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Evolving Neural Network Connectivity

John R. McDonnell & Don Waagen
NCCOSC, RDT&E Division

San Diego, CA 92152

the design/training phase thereby removing the burden of
Abstract-This work investigates the application of evaluation by trial-and-error from the designer. For

evolutionary programming, a stochastic search technique, for purposes of discussion, Fig. 1 illustrates the structure of a
determining connectivity in feedforward neural networks. The hypothetically evolved neural network where the
method is capable of simultaneously evolving both the connectivity between neurons is determined via a multi-
connection scheme and the network weights. The number of connectiv bearee neurnis det via a mut
connections are incorporated into an objective function so that agent stochastic search technique. Nodes which are not
network parameter optimization is done with respect to
network complexity as well as mean pattern error. research in evolving connectivity [71 and network
Experimental results are shown for simple binary mapping architecture 181 by investigating a different mutation
problems. selection mechanism within the EP paradigm.

I. INTRODUCTION Similar work has been undertaken by Bornholdt and
Graudenz [9] using an evolution strategy to determine both

The neural network architecture design process is largely network structure and weight coefficients. Due to the
based on heuristics. Previous experience often dictates an generality of their implementation, recurrent networks can
initial network configuration for the problem at hand. If the result requiring multiple sweeps to reach a stable state. The
network can be trained to achieve the designer's goals, the approach investigated in this work is limited to feed-forward
process is terminated. If success is not attained, a testing networks. Other work has been done in removing
phase ensues which is largely trial and error. The result can connections during the training process. Hinton [ 101 allows
often be a network with excess parameters and little regard weight elements to decay to zero unless reinforced otherwise.
for computational complexity. This is essentially the same as incorporating a term in the

objective function which penalizes the use of non-zero
In this research, a connectivity cost associated with the weights [111. Weight-elimination is proposed by Weigend et

neural network configuration is incorporated into the aL [1121 which forces small weights to decay faster than large
optimization procedure in an effort to reduce the number of weights. Soft weight-sharing [131 also promotes magnitude
synapses and potentially even the number of nodes utilized reduction in small weights, albeit at greater complexity in
in a network configuration. An optimized architecture offers the optimization process. Tenorio and Lee [141 have
increased throughput for near real-time signal processing developed a self-organizing neural network (SONN)
applications as well as decreased memory requirements. algorithm which constructs the network and determines the

weights.
Simultaneously determining both network weight

coefficients and structure requires a search procedure which Weigend et aL. [121 have demonstrated that the weight
is amenable to combinatorial optimization problems. The elimination technique outperforms "traditional nonlinear
more successful algorithms for this these types of problems statistical approaches" in an effort to achieve minimally-
have generally been stochastic search techniques such as sized networks for time-series prediction. Instead of a
simulated annealing [I1, genetic algorithms 121, and gradient search as employed in. [121, evolutionary
simulated evolution [31. The simulated evolution, or programming is implemented as a global search technique.
evolutionary programming (EP), paradigm has been shown Baba 1151 has demonstrated the effectiveness of using
to have the desired attributes: combinatorial optimization random optimization techniques over back propagation for
capabilities 141, the ability to determine model structure 151, training static networks. Genetic algorithms (GAs) have
and the ability to train neural networks 161. been also been used for constructing neural networks [161,

although structure representation is sometimes unnecessarily
The premise of the current research is that near minimal complicated. Experiments conducted by Michalwicz 1171

size neural network architectures can be evolved using an indicate that "the floating point representation is faster, more
objective function which includes a complexity term based consistent from run to run, and provides a higher precision."
on the neural network connectivity. Further, the proposed Fogel [181 also demonstrates the higher precision
approach takes advantage of computational resources during capabilities of EP over GA from a convergence aspect.



- -- B. Determining Network Weights using EP
INPUTS

Evolutionary programming can be used for training static
neural networks. The objective function can be the same as
that used in back-propagation: minimize the sum-squared
error function E = O.5EDlk(tk - ok)2 over all patterns p for k

VARIABLE output reurons. The EP algorithm given in the previous
CONNECTIVITY section was employed to determine neural network weight

coeii-icients.

A population of 2N feedforward networks is generated.
Each network in the population is represented by a
multidimensional weight array (Di with weights instantiated

OUTPUTS from a uniform U(-O.5, 0.5) distribution. Next a cost is
assigned to each network in the population. This cost is
typically the mean sum-squared pattern error E given above.

I The "best" N members of the population generate offspring
Fig. 1. A hypothetically evolved network structure with variable connectivity. (pe weight sets) according to W, W, + where

6oW. is a multivariate N(O, Sf. E) random variable with a

II. APPLYING EP TO NEURAL NETS scaing coefficient Sf and mean sum-squared pattern error EP
for each parent network. The scaling factor is a probabilistic

A. Evolutionary Programming analog to the stepsize used in gradient based methods and
can even be treated as a random variable within the EP

Evolutionary Programming is a neo-Darwinian search search strategy. The effect of the scaling factor is shown in

paradigm suggested by Fogel et al. [31. This multi-agent Fig. 2 for sample training trials of the XOR mapping. The

search paradigm provides a systematic means for employing variance of the weight perturbations is bound by the total

stochastic optimization techniques using an arbitrary system error using this approach. To emulate the

objective function, probabilistic nature of survival, a pairwise competition is
held where individual elements compete against randomly

The EP optimization algorithm can be described by the chosen members of the population. For example, if network

following steps [51: Dj is randomly selected to compete against network Di, a
"win" is awarded to network (Di if Ji < J.. The N networks

1. Form an initial population P2NI(X) of size 2N. The with the most wins are kept and the process is repeated.
parameters x associated with parent element P, are
randomly initialized from a user specified search domain.

2. Assign a cost J, to each element P,(x) in the population
based on the objective function.

3. Reorder the population based on the number of wins 0.12 SF-.I

generated from a stochastic competition process. 0.1 - -

4. Generate offypring (PN .... P 2NI)from the highest ranked
N elements (Po .... PN-1) in the population by perturbing x. 0.08 - - -
5. Loop to step 2. • .o.

In addition to providing a systematic means of stochastic 0.04 Si 10
search, the generality of the EP optimization algorithm lends 0.02

power to its implementation. The user is not bound to any SF-100

p a r tic u la r c o d in g s tr u c tu r e n o r m u ta tio n s tra te gy . E P is u s e d 0 .0 0 10 . 0 . . . 4. . 0. . . . . . . . 0 1
010 20 30 40 50 60 70 M0 W 100

in this investigation since it is well suited for evolving both MMN

model structure and weight coefficients.
Fig. 2. EP training of a 2-2-1 XOR mapping network for various scaling

factors and N = 10.



!11. EVOLVING CONNECTIVITY state change was achieved by toggling randomly chosen
connections 171 and a probabilistic approach was employed

This section investigates neural network structural level based on the variance of a neuron's activation level 181.
adaptation as it pertains to the connectivity between neurons
in a feedforward multi-layer architecture. The objective This work builds cumulative distribution functions (CDF's)
function has been modified to account for the existence of a based on the variance of a neuron's activation level to bias
connection. This is similar to the weight elimination the connection selection process within the EP search. If
technique 1121 which minimizes an objective function of the additional connections are desired, a CDF is generated from
form all of the neurons in a layer which are not fully connected.

The synapses propagating signals from very active neurons
(Wj /W,)2 will tend to be chosen more than the synapses which

J _= E propagate signals from relatively inactive neurons. The
P + (w -/w, )- probability of connecting a synapse C1 ,, is given by

For wj»>> wo, the term inside the summation is nearly unity
and the objective function can be approximated by SP, ( Civ.)

J=E +yN, n(U)ZoC2

where N, is the number of connections. When wi«<< wo, the kl
term inside summation approaches zero and has very little where d(U),, is the number of unconnected synapses available
contribution to the magnitude of the objective function. Ifail for propagating the signal to the next layer and oau is the
of the input weights to a neuron become zero valued, the standard deviation of the activation level of neuron i in layer
output of that neuron will serve as a bias within the network. I over all input patterns for a fixed set of weights.
The objective function proposed for this work is a linearly
weighted combination of the number of connections N, and Likewise, if additional disconnections are desired, a CDF is
the mean sum-squared pattern error generated from all of the connected neurons in a layer. The

synapses propagating signals from neurons with relatively
J1 aEp + /3NI. high activity levels will have a lower probability of being

Instead of forcing the weight magnitudes to small values chosen to become disconnected. The probability of
(which arbitrarily accentuates the search about the origin at disconnecting a synapse Ct,, is given by
the expense of outlying data points), the philosophy is taken
that all connections are equally important. The network will
benefit by simply disconnecting a synapse which has little
effect on EP. While the biological analog is that the synapse =0
"dies", no such claims are made here. However, it is if It=0
expected that the number of redundant hyperplanes will be
reduced without introducing additional bias nodes which Pda(C 11 ) = a-i 20
result from zero-input neurons. The number of active n (.]" -2
neurons can also be incorporated into the objective function It _ CTl-
to more fully account for the computational complexity. ke,

This is easily accommodated in the EP search procedure [71
by modifying the objective function given above so that where n(c)O, is the number of synapses connected to the

subsequent layer. Connections emanating from neurons with
I : .E~p + /3N• + yN, zero variance are always disconnected. Since the bias nodes

where N, is the number of active neurons in the network. are invariant, their connections remain present in the
network.

Analogous to the weight array, a connectivity array has
been specified where Ch I if a connection exists or C, = To facilitate both structural level evolution as well as
0 if no connection is present. A connectivity array that Las optimization of the weight coefficients, a strategy is
all of its elements set to / yields a filly connected network. employed that generates one set of offspring with a perturbed
The designer must specify the number of hidden neurons weight set in parallel with another set of offspring which has
over which the search is conducted. This number determines a modified connectivity structure. Fig. 3 illustrates the
the maximum number of connections. In previous work, a evolutionary search process over a single generation.



Figure 3. One generaion of the evotutionary search process.

IV. RESULTS

A. The Parity Problem 0.20 30

0.18 ".- - MSE 27The proposed approach for evolving network connectivity 0.16

for the parity problem was considered. As a measure of o .14 - .'-f• 21

sparseness of a network's connectivity, a dilution ratio has o~ .12 __&_ ..- 18
been defined [91 as D= S/N2 where S is the total number of o .10~ t '-- 15s

synapses and N is the number of neurons. Although the 0.08 1..... 2
maximum number of neurons could be one of the search ol.6o s
parameters 171, the available number of neurons were .04 ,6

constant throughout these experiments. Starting from a fully 00o2 '.3

connected 2-10-1 network, Fig. 4 shows the training results 0000 ... .4... . 3.5
o 530 60 75 90 105 120 a 150on the XOR mapping problem for Seoi 100, a=l , nw=0.001 ccEnNe y .

and 10 parent networks. In this instance, the network
evolved to a fully connected 2-2-1 network. Since 10 hidden Fig. 4. ThebestevolvednetworkconfigurationforthXORmapping. Neis

the nutheer ofpconnctwons and Oc is the objective fonction J.
units are available for connection, the dilution ratio for this
network is D =0.06 (not including connections to bias units

which are not modifiable).

Fig. 5 shows a training session for the 3-bit parity problem. o.15o0i, os 40

This session started from a fully-connected 3-10-1 network 0.135 ,-- - use 36
and Sr - 100, a=lt, al0.0005 and 10 parent networks. The 0.02 .0. - ........ Nc

best (least cost) evolved network afier 1000 generations has 0.105 028

13 connections as shown in Fig. 6. A fully-conneted 3-3-1 0.

S000 153 5247 01512 3 6

network (12 onnections) is able to achieve the mapping and 8 00075 '20
would have resulted in lower cost solution. In the t evove 16

evolutionary process employed, only a single connection is =•0.045 '.,, ............................... 2
modified each generation. This entails connecting a synapse t.0h0 8

to the third neuron in the hidden layer and disconnecting the oios 4
synapse to the fourth neuron in the hidden layer- a two step o.ooo 200ts 3 500
process. As the search procedure arrives at a near optimal GENERATION

configuration, the probability of keeping a network over this
two step process may be very small. Fig. . Thebest evolved network confguration for the 3-bit parity mapping.

Nc is the number of connections and OBJ is the objective function J.



3-16-1 network with St = 1, a=-100, A-0.05 and 10 parent

x2 networks. The resulting network has a diffusion ratio of
D=0.039 as shown in Fig. 8 and achieved a MSE of
0.000018 after 2000 generations.

INPUTS XI

B. The T-C Problem

X0
Additional experiments were done with a simple T-C

pattern similar to that discussed by Rumelhart et al. 1191.
This experiment involved distinguishing which 5 pixel T or

Fig. 6. The 3-bit parity mapping network resultiug from the training session 'C' pattern exists on a 4x4 pixel grid. The training set
shown is Fig. 5. The bias connctiow are not shown. consisted of 32 patterns which represented rotations in 90V

increments and single pixel translations to the edges of the
grid. Fig. 9 shows the training session starting from a fully-
connect 16-16-1 network using the same parameters and
weight perturbation approach given for the last example.

64 0.12 The resulting network has a diffusion ratio of D=0.133 as
56 ,- O shown in Fig. 10. The disconnected hidden units are also56 ,..... Ne

--- Ms• shown in Fig. 10 to illustrate that only those neurons which
48 0,09 have inputs are propagating information forward in the

U40 V) network. The proposed approach can also be used to reduce
S32 0 .06 the number of input connections. As shown in Fig. 10, pixel

element [2,11 is not connected to the hidden units. An7o 24 '
z, u4experiment was conducted using the XOR mapping

18 0.03 augmented by an additional noisy input. The third (noisy)
. input consisted of a uniformly distributed U(O, 1) random

0 0.00 variable. The evolved network had all of the synapses from
0 50 IM 150 200 250 300 350 400 450 500 the spurious input successfully disconnected.

GENERATION

Fig. 7. The best evolved network configuration for the 3-bit parity mapping. V. CONCLUSION
Nc is the number of connections and OBJ is the objective function J.

The EP paradigm provides a robust framework for
determining both model structure and weight coefficients.

X2 The enormity of the search space may hinder the
OUTrPUT simultaneous evolution of a good solution network from an

SXIindividual parent network. A rigorous search is attempted
by evolving disparate parameters with separate sets of
offspring. This allows the optimization process to continue

Xo on the weight sets while various structures are being
evaluated.

The biased EP search generally performed better than the
Fig. 8. The 3-bit parity mapping network which resulted from the training randomaselEc meth impemented intpreviou wor

session shown in Fig. 7. The bias connections are not shown. random selection methods implemented in previous work
17,81. This performance comes with the additional expense

In the previous two examples the offspring weight sets were of building CDFs which is not required using a purely
generated by perturbing the parent weight sets with a random selection process. The CDFs for layers without
normally distributed N(O, Sf.- J) random variable. Since this inputs are poorly defined (the sum of the variances of the
approach couples the perturbation magnitude to the networks activity levels over all of the neurons in the layer is zero).
objective function, an alternative technique was implemented This situation may occur if an excess emphasis is placed on
were the weight sets were perturbed using a normally the number of connections in the objective function forcing
distributed N(O, a E,,I random variable. A sample training N. to zero. It is apparent that the proposed approach is very
session using this approach on the 3-bit parity problem is sensitive to the weighting parameters used in the objective
shown in Fig. 7. This session started from a fully-connected function as well as the weight perturbation scaling factor.



The decoupled mutation strategy explored in this work may
provide a basis for reducing this sensitivity. This is a topic REFERENCES
for futmher investigation.
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