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ABSTRACT

Through the use of asymptotic and perturbation methods,
this thesis presents a theoretical study of the flow of a

stratified fluid over variable topography as a model of the

resonant interaction of a submarine’'s wake with a stratified

fluid. Such resonant interactions may be able to produce
significant upstream disturbances. The long time solution
obtained in our model exhibits growth in time for the resonant
case, indicating that perhaps nonlinear effects, balanced by
dispersion, could cause significant upstream disturbances.
These disturbances could allow the possibility of detecting a

submarine by the internal waves its wake generates in the

resonant case. Accesion For
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I. INTRCDUCTION

The nonacoustic detection of submarines is an area of
intensive and well funded research. although, it is not clear
whether devices based on nonacoustic means of detection will
become as useful as those based on acoustic means, the
military importance cf such devices demands pursuing such
avenues of technological research. One possible nonacoustic
means of detection is to attempt teo detect the submarine
optically through the use of a laser by examining the way the
submarine reflects or absorbs blue-green light. Another more
promising method is to try to detect the submarine by the heat
it emits. However, an even more promising technigque is the
detection of submarines by the internal waves they generate.

In the ocean a stable density stratification generally
exists. As the submarine moves through the density-stratified
ocean, it leaves behind a wake capable of generating internal
waves. These internal waves result from the stabilizing
effect of the agatratification: as a water particle is
displaced, it experiences a buoyant restoring force in the
opposite direction from which it was displaced.

Many theoretical and experimental studies have been
conducted on the subject of the flow of a stratified fluid

over a localized topography. For the two-dimensional flow of

an inviscid, incompressible stratified fluid, most studies
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have been confined to steady flow or linearized theory.
Earlier studies concerned themselves only with a description
of the downstream stationary lee-wave field. A question that
has generated some controversy is the phenomenon of upstream
influence. To what extent do disturbances generated by the
topography through transient and nonlinear processes propagate
upstream?

McIntyre (1972) showed that the only significant upstream
disturbances were weak second order long-wave motions
generated by nonlinear interactions in the lee-wave. McIntyre
{1972) extended the earlier theories of Benjamin (1970) and
Keady (1971) by performing an expansion using as the smzll
parameter the ratio of the height of the topography to the
total fluid depth. Baines (1977,1979), on the other hand, in
experimentally examining the flow of a continuously stratified
fluid cver topography, found upstream disturbances that were
first order in the topography height. These upstream
disturbances were not only generated by nonlinear processes
over the topography but also travelled at the long-wave speed.
Baines alsc observed that these upstream disturbances were
very strong when the fluid approached resonance. Here,
resonance is defined as the near coincidence of the basic flow
speed and one of the free long-wave speeds. Grimshaw and
Smyth (1986) presented a theoretical study of stratified fluid
flow over localized topography for the two-dimensional case

when the basic flow is near resonance. One interesting
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feature of their results is the appearance of sgignificant
upstream disturbances as observed by Baines {(1977,1979).
Grimshaw and Smyth showed that sclitary waves were formed when
the localized forcing over the tcpography produced a positive
disturbance upstream, and an oscillatory wavetrain was formed

when the disturbance had negative polarity.

Motivated by these results, this thesis presents 1 .

theoretical study of the flow of a stratified fluid over

localized topography for the three dimensional case.
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®
II. PROBLEM FORMULATION . &
A. DIMENSIONAL PROBLEM &)
We consgider the three-dimensional flow of an inviscid,
incompressible stratified fluid. Figure 1 (see page 5) ®
provides a sketch of the coordinate system. We agsume that
the basic state has a constant horizontal velocity, V, from
left to right with equilibrium pressure and density ®
respectively as p,(z) and p,(z). Here and throughout this
paper barred variables represent dimensional variables. We
introduce { as the vertical particle displacement from scme L
| initial position at time t = 0 to the position at time t = T.
: Using the Lagrangian representa .ion _f(;,;,_z-,"f) = zF - ?o, the
density, p(x,y,z,t), becomes p,(z-{(X,y¥,2z,t)) . Therefore, the e ©
equations of motion are
u; + v +we =0, {(2.1) ¢
-~ —=. Du —
P,(z‘f)-E-E "‘p';=0. (2.2)
]
- D, = .
p‘,(z-g’)_ﬁ +p; =0, (2.3)
2. Z-00 ¥ .5 g +p =0, (2.4) ®
Dt
' °
4
L
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Figure 1. The Coordinate System
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®
w= Df, (2.5) .
7 - ®
f *
=, )
where ‘\'!)
: L]
D a .y @ -9 -0
—_— = me + (VrU) — + Vo + W . {2.6)
DE i} 4 ax av 0z
Here, u, v, and w are the velocity components relative to the ¢
basic state which has velocity (V,0,0) with respect to a
right-handed Cartesian coordinate system.
The bottom topography is given by z = f£(x,y,t), where e
initially f{x,y,0) = 0. For large times the topography
attains a steady value 5(32,?) and hence we assume that
°® @
f(X,7,t) ~glX,y) as t » . (2.7)
@
We also assume that at all times the topography is localized
where ?(;,-y-,?) -» 0 as ;c_’+? -+ o. The kinematic bottom boundary
condition is then
e
t=f at zZ-Ff. (2.8)
®
o
6
®
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We are assuming that this "topography* is created by the
submarine's wake, which when viewed from the moving submarine,
actually has a steady shape. In this thesis, we investigate
the interaction of the wake with internal waves. Kdllen
{1987) has investigated this type of interaction in a linear,
steady state model and comments in detail on the validity of
assuming that the wake acts as rigid topography. Furthermore,
from experimental results, Lin and Pao (1979) show the mean
flow occurs at the wake boundaries implying that part of the
flow travels around rather than through the wake. It is this
fiow around the wake that generates the internal waves. Our
model, in fact, does not depend critically on the assumed form
of "topography" the submarine creates and our purpose here ig
to investigate a time dependent model.

The upper bouncdary, assumed to be a free surface, is
located at z = H + 5(X,y,t), where H is the vertical distance
from the surface to the submarine and 5(x,y,t) is the free
surface displacement. One must remember to include not only
the kinematic boundary condition at the upper boundary but the
dynamic boundary condition as well. The upper boundary

conditions take the form:

(2.9a)

L)
[}
=i
+

3|

t=% at

(2.9b)

NI
1]
x|
+

3

P,(H+1) + B, (H+7) = p,(H) at




Here, E, is the perturbation to the pressure p, of the basic

state.

B. DIMENSIONAL SCALING @
The solution of practical problems in fluid mechanics (4
requires both theoretical developments and experimental
results. By grouping significant dimensional gquantities into ®
dimensionless parameters it is possible to present resultse in
a compact form which is applicable to all pimilar situations.
In the problem, the characteristic horizontal length scale '
L is determined by the ratic U/N, where U is a characteristic
horizontal velocity and N is the Brunt-Vidisdla frequency at
the location of the submarine. We shall take the ®
characteristic horizontal velocity U to be given by NjH, (U =
N;H) , where.N,is the maximum Brunt-Vaisdla frequency and H,
the characteristic wvertical 1length, is the depth of the ® @
gubmarine. Typically N, is 10? sec’ and H is 200 meters (m),
s0 U is 2 m/sec. This is a typical order of magnitude
patrolling speed for a submarine at that depth. Of course, ®
0(1) wvariations in N, and H can be made without changing our
analysis.
From the mass conservation equation and with the imposed ®
horizontal 1length and velocity scales, we see that the
vertical velocity scale, W, is UH/L. The horizontal length
and velocity scales are also used in determining the ®

characteristic time scale, T, where T is defined by T = L/U =




1/N. Lastly, the characteristic pressure scale is defined as
p = p,gH where p, is a characteristic density. These scales
define the parameter B = NH/g, which is a dimensionless
measure of the ratio of the buoyancy force to the

gravitational force.

C. NORDIMENSIONALIZATION

By using the variocus dimensional scales introduced in
section B, we shall nondimensionalize the equations of motion
(2.1-2.6) along with the boundary conditions (2.8-2.9b).
However, before deriving the nondimensional equations of
motion and boundary conditions, we will consider several
related dimensional eguations that will assist in simplifying
the nondimensional derivation of equations {2.1-2.6) and
boundary conditions (2.,8-2.9b). We first introduce the

following nondimensional variables:

P, z 2,
o T mm— ’ [ — , po R e ’
k pgH H P,
— ? (2.10)
N
N= __ = 2
N £ &

To nondimensionalize the hydrostatic equation, we begin with

G

]
Trao?




@, . -gp,- (2.11)

B

Uging (2.10) yields

pi(z) = -p,. (2.12)

The dimensional Brunt-Viisdla frequency is defined as

3
-3

N=--9g (2.13)
p, dz
where dp,/dz < 0. Using (2.10), we cbtain
NH 1 dp
-1 (2.14)
g 0, dz
but 8 = N/H/g, therefore (2.14) simplifies to
L
pBN? = =" (2.15)

10
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mssep gl =

In nondimensionalizing the Lagrangian representation of the

particle's vertical displacement, we start with

(2.16)

Nt
]
N

]
"*
X
<
N
)

Using (2.10) yields

z - tix,y. 2, ¢t). {2.17)

N
[

The last equation needed before considering the equations of
motion and boundary conditions is the dimensional pressure

equation:

p(X,¥.Z,t) = p,gHp,(2) + p,gHBQ(X,¥, 2, t) {2.18)

where p, = p,gHBg(x,y,z,t) and B is defined after (2.14).
Thus, q(x,y,z,t) is the dimensionless perturbation to the
hydrostatic preasure p,.

Before deriving the nondimensional equations of motion and
their associated boundary conditions, we first introduce the

fcllowing nondimensional variables:

11
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=2 =:y., =_‘§ =E
X 7 Yy s A z y: u T
. v .V _ W _ P,
v-u'.l V—U: w—ﬁr 2, E:
_ - _ _ (2.19)
.t . & = = £
t=3 . S g w=g . =g

where L, H, U, W, p,, and T are the characteristic dimensional
scales defined in section B and h is a characteristic

amplitude of the topography.

We begin with the mass conservation equation (2.1). Using

(2.19) and remembering that W = UH/L, (2.1) becomes
u, + v, +w =0. (2.20)

To assist in deriving the nondimensional form of the x-
component of the momentum equations, given by (2.2), we shall

now derive the nondimensional form for the convective

derivative D/Dt:

Db .9 . (‘_Iﬂ_,x)i +-\;_?_ +
Dt T 0% ay

. (2.21)

sl

Using (2.19), (2.21) becomes

12




D _1 8 24 d u,d u,a
= = ={V - = .
= "7 TE + I:( +u).a.J_‘ + Lv.a_}; + Lw-a; (2.22)
] &
{ but T = L/U, therefore (2.22) simplifies to
j pb .10 (2.23) d
OE T Dt
where L
D d 3 a a
—_— = ¥ . .2
Bt -3t T VW Vay T Yoz (2.24)
e
Substituting (2.17), {(2.18), and (2.23) into (2.2) and using
(2.19), we obtain ° ®
_#y UDu o gHE
Pipo(2-8) gy + —5— % = 0 or,
o
(2.25)
-— Du =
p,(z g')_D_t +q, = 0.
o
A gimilar analysis for the y-component of the momentum
equations (2.3) yields
[
e

13




Dv
P,(Z“f)-b—é +qy=0- {2.25)

To derive the nondimensional equation for the z-component of

the momentum equations (2.4), we begin with

5.Z2-0 2 L 5.(z-tig + B = 0. (2.27)

S

Substituting (2.17), (2.18), and (2.23) into (2.27) and using

(2.19), we obtain

p,(z-8) 2= + p,(2-C)g + 9P, + 9BQ, = 0. {2.28)

Using T = L/NH and W = NH/L, (2.28) simplifies to

2
N,’E(%) p,(z-;)_g_‘_: +p,(z-t)g + gp,. + gBg, = 0. (2.29)

Using (2.12) and the definition of 8, B = N?H/g, (2.29)

simplifies to

14
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Dw 1
eng(Z"r)ﬁ + 3(po(z—r)- Pg(z)) +q = 0, {2.30)
where
=4
= 7. (2.31)

Lastly, we derive the nondimensiocnal wvertical velocity

from its definition (2.5). Using (2.19) yields

D¢
bt

e

W= {(2.32)

We now consider the kinematic bottom boundary condition

vl
[}
Y
N
[ng
ni
1]
Ml

{2.33)

Using (2.19), we obtain

{ = af at z = af, (2.34)

where

15
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h
= =, .35
a yr {2.35)

For the free surface kipematic boundary condition,

t=% at Z=H+7. {(2.36)

We use (2.19) to obtain

]

=1 at z=1+1. (2.37)

Next, we nondimensionalize the free surface dynamic boundary

condition in (2.9b):

B, (H+q) + p,(Hvq) =p,(H) at Z=H+7. (2.38)

Using (2.192) and (2.18), (2.38) becomes

p,(1+n) + Bg=p (1) at =z =1+ 9. (2.39)

To recapitulate our nondimensional versions of equations
(2.1-2.6) and the surface boundary conditions (2.8-2.9b), the

nondimensional equations of motion are

id

)




u +v,+w =0, {2.40) ' .

Du _ :
p.,<z~r).ﬁ +q, =0, (2.41) &
®
Dv
p,,(z—!')ﬁlE +q =0, {2.42)
°
Dw 1 _
8’0,(2-§')ﬁt—: + -B(p,(z—{) -p,(2})) + g =0, (2.43) %
D
W= 73'{-' (2.44) ®
§
where £ = H/L and
¢
D _ @ ) ] ]
- 7E * (V+u)_a; + v.a.)_r * W {2.45) '
e o
with boundary conditions ' ;
®
= af at z = af, {2.46)
=19 at z=1+9, (2.47a)
@
p,(1+9) + 8g = p,(1) at z=1+9, (2.47Db)
®

An exact analytical solution of these nonlinear partial

i
:
;
where o = h/H.
differential equations is not available. However, we shall

17 ¢




obtain approximate sclutions for the case when ¢ defined by
(2.31) and o defined by (2.35) are both small positive
constants. Since ¢ = H/L = N/N,, the condition & << 1 is
satisfied when the density changes rapidly ac¢ross a thin
thermocline. However, there is some ambiguity in the
definition of the thermocline. We will consider the
thermocline to be the region where density variations are
determined chiefly by temperature variations. This means that
the submarine is usually submerged to a depth below the
thermocline. Is this a valid assumption? To avoid acoustic
detection the submarine submerges to depths below the mixed
layer or layer depth. Depending on the thickneas of the
thermocline the submarine can be either in the thermocline or
belcw it. "We shall consider only the case for which the
submarine is below the thermocline in which the parameter «,
the ratio of the characteristic amplitude of the topography to
the submarine's depth defined by (2.35), is also small in this

situation.

18
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I1I. THE ASYNPTOTIC EXPANSION OF THE DEPENDENT VARIABLES g
] .
To study the behavior of the internal waves excited by a .
small amplitude disturbance in the presence of a uniform ‘\9
oncaming flow, as when a submarine moves through the water at
constant velocity V, we perform an asymptotic expansion on the ¢
variables {, g, u, v, and 9 in terms of the small parameter o.
This is reasonable since the small parameter & enters the
bottom boundary condition in an analytic way and since the ¢
solutions arise by analytic processes, it is natural to expect
the soclution to exhibit an analytic dependence on the
parameter a. Since the disturbance is O(wo), we shall ¢
initially suppose that the response is also O{a). Therefore,
we introduce the following asymptotic expansions
® L
=af,(x,y,z,t) +of, + ...
q=aq(x,y,z,t) + g + ... ®
u = au,x,y,z,t) + ofuy, + ... {3.1)
v=avi(xyzt) +av, + ...
7 =anix,y,zt) +ayg + ... °
in which we consider the limit process as a - 0.
Substituting (3.1) into the continuity equation (2.40), we ®
obtain
19 ®
®
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LW
®
.a—{atu] . T[av] + T{_...(ag-n + O{e?) + ... = 0. (3.2} .
@®

]
, Dividing by « and taking the limit as a - 0, (3.2) simplifies @
to
u, + v, +w, =0, (3.3)
where bt
D¢,
Wa = ___‘:_t_, (3.4) @
and
D, _ a ] e @
bt - 9t VIx (3.5
To show that D,/Dt is the O(1) part of the convective o
derivative given in {(2.45), we collect only the 0(1) terms in
the expansion for D/Dt given in (3.6) below:
®
D 9 d 0
—_— = v e .
oe -~ 3 WV a"""&:—: + avo-a; + 0(a?) + (3.6)
[
20 ®
®
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G

L
Eubstituting (3.31) into the x-component of the momentum
- egquations (2.41), we obtain
®
D )
p‘,(z—{)ﬁ(au‘,) +ag, + 0(e?) + ... = 0. (3.7) &
®
Expanding p,(z-{) in a Taylor Series and using (3.1) yields
®
p,(2-8) = p,(2) - p,i2) [af,] + O(a®) + .... (3.8)
Substituting (3.8) into (3.7), we obtain o
Douo
ap,(z) oE +ag, + 0(e?) + ... =0. (3.9) Py ®
Dividing by a and taking the limit as a - 0, (3.9) becomes Py
Du
p,l2) =22 + g, =C. (3.10)
D,t
L
A similar analysis for the y-component of the momentum
equations (2.42) yields g
21 b
®




Yo +q, = 0. {(3.11)

p, (2} TE

For the z-component of the momentum equations (2.43}, we

substitute (3.1) into (2.43) to obtain

D
D: -B[p,\z-f) p,(2)] +ag, + O(c?) + ... = 0. (3.12)

[

Expanding p,(z-{) in a Taylor Series as in (3.8) and

substituting into (3.12), we obtain

aa’Dj; p,(2) b, + ag, + O(a?) + =0 {3.13)
~ .B, a, . .

Dividing by o and taking the limit as ¢+ 0, (3.13) simplifies

to

-Bpo(z)i' + = 0. (3.14)

Notice that the &’ term has been neglected. As previously

discussed, in order for our theory to work we reguire £ << 1.

Therefore, we see the &’ term is small. The fact that the &?

22
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term is small by itsgelf is not justification in dropping this
term from (3.13). In order to justify the dropping of the &’
term, we shall assume that a&? = o(a) as o - 0, or that &° =
o(l) as a - 0. Now as one takes the limit a - 0 in (3.13), we
clearly see that £ -» 0. In continuing cur derivation of the
z-component of the momentum equations, we substitute (2.15) in

for dp,/dz, so that (3.14) become:

. + PN, = 2. (3.15)

Next, we consider the surface boundary conditions. We
begin by substituting (3.1) into the kinematic bottom boundary

condition (2.46) to obtain

af, = af + O{a?) + ... at z = af. (3.16)

Taking the limit as o -~ 0, we find

&, =f at =z =0. (3.17)

Note that the O(a) bottom boundary condition is applied at z
= 0. Substituting (3.1) into the free surface kinematic

boundary condition {(2.47a) results in

23
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af, = an, + O{a?) + ... at z=1+ay,. {3.18)
Taking the limit as o - 0, (3.18) becomes
$,=m, at z=1. (3.19)

Again the O(a) free surface condition is applied at z = 1.
The last boundary condition to consider is the £free
surface dynamic boundary condition (2.47b). Substituting

(3.1) into {(2.47b), we obtain

P, (1+9) + afg, + Ola?) + ... =p,(1). (3.20)

Expanding p,(1+%) in a Taylor Series and using (3.1) gives

P.(1+n) = p, (1) + ap.(z)q, + O(a?) + ... (3.21)

Substituting (3.21) into (3.20), we find

p,(1) +ap)(1)g, + afg, + Cla?) + ... = p,(1). (3.22)
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Canceling the p,(1) terms, dividing by a, and taking the limit

as o -~ 0, {(3.22) becomes

pizin,+Bg =0 at =z=1 (3.23)

but using (2.12) simplifies the free surface dynamic boundary

condition to

Bq, = o1, at z=1. (3.24)

In summary, we see from substituting the asymptotic
expansion (3.1) into (2.40-2.45), (2.46), and (2.47a,b), that

the O{a) problem is:

——
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P @
w, = fz;‘,%' (3.29) .
@

where ; %da

D, 93 d
DL = ¥ + V'B':T:' {(3.30)
®
with boundary conditions
t,~f at =z=0, (3.31) .
§, =1, at z=1, (3.32a)
8qg, =pm at z=1. (3.32b) s o
Combining (3.32a) and (3.32b) gives the single boundary
®
condition at the free surface:

Bq, = p,¢, at z=1, (3.33) °
®
®
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IV. DEVELOPMENT OF THE TWO-DINENSIONAL WAVE EQUATION

L
A. EIGENVALUE PROBLEM @
In ordex to solve (3.25-28), (3.31), and (3.33), we look
for solutions of the form ®
u = Aei{KX+LlY-9T) ¢ (2)
v, = Be! (R ¥ -0T) 4/ (z) L
(4.1)
¢, = Del (KX <L -9T) 4 ()
q, = DCIEI(KX¢LY-QT) P ¢’(Z)
L
where x = (K,L) is the horizontal wave vector, @ is the
frequency, and c is the long-wave phase speed relative to the
basic state at rest. Substituting (4.1} into {3.25}, (3.26), * ®
and (3.27) and solving the system of linear equations, we find
the dispersion relationship to be
o
Q = clef where [el= 0. (4.2)
®
Furthermore, substituting (4.1) into (3.28), (3.31), and
(3.33) results in
e
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(p#'(2) )7 + p:fuz) =9, (4.3a)

with boundary conditions
¢(z) =0 at z =0, {(4.3Db)
¢(z) = BciP (=) at z=1. (4.3¢)

The equations (4.3a-c¢) formally pose an eigenvalue problem
where c? ig the eigenvalue and ¢ the eigenfunction. Note that
the dispersion relationship in (4.2) was obtained for wave
motion in a stratified fluid at rest where V = 0 and D,/Dt =
4/0t. In the problem we are considering, the dispersion
relationship would differ from that found in (4.2) but the
eigenvalue problem would remain the same. Hence, our purpose
here is to show the existence and character of the solutions
that define the eigenvalue problem. The solutions have the
horizontal character of plane waves travelling in the (x,y)
plane with a vertical structure defined by the eigenfunctions,
¢$(z). We shall see that the general solution to (3.25-3.28),
(3.31), (3.33) can be obtained in terms of a superposition of
normal modes whose depth dependence is determined by the

¢.(z), the eigenfunctions of the following eigenvalue problem:
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(b1 + P24 =0, (4.4a)
c
$(z) =0 at z=0, (4.4b)
¢,(z) = Bcip.(z) at =z =1. (4.4c)

Here c,? is the eigenvalue, where c, is the long-wave phase

speed relative to the basic state at rest.

B. ORTHOGONALITY
The eigenfunctions ¢,(z) satisfy the orthogonality

condition

1
C,zjopott&u ¢,dz = 0,1, (4.5)

where I, is defined by the left side of (4.5) for r = s. To
prove (4.5), we let A, and A, be eigenvalues with corresponding
eigenfunctions ¢, and ¢, where A, = ¢, and A, = c,’°. The

differential eguations satisfied by the eigenfunctions are

(pga)’ + N, N9, (4.6a)

I
(=]

]
o

(b ) + N p, N, (4.6b)
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In addition, both ¢, and ¢, satisfy the same set of homogeneous
boundary conditions defimed in (4.4b,c). Multiplying (4.6a)

by A\¢, and (4.6b) by M\¢, yields

Nipd.)®, + N\p N & =0, (4.7a)

hl(pc¢ﬂ),¢: + Arx.vpoN2¢,|-¢r = o' (4.7b)

Subtracting (4.7b) from (4.7a) results in

kr(pt.r¢.t-z)l¢r - k:(po¢n)l¢s =0. (4'8)

Through application of the product rule

Ar(pa¢sz)¢r = xi'[-(p¢)¢,;:,¢r), - po¢u¢a]l (4-9)
(4.8) becomes
kr(pa¢n¢r), - xrl’o¢,‘z ¢n - k,(po¢’= ¢_y), + kjpo¢r‘ ¢,z = 0' (4'10)

Integrating (4.10) yields
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O, =N ['0,0.0.d2 = X,0,8,8, | - Noabud, |- (4.11)

Evaluating the right hand side of (4.11) and remembering ¢,{1)
= BAMo.{1), ¢,{1) = BA'4,(1), and ¢,(0) = ¢,(0) = 0, (4.11)

becomes

{4.12)

|
(=)

(RS - A!)J’: po¢_|z ¢n dz =
If A # A, it follows that

(4.13)

L]
o

L‘ pb ¢, dz

In other words, the z derivatives of the eigenfunctions (¢,
and ¢,) corresponding to different eigenmvalues (A, and \,) are
orthogonal with weight p,. Therefore, the normal modes do

satisfy the orthogonality condition in (4.5).

C. TWO-DIMENSIONAL WAVE EQUATION

Since the eigenfunctions, ¢,(z), form a complete set, we
can represent u,, v,, {,, and q, by a generalized Fourier series
expansion. From (4.1) we know the general form of the

solutions and hence we put
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(= Z:ZA,(x.y. tig, (2}, (4.14a)
q, = potz)$ ciB, (x,y, ) b,,(2), (4.14b)
u, = -I::D,(x,y. )¢, (2), (‘4.-141':)
v, = -i E(x.y. )b, (2). (4.144d)

To derive a relationship between A, and B,, we begin with
Co= Y Aix,y,t)6,(2). (4.15)
[+

We take the derivative of (4.15) with respect to z, multiply
by p.c¢.(z) and use the orthogonality condition in (4.5) to

obtain

1
I,A, = cﬁfo Polos ®., dz. (4.16)

Integrating (4.16) by parts then gives

@.




1
I.A, = cs:pc‘a‘:zj - ci[c (Q(P9¢,,), dz. {(4.17)
Using (4.4a), (4.17) becomes
2 3 1 2
ISAE = c-'pOQBlnl + fo pccoN ¢sdz- (4-18)

Now, we multiply (4.14b) by ¢, and from the orthogonality

condition (4.5), we obtain
I,B, = f:qocbszdz. (4.19)
Integrating (4.19) by parts, we obtain
1 1
T8, = g9.] - fo Qo, $s dz- (4.20)
Using (3.28), (4.20) becomes
1,8, = qa¢sj + f:po(aNZ¢s dz. (4.21)
Combining (4.18) and (4.21) yields
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cipoco¢szl + IsB. - QU'QJt = I,Agf {4.22)

1
[ ]

Substituting (3.33) and (4.4c) for q,(1) and ¢,(1) respectively
and remembering that [, {0} = f£(x,y,t), (4.22) simplifies to

B,=A,+ F,, (4.23)
where

I,F, = clp,(0),(0) £ix, ¥y, t). (4.24)

Note that F,(x,y.t) is proportional to the bottom topography
fix,y.,t).
Next, we substitute (4.14a,c,d) into the continuity

equation (3.25) to obtain
» aDs - aEs - DOAS i
_;_&_ "_zo:._a},@u+zo:__.pot¢”-o. (4.25)

Multiplying (4.25) by cj’p¢, and applying the orthogonality

condition (4.5) then gives
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£

° q
DA, Odp, 4E, T
= .26
Dt % ' & (4.26)
8
®
where D,/D,t is given in (3.30). @
To derive the two-dimensional wave equation, we use the x
®
and y components of the momentum equations (3.26) and (3.27).
Substituting (4.14b,c) and (4.14b,d) into (3.26) and (3.27)
respectively, we obtain
L
p_D"_ —ip¢ +p 9 icchb =0 (4.27a)
o at = sty 0—5-}2 A 5 Vs V2 I °
'Da — d - 2
o -ZQ:E,% * Py ;c, B¢, |=0. (4.27b)
o (
Multiplying (4.27a) and (4.27b) by c¢,¢, and applying the
orthogonality condition (4.5) then yields
o
DD, 2108, _
_D:E + c,_aE = 0, (4.28a)
®
D 9B
BB 98 . (4.28b)

ot Sy




We pnext take the x derivative of (4.28a) and the y derivative

of (4.28b) and add the two results to obtain

D, |dD, dE 2
-2 [3,.’ T‘t vip = 0. .
5t (3% + y] + C, , =~ 0 (4.29)

Substituting (4.23) and (4.26) into (4.29) finally yields

DA
“ofls CEVZ[A, + F’], (4.30)
D,t?

where
ve. 8, & (4.31)
ox? 9y?
and
D} 3 FRG
ik =[_a_t +V_a§]. (4.32)

Equation (4.30) is the inhomogeneous two-dimensional wave
equation whose solution will be obtained in Chapter V.
To summarize, we see that substituting (4.14a-d) into

(3.25-3.27) implies
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' - ®
2 B, = A, + F, (4.33a) .
: @

g . 4. ¢
DE 9% @ Iy (4.33B)
D:A: 2v2
R =CV‘[A +F1], (4.330) ®
where
L
IF, = clp,(0)$,(C)E(x,¥, L), (4.33d)
[
D, 3 a
DE Bt + V'B?c' (4.33e)
and ® ®
2 2
ve- 9, & (4.33F)
ax* 3y?
®
Here, since f vanishes at t = 0, F,(x,y,0) = 0 and from (2.7)
we have
¢
F(x,y,t) ~ G, (x,y) as t -+ o, (4.34a)
]
where
®
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16, = cip,(0) ¢ (0)g(x,y) . (4.34b)

The initial conditions for (4.14a-d) are that A, B,, D,, and

E, all vanish at t = 0.
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V. SOLUTION TO THE TWO-DIMENSIONAL WAVE EQUATION

A. METHOD OF DESCENT

To solve (4.33c) we first introduce the following change

of variables:

{=x-Vt,
y=Y. (5.1a)
g=t

Derivatives with respect to x, y, t can be expressed as

derivatives in the new variables {, y, ¢ as follows:

(5.1b)

ad
- V.a-g;.
Substituting (5.1a,b) into (4.33¢) yields

3’a, ., 0°A, a4,
20 G lgpE gl TRy 0, (5.2)
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where

f(§'+Vay0)=c2[—af-+_‘?i]F(;'+Voya). {5.3)
M r X 13 arz ayz ) 1 X

We shall solve (5.2} by beginning with the solution to the

following three-dimensional wave eguation:

2 2 2 2
8u___c2{8u+6u+au

o] ’ (6.4a
at? ax* 9y 8z’] )
ul{x,y,z,0) = &(x,y, z), (5.4Db)
uix,y, 2,0 =¥(x,y,2). {(5.4¢)

Using Kirchoff's formula (see Strauss 1992), the solution to

(5.4a-c) is

1
ulx,, ¥,.2,, t,) = ¥(x,y,z)ds
Y. anclt, ﬂ Y

{5.5)
9 1
+ Tt,, I:__4"c2to l l ®(x,y, 2) dS],
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where

D=[(x,y,2): (x-x,) + (y-y,)% + (2-2,)% = c*¢t?]. (5.6)

Note that the value of u(x,,¥y,,2z,.t,) depends only on the values
of ¥(x,y,z) and ¢(x,y,z) on the spherical surface D.
By the method of descent, we now obtain the solution to

the following two-dimensional wave equation:

u 2, 0% Pu
—_— =l + ——=11, (5.7a)
at? ax® oy’
u(XJYIO) = é(xr.Y.)' (5-7b)
u(x,y,0) =¥(x,y). {5.7¢)

We regard the solution u(x,y.,t) of (5.7a-¢) as a soclution to
the three-dimensional problem (5.4a-¢) with initial data

independent of z. By Kirchoff's formula (5.7), we have

1
u(o,0,t) = ¥(x,y)ds
41rc’tLj ¥
(5.8)

+.a"’_t GtTcUNx’y)dS'
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where

D =[(x,y,2) : x* + y* + 2% = c*t?]. (5.9)

This is the solution to (5.7a-c) but it can be simplified. To
gimplify (5.8), we must express the surface integral as an
ordinary double integral. It is twice the integral over the
top hemisphere z = (c’t?-x*-y?)'? where (x,y) ranges over the

region D, = { (x,y) : ¥ + y* s c*? }. By definition

ds = |R, x R| dxdy, (5.10a)
where
R = (x.y.ﬁc"t°—x’-y’) ) (5.10b)
and
IR, xR | = ct . (5.10¢)
vV (c?ti-x?-y?)

Substituting (5.10a-c¢) into (5.8) yields
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u(0,0,8) = S ” XXV dxdy
cztz__xz_yz

(5.11)

2 1 e(x,y)
+ dxdy
ot | 2nc J;j citi-x?-y3

This is the solution at the point (0,0,t). Therefore, the

solution at a general point is

u(xa'Ya'to) = 23;-c I’J ‘I'(X.Y) dxdy
‘D, Je’tg— (x-x,)2- (y-y,)?
(5.12)
a 1 ${x,y) dx d
ly
t 2.
3t, | 2me LI Jc’tf— (x-x,)*- (y-¥,)?
where
D = [ (x,y) : (x-x,)2 + (y-y,)% s czt’]. (5.13)

Note that (5.12) shows that the value u(x,,y,. t,) depends on
the values of ®(x,y) and ¥(x,y) inside the disc defined in
(5.13). This illustrates the well known fact that Huygens'
principle fails in two dimensions. We shall use (5.12) in the
solution to the nonhomogeneous two-dimensional wave equation

discussed in the next section.
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B. DUHAMEL'S PRINCIPLE

oo @

We now consider the following nonhomogeneous two-

dimensional wave equation b
®
du 2y ®u | u ¥ A
—_— — = + =] =glx,y, t), {(5.14a! ¥
g Sl T gp! T “ ?

with homogenecus initial conditions

L
u(x,y,0) =0, (5.14Db)
u(x,y,0) =0, (5.14¢0) ®
By Duhamel's principle, the solution to (5.14a-c) is given by
® ®
4
ulx,y, t) = J'o U(x,y, t,s) ds (5.15)
@
where for each s = 0, U(x,y,t,8) is the solution of
2 2 2 d
Q0 23U ¥y g for ta s, (5.16a)
at? ax? ay’
with initial data prescribed on the plane t = 8 such that ®
@
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Ulx,y,8,8) =0, (5.16b)

U.(XI.YIsts) =9(X.Y,S)- {5.16¢c)

Since the wave operator is invariant under translations in

time t (see Strauss 1992), we can shift the time t by a

constant and still have a solution. We let V(x,y,t,s) =

U{x,y.,t+s,8), so that V(x,y,t,s) is a solution to

V, - ¢V, +V,) =0 for ta=z0, {5.17a)

with initial data prescribed on the plane t = 0 such that

Vix,y,0,8) = U{x,y,s8,8) =0, (5.17b)

Vi{x,y,0,8 =U(x,y,8,8) = g{x,¥,8). (5.17c)

Using Kirchoff's formula (5.12) to obtain a solution to

(5.17a-c) then yields

V(x,y,t,8) = =t J g{x.y,s) dx dy (5.18)
2nc bl Jere- (x-x2- (y-y)°
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where D, = { (X,y) : {(x-x)? + (y-y)? < c*t? }. Since our purpose
here is to solve the nonhomogeneous two-dimensional wave
equation in (5.14a-c¢) by Duhamel's principle (5.15), we can
again shift the time t by a constant so that Uix,y.t,s) =
Vix,y,t-8,s). This last expression for U(x,y,t,s) together

with (5.18) then implies

_ 1 g({x,y,8) o
Uix,y, t, = ~ cx (5.19)
ey €3) 2xc ‘U Vel (t-8)3- (x-x)2-(y-y)? i

where
D=1 (xy) : (x-x)% + (y-y)?s c¥(t-8)%]. (5.20)
Now using Duhamel's principle (5.15), we obtain

4

.1 g(x,y.s) = =
u(x,y, t) ml |:L'J"/c2(t_s dxdy |ds (5.21)

)i~ (x-%) - (y-y)?

the solution to (5.14a-c) where D, is defined in (5.20).

In deriving the solution to the nonhomogeneous two-
dimensional wave equation(5.14a-c), we have solved (5.2). We
change the names of the dependent and independent variables in

{(5.21) to obtain the solution of (5.2):
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y £ (x+Vs, ¥y, .
AL,y 0 = 2;‘[ LJ '(X+__s ¥ S)_ dxdy]ds (5.22)
* , ,/c,’(a--s)’—(x—;‘}’—(_yq.f)2 i

where D, = { (x,y) : (x-0)% + (y-y)? s c*(o-8)? }. Letting { =

X - Vt where 0 = t, (5.22) becomes

A(x,y. t) =

y £,(x+Vs,y, s) (5.23)

1 1[ a— dxdy |ds
2me, U Ve (t-8)2- (- (x-V8) ) - (F-p)

where D, = { (X,y) : (x-(x-Vt))? + (y-y)? = ¢?(t-8)? }.

To derive the solution for the nonhomogenecus two-
dimensional wave equation, we began by solving the homogeneous
three-dimensional wave equation using Kirchoff's formula
{(5.5). Next, we used the method of descent to solve the
homogeneous two-dimensional wave eguation by reducing
RKirchoff's surface integral formula to an ordinary double
integral (5.12). We developed the solution to the homogeneous
two-dimensional wave equation in order to solve the
nonhomogeneous two-dimensional wave equation by applying
Duhamel's principle (5.21). This gave the solution of the

wave equation in (5.2) in the form given above in (5.23). 1In
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Chapter VI we will examine the solution to ({5.23)

time.
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VIi. LONG TIME SOLUTION

A, =WV

Before locking at the behavior of (5.23) as t - o (where
the topography f£,(x+Vs,y,s) has a general form), we shall
first introduce a specific moving point source for the

topography, 80 that

f,(x,y,8) = 6(x-x) 6{y-y,) g(s). {6.1a)

Consequently

£ (x+Vs,y,s8) = 6(x+Vs-x,) 6(y-y,) g(s), (6.1Db)

where g is a non-negative function satisfying

g(0) =0 and g(s) =1 for Se= 8. (6.1c)

If we can solve (5.23) by substituting (6.1b) in for
f,{x+Vs,y,8), then we can solve (5.23) for any form of
topography by applying the principle of superposition.

To solve (5.23), we begin by substituting (6.1b) into

(5.23) to obtain
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Alx,y, t) =

2

_[ I 8 (x+Vs-x,) 8(y-y,) g(s) &
D,

27c, [ \/cf'(t-s)’- [x-{x-Vt) }*-(y-y)?

{€.2)
]ds.

We let X = (X+Vs-x,) and Y = (y-y,) and substitute into (6.2)

to obtain
A(x,y, t) =
1 \[—U 5(X) 5(Y) gls) dxdy I PR
27C 8 o) Joi (t-8) - (X+V(E-8) - (x-2,) 12 (¥~ (y-y,) 12
where

D = [ (X,Y) 2 [X+V(t-8)-(x-x,)]1% + [Y+y,-¥]% s c,z(t—s)z]. (6.4)

In order to solve (6.3) we must determine those s for which
(6.4) is satiesfied. Letting 7 = (t-s8) for (t-s) =2 0, (6.4)

simplifies to

(c2-V2) 12 + 2V(x-x,) 7 - [(x-x,)? + (y-y,)?%] = O. (6.5)
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Note that X and Y are not included in (6.5} since the
integration in {6.3) with respect to X and Y makes both X and

Y become zero. Solving (6.5) for 7 yields

-Vix-x,) \/cf'(x—xa)’ + (c}-V2) (y-y,)?
cl-w?

"

. (6.6)

The values of 7, and 7. will depend on whether ¢? > V? or ¢} <
V’. We shall examine both cases in the following sections.
1. ¢t > Vv
when the long-wave phase speed is greater than the
velocity of the submarine, we see from (6.6) that 7, > 0 and

7. < 0. Factoring (6.5) yields

(c2-vY) (r-1,) (1-7) = 0 (6.7)

where 7, and 7. are defined in (6.6). Since the left hand side

of (6.7) must be greater than or equal to zero, 7 must be

greater than or equal to 7, (7 = 7,). Hence, s must be less
than or equal to (t-r,). Therefore, the upper limit of s in
(6.3) becomes (t-r,). Now, integrating (6.3) with respect to

X and Y yields

in
1=
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_ 1 t-7, g(s) ds
A,(X:Y.t) = (6‘8)
2wc, (ci-vh mL J(( t-7,)-8)((e-7.) -8)

where 7, and 7. are defined in (6.6). Using (6.1c¢), we break

(6.8) into the following parts

Alx,y, t) =1I + 1, (6.9a)
where
2we, (e -V) J((t—'r.) -8)((t~7.) -8)
and

ds

I = ]; uzr -
ZWC,(C,-VQ) £, ‘/((t"T.) -S)((t-T_) -S)

. {6.9¢)

We first look at the behavior of I, as t - o. We see
from (6.9b) that for long time, I, is O(1/t). Therefore, we
can neglect thia portion of A(x,y,t). Now in evaluating I,

for long time, we let 7 = (t-s) so that I, simplifies to
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{6.10)

I, =

1 t-3 dr
2rc,(c)-v?) “3‘(" ‘/(1—1‘) (r-1.)

We complete the square of the denominator of (6.10) to obtain

I,= 1 J‘____"T___ (6.11)

2w, (cl-vyVile STy .

Here a = (7,+7)/2, and b? = (7,-7)%/4. Letting bu = (7-a) and

substituting into (6.11) then yields

’--’"ﬂ
Lone
1, = : j du | (6.12)
2mc, (- J . Jfura
-F

Integrating I,, we find
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1/2
(t-5,-a) [(t:—s,—at)2 _

e ZIc,(c],;-V“)"z ol —p | &2 1
(6.13)
172
e LI +[(T'—f):—1] -
xc,(c)-V?) { b

For long time t, I, is O(ln t).

In the case where c? > V!, we see that the long time
solution for A (x,y,t) is O(ln t). Next we examine the cose
for which ¢? < V2,

2. Cie VW

When the long-wave phase speed is 1less than the
velocity of the submarine, we see from (6.5) that x must be
greater that x, since 7 is greater than or equal to zero. We
must reexamine (6.6) to see if a positive real value for 7 is

possible. Rearranging (6.6) for c? < V* yields

_ P _ 2 _ 2 2 - 2
| Vix-x,) % «fc, x-%)° - (V-6) (y-y,)" (g 14)

T
- 4
ve-c?
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From (6.14) we gee that a real solution for 7 exists only if

the following inequality holds

cix-x,)2 - (V*-ch) (y-y,)? = 0. (6.15)

Hence, a solution exists only within the region defined by

172
2
xzxo’f[—v-,—l (y - y,) for y>y,, (6.16a)
c.l
and
172
VZ
Xex, +|— -1 (y,-Y) for y<y,- (6.16b)
oA

Since 7, and 7 are both positive, we see from (6.7) that 7
must be between 7, and 7, ie., (r.=s7rs7,). Therefore, s must
be less than or equal to (t-71.).

To solve A, (x,y,t) for ¢? < V2 as t » w, we start with

(6.3). Integrating (6.3) with respect to X and Y yields
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1 “-(' gl{a) ds
1
2nc, (Vi-c)) ik \/(( t-7,) -g}{(t-71.) -8)

ﬂ,fxny. ty =

(6.17)

where 7, and 7. are defined in (6.14). Using (6.1c), we break

{6.17) into the following parts

Alx,y, t) =1, +I,, (6.18a)
where
13 = = 2 l/zj g(S) ds ’ (6-1813)
27c, (V-c;) 28 \fi(t-1,) -8) ((t-7.) -8)
and

1

1 ds

I, = .
2me,(c]-V'" | fieor) —a)((t-7.) -8)

(6.18¢)

Looking at the behavior of I, as t + =, we see from
(6.18b) that I, is O(1/t). Therefore, we can neglect this
portion of A(x,y,t). The evaluation of I, is similar to the

analysis as developed for I,:
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172
. {(t-s8 -a) [ t-g -a)?
- 1 i nj { oma) { ,,2 ¥: 1 |
2wc, (Vi-c;) M2 b { b
{(6.19)
[ 1/2
- - 2
R -1 1n| {r_-a) . (r.-a)* 1 (1.
2mc, (VI-c) V2 b | »

Here a = (7,+7)/2 and b? = (r,-1)%/4. For long time, I, is
O(in t).

In the case where V? > c?, we see that the long time
solution for A,{x,y,t) is O(ln t). Next, we examine the

resonant case where c¢? = V2,

B. C' =V 7

Previously, we developed the long time solution for the
cases when ¢? > V? and ¢! < V? with the interesting result that
in both cases the solution had growth of O0(ln t). The reason
for this growth is the failure of Huygens' principle in two
dimensions. Though 1n(t) tends to infinity for long time, it
is a function of extremely slow growth, and for the times we
are interested in, it can be considered as a bounded function.

In the resonant case, we are concerned with the behavior
of A(x,y,t) as t » o for the case when the speed of the

submarine is equal to the long-wave phase qpeed (c? = V?).
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‘e
To determine if a solution to (6.3) is possible for c? = ) ‘
VZ, we must reexamine (6.5). From (6.5) we see that a - ®
solution exists only if s satisfies the following inequality _»‘
®
st XXX L ykex) s 0 (6.20) -.'
2V{(x-x,) o o . ®
Integrating (6.3} with respect to X and Y yields “
Alx,y, t) =
1 A g(s) ds (6.21) N
27nC Io :
% J2vix-%) (£-8) - [(x-x)7 + (y-y,)?]
e ©
Here A = [t - ((x-x)%+(y-y,}?)/(2V(x-x,))]. Using (6.1c), we
break (6.21) into the following parts
]
Al(lx,y,t) =I;+ I, , (6.22a)
where ®
o
®
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. 1 gis) ds {6.22b)

vr2V(x-xo) (t-8) - [(x-x,)% + (y-y,)?]

and

Is

13

de (6.22¢)

A
< |
2
T 2vix-xp) (t-8) - [(x-%)7 + (y-¥.,)?]

Here A = [t - ({x-%X,)%+(y-Y.,)3)/(2V(x-x,))}].

Looking at the behavior of I, as ¢t -+ ®, we see from
(6.22b) that for long time, I, is O(1/t'?). Therefore we can
neglect this portion of A (x,y,t). Integrating I, directly, we

obtain

I, =

(6.23)
1 Y2Viex,) (t-8,) - [(x-%)? + (y-y,)?]
27c, Vix-x,) )

From (6.23) we see that I, is O(t'?) as t » w. Therefore, we
see that the solution for A(x,y.t) at resonance grows like

0(t'?) for long time.



To derive the long time solution (t -+ ®) for A,{x,y,t), we
began by introducing a moving point scurce for the topography,
£,(x+Vs,y,8), with the knowledge that if a solution was
attainable by using (6.1c), we could solve (5.23) for any form
of the topography by the principle of superposition. We first
looked at the case where ¢! > V' and determined that the long
time solution for A/(x,y,t) was O(ln t). Next, we looked at
the case where c¢? < V2 and saw that a solution existed only
within a certain region defined by (6.16a,b). The long time
solution for A (x,y,t) in this case was also O{ln t). We
attribute the 0O{(ln t) growth to the failure of Huygens'
principle in two dimensions. For the resconant case where c?
= V!, we found the solution for A (x,y.,t) to be O(t!'?) for long
time. From this analysis, we see in this problem that if a
submarine patrols at or near a long-wave phase speed a

significant resonant could occur for long times.
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Vii. CONCLUSIONS

This thesis has presented a theoretical study of the flow
of a stratified fluid over variable topography as a model of
the rescnant interaction of a submarine's wake with a
stratified fluid. We considered the case in which a submarine
patrols at a speed near the long-wave phase speed of an
internal wave. Internal waves are generated by the flow
arocund the submarine's wake.

The long time solution cbtained in our model for the cases
when c? > V? and ¢? < V> had growth of O(ln t). (see (6.13) and
{6.19)). We attribute the O(ln t) growth to the failure of
Huygens' principle in two dimensions. For the resonant case
where ¢ = V?, we found the solution to be 0{(t'?) for long
time. (see (6.23)). It is important to note that for the
time scales we are concerned with, both long time solutions
for the nonresonant cases are bounded and have extremely slow
growth. Therefore it is the resonant case which is important.

The growth in time occurring in the resonant case
indicates that perhaps nonlinear effects, balanced by
dispersion, could cause significant upstream disturbances.
From these disturbances, the possibility exists of detecting

a submarine by the internal waves its wake generates.




Further studies in this problem should begin by rescaling
the asymptotic expansions to balance the leading order
quadratic nonlinear terms with the topographic forcing. This
will achieve a balance between nonlinearity and dispersion.
We expect the solution to this problem to show that
significant upstream disturbances could occur when the
submarine patrols at a speed at or near a long-wave phase
speed.

If internal waves were generated only by underwater moving
ocbjects then the problem of detecting the submarine by the
internal waves its wake generates would be made simpler, but
this is not the case. Internal waves are a natural occurring
phenomenon in the oceans. This complicates the problem
because in order to detect the submarine by the internal waves
that it generates, the ambient internal wave patterns at the
location of the submarine must be known. The problem of
discerning ambient internal waves from internal waves
generated by the submarine's wake is similar to the problem of
detecting a submarine passively (such as with a tail). The
sonar operator filters out the ambient noises or background
noises of the ocean from the incoming signal to detect the
acnoustic signature of the submarine. From further
understanding cf the ocean's naturally occurring internal
waves, we may one day be able to discern internmal waves

generated by a submarine from those of the ocean.
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