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1 Introduction

Modern algebraic techniques have been used to design and decode codes for error control as far back
as the early 1960s when the binary BCH' codes [2-5] were discovered independently by Bose and
Chaudhuri and by Hocquenghem. The BCH codes and their descendents are popular for several
reasons, including their regular algebraic structure which permits easy encoding using simple shift
registers and the existence of codes for a wide range of block lengths and error correction capabilities.

However, the asymptotic performance of BCtt codes is not "good" [5] in that the error probabil-
ity after decoding and the information rate of the code are not simultaneously bounded away from
zero with increasing block length. Nevertheless, the BCH codes and their derivatives are widely
used because the)y are easy to generate, well understood. and useful in the control of transmis-
sion errors over noisy channels. BCH decoders, however, are complex, and work continues to find
simpler and more powerful decoders.

This work applies recent results from the algebra of multivariate polynomials to the direct
solution of the syndrome equations of binary BCtt codes. In this problem, some number I of
nonlinear polynomial equations must be solved for the locations of the errors.

Following a review of the basic theory of linear block codes, Section 2 presents the polynomial
model of cyclic codes and shows how a BCH code is specified solely by a set of roots of its generator
polynomial. Section 3 reviews popular methods for decoding BCIt codes. Although the Berlekamp-
Massey Algorithm (BMA) [6,7] is probably the most widely discussed in the literature, we present
Peterson's algorithm [2] because it is simpler than BMA and provides the paradigm for BMA as well
as other decoders. Section 4 casts the problem into ideals in the ring of multivariate polynomials
over GF(2mn). Such ideals are defined by the roots of the member polynomials. Modern methods
are used to solve these equations directly.

Examples are included.

2 Linear Block Codes

2.1 Error Control

A common method for controlling errors in information transmitted over noisy channels is the use
of linear block codes (LBC) 2. Algebraically; a LBC is a k-dimensional vectol subspace of a vector
space of n-tuples over a finite field and, therefore, has a basis which spans the code. Methods from
linear algebra can be used to express and manipulate the generator matrix, the rows of which are
tie basis of the code. The dimension k of the LBC is smaller than n, the number of elements
or symbols in the n-tuple. This gives rise to the existence of n - k redundant symbols in each
codeword. This redundancy introduces distance between pairs of codewords.

The sense in which we define "nearness" is Hlamming distance.

'Bose-Chaudhuri-Hocquenghem. McEliece [1] presents an interesting history of the naming of these codes.
2 For a thorough coverage of this topic, the reader is referred to any of several excellent texts [1-6,8.9].
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Definition: The Hamming distance d,1 between two n-tuples is the number of places in which
they differ.

Thus, if wu = (1001110) and 1t'2 = (1011010), dl(wl, w2 ) = 2 as can be verified by inspection.

Channel noise often increases the probability that the received word will be closer to a code word
other than that which was transmitted. Sufficient code redundancy, however, can usually provide
sufficient distance between all pairs of codewords that the codeword which was transmitted can
be identified correctly in a large fraction of cases, even when noise has moved it closer to another
codeword.

Let k be the number of bits of information represented by one codeword, and let u be the
codeword length. An information block is represented as follows:

I = (i, ..... ik), ij E GF(2), j = 1,.. .,k, k < n. (1)

Let G be a k x n generator matrix, the rows of which span the LBC. Then every block I of k
information bits generates a distinct codeword V:

V = IG. (2)

A convenient model of the channel represents noise as a set of n Bernoulli trials [10] in which
the "probability of success" is taken as the probability p of an error in any binary symbol. This
means that the n-tuple VR received at the noisy channel output can be modeled as the modulo 2
vector sum of the transmitted codeword V and an error vector E = (el, .... e,) where r. = 1 if an
error occurred in the jth position and 0 otherwise.

VR = V + E (p)

The decoding problem is: given Vf,, find V.

2.2 Polynomials and Cyclic Codes

Using powers of an indeterminate x as placeholders permits writing a polynomial model of the
imC. This is more than formalism, however, as it permits code construction and decoding based

upon well-known principles of algebra.

Information can be carried in the (binary) coefficients of a polynomial i(x):

i(') = io + i 3 + ... + ik._Z - , ij E (,(2), j = 0,1,...-.k - I. (.)

Codeword polynomials are generated by multiplying i(x) by a gernrator polynoviolg(') of degree
ui - k:

q(x") -" , + , + ' •..+q, .kx -k, ,qk E -1(2), j = 0, 1 .... n - k,.

(coellicients or the resulti ig polynomial v( x) represent the hinary symbols in the codeword,

,,(•) :: i(x-)q•(7)

I%) +' "I x. 1.- , j C ( 1F(2), j . , I, . , - 1 6



Here, the code redundancy is introduced in the process of multiplication by g(x) which results in
the representation of k binary information symbols by n > k binary code symbols. Previous notions
of distance and error correction, therefore, hold here as well.

A code is said to be cyclic if every cyclic shift " very codeword is also a codeword..-Xlgebraically.
a code is cyclic whenever g(z)[xn - 1, and I- codeword length n is the smallest integer for which
.q(X)lz"- 1[5].

2.3 BCH Coder

The BCII codes provide a convenient paradigm for several families of powerful l.('s including
Reed-Solomon (1-6,8,91 and Goppa [1] codes. A binary, primitive BCH code is a cyclic code of
length n = 2' - 1. Its generator polynomial numbers among its roots 2t consecutive powers:1 of
a primitive element a of the locator field GF(2m). With correct decoding. this code can correct up
to t channel errors in every codeword..4

Example: Let rn, = 4 and t = 2. Then n = 15 and the roots of g(x) include n. a2. 03, and o4.
Because al' = 1, these must also be roots of g(x): {as, a0, 012, 09} . Ilence, the degree of g( x)
is n - k = 8 so that the dimension k of the code is 7. (i.e., the code has 27 = 128 code words.)
The code is capable of correcting at least t = 2 errors in every codeword. and the code rate, k/7)
is 0.47 information bits per binary symbol transmitted.

3 BCH Decoding

Of course correcting t errors in a codeword of length n implies a decoding procedure that achieves
this error correcting potential. A trivial but completely correct decoding technique is to construct
a table of every binary n-tuple and the codeword into which it is to be decoded. For a channel
imposing independent errors on the symbols of a codeword, the rule for constructing this table is
to decode an n-tuple into the nearest codewords.

However, table lookup decoding is feasible only for rather small codes. The power of modern
computers is quickly exhausted for codeword lengths of several thousand bits and hundreds of
errors per word. Therefore, we continue to search for algorithmic, algebraic decoders which are
much faster and demand much less storag-. Many algebraic decoders will correct every error pat tern
of t or fewer errors but no more, even though the code may correct some patterns of more than t
errors. Nevertheless, the number of such error patterns is usually sufficiently small that it does not
affect the overall decoding error probability significantly.

'The nonzero powers a0,01 .. a 2--1 of a primitive element of GF(2") are the distinct nonzero elements of that
field.

41n order that the codewords be binary, it is necessary, for every root 3' of g(z). that all conjugates 3",
be roots of g(r) as well [61 .

5 Becawuke this is a minimum distance decoding technique, no other decoder can correct more errors on a memoryless

channel.



3.1 Peterson's Decoder

Let r(x) represent the received vector when t-error correcting BCII codeword v(x) is transmitted

over a channel corrupted by additive noise:

r(x) = v()+ e(z). (7)

c(z) is the error polynomial: ej = 1 if an error occurred in the jth position and 0 otherwise.
The paradigm for many useful decoders of this code is Peterson's decoder [2], which implements a
four-step decoding procedure:

* calculate syndromes, functions of the coeffcients of r(x);

* calculate coefficients of the error locator polynomial;

* solve the error locator polynomial for the locations, in the received word, of the errors; and

• (for nonbinary codes) calculate the error values.

3.1.1 The Syndromes

Consider the channel output, r(z) as given by (7). The 2t syndrome values are obtained by

substituting the 21 consecutive roots of the generator polynomial into the received polynomial:

S, = r(oa) = g(oj) + e(aj) = e(ct-), j = 1,...,2t. (8)

Writing only those coefficients e3 which are not zero leads to the following form of the 2t syndrome
equations:

eilat' + ei, 02 +' + ei,oil"- S1
Cie2i ' + eC2 o

2
i2 + + " i, O2i' = S2

Cio i + ei2o 262 +-- ' •+ ei, o 29i' = St. (9)

Note the following:

(a) rhe indices {it, i2,...) in (9) are the coordinates of the nonzero elements (and hence, of the
errors) in the error vector. It is convenient, therefore, to write Xj -- 0i). The values of the oW are
called the error locators of the received word.

(b) In any field GF(2m) of characteristic two, (a + b)2 = a2 + bV [11]. Therefore, In (9), every
syndrome computed from even powers of a Is an even power of some syndrome computed from
("Id powers of 0; e.g., S2 = S?. These are redundant and do not contribute to solving for the error
locators.



(c) In (9), e,, = 1, j = 1,...,2t and need not be explicitly written. The syndromes
{Sj, j = 1,....,21} are known (computed) elements of GF(2m) and can be expressed as powers
of a; i.e., S, = a]-.

Considering (a), (b), and (c) with (9) gives a system of t polynomial equations, the solutions
to which are the error locators of the received word:

S1  = j X X2 '- t

S3  = 0 = X 1
3 + X 2

3 + ... + Xt 3

S 2 t- 1  = 2-I - X 12t- 1 + X 2 2t- 1 + ... + Xt
2 t

-1. (10)

3.1.2 The Error Locator Polynomial

Derivation of (10) 6 assumed that no more than t errors occured in a block of length n. An error
locator polynomial is derived from these functions.

Definition: The error locator polynomial a(x) is the (univariate) polynomial, all the roots of
which indicate the locations of errors in a received word:

t

a(x) = l(x - xi)
i=~1

= Xt + ±aIzt-1 + 0"a2 xt- 2 
+ ". t. (11)

It is easy to see that the coefficients are functions of the elementary symmetric functions of the
roots ( te error locators):

S= Xi (12)

a 2 =

i<I

a 3 = 1 XXjXk (13)
i<j<k

(14)

at = XIX 2 ... Xt.

Since a(x) is satisfied by the error locators, (11) becomes

Xt + (lX- 0. (15)

Peterson's method uses the syndrome relations to construct a set of linear equations in the {ai}.
This set can be solved for these coefficients. Multiplying (15) by Xj for any j gives

Xt++ax+' + 2 X:+j- 2 +...+atX! = 0. (16)
6 The reader should recognize these as a set of power-sum symmetric functions [11].



Summing over i and substituting S, X) gives

St+) + olSt+j- 1 + C 2St+, - 2 + "+ OtS. = 0. (17)

These Newton's Identities [11] generate linear systems of equations for the {a1 }, one systern for
each value of t. For t = 1,

S2 +a 1 S1 =0,

and for t = 2,
S3 + S2a1 + S1a2+ = 0.

These are recursively solved for the coefficients, yielding (15) explicitly.

3.1.3 Solving the Error Locator Polynomial

Decoding is complete when the roots of a(z) are found and the necessary corrections made tt r(X).
The Chien search [81 is a method for doing this without explicitly solving a(r). This method uses a
digital circuit which evaluates a(x) at each member &J of GF(2m) and sets a correction bit to unity
if o'(x) is satisfied. The received polynomial r(x) is clocked through the circuit and the correction
bit is added modulo 2 at the appropriate location. Therefore, whenever a root of a(x) is found.
the appropriate received symbol is complemented.

The Chien search will be required in implementing the direct solution methods discussed below.

3.2 Related Methods of Finding the Error Locator Polynomial

For more than approximately six errors per codeword, Peterson's method requires a number of finite
field multiplications which grows with the square of t. Berlekamp [61 produced an iterative method
for finding the coefficients that grows only linearly with t; Massey [7] improved Berlekamp's method
(producing the BMA), showing that it is equivalent to synthesizing the shortest linear feedback shift
register that can generate the sequence of syndrome values. The methods are similar and can be
studied in the references.

4 Direct Solution Techniques

The objective is to find a solution set to (10):

aj" = X1+X2+-+Xt

a 33 = X3 + X 2
3 + ... + Xt3

•I2,-1 = x,2t-1 + X.2
2 t-l + + Xt 2 t-1 (18)

6



where a is a primitive element in GF(2m). Assume that the number of errors in a received word
does not exceed t'. Then (18) is a system F of t independent equations with at most t solutions.
Hence, F is a system of t polynomials in t unknowns and has one unique solution, 3 = ...... ,

4.1 Rings and Ideals

Direct solution techniques of (18) attempt to exploit the rich algebraic structure of the ring R
K[X] = K[XI,X 2 ,...,Xt] of polynomials in t variables over K = GF(2m ) [11]. A subset 1 of a
ring is called an ideal if it is a subgroup of the additive group of the ring and if, for every i E I and
every r E R, both ir and ri belong to ". Hilbert's Basis Theorem [12] requires that every ideal in
K[X] have a finite basis.

Consider F to be a subset of the ring K[X]. The set I(F) spanned by members of F (where
coefficients are taken from K[X]) is an ideal in K[X]:

I(F) =--- (F) C K[X]. (19)

The common zeros of the polynomials of F are said to form an algebraic manifold, [12] which
is "defined by" those polynomials. Thus, all points of the manifold satisfy every polynomial in
I(F). Direct solution techniques involve searching 21(F) for another set G of polynomials which
span I(F) and which are simpler to solve than those in F. Hence, new methods for finding bases
of ideals in K[X] bear on the decoding problem.

4.2 A Basis for 2"(F)

The objective now is to find for "(F) a basis G which is "easily" solved for the underlying roots.

The basis G is obtained from the defining polynomial set F by applying transformations which
do not eliminate any roots of the system. An example illustrates the transformations:

Example: Suppose set F is:

fl: X 1 +X 2 +a = 0

f2: +X3+ao = 0, (20)

and suppose that it is known that this system has the solution (131, 32) E GF(2m) 2 . Then

y(X) = a1(X)fj(X) + o2(X)f 2(X) (21)

is satisfied by (131,132) as well 9 .

'If the number of errors exceeds t, such a decoder is likely to exhibit decoding failure. That is, it may return an
incorrect result.

'Actually, the rigorously correct statement is that all zeros of the system are "equivalent" and "mapped on one

another by an isomorphism wlhich leaves fixed the elements of the ground field..." [12]
9 Of course, if al (X) and a2 (X) have a common factor, y(X) may have an additional root that does not satisfy f,

or f2, but this case is of no interest.
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If a2(X)= I and
aj(X) = X2 + Xd(X2 + oa) + (X 2 + C1)2, (22)

then
y(X) = X 2ao + X 2o21 + 02i + , (23)

and this system has been reduced from two equations (a cubic and a linear) to a single, univariate
second degree equation having the same solution (/31,02) as the original system. We say that the
cubic has been reduced modulo F to y(X).

The algorithm for deriving the desired ideal basis G is based upon such reduction operations
and produces a reduced Gr6bner basis [13] of the ideal spanned by F. A reduced Grobner G basis is
a basis of the ideal, each member of which has coefficient of highest order term = 1 and no element
of which can be reduced modulo G. It is known [13] that a reduced Grbbner basis for I(F) can be
written in triangularized form:

gi = g1(X 1 )

92 = g2(X 1 ,X 2 )

(24)

9t = gt(X1,X2, ... Xt).

This form suggests a recursive root finding technique. However, the following lemma forms the
bases for our direct method of finding the BCH error locator polynomial [14].

Lemma 1 gi(xi) is, within a multiplicative constant, the error locator polynomial a(x) of the BCH
code.

Proof: Every element of I has among its roots the set {13i} of roots which defines the original
spanning set F. Reducing F to G neither adds nor subtracts roots to/from any polynomial.
Therefore, a(x) and gi(x) are products of the same factors {(zi - 'i3)} and, hence, differ by no
more than a nmultiplicative constant. q.e.d.

4.3 Gr6bner Bases as a Basis for Decoding

Descriptions of the general form of Buchberger's algorithm for finding the Grbbner basis of an ideal
"(F) run for many pages [13]. We include a succinct tutorial exposition of the algorithm in the

Appendix. The example below illustrates the use of the algorithm:

Example: This is a general form of the problem. Taking K to be GF(24) and t = 3 results in
a 3-error correcting code with block length n = 24 - 1, dimension k = 5, and 32 code words. In
general, the decoder produces these non-redundant syndromes:

X1 +X 2 +X 3 ±ai = 0

X 2= 0 (25)

5 + X5+ = 0.

8



Define three intermediate polynomials,

2

p 1(X) = 1: XY(X2 + XI + ý')2-

j=O

4

pA(X) = 1 X3(X 2 + XI + a') 4-j

j=O

p3 (X) = g+ + X 2 X 1 + X 2a + X? I+ Xja' + a2 i, (26)

and from these produce three "coefficient" polynomials:

ai(X) = pIP 3 (XI + aI) + p2 (XI + ai) + pl(aj + a3 i)
a 2 (X) = p3(XI + i) + al + a3i

a 3 (X) = Xl+a. (27)

Substitute the pi into the aj to get

a,(X) = XX4 + a'X4 + XX 2X3 + a'X 2 X3 + X2X3 + a2iX3 + X 2X 2X23i 3 2,o 3X X3 1J2 a3iX 3 12 3 i23

+a 2iXX + aX + 2 XX+ X + a3 x + X+X 2  
2iX~ x3

+X3X 2 X 3 + aIX 2 X 3 + a'X X 3 + aJX1 X 3 + a+'X 3 + a 4 X 3 + 1X2

_12 .2 + a 2  a X1X + aX2 + a3 X+ X2 X 2 + a'X 2

+aX +I a la, + a I + a + a 2 + a5 '

"a2 (X) X 1 X -+ a'X2 + X 2 X 2 + a 2 iXX2 + X3 + a s.

This yields a univariate polynomial which we recognize as the error locator polynomial:

3

0'(X 3) = a.(X)f.(X)
V=1
X33(aj + 3•3) + X 2 (C,+j + C4i) + x(ak + a2 ,j) (28)

-•Oi+k JrO2i .- t3i+j -- t6i"

+a +a 2 +a 3+a k'

Finding a(X) solves the decoding problem.

5 Conclusion

Mathematically, we have shown a decoder that computes a set of syndrome values which are func-
tions of the roots of the code's generator polynomial and of the error locations. These syndromes
are the constant terms of a system of nonlinear polynomials. We have presented a method for ex-
tracting from that system the error locator polynomial, one which is satisfied by the error locations
expressed as elements of GF(2m). The coefficients of the error locator polynomial are functions of
the syndrome values only. Thus, the decoder need do only two things: compute syndromes and
coefficients.

This class of decoder is interesting because of the promise of noniterative decoding of BCH and
BCH-like codes.10 Of course, an efficient version of Buchberger's algorithm, tailored to systems

'00f special, near-term importance to system designers is the possibility of improved decoders for Reed-Solomon
codes, powerful codes already used in many high performance systems.

9



of equations such as (10), is required but not yet in hand. Once this hurdle is overcome, we
envision several possibilities. One is to incorporate a version of Buchberger's algorithm into a
decoder. Another is to solve Buchberger's algorithm for a large family of codes, expressing the error
locator polynomials in terms of the syndrome values alone. These could easily be programmed into
hardware to produce a fast decoder.

10
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Appendix

Buchberger's Gr6bner Basis Algorithm

What follows is a tutorial exposition of Buchberger's algorithm for finding a Gr6bner basis of an
ideal in the ring of multivariate polynomials [13,151. Such an ideal is of interest here when it is
defined by an algebraic manifold of roots of every member.

A Preliminaries

A.1 Notation

(i) = (i0 ,i 2, .... im) (29)

- -1 . .2 -i,

A.2 Ordering

In what follows, we shdll req-Jic thai an ordering be defined on the multivariate monomials. The

order of a multivariate polynomial is the analog of the degree of a univariate polynomial.

Let 1P be a transitive ordering on the monomials.

a P.b nb Z c a 7Z c. (30)

(Read 7Z as "precedes" or as "is less than.") We require the following of 1?:

"* 1 ?z X(0, V (i)

"* X) ) --t. X(i X+(k)

Any admissible ordering can be used.11 Two examples follow.

1. The lexicographicordering defines an order on the individual symbols. so that, e.g., X1 R X 2 Pý -- -.

(Some authors write X, _< X 2 < --- ). In this case, XjX)' 1Z XIX6.

2. For the product ordering P, monomials are ordered according to the exponents of every
symbol, X,. Therefore, XP X'- 2 Z X - •VXJ 2 iff il _< ji and i 2 _< j2.

We shall need the concept of supremum (sup) or least upper bound. With an ordering defined on
the monomials, sup is defined exactly as in mathematical analysis. It is the maximum over a set

"An ordering is said to be admissible if 1 K X and X 'R Y imply XU 1 Il.

13



with respect to the ordering defined on that set. If there is no maximum (c.g., if two or more

elements in the set are tied for largest according to the ordering), the smallest monomial larger
than either is the sup over the set. For each of the example orderings, we give the supremum. For
the lexicographic ordering,

sup(X2X3 X1,X) = (31)

for the product ordering,
sup(X\'X3, NX'X 6 ) = X12 X6. (32)

A.3 Derivation of Spol(f,,fj)

Definition: Hterm(f) != the maximal monomial or head term of f(X) with respect to ,. If
f = f(t)X(W) + f then Hterm(f) = X().

For two polynomials f, h E FEXI define

SUP(f, h) = sup( 'i icrm(f), lHterm(h)). (33)

Then express each polynomial explicitly as the sum of its head term (multiplied by the appropriate
scalar coefficient) and the rest of the polynomial.

f = f(j)Hterrn(f) + f (3-1)

h = h( 2)Hterm(h) + h

and define

Spol(f, h) = hIZSUP(f, h) f _ SUP(f ,h)h (35)
Hterm(f) Ht)rm(h)

It is easy to see that Spol(f, h) has order less than that of either f or h.

A.4 Reduction Modulo F

Let F = {f,, E K[X 1, . . . ,X. m , j = 1. .. ,r}. For each fj, write

fj = pjntterm(fj) + fj. (36)

Select some h E K[XI such that at least one Hterm(F,) appears in h; i.e.,

h = ... + f(j)Hterm(fi) +... (37)

Now form

f=iw-X()-)fj = f(i)'IjX(0)-()(PIj)X(W) + fj) (38)

= fw)X(i) + other terms.

Finally, write
h' = h - f(j) p X'0) 'U fj. (39)

14



Now, h' no longer contains a monomial in X(W, and we say that h is reduced to h' modulo F,13]or
that h' is an F - derivative of h[15].

Repeated application of reduction or derivation to h eventually, and in a finite number of steps
[16], produces a polynomial which cannot be reduced further modulo F.

B The Grobner Basis Algorithm

Let F = {f,,f 2 ,. .. ,f,} be any basis of an ideal I in the ring of multivariate polynomials over
GF(q). The following algorithm produces a Gr6bner basis.

1. From F, select a pair (fi, fj) of polynomials not previously chosen.

2. Compute S,)ol(fi, fj). By the process defined above, reduce Spol to a polynomial fj which
is F-irreducible.

3. If fij = 0 go to 1. Otherwise, add fij to the basis, then go to 1.

4. The algorithm, when it terminates (which it has been shown to do [13.15]), will have produced
a GB = (91 .... g,) for the ideal spanned by F. By construction SpoI(g,.g3 ) = 0 Vgi,gj E GB.
It is well-known [13,15] that the existence of GB can always infer a reduced GB of the ideal.
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