
* ,~

C12 SRL-12-F-1993

COMPACT LIGHTWEIGHT CO2 LASER
__ FOR SDIO APPLICATIONNam----

I 0 Prepared by

Dr. Stephen Fulghum
Dr. Jonah Jacob

SCIENCE RESEARCH LABORATORY, INC.
15 Ward Street DTIC

Somerville, MA 02143 ELECTE
(617) 547-1122 NOV2 41993

November 16, 1993 A
I PRELIMINARY FINAL TECHNICAL REPORT

I Period for July 1, 1990 to June 30, 1992

Contract Number N00014-90-C-0162

I l APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for original oontaind Col

OFFICE OF NAVAL RESEARCH plates; All DTIC reproduot-
800 North Quincy Street ions will be in blaok and
Arlington, VA 22217-5000 whiteo

"The views and conclusions contained in this document are those of the authors and should not be inter-

preted as representing the official policies, either expressed or inphied, of the Strategic Defense Initiative
Organization or the U.S. Government."

I

93-28678
I o Jntill,

DISCLAIMEi NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WITrE MICROFICHE.

Si Fo,,,s Av•w

REPORT DOCUMENTATION PAGE F" AAo. 7

Oa u ls.'Uq-gs ik't aq*~. I64aw PU. *watqigu r" tw IWfW*-s9 .s.~ UWMig =6

m.st eEan"mt- e.gW eq M*N. U.meg. IN 1,0 "bow we" 1 aNsleci. a ~ tW*,h, 5WI-5 4 Psu• U*4 kve 5'%~ UP, *,, a, W -llr i ifle~s Iwr _,,iU.m _ s.... SS -, _. '3 h_.•, w
€•,q*•qlW, . ',m. £4li..VA• U&I,3'13•.N. ailS me 0'iss ' ,aap51sP U4 Isiwl~. Is.w M• i • ,m•te&a'm.-suqm, m 1,q• Kuin

I1. A.,NC USE ONLY L.•iim .WI AT OATE R.P0iT T PI AN DATES €OVWU

11-15-93 Firal 7/1/90 t 6/30/92
4L TintL AND SUITITLI L FUNDING NUMBERS

Compact ightweight CO2 laser for SDIO Applicationy AA 9700400.2504 025
/RA464 0 068342 2D 63220C
16021000S40K R&T #s

6. AUTHOR(S) 400223sre01, FRC:s40k
Dr. Stephen Fulghum dtd 90 90OJAN 31 (SDIO
Dr. Jonah Jacob Funds)

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 1. PERFORMING ORGANIZATION

Science Research laboratory, Inc

15 Ward St. SRL-12-F-1993
I Somerville MA 02143

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADORISS(ES) 10. SPONSORING / MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Department of the Navy
800 N. Quincy Street
Arlington, rA 22217

11. SUPPI.EMENTARY NOTES

I 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. OISTRIBUTION CODE

A;pproved for Public Release: Distribution Unlimited

13. ABSTRACT (Mairmum 200 words)

I SRL has combined two all-solid-state pulsed power generators based on SCR-commutated
nonlinear magnetic pulse compressors with low-pressure, conduction-cooled, CO2 laser cavities
in a program to produce high repetition rate laser systems without the weight penalty of flow
loop cooling. The first CO2 system used a transverse discharge, rectangular slab geometry, laser
amplifier matched to the 10 Hz, SRL COLD-I solid-state pulser. Visible interferometric probes of
the slab geometry laser medium showed the characteristic cylindrical wavefront error expected of
a uniformly heated slab cooled at its walls. Conduction cooling of the 2.4 cm slab was sufficient

I to dissipate the thermal energy deposited by a single pulse dissipated to below the measurement

level within 100 ms (10 Hz). The second CO2 system used a longitudinal discharge, cylindrical
geometry, laser amplifier combined with the new SSLAM-VIII pulser which produces 72 KV,
30 J pulses at up to 5 KHz. The longitudinal laser output power typically peaked at 50 Hz since
the heat load from higher repetition rates could not be dissipated sufficiently rapidly from the
4 cm diameter discharge. Due to an impedance mismatch the maximum single pulse energy in
steady state operation was 350 mJ (18 W average power). A circuit to provide proper matching
has been designed but has not yet been implemented.

14. SUUJECT TERMS IL. NUMER OF PAGES
so.-I 5

I& PRICE CODE

17. SECURITY CLASSIFICATIO . SECURITY CLASSIFICATION .CLASSIFICATO 20. UMATION OF ABSTRACT
OF REPORT OFTn AEI OF AASTRAI on

unclassif ied Unclassif ied UnclassfldNn
NSN 75-:0-01- 80-5500 Standard Poent 29$ (Rev 2-09)

"43-"icecs by ANSIits 0W1.16

..I

I
I
I

TABLE OF CONTENTS

ISection

I INTRODUCTION 3

1.1 Overview 3

1.2 Project Goals 3

1.3 Summary of Results 4

I 2 TRANSVERSE DISCHARGE SYSTEM TESTS 5

2.1 Laser Design Summary 5

2.2 Interferometric Probe Design 7

2.3 Interferometric Probe Data 7

3 LONGITUDINAL DISCHARGE SYSTEM TESTS 15

U 3.1 SSLAM-VIII Pulsed Power System 15

3.2 Laser Design Summary 15

3.3 Conduction Cooling in a Cylindrical Geometry 19
3.4 Optimization of the Laser Output Power 21I Accesion For

NTIS CRA&I
DTIC QUALITY INSPECTED 5 DTIC ITis_ Ell

Justhf~cat,cn
I B y

* By
Dist;: b,,u oc:, i

Dst

II
I

2

I SCIENCE RESEARCH LABORATORY

I
I

1. INTRODUCTION

1.1 Overview

Science Research Laboratory has developed a family of all-solid-state pulsed power gen-

erators featuring levels of efficiency, reliability and power density far above what had been

previously obtainable. A common feature of these systems is SCR-commutated nonlinear mag-

netic pulse compressors. Using SCRs rather than the more traditional thyratrons decreases

system weight and volume while providing a significant increase in reliability. Pulsers using this

technology have demonstrated lifetimes of 1010 shots.

The primary objective of this SBIR is to find ways of combining these pulsed power systems

with new forms of CO2 laser amplifiers as the first step in the development of a new family of

COQ laser radar systems suitable for space-based applications. The CO2 lasers investigated in

_I this SBIR feature conduction-cooling of the laser mixture rather than the more typical flow loops

and heat exchangers. Conduction cooling has significant size, weight and system complexity

advantages which complement those of the all-solid-state pulsed power.

1.2 Program Plan

In this SBIR we built two forms of conduction-cooled CO 2 lasers matched to separate

forms of SRL's solid-state pulsers. The first system uses a spark gap preionized, transverse

discharge, rectangular slab geometry laser amplifier matched to an existing solid-state pulser

(COLD-I). The laser medium in this slab system was interferometrically probed with a pulsed

laser to test the effectiveness of its conduction cooling. The second system uses a longitudinal

discharge, cylindrical geometry laser amplifier powered by a new pulsed power system (SSLAM-

VIII) capable of inch higher output power. This new pulsed power system features separate

S E3

I- SCIENCE RESEARCH LABORATORY

I

I modules which individually produce 12 kV, 5 J pulses but which can be stacked to provide the

I 72 kV, 30 J pulses required for the longitudinal discharge. The output power of this second

system was optimized by varying laser gas mixtures, pressure and pulse repetition rate.I
1.3 Summary of Results

The interferometric measurements on the transverse discharge, slab geometry lasers showed

I that the thermal energy deposited by a single pulse dissipated completely within 100 ms. This

means that, with actively cooled walls, the system could be run continuously at 10 Hz without

the heat from one pulse affecting the next. At 50 ms the interferometric path error was only

a small fraction of a visible wave. The test fringes showed the characteristic cylindrical error

expected of a slab which is heated uniformly and cooled at its walls. This indicates that the

I system could have been run at 20 Hz with only a small effect on laser beam quality. The existing

pulsed power supply repetition rate, however, was limited to 10 Hz.

The longitudinal discharge, cylindrical geometry laser was run successfully at repetition

rates of up to 100 Hz. Its average output power typically peaked at 50 Hz, depending on the

gas mixture and pressure. The 50 Hz practical limit was expected as calculations had indicated

I that the core of the discharge would be heated excessively above that rate. The efficiency

of conversion from energy deposited in the discharge to laser output energy also varied with

gas mixture and pressure but could be brought up to about 20%. The maximum pulse energy

obtained, however, was only 350 mJ for a maximum average power of 18 W. The essential

problem is that the optimum load for the SSLAM-VIII pulser was measured to be about 4 Q

I whereas the typical discharge impedance ran in the 200 to 400 Q range. A likely solution to

this problem has been suggested but not yet implemented.

4

I SCIENCE RESEARCH LABORATORY

I

I
I

2. TRANSVERSE DISCHARGE SYSTEM TESTSI

2.1 Laser Design Summary

While the new SSLAM-VIII pulsed power system was being built for this project, tests

of conduction cooling were performed on a different CO 2 laser prototype. These experiments

utilized a new version of a conduction-cooled, transverse discharge, slab geometry CO2 laser sys-

tem. An earlier version of this system had been produced under a previous contract(') but proper

I tests of its medium quality had not been completed. This report will describe interferometric

tests of the laser medium quality for the new version of the slab geometry, conduction-cooled

laser.

U Both lasers utilize a cylindrical housing to contain both the discharge electrodes and the

low pressure (30 Torr) laser gas mixture required for conduction cooling. Two glass plate

walls separate the discharge electrodes and serve to constrain the discharge within the enclosed,

rectangular slab volume. In both systems the dimensions of the active volume were 13.5 cm

in the direction of the discharge, 2.4 cm between the two glass plates and 100 cm along the

optical cavity axis (a total of 3.2 liters). The distinctive slab geometry of this laser results from

the requirement that heat produced in the discharge be carried by conduction to the laser walls.

-- Figure 1 shows a photograph of the discharge produced by the new system along with a number

of the discharge parameters. If the walls are too far apart the heat cannot be dissipated before the

next pulse. If the walls are too close the total gas volume is insufficient to provide the required

energy per pulse. A detailed discussion of the constraints for a conduction-cooled system are

given in the proposal for this Phase II SBIR.(2)

The new version of the system employed several improvements over the original design.

The first version of the laser had utilized a large number of individual cables feeding through

5

SCIENCE RESEARCH LABORATORY

C'ONDUCTION COOLED 002 LASER. DISCHARGE

A~i~ he \innie 2.4 x 13.5 x 100 cm3V

F.:Ic(I Oic 1.sp)di~lc g 13.5 cmIi

N)schiaiige I 1ulsc LenlgthI 3 /is

lot al (w Pi- 'ess-iii c 30 Toni

Figure 1

6 ~ tIVINrT NSP.ANCH L.ABORATORY

I

I the cylinder wall to power the spark gap preionizers spaced along one of the electrodes. Those

cables tended to leak which compromised the laser gas purity. The new version of the system

utilized only two cable feedthroughs and each spark pin is individually ballasted.I
2.2 Interferometric Probe Design

The physics of the conduction cooling process is sufficiently straightforward that its lim-

I itations were well understood. The interferometric tests on the laser medium were primarily

designed to address the question of whether or not there would be high order distortions due

to residual sound waves or shock waves in the medium left over from previous shots. An

interferometric probe was built to test for these distortions.

The interferometric diagnostic consists of a Mach-Zehnder interferometer and a spatially

filtered, pulsed dye laser probe beam. The dye laser pulse length is only 3 ns so the interferometric

probe is a "snapshot" of the state of the laser medium at the time of the probe. A digital delay

generator was used to sweep the time (f the probe laser relative to the CO2 laser discharge

on successive shots. A CCD camera and digital framegrabber was used to record the fringes

produced. The wavefront which bests fits these fringes was determined with an algorithm

I developed at SRL. This algorithm, presented in the Appendix, calculates a wavefront defined

over an NAN grid. A minimum surface area constraint on the fit wavefront defines those grid

values which are not directly determined from the fringes.

I
2.3 Interferometric Probe Data

Figure 2 shows a partial set of the fringe data taken. Figures 3 to 7 show the wavefront

I obtained from these fringes using an iterative, grid fit algorithm developed by SRL (listed in the

I Appendix).

The top graph in Fig. 3 shows the fringes taken just before a discharge pulse with a wall

temperature roughly equal to the initial gas temperature. It takes a few microseconds for the gas

7

I SCIENCE RESEARCH LABORATORY

t=0 12 its

20 its 50 its

50 Ms 95 rns

II

I SCIENCE RESEARCH LABORATORY

I vwarm walls

I
C €InOS O2S

I.,
1.2

Im icrons 20

0 . 5
1

I(0

I 2

+12 microseconds

I2
1.?

microns m e

I 1.

I Figure 3: Optical Path Difference (OPD) for a single pass through the

I medium taken immediately following the discharge.

I
9

S E N R E S E A R CHm L A B O R A T O RYmm m mm m

I +50 uticroseconds

I +100 mirosecond

+100 microseconds

* ~1.50

0 5O5ps.

20I SCENCERESERCH ABORTiR

+300 microseconds

I2

+2. millisecond[] microns 1

202

(10

* +2 milliseconds

I2

I 1.5

microns 5 Tuat

0.20

0 10
10 50-2

---- by stored energy flowing out of vibrational modes.

l! SCIENCE RESEARCH LABORATORY

I +4 milliseconds

I2
1.

+6 millisecondsmicrons 1

2 C
m 0. 5t115

I(10

+10 milliseconds

I .1.

microns__ _ __ _

m Figure 6: At a 10 mns delay (100 Hz) there is still a 1 pm single pass
OPD which would add to the error of successive 100 Hz

120

I S EEls sAR LB AO

12 SCIE~NCEREEACLBOATR

I*+20 minlliseconds

II
microns0.

0.2• 150
•0 10

I

+50 millisecondsI,

0.8

micronrs"

S~+95 milliseconds

I

I 0.
microns

0. 2

1 1 2 o

Figure 7: The OPD at 20 ms (50 Hz) is only about 1/20 th of a CO2
laser wavelength. At a 10 Hz delay the error was not mea-
surable with this system.

I
SCIENCE RESEARCH LABORATORY

I

I heated by the discharge to expand. The optical path difference (OPD) thus does not reach its

maximum value for about 50 is. In the 1 ms time range the OPD is complicated by what appears

to be cooling in the center of the discharge channel. This effect is likely caused by energy stored

in vibrational modes of the gases involved and, although interesting, does not affect the laser in

any practical way. The OPD at 20 ms shown in Fig. 6 is the error which the laser pulse would

see on the next pulse at a 50 Hz repetition rate. The error of successive pulse add so that the

error on the third pulse at 50 Hz would be about the error at 20 ms plus the error at 50 ms. The

total error at 50 Hz would thus still be below 1/10 of a wave at the CO2 wavelength. The slight

rise in temperature in the center of the cavity will cause the discharge to strike preferentially at

that point. This feedback effect was noted in the longitudinal laser system to be described in the

I next section.

The transverse discharge slab laser could only be fired at a maximum rate of 10 Hz due

to the choice of capacitors used in COLD-I. The OPD error at 95 ms shown in Fig. 7 was

essentially at or below the measurement limit of the interferometer used. This means that the

transverse discharge system always appeared to be running in the single pulse mode as far as

the laser medium quality was concerned.

The experimental plan was to continue the measurements on the longitudinal discharge,

conduction cooled laser system which could be run at 100 Hz and above. In practice, however,

the efficiency of the energy deposition in the longitudinal discharge was too low to provide a

good test of the conduction cooling in that geometry.

1

14i SCIENCE RESEARCH LABORATORY

I
I
I

3. LONGITUDINAL DISCHARGE SYSTEM TESTSI
3.1 SSLAM-VIII Pulsed Power System

The decision to develop a longitudinal discharge laser system was prompted by the sig-

nificant advantages of the SSLAM series of pulsed power generators over more conventional

systems. These pulsed power supplies are nearly indestructible, require an input voltage of only

600 V and can operate continuously at 5 kHz. In the SSLAM series a high voltage is induced on

an isolated conducting rod using techniques borrowed from induction accelerators. The resulting

power supply can be built in a modular fashion with successive modules simply adding another

I step in voltage. A longitudinal discharge requires these high voltages and is thus an obvious

E candidate for the application of this system.

Figure 8 shows a single SSLAM-VIII module which can produce 5 J pulses at 12 kV at

I repetition rates of up to 5 kHz. The module measures 7 inches in height by 17 inches in width

and 28 inches in depth and weighs 39 kg. Figure 9 shows a close up of the two induction rods

in each module and how they are connected in series to produce a total of 12 kV. Figure 10

I shows the rack panel containing six 12 kV modules which produces a total pulse energy of 30

J at 72 kV.I
32 Laser Design Summary

To match the high voltages which could be obtained from SSLAM-VIII, a longitudinal

I discharge laser was designed. The discharge cell consists of a 100 cm long thin wall glass tube

I with a 4.13 cm inside diameter. The voltages available from SSLAM-VIIl are sufficient to break

down the gas at pressures of up to about 30 Torr, which are also the pressures appropriate for

conduction cooling.

15

I SCIENCE RESEARCH LABORATORY

I T0

0-

I Ilk
U wp

4Lw

16.

U
1 0

0

* S
z
UI aU w

.1-s- , w
U

I zI w

U)I if I!
I -

*
I *ii�
I £4
* oo3

I Ii
I

.f.
4

I

N
3 17

I a

..I

il "II' B

U

I The ends of the tube are fitted into cylindrical electrodes which also serve to retain ZnSe

windows to seal off the system. The SSLAM-VIII power supply modules were connected to

supply a potential of +35 kV to the electrode at one end of the discharge and -35 kV to the

electrode at the other end. A grounded ring near the electrodes at the ends of the cavity, but

outside of the glass tube, served to break down the gas near the electrodes at the beginning of

I the pulse and thus initiate the full discharge.

The laser gas mixture was fed into the laser cavity through the electrodes at one end of

the cavity and extracted through a bleed valve at the other end. Generally the laser mixture was

not circulated in these tests. The system was also only run in bursts of up to several thousand

pulses to avoid significant heating the walls of the discharge tube.

3 3.3 Conduction Cooling in a Cylindrical Geometry

Since the original design(2) had considered a slab geometry it is worthwhile to recalculate

the effects of conduction cooling for this cylindrical geometry. The general steady-state equation

for the temperature T in a gas of conductivity x heated at a rate Q (power per unit volume) is

V - (VT)= -Q (1)

In general, both Q and x (which is temperature dependent) can be functions of position in the

U gas.

In a cylindrically symmetric geometry, Eq. (1) reduces to

1 rdr =-Q (2)

I where r is the radial position (0 < r < R).

3 Eq. (2) can be solved numerically for a given heating-rate distribution and temperature-

dependent conductivity. A simplification occurs if both Q and x are independent of r; for this

3 case an analytical solution may be obtained immediately. One has

dT Q r
dr Xc2

19

3 SCIENCE RESEARCH LABORATORY

I

I Let T. = T(R), the wall temperature. Then

iT(r) - T,,=,.4• (R 2 - r 2) (3)

4x

and thus the maximum temperature obtained, Tmaz = T(O) is

Tmaz=T T, +-2D2 (4)
16r.

3 where D = 2R is the inner diameter of the tube.

It is interesting to compare this result with the maximum temperature in a cell having a

rectangular cross section of dimensions d x d' in the limit d < < d. In that limit the conduction

to the walls separated by d dominates, and the conduction to the walls separated by d' may be

I neglected. For the same heating rate Q the result, easily obtained from Eq. (1) is then
Tmax = Tw + £d2 (5)

8K

3 Thus as far as maximum temperature increase is concerned, a tube of circular cross section and

diameter D is equivalent to a tube of rectangular cross section and small-wall separation D/v'/.

This result is reasonable: the cylindrical tube has more nearby surface area through which the

heat can flow than a rectangular-cross-sectional tube with the same wall separation.

Since the volume cf the heated cylinder is

where L is the length of the cylinder, the maximum temperature rise of the cylinder may be

expressed in terms of the total heating rate

QT = VQ = irR2LQ (6)

las follows:

Tmaz - Tw = 4rL (7)
47rK.L

In addition, the total heating rate may be related to the laser power P and efficiency E (defined

I as the ratio of the optical power extracted to the electrical power pumping the laser gas) by

QT = (1(-))P

20

3 SCIENCE RESEARCH LABORATORY

I(9

so that

• ~TMoZ - TW - TI-)P(9)

For a 3:2:1 He:N 2:CO 2 mixture typical of a CO2 laser, the conductivity is - 1 x 10- 3

W/cm *K. Thus for a cylindrical tube of length L, laser power P and efficiency e the steady-state

temperature rise at the center is

TM - T, =- 8 0 (1l- e)P (10)
IeL

where P is measured in watts and L is measured in cm.

Consider for example a CO2 laser of length L = 100 cm, average power P = 20 W and

efficiency e = 10%. According to Eq. (10), the maximum time-averaged temperature rise is

AT = 180 0 K

3 Temperatures on this order, of course, will drop the gas density on the longitudinal axis to

about 0.6 of the gas density at the wall. The discharge will then preferentially pump the laser

mixture on the axis. This effect was observed in the experiments described below.

I 3.4 Optimization of the Laser Output Power

Figures 11 to 14 show the voltage and current through the longitudinal discharge at pulse

repetition rates of from 20 Hz to 100 Hz. In all of these particular cases the laser gas was 1:1:8

mixture of C0 2:N2:He and only the data for the 30th pulse in a burst of 30 is shown.

The voltages were measured with an optically isolated probe consisting of an LED trans-

mitter attached between the two discharge electrodes in series with a 2 MQ current limiting

-- resistor. The light output from the LED is proportional to the current through the LED and thus

to the voltage across the discharge. The LED was coupled through an insulating optical fiber to

a fast photodiode receiver. The entire probe was calibrated with fast, high voltage pulses from a

3 known source. The current was measured with a fast Pearson current transformer which is also

21

I1 SCIENCE RESEARCH LABORATORY

Longitudinal Laser Discharge, 20 Hz
70 I '. 350

60 i I 1:1:8 mix 300

20 Torr

50 20 Hz 250

80%R
S40 VOLTAGE 200<

0 150 M

I 0

' I ' ' I . .I . . .I . . . 8"

15 30th PULSE 150
7I INPUT POWER

INPUT ENERGY

-~10 5> 100

I L..

/ LASER OUTPUT: CCL

O15 0.178J 50
- ~3.6W

/ 3.4% 03

i c2u09008
0 / 05511 I0

I0 1 2 3 4

Time (is)

Figure 11: Voltage and current waveforms for a typical laser gas mixture
-I and pressure at a repetition rate of 20 Hz.

22

I SCIENCE RESEARCH LABORATORY

Longitudinal Lasur Discharge, 30 Hz
70 -•_F 300350

6j 1:1:8 mix 300
_1 20 Torr

50 30 Hz 250

5 80% R
.2 40 VOLTAGE 200 <

asm30 15 (D
0I15

>20 100

10 CURRENT . 50

0 . -... 0

....15.. I.1 8

15 30th PULSE00

INPUT POWER
2

INPUT ENERGY

10 5_ 1500
ACD

0 LASER OUTPUT: 100 C
0Y) 3~

5 0.265 J
S8.0 W 2

5.1% 50

U ~c2u19007 /1
0 c 19007 /1 0 0I ,I I . . I , p I I I , , , "

0 1 2 3 4

Time (i•s)

Figure 12: Voltage and current waveforms for a typical laser gas mixture
and pressure at a repetition rate of 30 Hz.

23

SCIENCE RESEARCH LABORATORY

I
I
I Longitudinal Laser Discharge, 50 Hz

70 , 350

60 1:1:8 mix 300
I 5_ 520 Torr

50 I'50 Hz 250
I>I 80% R

40_I 200 <

I 30 VOLTAGE 150 (

>20 - 100

CURRENT "

0 1^r 0
.. II . 8 - 400

15 30th PULSE 7

INPUT POWER

INPUT ENERGY - 0

10 5 > 5

4200 L
o LASER OUTPUT: I C-L3 S

""a 0.118J (0

o5.9 W 2 0
I 2.3% a•w2. lO

C20190050 0 0I, i i i, I , I I , I 0 0
0 1 2 3 4

I Time (gs)

Figure 13: Voltage md current waveforms for a typical laser gas mixture

and pressure at a repetition rate of 50 Hz.

I
I4 SCIENCE RESEARCH LABORATORY

I
I

Longitudinal Laser Discharge, 100 Hz
I 70 ' I . . 350

60 1:1:8 mix 300
II 20 Torr

50 100 Hz 250

I >4Q I80% Rz
40 200<

c 30 150 2
VOLTAGE

I 20 100

10 / 50

0 Moe"•' , ,, , , , , , , , ,•, , , , 0

I I . . . 8 800
15 30th PULSE

7 700

6- 600~
INPUT POWERI10550 ININPUT ENERGY (DI •4QQ....I & 0.

nO • •4 400

L ALASER OUTPUT: 3O-M/ .015J 3 300
0200

as0.01% J

1 100 <

, I 7 ,..., I , , I I I a I , I I i

0 1 2 3 4

Time (jis)

Figure 14: Voltage and current waveforms for a typical laser gas mixture
and pressure at a repetition rate of 100 Hz.

I
25

I SCIENCE RESEARCH LABORATORY

I

I isolated from the discharge circuit. Both the current and voltage waveforms were digitized at

I 100 MSamples/s with a Lecroy oscilloscope and stored for later processing. The input power

and input energies shown on the lower graphs are calculated from these voltage and current

waveforms. A separate digital scope stored the energy of the laser pulse as measured by an

integrating pyroelectric joulemeter.

A total of 31 successive pulse waveforms and energies were stored for each run, starting

I with the first trigger to the SSLAM-VIfl pulser. The first trigger pulse does not result in a

discharge since the SSLAM-VIII system uses a resonant charging system. The first pulse is thus

I only at half voltage and the gas does not break down. The wall temperatures before each run

were nominally at room temperature and the walls were sufficiently thick that they did not heat

I significantly during the run.

At low repetition rates the gas cools sufficiently for each pulse to be independent, except

for a slow energy decay due to the dissociation of some of the CO 2. Figure 15 shows the

I energy for each pulse in the 30 pulse series at the repetition rates illustrated above. At higher

repetition rates the behavior of the first few pulses is generally erratic, exhibiting higher energies

but sometimes skipping pulses.

In all of these cases the voltage typically rises to 20 to 30 kV before the discharge is

initiated. The current spikes for about 150 ns and then falls back to a more or less steady

state value for about 1 ps. About half of the energy transferred to the discharge occurs during

I the initial voltage spike when the discharge impedance is below 100 fl. The impedance rises

following the initial current spike to about 1000 S1 and then drops again to around 200 Q for

most of the rest of the discharge. Tests on the SSLAM-VIII pulser show that it is best matched

to much lower impedances of about 4 Q. This is the reason that the total energies transferred

I to the discharge are typically only about 5 to 6 J rather than the 30 J that the pulser can deliver

I to a matched load. It is likely that the overall efficiency of the system could be improved by

effectively pulse charging a local energy storage capacitor attached to the discharge tube. TheI
26

I SCIENCE RESEARCH LABORATORY

I
0. Energy vs. Pulse Position

0.6

NO DISCHARGE ON FIRST TRIGGER 20 Hz
0.4 -WITH RESONANT CHARGING

0.4

1I0.2

0.6 30H

0.4

- ~0.01-1 1 10 I.i L
i 0.6

C:
W 0.4 DISCHARGE FAILS TO STRIKE 50 Hz

* 0.2

0.6 -

0.4 100 Hz

I 0.2-

0 5 10 15 20 25 30

I Shot Number in Burst

Figure 15: Energies for each laser pulse resulting from 31 successive
triggers to the SSLAM-VIII pulsed power system.

I
27

I SCIENCE RESEARCH LABORATORY

I

I charging would occur through a string of high voltage diodes which would block the return

current when the SSLAM-VII voltage pulse drops back to zero. We were not able to implement

this fix before the end of the contract, however.

I The voltage and current traces are essentially independent of the repetition rate of the

discharge. This is not the case for the laser energy. Pulse energies peak at the 30 Hz repetition

rate as shown in Fig. 15. At repetition rates above 20 Hz the discharge appears to stick close

to the walls of the glass tube for the first few shots and then concentrate near the center of the

tube after the gas has heated up. Above 30 Hz the steady-state pulse energies drop rapidly,

I presumably due to heating, so that the total laser power also peaks at 30 Hz. The maximum

average power observed from this gas mixture was 8 W. Other mixtures gave peak average

powers of up to 18 W at 50 Hz.

Figure 16 shows the effects of varying the gas fill pressure at the constant repetition rate

of 30 Hz. The energy transfer to the discharge peaks at 25 Hz although the laser pulse energy

I continues to increase up the maximum fill pressure of 35 Torr. Above 35 Torr the discharge

was erratic with high voltage breakdown occurring at the output terminals of the pulsed power

supply.

Additives to the gas mixture, such as Xe, were tried, without much success, to see if the

impedance of the discharge could be significantly lowered. Figure 17 shows the effect of adding

water vapor to the gas mixture (which, in this case included 1% of Xe). The water vapor does

decrease the fluctuations in the laser output energy and decrease the slow rate of energy decay

observed.I
I
I
I

28

I SCIENCE RESEARCH LABORATORY

I
I
5 Energy vs. Gas Fill Pressure

4 1 j1r1-1rF 0.6

--20 . 0.5 15

I 3I o3
¢) - 0.4

15 I 0D

cd0 0~ (D 102 0.3 ,, CL

S10 c.

AO5 (V

0 W DISCHARGE UNSTABLE 0.1 0

025 30 35

25 1 I 1 I 1 I

S.30 Hz

o, 20 1:1:8 C0 2 :N 2 :He

15

0 10

(1)
>C

0 5

0 I I I I I . I I I

j 15 20 25 30 35

Gas F ll Pressure (Torr)I
Figure 16: The laser efficiency and output power rises with gas pressure

until the discharge fails to strike.

I
29

I SCIENCE RESEARCH LABORATORY

I

Effect of Water Vapor on Pulse EnergyU I 1 I ! ! ! I I I1 I I I I I I

c2u23008

0.3 WITHOUT WATER VAPOR

1:1:8:0.1 C0 2:N2:He:Xe

5 30 Hz

0.2

0 0.1 1

0 .0

50 20 40 60 80 100 120

c2u23009

0.3 WITH WATER VAPOR

0.3 Torr, I%

. 0.2-

>-
L..

0.1

0.0

0 20 40 60 80 100 120

Shot Number in Burst

Figure 17: Adding water vapor to the discharge decreases the slow rate
of the decay in pulse energy.

I
30

I SCIENCE RESEARCH LABORATORY

I
I
I
I

REFERENCES

I 1. J. Jacob, S. Fulghum, and H. Manning, "New Discharge Pumping Method for C) 2 Lasers",

Phase U Final Report on Contract #DAAHO1-88-C-0138

2. J. Jacob, "Compact Lightweight CO2 Laser for SDIO Application", Phase H proposal

I submitted August 15, 1989.

I
I
I
I
I

13

II

i

I
I 31

I SCIENCE RESEARCH LABORATORY

I
U
I
I

APPENDIX

I
I
I
I
I
I
U
I
U
I
I
I
U
U

SFilM: pdfi•.c Pop: 1

Mdefine NFRINGE 1200
*define NGRID 41#define WPASS 10
#define NOPTIMIZE 8

#define NSTPOINTS 22
#define ZFRAC (float)0.2
#define TOL (float)5.0e-5

I GridFitZ.c Vl.0 22May92 S.F.Fulghum Science Research Laboratory
This version utilizes a true minimization of the surface rather

than an average.

This version subtracts the polynomial fit of piston, tip and tilt
from the INPUT DATA, BEFORE proceeding with the minimization fit
and initializes the grid with the polynomial fit without
piston,tip,tilt.

Calculates a wavefront from standard Mach-Zehnder fringe data
over an NGRID x NGRID grid using a minimum surface area constraint

Ito define the values at grid points not fixed by data.

Fringe data is stored in the structured array fli] of type fringe
which contains the fringe x,yz data, the location of the grid
in which the fringe point is found and the interpolation
weights which determine the surface value in terms of the values
at the four corners of the grid, LL,LR,UL,UR;

Grid data is stored in the 2-D array g[row](col] of type grid
and is accessed through pointers to each row of the array
in the style that Numerical Recipes uses for arrays.I g~row](col] contains the x,y and z values of the grid point,
a Boolean type as to whether or not the grid point is inside the
aperture of the data (i.e. for round or rectangular apertures),
the number of fringe points affected by changes in this grid value
and a structured array (type gridfringe) with information about
the fringe points affected by this grid point.

The type gridfringe has two elements, the first of which is

the integer index of the fringe data point in question and
the second of which is the weight the fringe point in question
plays in the determination of the grid point value.
In this program rows increase from the bottom of the aperture

to the top of the aperture and
columns increase from the left to right so that
Icol-0 -> x--1 to col-NGRID-I -> x-+l;
row-0 -, y--1 to row-NGRID-- y-+l;

INPUT FILES:
.NFG is the normalized fringe data output from READFNG
.POL is the polynomial fit coefficients from POLYFIT

OUTPUT FILES:

.GPF is the polynomial coefficients (without piston, tip, and tilt)
as calculated at the grid positions.

.GPT is the polynomial coefficients including tip and tilt
evaluated at the grid positions.

.GMF is the minimization fit to the original data (from which
the original tip and tilt had been subtracted). Note that
any additional tip and tilt resulting from the minimization
remains in this data. (possibly should be changed)

".GMT is the minimization fit with the original tip and tilt
added back in so that fringes can be calculated.GMD is a difference filt between the .GMT file and
a reference .GMT file.

The .GMT output file contains the minimization fit (to data from which
piston, tip and tilt had been subtracted) with the original tip and
tilt put back in. If GRIDFITS is run on a null shot, it will generate
a .GMT file suitable for use as a reference surface.

The .GMD file is the DIFFERENCE between a .GMT file and a REFERENCE .GMT
• file so that an added aberration can be datermined which INCLUDES

any added tip and tilt.

I
U

File: rkidz.c Par: 2

|"'1

*#define TRUE 1
#define FALSE 0
#include <stdio.h>
#include <process.h>I #include <malloc.h>
#include <math.h>
$include <string.h>

S~/5 ttt*ttlt**t**i*****t***5****..***..**.***t.*****t...*ttt.ttt*t*.tt** 5/

I/ function declarations 5/

float poly(int m, float x, float y);
float polyfit(float *pcoef, float x, float y);
float RMSfit(void);
void move grid point(void);
void smooth qrid(void);
void optimize grid(void);
float L(float-z);
void zlimits(float *zmin, float *zmax, float *zavg);
void minimize surface tension(void);
float sfbrentlfloat aR, float bx, float cx, float (*f)(float x),

float tol, float *xmin, int *niter);

/* Global Variables

These structures contain the input fringe positions and orders,
the grid values, the information as to which fringe points are
affected by each grid value and the constants required for
interpolating the surface between the grid points at the positions
of each of the input fringe data points.

'/

struct fringeUfloat x; / x value of fringe point
float Y; /* y value of fringe point 'I
float z; /' order of fringe (integral but float for calculation) 'I
int rLL; /* row of LL corner of grid square containing the point 'I
int cLL; /* column of lower left corner */
float wLL; /I weight of LL grid value for the x,y value of the point */
float wLR;
float wUL;
float wUR;

struct grid

float xg; /* x value at the grid point */
float yg; /* y value at the grid point '/
float zg; /* z value at the grid point (the final output) '/
int in; /* 1 if inside the aperture, 0 if outside */
int nf; /* number of fringe points affecting grid point 'I
int fi[NPOINTS]; /* vector of fringe indices *I

struct fringe *f;
int npts;
struct grid **g;
float **temp;
int rowcol;

void main()

FILE *fp;
char basename[40],name[40],infile[80],polyfile[80].polyfitfile(80];i char polytipfile[80],minfitfile[80],mintipfile[80];

char subfile[80],diffile[80];
int i,j,rLL, cLL, nf, ifp,maxnf;
int ipass, iopt, ismooth;

size t vecsize;
float delta,xgyg,xmin,ymin,xmax,ymax, frLL, fcLL,u,v,wfp;
float zero-(float)0;
float two-(float)2.0;
float one-(float)l.0;

float sum.diff,pcoef(16];I
U

U ~ ~File: pidflmc Pm.. 3

float rms.rmaSpol,rmaO;
float avgdiffO,avgdiff;
float aLL,., z 1zULzUR:
float wLLwLR,wUL, wUR;
float gsub;

/I get filename: */

printf("enter normalized fringe filename, d:\\fringe\\dat*.NFG assumed\n");
strcpylbasename, d:\\fringe\\dat\\");
gets(name);
s~rcat(basename,name);
printf("\n");

/* input data file of normalized fringes '/
strcpy(infilebasename);
strcat(infile,".NFG");
printf("infile: %s\n", infile);

/* input data file of polynomial fit coefficients */
strcpy(polyfile, basename);strcat(polyfile,".POL");printf(wpolyfile: %s\n",polyfile);

1/ output data file of initial polynomial fit, t/
/I WITHOUT the piston, tip and tilt coefficients *1

strcpy(polyfitfile, basename);
strcat(polyfitfile,".GPFO);
printf(Opolyfitfile: %s\nw,polyfitfile);

/* output data file of initial polynomial fit, WITH original tip and tilt 'I
strcpy(polytipfile,basename);
strcat(polytipfile,".GPT");

printf("polytipfile: %s\n",polytipfile);

/* output data file of minimization fit, WITHOUT original tip and tilt */I__ strcpy(minfitfile,basename);Ss3trcat(minfitfile,".GMF");
printf("minfitfile: %s\n",minfitfile);

/* output data file of minimization fit, WITH original tip and tilt t/
/I for plotting contours to check against input fringes *1

strcpy(mintipfile,basename);
st:cat(mintipfile, .GMTI);
printf("mintipfile: %s\n',mintipfile);

i* output data file of difference between two minimization fits '/

/* without tip and tilt on either t/
strcpy(diffile,basename);
strcat(diffile,".GMD");
printf("diffile: %s\n",diffile);

/* input data file of minimization fit to SUBTRACT from .GMT*/
/* including tip and tilt */

printf("enter subtraction filename, .GMT assumed\n");
/* gets(basename); */

strcpy(basename,"d:\\fringe\\dat\\cln050240);
strcpy (subfile,basename);
strcat (subfile," .GMT");
printf("subfile: %s\n\n1,subfile);

printf("hit key to continue\n");
getchar();

/* ----------------------------- /

/I allocate memory

NFRINGE is the number of fringe points that can be stored (typ. 1000).
NGRID is the size of the grid, an odd value to insure a grid point
at the exact center of the grid (typ. 41).
NPOINTS is the maximum number of input fringe points that can beI assigned to a given grid point. The value required will vary with
the density of sampling the input fringes and the density of grid
points (typ. 10).I
vecsize-(size t) NFRINGE *sizeof(struct fringe);
f-(struct fringe *)malloc(vecsize);I

3 FMe: gridfa-c Pqs; 4

..f (f--NULL) I
printf(eorror allocating space for fringe data\nu);

vecsize-(size t) NGRID *aizeof(struct grid')
g-struct griZc **)malloc(vecsize);

printf (error allocating apace for grid row pointers\n');
exit (1)

VeesiZe-Caize t) NGRID *sizeof(struct grid);

foq-~cUGI i+g(]-(.struct grid *)malloc(vecsize);
if (qli]--NULL) (
printf("error allocating space for grid row %d data\nl,i);
exit (1);

vecsize-(3ize t) NGRID *sizeof (float)

friOi GO;i+temp(i-(float *E)malloc(vecsize);
if (temp~i--NULL) 4
printf ("error allocating space for temp grid ro %" n"i)
exit (1)

initial-(ize frn) anGd grid arrflays '
for(i-O;i< NGFRIDG ;i++) I

fempi] .- zero;t*mlo~esz
if tm(i] .y-zero(

fori]rL-O;i FIG;i)

f~i] .wL-zero;
f~i] .wLRzero;

f[i .wULL-zero;I f[i].wUR-zero;

delta - two/((float)NGRID -one);
yg= (float) -1;
for (row=O;row< NGRID ;row++)4

xg=(float)-l;
for(col-O;col< NGRID ;col++)

g(row] (col] .xq-xg;
g~row] (col].yg-yg;
gcrow] (col] .zg-zero;
g(row](col].in- TRUE;
g~row] (col] .nf-O;
for(i-O;i< NPOINTS ;i++) g~row] (colJ.fi(i]-O;
xg+-de lta;

yg+-delta;

/* read polynomial coefficients */

printf ("reading file of polynomial coefficients\n");
fp-fopen (polyfile, r");
iflfp--NULL) I

pit("error opening polynomial file: Is\nOpolyfileJ;

for(i-l;i<-15;i++)
fscanf(fp," %f",.i(pcoef(i1));

Iprintf("%d %g\nO,i,pcoef(i]);I~felose (fp);

Mle: pidfime Paeo: 3

/* read fringe data
This section reads an arbitrarily long list of data triplets:
x-position y-position fringe order

printf("reading fringe data\n");
fp-fopen(infile,wr");if(fp--NULL) {printf(*error opening fringe data file: %s\n",infile);

i-0;
while[!feof(fp))

fscanf(fp," If If %f",&(f[i].x),&{f~i].y),&Cf~i].z));J++;

npts-i-1;
if (ferror(fp))

printf("error reading fringe data file\n");
fclose(fp);
exit(l);

fclose(fp);
printf("%d fringe points read from file\n",npts);

/* -- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
/* subtract piston, tip, tilt from fringe data

pcoeffl] is constant, pcoef[2] is x, pcoef[3] is y*/

printf("subtracting piston, tip, tilt from fringe data\n");

for(i-0;i<npts;i++) (
sum-(float)O;
for(J-l;J<-3;j++) (

sum+=pcoef[j]*poly(j,ffi].x,f[i].y);

f[i].z--sum;

/* I.....................................-------------------------------- I
/* Initialize grid with polynomial fit

WITHOUT piston, tip and tilt.
* 5/

for(row-O;row< NGRID ;row++) (
for(col-'3;col< NGRID ;col++) (

sum-zero;Sfor(i-4;i<-15;i++) {
sum+-pcoef[iJ*poly(i,•[row] [col].xg,g[row] (col].yg);

g[row] {col].zg-sum;I)
/*) - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
/* write initial polynomial grid data to .GPT file

and the fit WITHOUT piston, tip and tilt to .GPF file
Uses exponential notation to comply with Mathematica
for plotting results.

fp-fopen(polyfitfile,"w");
if(fp--NULL) (

printf("error opening grid polynomial file: %s\nw,polyfitfile);
exit(l);

for(row-O;row< NGRID ;row ++) (
for(col-O;col< NGRID ;col++) (

sum-zero;
for(i-4;i<-15;i++)

sum+-pcoef~i]*poly(i,g[row](col].xg,gErow](col .yg);
fprintf(fp,*%-ll.3e\n",sum);

if (ferror(fp)) {
printf("error writing grid polynomial fit file\n");
fclose(fp);
exit(l);

fclose(fp);

FRe: gridfz. Page: 6

fp-fopen(polytipfile,*w*);
if(fp--NULL) (

printf(6 error opening grid polynomial file: ls\n",polytipfile);
exitCl);

for(row-O;row< NGRID ;row ++)
for(col-O;col< NGRID ;col++)

sum-zero;
for (i-i; i<-15; i++)aum+-pcoefliltpoly(i,qlrowll[coll.xg, glrow][~coll.yg);

fprintf(fp,rrll.3e\n rsum);

if (ferror(fp)) I
prantf("error wricung grid polynomial fit file\n");

tfnlose(fp);
exit(1];

fclose(fp);

I /* ..--
/* distribute fringe data points among the grid points

This section looks at each of the input fringe data points
and determines which four grid points suirround it.S~It then writes this information into the data structures for

each of these four grid points along with the interpolation
constants (weights) for the fringe point.

The interpolation scheme used for the surface between four
grid points, lower left LL, lower right LR, upper left UL
and upper right UR is as follows. The fractional distance
of a fringe data point position from the left edge cf the surfacetowards the right edge of the surface is "u". The fractional
distance from the bottom edge to the top edge of the surface is "v".
The suface value "z" is defined by
z- z LL(l-u) (l-v) +z UL(l-u) (v) +z LR(u)(l-v) +z UR(u)(v).
This surface is continuous for all values of the grid points
but its derivative is not. For a point ci the line ccnnecting two
grid points the interpolation reduces to simply a linear interpolation
between only those two points. Note that the surface is not flat
so the fringes that it predicts are curved within a surface.

The values "u" and *v" are determined by calculating the float
value of the grid position of the fringe point (i.e. row-2.15 col-20.45)
and subtracting the integral portion. The integral portion is used to
determine the index of the lower left LL grid point of the surface
in which the fringe point is found. The value (l-u)(l-v) is, for
example, the weight of the lower left grid point in determining the
value of the surface. It is also the weight of the fringe point when
determining the optimum value for the lower left grid pnint that
minimizes the error between the fringe predicted by the surface and the
measu-sd fringe position. If the fringe point is very close to the
upper right corner of the surface (u approx. 1) (v approx 1) then
it is primarily affected by the upper right grid pointand not the lower left grid point.

5/

for(i-O;i<npts;i++) J
fcLL-(f[i].x+one)/delta; /* fringe position in grid units *1
cLL-(int)fcLL; /* integral porion of the position */
fIi].cLL-cLL; /* write this to fringe structure */
frLL-(f[i].y+one)/delta;
rLL-(int)frLL;
f[i].rLL-rLL;
u-fcLL-(float)cLL; /* fractional position for weighting 5/

v-frLL-(float)rLL;
fI1].wLL-(one-u)*(one-v); 1* weighting values 5/
f(i] .wUR-u*v;
f[i3.wUL-(one-u)*v;
f[i].wLR-u*(one-v);

row-rLL; /* write data to LL grid point data structure *]
col-cLL;
wfp-f(i].wLL;
if((row>-0)&&(row< NGRID)&&(col>-0)&&(col< NGRID)) I

nf-gCrow](col].nf; /* fringe point counter starts at 0 'I
if(nf< NPOINTS) { /1 index of fringe point affected 5/

g[row] [col].fi[nf]-i;

1
I

File pidfizzx Pag 7

nf +;I/ increment fringe point counter 'I ~q(row] Ccoli .nf-nf, /0 update fringe point count '

row-rLL+l; I' UR grid point 0

col-cLL+l;I ~wfp-f(i] .wUR;
if((row>-O)G&Crow< NGRID)&GCcol>-O)&&(col< NGRID)
nf-gfrow] (coil .nf; /* fringe point counter starts at 0 0

if(nf< NPOINTS) (/* first point stored in fiCO] '
gfrow] Ccol].fi~nf]-i; 1' index of fringe point 0If+ /* increment fringe point counter 0

gtrow] CcolJ .nf-nf; I' update fringe point count ~

row-rLL+l; /* UL grid point 0

col-cLL;
wfp-f Ci] .wUL;
if((row>-0[&&(row< NGRID)fi&(col>-0[f&(col< NGRID)
nf-g~row][col].nf; /* fringe point counter starts at 0 'U if(nf< NPOINTS) 4 /* point 1. stored in fiCO] 0

g(row]Ccol].fi[nf]-J; /* index of fringe point 0

nf++; * increment fringe point counter ~
g~row] Ccoll .nf-nf; /0 update fringe point count 0

row-rLL; /* LR grid point 0

co l-cLL+ 1;
wfp-f Ci].wLR;
if((row>-0)&S(row< NGRID)&&(col>-0)&&(col< NGRIO 3
nf-g[row)(col].nf; /* fringe point counter starts at a0/
if(nf< NPOINTS) (/* point 1 stored in fiCO] 0

g~row]Ccol].fi~nf]-i; /* index of fringe point 0

nf++;/0 increment fringe point c~unter 03 ~g~row] (col] .nf-nf; /0 update fringe point count 0

/* end of fringe point ioop 0

printf("%d fringe points d13tributed\n",npts);

maxnf-0;

if(g [row] (coil .nf>maxnf) maxnf-gtrow] [col] .nf;

pritf(maxf-%, saceallocated for Id\n",maxnf, (int)NPOINTS I

exit (1);)4

/*calculate initial fit error 0U* -- -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- -
printf(winitial RMS fit error- %g\n",rms0);

/0 #########################0/########I for(ipass-l;ipass<- IKPASS :ipass++) {

printf (Opass %d\n", ipass);
for (ismooth-l;ismooth<- NSMOOTH :ismooth++) smooth grid 0;I ~rms-RMSfit 0;
printf C" after smooth rMs error- tg\nw,rMs);

for(iopt-l;iopt<- NOPTIMIZE ;iopt++) optimize grid 0:
rms-RMSfit 0;
printf(w after opt rms error- tg\n\n".rms);

/0 end optimization loops 0/

/0 --

/* calculate final fit error 0

File.. gridazto pawe 8

printf(O\n initial RNS fit error- %g\n",rmsO);I printfCO\n final RI4S fit error- tg\n*,rms);

I.--*
/* write final grid data to .GMF file

Uses exponential notation to comply with)4athematica
for plotting results.

printf (writing grid minimization fit in .GMF file\nw);

prnf"ro pnigmnmzto grid fit file: ts\n",minfitfile);
exit (1)

for(row-Q;row< NGRID ;row ++)4I for~col-O;col< NGRID ;col++)
fprintf(fp,"%-1l.3e\n".g[row] [col] .zg);

if (ferror(fp)) (
printf ("error writing grid minimization fit file\n");
fclose (fp);
exit (1);

fclose (fp); *

/* write final grid data to .GMT file
in which the polynomial piston, tip, tilt are put back in

printf(Owriting minimization fit with original tip and tilt in .GMT file\n");

fp-if(penrmitopfnineg" fit minus polynomial file: ts\n",mintipfile);
exit(l);

for (row-O;row< NGRID ;row ++)
for (col-O;col< NGRID ;col++) I

sum-zero;
for (i-l: i<-3;i++)

.sum4=pcoefli)*poly(i,g[row] [cal] .xg,gtrow] [cal) .yg):Ufprintf(fp,0%-ll.3e\n", Cg~row] [col].gsm)
prnfmro writing fit minus polynomial file: %s\n*,mintipfile);

fclose (fp);
exit (1)

fClo3e Cfp);U---~~--------------*
/* write final grid data to .GMD file

uses exponential notation to comply with Mathematica.
Subtract a set of grid points first using a full file name.

printf (wreading subtraction file: %s\nw,subfile);
fp-fopen (subfile, 'r");
if(fp--NULL) 4I printf ("error opening subtraction file: %ks\n",subfile);
exit (1);

for(row-O;row< NGRID ;row ++)
for(col-O;col< NGRID ;col++)
fscanf(fp,' %e",&(temp[row] [col]));

prnf"ro reading subtraction file: %s\nO, subfile);

fclose(fp);

printf ("writing difference file: ts\n*,diffile);
fp-fopen (diffile, "w");

if(fp--NULL)4

Pile xidflzzc Page 9

i printf(Oerror openinq grid difference file: ta\nn.diffile);exit(l);

for(row-O;row< NGRID ;row ++) 4
for(col-0;col< NGRID ;col++)

sum-zero;
for(Ci-;i<-3;i++)

sum+-pcoef[i]*poly(i,g[row[(col].xqq[row](col].yq);
fprintf(fp,'%-ll.3e\nu,(Cgrow][(col.zg+sum -temp[row](col]));

if (ferror(fp))
printf("error writing grid difference file: %s\nO,diffile);
fclcse(fp);
exit(l);

3fclose(fp);
/* --- ,
/* free memory space */

for(i-0;i< NGRID ;i++) free(g(il]);
free(g);
for(i-0;i< NGRID ;i++) free(temp(i]);
free (temp);
free (f);

/* ***k*********w*************,

float poly(int m, float x, float y)

switch(m)
case 1: return (float)l;
break;

case 2: return x;
break;

case 3: return y;
break;

case 4: return x*x;
break;

case 5: return x*y;
break;

case 6: return y*y;
break;

case 7: return x*x*x;
break;

case 8: return x*x*y;
break;

case 9: return x*y*y;
break;

case 10: return y*y*y;
break;

case 11: return x*x*x*x;
break;

case 12: return x*x*x*y;
break;

case 13: return x*x*y*y;
break;

case 14: return x*y*y*y;
break;

case 15: return y*y*y*y;
break;

default: printf("f subscript out of bounds\n');
break;

/ ----------------------- a -----------------------------

float polyfit(float *pcoef, float x, float y)

int m;

float sum;

sum-(float) 0;
for(m-l;m<-15;m++) (

sum+-pcoeflml *poly (m, x, y);
return (sum);

I
/* m------ia--- /
float RMSfit(void)
I

mnt i, rLL, cLL;I
I

Pile: pridfitrc Pape: 10

double sum. zdiff, zval;

sum- (double) 0;
for~i-0;i<npt3;i++)
rLL-f Ci] .rLL;
cLL-f Ci].cLL;
zval- (double)g~rLL] cLL] .zg'(double)f Eu .wLL

+(double)g(rLL+l] (cLL].zg'(double)fti].wUL
+(double)gfrLL+l] (cLL+l] .zq*(double)f[i].wuR
+Cdouble)g(rLL] CcLL+l].zg*(double)f~i].wLR;

zdiff- (double) f i] .z-zval;
sum+-zdiff'zdiff;

return Cf loat)sqrt(sum/(double)npts)

/*- --- --- ---- --- --- ------------

void move gridjpoint (void)I mit i. ifp, rLL. cLL;
float avgdiff;

avqdiff- (float) 0;U ~for(i-0;i~g~row] (col] .nf;i++)4
ifp-gfrow](col].fi~i]; /* index of fringe point *
rLL-ffifp] .rLL;
cLL-ffifp] .cLL;
avgdiff+- f(ifpl .z

-gtrLL](cLL].zg*f[ifp].wLL
-g~rLL] [cLL+l] .zg*f[ifp] .wLR
-g~rLL+l] CcLL I .zg~f [ifp] .wUL
-g~rLL+l] [cLL+l] .zg*f[ifp] .wUR;

avgdiff/-(float)g~row] (col] .nf;
gtrow][col].zg+- ZFRAC adif

/* -------------------------------------- *--------
/* smooth grid */

void smooth grid (void)

float zsum,nsum;

printf("smo 0);
for (row-0;row< NGRID; row++)(

for(col-0; col(NGRID ;col++)
zsum-gfrow] [col] .zg+g(row] (col] .zg;
nsum- (float) 2;
if(row>0) 4
zsum+-g[row-i] [col] .zg;
n u -(float) 1;

f(o<NGRID -1)4
zsum+=gfrow+l] (col] .zg;
nsum+-(float) 1;

U ~ ~~if(col>' ?4RD 1
zsum+-gcrow](col-l] .zg:

zsum+-g~row] (col+l] .zg;
naum+-(float) 1;

temp Crow] (col] -zsum/nsum;

for(row-0;row< NGRIO; row++)
for(col-O, col< NGRIO ;col++)

g~row] (coil .zg-temp (row] (coil,

/*:optimize grid : --

vodoptimize grid 'oid

printf(Ropt)
for(row-O;row< NGRID: row++)

for(col-0; col< NGRID ;col++)4_
if Cg(row] (col] .nf--0) minimize-surface tensionoC;
else move grid~point 0:

3 Filcpgiaflwx Pq.: 1I

I' Length of Grid Connections, L (actually returned as L^2) '

float L(float z)I float zdif,Ltotal;

Ltotal- (float) 0;
if(row>0)I

zdif-z-g[row-l] (col] .zg;
Ltotal+-sqrt(Cfloat)l +zdif~zdif)

if(row< NGRID -1)
zdif-z-g(row+l] (col] .zg;

Ltotl+-srt((float)l +zdif~zdif)

if(col< NGRID -1)
zdif-z-g~row] (col+l] .zg;
Ltotal+-sqrt((float)l +zdif~zdif)

if(col>O)(
zdif-z-g (row] (col-l] .zq;
Ltotal+-sqrt((float)l +zdif*zdif)I~return Ltotal;

* ---------------------------- =------- ----------------

/* Minimum and Maximum of surrounding points *13 void zlimits(float *zmin, float *zmax, float *zavg)

float z, zaum. naum;

if(row--20){

printf("row-20\n");

zmn(fotl.e1
*zmin-(float) l.OelO;I *zsum-(float)0;
nsum- (float) 0;
if(row>0)(

z-g(row-l] (col] .zg;
zSum+-z;I ~m fotl
if C*zmax~z) *zmax-z;
if (*zmin~z) *zmin-z:

if Crow< NGRID -1)4
z-g(row+l1 (col].zg;
zsum+-z;
nsum+ (float) 1;
if (*zmax<z) *zmax-z;
if (*zmin~z) *zmin-z;

if(col>0)4
z-g~row] (col-l] .zg:
zsum+-z:
n sum+- (float) 1;
if (*zmax<z) *zfax-z;
if (*zmin>z) *zmin-z;

if(coll NGRID -1)43 ~z-g~row] (col+l] .zg;

nsum+-(float) 1;
if (*zmax~z) *zma-z
if (*zmin~z) *zmin-z;

if (nsum> (float) 0) *zavg..zsum/nsum;

printf("nsum-0 logic error\nm);
exit (1);

-------------------------------------- =--------aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa-
/* Minimize surface tension *

FUc gridfiu.. Pap: 12

void minimiz*-aurfac* tension (void)

float z.zmax~zmin,zav:,znew;

z-q(row] (cal] .zg;IzlimitsAzmnfza.zv)
sfbrent (zinin, zavg, ziax, L, TOL fi~z.finiter);
g(row] (col].zq-z;

Me areadhtgc Page: 1

I'/ edlg

reads the .FNG file containing the fringe positions in pixels
and convert* them to a .NFG or Normalized FrinGe file
consisting of simple list of triplets: x y order

noraliedto a -1 0 +1 square.

#include <stdio .h>
*include (string.h>
Oinclude <proceam .h>

void main()

FIL *fp, 'fpin, 'fpout;Ichar basefilename(80].nameE401,infilet80],outfilelB0];
float xnorm~ynorrn:mnt xi,yi,z,xmin,ymin,xwide,ywide;
printf("ReadFNG: reads .FNG file and normalizes positions\n");
printf ("base file name, d:\\fringe\\dat*.FNG assumed:");
strcpy(basefilename. "d:\\fringe\\dat\\"):
scanf(Otsm,name);
strcat (basefilename. nam~e);
3rcpy(infile,basefilename);
3rcat (infile,ft.fng");Itcyotieb~flnm)

strcat (outfile, ".nfgO);
printf ("reading file: ts\n". infile);
printf ("writing file: %s\n",outfile);

fpin-fopen (infile, "r");
if(fpin--NULL)(
printf("error opering input fringe data file: %s\n",infile);
exit (1);

fpout-fopen(outfile, "w");

printf ("error opening output fringe data file: %s\n".outfile);
exit Cl):

fscanf~fpin," %kd %d ',d %d",ixmin,6ymin,&xwide,5,Ywide);
fscanf(fpin,"%d %d %dft,rz,&xi,&yi).I while (z>-0)
xnorm-(float)-l +Cfloat)2*(float) (xi-xmin)I(float) Cxwide);
ynorm-(float)l -(float)2*(float) (yi-ymin)I(float) Cywide);
fprintf(fpout,"%-6.3f\t%-6.3f\ttd\n",xnorm,ynorm,z);
fscanf(fpin,Rtd %d %d",&z,&xi,Giyi);

fClose(fpin);
fClose (fpout);

Fihe po" €L Poge: 1

/* polyfit.c

fits a wavefront in the form of a power series in x,y to

a series of fringe positions

#define MF 15
$define NP 15
#define SKIP 0

#include <stdio.h>
$include <process.h>
#include <malloc.h>
#include <math.h>
*include <string.h>
#include O\nr\nrutilh.h"
#include "\nr\nr.ho
/* -- -------- ------- - /

/* procedure declarations */

float poly(int m, float x, float y);

float polyfit(float *p, float x, float y);

/* ..-.--.........- =-------------------------- --------.... /

s truct fringeIfloat x; / x value of fringe point
float y; /* y value of fringe point */
float z; /* order of fringe (integral but float for calculation) '/

float polylint m, float x, float y);
1* *****ttl**************w*****w****w******t************************t**** I/

void main()

FILE *fp;
char basefilename[40],name(12],infile(80],outfile[80];

int i,j,k,l,m,n,npts;
float wmax, wmin,*w,*b,*x;
float xval,yval,zval;
float **a,**u,**v;

float zero-(float)C;
float sum,diff, rms;
struct fringe *f;

f-(struct fringe *)malloc((size t)l000*sizeof(struct fringe));
if(f--NULL) (

printf("error allocating fringe data space\n");
exit Cl);I

M-NP;
n-NP;
w-vector(l,NP);

x-vector(l,NP);
b-vector(1,MP);
a-matrix(l,MP,1,NP);
u-matrix(l,MP,l,NP);
v-matrix(l,NP,i,NP);

for(i-0;i<1000;i++)
f(i].x-zero;
fil].y-zero;
f[i].z-zero;

I
for(j-l;j<-MP;J++) {w[J]-zero;

b[Jl-zero;

for (J-1; J<-NP; J++){
for(k-l;k<-NP;k++)

a[J] C(]-zero;
u[J](k]-zero;
v[J] kl-zero;I)

I

I
N

File: po~lkc Page: 2

I' read fringe dataIThis a ection -reads. an -arbitrarily -lanqg hut of data triplet.:
x-position y-position fringe order

printf(OPolyFit: read& normalized fringe positions .NFG file\n");Iprintf(" writes polynomial coefficient .POL file\n*);
printf("base file name, d:\\fringe\\dat*.NFG assumed:");
strcpy(baaefilename, "d:\\fringe\\dat\\"j;
scanf(OWs,name);
strcat (basefilename, name);I strcpy(infile,basefilename);
strcat Cinfile, .nfg*);
strcpy(outtile,basefilename);
strcat (outfile,"* polO);
printf (Oreading file: %s\n", infile);I printf("writing file: ts\n",outfile);
fp-fopen (infile,"rl);
if(fp--NULL) (
printf("error opening fringe data file\n");

i-0;
while(Ifeof(fp))

fscanf(fp," %f %f %kf",&xval,Gyval,&zval);
fii] .x-xval;

f(i] .z-zval;

npts-i-l;I i (frrr~f))printf ("error reading fringe data file\nw);
fclose(fp);
exit (1)

fclose(fp);
printfC"%d fringe points read from file\n",npts);

/* --*
/* generate matrix and column vector for minimization.

bis the column vector b m - sum i z i*poly(m.x i,y i).
a is the matrix a-mn . Sum-i poly(m,x-i,y-i)*poly(r-x-i,y-i).
Note that a mn - a nmf.

S olve (Ca]]Tx]-Cb]-for the
coefficents [x].

I printf ("generating matrix and vector for minimization\n");
for(J-l;J<-l5;j++)

sum-zero;
for(i-O;i<npts;i++) sum+=f(iJ.z*poly~j~fti].x,f~i].y);

for(k-l;k<-15;k++)(

sum-zero;for (i-O;i~npts; i++)
sum+-poly(j,fli].x,f[i].y)*poly(k,f~i].x,ffil.y);

aljJ RI-sum;

Solve Etallx]-[b] for the coefficents Ex). */

printf (Odecomposing matrix\n");I svdcmp(u,n,n,w,v);
/* find maximum singular value *

wmx-(float)O.O;
for (k-l;k<-n;k++) if (w[k] >wmax) wmax-w~k];
wmin-wmax*(l0-)
for (k-l;k<-n;k++)

if (w~k] <wmin)l
printf("settinq value %d of %q to zero\n*,k,w(kJ);
w(k]-(float)O.O;

File: polyfic Page: 3

printf("be•gin backsubstitution\nl);
svbksb(u,w,v,n,nbx);

printf('solution vector\n\nu);
for(i-l;i<-NP;i++) printf(ud: %g\nO,i,x[i]);
printf(C\nl);

/* calculate fit error */

Ssum zero,
for~i-O;i<npts;i++)(

diff-f(il].z-polyfit(x,f(il.x,f~l].y);
sum+-diff'diff;

rms-(float)sqrt((double)sum)/(float)npts;
printf("rms error- %g\n",rms);

/*).---
I* write polynomial coefficients to output file */

fp-fopen(outfileOw");
if(fp--NULL) (

printf("error opening polynomial data file\n");
exit(l);

for(i-l;i<-NP;i++) fprintf(fp,"%g\nu,x[i]);
fclose(fp);

/ .---
/* clean up and go home *I

free(f);
free matrix(avlMP,l,NP);
free-matrix(vl,P~,l,NP);
freevematrixu(,l,MP,),P);
free vector(b,l,NP);
free-vector(x,l,NP);
free*vector(w**,NP);

float poly(int m. float x, float y)

switch(m) C
case 2: return (float)l;
cbreak;
case 2: return x;
break;

case 3: return y;
break;

case 4: return xyx;
break;

case 5: return x*y;
break;

case 6: return y*y;
break;

case 7: return x*x*x;
break;

case 8: return x*x*y;
break;

case 9: return x*y*y;
break;-- case 10: return y*y*y;
break;

case 12: return x*x*x*a;
break;

case 12: return x*x*x*y;
break;

case 13: return x*x*y*y;
break;

case 14: return x*y*y*y;
break;case 15: return y*y*y*y;
break;

default: printf(wf subscript out of bounds\nw);
break;

/* --------------------------- s-----------------------------------*--I
I-

File polyfltc Pa5.. 4

float polyflt(float *p, float X, float y)

imt M;
float sum;

fosum-(float)O;
for(m-l;m<-15;m++) I

sum+-p[m]*poly(m,x,y);

return (sum);

/ * -- --------------

I
I
I
I
I
I
I
I
U
I
I
I
I
I
I

