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SUMMARY

The work summarized in this report covers the fifth quarter of a program with a
goal that is twofold: first, to study the properties of native point defect in infrared
focal-plan array (IRFPA) active and substrate materials, and second, to study the
properties of native point defects in two classes of photonic materials, the wide-gap
II-VI compounds (ZnSe as the prototype for which impurity properties will also be
calculated) and the nonlinear optical materials (LiNbO3 as the prototype). Our
accomplishments in the fifth quarter include

* Refinement of our calculations of the native defect formation energies
in HgCdTe

* Writing a comprehensive paper on the results of our work on the defect
coucentration in HgCdTe and their impact on device performance

9 Beginning the calculations of the native defect formation energies in
CdTe

e Refinement of our calculations of the native defect formation energies
in ZnSe

e Preliminary thermodynamical analysis of the defect concentrations in
ZnSe

e Calculation of two defect formation energies in LiNbO3: the lithium
vacancy and the niobium antisite

e Completion of a paper on the electron mobility in Hgo. 22Cdo.7sTe from
a solution of the full Boltzmann transport equation with Fermi-Dirac
statistics and an accurate band structure

@ Presentation of four papers at technical meetings on the results of our
work on dislocations and the band structure and transport properties
of HgCdTe
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1. DEFECTS IN MCT, HgTe, CdTe, and ZnTe

During this quarter we have worked on refining our calculations of the defect
formation energies in HgTe that are used to predict the defect concentrations in
Hgo.sCdo.2Te. This has involved completion of self-consistent calculations for all the
defects and calculations of the gradient correction energies within the full-potential
codes. In addition some small numerical problems were resolved. Once we have
finished these calculations, we will complete our long paper on defects in Hgo.sCdo.2Te.

We have begun to consider the mercury vacancy-tellurium antisite pair. We
expect that this defect complex may be important because both its constituents are
present in relatively high densities, and because they should be attracted to one
another by both Coulomb and strain field. We have set up to do the calculations,
and are just waiting for the computational resources to become available to complete
the calculations.

The calculations of the defect formation energies in CdTe have begun. Once
again, we are waiting for computational resources to be freed up to continue these
calculations.

2. DISLOCATIONS IN MCT

Our work on dislocations in HgCdTe and their impact on device performance was
presented at the 1993 Materials IRIS Meeting in August 1993 and at the 1993 U.S.
Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Other
IR Materials. Copies of these papers have been forwarded to ARPA under separate
cover.

3. TRANSPORT PROPERTIES OF HgCdTe

We have completed a paper on the reanalysis of the electron mobility in Hgo.7sCdo.22Te.
The electron mobility was calculated by solving the Boltzmann transport equation
with Fermi-Dirac statistics and a full band structure. The calculated values are in ex-
cellent agreement with experiments, and effects of various traditional approximations
are discussed. The Appendix is a preprint of this paper.

4. WIDE-GAP II-VI COMPOUNDS (ZnSe AS PROTOTYPE)

We have continued our calculation of the point defect energies in ZnSe. In our
third quarterly report, we discussed preliminary results. During this quarter, we have
refined and extended these calculations. First, we have found that a larger basis set
size was necessary to achieve the accuracy required for these calculations (less than
0.1 eV). Thus, the calculations for the eight defects (the zinc and selenium vacancy,
the zinc and selenium antisites, and the zinc and selenium atoms at two different
tetrahedral interstitial sites) have been extended to larger basis set sizes this quarter.
In addition, we have begun the calculation of the gradient corrections for all the
defects. Previously, we had estimated these energies based on the atomic spheres
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approximation version of the linearized muffin-tin orbital (LMTO) method, but have
extended these calculations using the more accurate full potential, again because of
the accuracy in the energies that is required to predict the defect densities reliably.

5. NONLINEAR OPTICAL MATERIALS (LiNbO 3 AS THE PROTOTYPE)

As discussed in the previous report, we are studying the defect structure of LiNbO 3
using a reliable first-principles electronic structure method, the LMTO. We are using
the same techniques for calculating the defect energies as we have applied to the
defects in HgCdTe and ZnSe, and as reported in some detail in earlier reports.

Several models have been proposed of the defect structure in LiNbO3 relating to
the excess niobium in the lattice. To date, these models are based exclusively on
experimental information. The first model that we are addressing involves a niobium
antisite (NbLi) that has a 4+ valancy, that is charge compensated by four lithium
vacancies (VLI) that each have a 1- valency. The second model that we are examin-
ing involves an arrangement of cations along the polar axis out of normal sequence
such that two niobium antisites are separated by a niobium vacancy, so as to cancel
the dipole. In addition to these, other models have been proposed, each of which
explains a specific experiment, but an overall defect picture is still lacking. Because
of the sensitive dependence of various defects on growth conditions, various charac-
terization techniques and possibly small activation ene:gy difference more than one
defect structure may have been seen.

In this quarter, we calculated the activation energies of the two most likely defects
the lithium vacancy VLi and niobium antisite, NbLi. The problem is approached using
a supercell model with a full-potential LMTO electronic structure method. There is
a computational limit to the number of defects that can be included. We start with
a 30-atom unit cell with one defect.

In the case of VLi vacancy, after removing a lithium atom, the structure is relaxed
to minimize its total energy. We find that the three oxygen atoms in the plane of
removed lithium and the niobium atoms on the c-axis move toward the vacancy. The
relaxation is relatively small with a displacement of about 0.03 A and an energy gain of
about 125 meV. We find that the vacancy formation energy is 5.10 eV (endothermic).

Historically, it is believed that NbLi is favored. We have carried out the first
quantitatively accurate calculation of the formation energy. Unlike VLi, NbLi relaxes
considerably by 0.2 A. Although the oxygen atoms on the lithium plane move very
little, the other set of oxygen atoms that form an octahedron about the NbLi move as
much as 0.3 A. In addition, all niobium atoms and the nearest lithium atoms move
with a maximum displacement of about 0.03 A. Mostly, the relaxation is radially
away from the defect. Because of large lattice relaxation about the niobium antisite,
there is a large relaxation energy of 1.2 eV. It is interesting that the reaction to form
a niobium antisite by exchanging a niobium in the free atom state with a lithium in
the free atom state via the reaction

Nbfe, tom + LiLi -4 NbLi + Lifree atom
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is exothermic with an energy of -11.6 eV. This implies that niobium antisite will
probably be an important defect in LiNbO 3 . Of course, one needs to include the
long-range Coulomb energies associated the NbLb, and the energies associated with the
exchange of a niobium with a lithium in the vapor phase to complete the calculation.

From these two defect calculations, we can make some preliminary comments on
the model that proposed that one NbLi is associated with four VLi. The direct gap
LiNbO 3 is 3.5 eV. If we assume that the acceptor-like state created by the lithium
vacancy is near the top of the valance band and the donor-like NbLi state is near the
bottom of the conduction band, there will be a gain of 3.5 eV due to charge transfer.
Noting that VLU and NbL1 formation energies are 5.1 eV and -11.6 eV, respectively, we
get a formation energy of -5.2 eV for Nb antisite with four Li vacancies. Refinements
in the calculation will be necessary to complete this analysis - for example, inclusion
of the gradient corrections.

These calculations address the defect formation energies only, and were done
within the local density approximation. To make quantitative predictions of the
defect concentrations, one must include a number of additional factors. First, we
must add to the local density energies a gradient correction, which generally brings
our results into better agreement with experiments. We have discussed this gradient
correction at some length in our previous quarterly reports. In addition, we must
make some quantitative predictions of the localized states associated with the various
defects. We must also add a contribution to the defect formation free energy from the
change in the vibrational spectrum of the solid upon formation of a defect. We have
calculated this free energy contribution in HgTe and ZnSe using a valence force field
model for the zincblende lattice. We must extend these calculations to the LiNbO3
lattice. Finally, we must complete the thermodynamic defect density calculation in-
cluding the free energy of the species in the vapor phase. We have completed such
calculations for HgCdTe and found remarkable agreement with experiment, given
that (with the exception of the temperature dependence of the band-gap energy) the
calculations were ab initio. We are extending our codes to examine the LiNbO3.

6. WORK PLANNED

We will be finishing our work on the gradient corrections and writing a paper on
the results; this paper will be essential to the support of our work on the defects in
HgCdTe, ZnSe, and LiNbO3 . This paper was not completed in this quarter because
one of our group members who was doing some of the calculations was on sabbatical
leave in Japan for the summer. We expect to complete our paper on defects in
HgCdTe for submission to Physical Review B. This paper was not completed this
quarter, in large part because of the lack of adequate computational resources. We
will continue our study of defects in CdTe this next quarter and begin the calculation
of the defect energy of the mercury vacancy-tellurium antisite pair. A prliminary
analysis of the defect concentrations as a function of temperature and pressure in
ZnSe will be completed. We will complete the gradient correction energies of LiNbO3
and make preliminary predictions of the dorminant defects in the system.
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ELECTRON MOBILITY IN Hg0 .78Cdo.22Te ALLOY

Srinivasan Krishnamunhy and Arden Sher

SRI International, Menlo Park, CA 94025

ABSTRACT

The electron mobility in Hg0.78CdO.22 Te is calculated by solving

the Boltzmann transport equation with Fermi-Dirac statistics and a full band

structure. The calculated values are in excellent agreement with experiments, and

effects of various traditional approximations are discussed.

PACS numbers: 72.20.Fr, 72. 10.-d, 72.28.+d, 72.20.-i
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The experimental results on electron transport properties of semiconductors are often

compared to theory that rests on v'-. -e approximations, namely, parabolic band structures for

those states occupied in th,; measurement, Maxwell-Boltzmann (MB) statistics, and the collision

time approximation to full Boltzmann gain-loss equation solutions. These approximations are

made to all scattering mechanisms whether they are elastic or inelastic. It is well known that,

even in large-gap materials, the constant effective mass approximation is valid only very near

(within - Eg/10) to the band edge. 1.2 This approximation has been recognized to be particularly

poor for narrow-gap materials, and nonparabolic corrections calculated in the k-p formalism are

often used.3A4-5 This correction is substantial but still differs considerably from our more

accurately calculated band structures. In addition, our fit of the conduction band to an analytical

function makes many results transparent and simplifies the calculations. As the Fermi energy

can easily move into the conduction band of lightly doped narrow-gap materials, the form of the

Boltzmann equation with Fermi-Dirac (FD)-instead of the usual MB-statistics must be used to

obtain accurate transport coefficients.

In the literature, an iterative solution to the Boltzmann transport equation (BTE) with FD

statistics has been derived.6 Although this method can yield nearly exact solutions by including

more terms in the expansion and with more iterations, it can be time-consuming since the

procedure has to be repeated for every crystal wave vector k. In this paper, we derive an

alternate method that fu st simplifies BTE with FD statistics to the point where the solution for

full band structures can be obtained by successive substitution. This method is applied to the

study of electron mobility as a function of temperature T and impurity concentration nD in a

Hg0.78CdO.22Te alloy. Results are compared with experiments.

We start from the BTE of a homogeneous medium obeying FD statistics. We have

df(k) = , [w(k,k') f(k')(l - f(k))- w(k',k) f(ki l - f(k'))] (1)
dt

k'

A-3



The first term of the right side of Eq. (1) is the gain term, and the second one is the loss term. In

equilibrium, the left side is identically zero and because, in general for a system of interest

interacting with a heat bath, 7 w(k,k') e-PEk = w(k',k) e'PEk, f becomes the equilibrium FD

distribution function fo given by

fo(Ek) = (el(E,) i)-' (2)

where P is (kBT)-l. In the presence of an electric field,
df~k) afik)

= - + Vf k) • IE (3)dt at h

In steady state, the f'(k)/Dt in Eq. (3) vanishes. The solution f(k) can always be written as a sum

of fo(k) and some deviation A(k). That is,

f(k) = f0 (k) + A(k) (4)

Note that Xk A(k) is zero for a sample with ohmic contacts because the number of electrons

should remain constant. Combining Eq. (1) through Eq. (4), we get

k"

(5)
+ (w(k',k)- w(k,k' ))A(k)A(k')]

where the renormalized W and the usual transition probability per unit time w are related by

W(k,k')= w(k,k') (1-- fo(k)) (6)
(1- fo(k'))

Note that for elastic scattering W and w are equal. However, for inelastic cases the

relative size of W to w depends on whether energies at k and k' are larger or smaller than EF If

both initial and final energies are larger (or smaller) than EF, then only small corrections to w

occur. However, if the initial state is above EF and the final state is below EF, then for that

scattering event W is suppressed. This tends, for example, to decrease the contribution of

inelastic scattering events involving phonon emission. Also notice that if the perturbation is

A-4



small, then the A2 term can be neglected and Eq. (5) resembles the traditional MB ste ,'y-state

BTE where W plays the role of w.

We further expand A(k) in power series of an indexing parameter X, which we will

eventually set to unity. Thus,

A(k)= fn(k~kn (7)

n=1

Substituting Eq. (7) in Eq. (5) and noting that f(k) has one additional term, we get,

SVfn(k). - =+ [W(kkif.(k') -(k'k )fn(k)]
n--O k'.n=l

(8)
+ •,•[w(k',k )- w(k,k'}] fn(k~fn(k')en'n

k';n.n'=l

By equating the coefficients of the same power of X on both sides, we get a series of equations:

VfO(k)" e E = Y [W(k,k') f1(k') - W(k',k) f1(k)] (9a)
h h k'

VfO(k) • . E = E [W(k,k') f2(k') - W(k',k ) f2(k)
k'

(9b)
+ (w(k',k)- w(k,k')) f(k) f,(k')]

and so on

Knowing f0 (from Eq. (2)), Eq. (9a) is solved for fI and the solution is used (Eq. (9b)) for f2 and

so on. This procedure can be continued to the required precision. We emphasize that for low

electric fields, only the lowest-order equation (9a) needs to be solved to obtain accurate answers.

When hot electron effects are addressed, iterative solutions should be used.

This procedure reduces the original integro-differential equation (5) to that of solving the

following integral equation.
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C(k) = E [w(k,k') g (k')- W(k',k)g (k)] (10)
k'

where C(k) is a known function and g(k) can be any of the set { fn). One of the fastest ways to

solve for g(k) is by expanding it in terms of an orthonormal basis set ({)(k)). That is, take

g(k) = Y, an'3'(k) (11)
n

Substituting Eq. (11) in Eq. (10), multiplying both sides by ()m(k) and then summing over k

yields a matrix equation C = AW, where A is a row matrix of the required expansion

coefficients. We see that A can be easily obtained by multiplying the square matrix W- 1 by the

row matrix C. The size of the matrix W is determined by the number of functions in the basis

set. If the basis set is complete, the solution is exact. However, if the perturbation is small, one

can truncate the basis set and obtain accurate solutions with only a few functions. For applied

electric fields up to 7 kV/cm, eight basis functions were shown to be sufficient. 8.9 Hence, in

principle, following this procedure all fn and the final distribution function can be obtained.

The formalism developed above to find solutions to BTE with FD statistics can be used to

calculate the mobility p from the following expression,

Yn.k anv(k)qn(k) (12)
p= ,kfo-k)

where v(k) is the group velocity of an electron in the state k.

We apply this method to a study of the electron mobility in a Hg0.78Cd0.22Te alloy with

0.1 eV (at 77 K) band gap. We use a high-quality band structure in the calculation.

Quantitatively accurate band structures of group IV elements, 10 III-V compounds, 11 and I-VI

compounds11,1 2 can be obtained using a minimum set of sp3 orbitals in semiempirical

calculations. First, empirical pseudopotential form factors are used to calculate a tight-binding

Hamiltonian, H in the minimum set, but with interactions between atoms retained to all ranges.

H is then transformed into a zeroth order Ho in an orthonormal basis. Then a perturbative
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Hamiltonian having a first-neighbor tight-binding form is added to HO to fine tune the band

structure. Because long-range interactions are included in this Hamiltonian, the measured band

curvatures as well as symmetry point energies are correctly reproduced. This procedure is

followed for both HgTe and CdTe, and then the alloy band structures are calculated in the

coherent potential approximation.

We find that the lower part of the calculated conduction band needed for the transport

calculations is replicated very well by a hyperbola,

Ek = (yk2 + C2)112- C (13)

where y and c are adjusted to fit the calculated band structure in the energy range of interest.

When y and c are treated as constants related to the band gap Eg and the effective mass, this

expression reduces to the same nonparabolic correction form obtained in the kep method.4

However, the numerical values of y and c are not the same as ours. For example, in the chosen

case, y and c are 48.3 and 0.058, respectively, whereas the corresponding kep values are 36.0 and

0.05. The differences are found to be large enough to cause a noticeable change in the band

structure and transport coefficients. The band structure calculated by diagonalizing the

Hamiltonian is shown in Fig. I (heavy line). We can see that the fitted conduction band structure

(thin line) agrees quite well up to an energy level of 0.5 eV from the conduction band edge. In

the studies presented here, Eq. (13) can be used as the energy dispersion relation without loss of

accuracy, in the transport expressions that follow. Also shown in Fig. I is the poor reproduction

of the conduction band obtained with parabolic approximation (heavy dashed line) and the usual

nonparabolic correction (thin dashed line).

Two qualitative features of the band structure in Fig. I that impact transport properties

should be noted. First, for energies E-Ec greater than 50 meV where the shape of the conduction

band is nearly linear in k, the group velocity is a constant independent of the k. Then, the

density of states (DOS) increases proportional to E rather than E1/2 as in the case of parabolic
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bands. Clearly, these features modify the transport properties of electrons occupying these states.

The first feature, constant group velocity, eliminates increases in drift velocity arising from

increases in electron temperatures. The second feature increases the scattering rates because the

density of final states, into which the scattering can occur, is higher than that in a parabolic band.

This effect decreases the drift velocity and mobility.

The calculation of the Fermi level EF as a function temperature T and doping

concentration nD is required for all transport calculations. A knowledge of temperature-

dependent gap Eg(T) is essential to obtain EFP Ideally, temperature dependence should be

included by adding the electron phonon interaction to the Hamiltonian from which the variation

of Eg with T is obtained. We have developed a general method to incorporate phonon and alloy

effects into the same CPA formalism, 13 but such an approach is not attempted here. Instead, we

use an empirical expression first deduced by Hansen, Schmidt and Casstleman 14 given by,

E9 = 0.0954 + 0.327T/1000 (14)

After studying the effects of various approximations and obtaining trends, the calculations will

be repeated with a proper temperature-dependent formalism.

Then CF is calculated from the condition 15 that at a given T the number of electrons in the

conduction band is the sum of electrons excited from the valence band and donor levels. The

donor states are assumed to be located at the bottom of the conduction band. The valence and

conduction band DOS are calculated from our band structures. The valence band DOS yields a

hole effective mass of 0.65. The EF (measured from the valence band edge) as a function of T

and nD, calculated from the hyperbolic band structures, is given in Fig. 2. The dashed line is the

empirical band gap given by Eq. (2).

In the calculation of mobility we include the scattering due to ionized impurities and

polar optic phonons whose scattering potentials are, respectively,
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Vim3p = -

with

where £0, E.. are zero and infinite frequency dielectric constants, hwl is the longitudinal optical

phonon energy, q is the phonon wave vector, and aq is the phonon annihilation operator. ne is

the number of electrons in the conduction band, which is, in general, larger than the number of

ionized impurities. Note that the coupling constants are determined from fundamental properties

of the material and we have no adjustable parameters to fit the transport data. Hermite

polynomials have proved to be a good basis set for solving BTE with FD statistics. However, we

find that only the first two basis functions are needed to obtain converged results. Hence, our

basis set is ePEk and koE epEk. The resulting mobility is plotted in Fig. 3 (heavy solid line).

Calculated mobilities for various impurity concentrations and temperature are shown in

Fig. 3. A peak in the mobility exists for a low concentration of 5 x 1014 cm- 3 , in agreement with

experiment. 16 At low carrier concentration, the Fermi energy lies well into the gap, and

consequently only a few impurities are ionized. As the temperature is increased the number of

electrons in the -onduction band increases, and screening becomes more effective. The increase

in the number of ioaized impurities is overwhelmed by the increase in screening, and the

impurity-limited mobility increases with T. However, once the phonon scattering becomes

stronger, the mobility decreases. This competition between impurity and phonon scattering gives

rise to a peak in the mobility around 30 K. However, at still lower doping concentration, the

impurity scattering is not effective at all, and the mobility then limited only by phonons will

continue to increase as T is lowered. At higher doping densities the impurity-limited mobility
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also decreases with T because of a large increase in ionized impurities that now dominates the

improved screening until very low temperatures are reached, and the peak vanishes. At

intermediate doping densities a remnant of the peak is seen. At v'ery high densities and very low

temperatures, the screening once again wins, and along with the effects from the Fermi statistics

the mobility increases slightly with nD. This effect may be hard to verify experimentally as the

compensation will tend to mask it.

In Fig. 4, we compare the mobilities calculated in various approximations to experiments.

The carrier concentration in the calculations was set equal to that in experiments. Two

experimental data sets taken on liquid phase epitaxy material 16 .17 are shown in Fig. 4 (dashed

lines). The latest set exhibits higher mobilities for the same Hg content and carrier concentration

and is presumably a better material. Also shown are the mobilities obtained from the hyperbolic

band structure (heavy solid line) and from the k-p band structure (thin solid line). For

comparison, mobility obtained in the collision time approximation (dotted line) is also shown.

It is instructional to compare various curves in Fig. 4. All curves are calculated with the

same scattering parameters. First our calculated mobilities are higher than those from the kep

band structure. Smaller y used in the k-p scheme means that DOS is larger, resulting in lower

mobility. However, both curves predict a hump in the temperature variation of mobility near

40 K where phonon scattering takes over from impurity scattering, which dominates at lower

temperatures. The full solution to BTE in conjunction with the change in the Debye screening

length and phonon scattering give rise • - this hump. Second, the collision time approximation

does not produce this hump. We note that the mobility calculated with a collision time

approximation grossly overestimates the scattering rate and wipes out the peak in mobility. A

smaller peak near 200 K is due to a change in the Fermi energy.

Our predictions fall within ± 25% of the latest experimental values over a temperature

range of 10 to 300 K. Calculated values are smaller at low T and larger at high T thn in

experiment. As the curves in Fig. 3 clearly dem.: :,, that the electron mobility is a sensitive
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function in the shape of the band structure, we must await our better temperature-dependent band

structures before improvements are forthcoming. We have already shown from our preliminary

studies of absorption coefficient that empirical gaps are as much as 20% too large.1I If detailed

calculations verify these results, then impurity-dominated mobilities will increase at low T, and

the neglected scattering mechanisms such as alloy disorder, transverse optical phonons, and

acoustic phonons will decrease the mobility at high T to bring the predictions in better agreement

with experiment.

In conclusion, we described another method to solve the Boltzmann transport equation

with a full band structure and Fermi-Dirac statistics. This method is particularly useful when

treating the transport properties of narrow-gap materials where the band structures are

nonparabolic and Fermi statistics are essential. The method is applied to the study of electron

mobility in a 100-meV band gap (at 77 K) Hg0.78Cd0.22Te alloy. The calculated mobility

compares well with the experimental mobility over a wide range of temperatures. Calculated

values are 20% smaller at low T and 25% larger at high T than experiment. It appears that the

calculated values will be smaller than experimental values at temperatures lower than 10 K.

Most important, the observed hump in the mobility (with T) at low carrier concentration and the

shape change at higher carrier concentration can be explained without resorting to additional

scattering mechanisms or parameters. Further improvements await a proper calculation of the

band structure and inclusion of alloy, transverse, and acoustic phonon scattering.
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