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APPLICATION OF RAINFALLRUNOFF

SIMUIATION FOR FLOOD FORECASTING1

John Peters2

Hydrologic simulation models provide a means for extending the lead time
associated with flood warnings. Following a brief discussion of warning ob-
Jectives and approaches to short-term hydrologic forecasting, characteristics
of rainfall-runoff models for forecast applications are discussed. HEC-1 and
HEC-2 are described as illustrations of models that can be applied to develop
warning criteria; HBC1F and the Sacramento Method are described as illustra-
tions of models for real-time application. Finally, aspects of model selec-
tion and use are discussed.

The value of a flood-threat recognition system depends to a large extent
on the lead time it provides for issuing warn."gs, enabling evacuation, etc..
A minimum lead time must be provided for a system to be practically useful.
The lead time that is ptentially achievable depends on (1) the spatial and
temporal characteristics of storm rainfall and the ability to sample/forecast
these, (2) rainfall-runoff response characteristics of the watershed and the
ability to simulate these, and (3) the time required to recognize and evalu-
ate the flood threat and take appropriate action. The value of a warning
system depends also, of course, on its reliability. Consider Figure 1, which
illustrates aspects of reliability. Sets of storm events are labeled {AI,
(B}, {CI and fI)), where:

JA) storm events that cause flooding

{BI = storm events that do not cause flooding

{C) storm events that cause flooding but for
which warnings are not issued

(D) storm events that do not cause flooding but
for which warnings are issued

1 Paper presented at the United States - Republic of China Workshop on Natural
Disaster Reduction, Taipei, Taiwan, June 24-26, 1993.
2 Senior Engineer, US Army Corps of Engineers, Hydrologic Engineering Center,
Davis, California, 95616, USA.
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The goal of a warning system is to minimize both {C} and {DI. Events
from {CJ can cause damage and loss of life that could possibly be prevented;
events from {DI increase the likelihood that future warnings will be ignored.
Alternative warning systems will be reflected by different configurations of
{C} and {D}.

The basis for a warning can range from measured river stage (elevation)
at an index gage to results of a rainfall-runoff simulation that incorporates
recent rain data and estimates of future rainfall. Although the more sophis-
ticated warning systems may provide longer lead times, their reliability is
not necessarily greater than that associated with simpler systems. Both lead
time and reliability should be evaluated when analyzing alternative warning
systems.

The tradeoff between lead time (warning time) and warning reliability
can be illustrated by considering a simple threshold-stage method of warning,
as shown in Figure 2 . The warning stage is sensed at location A. The pri-
mary flood threat is downstream at location B. The problem is to choose a
threshold (index) stage for location A such that when that stage is exceeded,
a warning for flooding at location B is to be issued. It is desired that the
lead time to prepare for the flood threat be as long as possible. The lower
the index stage at A, presumably the more lead time will be provided. How-
ever, if the threshold stage is too low, there will be too many false warn-
ings, so that genuine warnings will not be heeded. In terms of Figure 1, as
{CI becomes smaller, {D} becomes larger.
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The graphs in the lower portion of Figure 2 represent relationships that
could be developed by analyzing a set of historical storm events (Dotson and
Peters, 1990). Lead time is a yarijab1 that depends on event-specific storm
and runoff characteristics. Storm and streamflow data from historical events
provide useful information for assessing the magnitude and variability of lead
time.

TO SMORT-TERM BYX IC FclELSTIM

"Short-term" here refers to forecasts with lead times of hours to sev-
eral days, as required for flood warning purposes. By contrast, long-term
forecasts, which provide lead times up to a year or more, are useful for water
management decisions.
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Hydrologic models for short-term forecasting may employ channel routing,
rainfall-runoff simulation, or both. Choice of a model type depends on re-
quired forecast lead time, the response characteristics of the basin, and the
scale of meteorological events. Lettenmaier and Wood (Maidment, 1993) list
four cases, as follows:

C&ase . Required lead time is larger than the hydrologic response time
(the sum of the time of concentration for the basin and the time of
travel through the river system). In this case, a forecast of precipi-
tation is required, because future precipitation will reach the forecast
point within the lead time. Rainfall-runoff modeling is required.

Case-2. Required lead time is smaller than the hydrologic response
time, and the time of concentration is substantially smaller than the
time of travel through the river system. This is the case for large
river systems for which forecasts can be based on channel routing of up-
stream observed (gauged) flows.

Case 3 Required lead time is smaller than the hydrologic response
time, and the time of concentration is substantially larger than the
time of travel through the river system. A rainfall-runoff model is re-
quired, but forecasts of future precipitation are not required.

Case 4 This case is one in which the scale of the meteorological event
is significantly smaller than the scale of the basin. This would occur,
for example, on large basins subject to convective storms. In this
situation, it is necessary to subdivide the basin or employ a model that
permits specification of precipitation as a distributed input. Also it
is desirable to telemeter data from stream gages on major tributaries.
Rainfall-runoff modeling and channel routing of observed and/or fore-
casted tributary flows are required.

For quick-responding watersheds (i.e. Case 1 above), lead times are very
short, and the time available for processing forecasts is extremely limited.
In such situations, real-time modeling may not be practical, and it may be
more appropriate to apply pre-established warning criteria with real-time
observed and forecasted rainfall depths/durations as inputs. Historical
events can be analyzed to develop such criteria. The hydrologic models used
for this purpose do not require the special functionality associated with
real-time applications.

Another approach for quick-responding watersheds is to automatically
compute forecasts at frequent intervals (e.g., every 10 minutes), and to in-
clude in those forecasts a set of pre-specified (fixed) future rainfall
amounts, as illustrated in Figure 3. The amount of forecasted rainfall can
then be used to interpolate a discharge hydrograph (and associated inundated
area) from the most recent pre-computed set of forecasts. Automated forecast-
ing requires a well calibrated, robust model. The state-of-the-art of model-
ing is such that generally an experienced modeler must be involved in model
applications and interpreting model results.

4



VENTURA COUNTY FLOOD ADVISORY

PROVIDED BY THE

CALIFORNIA-NEVADA RIVER FORECAST CENTER OF THE NATIONAL WEATHER SERVICE

FORECAST PEAK FLOWS IN THOUSAND CFS RESULTING FROM 3 HOUR PRECIPITATION

3 HOUR PRECIPITATION (IN INCHES)
1 2 3 4 5

SESPE CREEK NEAR FILLMORE .45 2.70 10.89 19.39 27.98

SANTA PAULA CR .12 1.59 5.35 9.04 12.72

CALLEGUAS CREEK AT CAMARILLO .23 2.16 8.88 29.19 50.90

REV. SLOUGH (CAL CI PARK) .27 .85 4.02 8.36 12.82

FAGA" CANYON .02 .09 .36 .54 .71

SANTA AKA CREEK .00 .06 .13 3.98 6.81

COYOTE CREEK .01 .10 1.37 5.70 9.47

KATILIZA CR 100% BURNED .18 .48 6.11 14.50 22.52

KATILIJA CR IF UNBURNED .05 .11 .27 2.39 11.09

ARROYO SIMI HR SNII .26 .63 9.95 35.18 55.67

(Taylor and Weikel 1991)

Figure 3. FRCASTS BAS ON OK PFE-SPEIFIED DEPTH OF FUTRE RAINFAIL
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A large number of hydrologic models are available for developing rain-
fall hyetographs, simulating runoff and determining inundated areas for his-
torical and/or hypothetical storm events. Such models can be used effectively
in the development of hydrologic criteria for flood warning. Characteristics
of two such models, and associated data management software, are described in
the following sections. The programs are well documented and can be used on
IBM-compatible microcomputers as well as UNIX-based workstations. Either
metric or English units may be used.

HEC-1. Flood HvdrograDh Package

Sl - The fundamental capability of HEC-1 (Hydrologic Engineer-
ing Center, 1990a) is to develop discharge hydrographs for historical or hypo-
thetical storm events at specific locations in a basin. The basin can be
subdivided into any number of subbasins, and modeling elements such as uncon-
trolled reservoirs and diversions can be accommodated. The program includes
options to:



"o optimize values for unit hydrograph and/or loss rate parameters
"o optimize values for routing parameters
"o simulate snow pack/snow melt
"o si•tdlate dam overtopping/breaching
"o incorporate alternative land use/development conditions, and mul-

tiple storm events, in a single program application

A variety of alternative methods are available for simulating precipitation,
losses, base flow, runoff transformation and routing.

Preci]2itation CamLutaonfi - The spatial averaging of precipitation can
be performed externally to HEC-1 and input for direct use. Alternatively,
precipitation for individual recording and non-recording gages can be speci-
fied, along with associated weighting factors for each subbasin. Additional
weighting to accomsodate gauge bias (e.g., difference in normal annual pre-
cipitation for a gauge vs. a subbasin) can be employed.

Losses and Base Flow - Losses can be specified in terms of (1) an in-
itial loss and constant loss rate, (2) a four parameter exponential loss func-
tion (unique to HEC-1), (3) an initial loss and a "curve number" based on land
use and US Soil Conservation Service (SCS) soil classifications (Soil
Conservation Service 1972), (4) the Holtan method, and (5) the Green and Ampt
method. Base flow is specified by means of three input variables.

Rmoff Transform - Precipitation excess can be transformed to direct
runoff with a unit hydrograph or kinematic wave techniques. Unit hydrograph
options allow a unit hydrograph to be input directly or to be expressed in
terms of Clark, Snyder or SCS parameters. The kinematic wave option permits
depiction of subbasin runoff with elements representing up to two overland-
flow planes, two collector channels and a main channel.

S- Primary routing options are the Muskingum-Cunge, Modified Puls
and Muskingum methods. For the Muskingum-Cunge and Modified Puls methods, a
routing reach can be specified in terms of a length, slope, three Manning n
values (for a main channel and left and right overbanks), and a cross section
defined with eight pairs of coordinates.

HEC-2. Water Surface Profiles

HEC-2 (Hydrologic Engineering Center, 1991) is intended for calculating
water surface profiles for steady, gradually varied flow in natural or man-
made channels. Both subcritical and supercritical profiles can be calculated.
The effects of various obstructions such as bridges, culverts, weirs, and
structures in the flood plain may be simulated. The computational procedure
is based on the solution of the one-dimensional energy equation with energy
losses due to friction evaluated with Manning's equation. The energy and
energy-loss equations are solved iteratively between each pair of cross sec-
tions with the "standard step" method (Henderson, 1966).
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Data management is a significant aspect of hydrologic evaluations. The
IMS software (Hydrologic Engineering Center, 1990) is intended for efficient
wmanagement of time series data of any type, such as rainfall hyetograpks and
dor stage hydrographs. Paired-fUnction data, such as stage-discharge
rating curves, dischg- -frequeny or stage-frequency relationships, can also
be aOcccdmodated. The DSS system includes a set of utility programi intended
for data entry, data editing and graphic displays. Figure 4 illustrates the
role of DSS in data mnagement. A typical application with HWC-1 is to first
store observed precipitation and discharge data in a DSS file with a data
entry utility program, and then to automatically retrieve such data as part of
an HWC-1 execution. Simulation results can be written to the same DSS file,
and another utility program can be used to develop graphs or tabulations of
any data in the file.

A

0

Figure 4. ROLE OF DS IN IVTA 2AH4T
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Simulation models are of two types, event and continuous. Contiruous
modeling generally attempts a continuous accounting of soil moisture, whereas
event models require specification of initial conditions (e.g., loss rates)
that pertain to the "event". Advantages of event-type approaches are that
they generally do not require representation of evapotranspiration and subsur-
face water balances. Because event-type ampoaches are simpler, they gener-
ally use fewer parameters and are easier to calibrate. However for short-term
forecasts, there may be substantial uncertainty with respect to initial condi-
tions, especially after dry periods. The following sections describe first an
event-type model, HEClF, and then a continuous-type model, the Sacramento
Watershed Model. Comments on model updating are also provided.

Event-type Modeling
The event-type approach involves the following steps in determining

runoff from a basin:

"o specification of precipitation (spatial and temporal distribution)

"o specification of "losses" and rainfall excess

"o transformation of rainfall excess to direct runoff

"o specification of base flow

"o combining of base flow and direct runoff to obtain total runoff

If a basin is divided into subbasins, the above steps are performed for each
subbasin, and routing and combining of hydrographs are performed as required.

HECiF, which is an adaptation of computer program HEC-1, is an example
of an event-type model used for forecasting (Peters and Ely, 1985). The basic
HEC-1 capabilities for calculating runoff with a unit hydrograph approach from
a multi-subbasin watershed, and for parameter optimization, are retained in
HECIF. However, HEC1F contains additional capabilities that facilitate the
task of runoff forecasting. Aspects of application of HECIF are as follows:

1. Forecasting with HECIF is intended to involve a "hands-on" process by
which the analyst can readily compare simulated hydrographs with ob-
served hydrographs (up to the time-of-forecast) and adjust loss rates,
or perhaps other parameters, to improve results.

2. Forecasting is generally performed in two separate executions of HECIF.
In the first, unit hydrograph, loss rate and base flow parameters are
optimized for gauged headwater subbasins. The time window "T" in
Figure 5 is the period over which an objective function to optimize the
above parameters is evaluated. The window is approximately equal to the
time base of the unit hydrograph for the subbasin. An objective func-
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time base of the unit hydrograph for the subbasin. An objective func-
tion is minimized by a univariate gradient technique (Ford et al, 1980).
The objective function is as follows:

N ,(2B -QCQM.ý)' *W7
DE- Nco ,

where STIDER = objective function
QOBSi = ordinate i of the observed hydrograph
QCOMPi = ordinate i of the computed hydrograph
WTi = weighting factor applied at ordinate i
N = total number of hydrograph ordinates encompassed

by the objective function

The equation defining the weighting factor is as follows:
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where J = number of At intervals from the beginning of the time
period for parameter estimation (T) to the time of
ordinate i

The objective function is a quantitative measure of the goodness of fit
of the calculated hd'Cr to the observed hydrograph. The weighting
factor has a value of 1 at the time-of-forecast, and diminishes to a
value of 0 at the beginning of the time window "T". The purpose of the
weighting is to insure a relatively close fit of the calculated to the
observed hydrograPh in the vicinity of the time-of-forecast.

The optimization process has hxlt-in constraints that prevent physi-
cally unreasonable values for the parmeters to be optimized (Hydrologic
Engineering Center, 1989). For example, if the rainfall is concentrated
very near the time-of-forecast, there will be little h "rise"
with which to optimize parameters. In this case, the optimization is
permitted only for base flow parameters.

3. Following the parameter optimization application of HHC1F, the analyst
reviews optimization results and parameter estimates as an aid to set-
ting values of loss rate and base flow parameters for the remainder of
the basin.

4. The second application of HECiF performs runoff computations, and rout-
ing and combining operations throughout the basin. At each location for
which an observed hydrograph is available, "blending" can be performed.
A blended hydrograph consists of the observed hydrograph up to the time-
of-forecast and an adjusted simulated hydrograph after the time-of-fore-
cast. The adjustment is made either by a vertical shifting of the simu-
lated hydrograph with a constant increment of discharge (positive or
negative), or by providing a smooth transition from the observed to the
unadjusted simulated hydrograph over six time intervals following the
time-of-forecast. The transition is computed by linearly diminishing
the "error" (difference between the observed and computed discharge) at
tle time-of-forecast to zero over the six time intervals. The two types
of blending are illustrated in Figure 6. The blended hydrograph is used
in subsequent routing computations.

HECIF is generally used in conjunction with the program PRECIP
(Hydrologic Engineering Center, 1989) for processing gauged rainfall data, and
DSS. The PRECIP program develops hyetographs of spatial-average rainfall for
each subbasin using an inverse distance-squared weighting procedure. If data
for a gauge is missing, the program automatically obtains data for the next
nearest gauge. The DSS graphics utility program facilitates data review and
analysis, as well as evaluation of forecast results. Runoff forecasts based
on scenarios of future (forecasted) rainfall can be readily evaluated.

10
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Continuous-tyvre Modeling

An example of a continuous-type model used for real-time applications is
the Sacramento Watershed Model (Burnash et al, 1973), developed by the Cali-
fornia-Nevada River Forecast Center of the US National Weather Service. It
has been in use for a number of years by that agency and is also a component
of the National Weather Service River Forecasting System (NWSRFS).

The Sacramento Model simulates runoff processes in headwater basins. Itprovides a conceptual representation of (1) soil moisture storage (as both
tension and free water) at two levels, an upper zone and a lower zone;
(2) direct runoff from impervious surfaces, water bodies and saturated ground;
(3) percolation from the upper zone free water storage to the lower zone;
(4) evaporation from surface water and evapotranspiration from tension water
storage; (5) interflow from upper zone free water storage; and (6) baseflowand subsurface outflow (out of the basin) from lower zone free water storage.
A unit hydrograph can be applied to surface runoff and interflow, and the
resulting flow can optionally be routed with a non-linear "layered" Muskingum
method. Figure 7 illustrates storage and runoff components of the Sacramento
Model.

Figure 8 is a schematic representation of analytical aspects of the
Sacramento Model. Processes are characterized in terms of storages of speci-
fied capacities which are filled from precipitation and percolation, and
depleted by percolation, evapotranspiration and lateral drainage. Table 1
contains brief definitions of 17 parameters for defining the production of
runoff from rainfall. The Table does not include parameters associated with a
unit hydrograph or channel routing.

~11
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Table 1. Parameters for the Saaram to Watershed Mxodel

PCTIM Permanently impervious fraction of basin continuous with stream channels. Rainfall on this porton of
the basin bypasses storages and contributes instantly to runoff.

AQIMP Fraction of the basin which becomes impervious when upper-zone tension storage becomes filled (i.e.,

behavior is same as for PCTIM).

SARVA Fraction of basin covered by streams, takes, and riparian vegetation (generally about 40% tn 100% of
PCTIM). Evapotranspiraton occurs at the potential rate from this portion of the basin.

UZTWM Maximum death (over non-impervlous areas) of uDoer zone tension water storage. This storage must
be filled before any water becomes available for free water storage. Water from this storage is "IOSt by

direct evaporation from the soil surface or by evapotranspiration by shallow-rooted vegetation.

UZWM Maximum depth (over non-impervious areas) of urper zone free water. Water from this zone feeds the
upper zone tension water storage, percolates to the lower zone or contributes to interflow. When the
free water storage is full, rainfall contibutes to surface runoff.

UZI( Depletion coefficient for upper zone free ,4maer storage. Upper zone lateral drainage (i.e. interflow) is de-
teranined on a daily basis as the product of this coefficient and available contents. Percolation from the
upper zone (during a time interval) is accommodated prior to determination of interflow.

PFREE Proportion of water percolating from the upper zone to the lower zone which posses directly to the free
water storages without contributing to the tension water storage.

LZTWM Maximum capacity of lower zone tension storage. Water stored here can only be removed by
evapotranspiration.

LZFSM Maximum capacity of lower zone supplemental free water storage. Water stored here contributes to
baseflow at the 'supplemental' rate.

LZSK Depletion coefficient for lower zone supplemental free water storage. Supplemental baseflow (daily
rate) is determined as the product of this coefficient and available contents.

LZFPM Maximum capacity of lower zone primary free water stor-ge. Water stored here contributes to baseflow
at the 'primary' rate.

LZPK Depletion coefficient for lower zone primary free water storage. Primary baseflow (daily rate) is deter-
mined as the product of this coefficient and available contents.

RSERV Decimal fraction of lower zone free water storage which is not available for supplying lower zone tension
water storage. This portion of the lower zone free water storage is considered to be below the root sys-
tem that reaches to the lower zone.

SIDE Decimal fraction of baseflow (entering the river) that exits the basin without passing through the river

channel. For example, a value of 0.5 indicates that a quantity of baseflow equal to 50% of that which en-
ters the river leaves the basin without affecting baseflow in the river.

SSOUT Constant streamflow loss term representing flow through porous material below the channel bottom.
This term is commonk, zero. Rivers in glaciated areas may require use of this parameter.

ZPERC Proportional increase in percolation from saturated to dry condition.

REXP Exponent in percolation equation which determines rate at which percolation demand changes from the

dry condition, (ZPERC + 1)'PBASE, to the wet condition, PBASE.
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The parameters in Table 1 provide substantial flexibility for repre-
senting rainfall-runoff processes. However calibration of these parameters
can be a very challenging task, and there is the potential for mis-calibration
such that the model is treated essentially as a "black box" without due regard
for representation of the essential runoff characteristics of the basin. A
poorly calibrated model is ill-suited for prediction, especially where condi-
tions differ significantly from those used for calibration. It is generally
necessary to have, as a minimum, several years of continuous precipitation and
streamflow data as a basis for calibration.

A simple water balance of annual quantities of runoff, rainfall and
evapotranspiration over. a period of several years can be used to gain insight
into the runoff characteristics of a basin. Such an evaluation can facilitate
recognition of subsurface outflows that bypass the river channel, or problems
in definition of rainfall volumes. Runoff (streamflow) measurements are
generally the most accurate data source for this evaluation. Spatially-aver-
aged rainfall data may be highly uncertain because of large sampling errors
(due to sparse gage networks) and because of errors inherent in the meas-
urement of rainfall. Wind effects (e.g., turbulence over the gage opening)
tend to cause rainfall measurements to be biased on the low side, as illus-
trated in Figure 9. Underestimates of point rainfall depths of 15% or more
are typical.
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Evapotranspiration imist be estimated, as it is not measured. Actual
evapotranspiration can differ significantly from evapotranspiration potential,
depending on water availability. Evapotranspiration potential is sometimes
based on application of monthly or seasonal coefficients applied to measured
pan evaporation. However there is much uncertainty in this approach, as the
physical processes and energy fluxes associated with pan evaporation can be
substantially different from those associated with evapotranspiration. The
Sacramento Model lumps evaporation from water bodies and moist soil with eva-
potranspiration from vegetation. Generally the latter is the dominant proc-
ess. Because of the difficulty in using pan evaporation data as a surrogate
for the total basin evapotranspiration, applications of the Sacramento Model
commonly utilize direct estimates of basin evapotranspiration, for example
using data such as that provided in Figure 10 (Burnash, undated).

SPRING sum FALL .INTER

Sm y WET mRy VET IM Y ET DRY

HOT 3 4 6 7 3 4  2 2

WARM 2 3 s 6 2 3 1 1

col. 1 1 3 4 1 2 0 1

COLD 1 1 2 2 1 1 0 0

(B]rnash, undated)

Figure 10. AVERAGE DAILY EVAE IRANSPIR&TION DMAND

Burnash (Burnash, undated) suggests initial (typical) values for the 17
parameters listed previously. He also provides a rationale for estimating
values for several of the parameters from direct analysis of carefully se-
lected portions of historical rainfall and streamflow data. For example,
PCTIM, the impervious fraction of the basin contiguous with stream channels,
can be estimated on the basis of small runoff events following long dry peri-
ods. Presumably surface runoff from the events is from the impervious frac-
tion of the basin. PCTIM can be estimated from the ratio of surface runoff to
rainfall accumulated for several such events.

Because of interdependence of parameters and uncertainty associated with
rainfall data and evapotranspiration estimates, caution must be exercised in
attempts at automated calibration. Burnash recommends review of monthly error

15



summaries with due consideration of uncertainties in the driving inputs.
Application of a model like the Sacramento Model requires substantial knowl-
edge of the runoff characteristics of a basin and skill in interpreting cause
and effect relationships among essential processes. Experience in applying a
model of this type can itself be a means for acquiring understanding of basin
rainfall-runoff behavior.

Model Updating

A real-time gauging network provides observed streamflow data up to the
time-of-forecast. This data can used to adjust model inputs, states (i.e.
volumes of water in storage) and/or parameter values so that the model is more
"in tune" with current conditions. One such approach is to apply Kalman fil-
tering for automated adjustment (Georgakakos, 1986). For flash floods, auto-
mated adjustment may not be practical because by the time a stream rise oc-
curs, the time at which the forecast is required may already have passed. For
an event-type model like HECIF, model updating can be achieved using a combi-
nation of optimization for headwater subbasins and manual adjustment.

MCKEL SELEON D AUE

Factors to consider in selecting a model are (1) the knowledge and
skills of the model user, (2) the hydrologic regime to which the model will be
applied, and (3) data availability and data requirements. A widely cited
study by the World Meteorological Organization (World Meteorological
Organization, 1975b) indicates that in humid environments, soil moisture
accounting models may not offer much advantage over simpler "event" approaches
because of the relatively stable moisture conditions. However for arid and
semi-arid climates, use of explicit soil moisture accounting models (like the
Sacramento Watershed Model) can be advantageous.

Because of the complex nature of physical processes that constitute the
hydrologic cycle, the heterogeneous characteristics of a watershed (including
the subsurface), and the uncertainty associated with model inputs, rainfall-
runoff modeling is a difficult and challenging task. The skills of the
analyst applying the model can be significantly more important than the model
itself. This is supported by Loague and Freeze, who in conclusion to a paper
describing a comparison of modeling techniques or. small upland catchments,
state the following:

"In many ways, hydrologic modeling is more an art than a science,
and it is likely to remain so. Predictive hydrologic modeling is
normally carried out on a given catchment using a specific model
under the supervision of an individual hydrologist. The useful-
ness of the results depend 9 in large measure on the talents and
experience of the hydrologist and his understanding of the mathe-
matical nuances of his particular model and the hydrologic nuances
of his particular catchment...." (Loague and Freeze, 1985).
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The above comments should be borne in mind when considering the
role of rainfall-runoff modeling in flood forecasting. Modeling can
provide valuable information which, when considered in relation to the
current state of a basin and meteorological forecasts, can aid in the
making of reasonable flood warning decisions. However, there will al-
ways be significant uncertainty associated with model predictions, and
careful interpretation of model results is essential.
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