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Chemically-Sensitive Interfacial Force Microscopy: Contact Potential

Measurements of Self-Assembling Monolayer Films

R. C. Thomas1, P. Tangyunyong 2, J. E. Houston2 *,T. A. Michalske 2 ., and R. M. Crooks 1.3

tDepartment of Chemistry, University of New Mexico

Albuquerque, New Mexico 87131

2Surface and Interface Science Department, Sandia National Laboratories

Albuquerque, New Mexico 87185

We report contact potential difference (CPD) measurements of n-alkanethiol self-

assembling monolayers (SAMs) 1-3 adsorbed to Au substrates using an organomercaptan-

modified Au probe. Our results demonstrate for the first time the feasibility and importance of

controlling the chemical properties of force microscope probe surfaces. Moreover, control over

the chemical characteristics of the probe provides a basis for distinguishing between chemically

distinct surface features with nanometer resolution in force microscopy. We show that CPD

values obtained using Au probes modified with methyl-terminated SAMs are stable and

reproducible, whereas identical unmodified probes yield highly variable data. Our

experimentally determined CPD values are in qualitative agreement with calculated CPDs for

several w-terminated SAMs.

We have previously used the interfacial force microscope (IFM)4 to obtain detailed

information about the mechanical properties of methyl-terminated n-alkanethiol SAMs adsorbed

to Au substrates.5 48 In the present work, we use the [FM to determine local CPDs that arise

between an organomercaptan-modified Au probe and various SAM-modified Au substrates -

(Scheme 1).9 The CPD is defined as the work function difference between these modified Au

surfaces, which we view as tightly bound dipole sheets that shift the work functions of each

modified Au surface. 10 For example, the work function is increased relative to bare Au for
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dipoles having their negative end pointing away from the modified Au surface. We perform

experiments by applying a triangular-sweep voltage between the sample and probe, which is

held at ground, while measuring the resulting electrostatic force. The force-feedback capability

of the IFM is used to keep the probe/sample distance rigidly fixed, which allows us to directly

measure the electrostatic force at a constant interfacial separation. The CPD is determined by

measuring the applied potential necessary to null the electric field and eliminate the interfacial

force between the two surfaces. I I

Figure 1 shows force-versus-substrate-potential data obtained using a HS(CH2) I1CH3-

modified Au probe. In these plots, negative forces are attractive and the shape is parabolic since

the electrostatic force is proportional to the square of the bias voltage. 12 The solid line

represents a second-order polynomial fit of the data. In Figure la, the probe and the sample are

both HS(CH2) 1 1CH3-modified Au substrates that should have identical work functions and

therefore the same CPD. The measured CPD value of 0.050 V deviates slightly from zero,

which is probably the result of differences in surface packing and coverage for each SAM-

modified surface. By increasing the work function cf the modified Au substrate with molecules

having dipole moments of different magnitudes that point away from the surface, the applied

potential required to null the electric field becomes more positive. These CPD differences

provide a basis for mapping the chemical characteristics of the surface.

Table I summarizes CPD results for each SAM relative to nominally identical

HS(CH2)tiCH3-modified Au probes, tip A and tip B. The CPD data in this table represent an

average of results obtained from several different locations on each substrate over a period of

several weeks. The data show that organomercaptan-modified Au probes are both stable and

reproducible. In contrast, experiments using either bare Au or W probes yield data that varies by

several hundred millivolts for CPD measurements of the same samples. We also found that

CPDs of methyl-terminated and perfluorinated substrates did not change appreciably over a one

month period, whereas CPDs for hydroxyl- and carboxylic acid-terminated SAMs drifted

substantially over the same period. For example, the CPD values for "aged" carboxylic acid-

2 Thomas et al.



terminated surfaces shifted negative by several hundred millivolts relative to freshly prepared

samples. Subsequent experiments performed in a system that was evacuated to 104 mnmHg and

then backfilled with N2 usually gave CPDs close to their initial values, but there was

considerable variation in the results of these experiments. Clearly, these high energy carboxylic

acid-terminated SAMs adsorb hydrocarbon contaminants, which decreases their work functions

in a non-reproducible manner. In contrast, CPD values obtained for the low surface energy

methyl-terminated SAMs in vacuum were reproducible and essentially identical to values

obtained in air.

The CPD estimates given in Table I are calculated in terms of the relative CPD shifts for

each SAM terminal group, which are proportional to the electric dipole magnitude normal to the

surface (g), eq 1:

ACPD = g., / (eoA) (1)

where eo, is the permittivity of free space and A is the area per molecule. 10 We approximate It

using a vectorial addition method that relies on experimentally determined bond and group

moments, 13 along with previously published orientation and surface coverage data. 14 ,15 Our

calculation only considers the dipole of the SAM end groups, since Au/S interactions between

the probe and sample cancel and C-H dipoles between adjacent methylene units also cancel since

the molecules extend in an all-trans configuration. These approximations also hold for the

perflourinated SAM. The qualitative agreement between the calculated and measured values for

HS(CH 2) 11CH3 , HS(CH 2) 1OH, and HS(CH2) 2(CF2)7 CF3 monolayer films gives us confidence

that we are rneauring work function differences between the terminal groups of these SAMs.

The overestimated CPD value for the carboxylic acid-terminated SAM reflects

uncertainty in our approximation of gt, which we estimate by assuming a 320 tilt angle and a 550

twist angle of the carbon backbone relative to the surface normal. 14 We also assume that the

carboxylic acid group is rigidly oriented and configured to minimize steric interactions between

3 Thomas et al.



adjacent methylene groups. However, our calculation does not consider intramolecular

hydrogen bonding, which occurs and affects the dipole magnitude and orientation. 16 Our results

indicate that the net electric dipole of the carboxylic acid group is oriented at a larger angle

relative to the surface normal as a result of these intermolecular interactions.

To determine the effect of different types of Au substrates on CPD data, we performed

experiments with SAMs adsorbed on Au/Cr/Si(100), Au/Ti/Si(100), and single-crystal Au(l I I)

surfaces. If appreciable amounts of either Cr or Ti diffuse to the Au surface, w, would expe.t to

observe a finite CPD relative to single-crystal Au(l 11), since the work function for both of these

metals is at least 0.6 V less positive than Au. 17 As shown in Table I, the CPD data are not

sensitive to the different Au adhesion layers, even though Cr and Ti are known to diffuse

through Au. 18 Although we do not fully understand this result at the present time, we speculate

that the organomercaptans may complex and remove metal surface contaminants from the Au

surface during self assembly. 19

To summarize, we have demonstrated that Au probes modified with methyl-terminated

organomercaptan SAMs provide surfaces that are sufficiently stable and reproducible that they

can be used to distinguish between different SAM terminal groups. By controlling the chemical

properties of the probe surface, we are also able to estimate CPDs that are in qualitative

agreement with experimentally measured values. Discrepancies that arise between calculated

and measured CPD values reflect uncertainties in our approximation of g. Our results

demonstrate the importance of understanding the chemical properties of interfacial probes used

for studying molecular interactions between two surfaces, and provide a basis for imaging

chemical inhomogeneities by force microscopy.
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Figure Caption

Figure 1. Interfacial force-versus-substrate-potential curves between a spherical,

HS(CH 2) 11CH 3 -modified Au probe with a 250 gm radius of curvature and organomercaptan

modified Au samples. The probe was held at ground while biasing the sample with a triangular-

sweep voltage. Negative forces are attractive. The data points were fit with a second-order

polynomial. Average standard deviations of curve fits were -0.020 V. The CPD is determined

at the applied potential at which the force goes through its minimum value. The data in this

figure are typical of our results, but several such data sets were used to generate the average

values given in Table I.
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