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Sampling requirements and aliasing for higher-order correlations
Lisa A. Pflug
Naval Research Laboratory. Stennis Space Center, Mississippi 39529

George E. loup and Juliette W. loup
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

(Received 12 September 1992; revised 2 July 1993; accepted 8 July 1993)

While sampling at a Nyquist frequency equal to the highest frequency present in the data
(critical sampling) is sufficient to prevent aliasing in both the data and the autocorrelation of a
bandlimited energy signal, the sampling requirements for the avoidance of aliasing in
higher-order correlations and spectra are not the same. Also, there is a difference in aliasing
effects depending on whether one samples the original continuous-time signal and calculates the
autocorrelation or one samples the continuous-time autocorrelation. This distinction between
sampling procedures must be made for correlations of higher order, as well, for which not only

* the type of aliasing but also the sampling requirements to prevent aliasing differ. In particular,
if one samples the continuous-time autobicorrelation or autotricorrelation, critical sampling is
sufficient to prevent aliasing. In practice, however, it is not usually the continuous-time
autobicorrelation or autotricorrelation that is sampled. Generally, it is the original
continuous-time signal that is sampled and used to calculate the discrete-time autobicorrelation
or autotricorrelation. In this case, to prevent aliasing, the sampling interval for the
autobicorrelation must be no greater than two-thirds the interval associated with critical
sampling, and no greater than one-half for the autotricorrelation. Numerical calculations of

__ w autocorrelation, autobicorrelation, and autotricorrelation zero-lag values corresponding to
E ( spectral area and volume as well as bispectral contour plots for two model bandlimited energy

signals are presented as demonstrations of these conclusions. Sampling requirements for
-I higher-order correlations of rectified signals are also discussed. If the signal is to be rectified for

S • use in a correlation detector or time delay estimator, then the sampling rate must increase to
co accommodate the higher frequencies that usually result from the process of rectification.

im s Spectral masking filters, which remove aliasing in higher-order correlations, are defined and a
=-a-== N bispectral filter is applied to some representative energy signals. Lag domain convolution filters
S f for the removal of aliasing in the bicorrelation and tricorrelation are also given. These filters

assume critical sampling or finer for the original signal to remove aliasing effects totally

.K (§ (~, PACS numbers: 43.60.Gk

INTRODUCTION higher-order correlations using a digitized signal requires
finer sampling relative to the highest frequency present

exHigher-order correlations and spectra may be used to than the sampling requirements of the autocorrelation to•w1  extract information about signals, which the autocorrela- avoid aliasing, in the absence of a masking filter (Pflug

tion or energy/power spectrum does not contain, such as

phase, deviations from Gaussianity, and the presence of et al, 1992a).

nonlinearities in a signal. In addition, the special properties In Secs. 1-111, definitions and aescriptions of aliasing

associated with higher-order correlations and spectra in- in the autocorrelation, autobicorrelation, and autotricorre-
Slation are presented. A discussion of the differences in sam-

detection (Nagata, 1978; Hinich, 1982; Dwyer, 1984, 1985; pling requirements for (a) discrete-time correlations from
Brockett et al., 1987; Hinich et al., 1989; G. Joup et al., sampled data versus (b) those obtained by sampling

p.m 1989a,b; Sullivan and Hinich, 1990; Hinich and Wilson, continuous-time correlations is given in Sec. IV. In Sec. V,

1990; Pike et al., 1991; Pflug et al., 1992b), time delay examples of critically sampled energy signals with aliasing
estimation (Nikias and Pan, 1988; Pflug et al., 1990, present in the autobicorrelation are shown and tables of
1993), and phase retrieval (Bartelt et al., 1984; Matsuoka spectral area and volume, as defined by correlation central
and Ulrych, 1984; Nikias and Raghuveer, 1987), which in ordinate values, are given to demonstrate the sampling re-

-Oturn may be used for target discrimination, localization, quirements for second-, third-, and fourth-order correla-
; , ,,lassification, etc. For most practical applications, the sig- tions. Higher-order masking filters are defined in Sec. VI
"="al to be studied is first properly digitized, i.e., the signal is and a bispectral masking filter is applied to remove aliasing

,.generally bandlimited according to the sampling rate and in the autobicorrelation of the signals introduced in the
then sampled. For energy signals, direct calculation of previous section, which for this application are critically

2159 J. Acoust. Soc. Am. 94 (4), October 1993 2159



sampled. Finally, in Sec. VII, the effects of rectification on tion is not an accurate representation of the true
signal sampling requirements are discussed. continuous-time transform, that is, aliasing has occurred.

In other words, if the function is sampled with sampling
I. ALIASING IN THE AUTOCORRELATION interval At > Atc, where Atc is the sampling interval nec-

essary for critically sampling a signal, then the transform
Let x(h ) represent a real continuous-time function replications overlap in the principal domain and the trans-

with continuous-frquency Fourier transform (Bracewell, form at each point of overlap will be the sum of the una-
1986) liased and overlapping transforms.

f xTo avoid confusion, we must make a clear distinction
X(f) = J x(t)exp( -2rft)dt. between the Nyquist sampling frequency, fN, and the

The r e thighest or top frequency present in a bandlimited signal,
The inverse transform is then denoted f,. Whereas fN is purely a characteristic of the

X f-" Xfepsampling interval, f, is purely a function of the individual
x(t) = J X(f)exp(i2rft)df. signal. For an essentially naturally bandlimited signal,

these values are completely independent of each other.Existence of the Fourier transform is discussed by Papo ulis However, for a noise signal with theoretically infinite band- .

(1962) and Bracewell (1986). If x(t) is sampled in time width, fo is dep nden to theointial sm figrte an-

with sampling interval At [resulting in the discrete-time though the intep la modife with a
Fourer ransorm(DTF)Iandthena tme wndo is though the signal may be interpolated (or modified with a

Fourier transform (DTFT)], and then a time window is masking filter as we discuss later) to avoid aliasing when
using the digitized signal in higher-order correlation cal-

points, the result is the discrete-time Fourier series culations. The calculation of the autocorrelation of a sam-
(DTFS) pair given by Marple (1987) pled signal requires only the bandwidth of the original sig-

N-I nal to avoid aliasing. Therefore, if a discrete energy signal
X(k Af) =At I x(nAt)exp[ -121r(n At)(k Af)/N] x(t) has autocorrelation,

n=O
N-1

(k=-N12,..... -N12- 1), al(r)= I x(t)x(t+ r)At,

with inverse 1,0

N/2-1 and energy spectrum defined by

x(n At)=Af I X(k Af)exp[t21r(nAt)(kAf)/N] N-1
k= - N/2 ESx(f)=X(f)X*(f)= I a1 (t)exp(--t2irft)At,

(n, t=O

then x(t) must be sampled with sampling interval
and Af=I/(N At). Although Marple (1987) distin- At<Atc= l/(2ft) to avoid aliasing in the autocorrelation
guishes the DTFS from the DFT, for the remainder of this (Bracewell, 1986).
paper these forms will be referred to as the DFT pair, and
we use t in place of n At and fin place of k Af in discrete
equations. In practice, a frequency window should be ap- II. THE BICORRELATION
plied before the original time domain signal is sampled. If A. Aliasing in the bicorrelatlon
the signal is bandlimited in frequency and the continuous-
time function is oversampled, i.e., fN= 1/(2At) is chosen The autobicorrelation and corresponding bispectrum
such that fN > f, where fN represents the Nyquist or of random signals are defined in Brillinger and Rosenblatt
foldover frequency, and f, is the top or highest frequency (1967a) and Hasselmann et a. (1963). The autobicorre-
present in the signal, then the centers of the replications of lation of an energy signal is defined as a natural extension
the continuous transform are spaced greater than a dis- of the autocorrelation of an energy signal (Bracewell,
tance of 2f, apart, and do not overlap. In this case, the 1986; G. loup et al, 1989a; Pflug et al., 1992a,b), and for
principal replication may be isolated using a rectangular continuous-time x(t) is given by
frequency window defined by Bracewell (1986),

1, IfI <fA a 2 ('rlr 2 ) J x(t)x(t+,rj)x(t+r2 )dt,

H(f)= 0  If I>f" and for discrete-time x(t) by

for which A-f, define the minimum passband filter limits. N-i

However, the limits of the filter can be any frequency up to a 2 (r 1 ,r 2) = Y x(t)x(t+r0)x(t+r 2 )At.
4- (2fN--ft). If the continuous-time function is bandlim- t=0

ited at f, with the frequency content at :L f, finite, and the Its two-dimensional continuous-time Fourier transform,
function is sampled at fN=f t , then the centers of the the bispectrum, is defined by (Pflug et al., 1992a)
replications in the frequency domain are spaced exactly 2f, (. r
apart (critical sampling) and only overlap at the endpoints B( fl, f 2) = J .J a 2('r1 ,'r2)

of each replication. No aliasing occurs. However, if the -o -c

function is not sufficiently sampled, the principal replica- X exp [- -i2ir(T- fl + _T2 f2) ]d't di 2 ,

2160 J. Acoust. Soc. Am., Vol. 94, No. 4, Octooer 1993 Pflug et at.: Sampling requirements and aliasing 2160



and in discrete form,2f

N-1 V- i

B(fl,f 2)= X X a2 (_r1,r 2 )exp[-i2r(rrlf 1r1=0 r2=0

0

+Tr2 fz2)]AT I &r2.

The bispectrum of the discrete-time autobicorrelation is
replicated with period 2fN in the fl-f2 plane; however, the

principal domain or principal replication may be defined -2f -2f, 0 2f' 41ý-4fN -f 2" f

by restricting f, and f2 sucd that-fN<fl<fN and
--fN<f2<fN.

It has been shown that the bispectrum of a real energy FIG. 1. Domain of the bispectral factors which overlap to form the TUD

transient may be expressed as a product of one-dimensional and TAD of the principal replication of the bispectrum when a signal is

Fourier transforms (Pflug et al., 1992a), that is, sampled such that fN=f,.

B( fl, f 2)=X( fl)X( f 2 )X*( f,-+f 2 ) 1 is the total aliased domain (TAD). This aliasing in the

or bispectrum is a result of neighboring diagonal factors
X( -f -f2 ± 2fN) overlapping the principal replication,

B( fl, f2) =X(f1 )X(f 2)X(f 3), similar to aliasing in the ordinary spectrum.

where f 3 = - f - f2. The three-index notation was origi. Figure 1 shows aliasing in the bispectrum as a result of

nally introduced by Brillinger and Rosenblatt (1967b) and critically sampling the original x(t). While the type of

discussed in Rosenblatt (1985) for stationary random pro, aliasing caused by overlap of the factor X(f 1 )X(f 2) and

cesses. However, it applies to finite length energy transients the replications of the factor X( -fI-f 2 ) to the immedi-

as well (G. Ioup et aL, 1989a,b, 1990; Pflug et aL, ate left and right of the principal diagonal replication is

1992a,b). A derivation of this expression for energy signals removable via a masking filter (which is discussed in more

is given by Pflug et al. (1992a). The total unaliased do- detail later), sampling below the critical rate results in

main (TUD) of the autobispectrum of a sampled signal is additional overlap of the factor X(f 1 )X(f 2) with

the result of the overlap of the domains of the two factors X(f 1 ± 2fN)X(f 2 i 2fN) as well as the diagonal factors,

X(f 1 )X(f 2 ) and X(--ft-f 2 ) (G. loup et aL, 1989a, causing aliasing that is not removable. To avoid aliasing of

1990; Pflug et al., 1989, 1992a). When the autobicorrela- either kind in the bispectrum of a sampled signal, the cen-

tion is calculated from discrete-time data, the factors in the ters of the replications must be a distance at least 3f, apart.

above equation for B(f 1 ,f 2 ) must be replicated infinitely For the energy spectrum, if f, is the top frequency present

with period 2 fN in the bifrequency plane, i.e., in a signal, then Atc< l/(2f,); but for the bispectrum the
sampling interval AtB must be (Pflug et al., 1992a)

B(f 1 , f 2 )( k . -+2~f) A~tB<11(3f,) = (2 / 3 ) Atc.
"k '~If the signal is sampled such that ft<fN<3f/2, then the
( - ) aliasing can be removed by using a masking filter, as dis-

I X( f 2+2k2fN) cussed in Sec. VI.
k2= -- w

X( X X*(fl+f 2 +2k 3 fN))" B. Symmetries In the bispectrum
k3 cc Permuting arguments in the expression

This result is derived in Appendix A for the bispectrum of B(f 1 ,f 2 ) =X(f1 )X(f 2 )X( -f 1 -f 2 ) leaves the value of
the bicorrelation calculated from discrete-time energy sig- the bispectrum unchanged. This results in six lints of sym-

A nals. The corresponding result for discrete-time stationary metry which intersect the principal replication of the
stochastic signals is derived in Appendix B. bispectrum (Brillinger and Rosenblatt, 1967b):

The total domain of the bispectrum results from the fl=f 2 , 2f,+f 2=0, fl+2f 2=0,
overlap of each individual term in each summation of the
above equation, as shown for a small part of the total f• =0, f2=0, f1 =-f 2.
bifrequency domain by the shaded regions in Fig. 1 for a The last three symmetry lines involve a complex conjugate
signal with bottom frequency fb=O and fN=f,. The anal- operation. The six symmetry lines divide the TUD into 12
ysis of the overlap is facilitated by considering the domains triangular domains, each containing the same bispectral
of the replications of X(f 1 )X(f 2 ) separately from the do- values. From the more general expression given above for

A mains of the replications of X( -f 1 -f 2) (G. Ioup et al., the bispectrum of a bicorrelation calculated from sampled
1989a; Pflug et al., 199 2a). In Fig. 1 the factors that con- data, we find four more symmetry lines which intersect the
tribute to the base replication are shaded, with the princi- principal replication of the bispectnrm, that is. for
pal replication of the TUD outlined. The area in the prin- k, =k 2 ý0 and k3= -- 1, ti,€ aliased parts of the bispectrum
cipal replication outside the TUD of the bispectrum in Fig. are divided by the lines

2161 J. Acoust. Soc. Am., Vol. 94, No. 4, October 1993 Pftug et al.: Sampling requirements and aliasing 2161



,Ma~

fN4/2 f% /.2N''#

0 ~ 0

- / .... ...... ~'

_fN _fN/2 0 fN/2 fN _fN fN/ 2  0 fN/ 2  
fN

FIG. 2. Symmetry lines in the TUD and TAD of the bispectrum calcti- FIG. 4. Domain of the bispectrtim of a discrete signal %:th 0 < /2f'2
lated from a discrete signal sampled such that fN = f,. Symmetry lines in sampled such that f.. = f,
the TUD apply to the bispectrum of a continuous-time autobicorrelation
as well.

The TUD disappears for fb> f,/2 in general. If fN is
chosen such that 3fb12 <fN< 3 f,/2 and Ib> f/2, then the

2f I f2= :2fNTUD of the bispectrum disappears while the TAD is still
and f presen (Pflug et a)., 1992a).

f, + 2f 2 = 2fN.

Like the TUD, the total aliased domain is divided into 12 MI. THE TRICORRELATION
regions. The axes and the dashed lines shown in Fig. 2 are A. Aliasing in the tricorrelatlon
the lines of symmetry present in the bispectrum when aTodsusaiinintercrelinwflowe-
signal is sampled such that fN =f, (fb=O0 in this figure). Todsusaiinintercreainwfoowe-
The entire bispectrum may be mapped from values in the soning similar to that given for the bicorrelation. The
principal unaliased polygon (PUP) and the principal continuous-time autotricorrelation a3 ('r 1 ,r2 ,r 3) and its
aliased polygon (PAP) using these symmetries (Nikias three-dimensional Fourier transform are given by (Brill-
and Raghuveer, 1987; Hinich and Wolinsky, 1988; Pflug inger and Rosenblatt, 1967a; G. loup et at, 1989a)
et at, 1992a).

The symmetries in the bispectrum are a function of the a3 (Tj1 ,r 2 ,r3 ) = X(t)X(t+r1 XtT)Xt-3d

sampling, i.e., a function of fN, regardless of the ft for the
individual signal. The bispectral symmetries are shown in and
Fig. 3 for a signal with 0 <fb <f~/2 and sampled with fN c c
chosen to be greater than f,. If the signal is sampled such T( fl, f2, f3) = J J a3(r1 ,r2,73)
that fN =f,, then the bispectral domain is slightly differ- - ~ -

ent, as shown in Fig. 4. In this figure, PAP is a four-sided Xexp[ -1217T(Tf 1 +T~f 2
polygon, not a triangle as shown in Fig. 3 with fN > f,. +r73f 3 )]Idr I dr2 dr3 ,

and the discrete-time autotricorrelation and trispectrum
fN are given by

N-1

fN/2 -a 3(*1,r2,r3)ý XWXtx(t+'r 1 )X(t+_r2 )X(t+i- 3 )At

0 adN-I N-1 N-1

T(fl, f2,f) a37,7273

__fN/2r 1 =0 r2-O 'r3=0

Xexp[ -t2ff(r 1 fj r2 f 2

_fN~+,r 3 f3)Ar,1&7r2 Ar-3.
_fN -fN/ 2  f N/2 fN The trispectrum of a real finite energy transient wqy equiv-

a;ently be expressed as (Brillinger and Rosenblatt, 1967b;
FIG. 3. Domain of the bispectrum of a discrete signal with 0 < fb(f12, Dalle Molle and Hinich, 1989; Pflug, 1990; Pflug et a).,
sampled such that fm > f,. 1992a)

2162 J. Acoust. Soc. Am., Vol. 94, No. 4, October 1993 Pf lug et al. Sampling requirements and aliasing 2162



T( fl, f 2, f 3)=X( ft)X( f 2 )X( f 3)X*( fI+f2 also contains two types of principal aliased polyhedra,
PAPI and PAP2, a result of the intersection of the sym-

+ f3) metry planes

or 2fI + f 2 + f3 = ± 2fN,

T( f 1 , f 2 , f 3 ) =X( fl)X( f 2 )X( f 3)X(f 4), fl+2f 2 +f 3 = +2fN,

where f 4 = - fl - f2 - f 3 . For an autotricorrelation calcu- f + f2 + 2h = + 2fN,
lated from a sampled signal, each factor is replicated infi-
nitely in the trifrequency plane, i.e., with the TAD. Both PAPI and PAP2 are each replicated

48 times in the TAD. Detailed discussion and figures de-
T(f 1 , f 2, f 3) picting the TUD, TAD, PUP, and PAP of the trispectrum

~( f + )( can be found in Pflug et at. (1992a).
-= X( f, +2k, fN) X( f2

IV. SAMPLING THE DATA VERSUS SAMPLING THE
S2k2 fN) X(f32k3fn)CORRELATION

2 J k3 = f-k NThe characterization of aliasing for functionals such as

the correlation contains a subtlety that is often unrecog-

X( ' X*(fl+f2+f 3+2k4fN) nized. That is, the nature of the aliasing and even the re-

f4 quirements to prevent it can depend on whether the cor-
relation is calculated from data that are already sampled or

The TUD of the trispectrum calculated from a sampled the continuous-time correlation itself is sampled. Follow-
signal is defined by the overlap of the nonzero domain of ing the reasoning of Kanasewich (1973) the expression for
the two factors X(f)X(f 2 )X(f 3 ) and X*(fl+f 2 +f 3) the transform of the autocorrelation, which describes the
in the principal replication as discussed by Pflug et at. effects of aliasing for a sampled continuous-time autocor-
(1992a). The remaining area in the principal replication is relation, is
a result of the overlap of the factor

X( fl)X( f 2 )X(f 3 ) ESx(f)= X IX(f-2kfN)1 2,

from the principal replication and k=-
where

X(--f-f2-f 3-- 2k 4 fN)

with k4= + 1, and comprises the TAD of the trispectrum. Y,(f) = X(f- 2kfN)
To avoid the kind of aliasing caused by sampling a k=-

signal with fN=f 1, the centers of the trispectral replica- is the aliased Fourier transform. The tilde is used to indi-
tions must be a minimum distance of 4ft apart. Hence, the cate aliased functions and transforms. This result does in-
sampling interval AtT must be (Pflug et at., 1992a) deed describe the aliasing if the continuous-time autocor-

relation itself is sampled. If, however, the discrete-time
A1t l/(4ft) = (1l/2)Atc. autocorrelation is calculated from data i(t), which have

If the signal x(t) is sampled such that f,<fN< 2 ft, then already been sampled such that i(t) contains aliasing, then
the aliasing in the trispectrum can be removed with a the appropriate transform domain expression correspond-
masking filter as discussed below. ing to the aliasing of the autocorrelation is

B. Symmetries in the trispectrum E f 2
ES~jf)=j 1 X(f--2kfN)ý

Symmetry planes in the trispectrum are derived by k=-= f
permuting the arguments in the above expression for the The difference is that the unaliased transform in the
trispectrum of a tricorrelation calculated from sampled first equation is replicated after squaring whereas the una-
data. When k =k2 = k3 = k4 = 0, the symmetry planes are liased X(f) in the second equation is replicated before
(Brillinger and Rosenblatt, 1967b; Dalle Molle and Hin- squaring, giving rise to interference due to phase. The re-
ich, 1989; Pflug, 1990; Pflug et at., 1992a) quirement to prevent aliasing, namely that fN>f t , with f,

fl=f 2 , f 2 =f 3 , fl=f 3 , 2fj+f 2 +f 3=0, the highest frequency present in the unsampled data x(t),
is the same for both cases, however.

f + 2f2 +f3 = 0, f 1 ± f 2 + 2f 3= 0, The characterization of aliasing for higher-order cor-

fl=-f2, f =-f 3 , f2=-f, relations contains an additional striking feature. The un-
sampled continuous-time autobicorrelation transform,

f1=0' f2=0, f3=0" X(fl)X(f 2)X*(fl+f 2 ), has a nonzero domain which

These planes divide the TUD of the trispectrum into two can be determined from the overlap of the nonzero do-
types of unaliased principal polyhedral domains, PUPI mains of the individual factors. This method has been used
and PUP2, each replicated 48 times. PUP1, as defined by previously by G. loup et at. ( 1989a,b and 1990), and Pflug
Pflug et at. (1992a), disappears for fb,> f/3. The TAD et at. (1992a). The nonzero domains of continuous-time

2163 J. Acoust. Soc. Am., Vol. 94, No. 4, October 1993 Pflug et al.: Sampling requirements and aliasing 2163



removable. One might choose not to refer to the TAD of
the bispectrum and trispectrum as the aliased regions since
they are completely removable and only exist when the
higher-order correlation is calculated from data that are
undersampled for this purpose. Hinich et aL (Hinich and
Wolinsky, 1988; Hinich e, a., 1989; Hinich and Wilson,
S1990) do not refer to the contents of this h-egion as aliasing,

but instead call the principal domain of this region the OT.
Hasselmann et aL (1963) use the term aliasing to refer to
this region of the bispectrum, and Brillinger and Rosen-
blatt (1967b) discuss these regions of the bispectrum and
"trispectrum in the section of their paper on aliasing. Our
reasons for using the name aliasing for the TAD are given
in the following discussion.

- Aliasing is the lack of sufficient sampling to represent
correctly the underlying continuous-time function caused
by higher frequency content folded over onto, and mas-
querading as, lower frequency content. Sampling data such

FIG. 5. TUD of the bispectrum of a continuous-time autobicorrelation. that f,<fN < 3ft/2 for a bicorrelation calculation or such

that f,<fN < 2f, for a tricorrelation calculation causes the

transforms X(f 1 ) and X(f 2 ) are the infinite strips defined resulting discrete-time correlations to be inaccurate repre-
by -- ft<•fj<•ft and -- f<<f2<f,, respectively, and the sentations of the continuous-time correlations, due to dis-by -,~f •f an -f 1 f 2 ~,' espctivlyandthe tortion of the Fourier transforms in their two- or three-
nonzero domain of X* ( l + f 2 ) is the infinite strip defined dienion prinp doans, whic reul fr the

by f,<l +2,<,. hes ar shwn n Fg. . Te oer- dimensional principal domains, which result from theby -f,~f1 ±f2•f,. These are shown in Fig. 5. The over-

lap of these three nonzero domains is the heavily shaded replication of the transforms produced by sampling the

region in Fig. 5, which corresponds to the TUD pictured in continuous-time data, as is the case for ordinary aliasing.

Figs. 1 and 2. All the nonzero autobispectrum (the trans- Moreover, the filtering, which is normally done to recon-
icon- struct the continuous-time two- or three-dimensional func-

tained in a square that is 2ft on a side, so the sampling tion, i.e., excluding all frequencies outside the principal

required to prevent aliasing if the continuous-time autobi- domain or replication, does not remove the TAD. It is

correlation itself is sampled is fN>f,, the same as that possible to argue that a special filter should be used to

required for the function and the autocorrelation. This re- reconstruct the higher-order correlation, indeed, the filter

sult has been derived independently by Nielsen (1992). that we discuss, but this is not in keeping with general

Pflug et aL (1992a) have shown that the sampling of the reconstruction for arbitrary two- or three-variable func-

data needed to prevent aliasing for the discrete-time auto- tions. An additional important feature is that while the

bicorrelation calculated from sampled data is fN>3fl2, autocorrelation calculated from data sampled such that

An extension of this argument can be made for sampling fN =f, is correct at the sample points, the higher-order

the continuous-time autotricorrelation directly, for which autocorrelations calculated from the same data are incor-

the requireme-it to prevent aliasing is also fN~f,. If sam- rect at the sample points. For these important reasons, the

pled data are to be used, the requirement is fN'. 2ft. Note regions of the bispectrum and trispectrum defined by sam-

that there will be no TAD region if a continuous-time pling such that f,<fN < 3f,/2 and ft<fN < 2f, respec-

higher-order correlation is sampled directly. tively, are referred to as aliased domains.

It is important to consider the applicability of these
two types of models. Most calculations of the correlation V. EXAMPLES OF ALIASING IN THE CORRELATIONS
involve the use of sampled data, so the models for aliasing
in the correlations due to calculations from sampled data Two model energy signals are used to show the occur-
are most often applicable. The sampling of the correlation rence of aliasing in higher-order correlations and spectra
directly occurs much less frequently and principally when due to sampling a signal at fN = f," The first is a model of
the correlation itself is the result of a physical measure- an amplitude and frequency modulated signal for a 20-Hz
ment. For these cases the model for directly sampling the finback whale signal fitted by J. loup et al. (1988; G. Ioup
continuous-time correlation applies. et al., 1989a) and modeled after a real signal shown in

The obvious difference between sampling the Watkins et al. (1987), with frequencies equal to and above
continuous-time correlation and calculating the bicorrela- 32-Hz set to zero for simplicity. The signal and its Fourier
tion from sampled data is the presence in the latter situa- magnitude spectrum are shown in Fig. 6. Notice that am-
tion of what is referred to in this paper as the TAD. Ali- plitudes for frequencies below about 10 Hz are quite small.
asing in the bicorrelation and tricorrelation due to Hence the signal has a narrow-band character with f, not
sampling such that f,<fN<3ft/2 and f,<fN<2f,, respec- much larger than 2fb, if fb is considered to be near 10 Hz.
tively, is removable via a masking filter, while sampling Thus we expect the volume under its bispectrum to be
such that fN <ft results in aliasing that is not generally small (Pflug et al., 1992a). Applying the conditions de-
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. iT( h ' .. .cussed later. While the autocorrelation requires only ap-
proximately 64 sample points, as predicted, for the effects
of aliasing to become negligible to five significant digits, the
autobicorrelation and autotricorrelation each require more
sample points. The autobicorrelation requires the predicted

96 sample points before the aliasing disappears, and the
hypervolume beneath the autotricorrelation is constant to
five significant digits if a minimum of 104 points is used,
somewhat fewer than predicted.

A color contour plot of the magnitude bispectrum of
the whale signal sampled with 64 points is shown in Fig. 7
with the bispectral symmetry lines distinguishing the una-

* .. . , liased and aliased regions (compare to Fig. 2). As we pre-

dict, the bispectrum contains aliasing. However, the energy
spectrum with a nonzero amplitude at a maximum of 32
Hz (see Fig. 6 for the Fourier magnitude spectrum) con-

FIG. 6. Simulated whale transient and its Fourier magnitude spectrum. tains no aliasing at this rate of sampling. If 128 sample
points are used, the aliasing in the bispectrum disappears,

scribed in earlier sections, the signal should be sampled as shown in Fig. 8, which has a different normalization
with fN= 32 Hz to avoid aliasing in the autocorrelation, from that used for Fig. 7.
with fN= 4 8 Hz to avoid aliasing in the autobicorrelation, In contrast to the narrow-band whale signal, the sec-
and with fN = 64 Hz to avoid aliasing in the autotricorre- ond example is a narrow pulse (narrow in time, broadband
lation. For the whale signal of 1-s duration, this corre- in frequency) shown with its Fourier magnitude in Fig. 9.
sponds to 64 sample points to avoid aliasing in the auto- For this signal of I-s duration, we expect that aliasing will
correlation, 96 sample points for the autobicorrelation, and not exist in the autocorrelation if the signal is sampled such
128 points for the autotricorrelation. that fN =f,= 2 56 Hz, or with 512 sample points. To avoid

Ideally, if there is no aliasing in a correlation calcu- aliasing in the autobicorrelation, the signal must be sam-
lated from sampled data, finer sampling in a fixed time pled with at least 768 points, and to avoid aliasing in the
period will not change the zero-lag value, i.e.. the area pled with at least 76 pavoid aias inatbeneth he eerg/powr sectrm (anaswic, 193). autotricorrelation, the signal must be sampled with at least
beneath the energy/power spectrum (Kanasewich, 1973). We see in Table that the zero lag value of
Other lag values could be used to demonstrate these prop-
erties. The whale signal is sampled with various numbers of the autocorrelation is constant to five significant digits if a

points and the area beneath the energy spectrum and vol- minimum of 512 sample points is used. The autobicorrela-
umes beneath the bispectrum and trispectrum are calcu- tion central ordinate is constant to five significant digits
lated by zero-lag correlation value. Results to five signifi- using a minimum of 704 points, and the autotricorrelation
cant digits are shown in Table I. The zero lag value of the central ordinate is constant using a minimum of 832
rectified autobicorrelation is also given, and will be dis- points. Using the predicted 768 points or more for the

TABLE 1. Time-domain calculations of correlation central ordinate values of the whale transient with various sampling rates.

Whale transient
Autocorrelation Autobicorrelation Autotricorrelation Rectified autobicorrelation

Number of points (amp units) 2
-s (amp units) 3 

_s (amp units) 4
. s (amp units)3 -s

32 2.2296 x10- 2  3.4944X10-' 1.0268 X1O-- 4.6164 x 10
48 0.27676 3.3260X 10- 2  0.17467 0.21102
64 0.27708 3.0329 X 10-3 0.16384 0.20488
72 0.27708 6.1817X 10-

4  0.16094 0.20364
80 0.27708 6.8907 X 10- 4  0.16549 0.20585
88 0.27708 6.8659 X 10- 4  0.17463 0.21190
96 0.27708 6.8661 X 10- 4  0.17413 0.21093

104 0.27708 6.6861 X 10-4 0.17414 0.21051
112 0.27708 6.8661 X 10- 4  0.17414 0.21129
120 0.27708 6.8661 X 10- 4  0.17414 0.21211
128 0.27708 6.8661 X 10- 4  0.17414 0.21161
136 0.27708 6.8661 X 10- 4  0.17414 0.21136
200 0.27708 6.8661 X 10-

4  0.17414 0.21143
300 0.27708 6.8661 X 10- 4  0.17414 0.21141
400 0.27708 6.8661 x 10- 4  0.17414 0.21142
500 0.27708 6.8661 x 10-4 0.17414 0.21142
600 0.27708 6.8661 X 10-4 0.17414 0.21142
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FIG. 7. Contour plot of the magnitude bispectrum of the whale transient FIG. 8. Contour plot of magnitude bispectrum of the whale transient
sampled with 64 points so that aliasing is present. The amplitudes have sampled with 128 points so that no aliasing is present. The amplitudes
been normalized to unit height. have been normalized to unit height.
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FIG. 9. Narrow pulse and its Fourier magnitude spectrum.
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FIG. 10. Contour plot of the first quadrant of the magnitude bispectrum FIG. 1!. Contour plot of the first quadrant of the magnitude bispectrum
of the narrow pulse sampled with 512 points so that aliasing is present. of the narrow pulse sampled with 1024 points so that no aliasing is
The amplitudes have been normalized to unit height. present. The amplitudes have been normalized to unit height

TABLE II. Time-domain calculations of correlation central ordinate values of the narrow pulse transient with various sampling rates.

Narrow pulse

Autocorrelation Autobicorrelation Autotricorrelation Rectified autobicorrelation
(xlO0-1) ( xlO-1) (× 10-1) (xo 13-)

Number of points (amp units) 2 " s (amp units) 3 -s (amp unts) 4 ' s (amp units)-' .s

256 2.3263 1.7867 1.3766 1.7868
320 2.5966 2.2879 2.0588 2.2892
384 2.6770 2.4089 2.3176 2.4170
448 2.6875 2.3150 2.2257 2.3308
512 2.6880 2.2331 2.0731 2.2441
576 2.6880 2.2055 1.9787 2.2100
640 2.6880 2.2019 1.9426 2.2093
704 2.6880 2.2017 1.9324 2.2188
768 2.6880 2.2017 1.9305 2.2108
832 2.6880 2.2017 1.9303 2.2094
896 2.6880 2.2017 1.9303 2.2094
960 2.6880 2.2017 1.9303 2.2103

1024 2.6880 2.2017 1.9303 2.2104
2000 2.6880 2.2017 1.9303 2.2101
3000 2.6880 2.2017 1.9303 2.2100
4000 2.6880 2.2017 1.9303 2.2100
5000 2.6880 2.2017 1.9303 2.2100
6000 2.6880 2.2017 1.9303 2.2100
7000 2.6880 2.2017 1.9303 2.2100
8000 2.6880 2.2017 1.9303 2.2100
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autobicorrelation and a double precision calculation, the error from the expected unaliased value of 6.8661 X 10 4

central ordinate value is constant to ten significant digits, (amp units) 3 -s. However, the volume is reduced to
and the autotricorrelation central ordinate is constant to 14 6.6208 x 10-4 (amp units)3 . s when the filter is applied,
significant digits using the predicted 1024 points or more. resulting in a 3.7% error. For the narrow pulse sampled
In each case, the central value is constant to ten significant with 512 points, a masking filter reduced the aliased vol-
digits using no more than the predicted number of sample ume from 2.2331 x 10-3 (amp units) 3 • s, a 1.4% error, to
points. Comparing the first quadrant of the magnitude bis- 2.2017x 0- (amp units) 3 -s. which has zero error up to
pectrum of the narrow pulse sampled with 512 points, five significant digits (see Table I1).
shown in Fig. 10, and the Fourier magnitude spectrum of A trispectral masking filter can be written as
the original signal shown in Fig. 9, we see that aliasing is I, If +f2+f3I <f,,
present in the bispectrum if only 512 points are used even H(f IfJ2f3
though the energy spectrum contains no aliasing if sampled 0, 1f' + f2 + f 3l > fn
such that fN>25 6 Hz. If 1024 points are used, the bispec- or
trum no longer shows any aliasing, as shown in Fig. 11.

h(r 1 ,r2,rj)=l6fj j sinc(2ft) sinc[2f,(t) +rl]

VI. HIGHER-ORDER MASKING FILTERS Xsinc[2f,(t+ 7,) ]sinc[2ft(t+7r;) ]At

Aliasing in higher-order correlations due to sampling and are applicable in the same way as the bispectral filters.
such that fN)f, may be removed using one of two tech- The bi- or tri-spectral masking filter is equivalent to a one-
niques. The first is to operate on the original discrete-time dimensional filter on only the diagonal factor in a bi- or
signal. The discrete-time signal may be interpolated to in- tri-spectral approach to the calculation of the bi- or tri-
clude a sufficient number of points within the signal dura- correlation.
tion to avoid aliasing in the autobicorrelation or autotri-
correlation. This is most often done by zero-padding its VII. SAMPLING REQUIREMENTS FOR RECTIFIED
Fourier transform. SIGNALS

The second technique involves operating on the fre- Higher-order correlation detectors and time delay es-
quency domain autobispectrum or autotrispectrum by ap- timators applied to certain signals have been shown to ben-
plying a higher-order masking filter or on the aliased au- efit from rectification (G. loup et al., 1990; Pflug et al.,
tobicorrelation or autotricorrelation with a convolutional 1992b,c). However, rectification can affect the sampling
masking filter. A bispectral masking filter in the frequency requirements needed to avoid aliasing.
domain is defined by (Pflug et al., 1992a) The process of rectification means simply replacing

each negative amplitude in a given sequence with its abso-
1, Ifi + f2l < f,, lute value, and the unrectified and rectified signal FourierH(fl f2) 0 , Ifl +f 21 > f, transforms have a straightforward relationship. If we sep-

or in the lag domain, arate the discrete real sequence x(t) into positive and neg-
ative sequences, defining x+ (t) and x_ (t) as

h(r 1 ,r 2)=8f• X sinc(2fzt)Finc[2f 1(t+r 1 )] x(t), if X(t)>0,
+ +(t) = log if x(t) <0

Xsinc[2f,(t+±r 2)]At, and

where the time domain filter h(r 1 ,r 2 ) is the autobicorrela- 0, if x(t)>O,
tion of the sinc function. If instead of the continuous- x_() =
frequency filter, the time domain equivalent of a discrete- Ix(t), if x(t) <0,

frequency filter is sought, the above sum becomes a finite then the Fourier transform of x(t) is equal to the sum of
sum over digital sincs (Marple, 1987). If fN,>f,, then any the individual positive and negative transfotms,
value between f, and fN may be used as the bandlimit in X(f) =X+ (f)+X_ (f)
the filter. The unaliased bispectrum is
B(f 1 ,f 2 ) = B(f 1 ,f 2 )H(f ,f 2) and the corresponding un- and the energy spectrum is

aliased autobicorrelation a2(rrl,r 2) = a2(r 1 ,r2)*h(r 1 ,r2). ESx(f) = [X÷ (f) +X (f) ] [X+ (f) +X (f) ]*
Frequency-domain multiplications are more commonly
used since they are faster than time-domain convolutions. = IX±(f) 2+ IX(f) 2 +X÷(f)X*(f)
Indeed, convolving the two-dimensional time domain filter +X*+(f)X(f).
h(r l ,T2 ) with the aliased autobicorrelation could be pro-
hibitive. If x(t) is rectified (denote the rectified sequence by xR)

A bispectral filter H(f1 ,f 2) was applied to the whale then
transient sampled with 64 points, a number just sufficient Ix(t), if x(t)>O,
to prevent aliasing in the autocorrelation. As shown in xR(t1 =

Table I, the volume beneath the bispectrum is I -x(t,, if x(t) <0,

3.0329X 10-3 (amp units) 3
. s without the filter, a 341.7% and the transform of the rectified x(t) is simply
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SXci , .. ..... !ii!) ....... . .
and its energy spectrum is

ESA(f) = [X+ (f) _X_ (f) [X+ (f) _X_ (f)]* I -

=[IX+(f) 12+ 1X-(f) I -X+ (f)x*-(f) • .'~::.. ! •-

Since the zero-lag autocorrelation is the same for the un-
rectified and rectified signals and using the central ' --

ordinate-definite integral (sum) equivalence (Bracewell,

E ES (f)Af ESR(f)Af

_Y {IX, (f) 2 FIG. 12. Rectified whale transient and its Fourier magnitude spectrum.

+ IX_(f) 2}Af shown in Table 11 to five significant digits, the volume
beneath the bispectrum becomes constant if a minimum of

and 3000 sample points is used.
As stated, the area beneath the spectrum is equal to

the central ordinate value of the corresponding correlation,
f +• and the central ordinate value of the autocorrelation of a

rectified signal is the same as the value when the signal is
not rectified. The autotricorrelation of a rectified signal

or equivalently, also exhibits this property, consequently these values are
not shown in Tables I and II since they are repetitive.

[ Therefore, the area and hypervolume beneath the energy
f-• {Re[X+(f) 2+Re[X(f)12 +Im[X+(f)1 2  spectrum and trispectrum of rectified signals are not ap-

propriate measures of the existence of aliasing. For in-

+Im[X (f) ]2 }Af=0, stance, the rectified energy spectrum of the whale transient
obviously contains aliasing when sampled at fN= 40 Hz

and while the unrectified signal does not (compare Figs. 6 and
12 and see Table II). However, the areas beneath the two
energy spectra are equal. The requirements to avoid alias-

{Re[X +(f) ]Re[X_ (f) ] ing in general in the rectified autocorrelation and autotri-
correlation are fN>f• and fN>3fR, ),aralleling the re-

+Im[X+ (f) ]Im[X_ (f) ]}Af=0. quirements for the unrectified correlations.

Although this summation is equal to zero, the individual VIII. SUMMARY
terms will not be, as they are what defines the difference in
the Fourier transform of the unrectified and rectified sig- While critical sampling is sufficient to avoid aliasing
nals. when sampling the continuous-time autocorrelation, auto-

The rectification of the whale transient shown in Fig. 6 bicorrelation, and autotricorrelation, avoidance of aliasing
results in the time series and Fourier magnitude spectrum in calculations of higher order correlations and spectra
shown in Fig. 12. Whereas the unrectified whale transient from discrete-time data requires sampling rates higher than
had f,= 32 Hz, the rectified whale transient shows a top the critical rate for a bandlimited energy signal. In these
frequency of approximately ft = 150 Hz. Thus the rectified cases, for the autobicorrelation, the sampling interval must
autobicorrelation should require about 450 sample points be 2/3 the interva! used for critical sampling, and for the
to avoid aliasing. Indeed, we see in Table I that the volume autotricorrelation, the sampling interval must be 1/2 the
beneath the bispectrum becomes constant to five significant critical sampling interval. Examples have been shown in
digits when the signal is sampled with between 300 and 400 tables for both a broadband and a narrow-band bandlim-
points. Similarly, the rectified pulse contains higher fre- ited transient using the area or volume beneath the energy
quencies than the unrectified signal with f9= 1000 Hz, spectrum, bispectrum, and trispectrum (the correlation
approximately, and should require about 3000 sample central ordinate) as a measure of the presence of aliasing.
points to prevent aliasing in the autobicorrelation. As This measure is also used to exhibit the effective-
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ness of a bispectral masking filter on two sample signals. The properties of the corresponding bispectrum are dis-
Using rectification as part of a detection or time delay cussed by Nielsen (1992) and in this paper.
estimation scheme for discrete data requires that the sam- An alternate procedure which produces a discrete-time
pling rate be selected or interpolated according to the rec- autobicorrelation is its calculation directly from a discrete-
tified bandlimit before calculating ordinary or higher-order time energy signal. For this purpose we make the straight-
correlations. forward substitution of a summation for the integral in the
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are discrete-time functions.
APPENDIX A: BISPECTRUM FOR A BICORRELATION It is important to remember that the Fourier trans-
CALCULATED FROM A DISCRETE-TIME ENERGY form of the discrete-time signal is given by
SIGNAL

As discussed in the body of this paper, the discrete- k
time autobicorrelation could arise from sampling the x(t)DX(f)= • Xlf-)
continuous-time autobicorrelation calculated from a real k= A-

continuous-time energy signal

with xCr(t) DX(f), k/At=2kfN, and X(f) the discrete-
bcr(ir2)=f Xcr(t)Xcr(t+rl)xcr(t+r2)dt" time Fourier transform (DTFT) (Marple, 1987). The

_ +DTFT for b(rl,r 2 ) is

~ I

B(fl'f2=- x(t)x(t+r 1 )X(t+r 2 )At)exp[-t27r(fl'rl+f 2r 2)]ArAi2=

= X x(t)x(t+r 2)At At 2 exp( -i21rf 2 r2 ) ex(tp+-r)exp(-+2 fff )Ar)

= ~ x(t)x@±+r2)A Ar 2 exp(- t-2irf 2 r2 )X(f1 )exp(±i*27rfit)
t=-- T2=--

= X x(t)Atexp(+i2-irfjt) X(t+.r2 )exp(-ir22A2 Xf 1)

= X x(t)Atexp(+t27rft)[X(f 2)exp(+i2irf2t)]X(f l)
I= -- a

= •, x(t)exp[+i2lT( fl+f2 )t]AtX( fl)X(f 2)

and for x(t) real

= x(t)exp[-- 2 iT( fi+f2)tlAt X( fl)X(f2)
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+f )If instead an analogous result is desired for discrete-
time autobicorrelations calculated from discrete-time sta-
tionary stochastic power signals, the corresponding deriva-

S=~X( f + 2kj fN) tion is as follows. Let XDT Wt be the discrete-time stochastic
signal, and use a tilde to represent quantities calculated

from it. [Contrary to Appendix A, we let the unsubscriptedS X( f2 + 2k, fN) x(t) be the continuous-time function to agree with Hin-( = ( f IN))ich's notation.] Then

4X( X*( fl +fA+2k, fNY
S (2XDT(t)DAX(f)= AX(f-2kfN),k3=-°°k=-.

It is the transform replications in this expression that pro- and
duce the aliasing in the TAD of the transform of the

. discrete-time autobicorrelation calculated from discrete- c( (r,0) = E{XDT(t)XDT(t + r)XDT(t + 6) }.
time energy signals as described in this paper. Therefore

E{Ax(f)Ax(g)A,((h)}
APPENDIX B: BISPECTRUM FOR A BICORRELATION
CALCULATED FROM A DISCRETE TIME
STOCHASTIC POWER SIGNAL =E XDT(0)XDT(r)XDT(S)

A result corresponding to that of Appendix A can be
derived for stationary stochastic power signals following X exp [ - i2fr( ft +gr+ hs) ] At Ar As)
the derivation of Hinich (1990) [his Eq. (3.4) and subse-
quent discussion]. Hinich's derivation is for continuous-
and discrete-time autobicorrelations (equivalent to autoco- =F x xj(r,0)exp[ -i2ir(fT+gO) ]
variances for his zero mean assumption) calculated from ..-. 0=-W

continuous-time stationary stochastic signals and for their

spectra. Hinich's Eq. (3.4) is XArAO exp[-i2ir(f+g+h)t]At
1= -- O

E{Ax( f)Ax(g)Ax(h)} -Bx( f,g)6( f+g+h).

=Elfffx(t)x(r)x(s)exp[-021r( ft+gr From this result, B,(fg) corresponds to E{Ax(J)
1JJJ XAý,(g)Ax(-f-g)}. But

+hs) Idt drdsW
Ax(f)-- I Ax(f-2klfN),

=JJ cxx(-r,O)exp[ -i-2lT( fi-±gO) ]dr de ,-W

x f expi -i2iT( f+g+h)tldt k2(g)- = A(g--2k2 fN),

=B,(f,g)6( f+g+h), and

for which
Ax(-f--g)= Ax(-f-g-2k 3 fN).

Ax= x(t)exp( -i21rft)dt k3= - ý

One can no longer assert that since Ax( -f--g) is zero in
(Ax a complex random variable), the domain outside (f+g) > fN, the autobispectrum will

cxx(-r,0) =Ejx(t)x(t+i-)x(t±6)1, be zero in that domain for the autobicorrelation calculated
from discrete-time stationary stochastic power signals. In-

and Bj(f,g) is the autobispectrum of x(t). Hinich goes stead one must look at Ax(f-g), which is not zero for
on to say, "It follows from (3.4) that (f- -g) > fN. Therefore the PAP (the OT of Hinich) and
f Bx(fg)df dg=E{f A(f)Ax(g)Ax(h)df dg) when TAD will be nonzero for this bicorrelation even for sta-
h=-f-g. But since Ax(f)=0 for f>fo, then tionary signals, if At=l/(2f,), with f, the highest fre-
Bj(f,g)=0 for f+g>fo." He then discusses the conse- quency present in x(t). Only if At>l/(3f,) will the PAP
quences of sampling the continuous-time cxxx(i,O). The and TAD be zero. This result is in contrast to that for
results correspond in terms of aliasing to those given in this sampling the continuous-time autobicorrelation, and the
paper for sampling the continuous-time autobicorrelation corresponding Hinich-Wolinsky (1988) test for stationar-
of energy signals, and agree with those of Nielson (1992) ity, for which the PAP (OT) is zero if the autobicorrela-
as well. tion is sampled at At= l/(2f,).
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