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1. INTRODUCTION

1.1 Overview

Science Research Laboratory has developed a family of all-solid-state pulsed power gen-
erators featuring levels of efficiency, reliability and power density far above what had been
previously obtainable. A common feature of these systems is SCR-commutated nonlinear mag-
netic pulse compressors. Using SCRs rather than the more traditional thyratrons decreases
system weight and volume while providing a significant increase in reliability. Pulsers using this

technology have demonstrated lifetimes of 10'? shots.

The primary objective of this SBIR is to find ways of combining these pulsed power systems
with new forms of CO, laser amplifiers as the first step in the development of a new family of
CO., laser radar systems suitable for space-based applications. The CO; lasers investigated in
this SBIR feature conduction-cooling of the laser mixture rather than the more typical flow loops
and heat exchangers. Conduction cooling has significant size, weight and system complexity

advantages which complement those of the all-solid-state pulsed power.

12 Program Plan

In this SBIR we built two forms of conduction-cooled CO, lasers matched to separate
forms of SRL’s solid-state pulsers. The first system uses a spark gap preionized, transverse
discharge, rectangular slab geometry laser amplifier matched to an existing solid-state pulser
(COLD-I). The laser medium in this slab system was interferometrically probed with a pulsed
laser to test the effectiveness of its conduction cooling. The second system uses a longitudinal
discharge, cylindrical geometry laser amplifier powered by a new pulsed power system (SSLAM-
VII) capable of much higher output power. This new pulsed power system features separate

3
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modules which individually produce 12 kV, 5 J pulses but which can be stacked to provide the
72 kV, 30 J pulses required for the longitudinal discharge. The output power of this second

system was optimized by varying laser gas mixtures, pressure and pulse repetition rate.

1.3 Summary of Results

The interferometric measurements on the transverse discharge, slab geometry lasers showed
that the thermal energy deposited by a single pulse dissipated completely within 100 ms. This
means that, with actively cooled walls, the system could be run continuously at 10 Hz without
the heat from one pulse affecting the next. At 50 ms the interferometric path error was only
a small fraction of a visible wave. The test fringes showed the characteristic cylindrical error
expected of a slab which is heated uniformly and cooled at its walls. This indicates that the
system could have been run at 20 Hz with only a small effect on laser beam quality. The existing

pulsed power supply repetition rate, however, was limited to 10 Hz.

The longitudinal discharge, cylindrical geometry laser was run successfully at repetition
rates of up to 100 Hz. Its average output power typically peaked at 50 Hz, depending on the
gas mixture and pressure. The 50 Hz practical limit was expected as calculations had indicated
that the core of the discharge would be heated excessively above that rate. The efficiency
of conversion from energy deposited in the discharge to laser output energy also varied with
gas mixture and pressure but could be brought up to about 20%. The maximum pulse energy
obtained, however, was only 350 mJ for a maximum average power of 18 W. The essential
problem is that the optimum load for the SSLAM-VIII pulser was measured to be about 4 Q2
whereas the typical discharge impedance ran in the 200 to 400 Q2 range. A likely solution to
this problem has been suggested but not yet implemented.

SCIENCE RESEARCH LABORATORY




2. TRANSVERSE DISCHARGE SYSTEM TESTS

2.1 Laser Design Summary

While the new SSLAM-VIII pulsed power system was being buiit for this project, tests
of conduction cooling were performed on a different CO, laser prototype. These experiments
utilized a new version of a conduction-cooled, transverse discharge, slab geometry CO, laser sys-
tem. An earlier version of this system had been produced under a previous contract(!) but proper
tests of its medium quality had not been completed. This report will describe interferometric
tests of the laser medium quality for the new version of the slab geometry, conduction-cooled

laser.

Both lasers utilize a cylindrical housing to contain both the discharge electrodes and the
low pressure (30 Torr) laser gas mixture required for conduction cooling. Two glass plate
walls separate the discharge electrodes and serve to constrain the discharge within the enclosed,
rectangular slab volume. In both systems the dimensions of the active volume were 13.5 cm
in the direction of the discharge, 2.4 cm between the two glass plates and 100 cm along the
optical cavity axis (a total of 3.2 liters). The distinctive slab geometry of this laser results from
the requirement that heat produced in the discharge be carried by conduction to the laser walls.
Figure 1 shows a photograph of the discharge produced by the new system along with a number
of the discharge parameters. If the walls are too far apart the heat cannot be dissipated before the
next pulse. If the walls are too close the total gas volume is insufficient to provide the required
energy per pulse. A detailed discussion of the constraints for a conduction-cooled system are

given in the proposal for this Phase I SBIR.(?)

The new version of the system employed several improvements over the original design.
The first version of the laser had utilized a large number of individual cables feeding through

5
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the cylinder wall to power the spark gap preionizers spaced along one of the electrodes. Those
cables tended to leak which compromised the laser gas purity. The new version of the system

utilized only two cable feedthroughs and each spark pin is individually ballasted.

2.2 Interferometric Probe Design

The physics of the conduction cooling process is sufficiently straightforward that its lim-
itations were well understood. The interferometric tests on the laser medium were primarily
designed to address the question of whether or not there would be high order distortions due
to residual sound waves or shock waves in the medium left over from previous shots. An

interferometric probe was built to test for these distortions.

The interferometric diagnostic consists of a Mach-Zehnder interferometer and a spatially
filtered, pulsed dye laser probe beam. The dye laser pulse length is only 3 ns so the interferometric
probe is a “snapshot” of the state of the laser medium at the time of the probe. A digital delay
generator was used to sweep the time of the probe laser relative to the CO; laser discharge
on successive shots. A CCD camera and digital framegrabber was used to record the fringes
produced. The wavefront which bests fits these fringes was determined with an algorithm
developed at SRL. This algorithm, presented in the Appendix, calculates a wavefront defined
over an NxN grid. A minimum surface area constraint on the fit wavefront defines those grid

values which are not directly determined from the fringes.

2.3 Interferometric Probe Data

Figure 2 shows a partial set of the fringe data taken. Figures 3 to 7 show the wavefront
obtained from these fringes using an iterative, grid fit algorithm developed by SRL (listed in the
Appendix).

The top graph in Fig. 3 shows the fringes taken just before a discharge pulse with a wall
temperature roughly equal to the initial gas temperature. It takes a few microseconds for the gas

7
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50 ms 95 ms

Figure 2: Interferometric probes of the transverse discharge, conduction
cooled, CO, laser medium taken at the spark preionizer end
of the discharge.
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heated by the discharge to expand. The optical path difference (OPD) thus does not reach its
maximum value for about 50 us. In the 1 ms time range the OPD is complicated by what appears
to be cooling in the center of the discharge channel. This effect is likely caused by energy stored
in vibrational modes of the gases involved and, although interesting, does not affect the laser in
any practical way. The OPD at 20 ms shown in Fig. 6 is the error which the laser pulse would
see on the next pulse at a 50 Hz repetition rate. The error of successive pulse add so that the
error on the third pulse at 50 Hz would be about the error at 20 ms plus the error at 50 ms. The
total error at 50 Hz would thus still be below 1/10 of a wave at the CO, wavelength. The slight
rise in temperature in the center of the cavity will cause the discharge to strike preferentially at
that point. This feedback effect was noted in the longitudinal laser system to be described in the

next section.

The transverse discharge slab laser could only be fired at a maximum rate of 10 Hz due
to the choice of capacitors used in COLD-I. The OPD error at 95 ms shown in Fig. 7 was
essentially at or below the measurement limit of the interferometer used. This means that the
transverse discharge system always appeared to be running in the single pulse mode as far as

the laser medium quality was concerned.

The experimental plan was to continue the measurements on the longitudinal discharge,
conduction cooled laser system which could be run at 100 Hz and above. In practice, however,
the efficiency of the energy deposition in the longitudinal discharge was too low to provide a

good test of the conduction cooling in that geometry.

14
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3. LONGITUDINAL DISCHARGE SYSTEM TESTS

3.1 SSLAM-VIII Pulsed Power System

The decision to develop a longitudinal discharge laser system was prompted by the sig-
nificant advantages of the SSLAM series of pulsed power generators over more conventional
systems. These pulsed power supplies are nearly indestructible, require an input voltage of only
600 V and can operate continuously at 5 kHz. In the SSLAM series a high voltage is induced on
an isolated conducting rod using techniques borrowed from induction accelerators. The resulting
power supply can be built in a modular fashion with successive modules simply adding another
step in voltage. A longitudinal discharge requires these high voltages and is thus an obvious

candidate for the application of this system.

Figure 8 shows a single SSLAM-VIII module which can produce 5 J pulses at 12 kV at
repetition rates of up to 5 kHz. The module measures 7 inches in height by 17 inches in width
and 28 inches in depth and weighs 39 kg. Figure 9 shows a close up of the two induction rods
in each module and how they are connected in series to produce a total of 12 kV. Figure 10
shows the rack panel containing six 12 kV modules which produces a total pulse energy of 30
Jat 72 kV.

3.2 Laser Design Summary

To match the high voltages which could be obtained from SSLAM-VIII, a longitudinal
discharge laser was designed. The discharge cell consists of a 100 cm long thin wall glass tube
with a 4.13 cm inside diameter. The voltages available from SSLAM-VIII are sufficient to break
down the gas at pressures of up to about 30 Torr, which are also the pressures appropriate for
conduction cooling.

15
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The ends of the tube are fitted into cylindrical electrodes which also serve to retain ZnSe
windows to seal off the system. The SSLAM-VIII power supply modules were connected to
supply a potential of +35 kV to the electrode at one end of the discharge and -35 kV to the
electrode at the other end. A grounded ring near the electrodes at the ends of the cavity, but
outside of the glass tube, served to break down the gas near the electrodes at the beginning of

the pulse and thus initiate the full discharge.

The laser gas mixture was fed into the laser cavity through the electrodes at one end of
the cavity and extracted through a bleed valve at the other end. Generally the laser mixture was
not circulated in these tests. The system was also only run in bursts of up to several thousand

pulses to avoid significant heating the walls of the discharge tube.

3.3 Conduction Cooling in a Cylindrical Geometry

Since the original design(?) had considered a slab geometry it is worthwhile to recalculate
the effects of conduction cooling for this cylindrical geometry. The general steady-state equation
for the temperature T in a gas of conductivity « heated at a rate Q) (power per unit volume) is

V- (xVT) = -Q (1)
In general, both @ and « (which is temperature dependent) can be functions of position in the

gas.
In a cylindrically symmetric geometry, Eq. (1) reduces to
1d dT
rar (d_) =-Q (2)
where r is the radial position (0 < r < R).

Eq. (2) can be solved numerically for a given heating-rate distribution and temperature-
dependent conductivity. A simplification occurs if both ) and « are independent of r; for this

case an analytical solution may be obtained immediately. One has

ar _ _Qr
dr = k2
19
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Let T,, = T(R), the wall temperature. Then

T(r) - Ty = % (R? —r?) (3)

and thus the maximum temperature obtained, Tnar = T(0) is

Traz = Tuw + FQKD? (4)

where D = 2R is the inner diameter of the tube.

It is interesting to compare this result with the maximum temperature in a cell having a
rectangular cross section of dimensions d x d' in the limit d << d. In that limit the conduction
to the walls separated by d dominates, and the conduction to the walls separated by d' may be
neglected. For the same heating rate Q the result, easily obtained from Eq. (1) is then

Tmaz = Tw + s%dz (5)

Thus as far as maximum temperature increase is concerned, a tube of circular cross section and
diameter D is equivalent to a tube of rectangular cross section and small-wall separation D/+/2.
This result is reasonable: the cylindrical tube has more nearby surface area through which the

heat can flow than a rectangular-cross-sectional tube with the same wall separation.
Since the volume cf the heated cylinder is
™
V =-DL
4

where L is the length of the cylinder, the maximum temperature rise of the cylinder may be

expressed in terms of the total heating rate

Qr=VQ==RLQ (6)
as follows:
Tonas — T = —2F (7)
maz Y7 4xkL

In addition, the total heating rate may be related to the laser power P and efficiency e (defined
as the ratio of the optical power extracted to the electrical power pumping the laser gas) by

Qr = a-9F (8)

€

20
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so that

_(1—-¢P

Tma: e Tw - 41I’€I€L (9)

For a 3:2:1 He:N;:CO,; mixture typical of a CO, laser, the conductivity is ~ 1 x 1073
W/cm °K. Thus for a cylindrical tube of length L, laser power P and efficiency e the steady-state

temperature rise at the center is

(1-¢€)P

Tmaz — Tw ~ 80 oL

(10)

where P is measured in watts and L is measured in cm.

Consider for example a CO, laser of length L = 100 cm, average power P = 20 W and

efficiency e = 10%. According to Eq. (10), the maximum time-averaged temperature rise is

AT ~ 180°K

Temperatures on this order, of course, will drop the gas density on the longitudinal axis to
about 0.6 of the gas density at the wall. The discharge will then preferentially pump the laser

mixture on the axis. This effect was observed in the experiments described below.

3.4 Optimization of the Laser Output Power

Figures 11 to 14 show the voltage and current through the longitudinal discharge at pulse
repetition rates of from 20 Hz to 100 Hz. In all of these particular cases the laser gas was 1:1:8

mixture of CO,:N,:He and only the data for the 30th pulse in a burst of 30 is shown.

The voltages were measured with an optically isolated probe consisting of an LED trans-
mitter attached between the two discharge electrodes in series with a 2 MQ2 current limiting
resistor. The light output from the LED is proportional to the current through the LED and thus
to the voltage across the discharge. The LED was coupled through an insulating optical fiber to
a fast photodiode receiver. The entire probe was calibrated with fast, high voltage pulses from a
known source. The current was measured with a fast Pearson current transformer which is also

21
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and pressure at a repetition rate of 20 Hz.

22

SCIENCE RESEARCH LABORATORY




Longitudinal Laser Discharge, 30 Hz
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Longitudinal Laser Discharge, 50 Hz
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Longitudinal Laser Discharge, 100 Hz
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Figure 14: Voltage and current waveforms for a typical laser gas mixture
and pressure at a repetition rate of 100 Hz.
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isolated from the discharge circuit. Both the current and voltage waveforms were digitized at
100 MSamples/s with a Lecroy oscilloscope and stored for later processing. The input power
and input energies shown on the lower graphs are calculated from these voltage and current
waveforms. A separate digital scope stored the energy of the laser pulse as measured by an

integrating pyroelectric joulemeter.

A total of 31 successive pulse waveforms and energies were stored for each run, starting
with the first trigger to the SSLAM-VIII pulser. The first trigger pulse does not result in a
discharge since the SSLAM-VIII system uses a resonant charging system. The first pulse is thus
only at half voltage and the gas does not break down. The wall temperatures before each run
were nominally at room temperature and the walls were sufficiently thick that they did not heat

significantly during the run.

At low repetition rates the gas cools sufficiently for each pulse to be independent, except
for a slow energy decay due to the dissociation of some of the CO;. Figure 15 shows the
energy for each pulse in the 30 pulse series at the repetition rates illustrated above. At higher
repetition rates the behavior of the first few pulses is generally erratic, exhibiting higher energies

but sometimes skipping pulses.

In all of these cases the voltage typically rises to 20 to 30 kV before the discharge is
initiated. The current spikes for about 150 ns and then falls back to a more or less steady
state value for about 1 us. About half of the energy transferred to the discharge occurs during
the initial voltage spike when the discharge impedance is below 100 2. The impedance rises
following the initial current spike to about 1000 €2 and then drops again to around 200 2 for
most of the rest of the discharge. Tests on the SSLAM-VIII pulser show that it is best matched
to much lower impedances of about 4 . This is the reason that the total energies transferred
to the discharge are typically only about S to 6 J rather than the 30 J that the pulser can deliver
to a matched load. It is likely that the overall efficiency of the system could be improved by

effectively pulse charging a local energy storage capacitor attached to the discharge tube. The
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Figure 15: Energies for each laser pulse resulting from 31 successive

triggers to the SSLAM-VIII pulsed power system.
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charging would occur through a string of high voltage diodes which would block the return
current when the SSLAM-VIII voltage pulse drops back to zero. We were not able to implement

this fix before the end of the contract, however.

The voltage and current traces are essentially independent of the repetition rate of the
discharge. This is not the case for the laser energy. Pulse energies peak at the 30 Hz repetition
rate as shown in Fig. 15. At repetition rates above 20 Hz the discharge appears to stick close
to the walls of the glass tube for the first few shots and then concentrate near the center of the
tube after the gas has heated up. Above 30 Hz the steady-state pulse energies drop rapidly,
presumably due to heating, so that the total laser power also peaks at 30 Hz. The maximum
average power observed from this gas mixture was 8 W. Other mixtures gave peak average

powers of up to 18 W at 50 Hz.

Figure 16 shows the effects of varying the gas fill pressure at the constant repetition rate
of 30 Hz. The energy transfer to the discharge peaks at 25 Hz although the laser pulse energy
continues to increase up the maximum fill pressure of 35 Torr. Above 35 Torr the discharge
was erratic with high voltage breakdown occurring at the output terminals of the pulsed power
supply.

Additives to the gas mixture, such as Xe, were tried, without much success, to see if the
impedance of the discharge could be significantly lowered. Figure 17 shows the effect of adding
water vapor to the gas mixture (which, in this case included 1% of Xe). The water vapor does
decrease the fluctuations in the laser output energy and decrease the slow rate of energy decay

observed.
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Figure 16: The laser efficiency and output power rises with gas pressure

until the discharge fails to strike.
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#define NFRINGE 1200
#define NGRID 41

#define NPASS 10

#define NOPTIMIZE 8
fdefine NSMOOTH 2

#define NPOINTS 22
#define ZFRAC (float)0.2
#define TOL (float)5.0e-S

/* GridPitZ.c V1.0 22May92 S.F.Fulghum Science Research Laboratory

This version utilizes a true minimization of the surface rather
than an average.

This version subtracts the polynomial fit of piston, tip and tilt
from the INPUT DATA, BEFORE proceeding with the minimization fit
and initializes the grid with the polynomial fit without
piston,tip,tilt.

Calculates a wavefront from standard Mach-2ehnder fringe data
over an NGRID x NGRID grid using a minimum surface area constraint
to define the values at grid points not fixed by data.

Fringe data is stored in the structured array fli] of type fringe
which contains the fringe x,y,z data, the location of the grid

in which the fringe point is found and the interpolation

welghts which determine the surface value in terms of the values
at the four corners of the grid, LL,LR,UL,UR;

Grid data is stored in the 2-D array glrow] (col] of type grid
and is accessed through pointers to each row of the array
in the style that Numerical Recipes uses for arrays.

g(row)] [col] contains the x,y and z values of the grid point,

a Boolean type as to whether or not the grid point is inside the
aperture of the data (i.e. for round or rectangular apertures),
the number of fringe points affected by changes in this grid value
and a structured array (type gridfringe) with information about
the fringe points affected by this grid point.

The type gridfringe has two elements, the first of which is
the integer index of the fringe data point in question and
the second of which is the weight the fringe point in question
plays in the determination of the grid point value.

In this program rows increase from the bottom of the aperture
to the top of the aperture and

columns increase from the left to right so that

col=0 => x=~1 to col=NGRID-1 -> x=+1;

row=0 -> y=-1 to row=NGRID-1 -> y=+1;

INPUT FILES:

.NFG is the normalized fringe data output from READFNG
.POL is the polynomial fit coefficients from POLYFIT

OUTPUT FILES:

.GPF is the polynomial coefficients (without piston, tip, and tilt)
as calculated at the grid positions.

.GPT is the polynomial coefficients including tip and tilt
evaluated at the grid positions.

.GMF is the minimization fit to the original data (from which
the original tip and tilt had been subtracted). Note that
any additional tip and tilt resulting from the minimization
remains in this data. (possibly should be changed)

.GMT is the minimization f£it with the original tip and tilt
added back in so that fringes can be calculated.

.GMD is a difference filt between the .GMT file and
a reference .GMT file.

The .GMT output file contains the minimization fit (to data from which
piston, tip and tilt had been subtracted) with the original tip and
tilt put back in. If GRIDFITS is run on a null shot, it will generate
a .GMT file suitable for use as a reference surface.

The .GMD file is the DIFFERENCE between a .GMT file and a REFERENCE .GMT
file so that an added aberration can be dstermined which INCLUDES
any added tip and tilt.
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®

/4 (22222 2222222222202 2222223 2RO PRS2 2222222222222 2222222222822 ) '/
#define TRUE 1

#define FALSE 0

#include <stdio.h>

#include <process.h>

#include <malloc.h>

#include <math.h>

#include <string.h>

/i LA R RAARR 22222 RRRR 2222222223 2222 2320222222222 02R20020 222322222228 ./
/* function declarations */

float poly(int m, float x, float y);

float polyfit(float *pcoef, float x, float y);

float RMsfit (void):;

void move_grid_point (void);

void smooth_qug(vold);

void optimize_grid(void):

float L(float z);

vold zlimits(float *zmin, float *zmax, float *zavg);

void minimize_surface_tension(void);

float sfbrentTfloat ax, float bx, float cx, float (*f) (float x),
float tol, float *xmin, int *niter);

FARRAAAAA AR A AL R AR R il i a i sl i dd sttt edddtl v/

/* Global Variables

These structures contain the input fringe positions and orders,
the grid values, the information as to which fringe points are
affected by each grid value and the constants required for
interpolating the surface between the grid points at the positions
of each of the input fringe data points.

*/
struct fringe

float x; /* x value of fringe point */
float y; /* y value of fringe point */
float z; /* order of fringe (integral but flocat for calculation) */
int rLL; /* row of LL corner of grid square containing the point */
int cLL; /* column of lower left corner */
float wLL; /* weight of LL grid value for the x,y value of the point */
float WLR;
float wUL;
float wUR;

}:

struct grid
{

float xg; /* x value at the grid point */
float yg; /* y value at the grid point */
float zgq; /* z value at the grid point (the final output) */
int in; /* 1 {f inside the aperture, 0 if outside */
int nf; /* number of fringe points affecting grid point */
int £fi{ NPOINTS ); /* vector of fringe indices */

}:

struct fringe *f;
int npts;

struct grid **g;
float **temp;

int row,col;

/' 222222222 aR iRt dsRad st d st it il 22t sstitssdssdssstssd] t/

void main{()
{

FILE *fp;

char basename{40],name[40]),infile(80],polyfile(80],polyfitfile(80];
char polytipfile(80]),minfitfile(80),mintipfile(80];

char subfile([80],diffile{80];

int 1,3, rLL,cLL,nf,ifp, maxnf;

int ipass, iopt, ismooth;

size_t vecsize;

float delta, xg, yg,xmin, ymin, xmax, ymax, frLL, fcLL,u, v, wfp;
float zero=(float)0;

float two=(float)2.0;

float one=(float)l1l.0;

float sum,diff,pcoef[l16€];
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flocat rms, rmspol, rms0;

float avgdiff0,avgdiff;
float zLL,zLR, zUL, 2UR;

float wLL,wLR, wUL, wUR;

float gsub;

/* -
/* get filenames */

-— %

printf("enter normalized fringe filename, d:\\fringe\\dat\\*.NFG assumed\n");
strcpy(basename, *d:\\fringe\\dat\\");

gets(name);

szrcat (basename,name) ;

printf(®"\n");

/* input data file of normalized fringes */
strepy(infile,basename);
strcat (infile, " .NFG");
printf("infile: Ss\n",infile);

/* input data file of polynomial fit coefficients */
strcpy(polyfile,basename);
strcat (polyfile, ".POL");
printf("polyfile: $s\n",polyfile);

/* output data file of initial polynomial fit, */
/* WITHOUT the piston, tip and tilt coefficients */
strepy(polyfitfile,basename);
strcat (polyfitfile, ".GPF");
printf("polyfitfile: %s\n",polyfitfile);

/* output data file of initial polynomial fit, WITH original tip and tilt */
strepy(polytipfile, basename) ;

strcat (polytipfile,™.GPT");

printf("polytipfile: %s\n",polytipfile);

/* output data file of minimization fit, WITHOUT original tip and tilt =/
strcpy(minfitfile,basename);
strcat (minfitfile,".GMF");
printf("minfitfile: %&s\n",minfitfile);

/* output data file of minimization fit, WITH original tip and tilt */
/* for plotting contours to check against input fringes */
strepy(mintipfile,basename) ;
st rcat (mintipfile, " .GMT");
printf("mintipfile: &s\n",mintipfile);

/* output data file of difference between two minimization fits */
/* without tip and tilt on either */

strcpy(diffile,basename);

strcat (diffile,™.GMD");

printf("diffile: $s\n",diffile):

/* input data file of minimization fit to SUBTRACT from .GMT*/
/* including tip and tilt */

printf("enter subtraction filename, .GMT assumed\n");
/* gets(basename); */

strcepy (basename, *d:\\fringe\\dat\\cln05024");

strcpy (subfile,basename);

strcat (subfile, ™ .GMI");

printf("subfile: $s\n\n", subfile);

printf("hit key to continue\n®);
getchar () ;

/* */
/* allocate memory

NFRINGE is the number of fringe points that can be stored (typ. 1000).
NGRID is the size of the grid, an odd value to insure a grid point

at the exact center of the grid (typ. 41).

NPOINTS is the maximum number of input fringe points that can be
assigned to a given grid point. The value required will vary with

the density of sampling the input fringes and the density of grid
points (typ. 10).

*/

vecsize=(size_t) NFRINGE *sizeof (struct fringe);
f=(struct fringe *)malloc(vecsize):
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+f (f==NULL) {
printf(®"error allocating space for fringe data\n®);
exit (1);

vecsize=(size_t) NGRID *sizeof (struct grid *);
g=(struct gria **)malloc(vecsize);
1f (g==NULL) (
printf(®error allocating space for grid row pointers\n®);
) exit (1)
vecsize=(size _t) NGRID *sizeof (struct grid);
for(i=0;1< NGRID ;i++) {
gl(i)=(struct grid *)malloc(vecsize):
1f (g{i]==NULL) ({
printf("error allocating space for grid row %d data\n",1);
exit(l);
}
}

vecsize=(size t) NGRID *sizeof(float *);
temp=(float *¥*)malloc{vecsize);
if (temp==NULL)
printf(®error allocating space for temp grid\n®);
\ exit (1) ;
vecsize=(size _t) NGRID *sizeof(float);
for(i=0;1i< NGRID ;i++) {
temp(i]=(float *)malloc(vecsize);
if (temp(i)==NULL) {
printf("error allocating space for temp grid row 8d\n®,i):
exit (1);
}
}

/*

/* initialize fringe and grid arrays */

for(i=0;1< NFRINGE ;1++) {

£f{i] .x=zero;

f(i] .y=zero;
f(i].z2=zero;

£f(1).rLL=0;

£f{1] .cLL=0;

f(i] .wLlL=zero;

f[1i).wLR :zero;

f(i) .wUL=zero;

f(i] .wUR=zero;

}

delta = two/({float)NGRID -one);
yg=(float)-1;
for(row=0;row< NGRID ;row++) {
xg=(float)-1;
for(col=0;col< NGRID :;col++) |
g{row] [col] .xg=xg;
g{row] [(col] .yg=yg;
g(row] (col] .zg=zero;
g(row] [col] .in= TRUB ;
g[row] [col] .nf=0;
for(i=0;i< NPOINTS ;i++) glrow][col).fi[i]=0;
xg+=delta;

}
yg+=delta;

I* .

/* read polynomial coefficients */

printf(®reading file of polynomial coefficients\n®);
fp=fopen(polyfile,*r%);
1f (fp==NULL) {
prin?f:'error opening polynomial file: %s\n",polyfile);
exit H

}

for(iwl;ic=15;1++) {
fscanf (fp,” M£",&(pcoef(i]));
printf("sd S&g\n",{,pcoef(i]));

}
fclose(fp);
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/* eeaaa - ®/
/* read fringe data

This section reads an arbitrarily long list of data triplets:
/x-position y-position fringe order
»

printf(®"reading fringe data\n®);

fp=fopen(infile, "r"®);

1f (fp==NULL) {
printf("error opening fringe data file: %s\n",infile);
exit(l);

}

i=0;

while(!feof(fp))
iscanf(fp.' $E M ME”, R (E[1].0), 6 (E{L).y), 6(Ef(L).2));

++;

}

npts=i-1;

1f (ferror(fp)) ¢{
printf("error reading fringe data file\n"):;
fclose(fp):
exit (1)

)

fclose(fp);
printf("%d fringe points read from file\n",npts);

/¥ memmena———- - - — %
/* subtract piston, tip, tilt from fringe data

pcoef(l] is constant, pcoef[2] is x, pcoef[3] is y
*/

printf{"subtracting piston, tip, tilt from fringe data\n®);
for(i=0;i<npts;i++) |
sum=(£float)0;
for(j=1;j<=3;4++) {
sum+=pcoef {}j*poly (3, (i) .x, f[i]).y);

f{i).z-=sum;

/t ...... -

/* Initialize grid with polynomial fit
WITHOUT piston, tip and tilt.

*/

for(row=0;row< NGRID ;row++) {
for(colr9;col< NGRID ;col++) {
sum=zero;
for(i=4;i<=15;1i++) {
sum+=pcoef [1) *poly (1,5 [row] [col) .xg,gl(row] [col]).yq)

glrow)] [col].zg=sum;
}

/* -—
/* write initial polynomial grid data to .GPT file
and the fit WITHOUT piston, tip and tilt to .GPF file
Uses exponential notation to comply with Mathematica
, for plotting results.
*

fp=fopen({polyfitfile,™w™);
if (fp==NULL) {
printf("error opening grid polynomial file: $s\n",polyfitfile);
exit (1),

for (row=0;row< NGRID ;row ++) {
for(col=0;col< NGRID ;col++) ({
sum=zero;
for(i=4;4i<=15;1++)
sumt=pcoef (1] *poly(i,g(row] {col]) .xg,g(row] [(coll.yg);
\ fprintf (fp,"%-11.3e\n", sum);

}

if (ferror(fp)) {
printf{®error writing grid polynomial fit file\n");
fclose(fp);
exit (1);

}
fclose (fp);
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fp=fopen(polytipfile, *w");

1€ (fp==NULL) {
pzint{('ozzor opening grid polynomial file: %¥s\n®,polytipfile);
exit (1) ;

for (row=0;row< NGRID ;row ++) {
for{col=0;col< NGRID ;col++) {
sum=zero;
for(i=1;i<=15;i++)
sum+=pcoef(i]*poly(i,g{row] [col).xg.gl{row] [col].yg);
fprintf(fp, *%~11.3e\n", sum);

}

1f (ferror(fp)) {
printf("error writing grid polynomial fit file\n");
fclose (fp);
exit(1l);

}
fclose(fp):

/® emmcmmctcccmn—en—— rmmmrccee————— et mrmrrere e — et — - ——— ———m———— L7
/* distribute fringe data points among the grid points

This section looks at each of the input fringe data points
and determines which four grid points surround it.

It then writes this information into the data structures for
each of these four grid points along with the interpolation
constants (weights) for the fringe point.

The interpolation scheme used for the surface between four

grid points, lower left LL, lower right LR, upper left UL

and upper right UR is as follows. The fractional distance

of a fringe data point position from the left edge cf the surface
towards the right edge of the surface is "u™. The fractional
distance from the bottom edge to the top edge of the surface is "v".
The suface value "z" is defined by

z= 2z_LL{1-u) (1-v)} +z_UL(1l-u) (v} +2_LR(u) (l-v} +z_UR(u) (v}.

This surface is continuous for all values of the grid points

but its derivative is not. For a point cn the line ccnnecting two
grid points the interpolation reduces to simply a linear interpclation
between only those two points. Note that the surface is not flat

so the fringes that it predicts are curved within a surface.

The values "u" and "v™ are determined by calculating the float

value of the grid position of the fringe point (i.e. row=2.15 col=20.45)
and subtracting the integral portion. The integral portion is used to
determine the index of the lower left LL grid point of the surface

in which the fringe point is found. The value (l-u)(l-v) is, for
example, the weight of the lower left grid point in determining the
value of the surface. It is also the weight of the fringe point when
determining the optimum value for the lower left grid point that
minimizes the error between the fringe predicted by the surface and the
measu-2d fringe position. If the fringe point is very close to the
upper right corner of the surface (u approx. 1) (v approx 1) then

it is primarily affected by the upper right grid poinc

and not the lower left grid point.

*/

for(i=0;i<npts;i++) {
fcLL=(f(1i] .x+one) /delta; /* fringe position in grid units =/
cLL=(int) fcLL; /* integral porion of the position */
£{i].cLL=cLL; /* write this to fringe structure */
frLL=(f (1] .y+one) /delta;
rLL=(int) frLL;
f(1).rLL=rLL;
u=fcLL-(float)cLL; /* fractional position for weighting */
vsfrLL-(float) rLL;
f(i} .wLL={one-u) *(one-v); /* weighting values */
£f(1i] .WwUR=uty;
f{i] .wUL=(one-u) *v;
f[i) .wLR=u* (one-v);

row=rLL; /* write data to LL grid point data structure */
col=cLL;
wip=f(i] .wLL;
1f{(row>=0) && (row< NGRID )&& (col>=0)&&(col< NGRID }) {
nf=g(row] [col] .nf; /* fringe point counter starts at 0 */
if(nf< NPOINTS ) | /* index of fringe point affected */
glrow] {col).fi[nf]=i;
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}
nf+s; /* increment fringe point counter */
, glrow] [col) .nf=nf; /* update fringe point count */

rows=rLL+l; /* UR grid point */

col=cLL+l;

wip=f{i).wUR;

1f((row>=0) §& (row< NGRID )&& (col>=0)&& (col< NGRID )) {

nf=ag|{row] [col].nf; /* fringe point counter starts at 0 */
if(nf< NPOINTS ) { /* first point stored in £1i(0] */
q[row%[col].fl[nf]-i: /* index of fringe point */
nf++; /* increment fringe point counter */
) glrow] [col] .nf=nf; /* update fringe point count */

row=rLL+1l; /* UL grid point +/

colsclLL;

wip=f (1] .wUL;

1f((row>=0)&& (row< NGRID ) &&(col>=0) ¢& (col< NGRID )) {

nf=g(row] [col] .nf; /* fringe point counter starts at 0 */
if(nf< NPOINTS ) | /* point 1 stored in £1{0] */

glrow]l (col]).fi[nf)=4; /* index of fringe point */
}
nf++; /* increment fringe point counter */
g(row] [col) .nf=nf; /* update fringe point count */

row=rLL; /* LR grid point */

colscLL+l;

wfp=f (1] .wLR;

1f((row>=0)&& (row< NGRID )&& (col>=0)&& (col< NGRID )) {

nf=g(row] (col] .nf; /* fringe point counter starts at 0 */

if(nf< NPOINTS ) | /* point 1 stored in f1(0] */
g[row}[col].fi[nf]-i; /* index of fringe point */

nf++; /* increment fringe point cunter */

g(row] [col] .nf=nf; /* update fringe point count */

} /* end of fringe point loop */
printf("%d fringe points distributed\n®,npts);

maxnf=0;
for (row=0; row<NGRID;row++) {
for(col=0;col<NGRID;col++) {
if(g(row] [col) .nf>maxnf) maxnf=g[row] (col].nf;

}
printf("maxnf=%d, space allocated for %d\n",maxnf, (int)NPOINTS );
if (maxnf>= NPOINTS )

printf("too little space allocated for fringes\n");

exit (1l);

/* */
/* calculate initial fit error »/

rmsO=RMSfit ();
printf("initial RMS fit error= %g\n",rms0);

7 FRRRAEER R0 R0 0 0 0 A R R LR 0008 ~/
for(ipass=1;ipass<= NPASS ;ipass++) (
printf ("pass 8d\n",ipass);
for(ismooth=1;ismooth<= NSMOOTH ;ismooth++) smooth_grid():
rms=RMSfit () ;
printf(® after smooth rms error= %g\n",rms);
for(iopt=1;iopt<= NOPTIMIZE ;iopt++) optimize_grid();
rms=RMSfit () ;
printf (" after opt rms error= %g\n\n",rms);
} /* end optimization loops */
7% FRRA0RRE 00000 0L R 0 A AR A L )

/* */
/* calculate final fit error */
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printf("\n initial RMS fit error= %g\n®,rms0);
printf(®\n final RMS fit error= $g\n",rms);

I* memme -- -—- %/
/* write final grid data to .GMF file

Uses exponential notation to comply with Mathematica

for plotting results.
*/

printf("writing grid minimization fit in .GMF file\n");

fp=fopen (minfitfile, "w");

1f (fp==NULL) {
printf(“"error opening minimization grid fit file: %s\n",minfitfile);
aexit (1);

for (row=0;row< NGRID ;row ++) {
for(col=0;col< NGRID ;col++) {
fprintf(fp, *"$-11.3e\n",glrow] [col].zq);

}

if (ferror(fp)) ({
printf("error writing grid minimization fit file\n");
fclose (£fp);
exit (1);

}
fclose(fp);

/* - - */
/* write final grid data to .GMT file

in which the polynomial piston, tip, tilt are put back in
*/

printf(*writing minimization fit with original tip and tilt in .GMT file\n"™):
fp=fopen (mintipfile, "w");
1f (fp==NULL) {

printf(®"error opening fit minus polynomial file: %s\n®,mintipfile):;

exit (1);

for(row=0;row< NGRID ;row ++) {
for(col=0;col< NGRID ;col++) {
sum=zero;
for(i=1;1i<=3;1++)
sum+=pcoef [1]) *poly(i,glrow] [col] .xg,glrow] [col].yg):
) fprintf(fp, "$-11.3e\n", (g{row] {col] .zg+sum));

}

1f (ferrorx(fp)) {
printf("error writing fit minus polynomial file: %s\n",mintipfile);
fclose (fp);
exit (1) ;

}
fclose (fp);

/* */
/* write final grid data to .GMD file

Uses exponential notation to comply with Mathematica.

Subtract a set of grid points first using a full file name.
*/

printf("reading subtraction file: %s\n",subfile):;
fp=fopen (subfile, "r");
1f (fp==NULL) {
printf(“"error opening subtraction file: %s\n®,subfile):;
exit (1);

for({row=0;row< NGRID ;row ++) {
for(col=0;col< NGRID ;col++) {
fscanf(fp," Se",&(temp{row] [col]));

}

if (ferror(fp)) {
printf(“error reading subtraction file: &s\n",subfile);
fclose(fp);

, exit(1);

fclose(fp):
printf("writing difference file: 8s\n",diffile);

fp=fopen(diffile, "w");
if (£p==NULL) {
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printf(®error opening grid difference file: %s\n",diffile);

exit (1l

|

}
for (row=0;row< NGRID ;row ++) {
for{col=0;col< NGRID ;col++)

sums=

zero;

for(i=1;1<=3;i++)

sum+=pcoef (1] *poly(i,q(row] {col] .xq,glrow] (coll.yq):
fprintf (fp, %-11.3e\n", (glrow] (col].zg+sum -templrow] [col]l));

}
if (ferror(fp)) |

printf("error writing grid difference file: Vs\n",diffile);

fclose
exit (1

(fp):
}s

fclose(fp);

/*

/* free memory space */

for(i=0;1< NGRID ;i++) free(g(i)):

free(qg);

for(i=0;1< NGRID ;i++) free(temp(i]);

free (temp);

free(f);

*/

/* LRSS RS2SRl 2R a2 22 s 2t dil ol sl s i sl 2] t/

float poly(int m,
i

switch(m)

case 1l:
break;
case 2:
break;
case 3:
break;
case 4:
break;
case 5:
break;
case 6:
break;
case 7:
break;
case 8:
break;
case 9:
break;
case 10:

break;
case 11:
break;
case 12:
break;
case 13:
break;
case 14:
break;
case 15:
break;
default:
) break;

}

w

return
return
return
return
return
return
return
return

return

float x, float y)

{float)l;
x;

y:

x*x;

x*y;

y*'y:
bbb ¥
xX*x*y;

xty*y:

return y*y*y;

return x*x*x*x;

return x*x*x*y;

return xX*x*y*y;

return x¥yty¥vy;

return y*y*y*y;

printf£("f subscript out of bounds\n¥);

float polyfit(float *pcoef, float x, float y)
{

int m;

float sum;

sum=(float)0;
for(m=l;m<=15;m++) (
sum+=pcoef [m] *poly(m, x,y) ;

return(sum) ;

}

YA

float RMSfit (void)
{

int i,rLL,cLL:

*/

*/
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double sum,zdiff,zval;

sum= (double)0;
for (1=0; i<npts;i++) {
rLL=f(i]).rLL;
cLL=f[1i].cLL;
zvals (double)g(rLL ](cLL ].zg*(double)f(i].wLL
+(double)g(rLL+1l] [cLL ].zg*{double)f[i}.wUL
+{(double)g[rLL+1] [cLL+1].29* (double) f (1] .wUR
+(double)g(rLL ]([cLL+1).zg*(double)f{i].wLR;
zdiff=(double) f(1i].z~-zval;
sum+=zdiffrzdiff;
}
return (float)sqrt{ sum/(double)npts );

}
/*

void move_grid_point (void)
{

int 1,1fp,rLL,cLL;
float avgdiff;

avgdiff=(float)O0;
for(i=0;1i<g[row)] [col) .nf;i++) {
ifp=g(row) {col]).fi(1]; /* index of fringe point
rLl=f{ifp].rLL;
cLL=f{1ifp]l.cLL;
avgdiff+= £(ifpl.z
-g{rLL ](ecLL }.zg*f(ifp].wLL
-g(rLL ] [eclLL+1l].2g*f[1fp].wLR
-g[(rLL+1] [cLL ].zg*f[ifp).wUL
-g[rLL+1] [cLL+1]) .2g*f{ifp] .wUR;

avgdiff/=(float)g(row) [col].nf;
) glrow] [col] .zg+= ZFRAC *avgdiff;
/*

*/

*/

/* smooth grid */

void smooth_grid(veoid)
{

float zsum,nsum;

printf(“smo ®);
for({row=0;row< NGRID; row++) {
for(col=0; col< NGRID ;col++) {
zsum=g [row] [col] .zg+g([row] [col] .zqg;
nsum=(float)2;
if(row>0) {
zsum+=g[row=-1] [col] .zg:
nsum+=(float)1l;

if (row< NGRID -1)
zsum+=g[row+l] (col) .2g;
nsum+=(float)l;

}

if(col>0) {
zsum+=g[row] {[col-1].2g9;
nsum+=(float)l;

}

if(col< NGRID -1) {
zsum+=g(row] [col+l] .zg;
nsum+=(float)l;

}

temp(row] {col]=zsum/nsum;
) }
for (row=0;row< NGRID; row++)

for(col=0; col< NGRID ;col++)
g(row] [col].zg=temp[row] [col];

}
/*

*/

/* optimize grid */
vold optimize_grid(void)
{

printf(®opt ");
for (row=0;row< NGRID; row++)
for(col=0; col< NGRID :col++) {
if(g(row] [col] .nf==0) minimize_surface_tension();
else move_grid point():

*/
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}
}
}
/*

/* Length of Grid Connections, L (actually returned as
float L{float z)
{

float zdif,Ltotal;

Ltotal=(float)0;

if(row>0) {
zdif=z~g[raw=-1] [col].zg;
Ltotal+=sqrt( (float)l +zdifvzdif );

}

if(row< NGRID -1) {
zdif=z~g[row+l) [col] .2g;
Ltotal+=sqrt( (float)l +zdif*zdif );

1f(col< NGRID -1) {
zdif=2z-g(row) [col+l] .2g;
Ltotal+=sqrt{ (float)l +zdifvzdif );
}
1f(col>0) |
zdif=z-g[(row] [col-1] .zg;
Ltotal+=sqrt( (float)l +zdif*zdif );
return Ltotal;

}
/%

L~2) */

/* Minimum and Maximum of surrounding points */
void zlimits(float *zmin, float *zmax, float *zavg)
{

float z,zsum,nsum;

/t
1f (row==20) {
printf(®"row=20\n");

*/
*zmin=(float)1l.0el0;
*zmax=(float)-1.0el0;
zsum=(float)0;
nsum=(float)0;
if{row>0) {
z=g{row-1] (col].2zqg;
Zsum+m=z;
nsum+= (float)l;
if (*2zmax<z) *zmax=z;
1f (*2zmin>z) *zminw=z;

}

if (row< NGRID =-1) {
z=g{row+l] (col] .z2g;
Zsum+=z;
nsum+=(float)1l;
if (*zmax<z) “zmax=z;
if (*zmin>2z) *zmine=z;

}

if(col>0) {
z=g[row] (col-1].2q9;
Zsum+=z;
nsum+=(float)l;
if (*zmax<z) *zmax=z;
if (*zmin>z) *zmin=z;

}

if(col< NGRID ~1) {
z=g[row] [col+l].2q;
ZSum+=z;
nsum+=(float)l;
if (*zmax<z) *zmax=z;
1f (*zmin>z) *zmin=2z;

}
1f(nsum> (float)0) *zavg=zsum/nsum;
else {
printf("nsum=0 logic error\n®):
exit(1);
}
}
/t

/* Minimize surface tension */

*/

*/

*/
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void minimize_surface_tension(void)

int niter;
float z,2zmax, zmin, zavg, znew;

z=g{zow] (col].zg;

zlimits (ézmin, &zmax, §zavg) ;
sfbrent (zmin, zavg, zmax,L, TOL ,éz,&niter);
glrow] [(col] .zg=z;
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/* ReadFng.c

reads the .FNG file containing the fringe positions in pixels
and converts them to a .NFG or Normalized FrinGe file
consisting of simple list of triplets: x y order

normalized to a -1 0 +1 square.

*/

/' (A2 SRR 2R 222222222 2222222222222 2222222030222 02222 t/
#include <stdio.h>

#include <string.h>

dinclude <process.h>

/' (A2 AR 22222222 R 22222 R 22222 2 R R R 222222222 20R 2 22 2 222222222222 i/

void main()
{

FILE *fp,*fpin,*fpout;

char basefilename(80],name{40},infile(80),0utfile(80];
float xnorm, ynorm;

int xi,yi,z,xmin, ymin, xwide, ywide;

printf("ReadFNG: reads .FNG file and normalizes positions\n"};
printf(®"base file name, d:\\fringe\\dat\\*.FNG assumed:");
strepy (basefilename, "d:\\fringe\\dat\\");

scanf ("%s", name) ;

strcat (basefilename, name) ;

strepy{infile,basefilename);

strcat (infile,".fng");

strcepy (outfile,basefilename);

strcat {(outfile,".nfg");

printf(“"reading file: &s\n",infile);

printf("writing file: %s\n",outfile);

fpin=fopen(infile, "r");

1f (fpine=NULL) {
printf("error opening input fringe data file: %s\n%,infile);
exit(l);

}

fpout=fopen(outfile, "w");

if (fpout==aNULL) {
printf (“error opening output fringe data file: %s\n",outfile);
exit (1);

}

/x —-- */

fscanf (fpin,”™ %d %d 8d &d™, &xmin, &ymin, éxwide, 6ywide) ;

fscanf(fpin,"8%d %d 8d",&z,exi,eyi);

while (z>=0) ({
xnorm=(float)-1 +(float)2*(float) (xi-xmin)/ (float) (xwide);
ynorm=(float)l -(float)2*(float) (yi-ymin)/{float) (ywide);
fprintf (fpout, "$-6.3£\t§-6.3£\t%d\n", xnorm, ynorm, 2z} ;
fscanf (fpin, "8d %d ¥d"~,&z,6xi,eyi);

}
fclose (fpin);
fclose (fpout) ;

/t (3222222322222 222222222 2222222322022 200 R2 02222 2 f22 22222222 222022t s 2] t/
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/* polyfit.c

fits a wavefront in the form of a power series in x,y to
a series of fringe positions

*/

/i (A2 2222022222222 2222222222 22220232222 222323022323222322222223220 8] I/
#define MP 135

#define NP 15

tdefine SKIP O

#include <stdio.h>
#include <process.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include "\nr\nrutilh.h"
#include *\nr\nr.h"

I* */
/* procedure declarations */

float poly(int m, float x, float y);
float polyfit({float *p, float x, float y);

/™ */
struct fringe

float x; /* x value of fringe point */
float y; /* y value of fringe point */
, float z; /* order of fringe (integral but float for calculation) */

float poly(int m, float x, fleocat y);

/i AEARR RN R AR AR R AL AR R AR AR RN ARACA RN ANANRRN RN RN AR RN AN A TN RS x /

void main{()
{

FILE *fp;
char basefilename[40]},name{12},1infile(80]},0utfile[80];

int 4,3,k,1,m,n,npts;
float wmax,wmin, *w, *b, *x;
float xval,yval,zval;
float **a,**y,**y;

float zero={float)C;
float sum,diff,rms;
struct fringe *f;

f=(struct fringe *)malloc((size_t)1000*sizeof(struct fringe)):
if (f==NULL) {
printf("error allocating fringe data space\n"):
exit (1l):
}
m=MP ;
n=NP;
w=vector (1,NP);
x=vector (1,NP);
b=vector (1,MP);
a=matrix(l,MP,1,NP);
u-matrix(l.MP.leP)f
vsmatrix(1l,NP,1,NP);
for(i=0;1<1000;1i++) ¢
f{i].x=zero;
£(i) .y=zero;
f(i].z=zero;

);

for(j=1;3j<=MP; j++) {
w(j]=2zero;
x[3j)=zero;
b(j]l=zero;

}
for(j=1;3<=NP;j++) {
for (k=1:k<=NP;k++) {
a[j) (k]=zero;
u(j] (k]=zero;
v(j] (k]=zero;
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/* v/
/* read fringe data
This section reads an arbitrarily long list of data triplets:
, x-position y-position fringe order
»

printf("PolyFit: reads normalized fringe positions .NFG file\n");
printf (" writes polynomial coefficient .POL file\n");
printf(“base file name, d:\\fringe\\dat\\*.NFG assumed:");
strcpy(basafilename, *d:\\fringe\\dat\\");

scanf ("As™, name) ;

strcat (basefilename, name);

strcpy(infile,basefilename);

strcat (infile,".nfg");

atrcpy({outfile,basefilename);

strcat (outfile,”.pol®);

printf(®"reading file: §s\n",infile);

printf("writing file: %s\n",outfile);

fp=fopen(infile,"r");
if (fp==NULL) {
printf(®error opening fringe data file\n");
exit (1)
}
i=0;
while{!feof (fp)) {
fscanf (fp, ™ $f Sf 8f",axval,&yval,&zval);
£fli).x=xval;
f(i].y=yval;
f(i).z=zval;
1++4;
}
npts=1i-1;
if (ferror(fp)) {
printf("error reading fringe data file\n");
fclose(fp);
exit (1),

}
fclose(fp);
printf("%d fringe points read from file\n",npts);

/% cwmmme——- */
/* generate matrix and column vector for minimization.

b is the column vector b_m = Sum i z_i*poly(m,x_i,y 1)}.

a is the matrix a mn = Sum_i poly(m,x_1i,y_ i)'pofy(n,x 1,y 1.

Note that a_mn =

Solve [[a]]Tx]-[b] for the coefficents [x].
*/

printf(“"generating matrix and vector for minimization\n");
for(d=1;4<=15;4++) {
sum=zero;
for(i=0;i<npts;i++) sum+=f([i].z*poly(3,£(1].x,£{i].y):
b{j}=sum;
for(k=1;k<=15;k++) |
sum=zero;
for(i=0;1i<npts;i++)
sum+=poly (3, £{i].x,£[1].y) *poly(k,f(1i].x,£{i).y);
af3] (k]}=sum;
}

}

/* */
/™ solve {{a)l]{x)={b] for the coefficents [x]. */

for (k=1;k<=MP;k++) for(l=1;1<=NP;l++) ulk][1l])=alk]{1l]);

printf("decomposing matrix\n®);
svdemp (u,n,n,w,v) ;

/* find maximum singular value */

wmax=(float)0.0;
for (k=1l;k<=n;k++) 1f (wlk] > wmax) wmax=w(k];
wminswmax* (1.0e-6) ;
for (k=1;k<=n;k++)
if (w{k}] < wmin){
printf("setting value %d of %g to zero\n",k,w(k]):
w(k]=(float)0.0;
}
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printf("begin backsubstitution\n®);
svbksb(u,w,v,n,n,b,x);

printf(®*solution vector\n\n®);
for(iel;i<=NP;i++) printf(™"sd: Sg\n",i,x(1)):
printf(®"\n");

/* - R e L LS D */
/* calculate fit error */

sum=zero;

for(i=0;1i<npts;i++) {
diffaf(i].z-polyfit(x,£f{i}.x,£{1).y);
sum+=diffr*diff;

}
rms=(float) sqrt ( (double) sum) / (float)npts;
printf("rms error= %g\n",rms);

/* -——- - */
/* write polynomial coefficlents to output file */

fp=fopen(outfile, "w");

if (fp==NULL) {
printf(®"error opening polynomial data file\n");
exit(1l);

}
for(i=1;i<=NP;i++) fprintf(fp,"%g\n",x[1i));
fclose(fp);

/* - */
/* clean up and go home */

free(f);
free_matrix(a,1,MP,1,NP);
free_matrix(v,1,NP,1,NP);
free matrix(u,1,MP,1,NP);
free_vector(b,1,NP);
free_vector(x,1,NP);

: free_vector(w,1,NP);

/* LA AR SRRl s a2ttt i s i i 232002 R 22 22 2R RRd 2] t/

float poly(int m, float x, float y)
{

switch(m) {
case l: return (float)l;

break;

case 2: return X;

break;

case 3: return y;

break;

case 4: return x*x;

break:;

case 5: return x*y;

break;

case 6: return y*y;

break;

case 7: return x*x*x;

break;

case 8: return x*x*y;

break;

case 9: return x*y*y;

break;

case 10: return y*y*y;
break:

case 1l: return x*x*x*x;
break;

case 12: return x*x*x*y;
break;

case 13: return x*x*y*y;
break;

case 14: return x*y*y*y;
break;

case 15: return y*y*y*y;
break;

default: printf("f subscript out of bounds\n");
break;

}

}
/* */
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floa: polyfit({float *p, float

int m;
float sum;

sum=(float)0;
for(mml;m<=15;m++) {
sum+=p(m) *poly(m, x,y);

return(sum) ;

x,

float y)

*/




