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English Nomenclature
a, b

C; Co
b,

a,, b,,

i Cij

X, Y, 2
z,(x,7)

Greek Nomenclature
o, o, &, O

B = (Mz -1V

a,, B

Yor Yizs Y

AT, AP

SYMBOLS

plate streamwise and spanwise lengths (or length and width)
speed of sound in disturbed and undisturbed flow
generalized coordinates in x, y, and z directions
viscous damping coefficient

orthotropic and isotropic plate bending stiffness
orthotropic plate shear stiffness

orthotropic and isotropic Young’s moduli

ratio of in-plane orthotropic moduli

orthotropic and isotropic shear moduli

plate thickness

curvature in n, x, y, and xy directions
Lagrangian

Mach number

platc mass per unit area

slope in #n, x, and y directions

applied in-plane loads in x and y directions
generalized nonconservative forces

kinetic energy

time

elastic energy

freestream velocity

in-plane displacements in x and y directions
transverse displacement

spacial coordinates

initial plate shape function

orthotropic and isotropic coefficients of thermal expansion
compressibility correction factor

in-plane modal functions in x and y directions

shear strains

static temperature and pressure differentials
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T T T

Xy “yzd Vxo

bir W,

normal strain in x, y, and z directions
nondimensional dynamic pressure
nondimensional mass ratio

orthotropic and isotropic Poisson’s ratios

flow and plate mass densities

normal stress in x, y, and z directions
nondimensional time

shear stresses

transverse modal functions in x and y directions




SUMMARY

The equations of motion of a constant thickness, rectangular panel subject to external
static loads and unsteady supersonic aerodynamic forces is derived. Both isotropic and
orthotropic panels are examined. The static loads come from in-plane forces, a temperature
differential, and a pressure differential. The equations allow for slight initial curvature due to
manufacturing imperfections. The equations are derived using a nonlinear strain-displacement
relationship which permits both linear and nonlinear panel response studies. First ord.r piston
theory predicts the unsteady aerodynamic forces due to the supersonic flow over the upper
surface.
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SECTION 1

Introduction

The equations of motion for a panel are required to predict its response to various
external loading conditions. The type of analysis to be performed is dependent upon the
applied loading conditions. Some of the possible loads include in- and out-of-plane force
distributions and temperature and pressure differentials. The equations developed here will
allow for any combination of these loads.

The equations will be used in a panel flutter analysis in which the panel may be subject
to all these loads simultaneously. The in-plane loads are assumed constant along a side. The
temperature of both the panel and its supports/boundaries are assumed different and time
independent. An applied static pressure differential exists between the upper and lower
surfaces of the panel. And finally, a fluid flows over the upper surface of the panel at
supersonic speeds (3 < M < 5) which induces unsteady aerodynamic forces on the panel. The
aerodynamic forces are superimposed on the static pressure differential. Structural damping
is included to model the energy absorption characteristics of the panel.

The equations of motion are derived for both isotropic and orthotropic panels. Portions
of the isotropic equations have been derived in other documented efforts. The isotropic
equations were derived in Reference 12 without the applied static loads, initial panel shape, and
structural damping. That report stemmed from research performed by the second author and
published in Reference 4 which included the initial panel shape and thermal loads. This and
future efforts will extend and validate their research.

In Section II, the orthotropic constitutive relations are presented and the strain-
displacement relations are derived. These relations are used in the development of the
nonlinear equations of motion for parels with slight initial curvature. The nonlinearity is
introduced in the relationships between strain and plate deformation which are summarized at
the end of Section II.

Section III develops the equations of motion for an orthotropic panel subject to some
unspecified nonconservative forces. The strain-displacement and constitutive relations from
the previous section are used to define the total strain and bending energies in the panel.
Rayleigh-Ritz approximate modes are substituted into the energy expressions which are then
nondimensionalized. = The nondimensional energy expressions are substituted into a

nondimensional form of Lagrange’s equation which yields an equation of motion in each
coordinate direction.

The isotropic equations of motion are quickly summarized in Section IV following the
orthotropic development in Section III.

A brief discussion of some possible transverse acting nonconservative forces is provided
in Section V. Here first order piston theory aerodynamics are combined with a static pressure

differential and a structural damping model to form the nonconservative forces acting on the
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panel. Other aerodynamic theories and structural damping models could be substituted in their
place. Transverse forces, other than those specified. also could be incorporated here.

Section VI presents a derivation of piston theory starting from the conservation of
momentum and mass equations. The assumptions made in deriving the theory and its
limitations are stated. First, second, and third order piston theory expressions are derived by
expanding the large amplitude simple wave pressure relation. A fourth piston theory
expression is stated that expands the range for which piston theory can be applied.




SECTION 11

Stress/Strain/Displacement Relations

The stress-strain and strain-displacement relations are required to derive the equations of
motion of a vibrating plate. The four basic assumptions in this section are: (1) the material is
orthotropic with its principle axes aligned with the coordinated system, (2) the plate
seformations do not exceed the proportional limits, (3) sections that are plane and
perpendicular to the median plane prior to loading remain so after loading, and (4) the material
properties are independent of temperature.

The constitutive relationship for an orthotropic material in a three dimensional stress state
[Ref. 6] is

-V -V
L Xy 'mog 9 o
E, E E
O I
. E, E E o,
€ “Vx _—_V_YE i 0 0 0 g,
g € \ = Ex Ey Ez < 9, > (1)
sz 1 tyz
Y 0 0 0O — O 0 T
xZ G . p £4
;Y"y ¢ 1 t‘y
0 0 0 o — 0
le
1
0 0 0 0 0 —
Gx)ﬂ

A thermal strain develops within the material when a uniform temperature differential
exists between one point of the material and another (or between the panel and its boundaries).
The thermal strain is proportional to the coefficient of thermal expansion for the material and
the temperature differential,

e = a AT (2)

where j = x, y, and z. These thermal strains are added to the right-hand side of Equation (1).
Note, there are no thermal shear strains.

The combination of Equations (1) and (2) is used to form the equations of motion of a
heated structure when its physical dimensions are of the same order. This analysis, however,
examines thin piates, i.e., plates whose thickness is much smaller than its length and width
(h <€ a and h € b). Therefore, the plate can be assumed to be in a state of plane stress where
., T,., and 1. are neglected. This assumption is valid if the upper and lower surfaces are



assumed free of stress [Ref. 2] anu ., the compression strain perpendicular to the median plane
is small compared to the normal strains parallel to the median plane [Ref. 11]. The resulting
two dimensional stress-strain relations. written as functions of the strains, are

1
9, —————— Ex€x+vxE€ —(Etax+van)AT] (31)
(l-vi_yEy/Ex)[ e T
1
9, = U2 .o [Eyey * vxyEyEx N (Eyay * nyEyaz)AT 3.2)
(l-vxyEy/Ex)
t,= Gy, (3.3)

The stresses are related to the displacements of the plate through the strain-displacement
and constitutive relations. The derivation of the strain-displacement relations follows that of
Vol'mir [Ref. 11} and Timoshenko [Ref. 10]. The normal and shear strain-displacement
relations are developed for specific applied conditions and then all the relations are combined
at the end of this section. The displacements in the x, y, and z directions are defined by the

functions u(x, ), #), v(x, y.t), and w(x, y, t) respectively. Note that the displacement functions
are dependent on time and the location on the panel.

\ Figure 1 shows an element (4, B, C, D) of the
midplane of the plate before and after deflections are
applied in the x-y plane. Table 1 lists the coordinates of
points A, 4,, B, B,, D, and D, where the subscript |

U denotes the corners of the deformed element.

Table 1. Coordinates of three corners of undeflected and
deflected in-plane element.

4(0,0) A (u,v)

Figure 1 Midplane element 3 3
undeflected and deflected in the B (dx,0) B,(u+dx + Zdx, v+ Zdx)
x and y directions. ox ox

D(O,dy)  Dy(u+ay, vedy+ Nay)
dy dy

The normal strain in the x direction is found by examining side 4B. The infinitesimal
length before the applied deflection is dx. The length afterwards is

- 2 2312
AB, - |[der Dax +(ﬂdx)
ox dx

2 2
- dx 1+§E) +(§l
ox ox

A binomial series expansion of the expanded square root term yields

172
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ox ox Jx dx 2\ox

If the cubic and higher order terms are neglected, then the relative strain in the x direction is

o - 4B 4B au 1favy?
* AB dx 2\0x
Similarly, the expression for the relative strain in the y direction is
/ _ dv _ 1{du)?
€ = — + —|—
> a9y 2\oy
If u and v are assumed small compared to w, then their derivatives are also small and the

squares of the derivatives are smaller yet. Thus, the squared terms are neglected also. The
remaining expressions define the relative normal strain in the x and y directions

/. 9u ¢ - @)
ox dy
Shear strain is a measure of the deformation of a cubic element into an oblique parallele-

piped. It is defined as the angle through which a side of the element is rotated when shearing
forces are applied. The shear in the midplane element in Figure 1 is the sum of the two

angles: 0, the angle between 4 B, and the x axis, and ¢, the angle between 4, D, and the y

1 1
axis. The angles are written in terms of the defleciions as

2 21172 2
[1+2ﬂ+(§_ll_) +(Q]] :1+ﬂ+_1.(§_v.) + e

av du
6 = tan"!| 9% ¢ = tant|—9Y
1+ 9_‘1 l 1+ _a.l
ox dy
Multiplying the numerator and denominator of 6 by (1— _23) and ¢ by (1 - %Y.) and
x y

neglecting the squared partial terms yields

6=tan“(ﬂ ¢ = tan! du
ox dy
0 and ¢ rewritten using trigonometric series expansions are
o - 3V _L{v), o - du_l(au)
ox 3\ox dy 3\9dy

Only the first term from each expansion is retained because the other terms are much smaller
in comparison. Thus, the relative shearing strain due to u and v is

; _ Odu  dv (5)

T m— —

¥ 9y ox

Forces applied in the z direction cause the plate to bend, therefore, bending strain
expressions must be included. Figure 2 shows a schematic of a midplane element before and
after point C is deflected in the z direction. In this case the plate does not move within the x-y
plane. The curvature of the element in a general direction must be defined in order to derive
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the bending strain expression. The

? ‘ slope at B, relative to 4 along the x axis
; is defined using the above trigonometric
| D, series expansion,
,‘:\ /// - \ 3
v B m - 210w
2 —= - dx 3\ ox
-~ B | the slope at D, relative to 4 along the y
) axis is
Figure 2 Midplane element in equilibrium and in m = 0w _1(ow ’ (b)
bending. Y 39y 3\ oy
and the slope at C, relative to 4 along an arbitrary axis # is
_ ox dy
m, = m—+m—=
don on
or
m, = m_cosn +m,sinn (©)

where n is the angle between the x and » axes.

The local curvature is defined negative if the point of evaluation, 4, is deflected convex
downward as shown in the above figure. (A cup in this oriertaticn will hold water.) The
general curvature, K,, of the middle surface is defined

ofm,) (d)

" on

where by the chain rule

9 . —cosn + —a—sinn
on ox dy

The minus sign was introduced in Equation (d) because the second derivative of w with respect
to n is negative for a plate with positive curvature. Substituting the derivative expression and
(c) into (d) produces
om, Jm, .

+ ) sin cosn
ox dy ]
And finally, substituting in the slope expressions, (a) and (b), gives an expression for the
curvature along n

K:

n

dm om
-|—=—=cos?n + —Zsin?n +
ox dy

9w 1{ow\?] .,  &*w 1{w)\?] . »
K, = -—11+—-|—| lcos®n - ——1+-[—] |sinn
dx? 2\ ox dy? 2\ dy
2w 1{dw)? 1({aw)?]..
- +—t—| +=|—| |sin2n
dxdy 4\ ox 4\ dy

The x, y, and xy curvatures are extracted from this equation. The squared terms within the

brackets are neglected because they are two orders of magnitude smaller than the other terms.
The curvatures are thus defined as




2 2 2
_d°w K = - o°w K, - o°w
dx? ¢ dy? Y 9xdy
The strain in the plate due to bending is proportional to the curvature and the distance
from the median plane as

K = (e.f,8)

X

€, = CzK, (h)

where C is 1.0 when i is x or y and C is -2.0 when i is xy. Substituting Equations (e), (f), and
(g) into (h) yields the kinematic relation between the out-of-plane deformation and strain

€ = —z%iﬂz ¢ = -zzz—;: Yy = 22 ::;vy (6)
The midplane of the plate stretches when there are large out-of-plane deflections.' In
this case, the new length of 4B in Figure 2 is
5, - (2] |
After factoring out dx and replacing the square root with the first two terms of its binomial
series expansion, 4B, is

2
ABZ = dxil +l(§y_) ]
2\ ox
The relative normal strain in the midplane in the x direction due to large w is thus
e - 1(awy’ a1
2\ ox
The expression for the relative normal strain in the y direction due to large w is derived in the
same manner to be
2
. 2?’_] (1.2)
2\ dy

The shear strain due to large z deflection is defined by examining the length of each side
of the deflected plate. According to Vol’mir

1/2

- 2
B,D, - ow ow )

dx)? + (dy)? +| —dy - —d
(x)+(y)+(ayy 2 i

Applying the cosine law introduces the included angle

(3202)2 = (A32)2+ (ADz)Z_ZABzAchos(_TZE_ny///)

and replacing the cosine term with the first term of its series expansion yields

' Deflections are limited such that the curvature is less than 0.12 radians per longest panel
length. Expressions (e), (f), and (g) must include the neglected terms if the curvature is greater
than this value.




(3202)2 = (A82)2+(AD2)2—2A82A02 Yy

Substituting in the appropriate length expressions and neglecting the squared derivatives on the
left-hand side results in an expression for the relative shear strain in the midplane due to large
out-of-plane displacement,

v," = ow 9w (7.3)

ox dy

If the plate is not flat before any load is applied, then the initial shape of the plate needs
to be included in the strain-displacement relations. z, is a function of x and y that describes
the initial shape of the midplane of the plate, and w is the deflection in the z direction
measured from z,. It is assumed that the maximum value of z, is less than or equal to the plate
thickness. The total deflection from the x-y plane is written

Wp =Z,+W
The strains in the midplane are derived as before. The initial length of side 4B is
N

ox

Using a binomial series expansion again yields

1+ l E.Z_E)z
2\ dx
and the length after the plate deflection is

2 2 2
1+l_aﬁ = dx 1+15 +%6_w+l(a_w
21 0x 2\ ox dox dx 2\ox

The relative strain in the x direction due to a deflection w above a non-flat plate is
9% 3w , 1(3w)?
.'v=A ;A _ Ox ox 2\0dx

2
4 1+l_3i
2\ dx

AB = dx

AB = dx

AB, = dx

dz,)2
Multiplying the numerator and denominator by 1 - %(a—”) and neglecting the fourth order
x

partial derivative terms yields a new strain term in addition to (7.1)

e 9% aw (8.1)
* dx Ox
The relative strain in the y direction under these conditions is
v 9% ow (8.2)
¥ 9y 9y

The shear strain relation is again based on the change in the angle between dx and dy.
In this case, the initial and final angles are




The shear strain term due to a deflection w in the z direction above a non-flat plate is

Yo = 9% aw , 9%, 9w (8.3)
R dx dy OJy OJx

The strain-displacement relations for a non-flat plate that is being stretched in the x and
y directions and bent in the z direction are the sum of the previous strain expressions

_du_dw  1(3w)? 9% ow ©.1)
¥ ox ox? 2\ ox ox Ox
2 2
e, - 0w, 1(@) , Y% ow 9.2)
dy ay? 2\dy dy dy
v, - X, ou, dwow _,, w 9% 0w 9% ow (9.3)

=$ dy an dxdy axa_y dy ox
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SECTION I

Orthotropic Equation Development

The equations of motion of an orthotropic panel are derived using Lagrange’s equation,
i(_ai] oL
dt\o%4,) oq
where g; are the generalized coordinates. The Lagrangian, L, is the difference between the

total kinetic energy, T, and the total elastic energy, U. The total linear elastic strain energy in
a body is defined as

U= %fff[oxex+ OyEy"' Oz€z+ tnyxy+ Tyzsz+ quu]dXd}'dZ (l 1)

and the total linear kinetic energy is

el () (G o

However, since the in-plane displacements, u and v, are assumed small in comparison to w,
the kinetic energy will be written as

L[ (Y
T = szmp( at) dxdy (12)

The plane-stress assumption, i.e., the stresses through the thickness are assumed small
compared to the in-plane stresses, was introduced in the last section. Incorporating this
assumption into the elastic energy expression yields

1
U= Efff[0’€‘+ 0,€,+T,.Y,,

Applied in-plane loads (no shearing load) are included through the stress-strain relations,
(3.1) and (3.2), as

+Q;=0 (10)

dxdydz (13)

E

e z—l-—Ej—vz[e +E Vi€, (@, v ETV,, y)AT]+_Na (14.1)
xy
E, a
xy

The applied loads are positive if the plate is in tension.

Equations (3.3) and (14) are substituted into (13) to produce

U - ff“e +E'e)+2E"v, e + (1-E"V}) "’yﬁ,
2(1-E°v ,,)

(e «,+E°v e a +E'ca +E* vxyeyax)AT(x,y)
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. 2 1 a a
+(1-E vxy)—E—;(N, e,+Ne)

X

dxdydz (15)

Note that the temperature differential with respect to the panel is a function of x and y.

The strain-displacement relations, Equations (9), are rewritten as
€ =€ - _ai\l € = ¢ —z_ai‘! = —ZZazw
“or? AP e T

and vy, are the stretching strain terms. Substituting (16) into (15) gives

(16)

where ¢, eyo,

2 Gx 2
U= {e +E‘e o*2E7v, € €, + (1-E"v}, — Yy0
2(1- E‘vz E,

« o
- . b4 s_Y '
€.t E'v, —¢€ +E'—=€ +E'v e, |a AT(x,y)
ax ax

(1-E°v.)
 — A
E.h

2,,\2 2,2 2, 32
2 (8 w) +E.(6 w) +2E.v”6 w o*w

ax?

2 2 2 2
-2z exoa—‘X+E'e. ﬂ+E‘v e, IV . ¢ Iw
dx? 2 i y

yo ay xo a 2 yo a 2
G, 2 2
+2(1-E"vE) 2y, OV +l(6w
E, 7°0xdy 2\ 9x?
o 2 2 2
+E* xy_)'._a__:‘_’. E*Y y a E-vxya_w)axAT(x’y)
«, dx? «, dy?
1-E*v 2
( 9% NS ¥ dxaydz
2E h dx? 3

The result after integrating with respect to z from —.h. to g is

v s 19
2(1 -E’v;,

G
ot E'€+2E"v € € + (1-E’v,, Ef’yz

xy “to -yo xyo

X

x0 xy “yo

« @,
—(ex°+E‘vxy—Ze +E*2e +E'v_e )axAT(x,y)
a«

12




Nle

X xo y yo)

1-E* 2
LBy dxdy

Eh

2.,\2 24\2 2 2
+Bﬁfﬂ(a w) +E.(a w) vagry W dlw
2 dx? dy? ? ax? 9y?

G 2, \2
+4(1-E'v§y)—-“1(———a“’) dxdy (17)
E \0Jxdy
where
Eh?
D, =

12(1-E*v2)
The first double integral is the total stretching strain energy, Uy, and the second is the total
bending strain energy, U,. They are restated here with the stretching strain terms ieplaced
with their respective strain-displacement relations
” (aw)i&ivz ope[dv. 1 aw)ﬂ&a_w ’
2(1 E'vz) ax 2 ox ox 2

oy 2\ay) oy oy

+2E*v

-‘)’

[av l(ﬂ)ﬂ 9% ow

du, 1(aw)? 9% ow 1

ax 2 EN ax ax dy 2\ dy dy dy

c(1-E+v2) Fnfdv du awaw 9% dw 9z ow)?
R ax ady ox ay ax ay 3y ox

(o2

-E* ﬁ+v ﬂ+la_w 9z aW
a, /oy 2\oy ay 3y

fo)
du 9;‘! . S5 ow «, AT(x,y)
ax 2 ox Jx Ox

a AT (xy)

.2 ;
CATEVY) 0w, 1(3w)?, 9% dw] v
Eh dx 2\ 9dx dx ox| *
1-E*v; 2 9z ]
—————( y) ﬂ+_(6w) + Zp W Ny“}dxdy (18)
E h dy 2\ dy dy dy |
and
D 2 24,\2 2y, 32
U, - _f”(a ) +E.(a w) c2gey, SW W
2 dx dy dx? ay?
2q, \2
v (a ‘”) ]dxdy (19)
dxdy

Note at this point that the applied conservative loads do not contribute to the bending
strain energy. However, they would if the panel thickness was asymmetric about the median

13




plane.

A Rayleigh-Ritz approach is used to represent the three displacements, u, v, and w, with
the product of temporal and spacial (modal) functions
a; (@) e, (x)B;(y)
v = by(De,(x)B,(») (20)
w =c 0,0V, (»

where the modal functions are dependent upon the plate boundary conditions only and the
indices are summed over the number of modes included in the analysis. The temporal
functions are the generalized coordinates.

u

Equations (10), (12), (18), (19), and (20) are sufficient to define the dimensional
equations of motion of a plate that is subject to the specified conservative loads and some
unspecified nonconservative load, Q,. However, the nondimensional equations of motion are
desired. The following nondimensional parameters are substituted into the above equations.

a,=ha;, by=hb, c,,=hc, x=ax y=by z=hz
- - - __(myaty2 1 = (21)
u=hu v=hv w=hw t—r( ) ) Q'.j=ZQij z =hz
Lagrange’s equation becomes
4fL) L. G,-0 @2)
dr aq;; g,

the total kinetic energy is rewritten as

o [

the total bending strain energy is now

T+ T 22 5

2/ 225 \2
+4D, (2) Iw V| axdy 24)
\b) \ 0x 3y
GX .2 . . . . .
where D, X (1 E* v,,). The total nondimensional stretching strain energy is
_en.? ”{ Gl __(aw)2 B3 0WT, L. (a)]8¥, 1k %), ea_zg\z]
ox ox) a ox ox b ay 2b dy) b dy dy
vaE+y 4[00, 1h(av‘v)2 h 92, 3w][aV , 1 h (3w}, h 9%, ow
x -— t——— ~——t——|—= "_—
”b 9% 2a\dx) a ox 9x dy 2bl\ oy b dy dy
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ax bay baxay baxay bay ox

12
—(1+E'ny__y)
a

oG a
-E (.a_y 4—\)”JZ

X

v, adu howow haz ow | haz aw]2

xy

a, AT(x,y)

adu 1aw)2 9z, aw
ox ox

hox 2\ox FHT

aov, la(av—v) , a9, 9w

hoy 2blay)] bay oy *

a, AT(xy)

a du (8w)2 0z, aw N
ax ax

Eh blhdy 2bl3y) by 9y
The nondimensional displacement functions are
u = a,(1)e,(x)B,(3)
v = by(1)a,(®B,() (26)
W = ¢, (D¢, 0¥, ()

The kinetic energy written in terms of the nondimensional displacement functions is

_ D, p(hn\?

The bending strain energy written in terms of the displacement functions is

1-E"y? . 7\ adl _
(__QE[EQL_I_E(QX) a a“’]N;’}dxdy (25)

aZd) 82 4 aZw a2¢
UB = __(‘) ckl uff & "’ E*® ( ) d’kd) 21
ox? dy? ay?
. 282¢k "’ . a 2 a2¢i azq’l
+FE ny('z) ¢ \l', ayz" +E vxy(;) ¢k——-af2 8;2 "’j
29¢, 0
+4D, ( ) by 90: 0¥, a"’Jd xdy (28)
b) ox dx dy Jdy

And finally, the stretching strain energy equation becomes

da, da; - - - 90¢,9¢, da,
U = 6D ff{akl ij a — a—BB h Cu mnau ak = —:‘I"I"’nﬁf

x ox OJx

- _ - 09¢,0 a¢a
%(ﬁ) ot Ton oy otk O dlww

mr=op "l 9% dx Ox Ox

;,__az a¢kaa h\2 - o, 99,
+2_C"' V'ax ox ox Bj+(—) c“cu(a ) axk ox lll,\l'
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:_ _ _ 9z,9¢, 90, 3¢,
+1 2 - P m i )
(a) “umn i 55 33 ox oz VY
+E‘(b) 9P, 9B, h- - alll, 6\]1 GB

2 +E k1 Cmn u¢k¢

b, b« _——
ki u k 1ay ay ™ ,a ay ay
1(h\? oy, 9y, oy, Iy,
e Iy Ckl mn op u ¢k¢ ¢ ¢ —l
4\b dy 9y 8y dy
- 0z oy, d
2hz 5 Zeg e, 2100
b Mgy kUi gy ay
h az Yy, aq,
(Junlonsy
b ay dy ay
Y- - - 9T, 9%, 3¥, 3y,
=] € —_—— =
(b) kl mn u a ¢k¢ d>| ay ay ay
- de; 0 - da, dy, 0
+2E° vxy b u Cp—= ﬂl j lhckl mnau k¥m ",l w
b ox 6 2b E ay dy
Jlhs o 5 9800, o OB
2a kil “mn “ij a af itivn a"
1 hz—- - = = ad’k ¢ alll aﬂl
+Z ab Ce1Cmn € op u a ¢ ¢ a "’

h- - 9z, O, a\p, h- - 9z, a¢, 3B,
+ =0 — — a
b bt G ay 5 % dx dy ac" V 9x ox " ay
1h2- - _ 07,94, 3d, Jy,
+_— N
2 as iy Gr s Vi
2 abckl mn lj a ¢k a_ ¢ o w’l ay

h2- - 9z, 9z, 3¢, awj
PYRLAEFT ay x ! ’ay]

_ - da, Ja, a)? 38, 3B,
+ny[bklbij ai‘ af Blp] (b) akl ij kal ay ay
- _ Oda daB. h- - ad ) 6\|l
a k k «; n
+2-Ebklaij a; a'pla—y]+2b kl mnbu a— m a a Bj
- -, @ d d
+23£cucmai.¢k ¢_’" @, q:' . p_j
bb /"% ox 'y "oy
(B a5 o D0, 2,0, 20
kl“mn “op “ij Yk ax a- i ay P a)—’
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_ -0z, dad
+2£cklbij _p(b q” +2 Ialj kai = =
b ox dx dy dx dy OJy

h— - 6z 8¢,‘8a ah—- - az 6(1)‘k 9B,

2hz b .28k
by o SR Wbt 2 s G iy

2 _ _ oz d, . ¢ oy,
cklcmu ij apd)k a-(b —lq’ !

Ld

b

R\ - - _ 0z,0¢, d, Jvy,
+2 ; C“C C.. 1 a&_ w]

hY’

b

- 0z, oy, 9B,

he
b

SR~

+2

lw

m i 35 9% '™ ox

dz, az o, 9y,
uC, i ax ay ox ¥, ay

2_ _ (0 ay, d
O

"3y dy

h\? - 9z \2 8¢, 99,
-(3) C“C"‘( 65] 3% ox """"’]
da, 1o - ¢, do,
a i k
PR T A MUY a“"""

..a'z' 6¢

a AT(x,y)

- _% la—-— 8¢,8¢
,a ay

(1-E*v?
+
Eh

. (1—5'\;;)g
Eh b

D T A

e~ N"}dxdy (29)

One other assumption must be made before the three nondimensional equations of motion
can be derived from the above equations. The only forces acting on the plate that have not
been explicitly defined to this point are the nonconservative forces. It is assumed that all the
nonconservative forces act in the z direction only. Thus, the in-plane nonconservative forces
are neglected.

The equation of motion in each direction is determined by substituting each generalized
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coordinate into the nondimensional form of Lagrange’s equation, (22),

U

X — =0 (301)
aa,.j
U,

y: —=0 (30.2)
ab,,
au oU, -

z 4l .2 5.55.3..-0 (30.3)

dt agm dc,, Oc,,
x_Equation

The x equation is formed by substituting the stretching strain energy expression into
Equation (30.1). Note the kinetic and bending strain energy expressions do not have any terms

containing a,. The derivative of Us with respect to a, is

da, da h- —~ 0¢,0¢, de, h - z d¢, da
ff{za"‘a AN ac"‘c""'ak ¥, B2 G52 akax‘“3

ox 6
- da, aﬁ, lh._ - aa all’[ v,
+2E* b —_——p =
vxyb k% 5= 357" 25 Cu mn¢k¢ma 35 ay
h-— z-p aaiawl
+ —C
b 3y A 3x 3y
_ 3,08, - 9w, OB, k- - . 0, 3¥, 3B,
2D 2|8z « ! +b——:".——_—’— "o — 2
20| 5% gy 5y o PGy e B gE 4G N g
h- 0z oy, 9B, h- az o, 3B,
*—Cy—= b, Cri @, ¥ —
b*oax * a3y ay b dy ox '!ay
(1-E'

@, 1.7 -
(1+E' )ha AT(xy) B N, ——_ﬁj}dxdy =0
ax

y' a
Eh h dx
Simplifying for a specific ij and regrouping yields

da, 0 ap, o
[l e i
+2%[E'vnf Zx'dfaﬁl f—-adxfﬁ, —Ldy|b,

3, 96, de, _

i L AU
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E""()f‘b”a a"y’lafﬂd
2Dx,(f) f ¢,,—="'-a,. f AL dy]cu -
2[R ()"’u?ﬁ'iﬂ
+(£b)’ ‘;‘y [ v b o aa"" oD, ?,, o, aap ]}d;d;a,
+ax(1+E~vxy%i)%ffAT(£§)a—£Bjdi'di;

1-E*v}, 3
S ")"f “'dfadyuv) 31)

which is the nondimensional equation of motion in the x direction.

¥ Equation

The y equation is also formed by substituting only the stretching strain energy expression
into Equation (30.2). The result is

J[a\ [~ BB, 1h- - 9y, 3y, 9B,
ff{ZE( )[u k& '6)7 ay 'Z"Ecktcmnd’kd’m xay 3 ay

aak ap lh- - a(bk ad)m aBJ
oz Lbigs 2 g5t oF Vi
+£E 3z, dd, 3B,

Hax ox tay

+2E°v, 2|5, —2

a
b

- da, a- Ou GB,
*’2ny[ka'§ = B,B, + %5z EN
h— - 9¢, O«
+;Cklcmn a;d)m ox ! —npi

+—c

b"’axd”‘ax a‘f b"’a ox ax"'

h- 0z, Oda, dy, LB 0z, 3¢, e, }

3B (1—15‘\;,2‘,)g
i 9y Eh b

«
-E*|2+ =Za AT(x,
(a v )bha (xy) o,

P 4

2N]a, Plazay - o
h ‘ dy
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Simplifying for a specific ij and regrouping yields

E'v d dy + D, O gz [Prp 4
Ii f—(! XIBI_y f“kax fa p }
aB, o 6 6
el om0
h. aw,aw BB
et fos X
E'v,, fw, ’dy
+2D f__-(bm afi dff"’]a_-u Bjdi]EHEmn

] gy 00 2B, da, Oy,
%% ff{ [ Vogx Wy Do }
2
(80 2% 0, 22
b dy dy Y ox

b,

} d%dy E,,

dy

o © aa - | oy g
+o E (—’ +vxy)—b;ffAT(x,}7)ai—a;_-’-dxdy

o,

1-E*v? (B, _ .
-(—Ez‘ﬁii-faidxf-g%dy (N (32)

which is the nondimensional equation of motion in the y direction.

z Equation
The z equation is defined by substituting the kinetic, bending, and stretching energy

expressions into (30.3). It is written here in terms of a specific ij.

1 - 2) =
s {f¢k¢idxf¢1¢jdy} Cu
1 a’¢kaz¢i - - az‘l’zaz‘l’ -
= a;zd*f"""'f"y*E()f"’k i

82 3%, 3?
i [eafo e S Sas]

52

dé, o d

+ 4D, f¢,,¢x ‘l’,‘l’d
"\b) | ox ox dy dy
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3d, 9,

ay, aw

o]

5
(3

* (E'ny*ny)(

(2
b

d

az
ox

a¢ka¢ oo,
ox ox a“"""

JIGE

2w, 20,2

2

|2

dy

a

b

|
+2(E%v,,

+(E%v,,

¢, 9o, 9, 3¢,
dx Ox Ox Jx

AR
2

%) (&
y

2)’

b

2
e oo

“TE)

3¢, d
.p, 2% d:tlr,w,)

d
—?5¢ 02 a"'

2 3]

(a)2 a‘l’, a'l'

" ¢k i

b ay ay
aZp azp (¢ o, aq!,
ox Jy ax Jy

e

36, 94, 34,
"9x oy 9y

¥, +(E7v,,

+2D,) (3) 6,0

awj]
ll a;

a9,

d
ALY ""

08,01
“dy 9y oy
dd, 9,
d""a‘ 'a

d
¢,, ¢—¢‘|’1 \I'

+2D,)

=y

dxdy c,,c

2D)

1l

= dx fll'l'l'llf ¥, dy

oY, 04, ¥, 3Y;

4
e

g [0k
+(E‘vxy+2ny)( )f

%y ¢, 2%

35 ay 35 3

aq,,
8 e

a¢, . 3
f"’ oy, oy

ay

P", d)’} El—mucop

oa ] (3% 9%, 38, _ e (@ 3y, tlr
4| B?—af‘a';f‘"‘f"""n"’f"y £ ) [ by e
b (3V [y 3 gz B30,
D3] [outa g o5 5 2 w1
2 5] [ ¢fma“]
[ [19%, (3, 9%, 2 3B, ay,
[[[#(ZFw ”U“as)
2 9z, da ad, Ip R
+(.§) a—f( Ty 8, Y+ p_o 5% o _'lllj)]dxdy}a“
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,,24a 0B, 9y, a‘l’, -
25 (3] [erenrar[ T
. oé,, 34’ op
+E nyf k ax ax -'"’ ll’jdy
Jda ¢‘ &5
+nyf a"k m a BI —"’d
da, d¢
xy _a;’ —¢i fﬁ‘l’ dy]

3z, (.  ob, P 3o
”[Ef(E Vi gz 5+ D, e PR & )

E 0 280% b 39y Nazas) s
'é?( (3)“"656 3% 0% "’)] y} i

_ax(l+E‘vxy——-)( ){ffAT( _)[adik ?\lllw dxdy
+ffu(f;)_ﬂ_"ﬁ¢ dfdy}
7 ox ox !
o 2(a\? - ay, _ _1-
e g [freoh Yol
- [[ares Zro Y azds|

v,
%55 5
a<|>,, a¢, ftlw dy]ck, f faiﬂtvd dy }(N)

fdwd ¥ a‘"fd ] . ff "¢ a%dxdy}(N )

Cur

. (1-E*v.) ay?
Eh (h){

26 6

9y ay

2 o
e -
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SECTION 1V

Isotropic Panels

The nondimensional equations of motion for a panel made of an isotropic material rather
than an orthotropic material assumed previously are stated here with little derivation. The
stress-strain relations for a thin isotropic panel under an applied temperature differential and
in-plane loads are

o 2)[ex+vey—(1+v)aAT]+—’l;Nx“ (34.1)
-V

% 2)[ey+vex—(l+v)aAT]+%Ny“ (34.2)
-V

Ty = Gny (34.3)

Substituting Equations (34) into the total linear strain energy expression, (13), yields

-t 2v €l (1-v),2 _
U= 2(1-v?) fff[€,+ey+2v€,€y+ ) Yry~ (1+V)a AT (x,y) (€, +€)

—y2 a
+ (IE;: ) (N:ex+Ny ey)

and substituting the strain-displacement relations, (16), into (35) gives

dxdydz (35)

— E 2 2 (l_V) 2 )
U-= 2(1_\,2) fff{exo+€yo+2vexoeyo+Tyxyo (1+v)aAT(x,y)(em+ew)

(1-v?) {,,a a
+ _Eh (N, €,* Ny eyo)

20,\2 [ A2ar\2 2., A2 2., \2
. g2 (a w) +(6 w) +2v6 w d w+2(1_v)( 0 w) ]
ax? dy? dx2 ay? ox dy
2 1w w a’w 3w
T4LZ1€, +€yo tvie,— +€yo——_2
ox? dy? dy? ax
2 2 2
+(1-v)y,, ’w (1+v)aAT(x’y)(a w  O'w
° 9xdy 2 ox* ay?
-yl 2 2
+(1 V)NxaaW+NyaaW dxdydz
2Eh ox? dy?

Integrating with respect to z from -12'. to g. and separating the result into the bending

and stretching equations using (9) produces
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dxdy (36)

oot

2.\2 2 2 2 2o, \2
(6 w) +(6 w) “2v d‘w d°w z(l_v)(a w)
dx? dy? ax2? 9y? dx dy
and

ETCE vz)ff{

du | 1( )2 9z, gw |2 [av 1(6w)2 aZ,,aw]2
5 e ——— + | —— - + ———

ox dx ox dy 2 a_y dy dy
v2v[98, 1(3_‘!)2+9.fe9_! av, 1w\, 9% ow
ax 2\ ox dx dx ||dy 2 ay dy dy

L(=vfav, du dwdw 9% dw 9% dw]?
2 |d0x Jdy Ox dy Jx dy OJy ox
du, dv 1(aw)? 1 g_\g)2+azpa_w+32, ow
ax ay 2\ ax 2\ 9y dx ox Jdy dy
, (1-v})fau (aw 2,92, 9w (
Eh Lax 2\ ox dx ox
2
,a-v9H (1-v?) av ow angﬂ (Na) dxdy (37
Eh ay 2 dy) ay ay)\"”

Equations (12), (36), and (37) are nondimensionalized using the parameters defined in (21) but
replacing D, with D. The nondimensional kinetic energy is

242
the bending strain energy is

oS3 5 28 5

2/ 223 \2
+2(1—v)£ il
b) \9xdy
- 6pb ” au __(aw * hO%, 3R] (a[8V, L h(3WY, k9%, 0w
3 2a a ox ox b) |dy 2b\Ody b dy dy
c2v 8 a_u(a_w)ﬁa_a_w &V, 1h(awy h9%0w
b|dox 2a\dx a dx dx |[|dy 2 b\ oy b dy dy
+(l-v)gz aau hawaw haz aw haz ow |2
2 |(dx bay baxay baxay bayax

adu,aadv, L(3w), l(a)’(3w)’
hdx bhay 200x) 2\b)\ay

—a(l+v)|—

]AT(x.y)

N?)

dxdy (39)

and the stretching strain energy is

-—a(l+v)
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9z 3w 13
c Py ¥, (- %% % AT (x,y)
ox dx \b) dy dy

+(1-\’2) adu_ 1(dw 2 az ow (N)

Eh hax 2 ox ax Bx |V *

1-v? 3V 1la(aw) a9%, aw]iva\ 4540

,(-v)afadv 1a(dw)’ a9% dow (N,) dzdy (40)

Ek blhdy 2b\9y) bay dy

Isotropic x Equation
The nondimensional x equation simplified for a specific ij is

aak da, , (1-v)(a aﬂlaﬂ,
[ 5 fomes - S () [ 55 5 0]

kaa“‘dxfiﬁnd P [ az de]b

e, 3, de, _ _
99 90 9, xfw,wnn,.dy

+2£ v
b

ox dx Ox
2 da, _
+v(8 f(bkd)m — dx ;9 _Bd
b ox dy dy

o5 ot S0 s

) o[ 0, 9, (1-v)(a oy, 9B,
fo{ E A ()¢"ayay
(aV [, 2% 0W, (1-v) 3 3B,
(b)_a? O rarL A ey LA }dxdyc"'

ca(lev)3 S%p dxdy - L=vDa [o% NS) @l
(1 v)hffAT(x,y)afBjdxdy = hf dxfﬁdy (41)

Isotropic y Equation
The nondimensional y equation simplified for a specific ij is

da 3B, 1- [P
s 05 ] B

a 8[3,8[5 , (1-v) da, da;
( )f“" 'dxf 55" 2 fax PH dxf“fdy
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__h 3%, 9%, 36,
) b()f"""" fay ayay Y
¢, 9 J
fax ax fwl e

9
+(1- v)f ¢"ma‘df\p, _pd]

b . 98 (l—v) da; oY,
N, Ihid p
2bff{af[v AT O ayﬂ]

+_£EL’ a\? axp,aa (1 v) o, Ja;
1)

. 3y dy 2 9x ox (P; }‘Edﬁ“

+a(l+v)-—ffAT(x,y)a B —Zdxdy

_(1-v3) vz)aa —’dy
Eh bh

Isotropic z Equation
The nondimensional z equation written in terms of a specific j is

1 - ) =

3 {f(bkd’idqu’ledy} Cu

L[ [ 0% f f fazw, Y, -
v = dx dy + dx d
e{f or2 azz WY ( ) b dx ay2 ay? Y

9%, yw
([ [v St - [0 ar [ Stvas

+2(1—v)( )fad”‘ad" ax [ 24 2% Ldy

ox ox dy dy
+l2ff

(az \2(6¢k8¢ (1- v)( )Cb oy, all.l)
k

axJ FEAF A A ¢'6_y—5_y_

3z 2 3y, d b, 3
(6 G (o055 - 7255w

b) \ oy 9y dy 2 9x Ox
. (1+v)(a 2azp azp ad, a¢, a¢k q;j _ -
2 (b) % ai(d’ PP A AL ‘) d"dy}cﬂ
. 3z, (. 3¢, 3¢, I, 3¢, 3y, 3,
ff{ax[ dx Ox a"""""’ ()d’"d’"a 8y ay"'
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a ¢ all!, a\",
(3) bz & ‘}

.(a 29z, oy, 3y, Ay, a¢k 3, oW,
(b) ay ()d)k‘b‘b dy dy dy Ox ax¢'l"ay
a — - — ——
dik(b di\ll, a_ll! }dxdyc“cm
dd, 09, o, 39,
{f&x iz ox o f"’"’"""’fdy
-9V, 9y, aw 64:
+ 2 d f !
b f¢k¢m¢o¢x x a;; ay ay ay dy
dd, ¢, oy q;
(&) [0 5m SaaaE [ v, 2
\2 (O ad, _
+ 8 _ik(b $é,— ¢‘ f‘”l ypw dy} c“CmnCop

b
da, 3, a¢ _ aw, q,
+2Z{[ 3x ox ox fﬁ,q:,,wjdy+ ( )f =, $,d fﬁx

+(1"V) a apla“’
2 (b)f"d) ox 3y aiwd

,(1-v)(a ¢, faﬁ, Y,

2 (b)f Fr b AL d”]

(195 (2% 8%, (1-v) (a)?, . 9B, 3Y

ff[ f(af 355'% 2 (b) "33 dy ay)
.(a)2 %% (, 0% , (1-v) 9%, 3B, - -
(b) ay( axw’a 2 ¥5% 9 l"”dxdy}a"‘

a\? _9B, 0%, 3y, _
- dx | — —= 1

20, 36, _ (2B,
fak ax axdf _‘llllld
Ld-v) da,
f —¢m ax fpl —‘l‘d
L-v) da, Y,
fax a_¢dfw dy]

+ff aZ ( « a(b ap, N (1-v) aak

axv"axay 2 ¢p’a)
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9, ((a\2 9B, 3%, (i1-v) 9, a5l b
L% ((a d
‘((b)“’“ay 55 2 ox a‘“’) ’dy}b“
2 0 oy, d
~a(l+v) ){ffAT(,) dﬁ' _w, ()¢k¢ oW ;; dxidyc,,
az ¢, 2az
95 %% \dxd
ffAT(xy) = o5 y; + ( ) d>. ay x y}

_y2 2 da¢, o a a
*“EZ)(Z){ o s [t )

RT3 ff o)

1 a
+—_ 43
6D b(h) Qw 3
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SECTION V

Nonconservative Forces

Q. are the nonconservative applied transverse loads. In this analysis, the loading is due
to a static pressure differential between the plate’s upper and lower surfaces, the aerodynamic
flow over the upper surface of the plate, and structural damping. From linear theory, Q. can

be written as
Q,; ff AP +(P-P)+P }—dxdy (44)

where AP, is the static pressure differential, (P -P_) is the supersonic aerodynamic pressure
is a structural damping load. The static pressure differential is positive

differential, and PDW
when the upper surface of the plate is in tension

The supersonic aerodynamic pressure differential is written as
Ul 2 Ul 3z,

P-P, - P ow [M°-211 ow| P.Y (45)
B lox [M2-1 U e B £

where the term within the braces comes from first-order piston theory and the last term is a
static pressure due to the plate’s initial out-of-plane shape. Equation (45) is derived in Section

VL
The mathematical model used to represent the structural damping is that of viscous

damping
ow
P = Cyp— 46
Substituting the nondimensional parameters into (44), (45), and (46), and combining the
results yields
= 2 D \112 3% U2 oz
u-habffAP+ - h[3% (M2 x| Tow|, PR T
/ al| ox M21Uma ot B a ox
D \12 3%
+ cmh( x ) a_w}a_wd xdy
mpa4 at aC
and substituting in the nondimensional dynamic pressure and mass ratio expressions
p.Ua? p.a
A= — po=
D, p ph
produces
2_ 12 ae 7
LW (M 2) B)?ow 9%
A dt OJx

2 JDb()”{%: Y

zif




V12
( B ow gﬁd dy
LA p U, ar ac

The final step is to replace w with its nondimensional modal expansion, (26). The
nonconservative forces on the plate written in terms of a specific ij are

6::‘1 = 3bhAPf¢dxf‘|»’ dy
AD .
S [
M2 -2 1/2 _ R a7 o
+ (MZ_])(L;-) [fd’kd)idxf"’l‘l’jd}’]c“ + ffa—;¢i\|ljdxdy}
1/2
* Crpa (m) b( ) [fd’k‘b dqu:,q: dy}c“ 47N
P
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SECTION VI

Unsteady Aerodynamics

Unsteady supersonic aerodynamic forces are the dynamic driving force in a panel flutter
analysis. Many different theories could be used to describe these forces but in this analysis
piston theory aerodynamics will be used. The nonlinear form is derived from the conservation
equations. Several assumptions are made pertaining to the flow: (1) the isentropic relations and
the perfect gas equation of state apply, (2) gravity effects are negligible, (3) the flow is
irrotational, and (4) the fluid may be treated as a continuum. This derivation uses information
gathered from Shapiro [Ref. 8 and 9].

The conservation of momentum equation (including the irrotational assumption) is

YV gy _lop (48)
at 2 P
Since the flow is irrotational, its velocity can be represented by a potential function as
V=vo (49)
Substituting the velocity potential into the conservation of momentum produces
Ve, lyvey--Lve (50)
ot 2 P

After taking the dot product of (50) with a unit vector along a streamline, integrate from an
upstream reference point where the flow is steady to some point over the panel

[d(%)+fd[%(v¢)2]+f%dP -0

which yields

9% liggy. (lap-L1y? (51)
ar 2 P 2

where U, is the uniform and steady flow velocity at the reference point.

Since the flow is isentropic, the isentropic pressure/density relation

1/
o= p(Pﬁ) ' (52)

can be substituted into the integral term of Equation (51)

P P (-l
p P. y-1p |\P,

Substituting this and the speed of sound definition
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2 YP,

c. = —=
p.l
into Equation (51) yields
2
Co. (v-Dly
_a_¢i+l(vq>)2+___ £ -1 =—1-U3 (53)
it 2 y-1[\P_ 2
Also note that the isentropic pressure/speed of sound relation
c\? P \\y-Diy
—| == 54
=) (%) e
could be introduced at this time
2
c. 2
9_‘2+_1.(v¢)2+ L =1Uf (55)
a2 y-1|\c, 2

The flow ahead of a piston in a tube is assumed to be one-dimensional. Piston theory
aerodynamics assumes that a vibrating structure in a supersonic flow is analogous to an infinite
number of oscillating infinitesimal pistons placed side by side forming the shape of the
structure. It further assumes that the flow changes due to one piston do not effect the flow
over an adjacent piston. Thus, the perturbations to the flow over a point on a panel will be
defined using one-dimensional theory. Equation (55) written in one spacial dimension is

2 2 2
6_%1(@) N A R S % (56)
at 2\ oz vy-1|\c, 2

where it was defined earlier that z is the vertical direction. Solving Equation (56) for the speed
of sound in the disturbed flow gives

2
czch- -1 a—¢+li(£ —le 57
(vy-1 7 2l 3 5 U= (37)

Since the flow over the panel is one-dimensional,
Wiy = 22 (58)

0z

where w is the vertical displacement of the point on the panel being evaluated.

The one-dimensional conservation of mass equation written in terms of the velocity
potential is
2
3,000, 30

59
ot 0dz dz paZZ %)

Differentials of the one-dimensional form of Equation (51) will be used to eliminate density

from the conservation of mass equation. Differentiating Equation (51) with respect to z
produces
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I’ 90 3®  1dP _
dzdt 0z 9z p dz

and solving for the pressure derivative yields

dP _ dPdp _ [a%p ELER

dz dp oz '|9zdt 0z o7’

(60)

The isentropic pressure/density equation, (52), can be rewritten in differential form as

dPp _ VP, o1

d_"pl

(61)

which is then substituted into (60) to get

2 [ A2 2
dp _ _p &) P  J0 P 62)
0z YP_\p ) |0z0t 3z gz

Differentiating the one-dimensonal form of Equation (51) with respect to ¢ leaves
?® 00 ?® 1dP _
+ +—— =0
ot2? 0z dzdt p dt

and solving this expression for the pressure derivative
dP _ dPdp _ _ [a% , 0% azd)}

ot ot2 0z 9dzdt

63
dt dp ot (63)

Equation (63) can be rewritten using (61)

2 2 2
9p . _p” (P-)|0°® 00 5@ (64)
at YyP_\p 9t2 Oz 0zot

Substituting (62) and (64) into the conservation of mass equation, (59), yields

{(Y_{:)p,_l _(a«pﬂ ’e _,3% &0 3%

oY 0z dz2 dz 9z0t 92

=0 (65)

Using the isentropic relations, (52) and (54), Equation (65) is rewritten as
[c2 _ (8@)2 3% 1 0d 3@ J
0z

dz2 0z 0z0t 512
Equation (66) is a nonlinear, homogeneous partial differential equation of second order which
describes the unsteady motion of the flow over an oscillating piston.

=0 (66)

The theory of characteristics can be used to solve partial differential equations (PDE) that
are hyperbolic and have the form

A®, +2B®, +C®, =0 (67)
where
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9z2 ¥ gzot o ar?

2z

and the coefficients 4, B, and C are functions of z, t, ®,, and ®, . Equation (66) is in this
form and is hyperbolic since B*- AC = ¢? > 0. The hyperbolic nature of the PDE dictates that
there are two real characteristics that satisfy Equation (66). A characteristic describes the
motion of a pressure wave through a fluid.

The flow over the panel, therefore, consists of simple waves since its PDE has the form
shown in (67). These simple waves are pressure waves emanating from the oscillating piston.
Their amplitude may be small or large.

The equation describing the motion of each wave must satisfy the governing PDE. There
are two families of waves that satisfy the PDE. There are upward- and downward-traveling
pressure waves (traveling with respect to a fluid particle). The nomenclature assumes the
piston is oscillating in a vertical, constant cross-sectional area duct oriented such that the
upward direction is positive. Either one of these pressure wave families may exist in a flow,
but not both at one time.

A flow that contains simple waves is defined such that ®, and ®, are unique functions
of each other [Ref. 9]. Thus, the derivatives in Equation (67) can be rewritten as

od d®d_ od
o = z . z - "¢
= 0z d®, 9z
_3®, a9,
2 ot 9z
90, d®, 30, de,dd,

q)tt = : = -
ot do, ot d®, oz

and substituting these into (67) gives

do, (d®\
A+2B—*+C =0
do,

z

t

Solving for results in

Z

d®, -B:/B*-AC

dod C

4

and after substituting in the values of the coefficients from Equation (66)
de, (a¢ )

= -(Wzc) (68)

where the minus sign corresponds to upward-traveling waves and the plus sign to downward-
traveling waves. Now, differentiating Equation (57) with respect to W yields
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CCAN Jod § st S IR Tk § et TS (69)
ow 2¢ | dw
and substituting (68) into (69) produces
O _,x-1
ow 2

Integrating (70) from the upstream reference point to some point over the panel gives

(70)

c-c_ = -1

(W-w.)

Dividing through by ¢, and noting that w_ = 0 because the flow is uniform in the x direction

at the reference point yields

y-lw
2 ¢

L =1 1)
c’
Recall the isentropic relation given in Equation (54). Replacing the speed of sound ratio with
the pressure ratio provides
o\
P =(1+_Y’ll)v-l (72)
P, 2 ¢

Equation (72) is written for upward-traveling waves only since both upward- and downward-
traveling waves cannot exist at the same time. Equation (72) is the equation upon which piston
theory is based [Ref. 1 and 7]. Tt relates the pressure on the face of a piston to its motion
regardless of the magnitude of that motion.

Equation (72) can be expanded using a binomial series expansion to get different piston
theory orders. First order piston theory is generally written as

P-P_=p_c W (73)
The second order binomial expansion gives
. 2\ 2
P-P~=p~cfz+y+l(.‘_”. (14)
c, 4 \c,
And third order piston theory is
. $\2 . \3
p_p_=p&c3_‘ﬁ’.+l.ﬂ3 LYW (75)
c, 4 \c, 12 \c,

The expression defining the velocity of the piston surface, (58), needs to be discussed
further. As stated in the Symbols section, z, (x, y) defines the initial shape of the plate and w
is the vertical displacement measured relative to this initial shape. Since the plate is being
divided into infinitesimal pistons, this function also describes the initial orientation of the
piston surface. The vertical velocity of the piston in a uniform horizontal stream is then
described by
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W aw . 6zp

+U —+U_—=
Dt ot ox ox
Substituting the vertical displacement expression into the first order piston theory expression
yields

(76)

Uz
P-P - L(

d
3 1 ow  ow, _i) (77
MQ

U,dt Jx ox

First order piston theory is used in this analysis since higher order aerodynamics do not affect
the panel response unless the deflections are on the order of the plate length [Ref. 5] which is
outside the limits of the structural assumptions imposed here.

Equation (77) can be employed when the Mach number is sufficiently high, M> 2, and
the length-to-width ratio is low, a/b < [Ref. 3]. Equation (77) can be modified to include
Mach numbers down to 2.

Ul
pp - B
p
This form was derived from a first order expansion in reduced frequency of the exact two-
dimensional, unsteady, linearized, potential flow equation. Equation (78) can be used to define

the unsteady aerodynamic loads imposed on a structure due to a flow whose Mach number is
greater than /2.

2
M—2l6w+ﬂv_+‘_9ﬁ) (78)

M2-1U“_6; dx Ox
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SECTION VII

Conclusions

The nondimensional equations of motion were derived for a thin panel using nonlinear
strain-displacement and linear stress-strain expressions. The panel was assumed to have a
constant thickness and a flat or slightly curved surface. Both orthotropic and isotropic
materials were examined. Solving these equations would produce the in- and out-of-plane
motion of the panel subject to external loads. The out-of-plane displacements were limited
such that the local curvature anywhere on the panel would not be greater than 0.12 radians per
panel length. Also, the magnitude of the out-of-plane displacements was assumed to be much
larger than the magnitude of the in-plane displacements.

The boundary conditions on the panel were not defined other than a fluid flow only over
the upper surface. Thus, these equations are applicable to rectangular panels whose edges are
any combination of the following boundary conditions; clamped, simply supported, and/or free.
The boundary conditions are introduced through the nondimensional modal functions, Equation
(26).

This derivation assumed that the panel was subject to static and dynamic external loads.
Several different loading conditions were examined. The static loads consisted of in-plane
forces, a temperature differential, and a pressure differential. An unsteady supersonic flow
over tie upper surface of the panel was modelled using first order piston theory. Structural
damping was incorporated using a viscous damping model which only affected the out-of-plane
motion. The equations were written such that other aerodynamic and damping models could
be readily substituted for the current ones.

The equations describing the motion of an orthotropic panel subject to the above in-plane
loads and some arbitrary out-of-plane loads were defined in Equations (31), (32), and (33).
Their derivation and the assumptions made during the derivation were discussed.

Equations (41), (42), and (43) described the isotropic panel motion in the x, y, and z
directions, respectively, and Equation (47) defined some possible nonconservative transverse
forces acting on the panel in the z direction.

A large amplitude simple pressure wave expression, Equation (72), was derived from the
conservation equatons using the method of characteristics. This expression described the
pressure on the surface of a piston oscillating in a one dimensional duct. This was the basis
from which first order piston theory aerodynamics, Equation (73), was derived.

This analysis did not consider panels with large initial curvature (shells) or with an
underlying cavity. Nor did this derivation discuss the ply arrangement for a laminated material
with orthotropic properties. These parameters and other aerodynamic theories will be included
in future research.

37




SECTION VIII

Acknowledgement

The author would like to thank Dean Earl H. Dowell for his many papers and books on
the subject and for the valuable conversations without which this work would not be
completed. He would also like to thank Professor Kenneth C. Hall and Dr. Max Blair for their
discussions concerning the aerodynamic model.

38




SECTION IX

Reference List
1.  Ashley, H.,, and G. Zartarian. 1956. Piston Theory - A New Aerodynamic Tool for the
Aeroelastician. Journal of the Aeronautical Sciences 23 (December): 371-381, 1109-1118.

2. Boley, B. A, and J. H. Weiner. 1960. Theory of Thermal Stresses. New York: John
Wiley & Sons, Inc, pages 42-44, 60-62, Chapters 8 and 12.

3.  Dowell, E. H, and H. M. Voss. 1965. Theoretical and Experimental Panel Flutter Studies
in the Mach Number Range 1.0 to 5.0. AIAA Journal 3 (December): 2292-2304.

4. Dowell, E. H. 1975. Aeroelasticity of Plates and Shells. Leyden, The Netherlands:
Noordhoff International Publishing.

5.  Dowell, E. H. 1990. Nonlinear Aeroelasticity. AIAA-90-1031-CP. In The 31st AIAA-

[ASME/ASCE/AHS/ASC _ Structures, Structural Dynamics, and Materials Conference:

Proceedings of the Conference in Long Beach, CA, April 2-4, 1990, by the American Institute
of Aeronautics and Astronautics, Washington, DC, 1497-1509.

6. Halpin, J. C. 1984. Primer on Composite Materials: Analysis. Rev. Lancaster,
Pennsylvania: Technomic Publishing Company, Inc, 14-21.

7.  Lighthill, M. J. 1953. Oscillating Airfoils at High Mach Number. Journal of the
Aeronautical Sciences 20 (June): 402-406.

8.  Shapiro, A. H. 1953. The Dynamics and Thermodynamics of Compressible Fluid Flow.
Vol. 1. New York: John Wiley and Sons, Appendix A.

9.  Shapiro, A. H. 1954. The Dynamics and Thermodynamics of Compressible Fluid Flow.
Vol. 2. New York: The Ronald Press Company, Chapter 23.

10. Timoshenko, S. 1940. Theory of Plates and Shells. 1st Ed. New York: McGraw-Hill
Book Co., 34-50 and 304-305.

11. Vol’mir, A. S. 1967. Flexible Plates and Shells. AFFDL-TR-66-216.

12.  Weiliang, Y., and E. H. Dowell. 1991. Limit Cycle Oscillation of a Fluttering Cantilever
Plate. AIAA Journal 29 (November): 1929-1936.

39




