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ABSTRACT

This report provides the documentation for a set of computer
applications for the evaluation of antenna parameters. The
applications are written for the Mathcad personal computer
software for various antenna types listed in the thesis index.
Anﬁenna dimensions and, in some cases, ground parameters are the
only required inputs for each application. No new antenna
parameter equations were developed as a part of this research.

The chapters of this thesis are intended to provide Mathcad
antenna application users with the background information
necessary to readily use and interpret the software for each
antenna type. Appendices are provided with examples of each
antenna application. Each application has an introductory
paragraph and a table of required inputs.

The Mathcad software provides various numerical outputs and
performance predictions, as well as a graphical representation of
radiation patterns in the far~-field. Mathcad application results
are consistent with the predictions of applicable publications,

as well as other antenna numerical analysis programs.
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I. BACKGROUND AND PURPOSE

This report and associated Mathcad computer software are
submitted in partial fulfillment of the thesis requirements for
the degree of Master of Science in Electrical Engineering from
the Naval Postgraduate School in Monterey, CA.

The thesis requirement was generated by a statement of work
from the Naval Maritime Intelligence Center (NAVMARINTCEN) such
that any IBM compatible personnel computer with MS-DOS version
3.2 or higher and a math coprocessor could run Mathcad software
applications to analyze the parameters of different antenna types
requested by NAVMARINTCEN.

Required user inputs to the applications are limited to
antenna dimensions and ground data, although in some cases other
data may be estimated to provide further insight into the
antenna’s performance. The Mathcad applications provide various
performance predictions as well as a graphical representation of
the antenna’s far-field radiation pattern. The corresponding
thesis chapter furnishes the application user all the necessary
background information needed to interpret the program’s formulas
and displays, thereby allowing NAVMARINTCEN to interpret the
capabilities and limitations of antennas of interest.

Dietrich [Ref 1.] completed the first portion of this
project. This thesis will be the second in a series of three

reports intended to fulfill the NAVMARINTCEN statement of work.




II. INTRODUCTION

When a foreign country develops a new communications or
radar system there are many reasons why various United States
agencies may want to be appraised of the new equipment’s
capabilities and limitations. 1Indeed, if the country is hostile
to the United States, the need for rapid threat analysis can be
urgent. Unfortunately, without some human intelligence or other
highly classified source data, input to any threat analysis is
constrained to dimensional information gained from photographs of
the equipment’s antennas. In the past, intelligence agencies
analyzing each new system on a case by case basis found this
process to be very slow, tedious, and man power intensive.

With the advent of powerful personal computers and the
availability of sophisticated mathematics software, antenna
analysis using data obtained from photographic intelligence may
now be achieved in a rapid manner. The goal of this report is to
document the software developed to accomplish this type of
performance appraisal. With this report and its programs,
NAVMARINTCEN is supplied with a user friendly tool to aid in
their task of antenna system evaluation.

It should be recognized that computer analysis of antenna
parameters has its limitations. For example, it is impossible to
account for the effects of adjacent structures on far-field
radiation patterns and still keep the Mathcad applications
moderateiy simple. In addition, without knowledge of parameters
such as feed line characteristic impedance and antenna materials,
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it is impossible to precisely assess the efficiency, gain, and
radiated power of any antenna. Nevertheless, in most cases this
report should provide the tools necessary to gain an excellent
initial insight into the capabilities of systems which use-the
antenna types considered herein.

Each chapter of this report reviews a specific type of
antenna and is written as a comprehensive reference for the
software. Copies of each application are included as appendices

to provide the user with a printed illustration of the software.




IXI. THE HELICAL ANTENNA

The helical antenna is a wideband, highly directional device

when operated in the axial radiation mode. It is commonly used

in satellite and communications systems. To implement the

Mathcad software for the helical antenna the following dimensions

are needed:

D

S

o

diameter of helix (center to center of the conductor)
turn spacing (center to center of the conductor)
length of one turn

number of turns

diameter of helix conductor

circumference of the helix = 7D’

pitch angle = tan!(S/#nD)"

The first four dimensions are application inputs, the ° indicates

that the remaining two parameters are calculated by the helical

antenna Mathcad application. The helical antenna geometric

relationships are illustrated in Figures 3.1 and 3.2.
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FIGURE 3.2 Pitch Angle of a Helix

The axial mode helical antenna has a highly directive main

voltage standing wave ratio (VSWR), and a resistive input

impedance if the

2887:

following are conditions met [Ref 2: pp.

.85(C;s1.15 (wavelengths)
n>3 (turns)

12 sx<14® (degrees)




Subscripts containing (A) indicate the dimension in wavelengths.
Assuming (3.1) - (3.3) are satisfied, one can estimate

directivity (D,) as follows:

D.=12C,°nS, (dimensionless) (3.4)

For a long helix (nS, 2 1), the relative phase velocity of
the traveling wave (p) is the key variable for calculating far-
field radiation patterns and associated parameters. Although
several equations can be used for determining relative phase
velocity, the one which most closely matches measured results is

{Ref 2: pp. 288-300]:

L, , .
= dimensionless 3.5
Prsmriizm ) (3.5)
In (3.5), {(m) corresponds to the transmission mode number of the

antenna. The transmission mode is a term used to describe the
manner in which an electromagnetic wave propagates down the
helix. The number assigned to a given transmission mode (T,) is
an integer. When m = 0 the helix radiates in what is termed the
normal mode, since the main lobe is perpendicular to the axis of
the helix. 1In some texts a helical antenna which radiates in the
normal mode is called an electrically small antenna. The normal
mode is not commonly used and will not be covered further in this
report. The Mathcad applications analyze only the non-zero
transmission modes of a given helical antenna.

The mode of a helix is determined by its physical size, with

higher modes corresponding to larger antennas. The relationship




between helix circumference and spacing for m = 1,2 is

illustrated in Figure 3.3.

2.6 T T T T T T T T T

Circumference in Wavelengths

Spacing in Wavelengths

FIGURE 3.3 Helix Mode Chart

The general relationship between helical radiation mode,
turn length, circumference, and spacing is provided in the

rollowing equations [Ref 2: p. 289]:

L?=C2+52 (3.7)




L
=5, +m (3.6)
p

Once the relative phase velocity has been determined and a
transmission mode is selected, it is possible to resolve the far-
field radiation pattern of the helix. As long as the helix is
long, it can be regarded as an array consisting of (n) one turn
loops. To begin radiation pattern computations the phase shift
() of each equivalent point source in the effective array factor

of the helix is computed as follows:

w=2n(sacose—é§) (radians) (3.8)

In (3.8), (0) corresponds to the coaltitude, or deflection angle
from the axis of the helix.
As a result of the symmetrical nature of a helical antenna’s

main lobe the following relation holds:
Ey=3jE, (V/m) (3.9)

The far-field radiation pattern of a single helical turn is
reasonably estimated by cos(6). The electric field pattern (E)
.s given by the product of the array factor and the individual
turn’s pattern. As predicted by the principle of pattern
multiplication, the array factor corresponding to an array of
isotropic point sources dominates the field pattern generated by
a single turn of the helix. This effect can be seen in the
following formula for electric field [Ref 2: pp. 294-295]:

It should be noted that unless the helix is very short (nS,




)cos® (V/m) (3.10)

< .5), ground plane reflections and their effects on electric
field patterns for the antenna are negligible. Consequently,
ground parameters are not required for this application.

The radiation intensity (U) at any far-field observation
point is a function of E;, and E; per the following equation [Ref

3: pp. 28-29]:

1

U=2ﬂ

(|Egl2+|Ey|?] (W/solid ang) (3.11)

[]
From (3.9), (3.11]) can be reduced to:
U=T‘1—-|E|2 (w/solid ang) (3.12)
o
In (3.11) and (3.12), (n,) is the intrinsic impedance of free
space.

The average radiated power (P,,,) for any antenna is given

by:
Prag=[[ UdQ=[""["Usin6Bdp (3.13)
o]
In (3.13), (Q) is a sphere in the far-field surrounding the
antenna.

It is impossible to determine total efficiency (e€,) of the
helical antenna based only on dimensional information. Therefore,
an antenna’s gain (G) cannot be precisely determined using the

following general gain formula:

10




G=e.D, (dimensionless) (3.14)

However, a unique feature of helical antennas is that input
impedance (2,) is essentially equal to input resistance (R) when
(3.1) - (3.3) are satisfied. Fortuitously, the input resistance
of the helical antenna can be calculated with observed

measurements by [Ref 2: pp 277-278]:

Axial Feed: R=140C, (Q) (3.15)

Peripheral Feed: r=129 (Q) (3.16)

VG
If antenna feed characteristic impedance (Z,) is known or
can be estimated, then reflection efficiency (€,) can be computed

from the voltage reflection coefficient (I') by [Ref 4: p. 460]:

R-Z

r= ° (dimensionless) (3.17)
R+Z,

€,=1-|I'|? (dimensionless) (3.18)

Although (3.17 and (3.18) provide an estimate of reflection
efficiency, no other helical antenna efficiency terms can be
determined based on geometry alone. Thus, all other components

of total efficiency are assumed to be unity and gain is expressed

as:

G=e, D, (dimensionless) (3.19)

EIRP is a commonly used term from communications that is

formally defined as the product of antenna gai): and total power

11




accepted by the antenna from the transmitter. EIRP is determined

as follows [Ref 5: p. 62]:

EIRP=P,,,D, (W) (3.20)

A functional helical antenna will exhibit nearly circular
polarization when (3.1) - (3.3) are satisfied. Axial ratio (AR)
provides a figure of merit for circular polarization in that if
it is equal to unity the polarization of the antenna is exactly
circular. The further axial ratio is from one, the more
elliptically polarized the helical wave will be . The axial ratio

of a helix is (Ref 2: pp. 301-307}:

AR=|L, (sin(a) -1/p)| (dimensionless) (3.21)

The helical antenna’s unit polarization vector (og,) at a
given point in the far-field is computed using the Cartesian
components of electric field. The Cartesian components of
electric field and the antenna’s unit polarization vector are

determined using the results of (3.9) and (3.10) as follows [Ref

5: p. 555]:
E,=Egcos (B) ccs  d® -Esin(d) (V/m) (3.22)
E =Eycos (08) sin(¢) +E,cos (¢  (V/m) (3.23)
E,=-Egsin(8) (v/m) (3.24)
6,(x,y,2)= AcbxayEyaE, (dimensionlescs) (3.22)

VIE(x,y,z) |2

In (3.25), (a,y,.) are the Cartesian unit vectors.

12




When the helical antenna is used for reception and the
incoming wave’s electric field unit vector (p,) at a given point
in the far-field is known or can be estimated, the polarization

loss factor (PLF) is given by (Ref 3: p. 51]:

PLF=|G,6,|*> (dimensionless) (3.26)
The term which best describes an antenna’s ability to
capture incoming electromagnetic waves and extract power from
them is maximum effective aperture (A,). Maximum effective
aperture for a helical antenna is [Ref 3: p. 63]:

A2

A= [PLF] [e, 5=

D,] (m?) (3.27)

In (3.27), (A) is wavelength of the frequency (f) of interest.
Although the current (I,) at the terminals of the helical

antenna cannot be determined from dimensional information alone,

if the current is assumed to be unity the radiation resistance

(R,) and maximum effective height (h,) are estimated by [Ref 2:

p. 42]:
2P
R =—12d (Q) 3.28
TP (3-28)
h, =2 Rfen (m) (3.29)
m n,

Helical antenna Mathcad applications are valid for conductor

diameters given by:

.005A<d<.05A (m) (3.30)




The bandwidth (BW) of an operational helix is determined by
the high and low frequencies (f,;,, f,,..) corresponding to the
dimensional limits of (3.1). Therefore, bandwidth can be

calculated using the speed of light (c) by:

f,,ig,,=1—'é-§£ (Hz) (3.31)
fow=—~ ?:,c (Hz) (3.32)
BW=fp,gn-F1ow (HZ) (3.33)

Most of the parameters calculated by the Mathcad helical
antenna applications are only valid if the observation point (r)
is in the far-field. An observation point is considered to be in

the far-field if all of the following are satisfied [Ref 3: p.

92]:
r21.6x (m) (3.34)
r25ns (m) (3.35)
2289 (m (3.36)

Table 3.1 and Figure 3.4 compare measured data to that
calculated by the Mathcad applications for a 10 turn helical

antenna (D = .1074 meters and a = 12.8°) [Ref 6: 13-6 - 13-9].

14




TABLE 3.1 Helical Antenna

Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
HALF-POWER
BEAMWIDTH 39° 37°

GAIN 12.5 dB 14.3 dB

15




Electric Field Magnitude in V/m

Comparison of Helical Antenng Electric Fields
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IV. THE BEVERAGE ANTENNA

The Beverage antenna is a single wire antenna parallel to
the ground and terminated with a load equal to the characteristic
impedance (Z,) of the wire. The transmitter or receiver of a
Beverage antenna has one end connected to the wire and the other
to ground. Because of its matched termination, the Beverage
antenna does not develop a significant standing voltage wave
along its length. Therefore, it is known as a traveling wave
antenna. The relative phase velocity (p) of the wave traveling
down the antenna is typically less than one. Thus, the Beverage
antenna is also considered a slow wave antenna. [Ref 3: pp.372-
374)

Although radiation can occur at any non-uniformities in the
device, the Beverage antenna primarily generates a vertically
polarized cone shaped main beam that points in the direction of
the traveling wave. The geometry of a Beverage antenna is

illustrated in Figures 4.1 and 4.2.
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Ground




Ground

FIGURE 4.2 Elevation Angle (8) of a Beverage Antenna
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In Figure 4.1, (h) is the antenna’s height above ground and (L)
is the total lencth of the antenna. 1In Figure 4.2, (8) is the
angle of incidence of an incoming or transmitted wave with
respect to ground.

Typically, the electrical length of a Beverage antenna (L,)
will be on the order of 0.5 to 2 wavelengths. Maximum length
(L.nax) @t which the antenna is expected to operate is a function
of both arrival angle of the incoming wave and relative phase

velocity. A precise formula for maximum length is [Ref 7: p. 14]:

1

Lipax= I (wavelengths)

4(=-cos(8))
Db

(4.1)

Unfortunately, use of (4.1) is normally not possible. The
wave’s angle of incidence is always changing and can only be
estimated using statistical techniques. In addition, relative
phase velocity is not easily determined by the antenna’s geometry
and, consequently is not generally known. Some relative phase
velocity measurements have been conducted over the following

frequency band [Ref 7: p. 19]:

1.6 MHz s £ < 10.5 MHz (Hz) (4.2)

If the frequency of interest meets the criteria of (4.2), then

(p) can be computed by:

p:,ssggl(zﬁ%a)-°”5”8“- (dimensionless) (4.3)

If inadequate information is available to use (4.1), the

Beverage antenna application user can estimate maximum length

20




from Table 4.1 [Ref 7: p. 14].

TABLE 4.1 Maximum Effective Length of a Beverage
Antenna in Wavelengths

0 in L nax
deg p=.89 p=.91 p=.93
0 2.02 2.53 3.32
10 1.80 2.19 2.76
20 1.36 1.57 1.84
30 .97 1.07 1.19
40 .70 .75 .81
50 .52 .55 .58

Because of the difficulty determining (6) and (p), the
Mathcad application assumes that the difference between
frequencies corresponding to 0.5 to 2 wavelengths is the
bandwidth for the Beverage antenna. The application also
computes relative phase velocity per (4.3), but the user is
cautioned that the frequencies of interest must satisfy (4.2).

The Beverage antenna transmits or receives vertically
polarized waves. In the case of reception, the question might
arise as to how a wire lying parallel to the ground can receive a
vertically polarized signal. For higher frequency operations
that utilize sky wave propagation, the tilt of the incoming wave
provides a horizontal component of the vertically polarized
electric field (E) with respect to the ground and the antenna.

It is the horizontal component of the wave that is parallel to

21




the antenna which generates the emf on the wire.

For lower frequencies (i.e., < 300 Khz), the physics of a
Beverage antenna is much more complex. In lower frequency
applications, the ground wave is the principle propagation path.
In this situation there is negligible tilt to the wave as a
result of propagation path geometry. However, as the vertically
polarized wave travels over an imperfect conductor the electric
field closest to ground begins to develop a forward tilt as
pictured in Figure 4.3. As in the case of the higher frequency
applications, the tilted electric field of the low frequency wave
has a horizontal component parallel to the antenna which induces
an emf on the wire.

Originally, use of the Beverage antenna was restricted to
low frequencies propagating over very poor ground. The Beverage
antenna is now often used in an attempt to reduce noise
interference in high frequency operations over excellent ground.
The higher frequency skywave propagation path provides the
necessary tilt to receive vertically polarized signals, but the
near perfect ground does tilt vertically polarized ground waves
from nearby noise sources. Thus, the high frequency Beverage

antenna becomes a highly directive, low noise device.

22




E X

Ground

FIGURE 4.3 E Field Over an Imperfect Ground
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Development of the electric field pattern of a Beverage
antenna begins with an understanding of the current on the
antenna. If one assumes low ohmic losses, matched termination,
and negligible attenuation along the wire, the phasor current
amplitude is constant and the phase velocity is that of free

space; hence [Ref 5: p. 240]:

I(z)=I,e7kz (a) (4.4)
In (4.4) the antenna is assumed to lie along the +z axis, (I,) is

current at the transmitter’s terminals, and (k) is the free space

wavenumber given by:

:-glt. -1
k 3 (m~*) (4.5)

In (4.5), (A) is wavelength of the frequency (f) of interest.
Beverage antenna Mathcad applications assume (I,) is normalized
to one amp.

With the current defined by (4.4) the magnitude of the
Beverage antenna’s electric field is obtained by (Ref 8: pp. 315-

316]):

|E|=

30kLIOISln(9) |sinX(X) | (V/m) (4.6)

In (4.6), (r) is the distance from the antenna to the far-field
observation point, L is the length of the antenna, and (X) is

given by:

24




=%§(1-cos(0)) (radians) (4.7)

The electric field pattern given by (4.6) is rotated about
the +z axis to form the three-dimensional field pattern above the
ground plane. The pattern is only valid, however, in the far-
field. Therefore, all of the following conditions must be

satisfied for (4.6) trn apply [Ref 3: p. 92]:

r21.6A2 (m (4.8)
r25L (m) (4.9)
r> 252 (m) (4.10)

Improvements to the accuracy of (4.6) can be made for far-
field radiation patterns if one accounts for the effects of real
ground. Through use of image theory and the fact that Beverage
antennas excite vertically polarized waves, the electric field

pattern equation is modified as follows [Ref 5: pp. 229-235]:

E=30kijbsin(9)|sin(x)

r X |[1—Fve—j2m03(3‘e)] (v/my (4.11)

In (4.11), (T,) is the verticsi reflection coefficient of
ground. Antenna height is typically less than one wavelength.
The vertical reflection coefficient is given by:

In (4.12), (€..) is the relative complex permittivity of the
ground under the antenna and is calculated as follows:

In (4.13), (€;) is the relative permittivity of the ground and

25




_ €,cos ( %-6) A\ €, ~sin? (= -8)

r (dimensionless) (4.12)

v

€,cos (% -0) *\ €,-sin? (% -6)

e,me,<j§;5§£ (dimensionless) (4.13)

(0) is the conductivity of the ground.
The direction of maximum radiation of a Beverage antenna may
be determined from (4.11). However, it can also be estimated

quickly by the following empirical formula [Ref 5: p. 241]:

(radians)

Gmm=cos'1(3--:%;£)

(4.14)

A
With the magnitude of the vertically polarized electric
field given by (4.11), radiation intensity is computed as follows

[Ref 3: pp. 28]:

U= ;nz [|E|?} (W/solid ang) (4.15)

In (4.15), (n,) is the intrinsic impedance of free space.
The radiated power and directivity of a Beverage antenna are
determined by applying radiation intensity to standard antenna

formulas as follows (Ref 3: pp. 28-30]:
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p,,d=fo“fo"u«sin(e) Bdp (W) (4.16)

_4nU(6,,,)
e

rad

(dimensionless) (4.17)

The characteristic impedance of a Beverage antenna can
be estimated by its dimensions and is generally resistive.
Characteristic impedance of a Beverage antenna over perfect

ground is given by (Ref 7: pp 19-21]:

Zo=138log(4g) (Q) (4.18)
In (4.18), (d) is the diameter of the wire in the same units as
(h). Caution must be exercised when using this value of

characteristic impedance since any sharp transition in the wire
(i.e., vertical downleads) or real ground effects can reduce the
accuracy of the calculation. Typical values for a Beverage
antenna’s characteristic impedance are 200-300 ohms.

If the impedance (Z,) of the terminating load of a Beverage
antenna is known or can be estimated, reflection efficiency (€,)

can be determined from the voltage reflection coefficient (I') as

follows:

Z,-2 . . .
==L % (dimensionless) (4.19)
Z1+Z,
€,=1-|I'|? (dimensionless) (4.20)

Other than reflection efficiency, accurate estimates of
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other Beverage antenna losses cannot be determined by geometry
alone. Nevertheless, there are other sources of lost power.
Since a Beverage antenna is a relatively long antenna with a
matched termination, relatively little power is reflected by the
load. 1Instead, most of the power supplied by the transmitter
that is not radiated is absorbed by the load or lost as heat to
the ground.

Gain (G) is the product of antenna’s directivity and
efficiencies. The Mathcad Beverage antenna applications express

gain as [Ref 3: p.43]:
G=e¢, D, (dimensionless) (4.21)

Effective isotropic radiated power for the Beverage antenna
(EIRP) is the product of the power radiated by the antenna and

the directivity. (EIRP) is computed by [(Ref 5: p. 62]:

EIRP=P,,;D, (W) (4.22)

Electromagnetic waves incident upon a Beverage antenna are
normally assumed to be vertically polarized. If the incoming
wave is not vertically polarized, a polarization mismatch
occurs with the antenna and losses result. Polarization losses

are determined from a polarization loss factor (PLF) given as:

PLF=|G,G,|* (dimensionless) (4.23)
In (4.23), (o0,) and (o0,) are the unit polarization vectors of the
antenna and wave, respectively.

Maximum effective aperture (A,) is estimated from
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directivity, (PLF), and reflection efficiency as follows [Ref 3:

pp. 51-63]:

12

A= [PLF] [e, (=) D,] (m?) (4.24)
ax

The maximum effective height (h,,) of a Beverage antenna can

be determined using the results of (4.24) as follows [Ref S: p.

427:
R
h, =2 Aeon (m) (4.25)
Mo
In (4.25), (R,) is radiation resistance and is written as:
2P
R,=—X22 (Q) (4.26)
| |

The conductor diameter must be much less than the length of
the Beverage antenna to avoid unwanted radiation frem vertical
sections. For the purpose of Beverage antenna Mathcad
applications, the following is assumed for proper antenna

operations:

del if d<.01L (m) (4.27)

Table 4.2 and Figure 4.4 compare measured data to that
calculated by the Mathcad applications for a Beverage antenna
(L=110.4 meters and h=1.23 meters) operating over dry soil
(0=.003 S/m and €,=12) at 18 MHz. Table 4.3 compares measured
and calculated data for a Beverage antenna with L=110.4 meters

and h=1.13 meters operating over wet soil (0=.01] S/m and €,=17)
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at £ MHz [Ref 9: pp. 22-26].

TABLE 4.2 Beverage Antenna Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
0,y 18.5° 19.2°

TABLE 4.3 Beverage Antenna Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA

Z, 450 Q 408 O

p .93 .91
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FIGURE 4.4 Beverage Antenna Electric Field Patterns
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V. THE LOOP ANTENNA

A loop antenna is a coil of one or more turns. It is
commonly used as a receiving antenna for operations in the lower
frequency regions. The loop antenna is also used for direction
finding and UHF transmissions [Ref 10: p. 6-1]. Loop antennas
may have an air core or ferrite core. They may also be
electrically large or small. For the purpose of the Mathcad
applications, a loop antenna is considered electrically small if

its radius (a) satisfies the following [Ref 3: p. 181]:
as—— (m) (5.1)

In (5.1), (A) is wavelength. The geometry of both large and

small loop antennas is illustrated in Figure 5.1.
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The radius of the conductor is (b) in Figure 5.1. For all loop
antenna Mathcad applications the center of the loop is the origin
and the antenna’s axis is aligned parallel to the +z axis. When
Mathcad applications examine the performance of a loop over a
ground plane, the coordinate system is rotated with the antenna
as necessary to obtain the desired geometry (i.e., the axis of a
vertical loop is parallel to the ground and the +z axis).

A. THE ELECTRICALLY SMALL LOOP

Electrically small loops are normally used for low frequency
reception or direction finding. Small loops are poor
transmitters due to small radiation resistance (R;) and low
conduction-dielectric efficiency (€.,). Transmitter performance
can be improved with increased perimeter, adding additional
turns, or insertion of a ferrite core [(Ref 3: p. 164].

Two key assumptions are made in the analysis of a small
loop. First, it is assumed that current around the loop is
constant. This supposition allows the lcop to be approximated by
an infinitesimal magnetic dipole centered at the origin and
parallel to the +z axis. Second, it is presumed that the various
resistances and reactances of the loop can be computed from
dimensional information and knowledge of the antenna’s material
properties.

Given the above assumptions in free space, the electric
field (E) for a small loop in the far-field is determined by [Ref
3: pp. 168-169]:

In (5.3), (S) is the cross-sectional area of the loop, (f) is the
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E,=Ey=0 (V/m) (5.2)

_kSfp,I sin(0) e-Ik*

5.3
5T (V/m) ( )

Ey

frequency of interest, (r) is the distance from the origin to the
observation point in the far-field, (I,) is the antenna feed
current, (u,) is the permeability of free space, and (k) is the

free space wavenumber given by:
=2L (mh (5.4)

As is the case in all Mathcad applications, current in the
loop is normalized to one amp. Since electric field is not a
function of (¢), the field pattern is symmetric when rotated
about the antenna’s axis.

It should be noted that (5.2) and (5.3) apply to all small
loops, regardless of shape. Thus, (5.2) and (5.3) can be used
for small square loops. However, it should also be noted that
loop antenna Mathcad applications assume a circular loop is being
analyzed and calculate cross~sectional area based on the radius
provided by the user. 1In order to use the applications with
rectangular loops or loops of an odd shape, the user must compute
an equivalent radius (a) that will yield the correct area.

An observation point for any loop antenna is assumed to be
in the far-field if the following conditions are valid [Ref 3:

p.92):

r21.6A2 (m) (5.3)
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r25D (m) (5.6)

r222 () (5.7)

A
In (5.5)-(5.7), (D) is the largest dimension of the loop. The
largest dimension of the loop is assumed to be the diameter.
For small loops in free space, radiated power (P,,) is

estimated as follows:
prad=no(l—n2') (ka)‘|Iol2 (W) (5.8)

In (5.8), (n,) is the intrinsic impedance of free space.
The directivity (D,) of a small loop in free space is 1.5
and, ignoring polarization any mismatches, the maximum effective

aperture (A,) of a lossless loop is written as [Ref 3: p. 175]:

-3 (m2) (5.9)

em

The ohmic resistance of any loop antenna (R.,,.), including
multiple turn antennas, is estimated by the following [Ref 3:
pp-171-172):

R
Ro!zmic=N§Rs("§E*’1) (Q) (5.10)

o

In (5.10), (N) 1is the number of turns, (R,) is the surface

impedance of the conductor, (R,) is the ohmic resistance due to
proximity effect, and (R,) is the ohmic skin effect resistance
per unit length. If the conductivity (o.) of the conductor is

known, the surface impedance of the conductor is computed by:
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Rﬁ,’ e (a) (5-11)

Given the spacing between turns (q) has been measured, the
ratio of (R,) to (R,) is estimated using Figure 5.2 [Ref 3: p.

172].

Rp/Ro

Spacing Ratio: q/2b

FIGURE 5.2 R/R,

The radiation resistance of a small loop in free space is
determined using the circumference of the loop (C) as follows

[Ref 3: pp. 170~-171]:
Rz=20n2(§)“N2 (Q) (5.12)
When the radiation and ohmic resistance of any antenna
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has been calculated, the conduction-dielectric efficiency of the
antenna is determined by:

RI

€ = —
cd
Ro)unic+Rx

(dimemsionless) (5.13)

From (5.10) and (5.12) it can be seen that ohmic resistance
is~direct1y proportional to the number of turns while radiation
resistance is proportional to the square of the number of turns.
Thus, as shown in (5.13) conduction-dielectric efficiency can be
improved by increasing the number of turns in a loop antenna. It
can also be seen in (5.10) and (5.12) that increasing the radius
of the loop improves conduction-dielectric efficiency.

Additional improvements to conduction-dielectric efficiency
may be made by inserting a ferrite core in the loop antenna. If
a core is added, (5.12) is modified as follows:

R,=20m% () (£ (@) (5.14)
o
Effective permeability of the ferrite core (u,) in (5.14) is
computed by:

1+Ddennag(uf_1)

B, (H/m) (5.15)

In (5.15), (u¢) 1is the actual permeability of the core material
and (Dy.m;) 1S an experimentally derived demagnetization factor.
Demagnetization factor as a function of the ratio of core length

to diameter is shown in Figure 5.3 [Ref 3: pp. 196-197).
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FIGURE 5.3 Demagnetization Factor

Any antenna parameter that requires use of permeability in
its formula must be approximated in the Mathcad applications by
replacing (u,) with (u,) [Ref 11: pp. 86-89].

When, a loop antenna is actually employed, it is not in free
space and real ground must be considered. Although real ground
does not change the components of electric field given by (5.2),
it does modify (E,) in (5.3). Since the orientation of the loop
with respect to ground determines the polarization of the loop’s

electromagnetic wave, alignment of the antenna must be known
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before electric field can be correctly computed. In order to
keep the loop antenna Mathcad applications moderately simple,
only horizontal and vertical loops are considered.

Although modeled by an infinitesimal vertical magnetic
dipole, a small horizontal loop (i.e., +z axis perpendicular to
ground) has horizontally polarized electromagnetic waves. The

horizontal reflection coefficient (I',) is [Ref 5: pp. 229-230):

r _cos(0) - /e, ~sin(6)?
H cos (0) +//e,/-sin(0)?

In (5.16), the relative complex permittivity (€,.) of the ground

(dimensionless) (5.16)

is calculated using the relative permittivity (€,) and

conductivity (o) of the ground by:

eﬂ=erﬁj§;%%r (dimensionless) (5.17)
o

In (5.17), (€,) is the relative permittivity of free space.

The total electric field of a small horizontal loop over
ground is the sum of the direct path signal and ground reflected
signal. One can use image theory to estimate the contribution to
the far-field pattern by ground reflectiors. The total electric
field expression for a small horizontal loop positioned a

distance (h) above the ground is:

kSfu I,sin(6)
Onor e
hor 2 Ir

_jkr[l_r\he—jzkhcos(e)] (V/m) (5.18)

Note in (5.18) that the image antenna is a vertical infinitesimal

magnetic dipole. Thus, the contribution of the image is
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subtracted from the contribution of the actual antenna. The
Mathcad loop antenna applications ignore the minor contribution
of the surface wave to the electric field.

The total electric field of a vertical loop over real ground
can be determined in a manner similar to (5.18), but the vertical
reflection coefficient (I',) must be used for the image antenna’s
contribution to the far-field pattern. The equation for vertical

reflection coefficient is [Ref 5: pp. 231-232]:

e,cos(f-e)-\erwsinzbﬁ—e)

r,- 2

v

(dimensionless) (5.19)

X ~sin? (X -
e,/cos(2 6)+\e, sin (2 8)

For a vertically mounted small loop, the image antenna’s
contribution is added to that of the actual antenna. Thus, total
electric field for a small vertical loop is written as:

_ kSfp,I,sin(0) o
Qvnzc“ 2r

_jk;[1+rve-j2khcos(0)] (V/m) (5.20)

It should be noted by application users that (5.20) applies to
loops located in a coordinate system that has been rotated with
the axis of the loop such that the +z axis is parallel to the
loop axis and the ground.

If the electric field of a small loop antenna over real
ground is known, several parameters can be computed using general
antenna formulas. Far-field equations for radiation intensity
(U), radiated power, directivity, and radiation resistance are as

follows:
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2
U= an |E|? (W/solid ang) (5.21)

o

Pud=ff°Usin(6)dBd¢ (W) (5.22)

D =47 Unax (dimensionless) (5.23)
rad

Rﬁ%‘%‘: (Q) (5.24)

In (5.22), (1) is a half sphere that encloses a loop over ground
in the far-field. 1In (5.23), (U,,) is the maximum radiation
intensity anywhere on the half sphere as determined by applying
(5.22).

A unique feature of small loop antennas is that most
efficiency terms associated with it can be calculated from the
loop’s measurements. One of the reasons for this attribute is
the fact that input reactance (X;) can be reasonably estimated

from [Ref 5: pp. 102-103]:
Xi=2nfauo[ln(8%)—1.75] (Q) (5.25)

Input impedance (Z,) for the small loop is found using the

formula:

Z;=R;+jX; (Q) (5-26)

In (5.26), input resistance (R,) is the sum of radiation and

ohmic resistance and is written as:

42




R;=R_+R ppic (Q) (5.27)

If the characteristic impedance of the antenna’s feed line
is known or can be presumed, the voltage reflection coefficient

(I') and reflection efficiency (€,) are determined by:

r-—+ -2% (dimensionless) (5.28)
Z,+2,
€,=1-|I'|* (dimensionless) (5.29)

As previously discussed, the polarization of a small loop
matches the orientation of the loop (i.e., a horizontal loop is
horizontally polarized). Thus, if the polarization of an
incoming wave is known or can be estimated, one can use the dot
product of the unit polarization vector of a small loop antenna
(0,) and the unit polarization vector of an incoming wave (o0,) to

compute the polarization loss facpor (PLF) as follows [Ref 3: p.

51]:

PLF=|6 6,|° (dimensionless) (5.30)
With the efficiency and loss terms of the small loop
estimated by (5.13), (5.29), and (5.30); gain (G), maximum
effective aperture (A,), and effective isotropic radiated power

(EIRP) can be expressed as [Ref 3 pp. 43-63]:
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G=ee_ 4D, (dimensionless) (5.31)

12) (m?) (5.32)

AemzezecdDo(PLF) ( .4_1{

EIRP=P,,,D, (W) (5.33)

Maximum effective height (h,) can be determined from the
maximum effective aperture and radiation resistance of the

antenna as follows [Ref 2: p. 42):

hy =2 R:]Aem (m) (5.34)

Mathcad applications are developed assuming bandwidth (BW)
of an antenna is the range of frequencies over which all
computations will be valid. For the small loop antenna Mathcad
applications to be valid, (5.1) must hold. Thus, the radius of
the loop will define lowest operating frequency (f. ), the
highest operating frequency (f..,.), and the bandwidth of the

antenna as shown below:

fpin20 (HZ) (5.35)

axS—— (Hz) (5.36)
6na

BW=f . -fo, (HZ) (5.37).

The electric field patterns and antenna parameters obtained
using the small loop Mathcad applications for a small loop in

free space are identical to published results obtained using
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method of moments techniques [Ref 3: pp. 169-180)]. A comparison
of the results of the Mathcad applications with measured data for
a small loop (a=.25 meters, b=.005 meters) located 2.5 meters
above a reflecting plane (0=6x10’ S/m, €,=1) receiving a 30 MHz

signal is provided in Table 5.1 [Ref 6: p. 5-14].

TABLE 5.1 Small Loop Antenna Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
DIRECTIVITY 7.0 dB 6.5 dB

B. THE ELECTRICALLY LARGE LOOP

Electrically large loops are those loops that do not satisfy
(5.1). Use of these antennas is somewhat rare, with radii
exceeding one wavelength normally not practical. Large loops
are, in general, significantly more difficult to analyze than
small loops since large loops cannot be approximated by
infinitesimal magnetic dipoles. 1In addition, the input reactance
of a large loop antenna cannot be calculated from the loop’s
geometry.

The polarization of a large horizontal loop over real ground
is horizontal, but the polarization of a large vertical loop is
not vertical. Due to the complexities of computing the

polarization and ground reflection coetrficients of a large
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vertical loop, the Mathcad large loop antenna applications will
only examine the free space and horizontal cases.

To begin analysis of the far-field radiation pattern of a
large loop in free space, one must assume that the current on the
loop is constant. As illustrated in Figure 5.4, this is an
approximatior that deteriorates with the size of the loop [Ref 3:

p. 184].

Current Ampilitude in mA

0 1 1 1 i I ! I ;
0 20 4 60 80 100 120 140 160 180

Angle from Loop Feed Point

FIGURE 5.4 Current Magnitude Distribution for a Large Loop

If one assumes that loop current is constant, (5.2) applies

to large loop antennas. The other component of electric field
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(E;,) is approximated by [Ref 3: pp. 176-178]}:

_2nfap, I e 7k
2r

E, J, (kasin(8)) (5.38)

In (5.38), J,(kasin(8)) is a Bessel function of the first kind of
order one. With the horizontal reflection coefficient of the
ground computed per (5.16), total electric field of the large

horizontal loop over real ground is given by:

_2mfap, I,

Bpor=—— 7" J, (kasin(0)) (5.39)
. [l-Fhe -j2khcos(6)] (V/m)

Radiated power for a large loop in free space is computed
using (5.22), where radiation intensity is given by (5.21) and
electric field is computed by (5.38). It should be noted that
the far-field conditions of (5.5)-(5.7) must be satisfied if the
Mathcad large loop antenna electric field and radiated power
calculations are to be valid.

Large loop, free space approximations for radiation
resistance, directivity, maximum effective aperture, and maximum
radiation intensity are as follows [Ref 3: p. 181] {(Ref 11: pp.

78-791:
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R,=60n2<§)N?— (Q) (5.40)

Do=.682(-§) (dimensionless) (5.41)
Agp=.0543(AC) (m?) (5.42)

2xf 21 I,|2 5 .
Upax = (21 fap,) F| 1| (.584)% (W/solid ang) (5.43)

max 87]0

For the horizontal loop over real ground, radiation
intensity is given by (5.21), where the electric field is
computed in (5.39). With radiation intensity known, radiated
power is calculated by (5.22) and effective isotropic radiated
power is computed using (5.33). Radiation resistance and
directivity for the horizontal loop are determined using generic

antenna formulas as follows:

R,=3‘f—’i"$ (Q) (5.44)
|1 Z,|
iU
Do=—?rﬁﬁ (dimensionlesss) (5.45)

rad

Ohmic resistance for the large loop antenna is given by
(5.8). With radiation resistance given by (5.40) or (5.44), as
applicable, the conduction-dielectric efficiency of the antenna
is computed using (5.13).

Without knowledge of the input reactance, it is impossible

to compute reflection efficiency of a large loop antenna.
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Therefore, Mathcad applications for large loops assume a factor

of unity for reflection efficiency and calculate gain as follows:

G=e_4,D, (dimensionless) (5.46)

In general, the polarization loss factor given in (5.30)
cannot be determined for an arbitrary large loop. Thus, (PLF)
for large loops is assumed to be unity and maximum effective

aperture is given by:

AmecDy(2=)  (m?) (5.47)

With maximum effective aperture determined for a large loop
using (5.47), maximum effective height is found by applying
(5.34).

The bandwidth of a large loop is determined by the loop’s

radius as follows:

Zcash (m) (5.48)
6T

—C <f<E (Hz) (5.49)
an a

BW==(1--L) (Hz) (5.50)
a 6™

Figure 5.5 compares the electric field pattern obtained from
the Mathcad applications for a large loop (a=.46 meters, b=.05.
meters) in free space receiving a 330 MHz signal with published
results obtained from method of moments techniques [Ref 3: p.
180]). Table 5.2 compares antenna parameters calculated using the
Mathcad applications with measured results for a large loop
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(a=.46 meters, b=.05 meters) located .72 meters above a
reflecting ground plane (0=6x10’ S/m, €,=1) receiving a 104 MHz

signal [Ref 6: p. 5-14).

TABLE 5.2 Large Loop Antenna Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
INPUT RESISTANCE 150 a 207 0
DIRECTIVITY 7.0 dB 6.7 dB
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FIGURE 5.5 Large Loop Antenna Electric Field Patterns
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Vi. THE S8PRING NNA

The vertical directivity (D,) of a horizontal dipole over
real ground may be improved by placing identical elements in a
straight line above the original. A vertical line of horizontal
dipoles is commonly referred to as a bay. In a similar manner,
one may place additional bays adjacent to the original and
achieve an improvement in horizontal directivity. Further
improvements to the gain (G) of this array of bays may be
realized by placing a reflector on one side to simulate the
existence of a conducting plane. The entire arrangement of bays
and reflector is referred to as either a bedspring or a curtain
antenna. A bedspring array is frequently used for high frequency
(3-30 MHz) short wave radio systems [Ref 10: pp. 21-1 - 21-6]. A
typical bedspring antenna arrangement is illustrated in Tigure

6.1.
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FIGURE 6.1 A Typical Bedspring Antenna
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To implement the Mathcad software for the bedspring antenna

applications, the following dimensions are needed:

Z, = height of the i‘" element above ground

2, - 2,., = vertical spacing between the i and the (i=~1)*®
element

Y, = horizontal position (dipole center) of the
i*" bay (Y, = 0)

Y, - Y,.,, = horizontal spacing between the i*" and the (i-1)*"
bay

N = number of bays

M = number of elements in each bay

X, = reflector position

1l = half-length of each element

The geometry for the bedspring antenna is shown in Figure 6.2.
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FIGURE 6.2 Bedspring Antenna Geometry
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In Figure 6.2 , (y) is the angle between the +y axis and the
vector (r) from the origin to the observation point in the far-
field. Bedspring antenna Mathcad applications assume that all
antenna elements are identical horizontal dipoles parallel to
each other and the y axis. The applications also presume that
the reflector is a perfect vertical conducting plane, parallel to
the y-z plane, and located in the -x half-space.

The assumption that the reflector is a perfect conducting
plane is fairly reasonable, as experimental data has shown that
the reflector typically improves gain by 2.5 to 3.0 dB. The
reflector screen may be constructed from tuned elements, such as
half-wave dipoles, or it may consist of a pattern of closely
spaced, parallel wires. The reflector is normally located about
one-guarter wavelength behind the antenna [Ref 10: p. 21-6].

The electric field (E) pattern for the bedspring antenna is
computed using the principle of pattern multiplication for
antenna arrays. Using the identity cos(¥)=sin(0)cos(¢), one may
predict the electric field components of a single bay. If all
elements in the bay are excited by a sinusoidal current with
maximum amplitude (I,), the electric field components are [Ref

12: pp. 229-231]:

-Jkr 4 : -
Eh=‘j60Lner (cos(klsin(0)sin(¢)) -cos(kl)]

{1-sin?(0)sin?(¢)]
(V/m)

sin(¢)cos (0) [A]

(6.1)

56




eﬂ*’[cos(klsin(ﬁ)sin(¢))-cos(kl)]COS(¢)[B]
r [1-sin%*(0)sin?(¢)] (6.2)

(V/m)

Ey =J601,

Given the wavelength (A) of the frequency of interest, the

wavenumber (k) in (6.1) and (6.2) is given by:
=-2§ (m-1) (6.3)

The complex coefficients (A) and (B) in (6.1) and (6.2),

respectively, are computed as follows:

A=§ :M. C'ejkzl(cos(e) -cos(8,)) [1 —Rve -j2kZ;cos{0) ]
a (6.4)

(dimensionless)

B=E:~l.1 Ciejkzi(cos(e) -c08(85)) [ +R,e -j2kz;c08(0) | .5)
(dimensionless)

The relative amplitude of excitation (C,) of the i*® dipole with
respect to the first element in the first bay is required for
both (6.4) and (6.5). Equations (6.4) and (6.5) also use (6,) to
represent the desired vertical scan angle of the antenna. The
vertical scan angle is approximately equal to the progressive
phase shift from one element to the next in the bay. 1In (6.4),
(R,) is the vertical reflection coefficient over real ground. 1In
(6.5), (R,) is the horizontal reflection coefficient over real

ground. These reflection coefficients are determined by [Ref 5:

Pp. 229-235]:
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r _e,cos(0) - /e, ~sin*(0)
Y e, cos (0) +/e,,~sin?(8)

- 1= i e
r =C05(6) Ve -sin(0) (dimensionless) (6.7)

cos (8) +/e,.-sin(O)?

The relative complex permittivity (€,.) of the ground needed

(dimensionless) (6.6)

to determine both reflection coefficients is calculated using the
relative permittivity (e€,) of the ground, the conductivity of the

ground (o), and the permittivity of free space (¢,) as follows:

e,me,-jiﬁﬁﬁ; (dimensionless) (6.8)
o

The electric field components of (6.1) and (6.2) apply only
in the far-field. Thus, all of the following conditions must

hold if the computed electric fields are to be valid [Ref 3: pp.

92-937]:
r>1.6A (m) (6.9)
>sSD (m) (6.10)
o220 (m (6.11)

In (6.10) and (6.11), (D) is the largest physical dimension in
any direction of the antenna and is equal to the bedspring’s
diagonal length.

If one assumes that the amplitude and phase of the feed
current in corresponding elements in each bay is the same, the

array factor (S,) for N bays is written as [Ref 12: pp. 229-231]:
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Sy= ejky,,_._sin(ﬁ) [sia(é) -sin(¢,) ] (dimensionleSS) (6. 12)

n=1

In (6.12), (¢,) is the azimuthal scan angle of the antenna. The
azimuthal scan angle is approximately equal to the progressive
phase shift between bays in the bedspring antenna.

The array factor accounting for the perfect image from the

reflector (S,) is:

-j2kX,8in(B)cos (§)

S .=l-e (dimensionless) (6.13)

X

The total electric field components (E,, E,) are computed
by taking the product of all appropriate array factors and the

pattern for a single bay as follows:

EOC=EOISYSX (V/m) (6- 14)

E,.=F,,S,S, (v/m) (6.15)
The radiation intensity (U) of the bedspring antenna is
determined from (E,) and (E,) by [Ref 3: pp. 27-29]:

I2

U=
2n

(|Eg.|?+|Ey.|?] (W/solid ang) (6.16)

o
In (6.16), (n,) 1s the intrinsic impedance of free space.

Using the radiation intensity calculated in (6.16), one may
calculate radiated power (P,,;) by computing the following
integral over the quarter sphere (1) through which

electromagnetic energy from the antenna flows:

p,,d=ffoUsin(e)ded¢ (W) (6.17)
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Mathcad bedspring antenna applications assume that each
element is excited by a feed current with the same maximum
amplitude. Although this assumption may seen restrictive, it has
been experimentally determined that maximum gain is obtained from
a bedspring antenna if all radiator currents are of equal
amplitude. Therefore, the following approximation for antenna

feed current (I ) holds (Ref 10: p. 21-17}:
|I,|=MN'|I,| (amps) (6.18)

It should be noted that the bedspring antenna applications
normalize all element excitation currents to one amp.

Given the magnitude of the feed current for the entire
antenna, radiation resistance (R,) for the complete assembly is

determined as follows:

R =—-fad (Q) (6.19)

Directivity is computed from radiation intensity and
radiated power by:

anl,,
0=P_

rad

(dimensionless) (6.20)

In (6.20), (Up,) 1s the maximum value of radiation intensity
anywhere on the quarter sphere encompassing the antenna’s
emissions.

Gain is the product of total antenna efficiency (€,) and

directivity. Gain is normally expressed as:
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G=¢.D, (dimensionless) (6.21)

Unfortunately, the total efficiency of a bedspring antenna
cannot be easily determined from its dimensions. For example,
input impedance is a key parameter needed to calculate an
antenna’s reflection efficiency. However, input impedance has
several components that are extremely difficult to determine.
Self impedance of each element, mutual impedance between real
elements in the array, mutual impedance between real elements and
image elements from the reflector, and mutual impedance between
real elements and imperfect images in the ground plane all
contribute to input impedance. Because of the complexity of
computations, input impedance of the bedspring antenna can only
be estimated by an extensive method of moments aléorithm.

Other problems computing antenna efficiency include the
possible existence of tuning devices in the feed lines; probable
lack of sinusoidal current distributions for elements of
arbitrary length; and inability to properly model the ground,
reflector screen, and characteristic impedance of the feed
assembly. Nevertheless, bedspring antenna gain can be adequately
estimated despite the extensive calculations associated with
precise modeling. Experience has shown that a properly tuned
bedspring antenna operating within the band of expected
frequencies exhibits very little loss. Consequently, gain is

estimated in Mathcad bedspring applications as [Ref 10: p. 21-3]:

G=10log(D,) -2 (dB) (6.22)
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Effective Isotropic Radiated Power (EIRP) is the product of

radiated power and directivity and is computed by [Ref 5: p. 62]:
EIRP=P_,,D, (W) (6.23)

The bedspring antenna’s unit polarization vector (o,) may be
found by converting the electric field components of (6.14) and

(6.15) to Cartesian coordinates as follows [Ref 4: pp. 35-36,

364-367):
E,=Eycos (8) cos (¢) -E;sin(¢d) (V/m) (6.24)
E@=£bcos(6)sin(¢)+E;cos(¢) (V/m) (6.25)
E,=-E4sin(B) (Vv/m) (6.26)
G,(x,y,2)= 3xEx+3,E,+d,E, (dimensionless) (6.27)
VIE(x,y,2z)|?
In (6.27), (a,,.,) are the unit vectors for the Cartesian

coordinate system.
The polarization loss factor (PLF) of a bedspring antenna at
a point in the far-field for a given incoming wave with unit

polarization vector (o,) is expressed as [Ref 3: p. 51];

PLF=|8,3,|° (dimensionless) (6.28)
Without knowledge of antenna efficiencies, one cannot
exactly predict an antenna’s maximum effective aperture (A,,) or
maximum effective height (h,,). Nonetheless, one may assume a

lossless antenna system and approximate these parameters as

follows [Ref 2: pp. 29-43]:

62




12

An=D,(PLF) (—=) (m?) (6.29)
an

hop=2, 222 (m) (6.30)
N

For a half-wave dipole assembly, such as that pictured in
Figure 6.1, a complex current that achieves maximum gain is fed
to each element only within a few percent of the frequency (f,,;)
whose wavelength matches the length of the half-wavelength
dipoles. Therefore, the bandwidth (BW) of a Figure f.1 type

bedspring antenna is [Ref 10: p. 21-16]:

Fpign=1.02f,,, (Hz) (6.31)
flow=-98fl/2 (HZ) (6-32)
BW=fy,on-F10p (HZ) (6.33)

In (6.31), (fu,.) 1s the upper frequerncy of the antenna. In
(6.32), (f,..) 1is the lower bound on operating frequency.

If wideband operations are required for a bedspring antenna,
a symmetrical feed arrangement as shown Figure 6.3 may be

employed.
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FIGURE 6.3 Symmetrical Feed Bedspring Antenna
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The bandwidth for a symmetrical feed bedspring antenna is

given by [Ref 10: p. 21-16]:

f1..,=-98f,,, (H2) (6.35)
BW=fy,n-F1on (HZ) (6.36)

Figure 6.4 compares the electric field pattern computed by
the bedspring antenna Mathcad applications with measured results
for a two-bay (Y,=26 meters), four-stack (Z,=13 meters) bedspring
antenna with reflector (X;=7 meters) operating at 10 MHz over

soil (0=.01 S/m, €,=10) [Ref 12: p. 115].
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VII. THE SPIRAL ENNA

Spiral antennas are a family of two- and three-dimensional
structures that maintain a constant input impedance, beam
pattern, gain, and polarization as well as many other parameters
over a wide range of frequencies. Spiral antennas are commonly
referred to as frequency independent, or broadband, devices. A
two-dimensional spiral is called a planar spiral, while a three-
dimensional spiral is usually termed a conical spiral. Planar
and conical spiral antennas are commonly used in applications
such as direction finding, missile guidance, and satellite
tracking. [Ref 6: pp. 14-2 ~ 14-3)

Although there are several types of planar and conical
spiral antennas, Mathcad applications will fully analyze only
those antennas with reasonably simple, closed form equations:
equiangular planar spirals and conical log-spirals. Mathcad
applications assume that the base of all spirals lies in the x-y
plane and is centered at the origin, that the axis of all spirals
is parallel to the z axis, and that the spirals are in free
space.

A. THE PLANAR SPIRAL ANTENNAS

There are three major categories of planar spiral antennas:
the equiangular spiral, the Archimedean spiral, and the log-
periodic spiral. The geometry of all planar spirals is pictured

in Figure 7.1.
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FIGURE 7.1 Planar Spiral Geometry

In Figure 7.1, the spiral angle (B) is the angle between any
radial line from the origin and a tangent to any edge of the
spiral, (r) is the distance to any point on the spiral from the
origin, and (r,) is the distance from the origin to the spiral’s
feed point. The Mathcad spiral antenna application user should
not confuse the radial distance from the origin to any point on
the spiral (r) and the distance from the origin to an observation
point in the far-field (ry).

Spiral antennas may be constructed from wires or sheets of
metal. For low power, receive only operations, spirals may also
be built using printed circuit technology. A more rugged, all-

purpose antenna is constructed by simply cutting the spiral edges
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from a sheet of metal and running coaxial feed lines along the
spiral arms. A dummy feed line may also be run on an opposing
arm for symmetry [Ref 6: pp. 14-4 - 14-7].

The physical dimensions of the spiral arms determine the
type of spiral antenna and the antenna’s parameters. An
equiangular spiral is one whose edges or wires satisfy the

following [(Ref 5: p. 283]:

r=r,e* (m (7.1)

In (7.1), (a) is an arbitrary constant called the flare rate. 1If
the flare rate is a negative number, the spiral is considered
left-handed. If the flare rate is positive, the spiral is right-
handed.

When sheet metal is used to construct an equiangular spiral,
(7.1) defines the coordinates of one edge of one spiral arm. The
next edge (r,) is cut using the same spiral curve as (7.1), but

with an angular arm width (§) as follows:

ry=r e®® (m (7.2)
Spiral antennas are usually symmetrical. Thus, for a two arm

spiral, edges (r,;) and (r,) are given by:
r,=r e2®™ (m (7.3)

7.4
r,=r,ed® 8 (m ( )

Normally, flare rate is converted to a factor called

expansion ratio (e€,) which is written as (Ref 5: p.284]:
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_r(p+2m)

' ' ) 7.
€ox™ 210 (dimensionless) (7.5)

A typical value for the expansion ratio is 4.
The Archimedean spiral has many of the same characteristics
as the equiangular spiral, except that any point on the edge of

an Archimedean spiral is written as:

r=r ¢ (m) (7.6)

Likewise, the performance of a log-periodic spiral is
similar to an equiangular spiral except that its edges are

defined by:

r=r.a® (m) (7.7)

For a log-periodic spiral it can be shown that the following

formula is always satisfied [Ref 2: pp. 697-698]:

é=tan(B)1ln(r) (radians) (7.8)

In (7.8), the spiral angle (B) is the same as that illustrated in
Figure 7.1 and is constant at any point on the log-periodic
structure. Because of their broadband characteristics and ease
of construction, log-periodic spirals are regularly used in the
lower millimeter wave region [Ref 12: p. 17-28].

The lowest operating frequency (f,.), highest operating
frequency (f,,,,), and bandwidth (BW) of spirals are functions of
the antenna’s dimensions and the feed arrangement. For
equiangqlar and Archimedean devices, the minimum radius (r,) and

wavelength of the highest operating frequency are approximately
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correlated as follows [Ref 5: pp. 284-285]:

ST (7.9}
@ 4

r
The wavelength (4,,) corresponding to the lowest operating
frequency is set by the overall radius (R) of the structure as

follows:

A
R= ;0' (m) (7.10)

With the antenna’s upper and lower frequency limits

established, bandwidth may be expressed as:

The frequency limits and bandwidth of a log-periodic spiral
are also determined by its dimensions. Bandwidth of a log
periodic spiral is given by (7.11), where the lower frequency
limit corresponds to the wavelength computed using (7.10) and the

upper frequency’s wavelength is calculated as follows [Ref 2: p.

700):

igh  (m) (7.12)

A spiral antenna is frequency independent in that most
antenna parameters do not vary over the bandwidth of the antenna,
which can be a considerable range of frequencies. Input
impedance is one of these parameters and may be computed using
the concept of complimentary antennas. The complement of a

spiral is formed by replacing metal with air and air with metal.
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The impedances of the spiral and its complement are (2Z.,..) and
(Z,,;), respectively. These two impedances are real, frequency

independent, and for a two-arm spiral related as follows [Ref 5:

p. 283}:
T]2
Zmetalzaiz:To (QZ) (7.13)
In (7.13), (n,) 1is the intrinsic impedance of free space. If the

antenna and its complement are identical, the antenna is called
self-complimentary and the angular arm width in (7.2) is n/2. 1In
the specific case of a two-arm, self-complimentary spiral, the

impedance of the antenna 1is:

Zpecar=Zaiz= 2 <188.5  (Q) (7.14)

Self-complimentary spirals are fairly common because they
yield desirable radiation patterns. Measured input impedance is
typically between 120-160 ohms for these devices, which is lower
than the theoretical results of (7.14). The presence of a feed
structure, the finite size of the antenna, and the finite
thickness associated with the spiral’s arms are the reasons
measured input impedance is lower than its theoretical value [Ref
5: pp. 285-286].

Mathcad spiral antenna applications assume that planar
spirals are equiangular and self-complimentary. The applications

also assume that input impedance for a two-arm spiral is given by

(7.14).




An (N) arm, rotationally symmetric spiral has (N-1)
independent radiation modes, where each mode corresponds to a
different radiation pattern. Typically, an (N) arm spiral
operating in mode (M) excites each arm with a current of
identical magnitude. The phase difference (a) with respect to
the first arm for arm (n) of an (N) arm spiral excited in mode

(M) is given by [Ref 6: p. 14-4]:

_ -2nnM

a
N

{(radiars) (7.15)

Most of the radiation from a spiral occurs at the point
where the spiral’s circumference (C) equals the product of the
mode and wavelength of the frequency of interest. As frequency
and wavelength change, the principal radiation point on the
antenna changes but the radiation parameters and beam patterns do
not. The shifting radiation point along the structure is why
spirals are broadrand antennas. In addition, as long as the
spiral is sufficiently large to radiate all desired frequencies,
the shape of the spiral arm termination does not effect the
antenna’s radiation pattern [Ref 6: pp. 14-4 - 14-7].

All modes of a planar spiral whose center is at the origin
in the x-y plane have a null along the z axis, unless mode one is
being excited. A planar spiral radiates in both positive and
negative z half spaces with magnitude patterns that are
rotationally symmetric.

The electric field of a self-complimentary, planar spiral at

an observation point in the far-field is given by [Ref 14: p.
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530]:

Eg=E,=0 (V/m) (7.16)

E k3cos (8) [1+jacos(8)] 2 7™ [tan( g) ™
sin(ﬂ)z (7.17)
J (M8~ 2) -kzgg)
« £ e M (y/m)
Tse

Ey=

In (7.16) and (7.17), (E,) is a source strength constant and (k)
is the wavenumber given by:

k 2N

=T (m_l) (7.18)

Rearranging (7.17), the amplitude of the electric field (A,)

becomes:

Mean-i(aco
cos (8) [tan(.g)]ue 2 tan™t (acos (6))

A= (V/m)
sin(0)y1+a?[cos(B)]?

(7.19)

The Mathcad application user should note the phase variation
as a function of azimuth in (7.17). This phase variation can
result in azimuthal beam shaping if multiple spirals are used in
an array [Ref 15: p. 18]. However, for a single spiral there is
no change in electric field magnitude with azimuth and the
pattern is considered rotationally symmetric.

The electric field computed using (7.17) or (7.19) applies
only in the far-field. Therefore, the following conditions must

all hold if the far-field patterns are to be accurate [Ref 3: p.

92]:
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I21.6A (m) (7.20)

I 210R (m) (7.21)
2

Lpe2 Bf (m) (7.22)

With the spiral’s electric field given by (7.16) and
(7.17), the antenna’s radiation intensity (U), radiated power
(P,.q) , and directivity (D,) are found using generic antenna

formulas as follows [Ref 3: pp. 28-29]:

2
<Xt p2a_ 1 a2 ' 7.23
U ?-ﬂolE’ 2'ﬂo|A'l (W/solid ang) ( )
p,ad=foUsin(e)aﬂd¢ (W) (7.24)
4nU .
D,= T max (dimensionless) (7.25)

rad

In (7.24), (1) is the entire sphere of radius (ry) in the far-
field that surrounds the spiral. 1In (7.25), (Up,) is the maximum
radiation intensity anywhere on the sphere.

The gain (G) of a spiral is the product of its directivity
and efficiencies. Conduction-dielectric efficiency (e.) of a
spiral cannot be easily determined and is, therefore, assumed by
the Mathcad applications to be unity. Reflection efficiency
(€..) , however, can be approximated. The impedance of a two arm,
self-complimentary spiral is given by (7.14). 1In the general

case of an (N) arm, self-complimentary spiral in free space
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operating in mode (M), the input impedance is real and is given
by [Ref 6: p. 14-22]:

z.=N—30" __ (Q)

1
sin(nfﬁ
N

(7.26)

If the characteristic impedance (Z,) of the feed line is known or
can be estimated, the voltage reflection coefficient (TI'),

reflection efficiency, and gain are computed by:

F=f§:ﬁ@ (dimensionless) (7.27)
2:+2Z,

e, =1-I'|* (dimer ;ionless) (7.28)

G=€¢,,D, (dimensionless) (7.29)

The planar spiral radiates in both directions normal to its
surface. Improvements to antenna ga.in can be realized if the
radiation in the undesired directior is reflected or eliminated.
A common technique used to achieve an improvement in gain is to
place a cylindrical metal cavity on the side of the spiral that
has the unwanted beam pattern. The cavity can improve gain by up
to 4.5 dB but can also reduce bandwidth by up to a factor of 5.
The loss of bandwidth can be mitigated by filling the cavity with
electromagnetic energy absorbing material. The absorbing
material will reduce gain for spiral with a cavity by up to 1.5
dB depending on thickness of the material and dimensicns of the
cavity. Although Mathcad applications do not include cavity

parameters, the effect of cavities on antenna gain can be
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estimated using measured results from an archimedean cavity-
backed spiral. The change of overall gain with cavity depth and
maximum gain with cavity diameter are pictured in Figures 7.2 and

7.3, respectively [Ref 6: pp. 14-17 - 14-18].
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Effective isotropic radiated power (EIRP) is the product of
gain (dimensionless) and power delivered to the input of the
antenna. Effective isotropic radiated power for a planar spiral

is given by:
EIRP=P_, D, (W) (7.30)

If the magnitude of the current (I,) at the antenna’s feed

is known, its radiation resistance (R.) may be expressed as:

- 2Fraq (Q) (7.31)

R - ~
12,/

r

The spiral antenna Mathcad application user should note that the

magnitude of the transmitter current cannot be estimated from the
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antenna’s dimensions and is normalized to unity.

The polarization of a planar spiral whose center is the
origin is circular within 70 of the z axis. The handedness of
the spiral’s polarization is the same as the spiral if measured
in the +z half-space and if the spiral is excited at the central
feed point. 1If the polarization is measured in the -z half-space
or if the spiral is fed at its peripheral termination, the
handedness of polarization is opposite that of the spiral. Dual
polarization is achieved when the structure is simultaneously
excited at both the center and periphery [Ref 6: p. 14-20].

Mathcad applications assume that a planar spiral’s unit
polarization vector (o,) is circular, although the user may
modify this according to observed feed structures. If the
incoming wave unit polarization vector (og,) can be determined,
the polarization loss factor (PLF) of the antenna is calculated

as [Ref 3: p. 51]:

PLF=|G,5,|° (dimensionless) (7.32)
With all efficiency and loss terms computed, the antenna’s
maximum effective aperture (A,) and maximum effective height

(h,,) are estimated as follows [Ref 3: p. 63)]:

12

= Fy (22— 2 7.33

A n=€,,D, (PLF) ( e ) (m?) ( )
P RAen 7.

bem=2\ _—T] :e (m) ( 34)

Figure 7.4 illustrates the difference between the electric
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field pattern computed by the spiral antenna Mathcad applications
and measured results for an equiangular spiral antenna (a=.3,
§=90°, r,=.005 meters, R=.142 meters) operating at 2.8 GHz over a

conducting plane [Ref 16: p.185].

Comperison of Equiengular Spiral Antenng Electric Fieics
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FIGURE 7.4 Equiangular Spiral Electric Field Patterns

B. THE CONICAL SPIRAL ANTENNA
The planar spiral antenna offers many features which make it
a very popular device. However, the fact that it radiates in a

direction normal to both of its surfaces is a major drawback.
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Although cylindrical cavities placed on one side of the spiral
can reduce the effects of unwanted radiation, a modification to
the basic planar structure can accomplish the same result without
additional apparatus. If the planar spiral is altered into a
conical shape, many of the desirable features of the planar
spiral are maintained, but radiation occurs primarily in
direction of the cone’s tip.

Any point on the i'**" edge of a log-conical spiral antenna

may be defined by [Ref 5: p. 286]:

ri=roe(b51ne°) (¢-8p (m) (7.35)

In (7.35), (é,) is the angular offset of the i*" edge, (0,) is the

conical half-angle, and (b) is an arbitrary constant given by:

b=cot (B} (dimensionless) (7.3¢€)

The geometry of a log-spiral is illustrated in Figure 7.5.
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" FIGURE 7.5 Conical Log-Spiral Geometry

In Figure 7.5, (B) is the overall diameter or twice the overall
radius (R) and (d) is twice the feed radius (r,).

Analogous to the planar spiral, the upper operating
frequency (f,,,,) of a conical log-spiral is determined by the
relationship between the wavelength (An.,gn) ©of the upper frequency

and the spacing (d) between feed points as follows [Ref 5: p.
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287]:

dzlhngn m) (7.37)

The lower operating frequency (f,.) of the conical spiral is
determined by the correlation between the lower frequency'’s

wavelength (4,,) and the antenna’s overall diameter by [Ref 5: p.

2871:
3A
B=_2dow (7.38)
8
The bandwidth of the conical log-spiral is computed using
(7.11).

The conical log-spiral radiates a single lobe in the
direction of its apex. The pattern broadens with increasing
spiral angle (B) and lowering cone angle (20,) until
irregularities occur and multiple beams begin to form. Figure
7.6 provides a rapid reference for the boundary between usable

and unusable cone and spiral angles. [Ref 13: pp. 9-84 - 9-85]
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Useable Conlcal Log—Spiral Dimersions
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FIGURE 7.6 Conical Log-Spiral Useable Dimensions

The far-fieid electric field ccmponents of a conical log-
spiral of total arm length (L) are written as follows [Ref 17:

pp. 321-331]:

E =0 (V/m) (7.39)
'Jkt lﬁ 8) cos (0,
Eo=-Jfm, S “5[ I8y e @ % eyae (v/m  (7.40)
-Jjkre, .-_§cos(6)cos
[7] j 7.41)
b [, 1 BB GE (v/m)

In (7.40) and (7.41), the slowness factor of the antenna {Q‘' and
the total arm length of a spiral arm (L) are constants defined
by:
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1

Q= 1+I;- (dimensionless) (7.42)
L=%[e(0,_)bsin(6°)_1] (m) (7.43)

In (7.43), (¢.) is the azimuth at the end of the spiral arm and

is:

R
- i sin(0,) ) (7.44)
¢’_bsin(eo)ln( T, ) (radians)

The coefficients A({) and B(f) of equations (7.40) and (7.41),

respectively, are expressed as:

Msin(e)sin(e Ycos{($(E) -¢-la)
-1 5 o
A(E):E Jl-oe JMlae Q

; (7.45)
sm(eo)czsw)cm -sin(0)cos(6,)]

(dimensionless)

[

~ , -lk—{sin(e)sin(eo)coslo(t)-Q-la)
B() =} ) eMe ¢ 7.46)
. JJsin(e,) (7-

> yC() (dimensionless)

In (7.45) and (7.46), (a) and C({) are given by:

2m

a-= (dimensionless) (7.47)

. J J 8 eela) (1o T

bsin(,) ' °© *-pstae,) (7.48)
xo 7@ -la) dimensionless

The (+) sign in (7.48) is for C(£) used in calculating (E),

while the (-) sign is for (E,) computations.
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Azimuth angle as a function of distance along the spiral arm

((€)) in (7.45), (7.46), and (7.48) is calculated using:

=___l__ _E_biq,". ]
¢ (&) bsin(eo)ln( T 1) (radians) (7.49)

The current distribution (I(f)) used in (7.40) and (7.41) is
that of the excitation current along the spiral arm. This
current distribution can only be calculated using intricate
numerical modeling or a method of moments solution. An
examination of measured current distribution yields the following
engineering approximation of (I(f)) given a current at the feed

point of (I.):

2

. &
I(g)=I,e * (Amps) (7.50)

Figure 7.7 provides a comparison of the current distribution
computed by the conical log-spiral Mathcad applications using
(7.50) to that measured for a four arm conical log- spiral
(6,=10°, 6=20°, b=.46) operating in mode one. The application
user should note that most of the radiation from the conical log-
spiral occurs at the location on the device where arm length (L)

in wavelengths approximately equals the mode number [Ref 17: PpP-

321-331]7.
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FIGURE 7.7 Conical Log-Spiral Current Distributions

Mathcad spiral antenna application users should note the
precise evaluation of the integrals in (7.40) and (7.41) is very
time consuming, even on a 33 MHz, 386 personal computer. Thus,
the application user is provided a trapezoidal approximation to
evaluate the conical log-spiral antenna integrals. Also, both
the exact and trapezoidal applications only analyze electric
fields and other parameters in the +z half- plane.

In the trapezoidal approximation, the integral is replaced

by a summation and (df) is replaced by:




ag= {(m) (7.51)

s

In (7.51), (t) is an operator entered number of spiral arm
increments. The application user should expect the Mathcad
evaluation of a conical log-spiral using the trapezoidal method
to. take about 25% of the time required for exact method
predictions.

Conical log-spiral electric field calculations are valid
only if the conditions of (7.20) through (7.22) are satisfied.
Mathcad applications assume that overall radius is the largest
dimension of the conical log-spiral.

Radiation intensity of the conical log-spiral antenna is

determined by (Ref 3: p. 28]:

r Z
U= Ltf
2

[|Eg|2+]E,|*] (W/s0lid ang) (7.52)

o

The radiated power and directivity of the conical log-spiral
are given by (7.24) and (7.25). Users of the Mathcad spiral
antenna application should be aware that computer solution of
these formulas may be very time consuming. However, one may
reasonably consider most conical log-spiral antennas in the
useable region of Figure 7.6 to have a total electric field that
is rotationally symmetric with respect to the antenna’s axis.
Given this fact, an approximation of directivity may be made. An
estimate of half-power beamwidth (A0) in degrees as a function of

spiral and cone angles is provided in Figure 7.8 below.
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The half-power beamwidth from Figure 7.8 is used to estimate
directivity by [Ref 13: p. 9-87]:

. 32600
° (A8)?

(dB) (7.53)
It is impossible to accurately determine the conduction-
dielectric efficiency of a conical log-spiral antenna based
solely on measured geometry of the antenna. Hence, the Mathcad
conical log-spiral applications assume all conduction dielectric
efficiency is unity. The input impedance (Z,) of a conical log-
spiral antenna as a function of angular arm width is provided in

Figure 7.9.
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FIGURE 7.9 Input Impedance of a Conical Log-Spiral

Using the input impedance from Figure 7.9 and an estimate of the
characteristic impedance of the feed assembly, the Mathcad
conical log-spiral antenna application user may compute voltage
reflection coefficient, reflection efficiency, gain, and
effective isotropic radiated power using (7.27), (7.28), (7.29),
and (7.30), respectively.

If the polarization unit vector (o,) of an incoming wave is
known, precise determination of polarization loss at a point in
the far-field may be desired. To accomplish this, Mathcad
applications convert electric field components of (7.40) and
(7.41) to Cartesian coordinates at a user defined point (x,y,z)

and compute the antenna’s unit polarization vector (o,) as
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follows [Ref 4: pp. 35-36, 364-367;:

E,=Egcos (8) sin () -Esin(d) (v/m) (7.54)

E, =Egcos (8) sin(¢) +E,cos (¢) (V/m) {7.55)
E,=-Egsin(0) (V/m) (7.56)

G,(x,y,2)= axFyra By ra,E, (dimensionless) (7.57)

VIE(x,y,z)|?

The conical log-spiral antenna’s polarization loss factor is
calculated using (7.32). Using the polarization loss factor,
maximum effective aperture (A,) and maximum effective height

(h,,) for a conical log-spiral are given by:

Aem=e,VDo(4L;)PLF (m?) (7.58)

h, =2 i_rzj‘ﬂ (m) (7.59)

Figure 7.10 and Table 7.1 compare measured data to that
calculated by the Mathcad applications for a two arm, mode one
conical log-spiral (b=.053, 6,=10°, a=73°, d=.03 meters, B=.30

meters, 6=90°) operating at 350 MHz [Ref 18: p. 332].
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TABLE 7.1 Conical Log-Spiral Data Comparison

ANTENNA MEASURED CALCULATED

PARAMETER DATA DATA

DIRECTIVITY 6.10 dB 6.03 dB




VIII. THE CONICAL HORN ANTENNA

The conical horn antenna is a device that provides a
transition for an electromagnetic wave from a circular waveguide
to an unbounded medium such that the wavefront phase at the
horn’s aperture is nearly constant [Ref 2: pp. 644-645)]. As a
result of its axial symmetry, the conical horn’s radiation
pattern is strictly a function of the cone’s geometry for a given
mode of excitation [Ref 10: p. 10-3]}. The conical horn is widely
employed as a feed element for reflector assemblies used in
satellite tracking, microwave communications, and radar. The

geometry of a conical horn is illustrated in Figure 8.1.

Y

3

.e-'——-’
o]
o )
v

CIRCULAR t
WAVEGUIDE MOUTH OF
HORN

FIGURE 8.1 Conical Horn Geometry

In Figufe 8.1, (a) is the inner radius of the circular waveguide,

flare angle (a) is the included angle of the horn, (d) is the
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diameter of the mouth of the horn, and the axial height (h) is
the distance from the origin to the center of the mouth of the
horn.

A circular waveguide will only propagate a transverse
electric (TE) or transverse magnetic (TM) mode of an
electromagnetic wave if the frequency of the wave is above a
minimum value for the mode called the cutoff frequency (f.). The
propagating mode with the lowest cutoff frequency is called the
dominant mode. For circular waveguides the (TE,,) mode is the
dominant mode [Ref 4: p.570]. Mathcad conical horn antenna
applications assume that the waveguide is excited only in the
dominant (TE,;) mode. Also, the applications do not compute
bandwidth for conical horn antennas. Rather, the software
computes cutoff frequencies for selected modes such that the user
can determine if the waveguide will support propagation of a
specific mode.

Each mode’s cutoff frequency is a function of the circular
waveguide’s inner radius. For transverse electric waves, the
cutoff frequency of an air filled circular waveguide is given by

[Ref 19: pp. 472-473]:

(£,) X m__ (pz) (8.1)

™" 2ra/pe,

In (8.1), (u,) is the permeability of free space, (€,) is
permittivity of free space, and (x’,,) is the n*® zero of the

derivative with respect to the argument of the Bessel function of
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the first kind, order m. (x’,) May be obtained from Table 8.1.

TABLE 8.1 Zeroes of the Bessel Function Derivative
X' m Il m=0 m=1 m=2 m=3 =4
n=1 3.8318 1.8412 3.0542 4.2012 5.3175
n=2 7.0156 5.3315 6.7062 8.0153 9.2824
n=3 10.1735 8.5363 9.9695 11.3459 12.6819
n=4 13.3237 11.7060 13.1704 14.5859 15.9641

The cutoff frequency of transverse magnetic waves 1n an ailr
filled circular waveguide is written as ([(Ref 19: pp. 478-479]:

Xmn

(£.) —
2na/p €,

c/mn~

(Hz) (8.2)

In (8.2), (Xm) 1s the n*" zero of the Bessel function of the

first kind, order m. (¥.,) may be obtained from Table 8.2.

TABLE 8.2 Zeros of the Bessel Function
Xem I m=0 m=1 m=2 m=3 m=4
n=1 2.4049 3.8318 5.1357 6.3802 7.5884
n=2 5.5201 7.1056 8.4173 9.7610 11.064i
n=3 8.6537 10.1735 11.6199 13.0152 14.3726
n=4 11.7915 13.3237 14.7960 16.2235 17.6160
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A conical horn is said to be optimum if the diameter of the

mouth of the horn satisfies the following [Ref 10: p. 10-9]:
=3asin(®) (m (8.3)
2 2

To allow for comparison between the antenna being evaluated and
an optimum horn, the conical horn Mathcad applications calculate
optimum (d) for a user provided frequency of interest and horn
flare angle.

The electric field calculations of the conical horn Mathcad
applications use the magnetic field integral equation solution
for aperture antennas. This is similar to the combined field
integral equation solution first postulated by Schorr and Beck
for conical horns in 1950 [Ref 20: p. 795)]. The application user
can expect a large amount of computer processing time will be
necessary to analyze a conical horn and that this time will grow
with the square of the number of increments (i) into which the
far-field is divided.

In order to compute the magnetic vector potential (A) of the

aperture field of a conical horn, several preliminary functions
and related constants must first be defined. These include
associated Legendre functions of the first kind of order (v)
(P,™cos(0)]), spherical Hankel functions of the second kind of
order (v) [h,?(kr)], and the derivative with respect to (kr) of
the spherical Hankel functions [h’,‘?’(kr)]. The arguments of the
spherical Hankel functions are (r), the distance from the origin

to an observation point in the far-field, and the wavenumber (k)
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for a wavelength (A) corresponding to a frequency of interest.

Wavenumber is given by:
2n -
=< m 8.4
3 (m~t) ( )

The order (v) of the Legendre and Hankel functions may be

approximated using the constant (b,) as follows [Ref 21: p. 521]:

(1-3)
log{——5—1
b= 4 (dimensionless) (8.3)
log(cos (Z)]
2
v=-.5+.5/1+4b, (dimensionless) (8.6)

The associated Legendre function of the first kind with m=1
may be estimated using the gamma function (I'(z)) for angles less

than (7/3) as follows [Ref 22: pp. 336]:

(1) ‘ _ D(v+2) T . . L X
P, (COS(O))~T7$:ET§T["ESln(e)]COS((V .5)0 4) (8.7)

(dimensionless)

The value of the spherical Hankel function and its
derivative with respect to its argument in the far-field may be

estimated by [Ref 17 p. 796]:

(v~1)x)

-jlkr-
2 (dimensionless) (8.8)

(2) 1
kr) =—
h, " (kr) e

-Flkr- ¥R,

hJ”'(kr)=f%e 2 [1-ji%é}l] (dimensionless) (8.9)

The components of the magnetic vector potential are given by
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[Ref 20: p.798]:

sz_BHfO%fozxejkhcos g
*[(sin(868') P, (cos (8,) ) cos?(¢d*')cos(D')

(8.10)
.5cos(88') , (0s(8.))sin?(d')sin2(8)]
sin(0') "V °
«d9'dd' (Wb/m)
Ay=—BHf%f2‘ej”’C°s‘°’
0 0
«[sin(86') P, (cos(8,))cos(¢d')sin(¢p')cos(0') (8.11)
-5cos(88') p (05 (8,)) sin(d')cos(8')sin?(8')]
sin(®') v
*xd0'dd' (Wwb/m))
= % 2n Jkhcos (B)
A B”fo fo © (8.12)

*[sin(80') P, (cos(0,))cos(¢')sin(6')]d0'dd’
(Wb/m)

The integrals in (8.10) through (8.12) are performed over the
aperture of the horn, thus the primed components in these

integrals indicate source coordinates. The terms cos(8), (§),

and (By) in the magnetic vector potential integrals are given by:

cos (B) =cos(B)cos(0') +sin(B)sin(0')cos(p-¢')

(8.13)
(dimensionless)
6=% (dimensionless) (8.14)
h? sikrr 12 (2)
B,=B ————— e [ =h,“ (kh) +kh,”" ' (kh)] (Wb/m) (8.15
H °j(2n)2fe°r [h ) / ( )

In (8.15), (B,) is an amplitude scaling constant. The magnetic

vector potential integrals contained in (8.10) through
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(8.12) include approximations of the associated Legendre function
and its first derivative with respect to cos(06’) as follows [Ref

20: p.798]}]:

PJ”cos(O')=sin(69')Pf”cos(-%) (dimensiorless) (8.16)

(1) vy = Ocos (88') «
P," cos(0') ~ein(®') P, cos(z) (8.17)

(dimensionless)
Far-field electric field components are approximated by
converting the magnetic vector potential components to spherical
coordinates and multiplying by (k?) as follows [Ref 3: pp. 92,

102]:

Ag=A,cos (0) cos (¢) +A,cos (B) sin($) -A,sin(6) (Wb/m) (8.18)

A,=~A,sin(¢) +A cos (¢) (wb/m) (8.19)
Ey=k?2y (V/m) (8.20)
E,=k?A, (V/m) (8.21)

For the electric field components of (8.20) and (8.21) to be
valid, the observation point (r) must be in the far-field.
Therefore, assuming the diameter of the mouth of the horn is the
largest dimension of the cone, all of the following formulas must

be satisfied [Ref 3: p.92]:
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r21.6A (m (8.22)

r25d (m) (8.23)
r> Zfz (m) (8.24)

When investigating the parameters of a conical horn antenna
with the magnetic field integral equation, it must be presumed
that no electric field exists behind the mouth of the horn.
Thus, radiation intensity (U), radiated power (P,,), and
directivity (D,) of the conical horn antenna are calculated by

applying generic antenna formulas as follows:

IZ

U= 2 (|Eg|?+|E,|*) (W/solid ang) (8.25)
Pzad=f02nf03USin(e) d0dp (W) (8.26)
Do=igﬁﬁﬁ (dimensionless) (8.27)

rad

In (8.25), (n,) is the intrinsic impedance of free space and in
(8.26), (Ug,) 1s the maximum radiation intensity from the
antenna. For a conical horn, it may be reasonably assumed that
maximum radiation intensity occurs along the antenna’s axis
(i.e., 6=0, ¢=0).

In order to lower the computer processing time of the
conical horn Mathcad applications, the user may choose a file

that uses a trapezoidal approximation of the integrals in (8.10)
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through (8.12) and (8.26). The user may also vary the number of
trapezoidal increments (tl, t2, t3) to vary the extent of this
approximation and to adjust computation time.

The ohmic losses of conical horns and their ~ssociatéd
circular waveguides are very difficult to precisely determine,
but are normally very small. Likewise, reflection efficiency of
a conical horn cannot be easily found using analytical
techniques, but when measured for horns with moderate flare
angles and high directivity it is usually close to unity. The
conical horn antenna Mathcad applications approximate the product
of ohmic and reflection efficiencies as 0.95 and compute antenna
gain (G) and effective isotropic radiated power (EIRP) by [Ref

10: p. 10-9}:

G=.95D, (dimensionless) (8.28)

EIRP=P,,,D, (W (8.29)

The unit polarization vector (g,) in Cartesian coordinates
of a conical horn’s wave may be computed at any point in the far-

field as follows [Ref 4: pp. 35-40, 364-367]:

E,=Eycos (0) cos (¢) -E,sin(d) (V/m) (8.30)
E,=Eqcos (8) sin(d) +E,cos ()  (V/m) (8.31)
E,=-Egsin(6) (V/m) (8.32)
Ea(x,y,z)==a”E;+aYE}+a‘E; (dimensionless) (8.33)

VIE(x,y, z) |2
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If an incoming wave’s unit polarization vector (o0,) is Kknown
or can be estimated, the polarization loss factor (PLF) of the
antenna at a point in the far-field can be exprossed as [Ref 3:

p. 51]:

PLF=|GC,|* (dimensionless) (8.34)
The maximum effective aperture of a conical horn may be
determined as follows [Ref 3: p.63]:

12

_ 2 8.35
4ﬂ) (m?) ( )

A_,=.95D,(PLF) (

The actual value of current (I,) applied to the input of a
conical horn cannot be determined by dimensional information
alone. Thus, exact calculation of radiation resistance (R,) is
impossible. However, if input current is normalized to one amp,
normalized radiation resistance and maximum effective height

(h,,) may be written as [Ref 2: p. 42]:

~2Praa (q, (8.36)

h,, =2 l R Aen (m) (8.37)
N "

A conical horn is a member of a group of devices known as
aperture antennas. A term frequently used to analyze the
performance of aperture antennas is aperture efficiency (€ap) -
Aperture efficiency is the ratio of maximum eff~ctive aperture to

physical area at the mouth of the horn and is calculated by [Ref

102




3: p. 475]:

(dimensionless) (8.38)

Aperture efficiency of a conical horn is typically about 50%.
Table 8.3 and Figure 8.2 compare measured data to that
calculated by the Mathcad applications for a conical horn (a=.045

meters, h=1.489 meters, d=1.0 meters, and a=20°) operating at

1.96 GHz [Ref 22: p.100].

TABLE 8.3 Conical Horn Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
GAIN 22.0 dB 23.6 dB
Comparisen of Conrnical Horm anternma Electric Fields
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FIGURE 8.2 Conical Horn E-Plane Electric Field Patterns
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IX. THE PYRAMIDAL HORN ANTENNA

The most popular member of the horn family of antennas is
the pyramidal horn. The pyramidal horn provides a transition
from a rectangular waveguide to free space and is flared both
horizontally and vertically. It possesses a radiation pattern
that is essentially the combination of that of the E- and H-plane
sectoral horns. If accurately constructed, the pyramidal horn
offers the ability to control beamwidth in both principal planes
with a gain (G) that closely matches theoretical predictions [Ref
10: p. 10-3]. The geometry of the pyramidal horn in the E-plane
(¢=m/2) and H-plane (¢=0) is illustrated in Figures 9.1 and 9.2,

respectively.
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FIGURE 9.1 E-Plane Pyramidal Horn Geometry




+X

Pn
,//ff(ﬁiS‘Vh Q,

a g': - +>
B +2
N

RECTANGULAR ‘
WAVEGUIDE

v

FIGURE 9.2 H-Plane Pyramidal Horn Geometry

In Figures 9.1 and 9.2, (a) and (b) are the dimensions of
the rectangular waveguide used to excite the horn, (a;) and (b,)
are the dimensions of the mouth of the horn, (y.,) are half the
flare angles in the indicated planes, (p; ;. ) are the distances
from the imaginary apex of horn to the indicated points on the
perimeter of the mouth of the horn, and (p.,) are the distances
from the beginning of the horn’s flare to the center of the mouth
of the horn along the indicated axis.

To physically construct a pyramidal horn, the parameters

(P.) and (p,) should be equal. These dimensions are calculated

as follows [Ref 3: p. 568]:
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= - & 2—_1_. (9'1)
Dbe=(b,; b)\ (b1) 2 (m)

=(a,- Pnyz_ 1 (9.2)
pp=(a, a)\ (al) 2 (m)

The Mathcad pyramidal horn applications do not calculate a
bandwidth of operating frequencies. Rather, the applications
compute a matrix of transverse electric (TE) and transverse
magnetic (TM) cutoff frequencies (f.) based on the dimension of
the waveguide. The cutoff frequencies are the lowest frequencies
of a given mode which can propagate in the waveguide. Cutoff
frequency for transverse electric or transverse magnetic wave of

mode (m,n) in an air filled waveguide is given by [Ref 4: p.

549]:
(fc)m,n=;J (Zyz. ()2 (Hz) (9.3)
2/b.€, a b
In (9.3), (4,) is the permeability of free space, (¢,) is the

permittivity of free space, and (m) and (n) are integers. For
transverse magnetic waves, (m) and (n) must be non-zero. For
transverse electric waves, either (m) or (n) may be zero, but not
both. The mode with the lowest cutoff frequency is called the
dominant mode. The (TE,;) mode is dominant in a rectangular
waveguide.

Assuming the electric fields behind the mouth of the horn

are zero and the physical dimensions of the horn are negligible
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in the far-field, one may express the electric field components

of a pyramidal horn in the +z half-plane as [Ref 3: pp. 565-578]:

Eyg=JKE, i:': [sin(¢) (1+cos(0)) I,I,] (V/m) (9.4)
Ey=JKE, i:): [cos(¢) (1+cos(0)) I, I,] (V/m) (9.5)

In (9.4) and (9.5), (E,) is an electric field amplitude scale
factor set to unity by the Mathcad applications, (r) is the
distance from the origin to an observation point in the far-field
and (k) is the wavenumber corresponding to the wavelength (A) of

a frequency (f) of interest and is given by:
k=2%  (m1) (9.6)

The functions (I,) and (I,) in (9.4) and (9.5) are computed by:

a

2 . T -5kl E: -Esin(8)cos (d) ]
Il=f_ﬁcos(25) e
2

2P dé¢ (dimensionless) (9.7)

2 -iktE tsin@sine) . '
I,=| fe 1 df (dimensionless) (9.8)
The Mathcad application user should note that closed form
solutions of (9.4) and (9.5) exist but are very complex and
tedious. Thus, the applications use a numerical approximation of
these integrals to compute electric field components for the
horn.

The electric field components of (9.4) and (9.5) are

applicable only in the far-field of the horn. Therefore, the
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distance to the far-field observation point must satisfy all of

the following [Ref 3: p.92]:

r21.6A (m) (9.9)
25D (m) (9.10)
r> Zfz (m) (9.11)

In (9.10) and (9.11), (D) is the distance between opposite
corners of the mouth of the horn.

The radiation intensity (U), radiated power (P,,,),
directivity (D,), and effective isotropic radiated power (EIRP)
of a pyramidal horn are calculated using generic antenna

equations as follows:

2 -~ v
U= zrno[lEe\‘+{E¢|2] (W/solid ang) (9.12)
Pmd=ff0Usin(6)aﬂd¢ (W) (9.13)
D,=22%ax (gimensionless) (9.14)
Prad
EIRP=P,,,D, (W) (9.15)

In (9.12), (n,) is the intrinsic impedance of free space, in
(9.13), (0) is the hemisphere of radius (r) in the +z half-space,
and in (9.14), (U,,) is the maximum radiation intensity anywhere
on that hemisphere.

The efficiency of a pyramical ..orn is difficult to predict
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based on measured geometry alone. However, the typical horn can
reasonably be assumed to be approximately 50% efficient. Thus,

Mathcad pyramidal horn applications compute gain as follows:

G=.5D, (dimensionless) (9.16)

The unit polarization vector (o,) of a pyramidal horn’s
electromagnetic wave at a point in the far-field is determined
using the electric field components from (9.4) and (9.5). The
antenna’s unit polarization vector in Cartesian coordinates is

computed by [Ref 4: pp. 34, 364-367]:

E,=Eqcos (8) cos () -Eysin(¢) (V/m) (9.17)
E, =Eqcos (8) sin(¢) +E,cos () (V/m) (9.18)
E,=-Easin(0) (V/m) (9.19)

- ar +a kE +3a kE
Oa(X,Y, z) = x'Ex yEy z”z
v EZx,y,zSI

(dimensionless) (9.20)

If an incoming wave’s unit polarization vector (o,) is known

or can be estimated, the pyramidal horn’s polarization loss

factor (PLF) can be determined by [Ref 3: p. 51]:

PLF=|6,8,|° (dimensionless) (9.21)

The maximum effective aperture (A,) and aperture efficiency

(€.p) Of the pyramidal horn is written as [Ref 3: p.63]:

A_=.5D,(PLF) (22) (m?) (9.22)
4
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A .
€,p=—> (dimensionless) (9.23)
albl

The amplitude of the input current (I,) used to excite the
rectangular waveguide cannot be calculated based on dimensional
information alone. Thus, in order to compute radiation
resistance (R,) and maximum effective height (h,,), a normalized
value of 1 amp is assumed to excite the waveguide. These
parameters are expressed as [Ref 2: p. 42]:

= 2and
foL?

he,,,=2,l —R;Ae"’ (m) (9.25)

The Mathcad pyramidal horn applications may also be used to

(Q) (9.24)

analyze E-plane and H-plane sectoral horns. The term (§2/2p) in
the exponents of the integrals of (9.7) and (9.8) is a phase
error term that accounts for differences in phase between the
center and any point in the aperture of the horn. The sectoral
horns are evaluated by eliminating the phase error term in the
direction that is not flared. To accomplish this modification to
(9.7) and (9.8), the application user is directed to set (al)
equal to (a) for E-plane sectoral horn analysis and (bl) equal to
(b) for H-plane sectoral horn analysis. If the application user
makes these selections, (I,) for the E-plane sectoral horn or

(I,) for the H-plane sectoral horn is altered, respectively, as

110




follows [Ref 3: pp. 536, 552]:

cos(%sin(ﬂ)cos((b))

L=- (5 [— ] (9.26)
2 ((£2sin () cos ())2-(2)?2) _
(dimensionless)
sin(XPsin(8)sin(¢))
I,=( kb2 ] (dimensionless) (9.27)

T?Sin(e)sin(¢)

Table 9.1, Figure 9.3, and Figure 9.4 compare measured data
to that calculated by the Mathcad applications for a pyramidal
horn (p,=.3398 meters p,=.3198 meters, a,;=.1846 meters, b,=.1455

meters, a=.02286 meters, b=.01016 meters) operating at 9.3 GHz

(Ref 5: pp. 413-415].

TABLE 9.1 Pyramidal Horn Data Comparison

ANTENNA MEASURED CALCULATED
PARAMETER DATA DATA
DIRECTIVITY 21.3 dB 21.6 dB
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Comparison of Pyramidal
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FIGURE 9.3 E-Plane Pyramidal Horn Electric Field Pattern
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FIGURE 9.4 H-Plane Pyramidal Horn Electric Field Pattern
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X. REMARKS AND CONCLUSIONS

The intent of this thesis and associated software was to
provide the Naval Maritime Intelligence Center (NAVMARINTCEN)
with a relatively simple, user friendly set of Mathcad
applications that would analyze various types of antennas based
solely on dimensional information and ground characteristics.
Although the software format achieves the goal of easy use, the
nature of the formulas applicable to many of the antennas
necessarily reduces the simplicity of the programs. Indeed, many
of the equations used in this research project are so complex
that they are not found in any existing textbook dealing with
antennas. Nevertheless, the Mathcad applications developed in
conjunction with this thesis allow the user to analyze several
antennas that cannot be studied with current electromagnetics
software packages such as ELNEC, NEC, or WIRE. And, in every
case, the Mathcad applications compute antenna parameters and
far-field radiation patterns that closely compare with measured
or predicted results.

The Mathcad applications are compatible with any personal
computer that supports Mathcad 3.1 for Windows. However, many of
the programs require a numerical solution of highly complicated
integral equations that are computationally intensive. Where
necessary to reduce processing time, the applications use
trapezoidal approximations as an alternative numerical procedure
to evaluate required integrals. Nevertheless, several progranms
still require several days to complete calculations on a 33 MHz,
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386 personal computer.

As previously mentioned, several of the antennas included in
this project are not adequately reviewed by current texts. Thus,
equations from many professional journals and doctoral
dissertations are used for a number of the applications.
Unfortunately, many errors existed in these sources, and
resolution of these mistakes significantly slowed the progress of
our research.

The most disappointing aspect of the Mathcad application
software aside from the excessive length of time required to
analyze some types of antennas is the graphical presentation of
the far-field radiation patterns. Mathcad’s limited graphics
flexibility, particularly in regards to three-dimensional and
spherical coordinate plots, precluded better presentation of
output data.

The equations and data of this antenna analysis package
could easily be transferred to another mathematics program, such
as MATLAB. Although a MATLAB program may not be as easy for a
new user to employ, it might offer advantages with respect to

lower processing time and improved graphical output.
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THE HELICAL ANTENNA
MATHCAD SOFTWARE-HELIX.MCD

When built to the proper specifications, the helical antenna possesses
many qualities which make 1t sulitable for a wide variety of
communications applications. If the following conditions are satisfied
the he.1x will exhibit a highly directional axial main lope, low side
lobe level, negiig:ible mutu:zl interference with adjacent antennas, low
voltage standing wave ratic (VSWR), and resistive 1nput impedance over a
wide frequency band:

8 < C <1.15
n>3
12 < a< 14

(Note: A 1n a subscript indicates the dimension 1s 1n wavelengths
Mathcad equations can not use symbolic subscripts. Therefore, the symbol
» will i1mmediately follow the parame-er in equations (i.e., Ca)).

The helical antenna Mathcad application will compute the fcllowing
parameters (Items with * 1indicate parameters that are calculatec for
both axial and peripheral feed geometries):

C = circumference of helix

» = wavelength

a = pitch angle

Co = directiv.ty

p = relative phase velocity

59# = Electric Field Components

¥ = Array Factor Phase Shif-

U = Radiation Intensity

Praq = Radiated Power

R = Antenna Input Resistance*

[ = Voltage Reflection Coefficient*
¢ = Reflection Efficiency*

Nem = Maximum Effective Height*

G = Gain*

EIRP = Effective Isotropic Radiated Power
Aem = Maximum Effective Aperture*
AR = Axial Ratio

PLF = Polarization Loss Factor

BW = Bandwidth
fh;gh = Upper Frequency Limit

f., v = Lower Frequency Limit

Acceptable Conductor Diameter

Ex,y,z = Electric Field Cartesian Comronents

9pf¢p = Unit Polarization Vectocr Coordinate Angles
62 = Antenna Unit Polarization Vector

rmin = Minimum Distance to the Far-Field
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3
o
1]

follcwing data must be input based on krown or estimated data:

+w O D w0

t+ 4
O

[ n I S
Ie) ~
i

Q
%

' -

(Center
Spacing Between Turns

Diameter of Helix

to Center)
(Center to Center)

Length Along Conductor of One Turn

Number of Turns

Diameter of Helical Conductor
Frequency of Interest

Tesired Mode

Antenna Feed Current

Mumper of Increments in Degrees
Characteristic Feed Impedance

Incoming Wave Electric Field

Antenna Unit Polarization

Vector Cartesian Coordinates
for Far Field Radiation Pattern

Unit Vector

Enter input data

here:

1
2
ow ={ | {dimensionless)
F
0
D:= 1074 (meters)
n.= 10 {(turns)
m:=|] (dimensionless)
S .z U766 (meters)
d:= 003 (meters)
x.z] (meters)
vi=l (meters)

L:=.766 (meters)
f292510° (Hz)
Z,:=150 (Q)
12360 (degrees)
lo:=1 (A)
z:=1000 (meters)
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Calculate helical geometric parameters and define constants:

¢229979 10° (meters / sec) =120 Q)
aiz S (meters / cycle)
C =aD (meters) A"? Y
C =03374] (metec:s) +=03241 (meters / cycle)
.._C .._S
Cri==— (dimensionless) SA.=7 (dimensionless)
I A
C.=104107 (dimensionless) SA» =0.23635 (dimensionless)
. S
a-=atanj—| (radians) ., L
C L == (dimensionless)
A
a=022324 (radians)
Li=236349 (dimensionless)
mi=l§9a {degrees)

ad =127908 (degrees)

Calculate helical antenna parameters:

Define angular offset §_ Mznimum Distance to the Far-Field
from helical axis: Lmint
21 ) (meters)
6 20— 21 (radians) Ty = 16 %
1
(meters)
rl=>nS
o:(L(q 2a (radians) 5
! 2(nS)
r, i A (meters)
h
mn = max(r) (meters)
rmun = 3 83 {meters)
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Relative Phase Velocity p:

" La
p= ! {dimensionless)
Siem+ (—TJ
2.
p =1.83736 (dimensionless)

Array Factor Phase Shift y

W 9) =2-ﬂ'(SX‘COS(9)-—H) (radians)
p

Electric Field Field Components Eg, E;:

E(9) = , -cos(8) (V / m)
()
2
E6(0) := E(8) (V / m)
E¢(8) =) -E(6) (V / m)

Radiation Intensity U(@):

U(e) 3=—l'(|E(9)|)2 (W / solid angle)
o
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Radiated Power Prag:

2nan

U(8)-sin(6) do de (W)

Prad := [

010

Prad = 12394 107>

(W)
Directivity Dg:
Do = l?_»C;L2 n- S (dimensionless) Do2 :471_1}(22
Prad

Do =30.73917 (dimensionless) Do2 =26.89463
Axial Ratio AR:

AR = |Lx- (sin(u)- l)l (dimensionless)

P
AR =0.76309 (dimensionless)

Effective Isotropic Radiated Power EIRP:

EIRP -=Prad Do (W) EIRP2 ‘= Prad Do2

EIRP =0.0381 (W) EIRP2 =0.03333
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{dimensionless)

(dimensionless)




Polarization Loss Factor PLF:

f,z 2
op =alan( i d, ) (radians)

z

%)=14]42Pldﬂ (radians)

E

pd

= E6(6p)-cos(6p) cos(4p) - E&(6p) sin(4p)

Ey = E§(6p)-cos(8p)-sin(4p) + E&(6p)-cos(¢p)
Ez := FA(0p) sin(fp)-- |

En|
oa: l Ey

J(lExI 2+ (|Ev])?+ (JE2|)? \E

0.5= 0.5
ga=| 05+ 05_]

-9.99999 10~

pLF = (|ovw 2a) i

PLF =1

Radiation Resistance Rp:

Prad
(10} )?

Rr:=2.

Rr =24788] 107

120

¢p =amnej (radians)

4p =0.7854 (radians)

(V/m)

(V/m)

(V/m)

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(Q)

()




Dual Parameters

AxXl1al Feed

Inout Resistance R:

Ra:= 1404.(:_1 Q)

2

Ra =1.42846"10 Q)

Voltage Reflection Coeffecient]:

Ra- Z0
[a.= (dimensionless)

Ra+ 2

()}
[a=-002443 (dimensionless)

Reflection Efficiency g :
ma =1~ (|ra])?

(dimensionless)

gra =(0.9994 (dimensionles=;
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Peripheral Feed

Rp =1.47012 10° Q)
Rp- Zo
Ip:- (dimensionless)
Rp+ 2,
I'p =-0.01006 {dimensionless)
api=1l- (|Fp| )2 {dimensicnless;
ap =0.9999 (dimensionless)




Gain G:

Ga =¢ra Do

Gadb = 10-log(aa Do)

Ga =30.72082

Gadb = 14.87433

Ga2 =ga Dol

Gadb2 :z 10 log(era Do2)

Ga2 =26.87858

Gadb2 =14.29406

{dimensionless)

(dB)

{dimensionless)

(dB)

{dimensionless)

(dB)

(dimensionless)

(dB)

Maximum Effective Aperture Rap:

.2
gai Do
41

Aema =

Aema =0.25679

Aema? =

4n

Aema2 =0.22467

i
Taa »DoZ'

(m2)

(m?)
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Gp =eap Do
Gpdb = 10 log(ap Do)
Gp =30.73606

Gpdb = 14.87648

Gp2 zap Do2

Gpdb2 := 10-log(ap-Do2)

Gp2 =26.89191

Gpdb2 = 1429622

_ap i’ Do
4n

Aemp - PLF

Aemp =0.25691

2
a0 i

5.z P4 Do"-PLF
4.

Aemp

Aemp2 =0.22478

(dimensionless;)

(dB)

(dimensionless)

(dB)

(dimensionless)

(dB)

(dimensionless)

(dB)




Maximum Effective Height hgm:

hema =2- |Rr fema ) hemp =2 JRr Acmp {m)
o Mo
hema =2.5988 10 (m) hemp = 2.59944+ 10" (m)
hema2 =2 [RASMAZ (M) hemp2 =2 [Re2SMPZ
T Tlo
hema2 =2.43086 10" (m) hemp2 =2.43146 10°  (m)
Bandwidth:
fhigh := L3¢ (Hz) flow = 5€ (Hz)
C

fhugh = 1.02179-10° (Hz) flow =7.10809+10°  (Hz)

BW :fhigh - flow (Hz)

BW =3.10979 10® (Hz)

Acceptable Conductor Diameter:

dmin = 0052 (m)

dmin = 162049 10 - (m)

dmax:= 055 (m)

dmax =0.0162 (m)




HELICAL ANTENNA FAR-FIELD RADIATION PATTERN

For the purpose of this far-field radiation pattern, the helical antenna
ax1s 1s equivalent to the Ex = 0 grid line. The pattern 1s essentially
symetric when rotated about the antenna's axis.

Ex(8) = E(e- .:) cos(8) Ev(8) = E(e- %) sin( )

1.1
0.97 ~"#'J [
v \\
0.71
0.58

Eie) 0.45 \ /
0.32 \ /
0.19 \\ //
0.06 \ N v /
=0.07 {::f \\_,/ i::}
=0.2 -
=0.25 =-0.2 =0.15 0.1 =0.05 =1.388 10 17 0.08 0.1 0.15 0.2 0.25

Ex(6)
= EFIELD
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THE BEVERAGE ANTENNA

MATHCAD SOFTWARE-BEVERAGE .MCD
The Beverage antenna 1s a single wire structure parallel to the ground.
It 1s terminated with a load matching the characteristic impedance c¢f
the wire. Because there 1is little or no reflected energy from the
antenna's termination, the Beverage antenna doces not develop a
significant standing wave. Therefore, i1t 1s known as a traveling wave
antenna. The Beverage antenna 15 also known as a slow wave antenna
since the relative phase velocity along the wire 1s usually less than
one.

The Beverage antenna 1s used for a wide range of frequencies, depending
>n 1ts length and the characteraistics of the ground under the antenna.
It transmits and receives vertically polarized electromagnetic waves
primarily through a cone shaped main beam pointing in the direction cf
the traveling wave. In the far-field, the electric field pattern above
the ground can be considered rotationally symmetric with respect to the
axis of the antenna.

A Beverage antenna exhibits a highly directional main lobe and resistive
input 1mpedance for frequencies corresponding to the following lengths:

.5 <L, £2.0 ({wavelengths)

(Note: a 1n a subscript i1ndicates the dimension 1s 1in wavelengths

Mathcad equations can not use symbolic subscripts. Therefore, the symbol
» will i1mmediately follow the parameter in equations {(1.e., L) to
indicate the dimension 1s in wavelengths))

The Beverage antenna Mathcad application will compute the following
parameters:

L; = Length of Antenna in Wavelengths

» = Wavelength

Dy = Directivity

P = Relative Phase Velocity

E = Electric Field (No Ground Effects)

Et = Electric Field (Total Field Including Ground Effects)
U = Radiation Intensity

Praq = Radiated Power

2o = Antenna Characteristic Impedance

[ = Voltage Reflection Coefficient

[, = Vertical Reflection Coefficient (Ground Reflection)
try = Reflection Efficiency

G = Gain

EIRP = Effective Isotropic Radiated Power

ARgm = Maximum Effective Aperture

PLF = Polarization Loss Factor
8nhax = Angle of Maximum Radiation
BW = Bandwidth
fhlgh = Upper Frequency Limit
fiow = Lower Frequency Limit
Acceptable Conductor Diameter
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¢r+ = Ground Relative Complex Permittivity

(Note: The subscript ' will be annotated as p in the application)

dmax = Maximum Acceptable Conductor Diameter

Imin = Minimum Distance to Far-Field
Ry = Radiation Resistance
X = Electric Field Function

The following data must be i1nput based on known or estimated data:

= Height of Antenna above ground
= Length of Antenna

Diameter of Conductor

= Frequency of Interest

N o T
i

1 = Load Impedance
6w = Incident Wave Electric Field Unit Vector
85, = Incident Wave Arrival Angle

6 = Ground Conductivity
¢y = Ground Relative Permittivity

reg = Distance of Field Calculations

I, = Input Current at Antenna Terminals

= Number of Increments 1n Degrees for Far Field Radiation Pattern

Enter input data here:

ow = |0 {dimensionless)
o= 01
0
- a=2
d .=.005 (meters)
1:2 360 (degrees) ff := 1000
h=.1 (meters) %‘=l
Z1 =150 () L.=200
. n 6
fa '=—— 20 (radians) f=1610
180

(mhos / m)

(dimensionless)

(meters)

(amps)

(meters)

(Hz)
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Calculate Beverage antenna geometric parameters and define constants:

¢:22.9979.10°

>
1]
-0

i =18736910°

Li =1.06741

Calculate Beverage antenna parameters:

(meters / sec)

(meters / cycle)

(meters / cycle)

(dimensionless)

(dimensionless)

Define angular offset 6

frcm Beverage antenna axils:

(radians)

(radians)

Relative Phase Velocity p:

p = 65891 (—
1000

p =0.87551

) 038523821

{dimensionless)
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(dimensionless)

. (dimensionless)
ca-= )0
1%1=120n Q)
€ :-l— 10°° (Farads / m)
361

Minimum Distance to Far-Field

Imini
%3=L6w {m)
T, =S5L (m)
2L
l’z--.— (m)
A
min = max(r) (m)
min =1 10° (m)




Maximum length Lp.y:

Lmax :=-——l-— (wavelengths)

4 (.].- cos(ea))
p

Lmax = 123457 (wavelengths)

Wavenumber k:

9.
k==t (m~1)

A

k =003353 (m~1)

Electric Field Function X_

X(8) = %( 1 - cos(8)) (radians)

Electric Field Without Ground Effects E(8) :

30k L 1,sin(8) |5in(X(9))
I Xc)

E(8) := (\(/dn)

Relative Complex Dielectric Coefficient g,...

(dimensicnless)

gp =g-)
2-n-f~so

gp=2- l.lZS'IOZj {dimensionless)
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Vertical Reflection Coeff.cient [':

(dimensionless)

Electric Field With Ground Effects Et(f) :

-J ~2<k-h-cos(§-%)
E1(8) = E(0)-\1 - Tv(0)e tv/m)

Angle of Maximum Radiation Opax:

fmax = acoy | = —— (radians)

fémax = 0.86001 (radians)

Omax'@ =4927486 (degrees)

htd

Radiation Intensity U(@):

U(6) _=_rﬁ_i (|E(9)|)2 (W / solid angle)
.'Zno

Umax "= U(8max) (W / solid angle)

Umax =19.17134 (W / solid angle)
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Radiated Power P,raq:

b

U(8) sin(8) &b de (W,

n
Prad =J
0.0

Prad = 32 66448 (W)

Directivity Dg:

._ 4 nUmax {(dimensionless)
0 Prad
D, =737542 {dimensionless)

Polarization Loss Factor PLF:

_n 2
PLF =(|mxoaD (dimensionless)
PLF =1 (dimensionless)

Characteraistic Impedance:

- 4-h {(Q)
ZO - 138 log(—d—)

Z,=262626 10° ‘Q’
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Voltage Reflection Coeffecient[:

2-2,
[:= (dimensionless)
Zl+ Zo
[ ==0.27295 (dimensionless)
Reflection Efficiency gpy !
gw:=1_(|r|f (dimensionless)
T =09255 (dimensionless)

Effective Iscotropic Radiated Power EIRP:

EIRP :=Prad D (W)

EIRP =2.40914 10° (W)
Gain G:
GI=uT1)0 (dimensionless)
Gdb =10 log(m' DQ) (dB)
G =6 82594 {dimensionless)
Gdb =8 34162 {dB)
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Maximum Effective Aperture Ae_xm‘_

.2
av-i-D

Aem 'z ———2C PLF

da

Aem =190698 10*

Radiation Resistance R,:

Rr =635.32897
Bandwidth:

ﬂngﬂ:zf
La

thigh =561713 10°
flow 28

L
flow = 14042810
BW := fhigh - flow

BW =4.2128510°

Q)

(Q)

(Hz)

(Hz)

(Hz)

(Hz)

(Hz)

(Hz)
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Maximum Effective Height ham:

hem = 1 14972 10°

Acceptabla Ccnductcr Diameter:

dmax = 01 La

dmax =0.01067
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For the purpose
antenna axls 1s
above ground 1is

BEVERAGE ANTENNA FAR-FIELD RADIATION PATTERN

of this far-field radiation pattern, the Beverage
equivalent to the Ey = 0 grid line (Note: Antenna height
negible i1n the far-field). The pattern 1s essentially

symetric when rotated about the antenna's axis above the ground plane.

Electric Field With Ground Effects

Ex(8) = Et(8) cos(6) Ev(9) = Et(0) sin(8)

0.018

0016

ZER

0014

0.013

0.011

Ey(8) 0.009

0.007

0.005

0.004

0.002

P

0
=0.005 ~0.002 0.001 0.004 0.007 0.01 0.013 0.016 0.019 0.022 0025

Ex( 0)

— EFIELD
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0.1

0.09

0.08

0.06

Ey(8)0.05

0.03

0.02

0.01

Electric Field Without Ground Effects

Ex(6) =E(8) cos(8)

Ev

(8) :=E(6) sin(8)

/

/

P

L/

0
=0.02 =0.008

— EFIELD

0.004 0.016 0.028 0.04
Ex(8)

0.052 0.064 0.076

0.088

0.1




THE SMALL LOOP ANTENNA
MATHCAD SOFTWARE-SMLOOP.MCD

The small loop antenna 1s a coil of one or more turns whose radius
(a)satisfies the following:

a < i/én (m

where (L) is the wavelength of the frequency of interest. Small loops
are commonly used to receive signals in the lower frequency regions.
They are also used for direction finding and UHF transmissions. The
efficiency of a transmitting loop antenna 1s typically very low.
However, antenna efficiency can be improved by inserting a ferrite core
1n the loop, i1ncreasing loop perimeter, or increasing the number of
turns.

The small loop Mathcad applications will analyze three geometries: free
space, horizontal loop, and vertical loop. Each geometry will also
examine air and ferrite cores. Several antenna parameters, particularly
those for loops in free space, can be calculated using more than one
formula. Where this occurs, multiple results will be computed for
comparison. Computations which are identical for all geometries will not
be repeated. Computations with ferrite cores will use effective
permeability (pg)in lieu of free space permeability (po) .-

(Note: a4 in a subscript indicates the dimension is in wavelengths.
Mathcad equations can not use symbolic subscripts. Therefore, the symbol
A will immed:iately follow the parameter i1n equations (i.e., La) to
indicate the dimension 1s in wavelengths)

The small loop antenna Mathcad application will compute the following
parameters:

S = C(Cross-Sectional Area

C Circumference

k = Wavenumber

A = Wavelength

Do = Directivity

E = Electric Field (No Ground Effects)

Er = Electric Field (Total Field Includ.ng Ground Effects)
U = Radiation Intensity

Umax = Maximum Radiation Intensity
Pragq = Radiated Power

[ = Voltage Reflection Coefficient
[, = Vertical Reflection Coefficient (Ground Reflection)

[y, = Horizontal Reflection Coefficient (Ground Reflection)

try = Reflection Efficiency

G = Gain

EIRP = Effective Isotropic Radiated Power
Aem = Maximum Effective Aperture

PLE = Polarization Loss Factor

Bandwidth

€r+ = Ground Relative Complex Permittivity

(Note: The subscript ' will be annotated as p in the application)
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Lman = Minimum Distance to Far-Field
Rohmie = Ohmic Reslstance
R, = Radiation Reslstance
Rg

Surface Impedance of Conductor

fcd = Conduction-Dielectric Efficiency
He = Effective Ferrite Core Permeability
Xy

Input Reactance

Z, = Input Impedance
hem = Maximum Effective Height

CR = Core Length to Diameter Ratio

The following must be input based on known or estimated data:

= Height of Antenna above ground
Radius of Antenna

Radius of Conductor

Number of Turns

Z 0 T
o

6. = Conductivity of Loop

Rp/Ro = RR = Ohmic Resistance from Proximity to Ohmic Skin Effect Ratio
Ddemag = Demagnetization Factor

pur = Permeability of Ferrite Core

f = Frequency of Interest )

1 = Number of Increments in Degrees for Far-Field Radiation Pattern
6w = Incident Wave Electric Field Unit Vector

6 = Ground Conductivity

£r = Ground Relative Permittivity

ree = Distance of Field Calculations

I, = Input Current at Antenna Terminals

q = Loop Spacing '

cl Core Length

cd Core Diameter

137




Enter input data here:

ow:=|0 (dimensionless) 6:2610" (mhos / m)

b= 01 (meters) a =l (dimensionless)
1:2360 {degrees) ff:= 1-10° (meters)

hi=25 {meters) RR = .15 {dimensionless)
oc:=58 10 (mhos / m) cl:=1 (meters)

q:=.03 (meters) £:=3107 {HZ)

% =15 {(dimensionless) cd = .05 (meters)
l-'-f3=4000-(4-n-10'7) (Henrys / m) Z, =50 Q)

Ddemag := 4 10? {(dimensionless) =1 (amps)

N:=6 (dimensicnless) a= 135 {meters)
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Calculate small loop antenna geometric parameters and define constants:

¢ 229979 108 (meters / sec) My 2120 (Q)
k::s (meters / cycle) | 9
£ € B — 1T (Farads / m)
36n
A =9993 (meters / cycle) p02=4-n»10'7 (H / m)
S=na’ (m?) D:=2a (meters)
S =0.07069 (m?) D=03 (meters)
A canis L el ;
— =0.53015 (meters) CR = — (dimensionless)
6n
. 1
=2q
¢ va (meters) (dimensionless)
oa:=|0
0
C =0.94248 (meters)

Calculate small loop antenna parameters in free space (air core):

Define angular offset 8
from small loop axis:

Distance to Far-Field rmin:

Iy = 1.6-% (m)
g:=z O,Q..E-n (radians)

1 r = 5-D (m)

2D’
r2 = (m)
2 s
0:20,|—}.2n (radians)
1
muin ‘=max(r) (m)
- rmin = 15.9888 (m)

Wavenumber Kk:

k =£3 (m'l)
)

-1

k =0 62876 (m==)
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Electric Field Without Ground Effects E(f):

k£ Syl sin(8)
e ereremses * €

E(8) -=
2.rff

Radiation Intensity U(8):

u® = ([e®)y
2"%

Umax =U (2)
2

Umax =9.30838 10

Radiated Power PEEQi
Prad = no--é»(k'a)"- (IIOI) 2

Prad =7.80909 10>
21 fn
Prad2 := U(6)-sin(8) d dé

Prad2 =7.79817 10 °

Directivity Dg:

Do.=1.5
Do2 .= 4.1 Umax
Prad2
Do2 =15

. () k)
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(V/m)

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W)

(W)

(W)

(W)

{dimensionless)

(dimensionless)

(dimensionless)




Radiation Reslstance (Rr):

4
Rr=2042 [S] N2 @
.
Rr =0.56225 @)
2.Prad?
Rz 2 2002 2 @)
(1%])
Rr2 =0.56147 @

Surface Impedance of Conductor Rg:

()

Rs = 142898 107 Q)

Ohmic Resistance Rgpmic.

Rohmic = (RR+ 1) (Q)

N-a-Rs
b

Rohmic =0.1479 (Q)

Conduction-Dielectric Efficiencyleag):

eed = Rr

— (dimensionless)
Rohmic + Rr

eed=079174 (dimensionless)

Input Reactance (X;):

Xin := 2-n-f-a-p0-(ln(8-%) - 1.75) .

Xin = 1.07924* 10

Q)
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Input Resistance (Ri)—:-

Rin :=Rr+ Rohmc

Rin =0.71015

Input Impedance (2Z,):

Zi = Rin+ Xin

Z1=0.71015 +1.67924 102j

Voltage Reflection Coeffecient]:

_Zl-ZO

[:=
Zx+Z0

['=0.64337 +0.75901;

Reflection Efficiency g,y :

av.z1- (1)

av =9.98876 10 °

Gain G:

G =egv.ecd Do

Gdb := 10-log(av-ecd- Do)
G=0.01186

Gdb =-19.25817
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(Q)

Q)

()

(Q)

(dimensionless)

({dimensionless)

(dimensionless)

({dimensionless)

(dimensionless)

(dB)

(dimensionless)

(dB)




Maximum Effective Aperture (RAgm!:

2
Aem = )'_
n

oo | W

Aem =1191992

Aem2 =0.09427

Effective Isotropic Radiated Power

(EIRP) :

EIRP := Prad Do
EIRP =0.01171
EIRP2 = Prad2 Do
EIRP2 =0.0117

Maximum Effective Height (hgm):

hem = .Rr-Aem 2
i

hem =0.26667

hem? = |Rr-AemJZ 5

em2 (= |———— 2
A T

hem2 =0.02371

Bandwidth:
Bandwidth ‘= —< (Hz)
61na
Bandwidth = 1 06029 10° (Hz)
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(W)

(W)

(W)

(W)

(m)

(m)

(m)

(m)

Polarization Loss Factor PLF:

PLF := (Icw;l) ’

PLF =1

(dimensionless)

(dimensionless)




SMALL LOCOP ANTENNA FAR FIELD PATTERN IN FREE SPACE WITH AIR CORE

For the purpose of this far-field radiation pattern, the small locp
antenna axis 1s equivalent to the Ey = 0 grid line. The pattern 1s
symetric when rotated in the ({(¢) dirction about the antenna's axis.

Electric Field Without Grourd Effects

Ex(8) = 1..8)] cos(8) Ev(8) =|E(8)] sin(8)

-]

-6 et

22

Ev(6)=8.47 10

S e N
e \

o 1 N /

%
| \\\ P

=6
-8 10
Tom——] —""

/I

NV
\/
/N

=110 L = - = - - - S—
“5108410° =310° =2100 =110 0=423510 22110 0 2100 3105 41005510°

Ex(8)
— EFIELD
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Calculate small loop antenna parameters 1n free space (ferrite core):

Effective Permeability (ug):

< }l.f
1 4+ Ddemag (uf- 1)

ue -

ue = 504603410 "

(Henrys/m)

(Henrys/m)

Electric Field Without Ground Effects E(0):

kfSupel sin(8) ]
E(0) =2 U kD

-

Radiation Intensity U(8):

U(e) :=ﬁ~( lEo)])?
Zno

Lhnax3=LJFq
2
Umax = 1.50127 10*

Radiated Power P, 4%

2afla
U(9) sin(8) do dé

Prad = 1 2577+10°

Directivity D,

Do.=2153

Do2 = 4 1 Umax
Prad

Do2 =13

(V/m)

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W)

(dimensionless)

(dimensionless)

(dimensionless)
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Radiation Resistance (Rr):

2C 4 e 2
Rr =20n (.-) N2 (KE Q)
A Ho

Rr=906811°10° oY)
3.

Rr2:= =T pradz-N2 (Q)
(%)

Rr2 =9.05542 10° Q)

Surface Impedance of Conductor Rg:

Rs := nfpe (Q)
oc
Rs =0.09056 (Q)

Chmic Resistance Rgopmict

Rohmic = (RR+ 1) (Q)

N-a-Rs
b
Rohmic =9.37266 (Q)

Conducticn-Dielectric Efficiencyie~q!):

ecd = Rr {dimensionless)
Rohmic+ Rr

(dimensionless)

Input Reactance (X,):

Xin 2 n-f~a-ue»(ln(8-%) - 1,75) Q)

Xin =4.3342 10° Q)
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Input Resistance (R,):

Rin := Rr + Rohmic Q)

Rin = 906812 10° Q)

Input Impedance (2;):

Z1:=Rin+ Xin j o)
21=9.06812 10° +4.3342 10°] ()

Voltage Reflection Coeffecient[:

Zi- Z0
[:= (dimensionless)
Zl+Z0
I =0.99999 +52587 10 '] (dimensionless)
Reflection Efficiency g,y:
uv:=l—(|r|f _ (dimensionless)
v =2.20048410 ° (dimensionless)
Gain G:
G =av-eed Do {dimensionless)
Gdb =10-log(av ecd Do) (dB)
G =330071 10 ° (dimensionless)
Gdb =-44 81392 (dB)
Maximum Effective Aperture (Agm!:
Aem ::E;md;ADO (mz)
4.n
Aem =262295 10" (m2)
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Effective Isotropic Radiated Power (EIRP):

EIRP := Prad Do (W)

EIRP = 1 88655 10° (W)

Bandwidth BW:

C

Bandwidth := (Hz)
6na
Bandwidth = 1.06029 10° (Hz)
Maximum Effective Height (hgp):
hem "= Rr-Aem'z (m)
To
hem = 502363 (m)
Polarization Loss Factor PLF:
PLF:=(lMM;;D2 (dimensionless)
PLF =] {(dimensionless)
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SMALL LOOP ANTENNA FAR FIELD PATTERN IN FREE SPACE WITH FERRITE CORE

For the purpose of thls far-field radiation pattern, the small loop
antenna axis 1s equivalent to the Ey = 0 grid line. The pattern 1s
symetric when rotated 1n the (¢) dirction about the antenna's axis.

Electric Field Without Ground Effects

Ex(8) := |E(®)]-cos(8) Eyv(8) := |E(8)| sin(6)

0.035
| \

] N

0.028 . =

0.021 /

0.014

0.007 \ /

18

Ev(8)=5.204 10

~0.007] /

/I
AN

\/

N/

[
——

=0.014
=0.021 Y
=0.028 \ /
\\‘ /

=0.0358

=0.02 -0.016 =0.012 =0.008 ~0.004 0 0.004 0.008 0.012 0.016 0.02

Ex(8)
— EFIELD

149




Calculate small horizontal loop antenna parameters over ground (air
core) :

Define angular offset 6
from small loop axis:

a
- (radians)
-

2.
0:=0,(—"——") .2 (radians)

Relative Complex Permittivity (g.»):

gp =eg- - (dimensionless)

Y. .
-nfco

ap =-3.6'101°j (dimensionless)

Horizontal Reflection Coefficient (Th):

m = 0”_1_ {increments)
2
cos(8) - J sin(9)”
Th(8) = gP- (dimensionless)
cos(G)-o-Ju’p- sin(e)2
Fhlm - (dimensionless)
Total Electric Field (Ethor):
l'iS'f'llo'lo'sm(e)'e-j * j -2k-h-cos(8
Ethor(8) := -(1- Th(9)-¢d “¥mee ’) (V/m)
2-rff
k'S'f'uo'Io'Sm(ﬂ)’e'j ¥ -j 2khSostmi)
. 1 x (V/m)
Ethorl := A1-Thl -e

150




Radiation Intensity U(f):

u(e) :=;rﬂi~(lsmor(e)| )

(W / sol:id angle)
"o

Umax ;=ﬁ,( |ma.\'( Ethor! )| )2
215

(W / solid angle)
Umax =3 7199 10 ° (W / solid angle)

Radiated Power P..4:

2 2
2

Prad := |U(8) sin(e)| d6 de (W)
lo o

Prad =0.01016 (W)

Directivity Da:

Do ._ 4 nUmax {dimensionless)
Prad
Do =4.59936 (dimensionless)

Polarization Loss Factor (PLF):

—N2
PLFIZ(ImwcaD {(dimensionless)
PLF =1 (dimensionless)

Radiation Resistance (Rr):

_2Prad

(I%))°

Rr=073177 {43

Rr: N? (Q)
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Surface Impedance of Conductor

Rs = 1 42898°10 °

Ohmic Resistance Ropmyecl

N-a-Rs

Rohmic := (RR+ 1)

Rohmic =0.1479

(Q)

Q)

(Q)

Q)

Conduction-Dielectric Efficiency(e~q):

Rr
d T e—
Rohmic + Rr

ecd =0 83187

Input Reactance (X;):

Xin = 2~n»f4a-p0 (ln(&i) - l,75)

Xin = 1.07924* 10

Ingut Resistance (R;):

Rin = Rr+4 Rohmic

Rin =0.87967

Input Impedance (Z;):

Zi:=Rin+ Xin'j

21 =0.87967 +1.07924* 10%j
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(dimensionless)

(Q)

{Q)

(Q

(Q)

Q)




Voltage Reflection Coeffecient][:

2-2,
Zi+ 2,

[=

[ =0.64261 +0.75809;

Reflection Efficiency gpy:

avi=1- (|’

av =0.01236
Gain G:
Gi=av-ecd Do
G1db = 10-log(erv-ecd Do)
G =0.04728

Gdb =-13.25293

(dimensionless)

(dimensionless)

{dimensionless)

(dimensionless)

(dimensionless)

(dB)

(dimensionless)

(dB)

Maximum Effective Aperture (Agom):

_erv.ged- 42 Do (PLF)

Aem -=
4

Aem =0.37574

(m2)

(m?)

Effective Isotropic Radiated Power (EIRP):

EIRP := Prad Do

EIRP =0.04675

Bandwidth:

Bandwidth ‘= —<

6na

Bandwidth = 1 06029 10®

(Hz)

(Hz)

(W)

(W)

Maximum Effective Height

( hen‘_)__

~ {Rr-Aem
hem "=
N T
hemn =0.05401
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SMALL HORIZONTAL LOOP ANTENNA FAR FIELD PATTERN ABOVE GROUND WITH AIR
CORE

For the purpose of this far-field radiation pattern, the small loop
antenna axlis 1s equivalent to the Ex = 0 grid line. The pattern 1s
symetric when rotated in the (¢) dirction about the antenna's axis.

Small Horizontal Loop with Air Core Electric

Over Real Ground

Ex(98):= |ELhor(6)| -cos(9+l:) Ey(9) = |Ethor(9)| s'm(()-r—’é)
55106
105 166 /\ N //\
. 7 N
44710 9
385°10 0
33010 6 )

165 10 6

11°10°8

55010 7

0 - - - - - = S—
=210-16°10 °=12 10 ° =8°10 ° =4 10 -1.694°10 214 10 © 810 © 12°10 ° 16°10 210 °

Ex( 6)
— EFIELD
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Calculate small horizontal loop antenna parameters over ground (ferrite
core) :

Incremental Horizontal Reflection Coefficient ([hl):

1
m 0. = (irncrements)
2
2
m-n . {mx
COS(—) - Jap- sm(—_)
e 1 1
Mhi = ; (dimensionless)
COS|——1 + gD~ SIN|—=—
1 1
Total Electric Field (Ethor):
-i k
k'S fpel sin(g)e”’ . .
Emon9)=( g A(l-rm9)€’2*haﬂea (V/m)
2-rff
k-Sfue IO Sln(in—!) -e'j k -j 2 kp.cos(mi) v/
Ethorl _ = ! 1-Thi e * (v/m)
m 2 rﬁ m
Radiation Intensity U(6):
U(®3=l§i(|Emoﬂ6ﬂ)2 (W / solid angle)
Ino
Unwx:=lgi(|nmx(Emor]ﬂ)2 (W / solid angle)
2y
Umax =5.9995 10° (W / solad angle)

Radiated Power Prad:

2= 3
2

Prad = IU(B)-sm(O)‘ 4 d¢ (W)
0o Jo

Prad = 163918 10° (W)

Directivity Dg:

Do:=ﬁJLEEE§ (dimensionless)
Prad
Do =4.59936

(dimensionless)
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Radiation Resistance (Rr):

2 Prad .2
Rr = N

(%))’ o
Rr =1.18021 10’ o))

Surface Impedance of Conductor Rg:

[ (Q)
Rs .= lwfue
o oc
Rs = 0.09056 ()
Ohmic Resistance Raopmicl
Rohmic .:N:RS(RRH) Q)
Rohmic =9 37266 (Q)

Conduction-Dielectric Efficiencyfecql:

md::--lg;—- (dimensionless)
Rohmic + Rr

ged = | (dimensionless)
Input Reactance (Xl):
Xin-z2 n-f»a-pe(ln(S--:;) - l.75) Q)
Xin =4.3342 10° Q)
Input Resistance (Rili
Rin "=Rr + Rohmic Q)
Rin =1 18021 10’ Q)

Voltage Reflection Coeffecient][:

=Zi—Z0
Zi+ Zo

(dimensionless)

Tr:

[ =0.64261 +0.75809) (dimensionless)

156




Reflection Efficiency Ery:

uwi=l-(|rlf (dimensionless)
av =0.01236 {dimensionless)
Gain G:
G:=av-ad Do (dimensionless)
Gdb = 10-log(av-ecd Do) (dB)
G =005684 (dimensionless)
Gdb =-12.45349 (dB)

Maximum Effective Aperture (Rgml:

2
Ay -2 Svd 4 Do (PLF) 2

4

Aem =0 45168 (m?)

Effective Isotropic Radiated Power (EIRP):

EIRP :z Prad-Do (W)

EIRP =7 5392 10° (W)

Bandwidth BW:

BW =S (Hz)
6nra
BW = 106029 10° (Hz)

Maximum Effective Height (hgpl:

hem = Rr‘Aem_z (m)
Ty
hem = 2 37827+10° (m)
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Polarizaticon Loss Factor (PLF):

pLF :={Jow o) i

PLF =1

(dimensionless)

(dimensioniess)



SMALL HORIZONTAL LOOP ANTENNA FAR FIELD PATTERN ABOVE GROUND WITH
FERRITE CORE

For the purpose of this far-field radiation pattern, the small loop
antenna axls 1s equlvalent to the Ex = 0 grid line. The pattern 1s
symetric when rotated i1n the (¢) dirction about the antenna's axls.

Small Horizontal Locp with Ferrite Core
Electric QOver Real Ground

Ex(8) := | Ethor(8)] 'cos(6+ -;) Ev(8) := | Ethor(8)| sin(0+ -;‘)

0.022

AR N /

0.02 /

0018

0.015

NoL3

Ev(6)0.011

0.009

0.007

,_o—a-'—r—"""_'ﬁffj

0.004

0.002

0
—0.08 =0.064 —0048 <=0032 —0016 0 0016 0.032 0.048 0.064 0.08

Ex(6)
— EFIELD

158




Define angular offset §
from small loop axis:

9:20 1 n (radians)

n (radians)

Relative Complex Permittivity {

]
n

apze-| 4 (dimensicnless)
2 nfco
ap ==36 Kﬂ% (dimensionless)
Vertical Reflection Coefficient ([v):
7 2
‘7
i) = = A 2 (dimensionless)
ap cos((—f - 9)) + {ap- am(-: - 9)
m:=0 i (increments)
2
ap-cos a ap- sin 1 m-n
vl o= 2 2 (dimensionless)
\ m =
2
cos n / <n 1 m
ap 2 ap 2
Total Electric Field (Etvert):
kSfyu 1 sn(8)e’ * e
Etwvert( ) := 80 — (1 + Tv(0)e! “"‘“”‘9’) (v/m)
o)
. Y LU T 3
ij}blomntT—)e _JZthmGE%
Etver] := L4Vl e ' (V/m)

orff
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Radiation Intensity U(d):

U(e) :=—'ﬂi-< |Etvery(®)] )?
2,

Umax = ( Imax( Etverl )| )2

21b
Umax =372332 10}

Radiated Power Praq:

Prad :=

n ¢
[ [U(8)-sin(0)| db
40 10

Prad =0 01016

Directivity Da:

DO:AnUmu
Prad
Do = 4.60367

Radiation Resistance (Rr):

- 2 Prad

1)

Rr=073176

Rr: N2

-~

Surface Impedance of Conductor Rg:

Rs=14289810 -

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W)

(dimensionless)

(dimensionless)

(Q)

()




Ohmic Resistance Ropmict

N aRs

Rohmic "= (RR+ 1)

Rohmic =0.1479

(Q)

()

Conduction-Dielectric Efficrency(ecq):

- Rr
Rohmic + Rr
ecd =0.83187

Input Reactance (X;

)

Xin=21fap (ln(&-a—) -1 75)
b,

Xin = 107924 102

Input Resistance (R;):®
Rin = Rr+ Rohmic

Rin =0.87966

{(dimensionless)

{dimensionless)

(Q)

(Q)

Q)

Voltage Reflection Coeffecient[:

_Zi-—ZO

.=
Zr+ZO

[ =064261 +0 75809;

Reflect:on Efficiency g,

av = 1- ()’

av =0.01236

(dimensionless)

{dimensionless)

(dimensionless)

(dimensionless)
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Gain G:

G zaved Do {dimensionless)

Gdb = 10-log(erv ecd Do) (dB)

G =004733 (dimensionless)
Gdb =-13 24888 (dB)
Maximum Effective Aperture (Agﬂli
Ay -2 V.24 1 Do (PLF) m2)
4n
Aem =0.37609 (r?)

Effective Isotropic Radiated Power (EIRP):

EIRP =Prad Do (W)

EIRP =0.04679 (W)

Bandw:idth:

Bandwidth 1= —S (Hz)
6na

Bandwidth = 1 06029 10° (Hz)

Maximum Effective Height (hgm):

hem = [REAem 5 (m)
o
hem = 0.05404 (m)

Polarization Loss Factor (PLF):

0 0

ca:=}l (dimensionless) ow: ={1 (dimensionless)
0 0

PLFI=(lmwoaD (dimensionless)

PLF =1 (dimensionless)
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SMALL VERTICAL LOOP ANTENNA FAR FIELD PATTERN ABOVE GROUND WITH AIR CORE

For the purpose of this far-field radiation pattern, the small loop
antenna axl1s 1s equivalent to the Ey = 0 grid line. The pattern 1s
symetric when rotated in the (¢) dirction about the antenna's axis.

Small Vertical Loop with Air Core Electric

Over Real Ground

Ex(8) := |Etven(6)| cos(9) Ev(8) = |Elven(0)| -sIn(9)

1.8°10°

1621073 — <

144 10°% v

126 1073
/

5

108 10

=6

Ev(®) 910

72107 f

54106 /

36710 8

18710 %

]

0 — — — — — — — — — 3
-6 10788 10 °=36 10 °~24 10 ©=1210° 0 12100 24100 3610 0 4810 8 10

Ext 8)
= EFIELD
163




Calculate small vertical loop antenna parameters over ground (ferrite

core) :
sore .

Vertical Reflection Coefficient ([v):

(dimensionless)
2
_-ﬂ)
! {dimensionless)
2
.?
1
Total Electric Field (Etvert):
k'S fuel -sin(e)-e'j ke
Etvert(#) ‘= (. 0 {14 rv(oye? 2kheou ) (v/m)
2ff
. fmn -1 -k
kSl]wldsm.__)cJ ﬂYZthxGE%
Etverl = 1+vl e ! (V/m)
m m

2ff

Radiation Intensity U(8):

U :=ﬁv( |[Ewen()] )
9.
27,

Umax iz2—( |max( Etverl )| )2
2
“ Ty

Umax =600502 10

Radiated Power Pr.q4:

h ¢
Prad .:J J [U(8) sin(8)| do de
0 Jo

= L] 5
Prad =1.63918°10 164

(W / solid angle)

(W / solid angle)

(W / solid angle)




Directivity Dgo:

Do = 4 a Umax
Prad
Do =4.60361

Radiation Resistance (Rr):

_2Prad
()’

Rr=118021 10’

Rr: N?

Surface Impedance of Conductor Rg:

Rs = afpe
ac

Rs =0.09056

Ohmic Resistance Ropmyel

aRs

Romnmi=N (RR+ 1)

Rohmic =9.37266

Conduction-Dielectric Efficiency(e~q):

ecd ::_._Rr_
Rohmic + Rr

scd =1

Input Reactance (X,):

Xin =2 afape (ln(S %) - 1.75)

Xin =43342 10°

Input Resistance (R,):

Rin := Rr+ Rohmic

Rin =1 18021+10

(dimensionless)

(dimensionless)

Q)

()

(Q)

(Q)

Q)

(dimensionless)

{dimensionless)

(Q)




Voltane Reflection Coeffecient[:

_ZP—ZO

[=
L4 Z‘o

[ =0.64261 +0 75809

Reflection Efflcxencyig£!i
av = 1 (|l

av =001236

Gain G:

G:i=av-ecd Do

Gdb = 10-log{ av-ecd Do)

G =0.05689

Gdb =~-12.44948

Maximum Effective Aperture (Agm):

T 4.2 .
Aem ;o xd-»" Do (PLF) (m2)
d4a
Aem =0 4321 (m?)

Effective Isotropic Radiated Power
(EIRP) :

EIRP :=Prad Do (W)

EIRP =7 54613 10° (W)

Polarization Loss Factor (PLF):
0
ca:=|! (dimensionless) ow :
0
PLFI=('cu"oa)
PLF =1
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(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(dB)

(dimensionless)

(dB)

Bandwidth:

Bandwidth := —

6-na

Bandwidth = 1 06029+ 10®

Maximum Effective Height

(Hz!

hem = 2.37936° 10°

0
1 (dimensionless)
0
(dimensionless)
(dimensionless)

(m)




CORE

For the purpose of this far-field radiation pattern, the small loop
antenna axls 1s equivalent to the Ey = 0 grid line. The pattern 1is
symetric when rotated in the (¢) dirction about the antenna's axis.

Small Vertical Loop with Ferrite Core
Electric Over Real Ground

Ex(8) := | Etvert(8)| -cos(9) Ev(8) := | Etvert(8)]-sin(8)

0.07
////,/" ‘n\\\\\
0.063 4 \

0.056

TV )

0.042

Ev(6)0.035

0.028

0021

0014

NV

0 -
-0.025 —0.02 =0.015 =0.01 -0005 173510 'S 0.005 001 0015 002 0.025
Ex¢9)

— EFIELD
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THE LARGE LOOP ANTENNA
MATHCAD SOFTWARE-LGLOOP.MCD

The large loop antenna 1s a coil of one or more turns whose radius (a)
satisfies the following:

a > i/én  (m)

where (i) 1s the wavelength of the frequency of interest. Large loops
are not commonly used and are considered impractical 1f the radius
exceeds one wavelength. Like the small loop, the efficiency of a
transmitting large loop can be low. However, antenna efficiency can be
improved by 1inserting a ferrite core in the loop or :increasing the
number of turns.

The large loop Mathcad applications will analyze two geometries: free
space and the horizontal loop. Each application for a specific geometry
will examine air and ferrite cores. Several antenna parameters,
particularly those for loops in free space, can be calculated using more
than one formula. Where this occurs, multiple results will be computed
for comparison. Computations which are :1dentical for all geometries will
not be repeated. Computations with ferrite cores will use effectave
permeabirlity (pe)in lieu of free space permeability(ug) .

(Note: » 1n a subscript indicates the dimension 1s in wavelengths

Mathcad equations cannot use symbolic subscripts. Therefore, the symbols
will immediately follow the parameters in equations (i1.e., Li) in lieu cf
subscripts.)

The large loop antenna Mathcad application will compute the following
parameters:

S = Cross-Sectional Area

C = Circumference

K = Wavenumber

A = Wavelength

Lo = Directivity

E = Electric Field (No Ground Effects)

Ex = Electric Field (Total Field Including Ground Effects)
U = Radiation Intensity

Umax = Maximum Radiation Intensity

P.aq = Radiated Power

[y = Vertical Reflection Coefficient (Ground Reflection)
[h = Horizontal Reflection Coefficient (Ground Reflection)
G = Gain

EIRP = Effective Isotropic Radiated Power

Rem = Maximum Effective Aperture

Bandwidth

¢y+ = Ground Relative Complex Permittivity

(Note: The subscript ' will be annotated as p in the application)

Imin = Minimum Distance to Far-Field
Rohmic = Ohmic Resistance
R, = Radiation Resistance

-

Rg

Surface Impedance of Conductor
les




tecd = Conduction-Dielectric Efficiency
Ue = Effective Ferrite Core Permeability

h

em = Maximum Effective Height

CR = Core Length to Diameter Ratio

The following data must be i1nput based on known or estimated data:

Z U0 o
nwu

Height of Antenna above ground
Radius of Antenna

Radius of Conductor

Number of Turns

6~ = Conductivity of Loop

Ry/Ry = RR = Ohmic Resistance Irom Proximity to Ohmic Skin Effect Ratio

P

Ddemag = Demagnetization Factor

wfg = Permeability of Ferrite Core

£
1

Frequency of Interest
Number of Increments in Degrees for Far Field Radiation Pattern

6 = Ground Conductivity

£, = Ground Relative Permittivity

r¢¢ = Distance of Field Calculations
I, = Input Current at Antenna Terminals

q = Loop Spacing

cl = Core Length
cd = Core Diameter
2, = Characteristic Impedance
Enter i1nput data here:

a:= 46 (meters) =l (dimensionless)
b= 05 (meters) ff:=110° (meters)

1.2 360 {degrees) RR .= 15 (dimensionless;
h:=72 (meters) clw=1 (meters)

oc =5810 {mhos / m) Z, =50 (Q)

=03 (meters) Ddemag =4-10°  (dimensionless;
uf=3000- (42107 (Henrys / m) 1= (amps )

626107 (mhos / m) f=32610° (Hz)

;%;=03 (dimensionless) od’=.05 (meters)

& N:=1 (dimensionless)
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Calculate large loop antenna geometric parameters and define constants:

¢:229979.10°
_C
' -
£
 =09196
Sizna:
S =066476

L =004879
6 n

C =2nra

C =2.189027

(meters / sec)

(meters / cycle)

(meters / cycle)

(m2)

(meters)

(meters)

(meters)

%i=120n

50 :-—]_ 10'9
36

p0=4n107

Di=2a
D =092
CR Z=c_l

cd

(Farads / m)

(H / m)

(meters)

(meters)

(dimensionless)

Calculate large loop antenna parameters in free space (air core):

Define angular offset §
from small loop axis:

Distance to Far-Field rpy;p:

%Z=L6w (m)
R
0:20,=— 21 {radians) r =35D (m)
1
_2D?
5 I, = (m)
01=0,Glj 21 (radians) A
1
min = max(r) (m)
min =4.6 (m)
Wavenumber k:
, -1
k::"_n (m=*)
A
k = 683251 (m~1)
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Electric Fireld Without Ground Effects E (@) :

m =0 (1ncrements)
2xfap |
E(®) :=( 9 )-c:'(J 'k"m-ll(kasm(())) (V/m)
2afap 1 _
El := (—A’) &Y "‘"ﬂ’-n(k»a s‘m(ﬂ)) (V/m)
m 2ff 1

Radiation Intensity U(8):

U(9)3=—df (|E(9)|)2 (W/solid angle)
Z-no
Ul :r_ﬂi (IE] l)2 (W/solid angle)
b m
Ty
Umax :=max(U1) (W/solid angle)
Umax =1 57377 10° (W/solid angle)

Radiated Power Pragt

2afn -

Prad = U(8)-s1in(0) d° dé )
<0 0

Prad = 1 09949+ 10° (W)
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Directivity D,

Do.=682($) (dimensicnless)
A
Do =2 1435 (dimensionless)
4 nUmax (dimensionless)
D02 = ——e
Prad
Do2 =1.79871 (dimensionless)

Radiration Resistance (Rr):

2C .2
n

Rr =601 < N Q)
A
Rr=18611810° Q)
2
9. .
R;z.::lifili (Q)

(I%l)*

Rr2 =2 19898 10° (Q)

Surface Impedance of Conductor Rg:

—

Rs = I”f“o Q)
A oc

Rs =471058 10 ° (Q)
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Ohmic Resistance Ronmict

Rohmic := NaRs

Rohmic = 0.04984

Conduction-Dielectric Efficiencyfe.q):

(RR+ 1)

, Rr
cd 1T
Rohmic + Rr

cd =0 99997

Gain G:

G =xd Do

Gdb := 10 logt ecd Do)

G=214344

Gdb=331111

Max:mun Effective Aperture

Aem = 0543 (» C)

Aem =0 14432
Acm2:=2§Li—92
4 a

Aem?l =0 14424

i n .
lr\eml .
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(dimensionless)
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(dB)
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Effective Isotroplc Radiated Power (EIRP):

EIRP := Prad Do (W)
EIRP =2 35675 10° (W)
Bandwidth:
¢ 1
Bandwidth 2 < || = — (Hz)
a 6
Bandwidth =6.17143 10° (Hz)

Maximum Effective Height (homi:

hem = 2 (m)
Ty
hem = 1 68821 (m)
. IRr-AemZ
hem2 !z |—— 2 (m)
I
hem2 =1 68775 (m)
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LARGE LOOP ANTENNA FAR FIELD PATTERN IN FREI 3PACE WITH AIR CORE

For the purpose of this far-field radiation pattern, the large loop
antenna axl1s 1s equivalent to the Ey = 0 grid line. The pattern 1s
symetric when rotated in the (¢) dirction about the antenna's axis.

Electric Field Without Ground Effects

Ex(0) := |E(8)] cos(8) Ev(8) = |E6)| sin(8)
0.003
0.002 \ 7

AN

0.002

R /
BIEEAN /

Ev(8) 0

/I\

ZARN

\/

N/

R4 N
W/ \

=0 002

TN

-0.002 \\\\ ////// ‘\\\\\ ////
=0.003
=0.003 =0.002 =0.002 =0 001 =0.001 0 0.001 0.001 0.002 0002 0.003
Ex(6)
— EFIELD
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Calculace large loop antenna parameters 1n free space (ferrite core):

Effective Permeability (o) :

pe = u (H/m}
1 + Ddemag (uf- 1)
ue = 35048663 107 (H/m)
Electric Field Without Ground Effects E(8):
2nfaupel e
E(8) :(__.2) e h'J'“Jl(kasm(())) (V/m)
2f
2afapel )
El = (-—-—-—0) ey er.”(kasm(m—ﬂ)) (v/m)
m 2t 1
Radiation Intensity U(8):
i
U(8) = — (,E(O)l )2 (W / solid angle;
2r]0
ot N
Ul = (IE] ])‘ (W / solid angle)
m o, m
=Ty
Umax :=max(U1!) (W / solid angle)
Umax =2 5382+ 10° (W / solid angle)




Radiated Power P, 4:

U(8) sin(6) db d¢

Prad =1 77327+ 10"

Oirectivity Do

Do:= 682£
Iy
Du=21433
D02_=43(Jmax
Prad
Do2 =179871

Radiation Resistance (Rr):

Rr=1 605 (5] N2
A Mo

Rr =3 00174+10'°

Rr2 =3 54654 10'°
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({dimensionless)

(dimensionless)
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{dimensionless)




Surface Impedance of Conductor Rg:

=
ot
k5

Ohmic Resistance Ropmyc!

N aRs

.

Rohmic = (RR+ 1)

Rohmic =3 15832

Conduction-Dielectric Efficiency(e~q):

Rohmic + Rr

Gain G:

G =ecd Do

Gdb = 10 log(ecd Do)

Gdb =331123
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(Q)

(dimensionless)

(dimens:.onless)

(dimensionless)

(dB)

{dimensionless)

(dB)




Maximum Effective Aperture (Agnl:

2
2" Do
Aem I=L (m<)
4 n
Aem =0 14425 (m< )

Effective Isotropic Radiated Power (EIRP):

EIRP :=Prad Do (W)
EIRP =3.801 10'° (W)
Bandwidth:
. C 1
Bandwidth =< |] - — (HzZ)
a 6
Bandwidth =6.17143 10 (Hz)

Maximum Effective Height (hgpy):

hem = Rr Aem 2 (m)
T
hem =6 77808+ 10° (m)
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LARGE LOOP ANTENNA FAR FIELD PATTERN IN FREE SPACE WITH FERRITE CORE

For the purpose of this far-£field radiation pattern, the large loop
antenna axis 1s equivalent to the Ey = 0 grid line. The pattern 1s
symetric when rotated i1in the (¢) dirction about the antenna's axis.

Electric Field Without Ground Effects

Ex(8) -= |[E(8)| cos(8) Ev(9) -= |[E(8)| sin(8)

™~

7
N

Ev(0) 0

N/
/I\
%

-

TN N

b P -9 =6 =3 0 3 6 9 12 15

Ex(6)
— EFIELD
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Calculate large horizontal loop antenna parameters over ground (air
core) :

Define angular offset §
from small loop axis:

{radians)

({radians)

Relative Complex Permittivity

f€pr)

ap=a-]

{dimensionless)
2nf%

ap=1-331288 10°)

(dimensionless)

Horizontal Reflection Coefficient ([h)

tol~

{increments)

ﬂu9)2=coy9)- JUP- sin(9) (dimensionless)
cos(0) + «Jup— sm(e‘)z

(dimensionless)
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Total Electric Field (Ethor):

.
..ntauol

— 0) et I"’Y’Jl(l\'asm(e))-(l- (6 e’ 2“““9))
3

Ethor(9) -=(

21fap | 4 | y z.k»m.(m.j
Ethor] = (————2—0) g k) (J] (k a sm(r_n__n))) (l - Thi_e

2.} 1

Radiation Intensity U():

U(O):ﬁ (IEl.hor(‘))l)2 (W/solid angle)
Zno

Umax -:ﬁ ( |max(Ethor1)| )2 (W/solid angle)
2-7)0

Umax =7.03652 10° (W/solid angle)

Radiated Power Prad®

2n 2
2

Prad := [U(8) sin(8)| db de (W)
Jo o

Prad = 1 13445+10° (W)

Directivity Dg:

4 n Umax
Do :=M (dimensionless)
Prad
Do =7.79439 (dimensionless)
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Radiation Resistance (Rr):

=2Prad

()’

Rr: N?

Rr =2 268% 10°

Bandwidth:

Bandwidth = 1- _l_.J
a 6 ;

Bandwidth =6 17143 10®

Surface Impedance of Conductor Rg:

Ohmic Resistance Rohmict

NaRs

Rohmic = (RR+ 1)

Rohmic =0.04984

Conduction-Dielectric Eff:ciencyie-q):

- Rr
ecd T ——_—_—
Rohmic + Rr

ecd = 0.99998

1e3

(Q)

(Hz)

Q)

Q)

(dimensionless)

(dimensionless)




Maximum Effective Aperture (RAgm!:

:ecdkz Do
4n

Aem :

Aem =03524

W
t9

Gain G:

G =ged Do

Gdb = 10 log(ecd Do)

G=779422

Gdb =891773

Maximum Effective Herght (heg):

hem = Rr Aem 2

Effective Isotropic Radiated Power

(dimensionless)

(dB)

(dimensionless)

(dB)

(m)

(m)

(EIRP):

EIRP :z Prad Do

EIRP =8384235 10°
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LARGE HORIZONTAL LOOP ANTENNA FAR FIELD PATTERN ABOVE GROUND WITH AIR
CORE

For the purpose of this far-field radiation pattern, the large locp
antenna axis 1s equlvalent tc the Ex = 0 grid line. The pattern .s
symetric when rotated in the (¢) dirction about the antenna's axls.

Large Horizontal Lcop with Alr Core Electric

Over Real Grcund

n
-
o,

Ex(8) ‘= lELhor(B)I cos(94»-:) Ev(0) = |Elhor(6)| sm(6+ )

0005

v 004 \ /

0.004

0.003

0 003 \ ’/

Evt 9)0 002

0002 l\

0001 [
0001 /

1

=0.005-0.004 <0003 T0002 =u00]) 0 0.001 0.002 0.003 0.004 0.005

Ex(£)
— EFIELD




Calculate large hcrizontal loop antenna parameters over ground (ferrite
core) :

Total Electric Field (Ethor::

2atape]

. 5 < (v/m;
0cJkauJukammBH(]_[NG)EJ“khmwo m
2nf

Emonﬁﬁ=(

2afapel - Zkhcou(m--:) (V/m)
EmWWMZL———f—%cﬂ’kﬂ)@%kamimj»)(l-ﬂﬂme

2t 1

Rad:rat:ion Intensity U(f):

U(9M=lﬁi(|EmoN9ﬂ)z (W / solid angle)
Zno

Umax =£ﬁ:(|mqude)]f (W / solid angle)
i}
=Ty

Umax =1 13486 10" (W / solid angle;

Radiated Power Pradl

9
- h
-] -
2
(W)
Prad = Ut8) sini9)] o do
lo o

Prad = 1 82966 10'° (W)




r

Directivity Dg:

Do := 4 nUmax (dimensionless)
Prad
Do =7.79439 (dimensionless)

Radiation Resistance (Rr):

2-Prad . ,2 (Q)

()

Rr :=

Rr = 365931 10° (o

Surface Impedance of Conductor Rg:

Rs := ",——"'f' he Q)

(Q)

Ohmic Resistance Ropmict
Rohm1ci=Na‘Rs-(RR+ 1) (Q)
Rohmic =3.15832 (Q)
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Conduction-Dielectric Efficiencyfecqy):

Rr
= (dimensionless)
Rohmic ¢+ Rr
ecd =1 (dimensionless)
Gain G:
G "=ecd Do (dimensionless)
Gdb = 10-log(ecd- Do) (dB)
G =779439 (dimensionless)
Gdb =8.91782 (dB)
Maximum Effective Aperture (A.m):
ecdv'szo
Aem =4 2 (m2)
4n
Aem =0.52453 (m2)
Effective Isotropic Radiated Power (EIRP):
EIRP := Prad Do (W)
EIRP =1.42611 10" (W)
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Bandwidth:
_C |
Bandwidth = =-|] - — (Hz)
a 6
Bandwidth =6.17143-10° (Hz)

riaximum Effective Height (hgp):

—

}mm2=-RrAmn2 (m)
Jom

hem = 1.42709- 10" (m)
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LARGE HORIZONTAL LOOP ANTENNA FAR FIELD PATTERN ABOVE GROUND WITH
FERRITE CORE

For the purpose of this far-field radiation pattern, the large loop
antenna axis 1s equivalen® to the Ex = 0 grid line. The pattern 1is
symetric when rotated 1in the (¢) dirction about the antenna’'s axis.

Large Horizontal Loop with Ferrite Core
Electric Over Real Ground

Ex(8) = |Ethor(9)|~cos(9+ :’) Ev(8) -= | Ethor(8)} ~sin(6+ %)

/’\

16.2 \} ]

144

12.6

10.8 ‘l [

539) 9 \\
- \ )

\ /

3.6

L1/

=20 ~-16 =12 -8 -4 0 4 8 12 16 20
Ex(9)

— EFIELD
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THE BEDSPRING ANTENNA
MATHCAD SOFTWARE-BEDSPRIN.MCD

A bedspring (or curtain) antenna 1s a two dimensional array of identical
horizontal dipoles. The vertical stacks of dipoles are referred to as
bays. A bedspring antenna 1s built from two or more bays. Bedspring
assemblies are nnrmally designed for high frequency (3 - 30 MHz)
operations. The beam maximum can be steered in either the azimuthal or
vertical directions by adjusting the phase of the element feed currents.
Bedspring antenna Mathcad applications assume that all elements lie 1n
the y-z plane, that all element excitation currents have identical
maximum amplitude, that there are only 2 dB of losses associated with
the antenna, and that a perfect reflector screen is located in the -x
half space.

(Note: Mathcad equations cannot use symbolic subscripts. Therefore,
symbols like i will immediately follow the parameter in equations 1in
lieu of subscripts. )

The bedspring antenna Mathcad application will compute the following
parameters:

D = Maximum Physical Dimension of the Array

k = Wavenumber

+ = Wavelength

Do = Directivity

Eg; = Electric Field (6) Component for an Individual Bay

E¢1 = Electric Field (¢) Component for an Individual Bay

Sx = RArray Factor for Perfect Image Reflector

sy = Array Factor for Multiple Bays

A,B = Electric Field Coefficients

Ege = Electric Field (8) Component (Including Ground Effects)
Egr = Electric Field (4) Component (Including Ground Effects)
U = Radiation Intensity

Unax = Maximum Radiation Intensity
Pragq = Radiated Power
[y = Vertical Reflection Coefficient (Ground Reflection)

[, = Horizontal Reflection Coefficient (Ground Reflection)

G = Gain

EIRP = Effective Isotropic Radiated Power
Agm = Maximum Effective Aperture

BW = Bandwidth

€.+ = Ground Relative Complex Permittivity

(Note: The subscript ' will be annotated as p in the application)
Imin = Minimum Distance to Far-Field

Ry = Radiation Resistance
hem = Maximum Effective Height
IIo1 = Magnitude of Antenna Feed Current
Ex,y,z = Electric Field Spatial Components
65 = Antenna Unit Polarization Vector
fhlgh = Upper Operating Frequency
fiow = Lower Operating Frequency
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PLF = Polarization Loss Facter

6 = Antenna Unit Polarization Vector
Gp = Coaltitude (Deflection Angle from +z Axis) for Polarization Loss
‘p = Azimuth Angle for Polarization Loss

The following data must be input based on known or estimated data:

M Number of Elements per Bay
N Number of Bays
Z, = Height of i1th Element Above Ground

2,-Z,_3 = Vertical spacing of the ith Element
Y, = Horizontal Position (Center of Dipole) of ith Bay

Y,-Y;_; = Horizontal Spacing of the ith Bay

X1 = Reflector Position

1l = Half-Length of Each Element
f = Frequency of Interest
1 = Number of Increments for Far Field Radiation Patterns

(Note: Due to Mathcad restrictions on matrix size, 1 < 125)
¢ = Ground Conductivity
¢r = Ground Relative Permittivity

ree = Distance of Field Calculations

I, = Input Current at Element Terminals .

Bg = Coaltitude (Deflection Angle from +z Axis) for Azimuth Plot
Og = Azimuth Angle for Elevation Plot

C, = Relative Current Amplitude of ith Element

8o = Vertical Scan Angle (Coaltitude)
¢o = Azimuthal Scan Angle

(X,¥.,2) = Coordinates for Unit Polarization Vector
0, = Incoming Wave Unit Polarization Vector




—_ N
[ NNNRY ~ TR 2V R V)

o O O O

Enter input data here:

(elements) f2=10~106
(bays) ag:=10
(increments) f =110°
Im:=z1l
{m) 6 =0l
X1:=7
{(m) 1 =11
&y:ﬁ
2
(amps)
$0:20
X = 1000
(dimensionless) -
y =50
z =50

(Hz)

({dimensionless)

(meters)

(amps)

(mhos / m)

(m)

(m)

(radians)

(radians)

(m)

(m)

{(m)
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"alculate bedspring antenna geometric parameters and define constants:

¢ 22997910 (meters/sec)

ri=s {meters/cycle)
f
»=29979 {meters/cycle)

D =60.83584 (m)

n, =120 (‘@
1 9
€ ze— 10 (Farads/m)
36 n
) 7
By =410 (H/m)

Calculate bedspring antenna parameters

Define angular offset 8
from y-z axis:

61=O,JL” (radians)
21

ro b

(radians)

.
SN B

d-f.—h\-
[SEE]
+
=1y
[ P

Wavenumber k:

k :=£‘
A
k =0.20959

Distance to Far-Field rpin:t

%2=L6l
q:=51)

_2D?
r2 -

rmin = max(r)

rmin =3.04179 107
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Ground Relative Complex
Permittivity g,

: J
L
P 2nfe (dimensionless)
< 0
ap=10- 18; (dimensionless)
Vertical Reflection Coefficient [,
w=z0 4 (1increments)
5

i . 2
[v(8) .= ap-cos(§) - werp- sin(6) {dimensionless)
ap-cos(e)-o-Jcrp- sm(())2

F\'l“ =

(dimensionless)

Horizontal Reflection Coefficient [j:

Th(8) := cos(8) - [arp- sin®) (dimensionless;
cos() +»Jerp- sin(6)°

(dimensionless)
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Electric Field Coefficients A,B:

1 kZ . 8)- ¢ -i y
ZC ¢ Tam 10l o) (l - Tv(@) e - "om(e,)
¢-1.0

q

A(8)

€

1 kZo_ o (em(ili) —cost&))) - 2KZ l_oco-(l'l;!)
Al =Zc ¢ fr-nvi
w q- 1.0 w

q

11

§RZy_ | gtco(8) - cos(Bo)) ( -j 2kZ -coul 9))
ZCq_ 1ot 4=t Al 4+ Th(8) e - 1.0

q

B(6):

Bl = c R S 1_0»(cos(w—|'§) -cos(@o} (l ) 2kZ l‘ovcos(.w"—')
w .-E 4-1.0° Al+Thl e
q

Electric Field Components for Individual Bay Egiel:

5kl sk 1sin(8) sin()) = cos(k )

Ebl(b.9) =-) 60 Im~ sin( $)-cos(8) A(6)

I - sin(8)” sin(¢)’

. ke cos(k»14:7in(-\11[)sin(-il +!)) ~ cos(k-1)
E6ll, ,=.j 60Im , i 2 »sin(--ﬂ-

rff ) (wn)z . ( TV 2 2
|l = sin}—~—]| -sin}- =+ —
1 2 1
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(dimensionless

(dimensionless

(dimensionless)

(dimensionless)

(V/m!}

{increments)

(v/m)




=) krff e _ ,
EMI(0.8) =) 60-Im & — cos(k | sin(8) sin(e)) cos“\l)cosu)B(e) /i

1= sin( 6)2 s )

(V/m)
Array Factor for N bays Sxi
ql =1 N {lncrements)
tdimensionless)
kY sin{ 9) ( sin 9) — s1n( #0))
sve. =y e 9!
ql
) ) d oni )
J 'k'YO.ql— l~sm(w—l) (,m(.1+l"_‘) -sit(.o)) (dimensioniess
Syl ::Ze ] 2 1
WLV
q!
Array Factor for Ideal Reflector Sy,:
) (dimensionless;
Sx(8.4) =1 - €J»karmm9rum0)
-j z-k-.\'l-sm(i!) co.(.l-a»v—")
Sxl =l-e ' 2
w,v (dimensionless;
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Total Electric Field Components Eﬂt,gti

E61(0,4) = EB1(0,9) Sx(6,4) Sy(d,¢)

Eou _=EBLl,  SxI__Svl

Eot0.4) = E1(0,4) Sx(0.9) Sv(8,¢)

EOH\~ .- Eell leu Sl

W,

Radiat:ion Intensity Ulf) :

U6, ¢) :=-7.’ﬁi [(leaca. D)+ (JEwce. oY)
- T]O

2 (e ) o,

)]

Umax '=max(Ul)

Umax =8 8082¢10°

Radiated Power Pragqt

e 1
2 |2
Prad = U(6,¢) sin(8) do dé
a1 0
2

= 2
Prad =9.79181 10 198

(V/m)

(Vv/m)

(V/m)

(V/m)

(W/sclid angle)

(W/solid angle)

(W/solid angle)

(W/solid angle)

(W)




I e S ———————————

Directivity Dgo:
_4-nUmax (dimensionless)
Do = ———
Prad
Do = 1.13041 10° (dimensionless)
Magnitude of Antenna Feed Current
Is:
Io =M N-Im {amps)
lo=8 (amps)
Radiation Resistance (Ry):
Rr = Z»Prad2 Q)
(l1o]»
Rr =30.5994 Q)
Gain G:
Gdb := 10-log(Do) = 2 (aB)
Gdb = 18.53234 (dB)
Gdb
G=10" (dimensionless)
= bl
G=7132377 199 {dimensionless)




Polarization Loss Factor PLE:

f = y
x2+yj (radians) P NM{J

9p-=amn(
z
op =1.5209 (radians) #p =0.04996

Ex = E6t(6p,4p)-cos(fp )-cos(¢p) ~ E4t(6p.ep)-sin(4p)

Ey :=E6t(6p, ép)-cos(0p) sin(ép) - E#t(6p,¢p)-cos(p)

Ez .=- E6t(6p,4p)-sin(bp)

X

1 |Ey

oa .

J( [Ex )+ (JEv)*+ ([E2))?

=0.03302 + 0.03754;
aga =|-0.66366 + 0.74634;

-3.33112:107 - 4.40961 10°j

pLF :=(owoal) i

PLF =0.54991

Maximum Effective Aperture (R.p,):

.. A DoPLF
4

Aem

Aem =4 44582 10°
200

(radians)
(radians)
(V/m)
(V/m)
(V/m)
(dimensionless)
{dimensionless)
(dimensionless)
(dimensionless)
(m2)
(m?)




Effective Isotropic Radiated Power (EIRP):

EIRP =Prad Do

EIRP = 110687 10°

Maximum Effective Height (hapl:

hem = 37.9924]

Bandwidth BW:

Half-Wave Assembly

. C
2 VR ‘ (Hz)

fi2 =681341 10° (Hz)
fhigh := 1.02 fi.2 (Hz)
flow := 98-fi2 (Hz)
BW =fhigh - flow (Hz)

{Hz)

BW =2.72536 10°

(W)

(W)

(m)

(m)

Symmetric Feed Assembly

thighl :=1.5-fa2 (Hz)
flowl = .98-fa2 (Hz)
BWI1 =thighl - flowl (Hz)

(Hz)

BW1 =3.54297 10°
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BEDSPRING ANTENNA AZIMUTHAL FAR FIELD PATTERN

For the purpose of this far-field radiation pattern, the bedspring
antenna lies on the Ey = 0 grid line. Three field patterns are
developed: the (6) component of electric field, the (¢) component of
electric field, the total electric field. The user must select the
desired coaltitude (99) for which the patterns will be graphed.

Theta Component of Azimuthal Electric Field

T
fg =
¢ 2
Ex(§) = |F-91(9s,¢)|-c05(¢+§) Efty(9) := IEet(eg,nl-sm(u-;‘)
a0 1
3610 19
3210 ¥ AN /
2810 19 A
241019 { -
Efty(e) 210 0 { AN 10 £
By 21007 \ AN L 74 7
/7 7
g 1020 N\ /4 /]
41020 \\_ \ 7 -
< \Y 74
R o W 0 BawnNr0 0 o 1210 Bao Te 10 To 10 T
Efx( 0)
— EFIELD
Phi Component of Azimuthal Electric Field
E4x(#) = [Eat(og, )| -cos(¢+ g) Eoty(4) = |Edt(og. 0)] -sin(¢+ f)
15010 17
135710 17 == =S
1210717 /lr’ﬂ S~
1os 1017 Z AN
S Y
- 1 Ji
Eay(9) 7510 '8
610 18
ast0 18
RCIP \\\ A
1.5 10718 e g"’"__/
Ehh._b ._'# "1
O o Po Bis o Bzio B o 192610 10 D 1210 Borto B e10:iho
Edx( 0)
— EFIELD
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Total Azimuthal Electric Field

Et(4) :=J( |Eet(og.0)]) 2+ (|Eacog.9)])?

Ex(¢) = [Ev( ol -cos(¢+12‘) Ety(¢) = [Ex(#)] -sin(ng)

1610 V7

144 10 V7

e N\

128 10 17 /

L1210 7 4 \

9610 18

—18

Ety(¢) 810

6410 18 ,
\ y

ag 10 18 \

/
\ /

1210 18

16 10 18 —_— =

N

< %
- :

[ L1
\ N

N A A

0 = == g = \.._!‘ = — — = = =T
-3102% 10 '218°10 '81.2°10 1+ 10 '21.926°10 ~8 10 17 12°10 'S 1.8°10 '22.4°10 30

Etx(¢)
— EFIELD
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BEDSPRING ANTENNA ELEVATION FAR FIELD PATTERN

For the purpose of this far-field radiation pattern, the bedspring
antenna lies on the Ex = 0 grid line. Three field patterns are
developed: the (6) component of electric field, the (¢) component of
electric field, the total electric field. The user must select the
desired aximuth angle (Og) for which the elevation patterns will be

graphed.

Theta Component of Elevation Pattern of
Electric Field

¢ =0

E6tx(6) := ‘Eet(—; - e,og)

cos(8) Ebty(9) = |E&(§ - e,og) |-sm(e)

1
0.8
0.6
0.4
02

Efty(9) =5.551°10 17

__ -0.2

-;.ap
0.6
L]
-0.8‘ :
T 08 =05 —04 02 5511017 02 0.4 0.6 0.8 1
Eftx( 8)

=X

s SR

e dah -

— EFIELD

Phi Component of Elevation Pattern of
Electric Field

-sin(9)

E¢tx(0) := Eot(L; - e,o% | -cos(8) Edty(0) := IEu(g- 9,0%

0.006
0.005
0.005
0.004
0.004
Eay(9)0.003
T 0002
0.002

0.001 ;,
0.001 /.

T

—

e | /-
| e

/ i

pd —

L_'_'__'__.—'—
0
=0.005 =0.002 0.002 0.006 0.009 0.012 0.016 0.02 0.023 0.027 0.03

L
\

Eotx(9)
— EFIELD
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Elevation Plot of Total Electric Field

Et(8) :=m59l(9,0g)| )2+ (|Ed(8,08)] )2

Ex(9) = lEl(-;- - e) I -cos(8) Ety(8) = .Et(-g. - e) -sin(@)
0.006
P
‘ A N
0.005 Ef / \
0.004 E /////
0.004 g / }
0.003 ; / ]
E_y(9)0.003 :r % /
0.002 : //
0.002 E{ / /
0.001 : } A
1
0.001 ' /
_—HF'-'/

0
=0.005-0.002  0.002 0.006 0.009 0.013 0.016 0.02 0.023 0.027 0.03

Ex(6)
— EFIELD
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THE SPIRAL ANTENNA (EXACT METHOD)
MATHCAD SOFTWARE-SPIRAL.MCD

Spiral antennas are a family of two or three dimensional devices that
possess frequency independant parameters over a wide bandwidth. Spiral
antennas are commonly used for direction finding, satellite tracking
and missile guidance.

The planar spiral may be of the Archemedean, log-spiral, or equiangular
type. All three radiate two main, circularly polarized lobes
perpendicular to the plane of the artenna. Additional gain for planar
spirals may be achieved by placing a metal cavity on the side of the
antenna with the unwanted lobe. The cavity may be empty or be filled
with electromagnetic energy absorbing material. These applications
principly examine the equiangular planar spiral and do not account for
cavity backed effects.

The three dimensional, or conical, spiral exhibits many of the same
features as the planar spiral except that it radiates a single main beam
in the direction of its tip, thereby eliminating the need for cavities.
The conical log-spiral is the only three dimensional antenna analyzed by
this application.

(Note: Mathcad equations cannot use symbolic subscripts. Therefore,
symbols like A will immediately follow the parameter in equations in
lieu of subscripts. )

The spiral antenna Mathcad applications will compute the following
parameters for equiangular planar spirals and conical log-spirals:

; = Wavenumber

L = Wavelength

Do = Directivity

Eg = Electric Field (8) Component

Ey = Electric Field (¢) Component

A,B,C = Conical lLog-Spiral Electric Field Coefficients
U = Radiation Intensity

Unax = Maximum Radiation Intensity

Pragq = Radiated Power

G = Gain

EIRP = Effective Isotropic Radiated Power
Rgp = Maximum Effective Aperture

BW = Bandwidth
Imin = Minimum Distance to Far-Field

R, = Radiation Resistance
hem = Maximum Effective Height
Ex,y,z = Conical Log-Spiral Electric Field Spatial Components

63 = Conical Log-Spiral Unit Polarization Vector

fhigh = Upper Operating Frequency

fiow = Lower Operating Frequency

rn = Any point on the nth edge of a spiral

tex = Equiangular Planar Spiral Expansion Ratio
Z2i = Planar Spiral Input Impedance

[ = Voltage Reflection Coefficient
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¢y = Reflection Efficiency

PLF = Polarization Loss Factor

Q = Conical Log-Spiral Antenna Slowness Factor

I(¢) = Conical Log-Spiral Current Distribution

#(f) = Conical Log-Spiral Azimuth

@, = Conical Log-Spiral Phase Difference of nt! arm

lhigh = Upper Operating Wavelength

A\ ow = Lower Operating Wavelength

p = Planar Spiral Angle

A = Planar Spiral Electric Field Amplitude

b = Conical Log-Spiral Constant

L = Conical Log-Spiral Total Arm Length

¢; = Conical Log-Spiral Azimuth at End of Amm

ep = Desired Conical Log-Spiral Polarization Offset Angle from z Axis
‘p = Desired Conical Log-Spiral Polarization Azimuth Angle
1 = Conical Log-Spiral Total Arm Length

The following data must be input based on known or estimated data:

= Mode

= Number of Spiral Arms

Frequency of Interest

Number of Increments for Far Field Radiation Patterns
r¢e = Distance of Far-Field Calculations )

H Z X
([ ]

}a-
]

I, = Input Current at Antenna Terminals
Bg = Deflection Angle from +z Axis for Azimuth Plot
69 = Azimuth Angle for Elevation Plot

(X,y¥,2z) = Coordinates for Conical Log-Spiral Unit Polarization Vector
r, = Spiral Feed Point

a = Flare Rate
8p+1 = Angular Arm Width of nth spiral Arm

¢ex = Azimuth to Compute Expansion Ratio

B = Conical Log-Spiral Angle

R = Overall Radius

E, = Source Strength Constant for Planar Spirals
Z; = Conical Log-Spiral Input Impedance

6, = Wave Unit Polarization Vector
8, = Cone Angle

A8 = Conical Log-Spiral Half-Power Beamwidth
Z, = Characteristic Impedance of Feed Assembly

t = Number of Increments Along Conical Log-Spiral Arm
65 = Equiangular Planar Spiral Unit Polarization Vector
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THE PLANAR SPIRAL ANTENNAS

N =2

M =

Enter input data here:

(Note: Mp,y is N-1)

1 =30

a =.221

R =1
0 )
r
2

8§ =
n
if
12 ]

(arms) f =310°
(mode) o =1
of =110’
(increments)
ro =.]
(dimensionless)
Eo =10
(m)
.J_,
V2
ow =]
2
(radians) 1 0 |

(Hz)

(amps)

(meters)

(m)

(V/m)

(dimensionless)

(Q)

Calculate planar spiral antenna geometric parameters and define

constants:
_ 8

¢ =2.9979-10

L o==

2 =99.93

6a = j

(meters/sec) tb.=120n ()

(meters/cycle) € =—L—109 (Farads/m)
36

(meters/cycle) b, = 4107 (H/m)

(dimensionless)
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Calculate planar spiral antenna parameters

Define angular offset . .
3 - : Distance to Far-Field rpin:
from y-z axis: phimdt

m, =164 {m)
g-1r_n = 0
2’7 272 (radians)
m, =10R (m)
¢ =0 ﬂ 21 {radians) 8R?
Ty m, =— (m)
Y
rmin =max(r) (m)

rmin = 15988810  (m)

Wavenumber k:

g =21 (m=1)
A
-1

k =0.06288 (m=2)
Radial Distance to nth Spiral Edge r:
o) <roe” &= )
r(1,2-7) =0.40092 (m)
Expansion Ratio gay:

gex(n, ¢r) Hodr+ 21) {dimensionless)

r(n, ¢r)

eex(1,2-7) = 4.00917 {(dimensionless)
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Bandwidth BW:

Equiangular Spiral Log-Periodic Spiral
ihigh =4-ro (m) Ahighl =20ro
. c . c
fhigh = fhight =
Ahigh (Hz) Ahighl
(Hz) thigh = 7.49475-10°

thigh =7.49475-10%

Alow =4.R (m)
flow -° {Hz)
low
flow =7.49475-10" (Hz)
BW = thigh - flow (Hz) BW1 =thighl - flow
BW =6.74528-10° (Hz) BW1 =7.49475:10

Electric Field E{64) and Electric Field Amplitude A(f):

w =0..1 (increments)

.1-%‘ o\ M j~|—M»(9+§>—k~rﬂ'} .
Eo~k3-cos(9)-(l+j .a-c0s(0)) m(i) e L e i M
Eé(4.9) = 5
sin(9)"-rff
{ _ -
E¢\§,£> =5.97188:10 ° +2.4182:10 %] (V/m)

210

(m)

(Hz)

(Hz)

(Hz)

(Hz)

(V/m)




Electric Field Amplitude A:

/G\M /M\z -atan{ a-cos( 8))

cos(O)-tanr/ et/
A(8) = 2
. i 2 2
sin(8)-4/ 1 + a°-cos(8)
[ w M
e w | 20T) (el 3o
ms!-1+n'f\-m Ll PL ' 2 i
Al = V2 1; ! 2
w
! x ‘ 2 { 2
sinf-—+n-f-)- 1 + a"cos| —q-ne)
2 1 \ 2 1

Radiation Intensity U(@):

u®) =——(a®)?

2,

Umax =max(Ul)

Umax = 2228510

Radiated Power Praq:

fa
| 2

Prad =4-2 | U(8)sin(8) do

o

- RS
Prad =7.94528-10 211

(v/m)

(V/m)

{W / solid angle)

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W)

(W)




Directivity Dot

(dimensionless)
_ 4.2 Umax
Do - =72
Prad
De =3 52462 {dimensionless)
Radiation Resistance Rr:
bl
Rr -2 Prad @
(o)
Rr=0.01589
(Q)
Input Impedance Zi:
zi - N30 (@)
ﬂnfﬂ——}
'\ ./
Zi = 1.88496-10° Q)
Voltage Reflection Coefficient [:
= Zf - 20 {dimensionless)
21+ 20
I =0.30675 (dimensionless)
Reflecton Efficiency gp,:
av =1- (\TH? (dimensionless)
av =0.90591 (dimensionless)
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(dimensionless)

G =agvDo
G =3.19298 (dimensionless)
GdB =10-log(G) (dB)
GdB =5.04196 (dB)
Effective Isotropic Radiated Power (EIRP):
EIRP =Prad-Do (W)
EIRP =0.028 (W)
Polarization Loss Factor (PLF):
— | 2
PLF =<lcw-oa|> (dimensionless)
PLF =1 (dimensionless)
Maximum Effective Aperture (Agm):
12 Do-erv-PLF
Aem =2 "7 (m?)
4.
Aem =2.53733-10° (m?)




Maximum Effective Height (ham):

hem = RrAem.2
J o

hem =0.65407

214
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THE EQUIANGULAR PLANAR SPIRAL ANTENNA FAR-FIELD ELEVATION PATTERN

For the purpose of this far-field radiation pattern, the spiral antenna
lies parallel to the Ey = 0 grid line and is centered at the origin.
The magitude of the electric field pattern is rotationally symmetric
with respect to the Ex=0 grid line. The equiangular planar spiral
antenna possesses a mirror image radiaton pattern in the -y half plane.

/
EAx(9) = IA(e)l-cos\e*g) E4y(8) = IA(e)|~sin(e+§)

1.4

11T T "\

098 \

\

Eey(9) 0.7

e

0.56 ,

042

0.28 \ /
L

S L

0 =
06 048 036 024 0.2 -2.776'10 ' 0.12 0.24 0.36 048 06
Eéx( 8)

— EFIELD
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THE CONICAL SPIRAL ANTENNAS

N =2

M =]

Enter input data here:

{arms)

{mode)

(Note: Mp.y 15 N-1)

gt
P B180

B =1.27409

(increments)

(m)

(radians)

(degrees)

(radians)

(radians)

(m)

(m)

(m)

f =280 10°
Io =1

of =1-10*
ro =.03
Zi =160

80=0.17453

HPBW =80

(H2)

(amps)

(meters)

{m)

(Q)

(dimensionless)

(Q)

(degrees)

(radians)

{radians)

(degrees)




Calculate conical log~spiral antenna geometric parameters and define

constants:

¢ =2.9979-10°% (meters/sec) "y =120-n
=S P
== {meters/cycle) g =—10
f 36
A =1.07068 (meters/cycle) By <4210

Calculate conical log-spiral antenna parameters :

Define angular offset §

(Farads/m)

(H/m)

Distance to Far-Field rmin:

from y-z axis:

m, =1.6-A
g-.1r_1n 1
271 272 (radians)
m, =10-R
5 -8R
L\
.2 .
¢ =0,—.. 21 (radians)

rmuin = max(rr)

rmin =1.71339

Wavenumber k:

(m)

(m)

(m)

(m)

(m)

Radial Distance to nth Spiral Edge r:

k = (m~1) b =cot(p)
A
k =5.86841 (m~1) b =0.30573
r(n,¢r) =ro-e

r(1,4-n) =0.04948
217

bsin(8o)- (fe— 8 1. )

{dimensionless)

(dimensionless)

(m)

(m)




Bandwidth BW:

Conical Log-Spiral

Ahigh =4-ro (m)
. [+] .
fhigh = {Hz)
Ahigh
fhigh = 2.49825+10° (Hz)
Alow =§ll (m)
3
flow =S (Hz)
AMow
flow =7.4947510° (Hz)
BW ‘= thigh - flow {Hz)
Antenna Slowness Factor Q:
1
Q:=jl+— {dimensionless)
N b
Q =3.4203 (dimensionless)
Azimuth at End of the First Spiral Arm ¢L:
. R |
oL = ! ‘In sin(6o) (radians)
b-sin( 60) o
#L =63.29231 (radians)
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Spiral Arm Length L:

L :E(e“‘b"‘“%) l> (m)
b
L =2.72729 (m)
Spiral Arm Current T (f):
t =25 (increments)
e=0lL (m)
t
‘2
T (amps)
I€) =loe L P

Electric Field Coefficients a,A(E),B(E),C(E),D(E),4(8) ¢

¢ :% (dimensionless)

a=3.14159 (dimensionless)

] =0.N-1 (increments)

v :0..% {increments)

w 0.1 (increments)
e :b.si,:(go).m<%+ l) (radians)

COG. .1 = (1 *ﬁ)'é W-svta [y _;L__ BERCIE I
. e
e 219 o) (dimensionless)




; (- 22101 (1 ; )-j (hen-T2end
+{1- €

cle¢s,w,1) =(1+ €
b-sin(Bo)/ b-sin( 80)

(dimensionless)

CHEAD) = (H j )‘e" WG -deta) [} ] ).c.,' W) —4<ta)] ;. sin(Bo)
b-sin(6o) b-sin(6o) 2
(dimensionless)

: 5 -0 - % 20414 . RTINS S PN .
Claz, w, 1) :{(“ ] ).e\ i )Q(,_ j )c( i )}; sin(60)

b-sin(80) b-sin(do) 2
(dimensionless)
. L8 gin( 8)-sin( 80)-con( $1(E) ~ 44 k) /. \
l ]
(dimensionless)

sm(eo)-cos(i’-n+ -3) .C168(8,w,1)
1 2) (dimensionless)

DI(E,v,w)

"

~ sin(-‘;-m- l)-cos(eo)
2 i 2

{

(dimensionless)

Ml LKL gin 0 sin B )-con 91(3) ~ b+ ) (dimensionless)
B(3,04) =) 6! Mi%e @ CHEND
1

220




.I_k_§m<_‘l’x+§) -dn(ﬁo)-cu(‘l(ﬁ) - ;-2~z+l~a)

BlGG.v.w) =) e Mte @ ' CIKE,4.D)

I

(dimensionless)
Electric Field Compontents Ef, E§:
. 1Lkd
. ) ke
-j ke -coa( 0)-con( o)
E8(0,¢) =-j -f € ) 1) Q ) .0, (V/m)
(8.4) =-) Ly L (§)e A(5,0.4) &
e
-j krff X3 cos(¥.x+-2) .con(Bo)
: i (V/m)
EOL, ,, =-j FiyS { i(¢)e © AL(E, v, W) &
[L
. i k¥

- krff -cos( 8)-coe( B0) /
E4(0.9) =f K 1 IEye Q@ B(E.0, (V/m)
$6.4) =fp, o Jo (&)e (.0,4) &

L -

o kel {‘ -'%é-oo-«!,-w-%))-w(eo) (v/m)
Bl =fuy | KE) ' BI(E, v,
LS ST 2EQ Jo (t)e (RAYY ]
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Radiation Intensity U(8):

U2(8,4) =§i[(lﬁe(e,¢)l %+ (EXB. 0
My

Umax =max(U22)

Umax =0.25969

Radiated Power Ppraq4q:

2 n
Prad =J ,{ U2(8,4) sin(8) d6 &

0 40

Prad =0.81332
Directivity Dg:

Do = 4.7 Umax
Prad

Do =4.01237

Ddbo =10-log(Do)

Ddbo =6.03401

32600
HPBW?

Didbo =

Dldbo =5.09375

222

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W / solid angle)

(W)

(W)

(dimensionless)

(dimensionless)

(dB}

(dB)

(dB)

(dB)




Voltage Reflection Coefficient [:

r iz 2o {(dimensionless)
Zi+ 2o
[=023077 (dimensionless)
Reflecton Efficiency Ervi
av =1- (|T] )2 (dimensionless)
av =0.94675 (dimensionless)
Gain G:
G =av-Do {dimensionless)
G =3.7987 (dimensionless)
GdB =10-log(G) (dB)
GdB =5.79635 (dB)

Effective Isotropic Radiated Power (EIRP):

EIRP =Prad Do (W)

EIRP =3.26336 (W)
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polarization Loss Factor PLF:

JT‘:
op :aum(___.x ry ) (radians)
z
(radians)

op=0
Ex =E6&(6p,p)-cos(6p) cos(¢p) - E&(6p,4p)-sin(ép)
Ey =E6(6p,ép)-cos(bp)-sin(ép) - E8p,4p)-cos(4p)

Ez =-E6(8p.4p)-sin(6p)

Ex
1

a - -|Ey
NOExD? + (|Ey)?+ (|Ez])? \Ez

s}

0.29553 + 0.14919;

{—0.92973 - 0.1613)
ca=
\o j

| —\2
PLF = (low-oa})
PLF =0.40896

Maximum Effective Aperture (Rgapy):

_32Do-av-PLF
Aem =A 20TVELY
4:n

Aem =0.14172
Maximum Effective Height (hgp):

hem = |SLAC

= * —3
hem = 4.88816°10 224

(radians)
(radians)
(V/m)
(V/m)
(V/m)
(dimensionless)
(dimensionless)
(dimensionless)
(dimensionless)
(mz)
(mz)
{m)
(m)




THE CONICAL LOG-SPIRAL ANTENNA FAR-FIELD ELEVATION PATTERNS

For the purpose of the far-field radiation elevation patterns, the
conical log-spiral antenna lies parallel to the Ey = 0 grid line.
Application users must specify the desired azimuth and elevacion for the
plots.

THETA COMPONENT OF THE ELEVATION PATTERN

[T =z {radians)
2

Ex(8) =lee(e+n,¢g)l~oos(9+§> Ey(8) = |E&0+ ,4g)| -sin 9*51()

8810 °

Ey(8) 7°10 7

52010 9

3.4°00 3

161073

210 ¢

-5
-2*10 — = - —
0 0 0 810 ° -4°10 °-1.35510 0410 ° 810 5 0 0 0

Ex(8)
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PHI COMPONENT OF THE ELEVATION PATTERN

" -3 (radians)
2

/
Ex1(8) =\E¢(e+n,¢g)1-oose+§J Eyl(9) = !E¢(6+u,¢g)|<sin§9+§j
/ \ /

5110 =3 “He0S
0 0 0 0 810 °-2711°10 “8e10
Ex1(9)

— EFIELD
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TOTAL ELEVATION PATTERN

' ?=§ (radians)

EX(0.4) = EBD,4)% + EXS.4)°

Ex2(6) = |Ex(8+ x,4g)| -cos(9+ ;)

Ey2(8) ‘= |Et(8+ n,¢g)| -sin(9+ -25)

0.001

—

[ ——

Ey2(6) 0

610>

(AT

.............................................................

......................

-------------

-3
-3010 e rve
0001 0 o 0 ~1'10 ¥=2711°10 Vo0 ¥
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THE CONICAL LOG-SPIRAL ANTENNA FAR-FIELD AZIMUTH PATTERNS

For the purpose of the far-field radiation azimuth patterns, the conical
log-spiral antenna lies in the plane of the plot and is centered at the
origin. Application users must specify the desired offset angle from
the z axis for the plots.

THETA COMPONENT OF THE AZIMUTH PATTERN

og =€ (radians)

Ex(4) = |E0(8g,4)| cos(¢) Ey(¢) = |E0(6g,¢)| sin(¢)

1\

5.5°10 3

=110 3

Ey(9)—7.5°10 3 ,
- !

) - -
0 0 -1°10 42711010 D pep0 ¢ 0 0 0 0001
Ex($)
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Ex1(4) = |Ex0g.9)! cos(4)

0.001

Evi(e)-2.711°10 20

~1010 4

PHI COMPONENT OF THE AZIMUTH PATTERN

Eyl(4) = |Ex(0g,#)|-sin(4)

.\1

(

~/

— EFIELD

0

-310 ° 610 ° 0 0 0

Exl(#)
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TOTAL AZIMUTH PATTERN

Ex2(¢) = |Et(6g,4)] cos(¢) Ey2(¢) = |Et(0g,¢)| -sin(¢)

0.001

/| 4 ]

Ey2(4) —2.711°10 20

-1e10° 4

——
\\///

-0001 0 0 0 0 2711103 o 0 0 0 000l

Ex2(¥)
— EFIELD
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THE CONICAL HORN ANTENNA (EXACT METHOD)
MATHCAD SOFTWARE-HORN_ CON.MCD

Conical horn antennas are devices used to provide a transistion from a
circular waveguide to an unbounded medium such that the wavefront at the
aperture of the horn has nearly a constant phase at any point in the
mouth of the horn.

Conical horns are commonly used as feed elements for reflectors used in
satellite tracking, microwave communications, and radar.

(Note: Mathcad equations cannot use symbolic subscripts. Therefore,
symbols like A will immediately follow the parameter in equations in

lieu of subscripts.)

The conical horn antenna Mathcad applications will compute the following

Earameters :

= Wavenumber
L = Wavelength
Do = Directivity

Eg = Electric Field () Component

Ey = Electric Field (¢) Component

U = Radiation Intensity

Umnax = Maximum Radiation Intensity

P.aq = Radiated Power

G = Gain

EIRP = Effective Isotropic Radiated Power
Rem = Maximum Effective Aperture

BW = Bandwidth
Tmin = Minimum Distance to Far-Field

R, = Radiation Resistance
hem = Maximum Effective Height

Ex,y,z = Electric Field Components in Cartesian Coordinates
63 = Unit Polarization Vector

fote = Transverse Electric Cutoff Frequencies

fctm = Transverse Magnetic Cutoff Frequencies

tap = Aperture Efficiency

PLF = Polarization Loss Factor

pv(cos(e)) = Associated Legendre Function of the First Kind

Hi2), ,H‘Z)v'= Spherical Hankel Function and its Derivative

v = Legendre and Hankel Function Order
b,,d = Legendre and Hankel Function Constants
doptimum = Optimum Conical Horn Mouth Diameter
Ax,y,z = Conical Horn Magnetic Vector Potentials

’ ’
h = Conical Horn Axial Height
By = Magnetic Vector Potential Integral Coefficients
B = Magnetic Vector Potential Integral Phase Shift
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The following data must be input based on known or estimated data:

m,n = Mode
£ Frequency of Interest

i = Number of Increments for Far Field Radiation Patterns

rgg = Distance of Far-Field Calculations

I, = Input Current at Antenna Terminals

84 = Coaltitude (Deflection Angle from +z Axis)

g

‘g = Azimuth Angle for Elevation Plot

(x,y,2) = Coordinates for Unit Polarization Vector

a = Flare Angle
a = Circular Waveguide Inner Radius

for Azimuth Plot

Im,n = nth zZero of Bessel Function of the First Kind, Order m.

1! = nth zero of Bessel Function Derivative of the First Kind, Order

m,n
m.
B, = Electric Field Amplitude Constant

dmeas = Measured Diameter of the Conical Horn's Mouth

Enter input data here:

n =1 (mode number)
m =1 (mode number)
1 =18 (increments)
a =.0445 {m)

a =2g (radians)

(Note: a must be less than x/3)

Bo =1 {(V/m)

dmeas =1 (m)

f =1.9610°

(Hz)

(amps)

(meters)

(dimensionless)

(m)

(m)

(m)
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Calculate conical horn antenna geometric parameters

and define

constants:

c :29979~10s (meters/sec) N, =120x ()
¢
A== (meters/cycle) 6 =—L~109 (Farads/m)
36
1 =0.15295 (meters/cycle) by -4x10" (H/m)
3 1 dmeas
doptumum = =k — (a> (m) h =2 (m)
sin| — a
]
2 &
h=148879 (m)

doptimum = 0.67081 (m)

Define Bessel Function Matrices:

({Note: m column number, n row number,
n m =0. The n

only a placeholder.)

[0 0 0 0 0
2.4049 3.8318 5.1357 6.3802 7.5884

0 row has no physical significance,

matrix index starts at

it is

(dimensionless)

tad
"

S|

5.5201
86537
[11.7915

0
3.8318
7.0156
10.1735

7.1056 84173

10.1735
13.3227

0
1.8412
5.3315
8.5363

11.6199
14.7960

0
3.0542
6.7062
9.9695

L 13.3237 11.7060 13.1704

9.7610
13.0152
16.2235

0
42012
8.0153
11.3459
14.5859

11.0647
143726
17.6160 |

0
53175
9.2824
12.6819

15.9641 |
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Calculate planar spiral antenna parameters :

Define angular offset §
from y-z axis:

Distance to Far-Field rpip:

m, =164 {m)
;e a ¢ 0
bp —-—Z‘,i 272 (radians)
nl:Sdmam (m)
0 :0,11‘“241 (radians) _ 2-dmeas’
i m, =—— (m)
A
g- 1R % %
T2 272 (radians) o
rmin = max(Ir) (m)
é =0,2—:1—‘..2<n (radians) =13.07582 (m)
1
Wavenumber k:
k =2j (m~1)
A
k =41.0789 (m~1)

Cutoff Frequencies f.:

Transverse Electric (TE) Modes

fote =— @ (Hz)

e foon

ro 0 0 0 0

| 4.11135-10°  1.97552:10° 3.27702-10°  4.5077-10°  570544-10° |
foie =| 7.52742-10°  572046-10° 7.19545:10° 860005+10° 995959+ 10°
1.09157-10"°  9.15906-10° 1.06968-10'° 121736-10'° 1.36071-10'

1.42957-10"° 1256+10"  141312:10" 156510  1.71288-10" |

(Hz)
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Transverse Magnetic (TM) Modes

fom = —* (HzZ)

o 0 0 0 0

| 258035:10°  4.11135:10° 5.51037-10° 6.84567-10°  8.14201-10°

fon =| 5.92282:10°  7.62399-10° 9.03138-10°  1.04731-10'"° 1.18719-10" (}1z)
9.28503-10°  1.09157-10' 1.24676:10" 1.39647-10'° 1.54211-10"°

| 1.26517-10'  142947-10" 1.58754-10'° 1.74071-10'" 1389012:10'°

Legendre and Hankel Fuction Constants b.,$:

-

Iog\ n)
b0 = 4 (dimensionless)

a

log(cos(—)\

\ \2 J
b0 =26.32708 (dimensionless)
) =1 (dimensionless)

a

6=45 (dimensionless)

Legendre and Hankel Function Orders v:

v=-5+5 [1+4b; (dimensionless)

=4
v=46553 (dimensionless)
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Legendre Fuctions P,cos(8):

[(v+2 di ionl
pl(8) = (v+2) -Jl-sin(e)-eos{(v+.5)-6+ﬂ (dimensionless)
[(v+ 1.5)+2 4|
/.u'\ _
pl\~( =-1.512%4 (dimensionless)
J

Hankel Function and its Derivative Hﬂv _(2)

j - (k-h- .‘L‘.".l.,)
2

Hv2 :fﬁ-e (dimensionless)

- v
h '<k‘h-§'x)_<l . v+ l) (dimensionless) -

Hv2p - L-e -
kh k-h

Magnetic Vector Potential Integral Coefficient By:

2 .
BH = Boh o ke (%.Hyz + k-Hv2p> (Wb/m)

] -(2-n)2~f~co~rﬁ'

Magnetic Vector Potential Integral Phase Shift P and Other Coefficients:

B(6,9.6p,4p) =cos(8)-cos(Bp) + sin(6)-sin(fp)-cos($ - #p) {dimensionless)

{dimensionless)

C(8p.4p) = (sin(5-6p) cos(4p)2 cos(8p) + cos(5-0p)-sin(#p)> sin(Bp))

D(p,4p) =sin(8-8p)-cos(4p)-sin(4p)-cos(Bp) - & cos(8-8p)-sin(4p)-cos(4p)-sin(bp)
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Magnetic Vector Potential Integrals :

) §
5 2z .
AX(8,4) =.Bu-p|<2). f o BN 0 oon 4p) dip P (Wb/m)
2/ Jo <0
fa
/ P2 {21 , iy
Av(8,9) = BH-pHEH & KEHO0%®). 065 4p) dip dBp (Wb /m)
\2/ Jo Jo
fa
/o) ‘2 '
AZ(0.4) - BH'p]L%M J & EKOLD0). G0 5 0p)-cos(p)-sin(p) dép dbp
0 J0
(Wb/m)
Electric Field Components E‘_" E}:
EB(6,4) =k2'(AX(9,¢)~COS(9)-COS(¢) + Ay(8,9)-cos(8)-sin($) - Az(8,4) sin(6))
(V/m)
E4(6,4) =- Ax(8,4)-sin(9) + Ay(8,4) cos(¢) (V/m)

Radiation Intensity U(0):

U(e,4) ‘:;—’f—-[( |E6C0.9)!)2 « (|EXO,9)] )’]

"o

(W/solid angle)

237




Radiated Power P,.4:

2x

Prad - U(0,4)-sin(0) db d¢
0 J0

Prad =8.23092:10°

Directivity Dg:

_4-2U(0,0)
Prad

Do

Do =2.33662-10°

Radiation Resistance R,:

2-Prad
(Ilo])?

Rr =

Rr = 1.64618:10°

Gain G:

G =.95-Do

G =2.21979+10?

GdB = 10-log(G)

GdB =23.46311
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(W)

(W)

{dimensionless)

{dimensionless)

(Q)

(Q)

(dimensionless)

(dimensionless)

(dB)

{dB)




Effective Isotropic Radiated Power EIRP:

EIRP =Prad-Do W)
EIRP =1.92325-10° (W)
Antenna Unit Polarization Vector g, :
A ,
opl :alan(«/x +y) (radians) wpl =atan(z) (radians)
z \X
fpl =0.95532 {radians) pl =0.7854 (radians)
. (V/m)
Ex =E6(6pl,epl)-cos(8pl)-cos(¢pl) - E4(6pl,épl)-sin(épl)
. (V/m)
Ey =E8(6pl,¢pl)-cos(bpl)-sin(épl) + ENOpl,4p1)-cos(epl)
Ez =-EXOpl,4pl) sin(6pl) tv/im
[Ex
0a = ! ‘| By (dimensionless)

JOEx|)?+ (1Ey| ) + (|E2|)? \Ez

/0.05346 + 0.40449) | -
oa =| 0.05361 + 0.40495j (dimensionless)
0.10708 - 0.80945j

Polarization Loss Factor PLF:

o —n?
PLF ={|owoa|/ (dimensionless)
PLF =0.16663

(dimensionless)
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Maximum Effective Aperture (Agm!:

A2 Do 95-PLF

Aem = —m8m8 ———
41
Aem =0.06886

Maximum Effective Height (hgm):

hem :;RrAan
v o
hem = 1.09672

Aperture Efficiency %EEL

Aem
cap =
4(¢nmm 2
& 2
¢ap =0.08768
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(m)

(m)

(dimensionless)
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THE CONICAL HORN ANTENNA FAR-FIELD ELEVATION PATTERNS

For the purpose of these far-field radiation patterns, the conial horn
antenna axis is parallel to the Ey = 0 grid line and the apex of the
horn is located at the origin. Electric field components behind the
horn's aperture are assumed to be zero.

Theta Component of Elevation Pattern

[T =§ {radians)

E6x(0) = |E6(0,4g)!-cos(8) Edy(8) = |E&(0,4g)! sin(6)

25010 ¢
g
W&NN-\\
210 ® — \.\
1510 ¢
tr10° 8 //////r
510
L
/
//
—_ "]
EGy(8) -1.654°10 ** i'*‘cr\
L\J.\\
w09 \\‘\
~5°10 \\
| ) /
-1.5°10° /
2107 —
.4//

-.
-2.8410 -
T 1207 20070 30100 45107 56T 6T 180T 1910 T Y

Bn(8)
— EFIELD
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0.002

0.002

0.001

0.001

E4x(8) = |EW8,¢g)|-cos(8)

Phi Component of Elevation Pattern

E4y(8) = |EW8,4g)] sin(8)

—

242

Edy(9) —1.084*10 12 >
o \
-0.001 \\
~0.001 \\ ~
~ /
\\

-0.002 i
—0.002

0002 0 0003 0005 0008 00l 0012 0015 0017 002 0022

Eéx( )
— EFIELD




E

0.001

0.001

Ety(9) -1.084°10 1°

Total Elevation Pattern

E(6.4) =JEe(e,o)’+ ENO.4)°

(8) = |Et(8,¢g)| cos(8)

Ety(8) = |Et(6,4g)| sin(8)

AN

—0.002

~0.002 0 0.003 0.005 0.008
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0.01 0.012
Etx(0)

0.015

0.017

0.02
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THE CONICAL HORN ANTENNA FAR-FIELD AZIMUTH PATTERNS

For the purpose of these far-field radiation patterns, the conial horn
antenna axis is perpendicular to the Ey = 0 and Ex = 0 grid lines and
the apex of the horn is located at the origin.

Theta Component of Azimuth Pattern

0g - — (Note: f5 must be less than a/2 radians)

E6x(4) = |E6(8g.$)| cos(4) Efy(4) = |E8(0g,¢)| sin(4)

/N el

24 :

.

08

Efy(v, —2.22°10 16

— ]

\ Vo ,
| M/’ \N/

- -6.4 -438 -32 -16 —4.441°10 19 32 48 6.4 8
Ex(9)

=32

— EFIELD
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Phi Component of Azimuth Pattern

E4x(4) = |EN6g.4)] cos(¢)

Edy(d) = |EN0g.9)|-sin(¢)

-

0.003 /

o-wl \

-

\

\
\l/

[\

/

/

/

—0.002 )
j\

.

\

~0.005
—0.003 —0.002 -0.002 ~0.001 =0.001 0 0.001

Efx
— EFIELD @
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0.001

0.002

0.002 0.003




Total Azimuth Pattern

Et(6.4) =«/;9(6.0)2+ EK6,4)°

Etx(4) = |Et(6g.4)! cos(4) Ety(¢) = |Et(8g,4)]-sin(¢)

A LT

LR

0.8 /
Ety(#)-2.22°10 16

/
\\ / \

IENERER

-3 -6.4 -48 -32 ~16 —4.441°10 1 16 32 48
Ex(¢)
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THE PYRAMIDAL HORN ANTENNA
MATHCAD SOFTWARE-HORN_PYR.MCD

Pyramidal horn antennas are devices used to provide a transistion from a
rectangular waveguide to an unbounded medium such that the wavefront at

the aperture of the horn has nearly a constant phase at any point in the
mouth of the horn.

Pyramidal horns are the most popular type of feed elements for
reflectors used in satellite tracking, microwave communications, and
radar.

The pyramidal horn applications may be used to analyze E- and H-plane
sectoral horns. To analyze an E-plane sectoral horn set horn dimension
(al) equal to waveguide dimension (a). To analyze an H-plane sectoral
horn set horn dimension (bl) equal to waveguide dimension (b).

(Note: Mathcad equations cannot use symbolic subscripts. Therefore,
symbols like A will immediately follow the parameter in equations in
lieu of subscipts.)

The pyramidal horn antenna Mathcad applications will compute the
following parameters:

k = Wavenumber

i = Wavelength

Dy = Directivity

Eg = Electric Fiela (6) Component
Ey = Electric Field (¢) Component
U = Radiation Intensity

Unax = Maximum Radiation Intensity
Prag = Radiated Power

G = Gain

EIRP = Effective Isotropic Radiated Power
Agm = Maximum Effective Aperture

BW = Bandwidth
Lmin = Minimum Distance to Far-Field

R,y = Radiation Resistance

hem = Maximum Effective Height

Ex,y,z = Electric Field Components in Cartesian Coordinates

03 = Unit Polarization Vector

f. = Transverse Electric and Transverse Magnetic Cutoff Frequencies
tap = Aperture Efficiency

PLF = Polarization Loss Factor

Dp = Pyramidal Horn Corner to Corner Distance

Pe,h = Pyramidal Horn Perpendicular Flare to Mouth Distances

I, = Electric Field Component Equation Coefficients
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The following data must be input based on known or estimated data:

t = Number of Cutoff Frequencies Calculated

m,n = Modes

f = Frequency of Interest

i = Number of Increments for Far Field Radiation Patterns

reg = Distance of Far-Field Calculations

I, = Input Current at Antenna Terminals
Og = Coaltitude (Deflection Angle from +z Axis) for Azimuth Plot
tg = Azimuth Angle for Elevation Plot

(x,y,2) = Coordinates for Unit Polarization Vector
a,b = Rectangular Waveguide Dimensions
aj,b; = Pyramidal Horn Dimensions

P1:P2:PesPh = Pyramidal Horn Imaginary Cone Apex to Mouth Distances
E, = Electric Field Amplitude Constant
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Enter input data here:

f=9310
t =5 {modes)
lo =1
1 =36 (increments) ff =110
(Note: For E-plane sectoral horn analysis
set (al) equal to (a). For H-plane sectoral
horn analysis set (bl) equal to (a))
a =028  (m) 1]
2
al =.1846 (m) ow =|j
V2
01016  (m) L0
pl =.3398
bl =.1455 (m)
p2 =.3198
pe =.3281 (m)
x =10°
ph =.3521 (m)
y =10°
Eo =1 (V/m)
z =10°

(Hz)

(amps)

(meters)

(dimensionless)

(m)

(m)

{m)

(m)

(m)
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Calculate pyramidal horn antenna geometric parameters and define

constants:

c =2.9979 10 (meters/sec)

) =S {meters/cycle)

+=003224 (meters/cycle)

Dp :«/alz+b12 (m)

Dp =0.23505 (m)

\2

=(bl-b) |[Z) - (m)
pe =( )(bl) m

P

pe =0.29759 (m)

N * 1202 ()
€ =—l— 10° (Farads/m)
36
by 40107 (H/m)
2
ph =(al - a) (Q\ 1 (m)
a” 4
ph =0.29771 (m)

Calculate planar spiral antenna parameters

Define angular offset @
from y-z axis:

+10%. 2106

LN T O
2’1 2 2 (radians)
¢ = 10'6,2—:1‘+ 10°.22+10°% (radians)

1

Distance to Far-Field rpip:

m, =1.6-4 (m)

m, =5Dp (m)

m, :2-1?p2 {m)
A

rmin = max(rr) (m)

rmin =3.42774 (m)




Wavenumber k:

2
k Y (m~1)

k =1.94915-107 1)

Cutoff Frequencies f.:

{modes)

(modes)

(H2)

fc =

(Note: The index for both m,n above begins with zero.

o
6.5616810°
1.31234-10"°
1.9685-10'°

2.62467-10'
| 3.28084-10"

1.47638-10'°
1.61563-10"°
1.97533-10"°
2.46063-10'
3.01141-10"°
3.59772-10'°

have m or n equal zero.

2.95276-10'°
3.02478-10'°
3.23125-10"°
3.54877-10"°
3.95065-10"°
4.41392-10"

251

4.42913-10"
4.47748-10'
4.61946°10'
4.84688-10"°
5.14841-10'
5.51191-10"

5.90551-10"°
5.94185+10'
6.04957-10"°
6.22496+10"°
6.46251-10"°
6.75566+10'

7.38189-10"°
7.411-10"

[ |

7.49763+10"
7.63985- 161
7.83462-10'° ‘
807813-10"

TM modes cannot
TEjp mode does not physically exist.)




Electric Field Component Coefficients Iy, I5:

v=0.1 (increments)
w =0.1
(increments)
ral
I (—L -u(e)camé) _ |
16.8) = cosinf) . 2p2 & (dimensionless)
\
51
42
ral
2 2
k( -nn(l_'»x_i).cu!zx) g) _ '
nr = costfn@) e 2p2 i i & (dimensionless)
W I \ 2
a1
v 2
[ oos(k-isin(e)cos(o))
11(8,¢) —m (=a,- n%- 2 5 L11(0,9) {dimensionless)
: ) a . 1
k-—-sin(8)-cos($)| - /—)
[ l( 2 Y2
[ a v = [w 6 ]
uJ cos(k._.sm(f.ﬂ--* 10 ) o5 T2 10 )) i
11 =if al=a,- 12 LU : !
Al T - TR
' <k~-— sm( a-2i10 )cosﬁ 24 107 )) —) I
| 2 2 \i \2 !
{dimensionless)
gl
2 2
J'kpl——ﬁmmﬂﬂ0r% (dimensionless)
28,9 =| e &
B
)
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bl
L2 (‘ W T i j
i gk \;,__l_m\_i,__ ...n‘\__‘z-x/\-; (dimensionless)
. U o
21, =1 e &
Rl
v 2
, b N
] . sin kr—~sm(6)<sm(9)) |

12(0.¢) =iff blmb bl 1 12(0,4) (dimensionless)
| i i

" (k2 sin(0)-sin(4)] |
12 o

L

: ‘ /
: ? sin(kf-sm’f-n- L 10“>-smf3-2-a+ 10‘6>)
2 i 1

; ]
21, =iff bl=b,b — /\‘ 21|
j i \k-fsin(ln_ LI 10'6)~sin Waas 10“)) I
| b2l 2 \3 ]
(dimensionless)
Electric Field Components Egy,E;:
RS
E6(6,9) =j kEo rﬁ_~(sin(¢)~(1+cos(9))-l](9,¢)-12(0,¢)) (v/m)
-
-) kerff ! i \ 1
EBl, , =j kEol ~{sin(:~2-n\~( 1+ cost -n— 1‘]\-.111v St (V/m)
’ 4-nrff V1 / \ ‘\1 2// ) ' J
el v/m)
E¥6.9) =) kEo -(cos($)-(1 + cos(8))-11(6,4)-12(6,4)) (
4 nrff
-J k-rff \ / ! 1
Edl, , =j kEoS -{cos(iz-nnfl *cos<‘f’-n- 3))-111 121 (v/m)
' 4-nrff 1 / \ P2 vewooww
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Radiation Intensity U(9):

U(e.») ='—ﬂ2—'5.(!Ee(e,¢>l)’+(ll~:«e,¢)!)2j
Zn,

o, = e ) ([0, 1)
2‘7]0:'\l Wi

Umax =max(Ul)

Radiated Power P, 4%

r2-n [3

2

Prad = ‘ i U(0,4)sin(0) d0 dé
0 40

Prad =3.39938:10

Directivity Dg:

:4qunmx
Prad

Do

Do = 1.47304-10?

Radiation Resistance R,:

2-Prad
(o] ?

Rr =

Rr =6.79875:10 °
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(W/solid angle)

(W/sclia angle)

(W/solid angle)

(W)

(W)

{dimensionless)

(dimensionless)

(Q)

Q)




Gain G:

G =.5Do

G =73.65177

GdB = 10-log(G)

GdB =18.67183

Effective Isotropic Radiated Power EIRP:

EIRP =Prad Do

EIRP =5.0074°10 °

Antenna Unit Polarization Vector g, :

22,
p - atan| VX Y (radians) [ =atan(z)
Vo2 ,’ X
6p =0.95532 (radians) 4p =0.7854

Ex =E6(6p,4p)-cos(8p)-cos(4p) - EK %p.4p)-sin(ép)

Ev =E8(0p,¢p)-cos(8p)-sin(4p) + E4(6p,4p)-cos(4p)
Ez =-E(6p.¢p)-sin(fp)

f"Ex\
0a =— 1 ’.E-‘"}

JOExD)? + (1By))? + (JE2)? \Ezy

[~0.18825 + 0.09603; |
/

oa = 0.70255 - 0.35837]
1-0.5143 + 0.26235

(dimensionless)

(dimensionless)

{dB)

(dB)

(W)

(W)

{radians)

(radians)

(V/m)

(V/m)

(V/m)

{dimensionless)

(dimensionless)




Polarization Loss Factor PLF:

PLF = (\ow;él)z

PLF =0.33333

Maximum Effective Aperture A n:

_4’Do.S-PLF
4:n

Aem

Aem =203011+10°

Maximum Effective Height h.pn:

hem = 3.82683-10 °

Aperture Efficiency g;n:

ap.

cap::Aem
al-bl
tap =0.07558
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(dimensiqnless)

(m2)

(m2)

(m)

(m)

{dimensionless)

(dimensionless’




TEE PYRAMIDAL HORN ANTENNA FAR-FIELD ELEVATION PATTERNS

For the purpose of these far-field radiation patterns, the pyramidal
horn antenna central axis is parallel to the Ey = 0 grid line and the
perimeter of the mouth of the horn is parallel to the Ex = 0 qrid line.
Electric field components in the half space behind the horn's aperture
are assumed to be zero.

Theta Component of Elevation Pattern

g =0 (radians)

E6x(8) = |E6(8,g)| cos(8) Eoy(8) = |E8(0,¢g)| sin(0)

08

0.6

04

0.2

EOv(9) -5.551°10 17

-1 -0.8 06 04 0.2 -s5.551410 1 02 0.4 0.6 08 1
Efx( 0)
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Phi Component of Elevation Pattern

E4x(8) = |EN(8,48)]| cos(0)

0.001

E4y(8) = |EK0,4g)] sin(B)

AN

I -

R‘__qa

Eby(0) 1.626°10 17

/
/
/
| /
0 /
|
\\
it
0
\
T
1
\
0 \
. /
AN /
—0.001 N
N 7
\ /
N
_°'°°lo 0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.005 0.005  0.006
Edx( 0)

— EFIELD
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Total Elevation Pattern

EL(0.4) :Jwe.¢)’+ ENO,4)°

Ex(8) = (|Et(8,48)| ) cos(8) Ety(8) =(|Et(0,4g)| ) sin(8)

0.001

N\

Ety(6) 1.626°10 19

0 0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.008

Etx(0)
— EFIELD
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THE PYRAMIDAL HORN ANTENNA FAR-FIELD AZINUTH PATTERNS

For the purpose of these far-field radiation patterns, the pyramidal
horn central axis is perpendicular to the Ey = 0 and Ex = 0 grid lines.

Theta Component of Azimuth Pattern

0g - — (Note: Og must be less than a/2 radians)

E6x(4) = |E0(0g,9)| cos(¢) Edy(4) = |EB(8g,¢)| sin(4)

0.001 D

0.001

Ey(#) ~1.084°10 17

i

</ \\

\

\
~0.001

/
—0.001 ’
\\ /
~0.002
-0.002
-0001 0 0 0 0 -27110 & o 0 0 o 0001

Ex(¢)
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Phi Component of Azimuth Pattern

E4x(¢) = [E4(68.4)! cos(4) E4y(¢) = 'E&6g.4) sin(¢)

0.001

Eev(0) -2.711°10 20

\
0 . ;
\ |
\ :
\ |
1
0 1
\ / |
\ \
\\\ !,/ \.
0 ‘ \ r! \\

\ \
0 . / &

\\ \)/ \ \//

1 —
~0.002 —0.002 —0.001  -0.001 0 -l08¢10 0 o

Eex(¢
— EFIELD )
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Total Azimuth Pattern

E1(6.4) =~/Ee(o,¢)’+ EKO,8)°

Ex(¢) = |Et(6g,4)| cos(¢)

0.001

0.001

Ety(¢) ~1.084°10

—0.001

~0.002

19

Ety(¢) = |Et(8g.)| sin(¢)

b

/N

—0.002'

—0.002 —0.002

— EFIELD

—0.001 =0.001 0
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-1.084°10 7
Ex(4)
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0.001

0.001
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