIC
val fitness, tble[VALIT,_FNESSHEIGHTI[VALFITNESS.WIDTH;w;
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dose(OUT);

prmt(OUT h "#define VALFITNESS HEIGHT O/d\n, S#W+ );
priatf(OUTh "#define VALFTNESS WIDTH %/d\n", Shrst);
printOUT h "\n\nextern GENERIC
val fitness tableVAL-_FITNESS HEIGHT][VALFITNESS._WITH] ;%n);
prindrOUTfh "-n\nextern GENEfUC
val fitness_tablet[VALFTNESSWIDTH][VALFTNESSHEIGHTj;\n");

close (OUTh);

SGPC Makef'de

COCOMO Training and Testing Phase

## SGPC: Simple Genetic Programming in C
## (c) 1993 by Walter Alden Tackett and Aviram Carmi

## This code and documentation is copyrighted and is not in the public domain.

# All rights reserved.

- This notice may not be removed or altered.
##

- You may not try to make money by distributing the package or by using the
# process that the code creates.

## - You may not distribute modified versions without clearly documenting your
## changes and notifying the principal author.

## - The origin of this software must not be misrepresented, either by
## explicit claim or by omission. Since few users ever read sources,
## credits must appear in the documentation.
##

## - Altered versions must be plainly marked as such, and must not be
## misrepresented as being the original software. Since few users ever read
## sources, credits must appear in the documentation.

## - The authors are not responsible for the consequences of use of this
##software, no matter how awflzl, even if they arise from flaws in it.
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## If you make changes to the code, or have suggestions for changes,
0 let us know! (gpc@ipldOl.ac.com)

# SId: Makeflleyv 1.1 1993/04/30 05:01:48 gpc-ave Exp gpc-avc S
#

# invoke this Makefle with the command: make [ TYPE-type

# where you have the problem-specific fitness and setup files named
# fitnessc and setup.c

# TYPE should usually equal int or float, but in principle can be anything.
#
# SLog: Makefile,v S
#Revision 1.1 1993/04/30 05:01:48 gpc-avc
# Initial revision

# Revisio, 1 7 1993/04/23 01:56:25 gpc-avc

TYPE = float
DEBUG = 0
EXP w co'42
VALEX - val cote21
FLAGS - -0 -DTYPE=S(TYPE) -DDEBUG=S(DEBUG)
-DVALEXP"'S(VALrEXP).hV' -DEXP-"$S(EXP).b\"

SRCS = setup.c fitness.c S(EXP).c main.c S(VALEXP).c
INCS prob.h
OBJS - S(SRCS:%.c=%.o)
EXE - Spc- I S(PROBLEM) Bold type indicates problem specific

## NOTE: last definition wins ## declarations that include the COCOMO
CC = ace training and testing files created by

CFLAGS - -g -L./lib define.pl and valdefine.pl
#CFLAGS = -O -l./hJb

CPPFLAGS = S(FLAGS)
LIBS -L../hb -IgpcS(TYPE) -hn
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Scc cc debug-cc debug-goc purify, prof all: S(OBJS)

S(MAKE) TYPE=S(TYPE) DEBUGmS(DEBUG)~
CC-S(CC) CFIAGS="S(CFIAGS~w S@)
S(CC) -o S(EXE) S(OBJS) S(LJBS)

clean:
/bin/rm -f S(EXE) S(OBJS) Makefile~bak

real-dlean: clean

S(MAKE) TYPE=-S(TV'PE) DEBUG'=S(DEBUG)\
CC=S(CC) CFLAGS="S(CFJ.AGS)" clean)

puint:
lW-17 -1 -p"-2 -t" -m -tS S(SRCS) S(INCS) I lpr
( cd../hb; \
$(MAKE) TYPE=S(TYPE) DEBUG=S(DEBUG)\
CC=S(CC) CFLAGS=-S(CFIAGS)" S@)

co:
-co -1 S(SRCS) SQINCS) Makefile

S(MAKE) TYPE=$(TYPE) DEBUG=S(DEBUG)\
CC=S(CC) CFLAGS="S(CFLAGS)" S@

i -ci -4 S(SRCS) S(INCS) Makefile
( cd../Jib; \
S(MAKE) TYPE-S(TYPE) DEBUG--S(DEBUG)\
CC=S(CC) CFLAGS="S(CFLAGS)" S@)

fiat:
S(LINT.c) S(CFLAGS) S(FLAGS) S(SRCS)
( cd..Ab; \
S(MAKE) TYPE=S(TYPE) DEBUG=S(DEBUG)\
CC-$(CC) CFLAGS="S(CFLAGS)" S@)

depend:
makedepend - S(CFLAGS) - S(FLAGS) S(SRCS)
( cd./hib; \
S(MAKE) TYPE=S(TYPE) DEBUG=S(DEBUG)\
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CC-S(CC) CFLAGS-uS(CFLAGS) S@)

WDO NOT DELETE THIS LINE - make depend depends on it.

"seu.o: /Iw/nclude/stdio.h .Jlib/gPc.h ..Jlb/proto.h..JIhblradolmh
"aeu.o: prob.h
&utnsso: Aasr/Anchadc/stdio.h /usrfmclude/mafloc.h /usrrmchzde/ernao-h
fitness.o: /usrmclude/s~rrNao.h .Jlib/g~pc.h ../hb/protoIi
fdoess.o: .J.i'b/ran~dom~h
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