
*~~ 77, .

AD-A273 106

g ( DTIC__K£-LEC.TE

NOV26 1993

At I 1/1N 1 M131

Air Force Institute of Technology

Computing with Bayesian Multi-Networks

Eugene Santos Jr.

November 16, 1993

93-28904

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio p ,ublic-- .•4

9 1.. 24 121



UNCLASSIFIED

AFIT/EN/TR93-10

Air Force Institute of Technology

Computing with Bayesian Multi-Networks

Eugene Santos Jr.
DTI'C QUJALITY} [ISPEC"ID S

November 16, 1993

Accesion For
NTIS CRA&I

;..TI C TAB _

, ; 'c,; 1; iC ~ o I ..... ..... .....

Approved for public release; distribution unlimited " -----

/-,,.,iiJ[•iity C•

S:t spucial



Computing with Bayesian Multi-Networks

Eugene Santos Jr.
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

esantos~afit.af.mil

November 16, 1993

KEYWORDS: probabilistic reasoning, constraint satisfaction, linear program-
ming, temporal reasoning, abductive explanation

Abstract
Existing probabilistic approaches to automated reasoning impose se-

vere restrictions on its knowledge representation scheme. Mainly, this is
to ensure that there exists an effective inferencing algorithm. Unfortu-
nately, this makes the application of these approaches to general domains
quite difficult.

In this paper, we present a new model called Bayesian multi-networks
which uses a rule-based organization of knowledge quite natural for hu-
man experts modeling various domains. Furthermore, strong probabilistic
semantics help quantify the knowledge. Combined with the rich structure
of rule-based approaches, a general inference engine for Bayesian multi-
networks is developed.

1 Introduction

The success of automated reasoning will clearly depend on its applicability to
a wide variety of problem domains. It must have a flexible knowledge repre-
sentation scheme as well as provide effective and efficient inference mechanisms.
Unfortunately, knowledge representation and inference algorithms always seem
to be at odds with one another. This is particularly true for probabilistic ap-
proaches which are often trading off flexibility for efficiency and even effective-



ness. The major problem facing them, regardless of whether they are being used
for story understanding, robotic planning, diagnosis, expert systems, etc., is the
difficulty of modeling the desired problem domain. More often than not, severe
restrictions are placed on representation just to ensure that the inference algo-
rithm employed at least finishes in less than combinatorial time once in awhile.
Of course, the net result of these restrictions is the increa•sed frustration of try-
ing to build such knowledge bases beyond the simplest of domains. The biggest
problem rests in re-interpreting (human) expert knowledge to fit the restricted
representation and quantifying all the required information in some reasonable
fashion.

One of the most popular probabilistic approaches is Bayesian networks [7].
It offers a high level of readability by providing a clear graphical representation
while allowing for efficient computations on certain subclasses of networks [7,
19. 9, 12, 14, 5, 1]. Although it has done much for the probabilistic paradigm,
it still falls far short of the desired level of knowledge representation.

One such short fall has been identified in [4, 3] called assymetric indepen-
dence. It asserts that random variables (abbrev. r.v.s) are dependent for some
but not necessarily all of their values. Hence, a fair amount of redundancy oc-
curs in the conditional tables of the network. By identifying them, it is hoped
that the number of conditional probabilities can be reduced thus decreasing the
computational time required.

In a separate research effort, [16, 15) has also identified a similar problem.
Although this work was approached from the standpoint of solving the over-
specification problem when performing belief revision on Bayesian networks, it
nevertheless identifies that there exists situations where a particular instantia-
tion to a r.v. will render the remaining r.v. in the conditional "irrelevant". In
other words, there is little or no change in the final conditional probability when
the instantiations to the irrelevant r.v. are altered.

Although these earlier results have served to increase the expressiveness of
Bayesian networks, they are still fairly limited. If we look carefully at both
approaches, we find that they are still working entirely within the realm of
Bayesian network restrictions. Simply put, these methods take a Bayesian net-
work and create a set of smaller networks which are actually subnetworks of the
original. Thus, they must still for the most part obey the restrictions.

To reiterate, the most important aspects to having a successful probabilistic
model are:

"* The ease in which knowledge can be encoded and decoded by a human
expert.

"* The quantifiability of the knowledge encoded.
"* The existence of an effective and efficient inference engine.

Probably the best knowledge representation scheme satisfying the above con-
ditions would be the rule-based approaches. [18] points out in their milestone
work on MYCIN that the human experts have found that working with rule-
based information is much more natural than working with any other schemes.
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Furthermore, these rules are much more easily quantified and provide a rich

structure for inferencing.
In this paper, we present a new model called Bayesian multi-networks.1

This model permits a general rule-based organizational scheme while providing
a strong probabilistic semantics for the quantified rules. Furthermore, a general

inference algorithm can be found for computing with these multi-networks.
We begin in Section 2 by describing our Bayesian multi-networks. Section 3

describes our inference algorithm. Finally, Section 4 discusses consistency con-

siderations when constructing a Bayesian multi-network.

2 Bayesian Multi-networks

Bayesian networks organize knowledge in terms of probabilistic conditional de-
pendencies. The world can be modeled by a collection of events and the relation-
ships between them. In particular, both causal and logical relationships are rep-
resented in terms of conditional dependencies. For example, given two events A
and B where event A represents "It is raining." and B represents "The sidewalk
is wet.", the relationship that A causes B is denoted by P(B = true IA = true).
We say that B is conditionally dependent on A.

We can redescribe this more clearly in terms of graphs. A Bayesian network

is a directed acyclic graph whose nodes are r.v.s and whose arcs between the
nodes represent direct conditional dependencies between the r.v.s. Given a node
A with parents B 1,..., B,, we say that A is conditionally dependent on the set
of r.v.s B.,..., B,. Furthermore, Bayesian networks assert that if B 1 ,....B,,
are all the parents of A, then

P(A = a1B1 = bi,...,B, = b,)=(1)

P(A = alBi = bl,. . ., B = b, C1 = cl,.. .,C, = cm)

for any collection of r.v.s {C1,..., Cm} such that

{Ci,...,Cml} n {A, Bi,...,Bn, =4

where c denotes the empty set and for any instantiation to all the r.v.s involved. 2

We will see the significance of this assertion later in this section.

The r.v.s are used to represent events in the world. An instantiation of a
r.v. to some value reflects the status of the event being modeled. For example,
instantiating A to true above implies that it is raining. Hence, we can represent

the various states of the world (scenarios) through different instantiations to
the r.v.s. Furthermore, we can properly attach a probability to a given scenario

representing the likelihood of the scenario. The question now arises as to how we

I Different from the multinets in [3].
2 Note that this isn't quite true but suffices for our discussion. For more information, see

the notion of d-separation in [7].
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go about computing this probability. This is where the above assertion comes
into play.

Consider the scenario {C 1 = cl,..., C,, = c,,} which instantiates all the r.v.s
in the network. We must somehow compute its joint probability. Let's assume
that {C 1 , C 2 , .. ., C,} already are a topological ordering of the r.v.s consistent
with the associated directed acyclic graph for the Bayesian network. We first
apply Bayes' theorem and get

P(CI = C, C..., = c,,) (2)

P(C = c IC2 = c 2 , ... , Cn = c.)

P(C2 = c2I C3 = c3 , .. ., C. = c.)

P(C¢ = c").

From the assertion above on conditional dependencies, we can then substitute
the conditional probabilities with smaller ones from (1) reducing the problem
to one of simply multiplying the appropriate conditional probabilities together
from our network.

One of the computations performed on Bayesian networks is belief revision.
It is also called the search for the most-probable explanation and is characterized
as follows: Given a set of instantiations e called evidence on some subset of the
r.v.s, find an instantiation w" to all the r.v.s such that

P(w*le) = maxP(wle)

Furthermore, belief revision is a model for abductive reasoning[2]. We call the
instantiation-sets w complete instantiation sets or complete scenarios. They are
also called explanations for e.
NOTATION. Given a r.v. A, R(A) represents the set of all possible instantiations
to A.
NOTATION. Given a conditional probability P(A = aIBi = bi,..., B,, = b,), we
define

head(P( ... )) = {A a)

tail(P(... )) = {B 1 = b ... , B. = bn)

In essence, we can simply describe a Bayesian network as a database of
conditional probabilities which satisfy certain conditions.

1. For any P(A = aIB1 = bi,..., B, = bn) in the database, the following
condition holds:

P(A = aJB1 = bl,..., B, -- bn) =(3)

P(A = aB = bl,.., A, = b,, C = cl,...-, C, = c,)



for any3 {C 1 = cl,..., C.. = c,m) such that

{Ci,..., C,.I n f{A,Bi,... ,B,, = t.

2. For each r.v. A, there exists a unique collection of r.v.s {B 1 , . .. B, ) such
that all conditional probabilities in the database are of the form:

P(A = alB1 = bi,.. ., B, = b,).

3. For each r.v. A conditioned on {B 1,...,Bn, for each a E R(A),bi E
JZ(B,),. .. ,b, E R(B,),

P(A = alBi = bi,...,Bn = b,) (4)

is in the database.
4. We can find a topological ordering on the r.v.s based on the conditional

probabilities in the database.
The first condition is simply our conditional dependency assertion. The sec-
ond condition reflects the requirement of Bayesian networks that they be built
around r.v.s. In particular, independencies are between r.v.s and not between
the different instantiations of the r.v.s. The third require that the tables be
complete while the fourth requires our network to be acyclic in nature.

A major representational restriction of Bayesian networks arise from the
second and fourth conditions as we mentioned earlier in our introduction. Our
approach is to eliminate this restriction in order to accommodate a more pow-
erful representational scheme. In particular, we wish to be able to represent
the following information: Given r.v.s A, B, C, D, A = a, is only conditionally
dependent on B = b and C = cl whereas C = c2 is only conditionally dependent
on A = a2 and D = d where a, 9 a2 and c1 0 c2 . These conditions correspond
to the rules

{B = b} A {C = cl} -. {A = ai}

{A = a 2 } A {D = d} -- {C = C2)

Clearly, this organization violates both the second and fourth condition of
Bayesian networks.

We now formalize our Bayesian multi-networks.

DEFINITION 2.1. A Bayesian multi-network M is an ordered pair (V,-p) where
V is a finite set of r.v.s and 'P is a finite collection of conditional probabilities
on V such that for all probabilities P(A = alBi = bi,..., B. = b.) E P,

P(A = aIB1 = bl,...,B, = b,,C 1 = cl,...,Cm = CM) =
P(A = aIB1= bl,..., B,, = b,)

3
Again, see the notion of d-separation.



for any instantiations to {C 1, ..,C } C V and

C1, ... ,C.f} n {A, Bi,...,B,} = 1

We have defined our multi-network in terms of a database of conditional
probabilities. Obviously, given the conditional dependency restriction, we can
still calculate joints probabilities similar to what we did before for Bayesian
networks. We simply pick an appropriate collection of conditional probabilities
from the database such that it satisfies (2). Intuitively, we can view

P(A = alBi = bl..Bn = bn)

in the database as the information that

{A = a) is supported by {B 1 = bi,...,B, = b,}.

Hence, the collection of conditional probabilities used in calculating a joint
probability represents a causal inference chain. In a Bayesian network, there is
exactly one such chain which is dictated by the directed acyclic ordering of all
the r.v.s. For our multi-networks, the ordering is asserted at a finer level than
just between r.v.s. It is ordered with respect to particular instantiations of each
r.v.s. In essence, this allows us to have multiple causal chains. Hence, we have
a multi-network.

Furthermore, like Bayesian networks, multi-networks also have a graphical
form. Instead of nodes representing r.v.s, they will represent individual r.v. in-
stantiations such as {A = a}. More specifically, we have two types of nodes in
the multi-network graph. The first type represents r.v. instantiations whereas
the second type is used to explicitly represent the one or more different ways a
particular r.v. instantiation can be supported. The parents of an instantiation
node are support nodes. Each support node corresponds to a conditional prob-
ability in the database whose head is the instantiation node and whose tail are
the parents of the support node. See Figure 2.1.

As we can easily see, Bayesian networks are simply a special case of Bayesian
multi-networks. We now briefly mention a special class of multi-networks whose
properties will be particularly useful for our computation techniques in the next
sections.

DEFINITION 2.2. A Bayesian multi-network M = (V,-P) is said to be anti-
cyclic if and only if there exists a topological ordering on all the individual r.v.
instantiations.

According to this definition, it follows straightforwardly that Bayesian net-
works are also anti-cyclic multi-networks.
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B~b C=cl

C=c2

A a2

D~d

FIG. 2.1. Building a graph for a Bayesian multi-network.

7



3 Computing Explanations

We now consider belief revision computations on our multi-networks similar to
those for normal Bayesian networks. In Section 2, given a set of instantiations c
called evidence, we search for a complete instantiation set u* which maximizes

max P(wle).

However, determining u,' which is the most-probable explanation for e on
Bayesian networks requires that the conditional probability tables be complete.
(See condition 3 for Bayesian networks in the previous section.) Existing meth-
ods such as message-passing schemes [7, 191 rely on this property to "localize"
the computations in the network.

Still, we can readily define a best explanation for ar incomplete system
(either Bayesian networks or multi-networks) as follows: We say that a com-
plete instantiation set w is computable if there exists a collection of conditional
probabilities from our database which can be multiplied to compute the joint
probability from (2). This works because of the conditional dependency asser-
tion we placed on the conditional probabilities in our database. We can then
say that the best explanation is really the most probable computable explanation
(abbrev., MPCE).

Even if our multi-networks are probabilisti,-ally complete, almost all existing
methods for belief revision on Bayesian networks are not extendable to our new
model. We have already mentioned the locality restriction required by message-
passing schemes above. Another more serious restriction is acyclicity of the
information [7, 19, 17]. Our multi-networks can contain directed cycles.

The one method which can be extended from Bayesian networks to our new
multi-networks is Santos' linear programming method [9, 1, 10, 11]. Basically,
the search for the MPCE is transformed into an integer linear programming
problem.

The transformation involves mapping r.v. instantiations into some multi-
dimensional space which we will denote by R". A subspace of R' will represent
"valid" instantiations where valid includes things like being consistent to the
given evidence e, each r.v. has at most one instantiation, etc. In particular, we
are interested in transforming it into a polyhedral convex set. 4 Such a set can be
described by a collection of linear inequalities. As it turns out, these inequalities
will intuitively correspond to the restricti -ns/constraints required in making
valid instantiations of the r.v.s. Finally, we would like to define a linear energy
function such that by minimizing it over the convex set, the resulting answer
will be the best explanation after we make the appropriate inverse mapping.
Thus, we would have the makings of a linear constraint satisfaction problem.

""Polyhedral" refers to the fact that the boundaries of the subspace are composed of
hyperplanes.



For the time being, let's consider the class of anti-cyclhc multi-networks. Let
A be a r.v. and a be a possible instantiations for A. If A is instantiated to
a, that is, A = a, then we would like to set a real variable Aa to the value 1.
If A 0 a. then Aa = 0. This holds for every possible instantiation of A for
every r.v. A. Next, each r.%v. must have exactly one instantiation. This can be
achieved with the linear constraint

1 Aa. (5)
aER(A)

where R(A) is the set of all possible instantiations for A.
Now, we must tie the random variable instantiations to the conditional rrob-

abilities in the database. For each p E P, associate a real variable qp called a
conditional variable. When qp is 1, this implies that the p is being used in the
joint probability computation. Otherwise, qp = 0 implies it is not being used.

Clearly, if r.v. A is not instantiated to a, then any conditional probability
with A = a in either it's head or tail should not be used.

I"Aa 2! E qr (6)
rEQ(A=al})

where K is some arbitrarily large constant and Q({A = a)) is the collection of
all conditional probabilities in P which contain A = a.

Finally, since we know that each r.v. A must be instantiated to exactly one
element, this implies that exactly one of the conditional probabilities in P whose
head has A must be used.

E qP= (7)
pEH(A)

where H(A) is the collection of all conditional probabilities in P whose head
contains A.

Taking all these constraints together, we can prove the following theorems:

THEOREM 3.1. Any 0-1 assignment to the real variables which satisfy the above
constraints correspond to a valid complete instantiation of the r.v.s in a anti-
cyclic multi-network. Furthermore, the corresponding complete instantzathons
are computable.

THEORFM 3.2. The converse of Theorem 3.1 is also true.

Evidence is incorporated into the constraints by clamping the associated real
variables to 1. For example,

{A = a) E e ==> Aa=1.

To complete our transformation, we need to define our objective function
we wish to optimize. Obviously, we can directly compute the joint probability

9



of a complete instantiation by multiplying the associated probabilities of the
conditional variables which have been assigned a value of 1. To recast it as a
linear function for our integer linear program, we have

E(- log p)qp. (8)
pEP

THEOREM 3.3. A 0-1 assignment which satisfies the above constraints and mint-
mizes the objective function is a MPCE for the original anti-cyclic multi-network.

Hence, we have transformed our problem for anti-cyclic multi-networks into
integer linear programming.

We began by looking at ar.ni-cyclic multi-networks instead of the more gen-
eral case since the resulting constraint system is much quicker to comprehend.
When we have non-anti-cyclic multi-networks, we can encounter the following
situation: Given r.v.s A, B and C. assume "P only contains

P(A = aiB = b)

P(B = bIC = c)

P(C = cIA = a)

Clearly, "p is incomplete. However, if we attempt to compute

P(A = a,B = b,C = c)

using our above method, we would simply multiply the three probabilities to-
gether. This is incorrect since

P(A = a, B = b, C = c)

is not computable. A anti-cyclic multi-network forbids this type of database.
Unfortunately, it also precludes databases of the form

P(A = ajB = b,D = dj)

P(B = bIC = c, D = di)

P(C = cIA = a, D = d2 )

P(C = cID = da)

P(A = aID = d2 )

P(B = bID = d2 )

where
P(A = a, B = b, C = c. D = di)

and
P(A = a, B = b, C = c, D = d2 )

10



are computable.
As it turns out, we can solve this with additional constraints #- guarantee a

topological ordering among the instantiations. We associate a topological value
variable t Aa to each {A = a). Basically, this variable will contain a number

reflecting a topological ordering. For each pair of instantiations {A = a) and
{B = b}, add the following constraints:

KmAa,Bb > p qP (9)
pEM({A=o},{B=b})

where M({A = a), {B = b)) are all condition probabilities in r with
head {A = a) and whose tail contains {B = b) and K is an arbitrarily
large positive number. mAaBb will function as a flag indicating that

{A = a) topologically dominates {B = b} since one of the probabilities in
M({A = a),{B = b)) has been used.

K(1 - mAaBb) + tAa >i Bb + 1 (10)

Note that our topological variables need not be integer values. Since both
topological dominance and ">" are transitive, these equations will guarantee
that any solution will have a topological ordering.

A topological ordering actually corresponds to a proof path. An explanation
for e is a proof for e. This is the heart of abductive reasoning [6, 2, 8]. When
we have cyclicity, we often end up with circular proofs which are invalid [13].
However, requiring a topological ordering will eliminate these circular cases.

4 Database Consistency Checking

Building a Bayesian multi-network is relatively straightforward since any rule-
based construction approach is sufficient and our computational method will
work on the entire class. About the only thing to take note of while constructing
the probabilistic database is the issue of consistency between the probabilities.
In particular, we wish to avoid the possibility of having two different collections
of conditional probabilities that when multiplied together result in different
values for a single joint distribution. For example, consider the simple scenario
where we have the r.v.s A, B and C and we have the following database:

P(A = alB = b)

P(B = bIC = c)
P(C = c)

P(B = b1A = a)
P(A = aC =c)

11



As we can easily see, we can compute P(A = a, B = b, C = c) in two different
ways.

We now provide here a relatively straight-forward algorithm for checking
database consistency. It exploits our conditional dependency assertion: For any
two probabilities P1,P2 in "P, if head(pl) = head(p 2 ) and there does not exist
a r.v. C in tail(pj) and tail(p 2 ) such that {C = c1 } E tail(pj) and {C = c2 } E
tail(p2) where cl 0 c2 , then the probabilities for pi and P2 must be the same.

Clearly, this is a very crude algorithm and many optimizations can be made.
However, we can prove that it is sufficient to guarantee that our database is
probabilistically consistent and can be computed in 0(1 V 121 V 1) time.

5 Conclusion

Traditional probabilistic approaches to automated reasoning have suffered from
representational inadequacies in order to provide effective inference mechanisms.
In particular, the restrictions imposed have rendered it quite difficult to build
such knowledge bases let alone quantify them.

In this paper, we have developed a new framework called Bayesian multi-
networks. This approach provides an extremely natural method for organizing
our knowledge through a rule-based scheme. Little or no restrictions are imposed
that may hinder the construction of such a network for use in almost any domain.
Furthermore, it provides a graphical representation which permits an easier
visualization of the information to the human expert.

Strong probabilistic semantics aid in the quantification of information. Com-
bined with the rich structure inherent in a rule-based approach, a general infer-
ence engine was developed using linear programming techniques.

Bayesian networks is one of the most popular approaches for automated
reasoning. Our new Bayesian multi-networks formulation subsumes Bayesian
networks. Because of this, Bayesian networks are quite easily translated to our
new model.

Finally, recent work on efficient algorithms for Bayesian network computa-
tions using integer linear programming [11] seem to be readily applicable to our
multi-networks. In particular, we have observed that the basic structure of the
linear programming formulations are similar in many regards.
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