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AN ANALYSIS OF POOL SURFACE DEFORMATION
DUE TO A PLUNGING LIQUID JET

F. Bonetto
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Center for Multiphase Research
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ABSTRACT

When a liquid jet impacts a pool containing the same liquid and surrounded
by a still gas, a surface depression is produced. The surface shape is determined by
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the Weber number, We and the Bond number, Bo - In this

work the shape of the surface is obtained as a function of the Weber number and
Bond number by using a non-singular perturbation technique.

INTRODUCTION

The entrainment of non-condensible gases by a plunging liquid jet impacting

a liquid pool is important for some practical problems. For example, the absorption

of greenhouse gases into the ocean has been hypothesized to be highly dependent

upon the air carryunder that occurs during breaking waves, which represent a type

of plunging liquid jet [Monahan, 1991; Kerman, 1984]. Other applications include

some type of liquid/gas chemical reactors. In order to enhance the reaction rate, a jet

of liquid entrains the surrounding gas reactant forming a bubbly two-phase jet. The

reaction rate is enhanced because of the increase of the interfacial area density and

the pseudo-turbulence produced by the entrained gas bubbles. "7

Other less obvious applications are associated with the dynamics of the slug

flow regime in two-phase flow. For example, in vertical slug flow, the Taylor

bubbles move upward with an almost constant velocity. The liquid film
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surrounding the Taylor bubbles drains downward forming an annular liquid jet.

Therefore, a gas entrainment problem, similar to the one studied in this work,

occurs behind the Taylor bubbles. In particular, a Kelvin-Helmholtz instability

occurs at the interface in the rear portion of the Taylor bubble such that small gas

bubbles are entrained into the liquid plug behind the Taylor bubble.

DISCUSSION

Most prior theoretical studies were done for liquid jets with very low liquid

velocities, and had applications for fiber coating, etc. Lezzi & Prosperetti [1991]

performed a stability analysis of the gas entrained by a plunging liquid jet by

assuming the liquid jet and the pool to be inviscid liquids and the gas to be viscous.

They did not analyze the surface depression.

Bonetto, et al [1993] analyzed an inclined plunging liquid jet. They assumed

that both the gas and the liquid were Ainviscid and they obtained the entrained gas

flow rate. The volumetric flow rate of entrained gas is one of the most important

quantities which one wants to compute in problems of this type. The key parameter

in such evaluations is the gas gap thickness (ie, the shape of the induced surface

depression).

The objective of this work was to evaluate the induced surface depression

caused by a plane plunging liquid jet. We have assumed that both fluids are

inviscid and irrotational, and that the gas region is at constant pressure. Hence the

appropriate equation for this problem is Laplace's equation for the liquid and the

associated interfacial jump condition. The problem may be described by two
1 2

parameters, the Weber number, We - 2 , and the Bond number, Bo = x 0

where x0 is the half-width of the plunging liquid jet, Vj is the velocity of the liquid
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jet, pi is the density of the liquid, g is the gravitational acceleration, and F is the

surface tension.

We ,,ave used a nonsingular perturbation technique to solve the problem.

That is, we have expanded the solutions for relatively small We number, and

substitute these expressions into Laplace's equation and the interfacial jump

condition. Equating terms of the same order in We, one obtains a recursive system

of equations, which we have solved numerically up to third order.

ASYMPTOTIC EXPANSION

The purpose of this section is to compute the position of the interface,

=-•(Z) (shown schematically in Figure-I).

For the assumption of irrotational, inviscid flow the governing equations for

the liquid field are,

V2 = 0(1)

where Vj is the stream function. The two velocity components are then given as,

u1 (2)

• =- -J (3)

where Gi and, are the velocity components along the , and 9 axis, respectively. If

we prescribe a value of i, or its derivative normal to the surface, -, for every point

on the boundary, we have a well-posed problem. As shown in Fig.-2, the planez = 0

is a symmetry plane. Then the transverse lateral velocity, ii must vanish for every

•, at , = 0. That is, from Eq. (2)
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=0) = - = 0 (4)

on the centerline of the plunging liquid jet. We know that the axial velocity must

be Ve at points where the jet is impacting. From Fig-i and Eq. (3), we see that:

€€ (0 < > < Xo, = 0) (0 < ý < xoY = 0) = V (5)

For Z > xo, the free surface position, i(>Z), must be coincident with a streamline.

Without loss of generality, we make the free surface coincident with the streamline

= 0. Then,

4(-()) = 0 (6)

We assume that the pressure in the gas region is constant and equal to zero. The

liquid pressure right under the surface is related to the curvature of the surface by:

d 2ý

ri •2{/2 Pe (ý ) (7)

Bernoulli's equation for the liquid pressure gives

- p p (X)) = + 2 Pe [i 2(>2,il (i)) + 2(Zf (x))J + Pi gtj(x) (8)

Far from the jet, we impose the boundary conditions:

iý -,' - J- ,) = 0 (9a)

•d(2 - )= 0 (9b)
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We may make Eqs. (M)-(9) nondimensional, using xo as the length scale and, Vi as

the velocity scale, respectively. Thus we have:

v2Y = 0 (10)

with boundary conditions,

(x = 0, y) = 0 (la)
(y

Y (x, y---o) = 0 (1lb)

V (x-->c,y) = 0(11 -,

y K y=0) =+ 1 0 < x < 1 (11d)ax

Yj(x,rl (x)) = 0 < x (le)

where,

x =x/xo , y =y/x 0  Ti =T/xo

u=i/V1 , v=ý/Ve and y-x*

The velocity components may now be computed from the stream function using

Eqs. (2) and (3) as,

u(x,y) = (x,v) (12)

v(x,y) = ay (x,y) (13)

The interfacial jump condition becomes
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d2rT/dx2  = 2 i J [u 2 (x,rl(x)) + v2(x,rl(x))I + Pe f N (14)

+ (dT)j

Notice that the two multidimensional parameters are the Weber number,
2

1 VXO P 0 g Xo
We = 2 Pf , and the Bond number, B - o ,which appear in the boundary

condition, Eq. (14),

In order to solve the problem analytically we would have to obtain a solution

of Laplace's equation, Eq. (10), that satisfies the boundary conditions, Eq. (11), where

the free surface depression, rI(x), comes from Eq. (14). We note that the solution of

Eq. (14) is linked to the solution of W through u and v; thus the problem is

nonlinear.

We shall solve the problem for small We using a perturbation analysis. First,

we may expand all the dependent variables in terms of We obtaining:

n

T)(x) = I Wei rli(x) + O(Wen+1) (15a)
i=1

n

i•(x,y) = Z We'i Wii(x,y) + O(Wen+1 ) (15b)
i=O

Next we substitute Eq. (15b) into Eq. (10) to obtain,

V2Wi = V 2Wo + WeV 2 W + We V 2 + 0 (16)

Equation (16) holds for all We, and thus all xdi must independently satisfy Laplace

equations:

V2xWo = 0 (17a)
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V2wVI = 0 (17b)

V22 = 0 (17c)

Using the same reasoning, it is easy to show that all the homogeneous boundary

conditions, Eqs. (Ila) - (11c), lead to:

3¥vi
(x=0,y) =0 (i 0) (18)

Wi(xy--)oo) = 0 (i G 0) (19)

Wji(x--oo,y) = 0 (i > 0) (20)

Let us next expand the boundary condition in Eq. (IId):

(xy=0)+We ) (x,y=0) + We2 a (x,y=O) + ... +1 (21)

Obviously the zeroth order term must be equal to +1 and all other terms must be

zero. Thus,

x (x,y=0) = + 1 (22)

and

i (x,y=0) = 0 i Ž 1 (23)ax

The boundary condition in Eq. (1le), and the interfacial jump condition, Eq. (14),

require special attention. Using Eq. (15b), Eq. (Ile) can be rewritten as:

0 = V(x,rl (x)) = xVo (x,i(x)) + We xV,(x,Tl(x)) + We 2W2(x,fl(x)) + ... (24)
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Performing an expansion of Viin terms of We in the neighborhood of rl = 0, we

obtain:

ag 1 a2o 2
0 = YO (x,O) + 7 (x,0) r(x) + 2 y (x,0) Il2(x) +...

+WeLj (x,0) + (x,0) tJ(x 2 y 2 (25)

Substituting Eqs. (15a) and (12) into Eq. (25), and rearranging (ie, collecting terms of

order We ), we obtain:

0 = wjo (x,0) + [U0 (X,0) Ill(X) + WVl (x,0)] We

" We 2 (T1 1 + uOTb + 21 a 2 x, + O(We3 )

3 1 Ul 2 + uo 0 3 XO"+ we3 UT12 + 2 ---Y- +1 u2T1 + UoTl3 + +-,l2 6Il + 3(x0)

"+ O(We 4) ... (26)

Thus, the boundary conditions for x > 1 are,

Wo(X,0) = 0 (27a)

Yl(x,0) = - Uo0 r1  (27b)

22 (x,O) = - Uli 1 + + I---O 2) (27c)

1 aul 2 au 0 a2_Uo 3_
S3(x,0) = -UoT13 + UliT2 + u 2i1 + -2 --jy--j Il + ---- 11112 -r 6 ay2 TIl (27d)
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Notice that Wi has homogeneous boundary conditions for i > 1, except for x _? 1,

where its value is given by Eqs. (27). This set of equations is the result of the

asymptotic expansion of Eq. ( le). In order to obtain a closed set of equations, let us

focus our attention on Eq. (14), the interfacial jump condition. We first expand the

left hand side of Eq. (14) and then the right hiand side.

The left hand side of Eq. (14) can be expanded as:

2 2d-2 li(x) We' +O(Wen+l)

d2rl/dx2  dx i=o

+I + wi(x) We e

i=O

d2 % d2 o dq, 2 3 d2 T,1 (dr1  d-2 3
=-- + -- We+-2 We + We3 + 2

dx2 dx2 dx-[ dx --I-j- 2 x2  dx2

4  d')( l dT1d drTn- 3 d2"T2 (d, 1 I2 dqr45

+dx2 e d dx2 .-2 dx2 + O(We 5 ) (28)

Similarly, the right hand side of Eq. (14) can be expanded as,

We[u 2 (x,rn(x)) + v 2 (x,Tl(x))] =

aF 0 1 02U
We uo(X, 0) + (x, 0) rl(x) + 2 2 (xO) ""(x) +

au. a o2 U u 12
+ 0x,)(x2()O).

+We(u (x,O) + -y-(x,O) rl(x) + 2 3y2 "1 "

F 3vo 1~ 2v

+ Vo(x,0) + a (x,0) rl(x) + I 2o (x,0) ri2(x) +
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+WK(x,0) v x V (x,O) Tl(x) + 2 ;y2 (x,0) T()+ (29)

Using Eq. (15a) -we obtain:

Welu2 (,XT(X)) + ,,2 (X,Tl())

=we I[u (x,0) + a 0(x,0) (ry+We Th +We T2 TI +.. +.

"+ We KII(x/0) + 0 l1(x,0) Ol+ We T1I+ We 2 i + ..) + . j ] 2b

Fi aa l0

" X )+ (u2O 2 X) +We rJI e I-

"(W2 v(xO + v2 )xO)(T We =l + We2uy Th U) + V) (29b))

La ', T-il 5-- '1 +Dv 2 V2 I__

"[2V u%, 1 @2 vi 1 v2___o a D2 1V0  1 a__ 3 v0T
-- y l2+I--)T j-T TI 3b++- J -6 av~

au 2u Ll. au a 2 +
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iFL•-n ~u 1 yn + ynu _ + r 2 .1y2 - "3

Comparing the expression for the right hand side of Eq. (28) with the right hand side

of Eq. (30a) we obtain:

B - Br0 (31a)
dx~

-,+ (uo + v)+Bo (31b)
d x-0 C) 01

2u + , 1+uI+2vo-y 1+vl+Bob (31c)

The boundary conditions for these ordinary differential equations are:

Tl. (x-*o) 0 (32a)

drI1
d- (x--)o) = 0 (32b)d X

Equations (27) and (31) are the expanded forms of Eqs. (Ile) and (14), respectively.

Equations (17), (18), (19), (20), (22) and (23) complete the set of equations to be solved.

ORDER ZERO SOLUTION

In the previous section we have established an infinite set of coupled

equations for rli(x). In this section we will solve the order zero equation analytically

(i.e., for the functions ryo, Wo, U0 , vo). The equation for ryo is Eq. (31a),

d-2 1

dx2 = +B 0 0

with the boundary conditions
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Tlo(x--*o,) = 0 (33a)

(x-'o,) = 0 (33b)dix

The solution is

110(x) = 0 (34)

The differential equation for xVo is Eq. (17a),

V 2 o = 0

and the corresponding boundary conditions, Eqs. (18), (19), (20), (22) and (23), are:

x•o(X-4-oo,y) = 0 (35a)

wo(X,.V-oo• = 0 (35b)

'V° (x=0,y) = 0 (35c)
0_y

° (x,v=)= +1 0 < x <1 (35d)ax

y=0) = 0 x > 1 (35e)

It is convenient to use complex variables to solve this two-dimensional problem.

Let c) be a nondimensional complex analytic function given by,

(D(z) = O(x,y) + i Xy(x,y) (36)

where, z = x + i y, and 0, V are the real and imaginary parts of (D(z), respectively.

The function 4D(z) is the complex potential, 0 is the velocity potential function and
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xV is the corresponding steam function. The velocity components of u, v are given

by,

u = a z (37a)

uay x (37b)

and,

dz = u - i v 
(38)

We recall the boundary conditions (35d&e),

axv° (x,0) = 
(39)ax 0 X>lI

A function of x and y that satisfies these boundary conditions is:

-xatg - atg (40)

This expression is the imaginary part of the following analytic function

dz =1 [log (z-1) -log (z+1)] (41)dz -7r

We may use Eq. (38) to calculate the velocity components

1= Re(c) = I (log [y2 + (xl)2] _ log [y2 + (x+1)2]) (42)

,vo = -Im (0) =• Iatg Yx -aCtg (--) (43)

7Ey
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Table-I shows the velocity of the zeroth order solution as well as the derivatives

needed for solving Eqs. (27) and (31). We now have the solution of the problem to

order zero.

In order to solve the problem to order-n, we must:

(1) Compute uo (x,y=O) and vo(x,y=O) using Eqs. (42) and (43).

(2) Solve l, (x) from (31b), (32a), (32b) with ri0 (x,O), vo(x,O) from Eqs. (42) and (43).

(3) Compute N11(x,O) from Eq. (27b) for x > 1 using rp1 (x), uo(x,O), vo(x,O).

(4) Solve V2i 1 = 0 using W,(x,0) to obtain xpl(x,y).

(5) Compute ul(x,O) = (x,0), V1 (xO) - A (x,0).

(6) Evaluate d-x2 using Eq. (31c).

(7) Compute W2(x,0) from Eq. (27c) for x > 1, using TIP T12, uo, vo, u1 , V1 .

(8) Solve V2 Y2 = 0 using Y2(x,O).

RESULTS

Figure-3 shows the analytical results for the zeroth velocities vouo as a

function of the lateral position x for different axial positions y. We note that, as

expected, the jet is spreading as we move downward. Moreover, the singular point

at x = 1 in the lateral velocity is clearly visible in Fig-3(a).

The problem consideed so far is spatially unbounded (x- > -,y-> >,).

However, in order to perform the numerical integration of Eqs. (17) and Eqs. (31) we

need finite boundaries. Thus, we have taken the integration domain for 0 < x < D, 0

< y < D. In the computations D was chosen large enough to have the velocities at
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the boundaries reduced to 1% of the maximum value Ve. The corresponding

physical problem is a jet of width h impacting a pool of width 2D of the same liquid.

For convenience the jet contact angle was 7c/2, and r1 is measured from the contact

line position. That is,

Tl(x=D) = 0 (44a)

dx ((x=D) = 0 (44b)

What follows is a detailed description of Steps (1) - (8) from the previous

section.

Step (1): From Eqs. (42) - (43) uo(x,y=0) must be,

I (x-1)
Uo(X,y=O) = 7 log (x+l) (45)

and, vo(X,y=0) = 0.

Step (2): Equation (31b) results in the following ordinary differential equation,

,,2 2 1 ,(x-1)
So-Bl =- (uo 0 + RV)= - • log') (x> ) (46)

for the interval 1 < x < D with the boundary conditions,

rTI(x=D) = 0 (47a)

d(x=D) = 0 
(47b)

Equation (46) has an integrable singular point at which x=1. We have numerically

evaluated Eq, (46) using a Runge-Kutta (RK) algorithm with adaptive stepsize.

Figure-4(a) shows rl1 as a function of x.
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Since Eq. (46) has a singular point at x=1 we have performed an asymptotic

analysis of x near x=1 to verify the numerical result. Let us consider the solution of

Eq. (46) in the neighborhood of x=1. An asymptotic expansion of the right hand side

of Eq. (46) yields,

1 2(x-1) 1 l~2 (x-l)
- n- g2 (xlo ------ ') -log 2 (48)

The solution which is valid asymptotically close to x=1 is,

r¶j(x) = C1 e'-B X + C2 e-< O X

+e O x f log2 t-1) e-'•o t dt
1

xe-0  f log2(t1)e° Btdt (49)

The main contribution for the integrals on the right hand side of Eq. (49) comes

from small values of (t-1). Thus we can expand the exponentials as,

e ±B 0-t = e±ý-B e+-Bo (t-) = e+± +B (I- ± Q) + (7((t-1)2)) (50)

With this analysis we have shown that the singularity at x=l is an integrable

one. The results of the asymptotic expansion are shown in Fig. 4 as a line which

essentially coincides with the numerical result. Indeed, the difference between the

RK solver and the asymptotic expansion result is smaller than 10-4;,(,.

Step (3): WI(x,y=O) is computed using Eq. (27b).

w1 (x,y=0) = - uo(X,y=0) r1I(x) (51)



17

The resulting boundary condition for xV, is shown in Fig. 5(a). Notice that Y, has a

singularity in x=1 due to uo.

Step (4): The Laplace equation for 4f, has to be solved with the boundary conditions

(BC) given in Eqs. (18)-(23). We numerically solved the Laplace equation using a

five points finite difference scheme. A nine points scheme was also implemented

into no noticeable improvement over the five point scheme. The velocities u1, v1

were computed using a differentiating centered first order. The region near x = 1

was highly refined because the boundary condition V, is singular there (- log (x21)

We have verified the resulting W, using an asymptotic expansion of Eq. (52):

nl(X=l) asyrn,,
Y1 (xO) = - U0o11 -r -j log(x-l) = V, (xor , (I < x < D)

asym.

Y1 (x'O) = 0 = XV, (x,0) , (0 < x < 1) (53)

An analytic continuation of Eq. (53) gives,

asvm Tll(X-1) [3 i]

Yw ' (Z) -- ) [ log (z-1) - - log [i(z-1)] log(z-l) (54)

The real part of Eq. (54) is a solution of the Laplace equation and has the same

asymptotic behavior at w. near x=1.

Notie tat lthogh 1(x0) . asym

Notice that although xVl(X,0) = ,as (x,0), Wi becomes significantly different than
asym

' 1  as we move away from the singularity, the results near x=1 are almost

coincident. We have taken advantage of the linearity of the Laplace equation

solving numerically for the difference between ig, and ,asym. That is, we define

diff asym
V I (x,y) = I(X,y) - Y, , m (x,y) (55)
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diff
Notice that xdi (x=l,y=O) = 0 and therefore the singularity at x=1 has been removed.

diff
The boundary conditions for xVi are:

diff asym
V 1  (x,O) = W1 (xO) - Y1'i (x,0) (56a)

diff

x (x,O) = 0 (56b)

diff asym
W1  (x,y=0) =-V,1  (x,D) (56c)

diff asym
'Vi (x=Dy) = - i/ 5  (D,y) (56d)

diff
4f1 (x=0,y) = 0 (56e)

Wl(x,y) was numerically evaluated using the Laplacian solver with Eqs. (56). We

note that these BCs have no singularities. Finally, the stream function and the

velocities are computed using

diff +asym
XV(xy) = W1  (x,Y) + I1  (x,y) (57a)

diff asym
ul(xy) = ud (x,y) + u, (x,y) (57b)

difasvm.
V(xV,y) = vdff(x,y) + vI " (x,y) (57c)

The maximum difference between Nfl, U,, v1 computed usign Eqs. (56) and (57), and

by the Laplacian solver applied to Eq. (52), was less than 2% for the stream function

and less than 5% for the velocities.

Step (5): ul and vI were computed from the stream function x1. Figure 6 and 7

show both velocity iterates as a function of the position.
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Step (6): We calculated T12 from Eq. (31c) using the RK solver. We verified the

solution in the neighborhood of x=1 as described previously. The result is shown in

Fig. 4. We see that the x interval, where rv2 is significantly different than zero, is

smaller than the range where r11 was significantly different than zero. This is a

general result of our calculations. The higher the order of the iterate, the smaller

the range where the values of the iterate are significantly different from zero.

Step (7): We compute W2(x,O) using Eq. (31c). The result is shown in Fig. 5.

Step (8): We numerically solved for W2 (x,O) using the Laplacian solver. We verified

the numerical result as described for x1' Notice that we had to keep track of three

singularities in Eq. (27c). That is,

X9 (XO) = - IUril + 2)+ -•y 2

_asym
asym asym 1 2 __uo_

asyrn asvm asym
WV21 + V22" + t23 (58)

then we obtained,
asym asym asym asym..

'V12 (z) = 'l'22 (z) +u122 (z) + 212 3  (z) (59)

The stream functions !1121, 'V22, 'v23 were obtained with the help of a symbolic

manipulator an because of their complexity the results will not be presented herein.
di ffAs before, 'v2  is defined as,

diff asym (60)

'42 1 -V2 2' +V2

Th 2 vli 2 iet + 42 are s in Fgmanipulaoit antecauses of theire shompleity thes reut6&7.otb reetdeen
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Step (9): The third order iterates T13, XV3, u3, v3 were computed following a similar

procedure. The results are shown in Figs. (4)-(7). We see that significant values of

the third order iterates are restricted to a smaller range than the second order

iterates.

Figure 8 shows the position of the interface rl as a function of the lateral

position x for values of the Weber number in the range [0.1 to 0.8]. We now analyze

the behavior of the "q(x) as we move from the rightmost position in the plot (x=1.1)

to lower values of x. For We = 0.01, rl(x) increases as x approaches the jet impact

point x = 1 without any local minimum (ie, no surface depression is preseit). For

We = 0.8, on the other hand, as x is decreased, we first have a local minimum in TI,
max nn

(TI ), and then a local minimum (T, nin, depression is present). We define the

depth of the depression, d, as:

max mai
d = rm - ri (61)

Figure 9 shows the depth of the depression d as a function of the Weber number.

There is no depression (d=0) up to a critical Weber number (Wed). For We larger

than the critical value, the depth of the depression increases rapidly with the We.

The depression width 8 is defined as the gas gap corresponding to a

depression of d/2. Figure 10 shows the depression width 8 as a function of the We

number. We see that for high We numbers 5 levels off to a value of about 0.013.

Finally, we present a set of results where the effect of gravity has been

investigated. In Figs. 11-17 the Bond number is equal to Bo = 1. The interface

position iterates, li(Bo = 1), have the same qualitative shape compared to qi(Bo = 0).

However, the magnitude of the iterates is larger in the case with Bo = 1. The same is

true for the stream function and velocities iterates. This effect is a direct

consequence of the larger values of the ri. Notice that uo has the same value in the
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Bo = 0 and Bo= 1 calculations. Thus, if I r71 (Bo = 1) 1 is greater than I r11(Bo = 0) 1 the

same relationship will hold between I iVI1(Bo = 1) 1 and I N11(Bo = 0) 1.

Figure 15 shows the position of the interface as a function of the lateral

position for different We number. The most noticeable effect of the gravity is to

flatten the interface.

Figure 16 shows the depth of the depression (d) as a function of the We

number for Bo = 1. The interface has a larger depression for Bo = 1 than Bo = 0.

Figure 17 shows the width of the depression as a function of the We number for Bo

= 1. Surprisingly, even though the shape of the interfaces are different than the Bo =

0 the width is nearly equal.

SUMMARY AND CONCLUSIONS

This paper presents the results of an analysis based on a nonsingular

perturbative technique for the surface depression produced by a plunging liquid jet.

The first three terms of a Taylor series expansion in the Weber number have been

obtained for the surface depression. This approximation of the surface depression

gives correct values for small and moderate Weber numbers (ie, We < 1). However,

for We greater than unity, higher order terms become imporfant and the analysis

presented here is no longer valid. The Bond number appears as a parameter in the

system of equations. No expansion is necessary for the Bond number. The analysis

presented here is valid for all Bo numbers.

The results described in this paper show that as the Weber number is

increased, the terms that gain importance (i.e., the terms of higher order) correspond

to a surface depression that is increasingly narrower in the horizontal direction. For

a Weber number of the order of unity the surface tension is no longer strong

enough to keep the system stable and an instability leads to air entrainment. That is,

for values of the surface tension going to infinity (i.e., Weber number going to zero),



22

the slope of the surface is very small, however, as the Weber number is increased

the slope also increases. For a critical value of the Weber number, the slope of the

surface is such that the surface tension is not large enough to keep the pool surface

from getting near the plunging liquid jet and thus air entrainment is produced. We

have assumed in this paper that the positicn of the interface can be written as rl(x),

that is a steady state exists where the position of the interface is a single-valued

function of the lateral position. For the critical value of the Weber number that

corresponds to the threshold for air entrainment the interface is not a single-valued

and also it is likely the air entrainment process involves a transient phenomena.

Thus we believe that our analysis is not appropriate to compute the threshold value

of the Weber number for air entrainment. However, we are able to describe the

route to air entrainment qualitatevily. We have seen that the higher the order of

the position of the interface iterate, the larger the maximum slope of the iterate. For

small We numbers the low order iterates dominate. As the We number is increased,

the slope of the interface is increased because higher order terms dominate. For a

value of We the interface has a very large slope (tangent of the interface almost

vertical). For a We>Wet the inertia forces overpower the capillary forces and the

interface is not stable any more.

The results presented in this paper cannot predict the route to instability that

produces air entrainment for two reasons. First, it is not clear that the

approximation of the surface depression is valid for Weber numbers that are high

enough to produce air entrainment. Second, the shape of the surface, 1l(x), has to be

a monovalued function of x and it appears that at the point where air entrainment

is produced, for every x (horizontal position) there is more than one "J (vertical

position of the surface depression).
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It appears that it would be useful to compute the surface position using an

appropriate multidimensional Computational Fluid Dynamics (CFD) tool having

surface tracking capability. This will allow the relaxation of the small and moderate

Weber numbers assumption.
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TABLE-I

SUMMARY OF THE ORDER-ZERO SOLUTIONS

1 x-l

v0 (x,0) -lo0

vo(x,O) =0

ayo(x,O) =0
ay-

(x,0(x 0)

a&V0  4(x2 +)

ayý-(x,0) 0

u (x,y) = log

I x+1 x-l1
v0 (x,y) =jatg -, - )t
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FIGURE CAPTIONS

Figure 1 Illustration of the surface depression produced by a plunging

liquid jet.

Figure 2 Boundary conditions for the stream function

Xc= y•• xo vIv

symmetry plane

Figure 3(a) Solution of the transverse velocity of
order zero for different axial positions: (a) y=O (undisturbed
pool surface level), (b) y=0.5, (c)y=L., and (d) y=2.

(a) (b) (c) (d) x

Figure 3(b) Solution of the axial velocity of order
zero for different axial positions: (a) y=O (undisturbed pool
surface level), (b) y=0.5, (c)y=1., and (d) y=2.

(a) (b) (c) (d) x

Figure 4 Iterates of the surface position, Thi(x), corresponding to Bo=O

111

T12
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113

Figure 5 Iterates of the surface stream function, yi(x,y=O),
corresponding to Bo=O

'If1

'42

Y3

x

Figure 6 Iterates of the lateral velocity, ui(x,y=O), corresponding to
Bo=O

U I
u 2

u3

x

Figure 7 Iterates of the axial velocity, vi(x,y=O), corresponding to Bo=O

vI

v2



27

v3

x

Figure 8 Shape of the interface for different Weber numbers(Bo=0)

11 x We = 0.1 We = 0.8

Figure 9 Gas gap depth d as a function of the Weber number (Bo=O).

Figure 13 Definition of the gas gap width, 8

Liquid
Jet

Figure 10 Gas gap width 8 as a function of the Weber number (Bo=0)

6 We

Figure 11 Iterates of the surface position, Tli(x), corresponding to Bo=l

1111

1n2

113

x

Figure 12 Iterates of the surface stream function, yi(x,y=0),

corresponding to Bo=l

'V1
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V2

'Y3

x

Figure 13 Iterates of the lateral velocity, ui(x,y=O), corresponding to
Bo=1

u11

u 2

u3

x

Figure 14 Iterates of the axial velocity, vi(x,y=O), corresponding to Bo=1

v1

v2

v3

x

Figure 15 Shape of the interface for different Weber numbers(Bo=1)

71 x We = 0.1 We = 0.8
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Figure 16 Gas gap depth d as a function of the Weber number (Bo=l).

Figure 17 Gas gap width 8 as a function of the Weber number (Bo=l)

6 We

I



Ue

PC

x X 0

Figure 1 Illustration of the surface depression produced by a plunging

liquid jEý.
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Figure 9 Gas gap depth d as a function of the Weber number (Bo=O).
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Figure 10 Gas gap width 8 as afunction of the Weber number (Bo=0)
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