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Disclaimer

The findings in this report are not to be construed as an
official Department of the Army position unless so designated by
other authorizing documents.
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MIRROR VELOCITY SAMPLING ERRORS IN A MICHELSON INTERFEROMETER

1. INTRODUCTION

The proper operation of a Fourier transform spectro-
meter, using a Michelson interferometer, requires uniform
sampling of the interferogram along the optical path difference
(OPD) scale. Various models and experiments identify nonuniform
sampling along the OPD scale as a major source of error for
Fourier trausform spectrometers.'*

This investigation focuses on four practical methods to
determine the accuracy and precision necessary in maintaining a
constant mirror velocity (i.e., uniform sampling intervals along
the interferometer OPD scale). The four methods (see Figure 1)
provide complementary and supplementary information on the
effects of interferometer mirror velocity fluctuations. The
first method, time interval analysis, measures the dynamic
variation of the digitized Helium Neon (HeNe) laser reference
signal from the interferometer.’ The second method, a sine wave
test, replaces the preamplifier input signal with a well
characterized sinusoidal input. This sinusoidal input simulates
a variety of conditions difficult to achieve experimentally.®
The third method, a chopper modulation of an extended blackbody
radiation source, permits the optical generation of a sinusoidal
signal that compares directly to the results of the sine wave
test. The fourth and final method, examination of consecutive
interferograms in either the time or frequency domain, allows the
determination of the spectrometer precision.’’ The results from
these methods supply a means to quantify the importance of mirror
velocity errors in the Fourier transform spectrometer performance
as a spectroradiometer.?

This study examines two spectrometer configurations in
the interferometer mirror servo control loop, Cases A and B. 1In
Case A, interferogram sampling near the moving interferometer
mirror turn around causes a large systematic acceleration error.
In Case B, interferogram sampling is delayed until the moving
interferometer mirror attains a nearly constant velocity. The
delayed interferogram sampling avoids the acceleration effects
of the interferometer mirror turn around. The four methods
evaluating the interferometer moving mirror fluctuations permit
a diagnosis of an incorrect Case A mirror servo control configur-
ation. Confirmation of Case B operation with the proper mirror
servo control insures spectrometer data collection with minimal
sampling errors. The use of synthetic mirror servo control sig-
nals for the sine wave test furnishes an idealized instance of no
mirror velocity sampling errors (Case C). The operational Case B
compared to the idealized Case C for the sine wave test demon-
strates that the mirror velocity sampling errors in Case B are
indeed minimal.
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2. EXPERIMENTAL METHODS

The four methods determining the interferometer mirror
velocity implement each of the following resources. The MIDAC
Outfielder M2400-ZnSe spectrometer Unit 120 (MIDAC, Incorporated,
Irvine, CA) contains a 60° field-of-view and 2 mm’ liquid nitro-
gen cooled Hg:Cd:Te detector [Judson Model J15D14-M227-S02M-60
(Judson Infrared, Incorporated, Montgomeryville, PA), serial
number 20506). The spectrometer provides 1024 point interfero
grams at 4 cm’' resolution. A version of the program MIDCOL
permits data collection of consecutive interferograms.* The
commercially available Spectra Calc software (Galactic Industries
Corporation, Salem, NH) allows data analysis of the interfero-
metric data.’

The time interval analysis (TIA) of the digitized HeNe
laser reference signal (DLR) uses the instrumental techniques
described previously.® To perform the TIA on the DLR signal from
the MIDAC spectrometer for Case B (i.e., only small sinusoidal
mirror velocity fluctuations) requires discarding approximately
400 interferogram points (i.e., 800 time intervals) preceding
the interferogram centerburst. A block diagram in Figure 2 shows
the necessary circuit functions that result in the delay of the
signal status (SSTAT) signal [i.e., delayed status (DSTAT)). The
switch inputs to the digital magnitude comparator determine the
number of interferogram points by which SSTAT is delayed. This
delay before initiation of interferogram sampling (i.e.,
discarding points) removes the large systematic acceleration
error otherwise present when sampling near the interferometer
mirror turn around. The timing diagram in Figure 3 indicates the
sequence of events that occur in generation of DSTAT. If this
SSTAT signal is a digital low, then the counter in Figure 2 is
continuously reset. An active digital high on SSTAT enables the
counter to begin counting the DLR pulses. The counting of the DLR
pulses continues until the counter output matches the switch
settings (i.e., 416 decimal). The digital comparator for equal
inputs of counter and switches produces an active digital high
output pulse on the A = B ouiput. The digital comparator A = B
output pulse sets the reset-set (RS) flip flop and enables DSTAT.
The DSTAT remains enabled until reset by SSTAT, then becoming an
inactive digital low.

The sine wave test replaces the infrared (IR2 preampli-~
fier signal with a 1 V peak-to-peak, 500 Hz sine wave.® The
Analogic 2020 polynomial waveform synthesizer (PWS)!° generates
the input sine wave for the spectrometer bandpass filter. Either

#*Kroutil, R.T., Research and Technology Directorate, U.S. Army
Edgewood Research, Development and Engineering Center,
August 1993, Unpublished data.
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the spectrometer SSTAT or DSTAT signal (for Case A or Case B,
respectively) triggers the Analogic 2020 PWS sine wave gener-
ation. The PWS sine wave is subsequently sampled by the M2400-
ZnSe spectrometer. For idealized Case C (i.e., synthetic mirror
servo signals with no velocity errors), a monostable supplies
the synchronizing SSTAT signal as shown in Figure 4. One
Analogic 2020 PWS generates the simulated DLR signal, while
another Analogic 2020 PWS provides the 1 V peak-to-peak, 500 Hz
sine wave. These signals connect to the test points on the
analog-to-digital conversion board with the mirror servo board
cables disconnected.

The chopper modulation method employs an optical
chopper with a 2 in.? aperture and 6 aperture blade. The EG&G
Model 192 variable speed chopper modulates the IR radiation from
an extended blackbody source at 500 Hz to the MIDAC spectrometer.
The CI Systems SR-80 (CI Systems, Incorporated, Agoura Hills, CA)
extended blackbody (i.e., 16 in.? in area) provides a NIST
traceable IR radiation source accurate to within +0.03 °C and
precise to +0.01 °C.!! The SR-80 blackbody temperature of 50 °C
furnishes a large contrast temperature tc the ambient temperature
chopper blade.

The MIDAC spectrometer is operated for at least 2 hr
before collection of consecutive interferograms. This operation
time permits thermal stabilization of the spectrometer. The
spectrometer servo mirror control circuit determines the position
of the zero OPD (i.e., zero optical path difference (ZPD)
interferogram centerburst regionj. Case A (large systematic
mirror acceleration present) and Case B (small sinusoidal mirror
velocity variation) represent a specific servo configuration.

In both cases, the SR-80 extended blackbody (at 50 °C) provides
a stable IR radiation source input during interferogram
collection.”? This interferogram collection includes the
conditions necessary to determine the wavenumber axis accuracy
with an ammonia spectrum. The ammonia spectrum is a difference
spectrum. The difference spectrum is obtained from data
collected with an ammonia and blank cell sequentially positioned
between the SR-80 blackbody and MIDAC spectrometer. The short
path gas cell provides a pathlength of approximately 82 mm."

3. RESULTS

Spatial interferogram sampling along evenly divided
increments in the OPD scale equals temporal interferogram
gampling along uniform time intervals for a constant mirror
velocity. Fluctuations from a constant mirror velocity results
in a deviation from the uniform time intervals. Therefore, each
method for measurement of the interferometer mirror velocity

14
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employs some type of time measure (i.e., clock). The TIA method
uses an approximately 68 MHz quartz oscillator time base to
determine the time duration between interferogram sampling
points. The sine wave test applies a known sinusoidal to the
IR-input signal channel of the spectrometer. The 25 MHz time
base for the Analogic 2020 PWS provides the sinusoidal input.
The chopper modulation method produces an optical variation that
is proportional to the chopper blade rotational speed. Examin-
ation of consecutive interferograms relies on the internal HeNe
laser reference signal providing an accurate and precise inter-
ferogram sampling. The following presents the results for each
of these four methods. Each method considers two cases: Case A,
a systematic mirror acceleration due to mirror turn around is
present and Case B, only a small sinusoidal variation in mirror
velocity exists.

The TIA measurement results for Cases A and B are
recorded in Table 1. The eight consecutive trials for each case
show an average count value in column two (see Table 1) that
gives a consistent scan-to-scan repeatability. Deviations (i.e.,
the best estimate of the standard error, +BESE) from the average
count value for Case A are approximately +10%, while for Case B
about +0.2%. In Figure 5 the residuals for a single mirror scan
are plotted for Cases A and B. The peak-to-peak variation of the
DLR signal for Case A (see Figure 5) is approximately 60%. The
mirror acceleration in Case A is revealed as a series of longer
than average time interval counts that eventually converge to a
constant value after about 800 time intervals. The peak-to-peak
variation of the DLR signal for Case B (see Figure 6) is sinu-
soidal and approximately 1% in magnitude. The distribution of
the time interval counts for Cases A and B (residuals shown in
Figure 4) are plotted in Figure 7. The large skew in the distri-
bution for Case A (see Figure 7) demonstrates the effect of a
large mirror acceleration at mirror turn around. Only the first
portion of the distribution for Case A is plotted in Figure 7.
The maximum time interval count value for Case A is 27950. The
average time interval count of 18326 falls a significant distance
from the cluster of values near 17500. The deviation error of
+1754 from Table 1 encompasses values lower than 17428 that are
not part of the Case A distribution range. The distribution for
Case B (see Figure 8), with a range of time interval counts only
1/75th that of Case A, reflects the more stable maintenance of a
constant mirror velocity. The average time interval count of
17464 for Case E o curs near the center of the distribution range
in Figure 8. The deviation error of +29 for Case B is included
in the range of distribution values. For Case A, the maximum
number of time interval count occurrences is only about one half
that of Case B. Thus, the number of occurr-ences in the time
interval count distribution also underscores the effects of a
large systematic mirror acceleration. Con-secutive time interval
measurement trials in Figure 9 provide a gauge of the scan-to-
scan repeatability (i.e., precision). Figure 9 presents a plot

16
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of the time interval count error bars (i.e., *BESE) across the
OPD scale for eight sequential mirror scans that are listed in

Table 1.

residual plot of a single scan (see Figure 5).

Case A (see Figure 9) contains a systematic acceler-
ation error along the OPD scale as seen previously in the

Case B (see

Figure 10) exhibits the same sinusoidal behavior seen in

Figure 6.

Clearly, the precision of -0.2% for Cases A and B
compares well, but the ability to maintain a constant mirror
velocity differs significantly.

Table 1.

Time Interval Analysis Results

t:

SI

t (cm/s) = 0.5 x [SI(cm)/(tic*toc(s))])

mirror velocity, cm/s

: sampling interval, cm

(2 x 632.8(10°) m x 100 cm/m)

tic: average time interval counts
toc: period of oscillator clock, s
(67.7576(10%) Hz - 14.76285 ns)
File tic t, [(t, - t;)/t,] x 100 [(t,~-t,)/t,] x 100
No. (counts) (cm/s) (%) (%)
Case A:
1. 18326 + 1754 0.234 8.97 10.7
2. 18325 + 1752 0.234 8.97 10.7
3. 18324 + 1748 0.234 8.97 10.7
4. 18327 + 1756 0.234 8.97 10.7
5. 18327 + 1760 0.234 8.97 10.7
6. 18325 + 1752 0.234 8.97 10.7
7. 18326 + 1757 0.234 8.97 10.7
8. 18323 + 1743 0.234 8.55 10.7
Case B:
1. 17464 + 29 0.2454 0.17 0.16
2. 17464 + 28 0.2454 0.16 0.16
3. 17464 + 29 0.2454 0.17 0.16
4. 17464 * 29 0.2454 0.17 0.16
5. 17464 + 29 0.2454 0.17 0.16
6. 17464 + 29 0.2454 0.17 0.16
7. 17464 + 29 0.2454 0.17 0.16
8. 17464 + 29 0.2454 0.17 0.16

t,: average mirror velocity (cm/s)
t,: lower mirror velocity, t g
t,: upper mirror velocity, t,.pes

17




uotT3RINDBTIJUOD OAIIS Y ased 0] buridues A3TOOT3A JueISUOD BY} JO sSuoTeTaep

(LV.LSS) NOLLISOd LN[10D TVAYHLNI
000¢ 0091 0021 008 00y 0

4 'y 1 A A 1 NI

]|

g 2anb1yg

(SANVSNOHL) STVNAISTA

18




uorjeanbrjuod oAxas g ased 103 burrdues A3To0TaA JuE3ISUOD BY3 JO SuoTjeTIaERA

(LVLSQ) NOILISOd LNNOD TVAYILNI

0002 0091 00¢l1 008 00¥ 0

A A A r'y

4 L] L] ] ||
[4%:14 eve (&1 14 (4341 [AXA! [A%]

(LVLSS) NOILISOd LNNOD T/AYALNI

*9 aanbty

STVNAISTA

19



[ [ ] [ ] [ ] [ [ [ ] ]
UOT3RINBTJUOD OAJDAS Y 2SeD 103 SIUNOD T[RAIIIUI BUTL JO UOTINGTIAISTA °L aanb1y
SLNNOD TVAYALNI
€681 0c81 CE6LI 8TYLI
o !
S
v
os]
x
o
1§
o
'®
@]
:
&
i

Lo B

- 81

0T

20




UOT3RINBTIUOD OAI3S @ 2SBD I10J SIUNOD [BAIIJUI BUTL JO UOTINATIISTA *g @anbtg

SINNOD TVAYLLNI

8ESLL 916LI 98vLI 9SyLI 9TyLl 96tL!1
0

- S
- 01
- Sl
- 0L
- $C
-0t

- G¢

- 0b

19 4

STONTIINDO0 40 YIFNNN

21




UOT3RINBTIUOD OAIDS Y dSeD I0J SIUNCD TeAIdJUI SUWTL JO UOTSTDAId ueoS§-03-Ueds

(LVLSS) NOILISOd LNNOD TVAUILNI

0007 009! 00Z| 008 00y 0

6 2anb1d

22

(SANVSNOHL)
4S99 ¥+ LNNOD TYAYALNI OVIIAY




UOTIRANBTJUOD OAIBS € 98VD 10J SIUNOD [EAIIUL AUTL JO uolsyoeid uUeds-o3z-ueds 0T aanbrd

(LV.LSA) NOILISOd LNNOD TVAYHLNI
0007 0091 007l oww 00% 0
i

1 1 1

6t°Ll

23

(SANVSNOHL)
4S99 + LNNOD TVAYALNI FOVIIAY

] T T T T + SS°LI
waN NmVN Nmom Nmo_ NmN_ wa

(LVLSS) NOILISOd LNNOD TVAYLLNI




The sine wave test results for Cases A and B are
summarized in Figure 11 and Table 2. The spectra in Figure 11
are power spectra using triangular apodization and no phase
correction. For a single frequency sine wave input, theo-
retically, the Dirac delta comb operator produces a single
infinitely narrow frequency band. Practically, band distortion
(i.e., spreading) occurs due to the limited spectral resolution,
fluctuations in the servo mirror sampling, and characteristics of
the bandpass filter.? The selected frequency of the input sine
wave places the band position near the band pass filter center
frequency. This selection minimizes band pass filter distortion.
The three defining spectral band properties for the spectrometer
response to the sine wave input are strength/amplitude, position/
frequency, and width/coherence. Signal band strength for Case A
is only about one third that of Case B. The band center of
gravity positions (i.e., CG) are comparable and differ by six
wavenumbers. Bandwidths are calculated as full width at half
height (FWHH) numbers. For Cases A and B, the FWHH differ
by approximately a factor of six. The distortion of the bands
for Case A results from the lower sampling rate around the
interferogram centerburst region.

The optical chopper modulation results for Cases A and
B are presented in Figure 12 and Table 2. The differential
temperature between the 50 °C blackbody and ambient temperature
chopper blade produces a waveform very similar in appearance to
that of the sine wave test. The chopper modulation suppresses
the interferogram centerburst region due to the modulation speed
and large contrast in IR source temperatures. The fundamental
frequency of the chopper modulation closely matches that used in
the sine wave test. The same trends for band strength, position,
and width are found for the chopper modulation (see Table 2). The
major difference between the chopper modulation and sine wave
test results lies in the base line variations (see Figure 11).
Larger baseline fluctuations occur in the chopper modulation
method. The detector response and chopper blade jitter contri-
bute to these larger baseline fluctuations. The four satellite
peaks in Case B (see Figure 12) are caused by the chopper blade
jitter. These satellite peak magnitudes are 2 to 3% that of the
major chopper modulation peak. Despite the baseline variations,
the chopper results of Table 2 show band attenuation and dis-
tortion between Cases A and B, comparable to those seen in the
sine wave test.

The collection of consecutive interferograms with a
constant IR blackbody source filling the spectrometer field-
of-view supplies a means to examine interferogram sampling
precision. Figure 13 displays the co-addition of 100 interfero-
grams near the interferogram centerburst region for Cases A
and B. Figure 14 provides a plot of the deviation error (i.e.,
+BESE) for each sampled interferogram point near the centerburst

24
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region for Cases A and B. The error deviations for Cases A

and B are similar with a magnitude approximately 1% the averaged
(note: 100 co-additions) interferogram signal. The oscillatory
appearance in the error plots originates from the location of the
sampled interferogram point. The deviation error in the sampled
interferogram signal is greatest for a point sampled near a zero
crossing (note: greatest slope) and least for a sampled value
near a signal local minimum or maximum.! The deviation errors
are not significantly different for the presence of mirror
acceleration in Case A and the small sinusoidal mirror velocity
variation in Case B.

Table 2. Comparison of Sine Wave Test and Chopper Modulation

Results
Condition Case m, (cm!) Amplitude FWHH (cm!)
Sine Wave A 1026 471 35
Test B 1020C 1351 6
Chopper A 10627 1549 37
Modulation B 1021 5000 6

The frequency domain spectra obtained from co-addition
of 100 consecutive interferograms for Cases A and B show
discernible differences in Figure 15. The magnitude of the
difference between these co-added single beam spectrum (see
Figure 16) is shown in Table 3 for select values across the
active detector response region. Table 3 focuses only on
variations for the range of detector response values of at least
half the maximum detector response. The difference spectrum in
Figure 16 between Cases A and B possesses an oscillatory behavior
with definite wavelength dependence. The largest positive
difference of 2.8% occurs at 917 cm! while the largest negative
deviation of -7.9% appears at 1103 cm!'. The percent errors are
calculated with the Case B single beam spectrum. Clearly, the
difference spectrum in Figure 16 and tabulated percentage errors
in Table 3 illustrates the effects of a systematic mirror accel-
eration on spectrometer photometric accuracy. On the other hand,
the precision associated with each averaged background (see
Figure 17) shows insignificant differences across most of the
active spectral region. The precision in Figure 18 is plotted
as the percent error. The percentage is calculated with the
absolute value of the BESE in the numerator and associated
averaged spectrum in the denominator. It is interesting to note
that the percent errors for Cases A and B do differ markedly in
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IV. CONSECUTIVE INTERFEROGRAMS
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Figure 13. Centerburst Region for 100 Averaged Interferograms
for Cases A and B Servo Configquration
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IV. CONSECUTIVE INTERFEROGRAMS
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Figure 14. Errors Associated with 100 Averaged Interferograms
for Cases A and B Servo Configurations in
Centerburst Region
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the 1550 cm' region (see Figure 17), where the detector response
has fallen to <5% of the maximum.

Table 3. Percent Difference Between Detector Response for
Cases A and B

1 2 3 4 S
Percent Difference -2.8 +2.4 +2.8 -7.9 -1.5
Wavenumber 797 901 917 1103 1200
Condition kR xR Do D.. xR
R: Single beam maximum response value
D: Difference maximum or minimum value
4. DISCUSSION

Modulation of the IR radiation by the Michelson
interferometer is described by the following equation.

2t m=f

The mirror velocity, t, has units of centimeters/second. The
spectral band position, m, is in units of reciprocal centimeters.
The modulation frequency, f, has units of Hertz.

Each of the four methods contribute known inputs to
the interferometer modulation equation. The TIA measures time
intervals associated with the DLR signal. These time intervals
permit the calculation of the mirror velocity, t. The sine wave
test and chopper modulation method supply a sinusoidal signal
of known input frequency, f, and amplitude. Examination of
consecutive interferograms using an ammonia gas sample (see
Figure 19) furnishes a set of registration markers (i.e.,
documented spectral band positions), m.

The ammonia spectrum provides three documented!
spectral line positions of 931.642 cm!, 949.656 cm!, and
968.122 cm!. Identification of these spectral features in the
MIDAC spectrum are made. To determine the wavenumber axis
registration on the MIDAC spectrum, the wavenumber axis is
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normelized by setting the lower and upper spectral values to zero
and one, respectively. A plot of the literature spectral line
positions'® (abscissa) versus the MIDAC spectral positions
(ordinate) is made. This selection of axes is based on the fact
that the literature spectral positions are assumed to be the true
values. A least squares line is calculated' that passes through
the origin (i.e., zero intercept). The reciprocal of the least
squares slope represents the maximum wavenumber value. For Cases
A and B, the maximum wavenumber value is 1977.9 cm! and 1978.5
cm!, respectively. The maximum wavenumber value is one half the
laser wavenumber typically input into the transform programs.':

In this investigation, all wavenumber axes have been set to the
Case B value for the comparison purposes. In Figure 19, the
ammonia spectrum for Cases A and B are plotted along with the
difference spectrum between Cases A and B. The most prominent
spectral features at 931.6 cm' and 968.1 cm! differ between

Cases A and B by approximately 10%. 1In spectroradiometric
applications, the inherently small signal-to-noise values of
spectral signatures make these small differences important.

The sine wave test permits the evaluation of systematic
acceleration effects on known well characterized waveforms. A
500 Hz, 1 V peak-to-peak sine wave produces the results that are
plotted in Figure 20. The spectra are obtained by fast Fourier
transformation of the triangularly apodized waveform with a Mert:z
phase correction.!” Note these plots differ markedly from the
power spectra in Figure 7. This definitely shows that care must
be exercised in the computational approach taken.'” The plot of
Case A with the large systematic mirror acceleration present in
Figure 20 exhibits a large negative variation after the sine wave
band. Also, the sine wave band for Case A has an amplitude only
ahout one sixth that of either Case B (small mirror velocity
variations) or Case C (no mirror velocity variations). The peak
position of 1025.6 cm' for the small Case A band compares to the
peak position of 1021.7 cm! for Cases B and C. Thus, the band in
Case A becomes attenuated by about 84%, shifted by approximately
4 cm', and distorted with ringing/broadening. On the other hand,
Cases B and C are nearly identical with the difference being the
absence of the small negative shoulder in Case C and very slight
broadening in Case B. The sine wave band asymmetry in Case C may
be due in part to band pass filter effects, because no mirror
velocity sampling errors are present.

The sine wave test also permits evaluation of the
effects of mirror velocity fluctuation on a damped sine wave.
The damped sine wave provides a spectral signature of a specific
bana width. Selection of a Gaussian damping factor [i.e.,
exp(-x*)] allows consideration of the effects on a simulated
broad band detector envelope and a simulated narrower band target
signature.? Table 4 lists the equations input into the Analogic
2020 PWS necessary for generation of the damped sine wave curves.
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These curves are similar to those that are discussed in
literature.” These damped sine waves are single-sided inter-
ferograms. The power spectra of the broadband envelope is shown
in Figure 21. The difference power spectra between the broad and
narrow bands is shown in Figure 22. Because these are single-
sided interferograms, the damping of the sine wave begins upon
receipt of the triggering signal (i.e., either the SSTAT or the
DSTAT signal). This arrangement undoubtedly contributes to the
large distortion and spectral shift that is seen for Case A
(large mirror acceleration present). Case B, small sinuscidal
mirror velocity variation, and Case C, no mirror velocity vari-
ation, are comparable. The pertinent spectral characteristics

of the broadband and narrowband Gaussian curves cf Figures 21

and 22 are summarized in Table 5. The broadband and narrowband
responses for Cases B and C are quite similar with the center

of mass position values for Cases B and C remaining within the
spectrometer's resolution. For Case A, the band distortion
shifts the center of mass position for the broadband signal

22 wavenumbers higher than the narrowband signal. This shift

in Case A along with attenuation by about 10% of the maximum
response as compared to Case C is consistent with previous
results from the undamped sine wave test and ammonia registration
measurements. Thus, the damped sine wave results demonstrate the
effect of a large systematic acceleration error near the inter-
ferogram centerburst region. In summary, the damped sine wave
input offers a sensitive measure of the mirror velocity effects
on interferogram sampling.

Table 4. Analogic 2020 PWS Equations for Damped Sine Wave
Generation

Broadband damped sine wave:
For 800m COS(440*t)/(e~((176*t)*(176*t))) CLK 15u
Broadband -~ Narrowband damped sine wave:

For 800m -0.01%COS(440%t)/(e~(0.125*%(32*t)*(32*t))) +
COS(440*t) / (e~ ((176%t)*(176*%t))) CLK 15u

38




adoyaaug asuodsay I0309380 bueqprold sojeTNUTIS 9AeM BUIS padwueq

(;wo) JHEGNNNTIAVM

00s1 0001 00S 0

8L61

o..coo-oo:..o-oo--o...10

-0¢C

— D dSVD
——-g dSVD %

~eeere ¥ HSVO \

-0

LSdL dAVM dNIS ‘Il

*1z 9anb1d

ALISNALNI

39




pueqpeoxg pajelnuys uo pasoduriadng uotrydiosqy 3@biel pue

(,-w2) YAIWNNIAVM
00S

005! 0001

asuodsay 1030933Q
qmolaeN pazTlreapI

0

—0 dSVD

----g dSVD
meeere YV ASVO

..-...o-. MITTYTYYY

“‘\‘I

ALISNALNI

*ZZ {anbryg

40

[



Table 5. Damped Sine Wave Test Results

Broadband Narrowband
Rnu Mg ( cm‘l) D-u Meo ( cm-l )
Case A 39.1 1136.3 5.4 1114.6
Case B 45.3 902.3 7.1 901.0
Case C 43.1 898.6 6.7 897.8

R,,,: Maximum broadband response
D..: Maximum narrowband response

5. CONCLUSIONS

Four evaluation methods permit the examination of
mirror velocity variation effects on interferogram sampling.
The time interval analysis (TIA) of the digitized laser reference
(DLR) signal provides a direct measure of the mirror velocity and
associated fluctuations. The sine wave test input of a known
wavefor allows an evaluation of mirror velocity errors without an
optical contribution from the infrared (IR) channel. The sine
wave test using an undamped sine wave nearly identical to the
frequency. The chopper modulation supplies an evaluation of the
optical IR channel contributions. The final method, examination
of consecutive interferograms, gives a measure of experimental
precision. The examination of differences between consecutive
interferograms or spectra alone does not detect the presence of
systematic mirror accelerations. However, the use of all four
methods in concert yields an evaluation of systematic and random
errors associated with interferogram sampling. These interferc-
gram sampling errors directly effect the performance of a
Michelson interferometer as a spectroradiometer.
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