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A,•STRACT

Through the use of asymptotic and perturbation methods,

this thesis presents a theoretical study of the flow of a

stratified fluid over variable topography as a model of the 0

resonant interaction of a submarine's wake with a stratified

fluid. Such resonant interactions may be able to produce

significant upstream disturbances. The long time solution 0

obtained in our model exhibits growth in time for the resonant

case, indicating that perhaps nonlinear effects, balanced by

dispersion, could cause significant upstream disturbances. 0

These disturbances could allow the possibility of detecting a

submarine by the internal waves its wake generates in the

resonant case. Accesion For 0

NTIS CRA&I
DTIC TA,
Unannounced -
Justificat...

By
DistibAio I

Availabi; (oc..

i Aveiý a ,•or
Dist Spt.*cidt

A-1

-- e7PrlYUM I

iii S

!0



0

TABLZ OF COUTITTS

I. INTRODUCTION ............... . 1

II. PROBLEM FORMULATION ............... 4

A. DIMENSIONAL PROBLEM ........... ............ 4

B. DIMENSIONAL SCALING ........... ............ 8

C. NONDIMENSIONALIZATION .......... ........... 9

III. THE ASYMPTOTIC EXPANSION OF THE DEPENDENT

VARIABLES .............. .................... 19 e

IV. DEVELOPMENT OF THE TWO-DIMENSIONAL WAVE

EQUATION .............. ................... 27 • -

A. EIGENVALUE PROBLEM ...... ............. 27

B. ORTHOGONALITY ......... ............... 29

C. TWO-DIMENSIONAL WAVE EQUATION .. ....... 31

V. SOLUTION TO THE TWO-DIMENSIONAL WAVE EQUATION . 39

A. METHOD OF DESCENT ....... ............. 39 0

B. DUHAMEL'S PRINCIPLE ..... ............ 44

VI. LONG TIME SOLUTION ......... ............... 49 0

A. C,2 ; V2 . .. .. .. .. .. ..  . . . . . . . . . . .. . . . . . .  49

iv 0

m0



S

1 C.2 > V 2  512.

2. C,^- < .. . .. .. .. .. .. .. . . . . . . . .. . . . . . . .  54

B. C,2 - V2  . 5.. . . . . . . . . . . . . . . 57

0

VII. CONCLUSIONS ................... 61

LIST OF REFERENCES .................. 63

BIBLIOGRAPHY ....... ... ... ..... .. . 64

INITIAL DISTRIBUTION LIST ............... 65

v •

• I iI I0



F I

I. INTRODUCTION

The nonacoustic detection of submarines is an area of

intensive and well funded research. Although, it is not clear

whether devices based on nonacoustic means of detection will)

become as useful as those based on acoustic means, the

military importance of such devices demands pursuing such

avenues of technological research. One possible nonacoustic

means of detection is to attempt to detect the submarine

optically through the use of a laser by examining the way the

submarine reflects or absorbs blue-green light. Another more

promising method is to try to detect the submarine by the heat

it emits. However, an even more promising technique is the

detection of submarines by the internal waves they generate. *
In the ocean a stable density stratification generally

exists. As the submarine moves through the density-stratified

ocean, it leaves behind a wake capable of generating internal

waves. These internal waves result from the stabilizing

effect of the stratification: as a water particle is

displaced, it experiences a buoyant restoring force in the

opposite direction from which it was displaced.

Many theoretical and experimental studies have been

conducted on the subject of the flow of a stratified fluid

over a localized topography. For the two-dimensional flow of

an inviscid, incompressible stratified fluid, most studies

1 A



have been confined to steady flow or linearized theory.

Earlier studies concerned themselves only with a description

of the downstream stationary lee-wave field. A question that

has generated some controversy is the phenomenon of upstream

influence. To what extent do disturbances generated by the

topography through transient and nonlinear processes propagate

upstream?

McIntyre (1972) showed that the only significant upstream

disturbances were weak second order long-wave motions

generated by nonlinear interactions in the lee-wave. McIntyre

(1972) extended the earlier theories of Benjamin (1970) and

Keady (1971) by performing an expansion using as the small

parameter the ratio of the height of the topography to the

total fluid depth. Baines (1977,1979), on the other hand, in

experimentally examining the flow of a continuously stratified * •

fluid over topography, found upstream disturbances that were

first order in the topography height. These upstream

disturbances were not only generated by nonlinear processes

over the topography but also travelled at the long-wave speed.

Baines also observed that these upstream disturbances were

very strong when the fluid approached resonance. Here,

resonance is defined as the near coincidence of the basic flow

speed and one of the free long-wave speeds. Grimshaw and

Smyth (1986) presented a theoretical study of stratified fluid

flow over localized topography for the two-dimensional case

when the basic flow is near resonance. One interesting

2



feature of their results is the appearance of significant

upstream disturbances as obseived by Baines (1977,1979). 6
Grimshaw and Smyth showed that solitary waves were formed when •

the localized forcing over the topography produced a positive

disturbance upstream, and an oscillatory wavetrain was formed

when the disturbance had negative polarity. •

Motivated by these results, this thesis presents a -

theoretical study of the flow of a stratified fluid over

localized topography for the three dimensional case.

* 0
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11. PRC3LU 7OUWZc

A. DIXNGSZOMAL PROBLO

We consider the three-dimensional flow of an inviscid,

incompressible stratified fluid. Figure 1 (see page 5) 0

provides a sketch of the coordinate system. We assume that

the basic state has a constant horizontal velocity, V, from

left to right with equilibrium pressure and density 0

respectively as p0 (z) and p0 (z). Here and throughout this

paper barred variables represent dimensional variables. We

introduce T as the vertical particle displacement from some

initial position at time t = 0 to the position at time t T.

Using the Lagrangian representa ion •(x,y,z,T) - zy-- z- the

density, p(xy,z,t), becomes p.(z- (x,yz,t))- Therefore, the 0 *
equations of motion are

Uý+ V, + iv 0,(21

P. (Z-)- + =0, (2.2)

D-E

p0 (-~+ P_ = 0, (2.3)

(z- + p -g +p- = 0, (2.4) 0

4
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Figure 1. The Coordinate System
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D?" D, (2.5)Dr

where

.A (V+U)- - - (2.6)
-- azax -a -

DT 8T TC 8Y a-ýi

Here, u, v, and w are the velocity components relative to the

basic state which has velocity (V,0,0) with respect to a

right-handed Cartesian coordinate system.

The bottom topography is given by z = f(x,y,t), where 0

initially f(x,y,O) - 0. For large times the topography

attains a steady value g(x,y) and hence we assume that

* 0

f(x,y,t) -_qg(x,y) as t --. (2.7)

0

We also assume that at all times the topography is localized

where fT(x,yt) - 0 as x-- + The kinematic bottom boundary

condition is then
0

S=f at z f. (2.8)

6
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We are assuming that this "topography* is created by the

submarine's wake, which when viewed from the •Dyag submarine, a
actually has a steady shape. In this thesis, we investigate

the interaction of the wake with internal waves. K~llen

(1987) has investigated this type of interaction in a linear,

steady state model and comments in detail on the validity of

assuming that the wake acts as rigid topography. Furthermore,

from experimental results, Lin and Pao (1979) show the mean

flow occurs at the wake boundaries implying that part of the

flow travels around rather than through the wake. It is this

flow around the wake that generates the internal waves. Our

model, in fact, does not depend critically on the assumed form

of "topography" the submarine creates and our purpose here is

to investigate a time dependent model.

The upper boundary, assumed to be a free surface, is

located at z = H + il(x,y,t), where H is the vertical distance

from the surface to the submarine and •(x,y,t) is the free

surface displacement. One must remember to include not only

the kinematic boundary condition at the upper boundary but the

dynamic boundary condition as well. The upper boundary

conditions take the form:

Sat z = H + (2.9a)

p,(H+in) + pr(H+n) = p0 (H) at z =H + il. (2.9b)

70
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0
Here, p5 is the perturbation to the pressure P- of the basic

state.

B. DIXITSIOIKL SCALING

The solution of practical problems in fluid mechanics

requires both theoretical developments and experimental

results. By grouping significant dimensional quantities into

dimensionless parameters it is possible to present results in

a compact form which is applicable to all timilar situations.

In the problem, the characteristic horizontal length scale

L is determined by the ratio U/N, where U is a characteristic

horizontal velocity and N is the Brunt-V&is~l& frequency at

the location of the submarine. We shall take the

characteristic horizontal velocity U to be given by NH, (U

N,H), where N, is the maximum Brunt-V&iscl frequency and H,

the characteristic vertical length, is the depth of the * *
submarine. Typically NK is 10.2 sec-' and H is 200 meters (mi),

so U is 2 m/sec. This is a typical order of magnitude

patrolling speed for a submarine at that depth. Of course,

0(1) variations in N, and H can be made without changing our

analysis.

From the mass conservation equation and with the imposed •

horizontal length and velocity scales, we see that the

vertical velocity scale, W, is UH/L. The horizontal length

and velocity scales are also used in determining the

characteristic time scale, T, where T is defined by T = L/U -

-~0 OR _



1/N. Lastly, the characteristic pressure scale is defined as

p p~gH where p, is a characteristic density. These scales 4
define the parameter = NH/g, which is a dimensionless

measure of the ratio of the buoyancy force to the

gravitational force.

C. WOUDZ•MESIONALIZATION •

By using the various dimensional scales introduced in

section B, we shall nondimensionalize the equations of motion

(2.1-2.6) along with the boundary conditions (2.8-2.9b). .

However, before deriving the nondimensional equations of

motion and boundary conditions, we will consider several

related dimensional equations that will assist in simplifying 0

the nondimensional derivation of equations (2.1-2.6) and

boundary conditions (2.8-2.9b). We first introduce the

following nondimensional variables: 0

i- P . Z z .PSpo I , = - = - 0:•_p~gH H p1

(2.10)
NA _

To nondimensionalize the hydrostatic equation, we begin with

i0

9 0•
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iCIE.

dW -gP0. (2.11)

Using (2.10) yieldso

P.(z -P0.-(2.12)

The dimensional Brunt-V&isalA frequency is defined as

N2
-- grcP (2.13)

where dp,/dfz < 0. Using (2.10), we obtain

gIH2 p (2.14)

Siiz

but N 12 NH/g, therefore (2.14) simplifies to

dpo

100
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In nondimensionalizing the Lagrangian representation of the

particle's vertical displacement, we start with

Using (2.10) yields

Z, =z - (x,y,Z, t). (2.17)

The last equation needed before considering the equations of

motion and boundary conditions is the dimensional pressure

equation:

p(x,yz,t) 0= pgHpo(Z) + plgH~q(x,y,z,t) (2.18) 0 0

where pp = pzgHjq(x,yz,t) and # is defined after (2.14).

Thus, q(x~y,zt) is the dimensionless perturbation to the

hydrostatic pressure p,.

Before deriving the nondimensional equations of motion and

their associated boundary conditions, we first introduce the 0

following nondimensional variables:

0



x y U u

_ V W P- v=v- , V=•, W= -• , P* =-- 1

UU W
I_ (2.19)

iIi
H

where L, H, U, W, p,, and T are the characteristic dimensional

scales defined in section B and h is a characteristic

amplitude of the topography.

We begin with the mass conservation equation (2.1) . Using

(2.19) and remembering that W = UH/L, (2.1) becomes 0

U" + V + W = 0. (2.20)

To assist in deriving the nondimensional form of the x-

component of the momentum equations, given by (2.2), we shall

now derive the nondimensional form for the convective

derivative D/Dt:

DS
+ (V+-Iu). + V-+ iW-:. (2.21)

Using (2.19), (2.21) becomes

12



D .1 8 U 8 U a3 + U~ (2.22)

but T =L/U, therefore (2.22) simplifies to

- = -T ~-,5 (2.23)

where

-f- -t: VU + V + W-*-. (2.24)

S~0

Substituting (2.17), (2.18), and (2.23) into (2.2) and using

(2.19), we obtain* *

PP"Z-r)U DU+ ý..1 ---- q, 0 or,
T ft- L

(2.25)

D. rf -r L U- + +.

Dt

A similar analysis for the y-somponent of the momentum

.,'I"eqaton (23 yields.2)

13
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Dt

To derive the nondimensional equation for the z-component of

the momentum equations (2.4), we begin with

p,,(Z--) + po(Z- )g + P = 0. (2.27)

0

Substituting (2.17), (2.18), and (2.23) into (2.27) and using

(2.19), we obtain

0

P (Z- V)w• - p.(z-) g + 9• + 91aq = 0. (2.28)

T Dt0

Using T = L/N 1H and W = NH 2/L, (2.28) simplifies to

l (Z_ r) + po(Z-_)g + 9'P + giq 0. (2.29)
L jDt

Using (2.12) and the definition of •, f = N1
2H/g, (2.29)

simplifies to

14



0

e2po(z-r)-'D + .(p°(z-r)- p.(z)) + 0 0, (2.30)

where

H (2.31)
L

Lastly, we derive the nondimensional vertical velocity 0

from its definition (2.5). Using (2.19) yields

w =--. Dr(2.32)

We now consider the kinematic bottom boundary condition 0

f= at z =f. (2.33)

Using (2.19), we obtain

C=if at z =rf, (2.34)

where •

15



0

h
-z (2.35) -

For the free surface kinematic boundary condition,

S at z= H + 1. (2.36)

We use (2.19) to obtain 0

1=ij at z=1 + 17. (2.37)

0

Next, we nondimensionalize the free surface dynamic boundary

condition in (2.9b):

* .

Po(H÷n) + pP(H+i) = p0 (H) at z = H + 17. (2.38)

Using (2.19) and (2.18), (2.38) becomes

Po(l+q) + Pq = p0 (1) at z = 1 + 17. (2.39)

To recapitulate our nondimensional versions of equations

(2.1-2.6) and the surface boundary conditions (2.8-2.9b), the 6

nondimensional equations of motion are

16



u + v + w =0, (2.40)

DU + 0, (2.41)

TVt

o(-)Dv
( -rV + qY = 0, (2.42)

82po(Z-_) __Y + (.(p(Z- -- p.(z)) + 0 0, (2.43)Dt *

W "r (2.44)

where e = H/L and

D- a + (V+u) + v +w (45
D a7 (2.45)-Dt = T-- + 'u' -7 7.

with boundary conditions

0
o= f at z = of, (2.46)

at z = 1 + ., (2.47a)

Po(1+i) + 0q= Po(1) at z = 1 + t, (2.47b)

where o, - h/H.

An exact analytical solution of these nonlinear partial

differential equations is not available. However, we shall

17 S
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obtain approximate solutions for the case when e defined by

(2.31) and a defined by (2.35) are both small positive

constants. Since z - H/L = N/NI, the condition a << 1 is

satisfied when the density changes rapidly across a thin

thermocline. However, there is some ambiguity in the

definition of the thermocline. We will consider the 0

thermocline to be the region where density variations are

determined chiefly by temperature variations. This means that

the submarine is usually submerged to a depth below the 0

thermocline. Is this a valid assumption? To avoid acoustic

detection the submarine submerges to depths below the mixed

layer or layer depth. Depending on the thicknesis of the 0

thermocline the submarine can be either in the thermocline or

belcw it. We shall consider only the case for which the

submarine is below the thermocline in which the parameter a, *
the ratio of the characteristic amplitude of the topography to

the submarine's depth defined by (2.35), is also small in this

situation. 0

!!0

18 0
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S

Ill. THE ASYMPTOTIC m[PAxSIO" OF TEm DEIDWUT VARZIABLS

To study the behavior of the internal waves excited by a

small amplitude disturbance in the presence of a uniform

oncoming flow, as when a submarine moves through the watex at

constant velocity V, we perform an asymptotic expansion on the

variables r, q, u, v, and n in terms of the small parameter a.

This is reasonable since the small parameter a enters the

bottom boundary condition in an analytic way and since the

solutions arise by analytic processes, it is natural to expect

the solution to exhibit an analytic dependence on the

parameter a. Since the disturbance is 0(W), we shall

initially suppose that the response is also 0(a). Therefore,

we introduce the following asymptotic expansions

= r- •(X,y, z, t) + +•, ÷ +

'y= aq(x,y,z, t) + oq,+ ...

U = au.(X,y,z,t) + U +... (3.1)

V = avo(xy,z,t) + &vk +.

1q = Of%°(xy,z,t) + +ý, I +

in which we consider the limit process as a - 0.

Substituting (3.1) into the continuity equation (2.40), we 9

obtain

19
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-a�u.,o+ . Av. + I • (ao9) + oa) ... . 0. (3.2)

Dividing by a and taking the limit as a-' 0, (3.2) simplifies

to

Ua + V + W = 0, (3.3)

where •

Doto

and

a. a (3.5)
-E iE 1i

To show that DIDot is the 0(1) part of the convective

derivative given in (2.45), we collect only the 0(1) terms in

the expansion for D/Dt given in (3.6) below:

_D t + (V cao) a o + 0(n) + T.. (3.6)

200
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Substituting (3.1) into the x-component of the momentum

equations (2.41), we obtain 4
po(a_') +Do

P( Z- L u) + Dq + o(0Y) + ... 0. (3.7)

Expanding po(z-ý) in a Taylor Series and using (3.1) yields

0

po(Z- p (Zpo(z) - po(Z) [aro] + 0(U) + .... (3.8)

Substituting (3.8) into (3.7), we obtain 0

DoU

ap 0 (z) D--.- + aq• + O(9) + ... =0. (3.9) * *
D, t

Dividing by a and taking the limit as a - 0, (3.9) becomes

P, + qm = C. (3.10)
Dot

A similar analysis for the y-component of the momentum

equations (2.42) yields

21



0

D-v-
p.,(Z) D.--"t + CI = 0. (3.11)

For the z-component of the momentum equations (2.43), we

substitute (3.1) into (2.43) to obtain

a - [p,(z-. ) - p 0 (z)I + aq', + 0(,) + ... 0. (3.12)

Expanding p0 (z-r) in a Taylor Series as in (3.8) and

substituting into (3.12), we obtain

Cf2 D~r V'Zt.CC(.3

5- po(g) o q,+O(a) + ... =0. (3.13)"Dt2 # * *

Dividing by a and taking the limit as a - 0, (3.13) simplifies

to 0

p( + q, = 0. (3.14)

Notice that the C2 term has been neglected. As previously

discussed, in order for our theory to work we require z << 1. 0

Therefore, we see the e2 term is small. The fact that the s2

22 0
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term is small by itself is not justification in dropping this

term from (3.13). In order to justify the dropping of the a2

term, we shall assume that aa2 = o(a) as o - 0, or that e2

o(l) as a -• 0. Now as one takes the limit a -.0 in (3.13), we

clearly see that z2 - 0. In continuing our derivation of the

z-component of the momentum equations, we substitute (2.15) in

for dp,/dz, so that (3.14) become-,

+ p0N2 - = .. (3.15)

Next, we consider the surface boundary conditions. We

begin by substituting (3.1) into the kinematic bottom boundary

condition (2.46) to obtain

aa tf + () + ... at z = ai. (3.16)

Taking the limit as a - 0, we find

•o=f at z = 0. (3.17)

Note that the 0(a) bottom boundary condition is applied at z

= 0. Substituting (3.1) into the free surface kinematic

boundary condition (2.47a) results in

23 5



a ll + (012) + . at X 1 + aq,. (3.18)

Taking the limit as a 0, (3.18) becomes

S at z=1 (3.19)

Again the 0(a) free surface condition is applied at z -1.

The last boundary condition to consider is the free

surface dynamic boundary condition (2.47b) . Substituting

(3.1) into (2.47b), we obtain

pl 4)+ f + O(c,3) + .. =p.(1) . (3.20)

Expanding p0(l+tl) in a Taylor Series and using (3.1) gives

P,,(I+ V) = p. (1) + ap 0'(Z) 71. + O (Ci) + .(3.21)

Substituting (3.21) into (3.20), we find

p, (1) + ap.'(1) -q + at+ ((12) + p.. = (1). (3.22)

24



Canceling the p0 (1) terms, dividing by a, and taking the limit

as a - 0, (3.22) becomes I

p, (z) 1 + 0•.L= 0 at z 1 (3.23)

but using (2.12) simplifies the free surface dynamic boundary

condition to

q = p4 to at z = 1. (3.24)

In summary, we see from substituting the asymptotic

expansion (3.1) into (2.40-2.45), (2.46), and (2.47a,b), that

the 0() problem is:

uar + v +W = 0, (3.25)

DUo
po(Z) Do----0  +q4 = 0, (3.26)

Dv,

t q 0, (3.27)

q. + p.o = 0, (3.28) 0

25
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(3.29)

where

S

D. 01-+ (3.30)

with boundary conditions

•o•f at z = 0, (3.31) 5

q. at z = 1, (3.32a)

$ P4=pq. at z = 1. (3.32b) •

Combining (3.32a) and (3.32b) gives the single boundary

condition at the free surface:

P.=Polo at z =. (3.33)

26
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IV. DI3.LOEKN•T01 OF TH'EWO-DMMIa OIOAL WAVE ZQUATIOJ

A. EIGENVALUZ PROLZK

In order to solve (3.25-28), (3.31), and (3.33), we look

for solutions of the form

U. = Aei(-L÷r- or) 4 1(z)

V0 = Be (AX LY-lI 4'() (4.1)

- De'(f-LY-O) O(z)

o = Dc2eI(I r�T•-")0po' (z)

where x (K,L) is the horizontal wave vector, 0 is the

frequency, and c is the long-wave phase speed relative to the

basic state at rest. Substituting (4.1) into (3.25), (3.26),

and (3.27) and solving the system of linear equations, we find

the dispersion relationship to be

Q = cjIE where IN1# 0. (4.2)

Furthermore, substituting (4.1) into (3.28), (3.31), and

(3.33) results in
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0

(p• Z)) + 2 ( ) 0, (4 .3a)

with boundary conditions

*(x) =0 at z = 0, (4.3b)

*(z) = c2I'(z) at z = 1. (4.3c)

The equations (4.3a-c) formally pose an eigenvalue problem

where c2 is the eigenvalue and # the eigenfunction. Note that

the dispersion relationship in (4.2) was obtained for wave

motion in a stratified fluid at rest where V = 0 and Do/Dot =

a/It. In the problem we are considering, the dispersion

relationship would differ from that found in (4.2) but the

eigenvalue problem would remain the same. Hence, our purpose

here is to show the existence and character of the solutions

that define the eigenvalue problem. The solutions have the

horizontal character of plane waves travelling in the (x,y)

plane with a vertical structure defined by the eigenfunctions,

#(z). We shall see that the general solution to (3.25-3.28),

(3.31), (3.33) can be obtained in terms of a superposition of

normal modes whose depth dependence is determined by the

0,(z), the eigenfunctions of the following eigenvalue problem:
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(p 0 )' + =0, (4.4a)

0,(Z) = 0 at z = 0, (4.4b)

0,(Z)= c,20, (z) at z = 1. (4.4c)

Here c;-2 is the eigenvalue, where c, is the long-wave phase

speed relative to the basic state at rest.

B. ORTHOGONALITY

The eigenfunctions *,(z) satisfy the orthogonality

condition

c.{Po• dz = 6,,= I (4.5) *

where I, is defined by the left side of (4.5) for r = s. To

prove (4.5), we let X, and X, be eigenvalues with corresponding

eigenfunctions 0, and 0, where X - c.2 and X, = c; The

differential equations satisfied by the eigenfunctions are

+ Xp 0.N2, = 0, (4.6a)

(Po•,) + ), PoN21 Or = 0. (4.6b)
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In addition, both 4, and 0, satisfy the same set of homogeneous

boundary conditions defined in (4.4b,c). Multiplying (4.6a)

by 4, and (4.6b) by k, yields
0

+ X', .NOo'0• = 0, (4.7a)

,(P.O•)t,01 + = 0. (4.7b)

Subtracting (4.7b) from (4.7a) results in
0

X,(po¢=)'•, - X,(pov~)'�, o0. (4.8)

0

Through application of the product rule

kr~p•= •r= A[ (°•,••r ' -Po• •,•] '(4.9)

(4.8) becomes
0

X,(po¢z=4¢r)' - X, po¢JZ• - ,( ,+ xpoz = 0. (4.10)

Integrating (4.10) yields
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0
- r~0 P~~~rdz p, 'rez~v(.1

0
Evaluating the right hand side of (4.11) and remembering 0.(1)

= •X-'€(1) *,(l) - t•.,(i), and 0,(0) *S,(O) 0, (4.11)

becomes

(X, - f , dz = 0. (4.12)

S

If X, ; X,, it follows that

JPO•S= dz = 0. (4.13)

In other words, the z derivatives of the eigenfunctions (0,

and 0.) corresponding to different eigenvalues (k and X,) are

orthogonal with weight p,. Therefore, the normal modes do

satisfy the orthogonality condition in (4.5).

C. TWO-DIMENSIONAL WAVE EQUATION

Since the eigenfunctions, #,(z), form a complete set, we 0

can represent u,, v,, r., and q. by a generalized Fourier series

expansion. From (4.1) we know the general form of the

solutions and hence we put
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Ao - SAI(XoY. t)*(Z) (4.14a)

o

00

u.= -•D.(xY, (t)*(z, (4..14c)0

U0 SD(xYt)..,, ..lC

V0 = - E5 (x,y.t) ,(z) . (4.14d)
0

To derive a relationship between A, and B,, we begin with

S= ,(X, Y, 0 )(Z) . (4.15)
0

We take the derivative of (4.15) with respect to z, multiply

by poc, 20,(z) and use the orthogonality condition in (4.5) to

obtain

IA 6 = C' fPoCoz 4sz dz. (4.16)

0
Integrating (4.16) by parts then gives
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TFA- o - Cd C9(p•.,±' dz. (4.17) 0

Using (4.4a), (4.17) becomes

,A , C2pO,!+ f p(N2*dz. (4.18)

Now, we multiply (4.14b) by *, and from the orthogonality

condition (4.5), we obtain

ISBV = I q0 *.,dz. (4.19) 0

Integrating (4.19) by parts, we obtain * *

T.B. = qo.I - 1 q. *dz. (4.20)
00

Using (3.28), (4.20) becomes

0

is qB3  s + fpCoN2*,dz. (4.21)
LB

Combining (4.18) and (4.21) yields
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+e
_.oo..÷*B - q•.~ = IA1 .• (4.22) -

Substituting (3.33) and (4.4c) for q0 (1) and #,(1) respectively

and remembering that r,(0) - f(x,y,t), (4.22) simplifies to

B, =-A, + F, (4.23)

where

I, Fý, p= c (0) *,ý(0) f(x, y, t) . (4.24)

Note that F,(x,y,t) is proportional to the bottom topography

f (x,y,t). * *

Next, we substitute (4.14a,c,d) into the continuity

equation (3.25) to obtain

0

. E. 48Z + 40, -0. (4.25)

Multiplying (4.25) by c,2p.O•, and applying the orthogonality

condition (4.5) then gives
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D O A -4. + -- E . (4 .2 6 )

where DI/Dot is given in (3.30).

To derive the two-dimensional wave equation, we use the x

and y components of the momentum equations (3.26) and (3.27).

Substituting (4.14bc) and (4.14b,d) into (3.26) and (3.27)

respectively, we obtain

D. + Pa[ C2 B, l. 0, (4.27a)

po- - D,¢,•t 0 PT6xII=

S- E, + POay B, = 0. (4.27b)

* I

Multiplying (4.27a) and (4.27b) by c.,,, and applying the

orthogonality condition (4.5) then yields

D D, + C '- -B =  0, (4 .28a)

DoE, 2 8BsDA + c-, - = 0. (4.28b)
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We next take the x derivative of (4.28a) and the y derivative

of (4.28b) and add the two results to obtain

SD0 VD, a,1 c B 0. (4.29)---N -• + 2r•r

Substituting (4.23) and (4.26) into (4.29) finally yields

2iD ,,A , _ - 2r , + F ,] ,i c, - 4v2 [A r, (4.30)

where

|m4
v =a- + a, (4.31)

IX2  8 y2

and

4
D [2 [2] (4.32)

0

Equation (4.30) is the inhomogeneous two-dimensional wave

equation whose solution will be obtained in Chapter V.

To summarize, we see that substituting (4.14a-d) into

(3.25-3.27) implies
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B, FA. + ., (4.33a)

D0A, OD. OR
- 8 +C (4.33b)7ox-• -v-9

D.A, _C'V2•A, + F, (4.33c)
Dot 2

where

I'F' , cp(O) (O) f (X,y, t), (4.33d)

S= + V(4.33e)D.ot -V °ix

and * *

2 + D2_L-+ - (4.33f)

Here, since f vanishes at t - 0, F,(x,y,0) - 0 and from (2.7)

we have

0

F,(x,y,t) - G,(xy) as t-., (4.34a)

where 0
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G, C 2 ,(O),(0O)g(xy) (4.34b)

The initial conditions for (4.14a-d) are that A,, B,, D,, and

iE, all vanish at t - 0.

*3.

•NiS
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V. SOLUTION TO THE TWO-D UIONTAL WWV3 EQUATION

A. METHOD OF DESCENT

To solve (4.33c) we first introduce the following change

of variables:

= x Vt,

y =y, (5.la)
'7= t.

Derivatives with respect to x, y, t can be expressed as

derivatives in the new variables f, y, a as follows:

a~- 7y-C a (5.1b
C a

- ( 5. lb)

aa+
WE -j--

Substituting (5.1a,b) into (4.33c) yields

2A, 2 , + a2A,
A"- c [--+ ] = f,(+V,y,) (5.2)8Ia2 C1 r2 ay2'•

390
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where

®

+,r-, , ,a) C=,. + ]F,•(r+Vq,y,CF). (5.3)

We shall solve (5.2) by beginning with the solution to the 0

following three-dimensional wave equation:

0
2U = c + u + ±2U(5.4a)

_t2 ay
2  8jz_2

u(x,y,z,O) =Z (x,y,z), (5.4b)

U (X, y,Z,O0) (X Y~,y Z) .(5.4c)

Using Kirchoff's formula (see Strauss 1992), the solution to 0 *
(5.4a-c) is

-- u(x0 1 yo, z, to) 4- t £P*(x,y, z) dS

-- (5.5)

+ .8 1 1(x, ,Iz) dS],
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where

D [ (x,y,z) : (X-x,)2 + (y-y 0)2 + (Z-tZ) 2 = C2t]. (5.6)

Note that the value of u(x0 .y 0 , z,, t,) depends only on the values 0

of t(xy,z) and $(xy,z) on the spherical surface D.

By the method of descent, we now obtain the solution to

the following two-dimensional wave equation: 0

O'u = [ 02 -U + 32U (5.7a)
at 2  Ox2  ay2  0

U(xy,O) = 0(x,y), (5.7b)

u,(x,y,O) = *(x,py). (5.7c) *

We regard the solution u(x,y,t) of (5.7a-c) as a solution to

the three-dimensional problem (5.4a-c) with initial data 0

independent of z. By Kirchoff's formula (5.7), we have

u(00, t) = 4_c1 f J(xy) dS77rcýt •IJf

(5.8)+• 4ct Of(x'Y) dS]'
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where

D, (x,y,z) : x2 + 2+ 2 (5.9)

This is the solution to (5.7a-c) but it can be simplified. To

simplify (5.8), we must express the surface integral as an

ordinary double integral. It is twice the integral over the

top hemisphere z - (C2t2-x2-•y2 ) 2 where (x,y) ranges over the
S

region D, - { (xy) : x2 + y2 s c 2t 2 }. By definition

dS =IR. x ,Idxdy, (5.10a)

where

* .
R= <x,y,V(c't2-X2-')> (5.10b)

and

ct (5.1oc)
1I (c2t2-x2-y2)

Substituting (5.10a-c) into (5.8) yields
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u(0,O•t) = 0 r )_ dxdyd
._S1 (5.il) •

+ L (Xy) dxdy]

This is the solution at the point (0, 0, t). Therefore, the

solution at a general point is

U (x.0 1 yt 0 ) =i[*(x, y) dx dy
I bif~ ct,2 (x-x0) 

2- Cy-y.) 2  ( 2

+ a[- (x, y) db dYJ
SF.Ti.DU1c2- (x-X 0 ) 2_ (y~yJ,)2

where

D,[ (X, y) :(x-x0 ) 2 + (y-y.)j2 S c2t2]. (5.13)

Note that (5.12) shows that the value u~x01y01 t0 ) depends on

the values of *(x,y) and *(x,y) inside the disc defined in 0

(5.13). This illustrates the well known fact that Huygens'

principle fails in two dimensions. We shall use (5.12) in the

solution to the nonhomogeneous two-dimensional wave equation 0

discussed in the next section.
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o3. DWAN=S PRINCIPLX

We now consider the following nonhomogeneous two-

dimensional wave equation

a lu _ c 2 [ a 2u + C1 2 Uq X Y , t( 5 1 a '
8at2  2 a-y,

with homogeneous initial conditions

u(x,y,O) = 0, (5.14b)

u-- (x,y,0) = 0. (5.14c)

By Duhamel's principle, the solution to (5.14a-c) is given by

u(x, y,t) = fo U(xy,t,s) ds (5.15)

where for each s a 0, U(x,y,t,s) is the solution of

-2U _ c2[ a.U + -2u 0 for t- s, (5.16a)-j -2 Lx2  8Oy'

with initial data prescribed on the plane t - s such that •
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U(xy, s, s) 0, (5. 16b)

U, (x, y,S,s) g g(X, y,s). (5.16c)

Since the wave operator is invariant under translations in

time t (see Strauss 1992), we can shift the time t by a S

constant and still have a solution. We let V(x,y,t,s)

U(x,y,t+s,s), so that V(x,yt,s) is a solution to

V- C2 (V + V0) = 0 for t a 0, (5.17a)

with initial data prescribed on the plane t = 0 such that

V(x,y,O,s) U(x,y,s,S) = 0, (5.17b) * *

V,(x,y ,0, s) = U,(x,y, s, s) g (x,y, s) . (5.17c)

Using Kirchoff's formula (5.12) to obtain a solution to

(5.17a-c) then yields

V(x,y,t,s) - 1.kf g(x,y,s) dxdy (5.18)
2wciJf IC'tt2- (x-x) 2- (Y-y) 2
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where Dy ( (xy) (x-x) 2 + (_.y)2 s ckt2 }. Since our purpose

here is to solve the nonhomogeneous two-dimensional wave

equation in (5.14a-c) by Duhamel's principle (5.15). we can

again shift the time t by a constant so that U(x,y,t,s) -

V(x,yt-s,s). This last expression for U(xy,ts) together

with (5.18) then implies

U(x, Y, t,s9) (X L~f x Y , ) dxy (5.19)
"2WC , Jc2 (t-s) 2- (3-x)2 2(Y-Y) I

where

, = (x,y) (X-X) 2 + (y-y)2 S C2 (t-S)2 1. (5.20)

* 0

Now using Duhamel's principle (5.15), we obtain

u-xy-t) IgD 2( tdy(jys (5.21)
c2 (t-s)2-(x-x) 2-(Yy)I

the solution to (5.14a-c) where D, is defined in (5.20).

In deriving the solution to the nonhomogeneous two-

dimensional wave equation(5.14a-c), we have solved (5.2). We
0

change the names of the dependent and independent variables in

(5.21) to obtain the solution of (5.2):
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A, r.,1 -, 1 ) f, (i+VS' j'S) C&d-IS (5.22)
-21rc, K's' (Cr-a 2-i(-n 2 - .-y 2

0

Where D. Y) {) (xyI( + (y -y)2 S c2 (u-_sY 2 ).Letting -

x - Vt where a t, (5.22) becomes

A, (x, y,t 0

I [ I- I -

f, Frr tY+V ,y) 1f (5.23)0

2TcfW-' C (tS 2- (_ ° X-V)- )- 2- (Y,-y)• 2
Xe

where D, = { (cy) : (x_ X-Vt))2 + (y y)2  S Ct-s ) 2 }.

To derive the solution for the nonhomogeneous two-

dimensional wave equation, we began by solving the homogeneous *
three-dimensional wave equation using Kirchoff's formula

(5.5). Next, we used the method of descent to solve the

homogeneous two-dimensional wave equation by reducing 0

Kirchoff's surface integral formula to an ordinary double

integral (5.12). We developed the solution to the homogeneous

two-dimensional wave equation in order to solve the

nonhomogeneous two-dimensional wave equation by applying

Duhamel's principle (5.21). This gave the solution of the

wave equation in (5.2) in the form given above in (5.23). In
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Chapter VI we will examine the solution to (5.23) for long

time.

4
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VI. LONG TIXE SOLUTION

. C.2 V,2

Before looking at the behavior of (5.23) as t -. • (where

the topography f,(x+Vsy,s) has a general form), we shall

"first introduce a specific moving point source for the

topography, so that

, (x,y,S) = (X-Xo) (Y-Y) g (s). (6.la)

Consequently

f,(x+Vs, y,s) = 6 (x+Vs-x°) 0 (Y-Yo) g(s), (E.1b)

where g is a non-negative function satisfying *

g(0) = 0 and g(s) = 1 for s k so. (6.1c)

If we can solve (5.23) by substituting (6.1b) in for

f,(x+Vs,y,s), then we can solve (5.23) for any form of

topography by applying the principle of superposition.

To solve (5.23), we begin by substituting (6.1b) into

(5.23) to obtain
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A, (xy,t) =0

a (XV-x, d dir)g~) ] c~. (6.2)
- & s.

We let X (x+Vs-x.) and Y (y-y.) and substitute into (6.2)

to obtain

A, (x, y,t) =

"-'I f [ (6.3)
1 [ (X) 6 (Y) q( (s) cXcdY ls

27rc, [r. 2 l Jt- 2_ [ _ (X 2 y_ (y . I 2

where

* 4

D,[ (Xy) .X+V(t-s)-(X-Xfl2 + [ y 0-y) 2 I C,2(t-S)2 (6.4)

In order to solve (6.3) we must determine those s for which

(6.4) is satisfied. Letting 7-- (t-s) for (t-s) k 0, (6.4)

simplifies to

(cC2- V2) Ti + 2V(x-x.)I - [(x-xI) 2 + (y_yo) 2 ] 2 0. (6.5)
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Note that X and Y are not included in (6.5) since the

integration in (6.3) with respect to X and Y makes both X and

Y become zero. Solving (6.5) for 7 yields

-V(x-x0 ) ± . (6.6)

The values of T+ and T_ will depend on whether c,2 > V2 or c, <

V'. We shall examine both cases in the following sections.

1. C,2 > V2

When the long-wave phase speed is greater than the

velocity of the submarine, we see from (6.6) that r+ > 0 and

T. < 0. Factoring (6.5) yields

(c>V2) (r-r.) (r-ir.) L 0 (6.7)

where T, and r. are defined in (6.6). Since the left hand side

of (6.7) must be greater than or equal to zero, r must be

greater than or equal to r+ (r a T+). Hence, s must be less 0

than or equal to (t-T+). Therefore, the upper limit of s in

(6.3) becomes (t-T+). Now, integrating (6.3) with respect to

X and Y yields 0

0
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A,(x,y, t) I _ __-_ g(s)ds (6.8) 4
2wc, (C*k) f 1 t-T -) ((te-7) -8)

where T, and T. are defined in (6.6). Using (6.1c), we break

(6.8) into the following parts

A,(x,y,t) = 1 + I52 (6.9a)

where

= g(s) ds (6.9b)
It-T =) - (6.) If 2 t)

and

12 f,. -_ ds (6.9c)
2wc, ( Ct-r,) -5) (( t-T-) -S)

We first look at the behavior of I, as t w ®. We see

from (6.9b) that for long time, I, is O(1/t). Therefore, we

can neglect this portion of A(x,y,t). Now in evaluating 12

for long time, we let T - (t-s) so that 12 simplifies to
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Z=Z c1 i2. dfr (6.10)

0

We complete the square of the denominator of (6.10) to obtain

1• e T""Ca (6 . 11I)
12 = 2 1rc, (C,-VV ) 1 /2J. f - -a (_6.2

Here a - (T++7_)/2, and b 2 - (7,-T.) 2/4. Letting bu - (7-a) and

substituting into (6.11) then yields

1 -s,-a

2 j du (6.12)
2,,c(Cv2),,2 f.--• ý"J1

Integrating I2, we find
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-2 (t-s 0 -a) [(t--a)2 1
2we, 22( ))12 EbJ

_ (6.13)

+ I.Ln (+-a ! , ,) -11

2C,( C,.2_V2),12 i b + 
j J 1

For long time t, 12 is O(in t).

In the case where c,2 > V2, we see that the long time

solution for A,(x,y,t) is O(ln t). Next we examine the cese

for which c,2 < V2 .

2. C,2 < cV

When the long-wave phase speed is less than the

velocity of the submarine, we see from (6.5) that x must be

greater that x, since r is greater than or equal to zero. We

must reexamine (6.6) to see if a positive real value for 7 is

possible. Rearranging (6.6) for c,2 < V2 yields

T v(x-X.) , C'2(X-x), _ (v2(-c) (y-yo) 2  (6.14)
V2 _C'2

54

i $0



j

From (6.14) we see that a real solution for T exists only if

the following inequality holds

C-(X-Xo)2 _ (V2-C2,) (y-y')2 2 0. (6.15)

Hence, a solution exists only within the region defined by

x xo + V - 1I (y- y_) for Y Y0 , (6.16a)

and

2lX 2 Xo + V2 _ 1 (Yo _ Y) for Y< Y,- (6.16b)

Since T+ and T. are both positive, we see from (6.7) that r

must be between T+ and T-, ie., (T-srT÷). Therefore, s must

be less than or equal to (t-T.).

To solve A,(x,y,t) for c,2 < V2 as t - o, we start with

(6.3). Integrating (6.3) with respect to X and Y yields

5
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A,(x,y,t) 0 12 _2,-=d(6.17)
21 () -w c, V -

SC4

where Tr and r. are defined in (6.14). Using (6.1c), we break

(6.17) into the following parts 0

A,(x,y,t) =I3 + I4 , (6.18a)
0

where

- 1 g(s) ds (6.18b)

and

1 r ds (6.18c)

21c, 2 •C"' -V2) 11,.) -)((t, ) •

Looking at the behavior of 13 as t - m, we see from

(6.18b) that 13 is O(1/t). Therefore, we can neglect this

portion of A,(x,yt). The evaluation of 14 is similar to the

analysis as developed for 12:
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1t2

FT (t-a0 a) + soa) 2 -+
2wc• (V2c2 12  b b 2

(6.19)

•- l Ln ( 7 -- a ) +1L12) 2

2ic, (V2-c,2) 112 i ÷ -2

Here a (Tr+Ti)/2 and b9 = (r+-T.) 2/4. For long time, I. is

O(In t).

In the case where V2 > c,2, we see that the long time

solution for A,(x,y,t) is O(In t). Next, we examine the

resonant case where c.2 - V2.

3. C.2 my2,

Previously, we developed the long time solution for the 0

cases when c,2 > V2 and c,2 < V2 with the interesting result that

in both cases the solution had growth of O(ln t). The reason

for this growth is the failure of Huygens' principle in two 0

dimensions. Though ln(t) tends to infinity for long time, it

is a function of extremely slow growth, and for the times we

are interested in, it can be considered as a bounded function. 0

In the resonant case, we are concerned with the behavior

of A(x,y,t) as t - - for the case when the speed of the

submarine is equal to the long-wave phase ipeed (c,2 = V2). 0
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To determine if a solution to (6.3) is possible for c.2

V2, we must reexamine (6.5). From (6.5) we see that a

solution exists only if s satisfies the following inequality

t - 2V (y-y_ ) for V(x-x,) > 0. (6.20)
2V(x:3F,)

Integrating (6.3) with respect to X and Y yields
0

A, (x, y, t) =

1 A g(s) ds (6.21) 0
2Wc3JV 2 V(x,) (t_s) - [(x-x.) 2 + (y-y,)2 ]

* --
Here A- [t - ((x-x,) 2+(y-y 0) 2)/(2V(x-x0 ))]. Using (6.1c), we

break (6.21) into the following parts

A,(x,y, t) = 15 + 16 , (6.22a)

where S
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5 0
1 (a) do (6.22b)

21r,

2•C 2V(x-j) (t-S) - [(-x 0 ) 2 + (y-y') ]

and
0

'16

ds (6.22c)
2c,(t-s) - [(x-x) 2 + (y-y 0)2 ]

Here A [t - ((x-x 0 ) 2+(y-yo) 2)/(2V(x-xo) ]. •

Looking at the behavior of I, as t - •, we see from

(6.22b) that for long time, 15 is O(1/t"2). Therefore we can

neglect this portion of A(x,y,t). Integrating 16 directly, we 0 0

obtain

6=

i1 2V(x-x 0) (t-s 9 ) - [(x-x0 ) 2 + (y-Y0 ) 2 1 (6.23)
27rc, V(x-x0 )

From (6.23) we see that 16 is O(t"2) as t -P c. Therefore, we

see that the solution for A,(x,y,t) at resonance grows like S

0(t"2) for long time.
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To derive the long time solution (t - c) for A,(x,y,t), we

began by introducing a moving point source for the topography,

f,(x+Vs,y,s)° with the knowledge that if a solution was

attainable by using (6.1c), we could solve (5.23) for any form

of the topography by the principle of superposition. We first

looked at the case where c,2 > V2 and determined that the long 0

time solution for A(x,y,t) was O(In t). Next, we looked at

the case where c? < V2 and saw that a solution existed only

within a certain region defined by (6.16ab). The long time

solution for A(xy,t) in this case was also 0(ln t). We

attribute the O(ln t) growth to the failure of Huygens'

principle in two dimensions. For the resonant case where c,2

= V2, we found the solution for A(x,y,t) to be 0(t"2 ) for long

time. From this analysis, we see in this problem that if a

submarine patrols at or near a long-wave phase speed a * *
significant resonant could occur for long times.
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V11. CONCLUI=BZS

This thesis has presented a theoretical study of the flow

of a stratified fluid over variable topography as a model of

the resonant interaction of a submarine's wake with a

stratified fluid. We considered the case in which a submarine

patrols at a speed near the long-wave phase speed of an

internal wave. Internal waves are generated by the flow

around the submarine's wake.

The long time solution obtained in our model for the cases

when c,2 > V2 and c,2 < V2 had growth of O(ln t) . (see (6.13) and

(6.19)). We attribute the O(ln t) growth to the failure of

Huygens' principle in two dimensions. For the resonant case

where c,2 = V2, we found the solution to be 0(t"2 ) for long * *
time. (see (6.23)). It is important to note that for the

time scales we are concerned with, both long time solutions

for the nonresonant cases are bounded and have extremely slow 0

growth. Therefore it is the resonant case which is important.

The growth in time occurring in the resonant case

indicates that perhaps nonlinear effects, balanced by 0

dispersion, could cause significant upstream disturbances.

From these disturbances, the possibility exists of detecting

a submarine by the internal waves its wake generates. 0
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Further studies in this problem should begin by rescaling

the asymptotic expansions to balance the leading order

quadratic nonlinear terms with the topographic forcing. This

will achieve a balance between nonlinearity and dispersion.

We expect the solution to this problem to show that

significant upstream disturbances could occur when the

submarine patrols at a speed at or near a long-wave phase

speed.

If internal waves were generated only by underwater moving

objects then the problem of detecting the submarine by the

internal waves its wake generates would be made simpler, but

this is not the case. Internal waves are a natural occurring 0

phenomenon in the oceans. This complicates the problem

because in order to detect the submarine by the internal waves

that it generates, the ambient internal wave patterns at the •

location of the submarine must be known. The problem of

discerning ambient internal waves from internal waves

generated by the submarine's wake is similar to the problem of

detecting a submarine passively (such as with a tail). The

sonar operator filters out the ambient noises or background

noises of the ocean from the incoming signal to detect the

acoustic signature of the submarine. From further

understanding of the ocean's naturally occurring internal

waves, we may one day be able to discern internal waves 0

generated by a submarine from those of the ocean.
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