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ABSTRACT

To adequately describe the general circulation of the ocean requires a fine spatial resolution
and extremely small time steps for model integration. This combination leads to large in-core
computer memories and computer processing time for the model integration. In addition, the
numerical models have to be coupled with data assimilation schemes to derive accurate initial
conditions computing model forecasts. To make the nowcasting and forecasting practical, it is
necessary that the data assimilation schemes be computationally efficient and parsimonious in
computer in-core memories.

The work reported in this technical report was initiated at the Institute for Naval Oceanog-
raphy (INO) to develop data assimilation procedures that are efficient and are widely applicable.
Our initial data assimilation work was done with a scheme which was developed by Derber and
Rosati (1989) for their global data assimilation application. The scheme is quite efficient; but
when it was combined with a primitive equation, numerical model of the Gulf of Mexico, the
nowcasting step took too much computer time for it to be useful in real-time applications. So,
after an initial implementation and test of the scheme, our obvious thrust was to enhance and
make it more efficient.

Most of the computation resources while using the Derber-Rosati scheme are required in
approximating a matrix product Eng, where Zm is the covariance matrix of the model output
error having a Gaussian spatial covariance structure that stays fixed, and g is a varying vector.
They approximate this product by repeated applications of a Laplacian operator.

A new algorithm is developed that, while maintaining the accuracy, approximates Emg
far more efficiently than the Laplacian algorithm. ;t also admits a wider class of covariance
structures with equal ease and efficiency. The new algorithm approximates Ezg by applying a
product of two operators that are polynomials in simple averaging operators. The algorithm is
efficient and general with the only restriction that E, be based on a covariance function that
is a product of factors, which are even functions in a single dimension.

The purpose of this technical report is to provide details of the Derber-Rosati algorithm,
which has since found a much wider acceptance in the community. It has provided insight into
the approximation of Emg that led to the development of the new algorithm. Details of the
new algorithms are also given; and using computer simulations, the approximation efficiencies
of the two algorithms are compared with the actual matrix multiplication, Img.

1. INTRODUCTION

Nowcasting and forecasting are important activities in meteorology. Nowcasting combines

the output of a numerical forecast model with observations to provide initial conditions, that
are in dynamical balance, used by the model to calculate the forecast. Now that the numerical

models of the general circulation of the ocean have matured, these two activities are playing an
important role in oceanography to provide a realistic description of the various oceanic regions.
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To adequately describe the general circulation of the ocean requircs a fine spatial resolution

and extremely small time steps in numerical model integration. This combination leads to

large in-core computer memories and computer processing time for the model integration.

In addition, the numerical models have to be combined with data assimilation schemes to

derive accurate initial conditions which are used by the model to compute forecasts. To make

the nowcasting and forecasting practical, it is necessary that numerical modeling and data

assimilation schemes be computationally efficient and not require inordinately large computer

in-core memories.

Data assimilation procedures that are efficient and are widely applicable, as reported in

this technical report, were developed at the Institute for Naval Oceanogrdphy (INO). Initial

data assimilation work was done using an algorithm reported by Derber and Rosati (1989),

(hereafter referred to as DR) which was developed for global data assimilation application.

This scheme is an optimum interpolation scheme but unique to the extent that it performs a

global minimization to update the entire model domain simultaneously, as opposed to other

optimum interpolation schemes that update at a single point at a time. The scheme is quite

efficient; but when combined with a primitive equation, numerical model of the Gulf of Mexico,

the nowcasting step took too much computer time for it to be useful in real-time applications.

After an initial implementation and test of the of this scheme, our obvious thrust was to

enhance and make it more efficient.

The DR algorithm combines the model output with the observations using a linear least

squares method. Because of the large dimensions involved, the minimization in the least

squares procedure is performed by the method of steepest descent, as it avoids inversion

of the covariance matrix, En, of the model output. Instead, the procedure requires several

multiplications of the matrix Zm with a vector, g. Because the dimensions of En are large, and

in-core storage parsimony is a necessity, it is not stored in-core. Since, repeated computation

of F, would require large computational resources, DR developed an efficient algorithm to

evaluate Emg. This algorithm avoided evaluation of Em and approximated the multiplication

E..g by repeated applications of a Laplacian operator.

The purpose of this technical report is to provide details of the DR algorithm, which

has since found a much wider acceptance in the community. This algorithm provided insight

into the mechanism of approximating EJ..g via spectral domain and led to the development

of a new algorithm. The new algorithm (named as the Product-Polynomial Operator (PPO)

algorithm), while maintaining the accuracy, approximates Erng far more efficiently than the

Laplacian algorithm; the approximation is affected by applying a product of two operators that
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are polynomials in simple averaging operators. Using computer simulations, approximation

efficiencies of the two algorithms are compared with the actual matrix multiplication, E ...g.

In addition to the basic motivation to develop a more efficient data assimilation algorithm

with a Gaussian covariance function, it has also been of interest to develop an algorithm which

accepts other spatial covariance functions of the model output errors. The PPO algorithm is

shown to admit, with equal ease and efficiency, a wider class of covariance functions that can

be expressed as a product of factors that are even functions in a single dimension. However,
the practical utility of this result is yet to be explored; presently, not many two-dimensional

covariance structures, other than Gaussian, appear to satisfy the factorability condition.

Although, the application of this work is intended for atmospheric and oceanic applications,

its contents are more mathematically oriented. In Section 2, we first develop the statistical

framework needed to arrive at a common formulation of the optimum interpolation problem,

leading to the least squares solution by the steepest descent, iterative minimization process.

In particular, it indicates the step where the matrix multiplication E"mg has to be evaluated

repeatedly. Next, in Section 3, we describe the Laplacian smoothing algorithm used in DR

to approximate this matrix multiplication. This is followed, in Section 4, by the development

and description of our newly-developed PPO algorithm for the same approximation, with a

discussion on the determination of the operator-polynomial degrees, approximation accuracy,

and implementation procedures. Finally, in Section 5, we present the results of numerical

simulations that compare the approximation accuracy and the computation efficiency of the

two algorithms.

2. STATISTICAL FORMULATION OF THE DATA ASSIMILATION PROBLEM

The purpose of data assimilation is to estimate the true state of the ocean, 9, by com-

bining the model output, T, and observations T,. The combined estimate (after dynamic

initialization, in some cases; see Daley, 1981) is then used as the initial condition for the model

integration. The vectors E and T,,, are r-vectors defined on the model grid, f,; the obser-

vation vector, To is an A1-vector defined on the observation grid Co. Usually, .1I << X, and

T, alone cannot provide an adequate representation of E. Thus, assimilation is performed,
resulting in an estimate on , to provide initial conditions for the numerical integration of the

model equations.

We assume there exists a mapping such that D(g,,,) = Go. Then 0E,, the true state of

the ocean at the observation grid, can be written as 09 = D(e). Often D is assumed to be

a linear mapping so that:

0o = D9. (2.1)
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The motivation to perform such a data assimilation is the assumption that both the model

values and the observational data are unbiased estimators of the true state of the ocean, and

that the optimal combination of the two will lead to an estimator of E, which has a smaller

error variance than either of the two. Under the unbiasedness assumption, we can write the

following linear model: T ,)?1 e,,,(2 )

Tom) =(ge)- (em (2.2)

where e,,, and e,, are vectors of zero mean random errors in the model output and observations,

with E,,, and E, as their respective covariance matrices. It is reasonable to assume that the

errors in To and T,.. are statistically independent. Then, the least squares solution to the true
state 6 is obtained by minimizing the quadratic functional:

0 = (T,,, - l- ) + (To - D0)'E-'(T, - DE) (2.3)

where the prime indicates matrix transposition. Lorenc (1986) arrived at the minimization of

this quadratic functional from a Bayesian approach. It is customary to write Q in terms of

corrections to the model values:

Q = T•E-'T, + (DTC - T~o)'Fo-'(DTý - To). (2.4)

where T, = T,,, - ( and T, 0 = DT,,1 - To.

Minimization of Q is the most common formulation of data assimilation. Ordinarily, this

minimization should be quite simple but for the fact that the dimensions of the model grid,

and hence that of the covariance matrix, Zm, are extremely large; thus, the routinely-used

procedures are rendered inadequate, and efficient minimization algorithms must be devised.

The data assimilation algorithm is determined by specifying the covariance matrices Em

and Eo, and by the method of minimizing Q. With a given Em, DR gave an efficient,
preconditioned conjugate gradient algorithm for minimizing Q, which avoids computing E -1
(also, see Navon and Legler, 1987). It iteratively reduces the gradient vector, g, to zero; i.e.,

E-'T, + D'E-'(D(T) - T,,) --ý 0. (2.5)

Preconditioning is supplied by the matrix E,,. The iteration steps of the conjugate gradient

method are as follows. Let Tj be the iterative solution to T, at iteration .J. We start with

initialization:

T, = 0 (2.6a)

gi = -DT EoITo (2.6b)



II I (2.6c)

d= el) = 0.

Then, the iterations are carried out via equations, (2.Ta)-(2.Th), given below:

d ,,1 -- ih , + It,- lid ,- I (2.7a)

e,= -g,, + 1,,_ 1e,,_ 1  (2.71)

f= ,, + D •' E Dd,, (2.7c)

S= 1g,,. ,,) (2.7,4)
(d,,. fit)

g ,+ + 0, it ,fit (2.7f )

Ti+, = T,, + or,,d,, (2.7.f )

h1,+i = Enig,,+i (2.7y)

3,,+1 = (g,,+1 hI.h+0) (2.7/h)

where ii is the iteration index. These steps are repeated until convergence is achieved. Because
of statistically independent observation errors, their covariance matrix, E,, and its inverse,
E0 ', are diagonal. Thus, expressions in eqs. (2.6b) and (2. 7 c) involving these matrices
are easily computed. Also, the bilinear interpolation matrix D is ingeniously manipulated.
Thus, the only computational concerns arise from eqs. (2.6) and (2.7), where computation of

hit+, = E1 ,1 g,,+1 is carried out.

For most implemented covariance structures, this operation is quite expensive, moreso for

repeated applications of the operation. In fact, there is a two-fold problem at this step: One
is the multiplication operation that we just mentioned; the second is a practical problem of

actual storage of the large-dimensioned computed covariance matrix. Although the computed

matrix can be stored on a file and read when needed, the input/output operations can result
in excessive demand on computer resources.

The DR algorithm alleviates the above difficulties when the covariance structure of Em

is based on a Gaussian function

e(r) = a exp(-, 2 /b2 ). (2.8)

ci() represents the covariance between two model grid values, r is the distance between the
two grid points, and b is the correlation length scale. The parameter a represents the error

variance of the model values. We have developed a new algorithm, based on polynomials in
simple averaging operators, that is more efficient than the DR algorithm and accepts other

covariance structures. The two algorithms are described below.
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3. THE LAPLACIAN SMOOTHING ALGORITHM

A description of the DR algorithm is provided below for several reasons. From a historical

perspective, there is interest as to where we are coming from, what are the salient features of

the original algorithm, and what features are being modified or enhanced. Because of a wide

acceptance of this algorithm, it is appropriate to provide a detailed description. This algorithm

provided the motivation to look at the efficiency problem in the spectral domain. A heuristic

formulation of this development is a necessary background for the PPO algorithm also.

The DR algorithm is based on three stipulations: (1) the observation errors are statistically

independent; (2) the model errors are statistically independent of the observation errors, and

(3) the model errors are assumed to have a Gaussian covariance structure. The first two

components led to the minimization of the quadratic functional Q in (2.3). To avoid inversion

of the large-dimensioned matrix Ern the iterative method of conjugate gradient is used, whose

iterative steps are specified in eqs. (2.6) and (2.7).

Note that we still need to invert E,, the observation error covariance matrix; the problem

of this inversion is easily resolved from the stipulation that the errors of observations are

statistically independent. In addition, to efficiently perform the iterative steps in eqs. (2.6)-

(2.7), one needs to define the bilinear interpolation matrix D. DR formulated D in a simple but

elegant way so that its transposition and multiplication in eq. (2.7c) are easily manipulated;

they handle observations, one at a time, so that the matrix D does not have to be handled in

its giant form.

Finally, they implemented a computationally efficient algorithm for performing the matrix

multiplication Smg. This algorithm involved N applications of the operator (1 + '-2 /4/1IN)

on the field, g, where '2 is the Laplacian operator defined on the discrete model domain. The

number VN, referred to as the degree of the Laplacian operator, is determined in a heuristic

manner. Described below is their algorithm, the method of determining the degree N, and the

way they handle the boundary problems inherent in the application of the Laplacian operator.

3.1 Approximating vmg

The usual protocol is to estimate the covariance structure, Em, from long-term historical

nowcasting experiments using real data. However, in the absence of such a historical record,

one can use reasonable approximations to provide a substitute covariance function. The use of

the Gaussian formulation is a well accepted alternative.
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Gaussian covariance structures have been used quite extensively in various applications

(Daley, 1991) and have been shown to be quite appropriate in regions where correlations are

positive (Thompson, 1956; Thiebaux and Pedder, 1987). With respect to the Gulf of Mexico,
Gaussian covariance structures have been used to derive realistic dynamic climatologies of the

Gulf (Passi and Kantha, 1992). The algorithm described below to approximate the matrix
multiplication, E,,,g, is predicated on the fact that Y,, is based on a Gaussian covariance

function.

The Gaussian covariance function, f(r), from (2.8) is expressed in a two-dimensional plane

as:

(i,) = t(x. y) = o exp[-- +f,' + ./ 2)J (3.1)

where the coefficients (% and :. describe the error and the scale functions being considered.
Comparing with (2.8), o = (i and 3 = ,-L, where b is the correlation scale length.

For further development, it will be useful to write an expression for an element of the
vector Ii = -- ,,g that occurs in (2.6c) and (2.7g). Note that the vector h corresponds to the

two-dimensional model grid. Thus, for a grid-point (I 1 .J0), we have:

I,,,, .I,,,

h(i,. Jo) = - -Y(i.j)0,e A(-{i-) 2 +(J-io) 2J (3.2)
i=1 iJ= I

where & is the uniform grid length along the X and Y directions, and I,,. .1,,, are the maximum

values of i. j. Thus, the array Ii, resulting from the matrix multiplication, Emg, represents

smoothing of the g array using the Gaussian function, E(r. y). DR approximate such smoothing

in the continuous domain by a Laplacian operator and carry over the results to the discrete
case using some empirical adjustments. Their Laplacian approximation result can be derived

as follows:

Pro polIf.IOT. Let g(.r y) be a function having continuous second order derivatives d2 1/O.r"

and a2'?i/0q 2 , and let c(x, y) be a Gaussian funct:-)n as defined in (3.1), then for a large integer

N,

(1+ \- (0.) fy) ).'

A Hciuri,htIc Moht'iziotz: Here, we provide a heuristic motivation that guided the development

of the DR algorithm. A rigorous and exact treatment of the required analysis is neither necessary
nor the intent of this technical report. The main objective is to provide an insight into and

direction toward the analysis of the PPO algorithm, which is both rigorous and exact.

Since 5(.r. y) is continuous, it can be expressed in the spectral domain as:
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.,) 7 j m ,,,,exp[-,(,m,, ''+ , ,)J. (3.3)

The smoothed value. I,(x. 9) at x = Y = 0 of 7(.r. , using the Gaussian smoothing function

(3.1), is given by:

h(6. = 0) exp[- 1(., +-!1
2 )] ., .,. exp[- (I.I- + -III,)],lJI,

A-- -W_2

:-- Zi: Z ,,, exp (3.4)Y~4,3
lii = -- r-.. 1= :- -

The objective now is to approximate 1(0.0) of eq. (3.4) by applying a Laplacian smoothing.

From (3.4) one needs to define an operator based on Laplacian V 2 that will yield an amplitude

proportional to exp [-at wave numbers

Note that

V;i(x.. 2j) ( -+ . i(.,..y)

= •z • (u,,(-,,i2 -,,2)expl--i(,nr ,,y)] (3.5)

Since, for a given y, as N -oo, lim(1 + y/N)'" = exp(y), an examination of (3.5) suggests

the application of the operator C = (1 + -. V 2 ) to j; so that at I, = y = 0, this application

yields:

LC(o.o)= Z Y' -,-, (- N(772 + 2) (3.6)

Successive :N applications of this operator on • yield:

CNI )= E~~) Y1 (t1, 11f1l _ ±_(111 + p2).(3.1)

For values of m, and n which are small relative to N,

1- -'(i2 + 1 ,2)) 2: exp[-b(m 2 + -? n2 )]. (3.8)
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Now. we assume that the high frequency content of !1(. r.Y) is negligible. i-e., there exists an

integer X" <. V, so that , 0 for m., t ->\,"- Thus, from (3.7), we can approximate

"(". 0).
,II1=- \ '1 I=- •\"

a- 1 ,,,, exp[-,•(,,, 2 + Il)] from (3.8)
II, =- -- ."i =I•- -- •

_ > 3• ,,,,,,, exp[-"(,,,-2 + ,•)2 (3.9)
Ill = - If = -

We compare (3.4) with (3.9), and set 4 =13 to obtain:

C.\ •(0.0) -= (./,r)i,(0.0) = (./ni)JJ O(r. )..:)(.,'.. ),d.,d.,.

which demonstrates the proposition.

The results of the continuous case demonstrated above are easily generalized to the discrete

model domain. Let ý(x,.y) be the continuous analog of the discrete array g(ij), i.e., 7(ij) =

y(i.j) . Thus, for (Iu,j,,) = (0.0), we can approximate h(iu.jo) of (3.2) as

1,(i,.J,,) = •T?(0.0)
C'a 

'- 'C' ' (0 0)

af + 6 7 2 )g(0,o0)3'1-,r Yr ) ' (o' o
= • S(o. 0), (3.10)

di7r

where I is an appropriate constant, 12 approximates the Laplacian 'rom 9(i, j) defined on the

discrete grid, f. is the corresponding operator replacing ', and N is then referred to as the

degree of the Laplacian operator.

In spite of all these approximations made in the above derivation, the Laplacian smoothing

algorithm works extremely well.

3.2 Determination of -he Degree of the Laplacian Operator jN

The degree N of the operator Z1N is determined heuristically. The criterion is to choose

that value of N which stabilizes the computations and provides accurate computations, though
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no absolute measures of the two criteria are easily applied. To achieve this, the followIr16

procedure is used:

(i) Select a value NV for the degree of/L-\.

(ii) Let = ,, be the middle of the grid. and consider points ([...).

(iii) Sequentially, consider a two dimensional field '.', such that

1 if=It.. i = .+'.'('i) = {0 otherwise,

where 1 < .1 _ Jax-. Note that only one field is non-zero. For each combination

(11. J). 1 < J < .J,,,,1 smooth the field with Laplacian smoothing using the degree V

selected in (i). Let u(Iu..1) be the smoothed value at (I,. J), so as to form an array

,.i\.(/. J). 1 < .1 <_ The smoothing is performed without topography.

(iv) Compare the smoothed array i,'• with the smoothed array 1, N' obtained using a smaller

degree N'. Stability is achieved when the array t,.y varies smoothly over J, and accuracy

is achieved when the two arrays do not differ 'significantly'. We stop if the two criteria of

smoothness and accuracy are satisfied, otherwise NY is incremented by a suitable integer

and the above steps are repeated.

In addition, one must perform extended numerical experimentation to ensure that the selected

value of Y does not make the data assimilation process unstable. To avoid this, we add an

increment of 5-10% of the selected number. For instance, in our experimentation with the

Gulf of Mexico data assimilation work, we found that numerical stability was attained around

.Y = 300. To be safe, we added 20 to it and used A7 = 320.

3.3 Treatment of the Boundary Values

First, we consider computation of the Laplacian •' 2 i.,(i,j) at an internal point (ij) of the

field t.,. In this case, the point (i.j) is considered as a center of five point star in the ocean,

and the Laplacian is approximated as:

7•.j2•, . (,' (i.j + 1) - ,'(i.j)) - ('s(4'(i.j) - L,(i,j - 1))]
N

+ [('E(4'(i + 1,j) - .'(i~j)) - ww(t'(i.j) - - 1.j))]

= -u(ij)(w.\" + WS + W'E + 111)

+ w(t'w(i,j + 1) + wst'(i.j - 1) + WEW(i + 1.j) + Wu'I(i - 1,j) (3.11)
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where w's are location dependent and distance related weights, given by

n'.x"= A'(--and w p.: = u'IU -- j(3.12)

where d, and d,, are the horizontal grid spacings for the model. Conceptually, because of the
latitude difference, it is possible that '.v \- i wS, but Wll- = IVE.

When the point is a boundary point, then the following approximation is implemented.

Consider a one dimensional space where t,'u, = 0 is the value assigned to the point next to

the boundary and i.'1 is the value at the boundary point. Then the smoothed value using the

Gaussian function is given by
1 ,"g = ,i', expj- ,3 i ]' , (3.13)

where the suffix y in t.'og indicates the Gaussian smoothing, and 1-0 is the distance between the
two points. This is the effect approximated after N applications of the Laplacian (corresponding

to the discussion of Section 4. Thus we denote

ON f:-- C"og - /' exp[--r 0

- i, exp N 2(3.14)

For L Laplacian applications, where L is a large integer, we obtain from (3.8):

N'V N? 1 (1 +12 L 0010L 2
S,,,,,, 1(-- --( ,i?2 ± n ')) (- E " a"" exp[ -- '• -'( 1 + n ')J (3.15)

11=U01= 0 n1=01=( 0

The right-hand side of (3.14) is the smoothing effect when / is replaced by N . Thus, for large
integer L, r [(

'oOL = 0'1 exp N---/3ir2 (3.16)

However, the approximation is assumed for all L = 1.... N. Instead of different smoothing
at each Laplacian application, an average smoothing factor

N-I1 
(3.17)

is applied. Thus, at each Laplacian step, (3.16) is replaced by

j= 'p exp[-Na,/3ro2 (3.18)

11



where the suffix a in .'to indicates average smoothing application. Dropping the direction

indices in (3.12), setting ri- = d1, and recalling that 6 = --7, we can write

.3,- = 1 (3.19)

Substituting in (3.19), we obtain

,, -- ' exp[-.Aae,3r;.2

1

"_ 6"(3.20)

1±+ ! + .54 u, 4u

Now, we can discuss the following boundary cases:

(i) The point (I.j) is the right most point, i.e., the point (i + 1.j) corresponds to land: in

this case set I, = WE, ý"i = 'ijj and 1/'oa = ý"i+i.j.

(ii) The point (i..) is the left most point, i.e., the point (i - 1,j) corresponds to land: in this

case set w = t", = •" and •,O, = /'i-i.j.

(iii) The point (i.j) is the top most point, i.e., the point (i.j +1) corresponds to land: in this

case set 1, = WN. q'1 = i',jj and "'oa = 'i'i,j+1.

(iv) The point (i.j) is the bottom point, i.e., the point (i.j - 1) corresponds to land: in this

case set it, = u,.. •;'l = wi, and ivo, =--•i,j-I.

4. PRODUCT-POLYNOMIAL OPERATOR ALGORITHM

As we follow the derivation of the DR algorithm in Section 3, two possible improvements

are suggested. The first is to replace the operator 1 + in the Proposition by some other

polynomial in )2 , p('). The idea is to pick p so that p(V2 ) is a better approximation to

(3.4). If a more accurate approximation is achieved, then we believe it would be possible to pick

the degree of p much lower than N, thus saving many computations when computing p(JV2).

As we analyze this possibility, we notice the second improvement. Since the quantity we are

trying to estimate (3.2) is a convolution product over a discrete space, it should be possible

to give an analysis that exploits this fact directly without using continuous approximations as

in Section 3. This proves to be true. We find that in this new domain analysis, the Laplacian

operator is best replaced by a product of simple averaging operators. This leads to a good

low-degree approximation to h(m.n.) of (3.2), and a simpler and more direct analysis. This,

in turn, makes it much easier to specify the degree of p and handle the boundary conditions.

For completeness we give a mathematical development of this analysis.
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4.1 Preliminaries and Notation

In the subsequent development, we will express the matrix multiplication, ,mg, as a

convolution, and exploit the fact that the Fourier transform of the convolution is a product

of the transforms. Convolution between two, two-dimensional arrays, j I.(s. t) and !L2(Im.II) is

defined as:

(,, 5,}(,,,.,,) = _.' •j y,(s. t),y2 (,,, - . ,, - 1). (4.1)

From Fourier theory, we know that

•g2 -- , ,.(4.2)

Further, we shall define a function of several variables, f(rj ..... r,,) as .teparable if it

can be expressed as a product of factors that are even functions of a single variable, i.e.,

.f(.XI ...... "n) = 11 .f,(ri) such that .f,(-.') -

In our application

c(s. t) = exp[(-.•'s - t. 2&)/4i 2j. (4.3)

Accordingly, this covariance function (4.3) is separable, since c(-..t) = (,f,(•.)f 2(t) where

.fji() = exp(-Sji'/2 /b2 ). We will require that the covariance functions be separable. A conse-

quence of the functional separability of a covariance function is that its Fourier transform is

also separable (due to factorability) and real (because of evenness).

4.2 Derivation of Canonical Forms

The development of the Product-Polynomial Operator is aided by deriving two canonical

forms that are functionally similar. One canonical form expresses the two dimensional convolu-

tion, h0(n. n), in the Fourier domain, while the other represents the resultant of when Y(1. n)

is operated on by the PPO. A comparison of the two expressions leads to the selection of the

polynomials to specify the PPO.

We will consider convolution approximation in two dimensions with an 'elliptical' covari-

ance function c(.!,. t) given by (4.3); the Gaussian covariance function is a special case of (4.3)

with (ýj = h2 = 6. The 'elliptical' covariance formulation provides the flexibility of different
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model grid lengths along the two coordinates. The elements of the hi vector corresponding to

(3.2) are given by

(,,,. ,) 3 • (" t)a exp - 4.+ 4() - t).

We want to show that h(n). it) in (4.4) can be approximated by successively applying, yet to be

determined polynomial operators, P,(DI ) and P 2(D-2 ) where DO.j = 1.2 are simple averaging

operators, given by

D,9(,,.") = [g(,, + 1.,1) + .(n- 1. n)]/2. (4.5t)

D 2 g(111.- 1) - [1(m., + 1) + 9(11, , - 1)J/2. (4.5b)

The implementation is affected by a comparison of the two canonical expressions given in the

following theorems:

Theorcm. 1. Let g(O. c') be the two dimen.qionaI Fourier tran.sform of g(m. ,,). Then

h(m. n) = 1 j I tt' )qi (O)q2 I ), 2 -,rn+nw d~di (4.6)

inhere
(J(G) exp(-= k/b2) exp(-27riO)" k = 1.2. (4.7)

Theorem. 2. Let Dj, j = 1.2 be the averaging operators from (4.5). Then. for anty polyno-

mials P, a~nd P-,.

P,2(D2)P1 (DI )g(in. n) = j (O, )P2(cos 21r)PI (cos 27r dhd-ii% (4.8)

Note that the right-hand sides of (4.6) and (4.8) are similar functional forms. An exami-

nation of the two equations indicates that we could approximate h(m., n) as

h(m, i, ) _ P.2(D 2 )P, (D, )g(". n) (4.9)

provided we choose P1 and P.2 such that Pl(cos 2r9) •_ q,(0), and P2(cos 27ri,) (2 q2(mi). How

good an approximation (4.7) is depends on how well we can approximate qj by polynomials,

Pj, over the domain of qj.

14



We now prove the two results in (4.6) and (4.8). First, we note that l(m. ,,) is a convolu-

tion of ,q(m. ii) with the two-dimensional array ((k. 1) defined in (4.3). Following the arguments

of (3.2),

Y. .t g(.s. )o exp + -
Y2

- 2

= Z Z y(s. t)t exp [ -)2 - t) 2 ]

= sZ~ (. t fn -. b2n-I

.4'l

= g * .(4.10)

The proof of Theorem 1 follows as an immediate consequence of the convolution (4.10).

Proof of Theoremr 1. We start by computing the Fourier transform, e:

2(6. •,) -3 • exp[(-.sb - t 2b2)/b 2jexp(-27ris6 - 27ritli,) (4.11)

where 6 and i,", are in the interval [0, 1]. Because c(s, t) is separable, we can write

^(0. Mi)=( exp(-.s , )1b2 exp(-2iri..5U)) (E exp(t 2~)/b2 exp(-27rIh/))

= qI(O)q2(i') (4.12)

where qk, k'= 1,2 are defined in (4.7). Next, since from (4.10), h(,n. n) is a convolution of 9

and f, we can write h in the transform space as a product of their transforms:

#,. = •

= gqlq2. (4.13)

Thus, by the Fourier Inversion Theorem

,(,,,. n) = j (o.( e+2rivoe +27rin10A.

Finally, Theorem 1 is proved when h in the above equation is replaced by the right-hand side

of (4.13).

Proof of Theorem 2. With D as the Fourier transform of g, we can write

g(ii.,) = j 0(, V)Eln'ifl1+mfldtdi. (4.14)
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Applying operator D, from (4.5a) to (4.14) we get

LI, ,i(,. ,,) f )(9. )( 2 2-iri in"V+"iD ./k

U f= / / ý(O. i.) cos(27rO)("' t
1+n( 1 (.

We note that every time D 1 operates on y, we get an extra factor of cos(2-rO) inside the

integral. Thus, computing DI. DI,.... it is easy to see that the application of a polynomial

operator, PI (DLI), yields:

P1 (D,)y(,,.,n) = /.(. i..P 1(cos21t9)e 2ffl(Ih?+5'dOdt,.

A similar application of operator polynomial P.2(D'2 ) yields:

P,(D2)g(m. n) = ] ,/ ̂(8. q")P' 2(cos 27r' )c2ri( '"°+"•') dOd,?.

Thus, a successive application of two polynomial operators, P 1 and P2, gives the desired

expression (4.8), proving Theorem 2.

If we want to approximate h(m.n) by P 2(D 2 )Pj(Dj)(g)(m,n), then the error will be

bounded by

I(E- P.2(D.2)Pi(Di))g(m. ")I <O.1 , IO(O.,i,)IdOdlP (4.15)

x sup Iql(O)q2(0') - P, (cos 21rO)P 2 (cos 27ri')l

where qi are given by (4.6). Thus, we see that our goal should be to estimate qi(O) by

Pi(cos 27r0), i = 1.2. This is discussed in Section 4.4 below.

4.3 Generalization to Separable Covariance Functions

This generalization is easily achieved by the following lemma and a restatement of Theorem

1. The results are stated in two dimensions, extension to higher dimensions is obvious.

Lentnta 1: Let c(,-.y) = c,(.r)62(.y) be a .separable function. i.e.. c,(s) = ci(-s). then itr

Fourier tran.qform, i7 also separable such that

S=
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and ý,o) = (,(-a). 0 < A < 27,

Th.owrm 3. Let !)(0. 1.) be the t,,o dime,•i,,oal Foi.rier tranyform of g(o . ii). Then h(/,. /1)

i . ecvu, by (4.6): in thizs CaSe

1.k(tO) = f .(.)exp(-2,riT)), kA = 1.2 (4.16)

Lemma I is essentially proved in the beginning of the proof of Theorem I when expl(- . 2, h' -

1-, )/1121 in (4.11) is replaced by ((., t). The separability of the Fourier transform is demon-

strated in (4.12).

We again note that, although the applicability of the PPO algorithm to the wider class

of separable covariance functions is quite elegant, its practical utility is yet to be explored.

Presently, often employed covariance structures, other than Gaussian, do not appear to be

amenable to such simple representation.

4.4 Polynomial-Operator Approximations

Using the evenness property of f(.) in (4.16), we have

1)= Z ,(-)2 cos(2,iTa) + e,(0).
> I

In our application, ei(-s) = exp(-.S2b?/b'), which is an even function in s. Now, consider

picking a polynomial P1 so that Pi(cos 27rO) is a good approximation to q(1(0). To more easily

compute this polynomial, we make the change of variables t = cos 2ir), such that t ranges over

[-1,1J. Thus, we need to compute T, = cos(27rk.) in terms of t. This is easily achieved using

the Chebychev polynomial recursion formula (Conte and deBoor, pg. 239, 1980). This result

implies there exists a kth degree polynomial Tk such that T&(t) = Tk(cos 27rO) = cos(2-,'rk),

and

TA.+ I= 2tTk(t) - Tk_,(t). - ,k = 1.2....

where 1ih(t) = 1, and Tl(t) = t. This is easily seen by induction using trigonometric identities:

R.+ I (it) = cos(2ir(I," + 1)0) = cos 2,-r9 cos 2kirO - sin 2-,rO sin 2k7r)

= 2 cos 27r8 cos 2k7r9 - (cos 27rO cos 2,'rkA + sin 2,-rO sin 2k1r6)

= 2 cos 27r8 cos 2k'rO - cos(21r(k - 1)0)

= 2tTk.(t)- Tx-_()
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We can compute qj(0) for any value of t = cos(27,0) using the recursion to compute cos(2,T.4)

in terms of t and adding up enough terms so that the remainder of the terms will be small.

This is possible since .. >u 1( (')j < ''.

Now we want to construct P1 as an approximation to qi(0) considered as a function of t.

The idea here is to compute P, as an interpolating polynomial on[-1,11 in t. The question is at

which points do we interpolate? We use the expanded Chebychev points (Conte and deBoor,

pg. 244, 1980). These points are: (2i ± 1 \ (]/ 2 .,0 i
.1,= a+b+(1 -b)cos 2 X +2,r}cos 2 ± 2T

where ,, = -1. h = 1. This choice of points gives nearly an optimal polynomial P1 such that

max- I<t<,I_ IP(t) - qI(t)I is nearly minimized (Conte and deBoor, pg. 243, 1980). At worst,

the error is only about four times as great using these points as it would be if we actually

found the optimal polynomial. There are algorithms for computing these optimal polynomials.

See the second Algorithm of Remes, and the Differential Correction Algorithm (Ralston and

Rabinowitz, pgs. 315-320, 1978). We use the expanded Chebychev points instead because of

their simplicity and because we have not decided what degree polynomial to use. It will be a

lesser computational effort to determine the degree using the expanded Chebychev points than if

we were to use these more complicated algorithms to determine the actual best approximation.

Thus, we let Pi(t) be the interpolating polynomial to ql(t) = ql(8), at the expanded

Chebychev points. The function ql(8) = q1 (t) is computed to E-tolerance by using the Cheby-

chev recursion formula, and

S 0

q,(0) 5 (19) = E(0) + Ec,(,4)2 cos(2,-r.9), (4.17)

where we pick .. such that 2Z-q +=,1+ei(.,)I _! Toll, where Toll will be determined below.

4.5 Determination of the Degree of P1

To determine the degree of P1 requires some computational effort. We first determine

an error tolerance ToI, (given below). We pick it and find the polynomial of degree it that

interpolates 51(9) at the expanded Chebychev points, .rx, i = 0..... n. We approximate IlI;I -

Pill by maxl<I<_ou 1l1i - Pill where t, are one hundred equally-spaced points on [-1,11. If

Il7 - P, 11 • To02 , we stop. Otherwise, we increase the degree. We stop if the tolerance is

satisfied or if the degree exceeds some predetermined degree. In our case, we chose this degree
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to about 10. If the degree becomes too large, the computations become numerically unstable.
One should also stop if 11, 1 - Pill starts to increase. If the error goal, 11,11 - Pill <_ Tol,

is not satisfied, then an error message is given, and the degree that minimized 1;1, - Pill is

used. Assuming the error goal is achieved, we have IIqI - P1II { _I IqI - 11 11 + Ijli - P, I I
Toll + Tol, = Tol?.. A similar analysis holds for q. and P2 with Ilq.2 - P211 -• Tol.i.

4.6 Determination of Error Tolerances

To determine the error tolerances above, we need to keep in mind the goal of making

Ih(,-. t) - P2(D.,)P 1 (D, ))g(m. n),I _ t. V(m. n) E Z2

where E is given. Note f should not be chosen much smaller than the expected error in one's
measurements. To determine Toll, Tol.,, we need an error estimate.

1h(',.,,) - P2(D2)P1 (D, ))y(,,.,,)l j_ (15 (. 4')lddt,')llq, q2 - P'P-2 II

_<(Gil Tol:l + _112 Tol3 )I

where I = .f/I .I '9I' . i')ld~dt,, and 1,i = 1q1 ,ji (sup-norm). We have also approximated

lIP.2 1 I. 31-. We can estimate llqill -• It i(O)I + -. > 2ci(.-9)I, i = 1.2. Earlier, we were able
to show that 11(7111 -• llyli. Now, if llyll, is large, the above error estimate is too conservative
to be of any use. Instead of an arbitrary g, we choose the special case of g = 6,.t, which is one

at (.S,0) and zero at all other points. Then IIII, = 1, and we need to make Tol:s r

and pick Toll = Tol., = L . This is justified since

g(m. n) =3>3g(.!. t)bq (mii n.), i.e., g => 3g(s. t)b,.1,
s t s t

and h(m. n) -- ., y(.q*,t)E(b,.1). So, if we approximate E(6b.,), we have a good approxi-
mation to h(m, n). We have found that the above strategy works well. Other error estimates
are too pessimistic and, hence, require much more computational effort.

4.7 What to Do at the Boundary

In practice, data are missing off some finite set. We set this missing data to zero. The

algorithm is done in one dimension at a time. Each row can be done independently. This
means that many of these computations can be done in parallel. The nonzero values in the

data propagate into the missing data, one unit on each end of a fixed data line, each time
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we apply D,. Thus, we need to add temporary memory of size 2n,, where it, = degree of

polynomial P,. / = 1.2. We only need to start the computations at a point once there is a

nonzero value on either side of the point.

The calculations for the PPO algorithm are local in the sense that each time we apply the

averaging operator, we just use information directly to the left and right of the point where

the computation is being performed. So for each power of the operator, we reach one unit

further to the left and right. So it is only after nI steps that we notice the effect of data i,1

units away. The convolution operator itself averages over all the data and so it is global in

extent. However, if we did a truncated sum for the convolution, i.e., stop adding after the

Gaussian terms are small, then this operator would also be local in nature. The DR algorithm

is also local in the same way, but it uses information in the five point stencil about the point

(See Section 3.3), each time spreading outward one unit simultaneously in X and I" directions.

After N\ applications of f, the DR has absorbed information from and NV x, N square around

the point.

The issue at the boundary is that both algorithms assume the missing data is zero. One

could extrapolate or interpolate or extend the data in a periodic fashion, but in all cases we

are filling in missing data (with PPO the data is set to zero). Then we apply the algorithm.

However, we don't compute the operator very far outside our data set since we don't care

about these values except to make our algorithm function. So, we only compute our 1d units

off each row. Calculations at the boundary are suspect for both algorithms, the only difference

being that with the PPO algorithm we treat the missing data as zero and apply the algorithm,

whereas the DR algorithm tries to approximate the effect of applying operator in (3.20). This

is because the degree of the Laplacian operator is so high that computing off the data set

would introduce serious errors. In the PPO algorithm the degree is low, so it is no problem.

4.8 Computational Effort

When we interpolate q, at the expanded Chebychev points ,ro ...... r,,, we obtain a poly-

nomial Pi in Newton form (Conte and deBoor, pgs. 40-44, 1980),

Pi(x) = (to + aI,(x - ro) + a 2 (.r - .ro)(X - X,,) + .. . + a,,(X - .Xo)... (x,-.,,,.

Replacing x by Di, we need to compute

P,(D,) = (to + al(Di - Xo) + a2 (Di - .ro)(Di - Xj) + . .. + a,,(Di - Xro) ... (Di - r,,_.-
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We evaluate this in Newton nested form, just as we do for a polynomial. Thus, a typicai step
in this evaluation is 1,11 + I-,(D - 1'I) where I is the identity operator. So, one application
of such an operator at a point in the grid requires three multiplications and two additions
To evaluate D requires one more addition and a division by 2 (a shift register, so we will not

count this operation). Thus, one step in the nested evaluation is 6 arithmetic operations -

3 multiplications and 3 additions. Then we do this at each point of the grid. We do this
operation ii, times (degree of P,). Let V be the total number of points on the grid. We can

either add 211 points to the data points or ignore the calculations at the boundary, if the degree
is small compared to the length of the line. So, we have 6niN operations so far. After we
have computed PI(D 1 ), we compute P 2(D2 ). So. we have a total of 6N(iij ± )I,) arithmetic

operations (O(N)). Thus, if the degrees of n I and ,i, are fairly small, we have an efficient
algorithm. If n• and ii2 are large, then there are too many computations, and the numerical
stability is a problem. The key question is how large are these degrees? It is, thus, important

not to make unreasonable error requirements.

Additiia'nal Remnark.: This technique fits into the general philosophy found in Parks and Burns
(1987), and references therein. One estimates, in an optimal way, the response function q,
by selecting coefficients of a filter to best estimate q, in the infinity (supnorm) norm. Our
algorithm exploits this idea by using a polynomial in the simple averaging operators (filters).

5. EFFICIENCY COMPARISON OF THE THREE ALGORITHMS

In order to give some measure of accuracy we implemented two pieces of code: the first
calculates h(i. n) directly from equation (3.2) and the second approximates h(m. i)) with the

PPO algorithm.

To be more explicit, the first routine, which we shall call Matrix-Mult, calculated

1(11,.,,) [g(.q t) exp [(-(,,m- - (n - t) 2 ')/b 2 ] (5.1)

where the sums are only taken over "close" pairs (s. t), -lose enough that the exponential term
is still significant. The numbers bi in (5.1) above may be interpreted in two different manners:
with equal grid lengths in the two orthogonal directions, they represent different correlation
length scales, b/li; or, with the same correlation length scale, b, the two numbers represent

different grid lengths, •,. Obviously, the combination of the two situations is controllkd by

specifying /ib.

In the first test case, the function g(.S. t) was a delta function, i.e., it is zero everywhere

except at the center of the grid. The grid boundary was rectangular (Figs. 1-3). In the
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Figure 1. Test Case - Gaussian smoothing of delta function defined on a rectan-

gular domain: Matrix-Mult Algorithm. Results are scaled to 0.01.
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Figure 2. Test Case - Gaussian smoothing of delta function defined on a rectan-
gular domain: Product Polynomial Algorithm. Results are scaled to 0.01.
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Figure 3. Test Case - Gaussian smoothing of constant function defined on rect-

angular domain: Derber-Rosati Algoilthm. Results are scaled to 0.01.
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second test case, we specified q(.s.t) = 1 for all grid points, (x.t), within irregular boundaries

depicting the Gulf of Mexico topography (Figs. 4-6); this grid was employed in data assimilation

simulations using a numerical ocean model, which is the third test case. Thus, the first two

cases provide the performance of the three algorithms in computing the matrix multiplication,

while the third test case provides the comparison in actual data assimilation situation. For all

simulations, the scale factor h) and the grid dimensions t), in the simulations were taken so that

h = 50 and ý 1/1b = 0.4052 and .,,/l = 0.4448.

While implementing the PPO algorithm, the number of terms, .-s, retained in 'l-I and '12

in (4.17) are calculated as functions of the grid spacing, a preset tolerance (Tol = 0.001) and

the scale parameter h as specified for Matrix-Mult. Explicitly, we set the .4u to be

S= t1,.,c[ I- n(Tol)/(a?',g(da-)/h)J + 1 (5.2)

where d1xi is the grid spacing in the direction .r, and a'vg(d.r,) is the average grid spacing in

that direction and 'trunc' is the truncation operator. For both 71,, (5.2) gave .00 = 7. This led

to the Chebychev polynomials Pi of degree 8, that uniformly approximated the (7,'s with error

approximately 0.000186.

The coefficients of the polynomials P] and the interpolation points remain fixed throughout

any single run. To save the time recomputing we used a FORTRAN SAVE statement to save

the interpolation points and coefficients, so they need only be calculated once. We set up

temporary arrays to hold the enlarged grids to implement the boundary scheme. Off the data

set the arrays are set to zero, and we use the off-grid points only as they become nonzero.

Then we compute the application of each operator Pj(D,) on the grid in order. That

is, we first calculate Pi(Di)(g), then P 2(D 2 )[P,(Di)(g)J. We use the Newton form of the

polynomial with the precomputed and SAVE-ed interpolation points and coefficients.

All code was written in portable FORTRAN and tested on the CRAY YMP. The simulation

results were scaled by 0.01, and are given in Figs. 1-3. Figure 3 provides the results from the

original DR algorithm (with n = 320 repeated applications of the Laplacian) to compare with

Matrix-Mult and the PPO algorithms in Figs 1 and 2 respectively. No significant performance

difference is discernible in this case.

Perhaps more illuminating is the comparison provided by the second set of simulations.

In this case, approximation due to the PP algorithm shows a better fidelity to the actual

computation than the DR algorithm; we notice some performance deterioration of the DR

scheme along the boundary. See Figs. 4, 5, and 6. The simulation results were scaled by 0.1.
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Figure 4. Test Case - Gaussian smoothing of constant function defined on an
irregular domain provided by the Gulf of Mexico topography: Matrix-Mult Algo-
rithm. Results are scaled to 0.1.
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Figure 5. Test Case - Gaussian smoothing of constant function defined on an
irregular domain provided by the Gulf of Mexico topography: Product Polynomial
Algorithm. Results are scaled to 0.1.
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Figure 6. Test Case - Gaussian smoothing of constant function defined on an
irregular domain provided by the Gulf of Mexico topography: Derber-Rosati Al-
gorithm. Results are scaled to 0.1.
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In addition to giving very accurate results, the PPO algorithm is very fast. On the CRAY
YMP. for a single matrix multiplication with "real" data, the PPO algorithm takes approxi-
mately 0.09 seconds, the DR algorithm 3.1 seconds, and the MATRIX-Mult takes 15.4 seconds.

In a full data assimilation scenario, the computations were performed on CRAY YMP only.
A primitive equation, numerical model of the Gulf of Mexico, integrated for forty days without
any assimilation, followed by a ten-day integration with assimilation of the vertical temperature
profile data. The DR scheme used X = 320 repeated applications of Laplacians, as shown in
eq. (3.10). The PPO algorithm used a sixth degree polynomial operators, P(D1 and P(D.,).
In addition to assimilation by the two algorithms, the data were assimilated using actual matrix
multiplication in (10g), so that the results of the two algorithms could be compared against a
reference.

The results are shown Figs. 7a, b, and c for the computed sea-surface height. The three
plots show remarkable similarity. The sea-surface height map derived from the PPO algorithm
(Fig. 7b) matches exactly with the map obtained from the direct matrix multiplication (Fig.
7c), indicating differences of the order of 10-4 m. The sea surface height map from the DR
algorithm (Fig. 7a) differs in the third decimal place. However, we see quite a significant
difference from the sea surface temperature maps (Figs. 8ab,c). The PPO algorithm (Fig.
8b) once again matches exactly, up to the accuracy of the map, with the reference case (Fig.
8c). But a noticeable deviation between the maps from the DR algorithm (Fig. 8a) and the
reference is evident. At around (88W, 22N), the DR algorithm produces a high of 31.3 0 C as
compared to a high of 30.30C in the reference map.

For a comparison on computation times in the full data assimilation experiments, the DR
scheme took 6.87 s per day of assimilation using a single CRAY YMP processor versus .68 s
for the PPO algorithm. The matrix multiplication algorithm took an inordinately large time of

25 CPU s.

6. CONCLUDING REMARKS

We have formulated the problem of data assimilation in terms of a statistical linear model,
where the true state of the ocean/atmosphere is estimated by minimizing a quadratic functional.
Matrix multiplication, E,,,g, is identified to be the major computational bottleneck, where E is
a covariance matrix based on some covariance formulation and g is a multi-dimensional vector

defined on a specified uniform rectangular grid.

With this background, we provided the details of the DR algorithm. This algorithm has
found a wide acceptance in the user community as it incorporates several useful features and
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Figure 7a. Test Case - Data Assimilation simulations using vertical temperature
profiles: Simulated Sea Surface Height Using Derber-Rosati algorithm.
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Figure 7b. Test Case - Data Assimilation simulations using vertical temperature
profiles: Simulated Sea Surface Height Using Product-Polynomial algorithm.
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Figure 7c. Test Case - Data Assimilation simulations using vertical temperature
profiles: Simulated Sea Surface Height Using Matrix-Mult algorithm.
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Figure 8a. Test Case - Data Assimilation simulations using vertical temperature
profiles: Simulated Sea Surface Temperature Using Derber-Rosati algorithm.
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Figure 8b. Test Case - Data Assimilation simulations using vertical temper-
ature profiles: Simulated Sea Surface Temperature Using Product-Polynomial

algorithm.
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Figure 8c. Tes: Case - Data Assimilation simulations using vertical temperature
profiles: Simulated Sea Surface Temperature Using Matrix-Mult algorithm.
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provides a significant computational efficiency over the actual matrix multiplication, using a

Laplacian smoother provided the covariance structure was Gaussian. However, the algorithm

needed to be made more efficient for it to be useful in practical applications.

Retaining the major features of the DR algorithm, we have derived a new algorithm that

introduces several generalizing contributions:

"* Identify that E,,,g is a convolution and, thus, express it in the spectral domain (4.6).

"• Identify simple averaging operators (4.5), and show that, with a separable covariance struc-

ture, a PPO in the averaging operators applied to g approximates Em1 g more accurately

and efficiently.

The overall effect is that we have come up with an elegant algorithm that is fast and efficient

and computes convolutions supporting a much wider class of covariance structures encountered

in the physical sciences.

Although the derivation is shown in two dimensions, the extension to higher dimensions is

obvious. Our Fourier transform-pair in one dimension is the integers and the circle group. In

higher dimensions, we take the corresponding product of these groups as our Fourier pair.

The algorithm is efficient if one of the functions remains fixed and the convolution is

computed many times. This is because we must construct a polynomial fit to a Fourier

transform of the fixed factor. If we are able to find a fit within our error tolerance with a low

degree polynomial, then we are able to efficiently and accurately estimate the convolution with

our polynomial fit applied to a simple averaging operator.
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