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Abstract

We present a mutual exclusion algorithm that performs well both with and without contention, on
machines with no atomic instructions other than read and write. The algorithm capitalizes on the ability
of memory systems to read and write at both full- and half-word granularities. It depends on predictable
processor execution rates, but requires no bound on the length of critical sections, performs only 0(n)
total references to shared memory when arbitrating among conflicting requests (rather than 0(n ' ) in the
general version of Lamport's fast mutual exclusion algorithm), and performs only 2 reads and 4 writes
(a new lower bound) in the absence of contention. We provide a correctness proof.

We also investigate the utility of exponential backoff in fast mutual exclusion, with experimental
results on the Silicon Graphics Iris multiprocessor and on a larger, simulated machine. With backoff in
place, we find that Lamport's -algorithm, our new algorithm, and a recent algorithm duc to Alur and
Taubenfeld all work extremely well, outperforming the native hardware locks of the Silicon Graphics
machine, even with heavy contention.

1 Introduction

Many researchers have addressed the problem of n-process mutual exclusion under a shared-memory pro-
gramming model in which reads and writes are the only atomic operations. Early solutions to the problem
entail a lock acquisition/release protocol in which each process that wishes to execute the critical section
makes fP(n) references to shared memory, where n is the total number of processes [3, 7].

On the assumption that contention is relatively rare, Lamport. in 1987 suggested two mutual exclusion
algorithms [4] in which a process performs only a constant number of shared memory references in its
acquisition/release protocol, so long as no other process attempts to do so simultaneously. The first algorithm
requires a bound on the length of a critical section (which is not always possible), and a bound on the relative
rates of process execution. The second algorithm performs f(n 2) total references to shared memory (f1(n)
in each process) when attempting to arbitrate among n concurrent lock acquisition attempts (see section 2).

We have developed an algorithm that retains the 0(1) bound of Lamport's algorithms in the absence of
contention, while arranging to elect a winner after only 0(n) shared memory references in the presence of
contention. Like Lamport's first algorithm, the new algorithm requires a bound on relative rates of process
execution; it does not. however require a bound on the length of a critical section.

Several researchers have recently presented algorithms with similar characteristics. These are summarized
in table 1. The first column of the table indicates the number of references a process makes to shared memory

*This work was supported in part by NSF Institutional Infrastructure award number CDA-8822724, NSF grant number
CCR-0005633, and ONR research contract number N00014-92-J-1801 (in conjunction with the ARPA Research in Information
Science and Technologpv-I-igh Performance Computing, Software Science and Technology program. ARPA Order No. 8930).



shared memory references needs
Algorithm to choose winner speed comments

no contention contention bound?

Lamport 1 [4] 2 reads, 0(n) yes requires bound on
3 writes critical section length

Lamport 2 [4] 2 reads, Q(n2 ) no
5 writes

Styer [8] 3 reads, Qq(n2//) no I can be chosen anywhere
(4 + 1) writes in (O(1),0(logn))

Yang and O(logn) 0(logn) no starvation free
Anderson 1 [10] no remote spins
Yang and - 6 reads, 0(n) no starvation free
Anderson 2 [10] 9"writesa [O(Iogn) "typical"] no remote spins
Alur and 3 reads, 0(n) yes
Taubenfeld [1] 5 writes

new 2 reads, 0(n) yes requires multi-grain
4 writes atomic reads and writes

Table 1: Comparative characteristics of fast mutual exclusion algorithms.

"With appropriate assignment of variables to local memory locations, 5 of the 9 writes need not traverse the
processor-memory interconnection network.

when acquiring and releasing a lock for which there is no contention. The second column indicates the number
of references that may need to execute sequentially in order for some process to enter its critical section when
n processes wish to do so. (This notion of "time" differs from that of most other researchers; we assume that
references may serialize if they are made by the same process or require the use of the same memory bank or
communication link.) Our algorithm performs fewer shared memory references than any but the bounded-
critical-section version of Lamport's algorithm. It is also substantially simpler than the algorithms of Styer
or Yang and Anderson, both of which employ a hierarchical collection of sub-n-process locks. There is a
strong resemblance between our algorithm and that of Alur and Taubenfeld, though the two were developed
independently. In effect, we reduce the number of shared-memory operations by exploiting the ability of
most, memory systems to read and write atomically at both full- and half-word granularities.

Following the presentation of our algorithm in section 2, we present a correctness proof in section 3,
experimental performance results in section 4, and conclusions in section 5. In our experiments, we employ
limited exponential backoff to reduce the amount of contention caused by concurrent attempts to acquire
a lock. This technique, originally suggested by T. Anderson, works very well for test.and.-et locks [2, 5],
and our results show it to be equally effective for locks based on reads and writes. In fact, on our Silicon
Graphics multiprocessor, fast mutual exclusion algorithms with backoff (and the new algorithm in particular)
outperform the native hardware spin locks by a significant margin, with or without contention. Results on
a larger, simulated machine also show the new algorithm outperforming both Lamport's second algorithm
and Alur and Taubenfeld's algorithm.

2 Algorithms

Lamport. [4] presents two mutual exclusion algorithms. Both allow a process to enter its critical section in
constant time. The first algorithm requires a bound on the relative rates of execution of different processes,
and on the time required to execute critical sections. In the absence of contention a process requires five
accesses to shared memory to acquire and release the lock. Process i executes the code on the left side of
figure 1. Variable Y is initialized to free, and the delay in line 7 is assumed to be long enough for any
process that has already read Y = free in line 3 to complete lines 5, 6, and (if appropriate) 10 and 1I.

The second algorithm dloes not, require any bounds on execution rates or lengths or critical sections. In
the absence of contention a process requires seven accessec, to shared memory to acquire and release the lock.

2



1: START:

2: B[i] true
3: X -i

1: START: ': if"Y -free

2: X i 5: B[il - false

3: if Y:A free 6: repeat until Y = free

4: goto START 7: goto START

5: Y - i 8: Y - i

6: if X -= i 9: if X 5 i

7: { delay } 10: B[i] false
8: if Y 0'11: forj-I toN
8: if Y TR 12: fipeat while BUj]

9 non-critical 15: goto START

12: {STion 16: critical section }
117 Y - f---ere13 ooSAT17: Yot- free

18: B{ir - false
19: { non-critical section }
20: goto START

Figure 1: Lamport's fast mutual exclusion algorithms.

and 0(n 2 ) time with contention.1 Process i executes the code on the right side of figure 1. Variable Y is
initialized to free and each element of the B array is initialized to false.

We have devised a new mutual exclusion algorithm that allows a process to enter its critical section with
only six shared memory references in the absence of contention. In the presence of contention, it requires
0(n) time. As in Lamport's first algorithm, we assume a bound on relative rates of process execution. Such
an assumption is permissible if the algorithm is executed by an embedded system, or by an operating system
routine that, executes with hardware interrupts disabled. We do not, however, require a bound on the length
of critical sections. Process i in our algorithm executes the code in figure 2. Variables Y and F are initialized
to free and out, respectively. They are assumed to occupy adjacent half-words in memory, where they can
be read or written either separately or together, atomically. The delay in line 7 is assumed to be long enough
for any process that has already read Y = free in line 3 to complete line 5, and any process that has already
set Y in line 5 to complete line 6 and (if not. delayed) line 10.

A similar algorithm, due to Alur and Taubenfeld [1], appears in figure 3. Rather than read and write
at multiple granularities, this algorithm relies on an additional flag variable (Z) to determine whether any
process has entered the critical section by the end of the delay. When releasing the lock, process i first clears
Z, and then clears Y only if Y still equals i. If Y has changed, the last process to change it is permitted to
enter the critical section as soon as Z is cleared. Both our algorithm and Alur and Taubenfeld's assume a
bound on relative rates of process execution, with identical delays on the slow code path, when contention
is detected. Both algorithms require only O(n) time when arbitrating among n concurrent lock acquisitions,
and 0(1) time in the absence of contention. On the fast. code path, however, our algorithm performs 25%
fewer shared memory references. As shown in section 4, this translates not only into lower overhead in the
no-contention case, but also, given backoff, in most cases of contention as well.

IAs noted in section 1, we assume that a reference to shared memory may take time linear in the number of processes
attempting to access the same location concurrently.
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1: START:

2: X
3: if Y free
4: goto START
5: Y - i
6: :f X 0 i
7: { delay}
8: if (Y, F) # (i, out)
9: goto START

10: F - in
11: { critical section }
12: (Y, F) -- (free, out)
13: { non-critical section }
14: goto START

Figure 2: A new fast mutual exclusion algorithm.

1: START:

2: X-i
3: repeat, until Y = free
4: Y -i
5: if X i
6: { delay }
7: ifY 1$ i
8: goto START
9: repeat until Z = 0
10: else
11: Z - 1
12: { critical section }
13: Z .- 0
14: if Y = i
15: Y -- free
16: { non-critical section }
17: goto START

Figure 3: Alur and Taubenfeld's algorithm.
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3 Correctness

In this section we present proofs of mutual exclusion and livelock freedom for our algorithm.
As it concerns the algorithm, each process i can be conceptualized as a sequence of non-looping subpro-

cesses. Thus, the execution time of a subprocess is bounded except for the critical section. A subprocess
either acquires the lock, executes the critical section, releases the lock, and terminates; or fails to acquire
the lock at some point, terminates, and the next subprocess begins execution from START. It is clear that
at any moment each process has at most one subprocess running.

Let U be the set of (non-looping) subprocesses running at time t. U can be partitioned into five disjoint
sets A, B, C, D, and E, defined in terms of the truth of the four conditions in lines 3, 6, and 8 in the
algorithm, where the condition in line 8 can be considered as two sequential conditions, the first testing Y
and if it is equal to i, the second testing F. The sets are defined as follows:

Y = free Y' = free
A Y = free = ?t Ci ,and

A= X=i B =i 4 Y i 1C={? YD1= Ii}i D {and

'F = out Y iF 96 out

E={iI Y Ofree }.

In the proof we use the following notation: Vij E U, il denotes the time at which subprocess i executes
line I in the algorithm, and il < jn denotes that i executes line I before j executes line m.

3.1 Mutual Exclusion

Let IV be the set of subprocesses executing their critical sections at time t. W = {iii E A U B and
ilO < I < i12}. To prove mutual exclusion it suffices to prove that Vt, IWI < 1.

Lemma 1: Vi E A U B, B~j E A U B such that j5 < i12 < j12.

By defining the "order" of a subprocess to be the number of subprocesses that set Y to free before it does,

Lemma 1 can be proved by induction on the order of subprocesses in A U B. A complete proof is presented

in the appendix.
Now we can define supersets for A and B by transforming the conditions on the values of state variables

to conditions on the order of setting and reading them by the subprocess under consideration and other
concurrent subprocesses.

Vi E A, and Vj E U - {i}, for Y to he equal to free at i3, either i3 < j5 or j12 < i3 (Lemma 1). And
for X to be equal to i at i6, either j2 < i2 or i6 < j2.Ji EUI and Vj EU11- {i.),
Therefore, AC i j2<i2and i3<j5or

- i6 < j2 or I

j2 < i2 and j12 < i3

Vi E B and Vj E U - {i), for Y to be equal to free at i3, either i3 < j5 or j12 < i3 (Lemma 1). For Y
to be equal to i at i8, either i8 < j5, j5 < i5 and i8 < j12, or j12 < i5. And for F to be equal to out at i8,

either i8 < jlO or j12 < i8.

( i EU1 and Vj EU11- N.)
I i8 < j5 or

Therefore, BC i i3<j5<i5andiS<jlOor
i3 < j5 and j12 < i5 or

j12 < i3

r i,j E U such that
Let AA = {(i.j)i,j A and i__j} then AA C (i,j) j6<i2andjl2<i3or .

M < j2 and i12 < j3



i, j E U such that
j3 < i5 and i8 < j5 and j8 < ilO or

j3 < i5 and i12 < j5 or
Let BB = {(i,i)i,i E B and i $ j} then BB C_ (i,j) i12 < j3 or

i3 < j5 and j8 < i5 and i8 < jlO or
i3 < j5 and j12 < i5 or

j12 < i3

0~ E U such that
j2 < i2 and i3 <j5 and j8 < i5 or

"Let AB = {(i,j)Ii E A andj E B}, then AB C (ij) j2 < i2 and j3 <i5 <j5 and j8 < ilO or
j2 < i2 and j3 < i5 and i12 < j5 or

i6 < j2 and i12 < j3 or
j2 < i2 and j12 < i3

Let BA = {(i,j)li ( B and j E A) then BA = {(i,j)I(j,i) E AB).

With sufficient delay,

ij3 E U such that ij E1U such that
BBC (ij) j3 <.i5 and i12ABj5or (i,j) j2<i2andj3<i5andi12<j5or

IB M <1 j3 or rand ABi<jadl2jo
i3 < j5 and j12 < i5 or i6 <.j2 and i12 < j3 or

j12 < i3 j2 < i2 and j12 < i3

Let WV2 = {(i,j)Ii E W and i # j}, then W. Cg AA U BB U AB U BA. Then, W2 - 0. Then, JW! < 1.
This completes the proof of mutual exclusion 0

3.2 Livelock Freedom
Lemma 2: Vi E U, if i sets Y to i and terminates at time I while Y = i, then 3i E A U B such
that jl0 < I < j12

Proof:

If i E A U B then i sets Y to free and terminates. If i E C then i terminates while Y 0 i. If i E E
then i never sets Y to i. If i E D then at i8, F = in then it must be the case that 3i E A U B such that
jlO < i8 < j2. If j12 < i8 then i terminates while Y : i, otherwise i terminates after j1O and before j12 0

Lemma3: ViEC, AUBUD7$0. for some 1, i5 < _<i8

Proof:

Assume that the lemma is false i.e. 3i E C, Vt, i5 < I < i8, A U B U D = 0. Since i E C then at i8, Y : i.
Hence either Y = free or Y = j 96 i, where j E U. If Y = free then 3k E A U B such that i5 < k12 < i8,
which contradicts the initial assumption. Thus Y = j i.e. 3j E A u B UCu D such that j is the last process
to set Y between i5 and i8. Then according to the initial assumption, j E C. Therefore 3k E A U B U C U D
that sets Y between j5 and j8. This again implies that k E C. Since j is the last subprocess to set Y
before i8, i8 < k5. If i8 < 03 then 31 E A U B such that i8 < 112 < k3 i.e. j5 < 112 < j8. Contradiction.
Therefore, k3 < i8. If i5 < k3 then 31 E A u B such that i5 < 112 < 03 i.e. i5 < 112 < i8. Contradiction.
Therefore k3 < i5. Thus k3 <4--5 and i8 < k5 which is not possible with sufficient delay. Therefore, the
initial assumption is false and the lemma is true 0

Define 11 and 12 such that Vi E U i starts after 11 and terminates before 12. Assuming that the critical
sections are finite, (0i, 12) can be chosen to be finite. Let U' be the set of subprocesses running in the interval
(U1,12), and similarly define A', B', C', D', and E'. It is clear that U C U', A C A', B C B', C C C',
D C D', and E C E'.

6



"The algorithm is livelock free if U $ 0 implies that A'U B' : 0. Assuming that U $ 0, 3i E A U B U C U
DUE.

If i E E then at, i3, Y 5 free. Hence 3j, Y = j and j E A' U B' U C' U D' which is the last. to set Y
before i3. j is either running at. i3 or has already terminated. If j is running then A U B U CU D : 0. Ifj
has already terminated then according to Lemma 2, 3k E A U B that was executing its critical section while
j terminated. It cannot be the case that_k12 < i3 because j is the last to set Y before i3. Therefore it must
be the case that. kl0 < i3 < k12 then AU B $ 0. Therefore E 0 0 implies that A' U B' U C' U D' $ 0. If
i E C then according to Lemma 3, A'U B'U D' $ 0. Finally, if i E D then at i8, F 0 out. Hence 3. E A U B
such that jl0 < i8 < j12. Therefore, A' U B' :# 0.

Therefore, U 0 0 implies that A' U B' $ 0. This completes the proof of livelock freedom 0

4 Experiments

In this section we present the experimental results of implementing three mutual exclusion algorithms-
Lamport's second, Alur and Taubenfeld's, and ours-on an 8-processor Silicon Graphics (SGI) Iris 4D/480
multiprocessor and on a larger simulated machine. Based on relative numbers of shared-memory reads and
writes (see table 1), we expected these algorithms to dominate the others. Among them, we expected the
new algorithm to perform the best, both with and without contention. We also expected exponential backoff
to substantially improve the performance of all three algorithms.

It was not clear to us a priori whether Alur and Taubenfeld's algorithm would perform better or worse
than Lamport's algorithm. The former performs more shared memory references on its fast code path, but
has a lower asymptotic complexity on its slow code path. How often each path would execute seemed likely
to depend on the effectiveness of backoff. For similar reasons, it was unclear how large the performance
differences among the algorithms would be. Our experiments therefore serve to verify expected relative
orderings, determine unknown orderings, and quantify differences in performance.

4.1 Real Performance on a Small Machine

To obtain a bound on relative rates of processor execution, we exploited the real-time features of SGI's
IRIX operating system, dedicating one processor to system activity, and running our test. on the remaining
seven processors, with interrupts disabled. The system processor itself was lightly loaded, leaving the bus
essentially free. We disabled caching for the shared variables used by the lock algorithms, but. enabled it
for private variables and code. We compiled all three locks with the MIPS compiler's highest (-03) level of
optimization.

We tested two versions of each algorithm: one with limited exponential backoff and one without. The no-
hackoff version of Lamport's algorithm rnatihv- the pseudo-rode on the right, side of figure 1. The no-backoff
version of the new algorithm matches the pseudo-code in figure 2, except that after discovering that Y - tree
in line 3, or that, (Y, F) $ (i, out) in line 8. we wait for Y = free before returning to START. Similarly, the
no-backoff version of Alur and Taubenfeld's lock matches the pseudo-code in figure 3, except that (1) if Y :
free in line 3, we return to START after Y becomes free, rather than continuing, and (2) if Y 6 i at line 7,
we wait for Y = free before returning to START. In the backoff versions of all three algorithms, each repeat
loop includes a delay that increases geometrically in consecutive iterations, subject to a cap. The hase,
multiplier, and cap were chosen by trial and error to maximize performance. C code for our experiments
can be obtained via anonymous ftp from cayuga.cs.rochester.edu (directory pub/scalable.sync/fast).

Performance results appear in figures 4 and 5. In both graphs, point (x,y) indicates the number of
microseconds required for one processor to acquire and release the lock, when x processors are attempting
to do so simultaneously. Th,'oe numbers are derived from program runs in which each processor executes
100,000 critical sections. Withiit the critical section, each processor increments a shared variable. After
releasing the lock, the processor executes only loop overhead before attempting to acquire the lock again.
Program runs were repeated several times; reported results are stable to about .2 in the third significant
digit. The one-processor points indicate the time to acquire and release the lock (plus loop overhead) in the
absence of contention. Points for two or more processors indicate the time for one processor to pass the lock
on to the next.

7



15- AkT A
new 0

Lamport 13

SGI x

pjsec per 10-

critical
section

5-

x.x x x

I I I I I I i -

1 2 3 4 5 6 7
processors

Figure 4: Performance results without backoff on the SGI Iris.

4 -x
x x x

x

3 A A A A A A

,isec per Q

critical
section 2 - SGI x

A&T A
Lamport 0

1 - new 0

0 " I I I I I

1 2 3 4 5 6 7
processors

Figure 5: Performance results with backoff on the SGI Iris.



Processors
Algorithmn 1 21 3 41 5 16 17
Alur & 'l'aubenfeld 100 92.9 94.2 29.5 90.0 29.3 85.0
new IWO 51.6 65.8 22.8 61.2 15.1 53.9

Table 2: Percentage of critical sectioi - aries in the no-hackoff experiments made via the fast (no delay)
code path of the delay-based algoritXais.

Backoff is clearly important. Without it, performance degrades rapidly with increasing contention. Larn-
port's algorithm iPdp:rades smoothly, while the new algorithm and that of Alur and Taubenfeld behave
erratically (see i, low). By contrast, with backoff, performance of all three algorithms is excellent, and
roughly proportionai to the number of shared memory references on the fast code r .th. With only six such
references, the new algorithm is' the fastest.

We instrumented the two delay-based algorithms in an attempt to explain the strange (but highly re-
peatable) behavior of the new algorithm and that of Alur and Taubenfeld in the no-backoff experiments.
The results appear in table 2. We hypothesize that with odd numbert, of processors there is usually one
that is able to enter its critical section without executing a delay, while with even numbers of processors the
test falls into a mode in which all processors are frequently delayed simultaneously, with none in the critical
section. This hypothesis is consistent with memory reference traces recorded for similarly anomalous points
in the simulation experiments, as discussed in the following section.

Surprisingly, all three algorithms with hackoff outperform the native test•and.setlocls supported in
hardware on the SGI machine. These native locks employ a separate synchronization bus, and are generally
considerd very fast. With barkoff. processes execute the fast path in almost every lock acquisition. This
explains the observation that relative performance of the three locks is proportional to the number of shared
memory -'ferences in the fast paths in their acquisition/release protocols.

4.2 Simulated Performance on a Large Machine

"To investigate the effect of backoff or fa-.-mnut ual exclusion algorithms with only atomic -ead and write, and
to evaluate the relative perfortuman, of the three algorithms when there is a higher level of contention on
a large number of processors, we simulated the execution of these three lock algorithms on a hypothelical
large machine with 128 processors.

Our simulations use the same executable program employed on the SGI machine. It runs this program
inder Veenstra's MIPS interpreter, Mint [9]. with a simple back end that determines the latency of each

reference to shared memory. We assume that shared memory is uncached, that, each memory request spends
36 cycles in each direction traversing some sort of processor/memory interconnect, that competing requests
quieue up at the memory. and that the memory can retire one request every 10 cycles. The minimum time
for a shared-memory reference is therefore 82 cycles. For the delay-based algorithms, we used a delay of
2500 cycles, which provides enough time for the enmory to service 2 requests from each of 128 processors.

Figures 6 and 7 show that the performance of all three algorithms (and Lamport's in particular) improves
substantially wit h the use of exponential backoff. Thus backoff makes mutual exclusion feasible even for large
numbers of processors, with no atomic instructions other than read and write.

For figure 7, hackoff constauts (base, mult iplier, and cap) were selected for each algorithm to maximize its
performance on 128 processors. On smaller numbers of processors this backoff is too high, and performance
is unstable. With gre'iter than 32 processors, the relative order of the algorithms remains th( same over a
wide range of possible backoff constants. Most of the individual data points reflect simulation runs in which
each processor executes 100 critical sections. We ran longer simulations on a subset of the points in order
to verify that the total number of elapsed cycles was linearly proportional to the number of critical section
executions.

All three algorithms were found to be sensitive not only to the choice of backoff constants, but also
to critical and non-critical section lengths. With many variations of these parameters, the overall relative
performance of the three algorithms was always found to be the same. The presented results are with a single
sharedI-memnory update in each critical section. and nothing hut loop overhead in the non-critical sections.
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Unstable parts of the graphs in figures (5 and 7 were investigated using detailed traces of shared memory
references. The apparently anomalous points can be attributed to the big difference in execution time
between the fast and the slow paths of the algorithms. With many variations of the backoff constants and
length of eritical and non-critical sections, there are always points (numbers of processors) where most of
the time a processor executes the slow path to acquire and release the lock. But these points were found to
change with different combinations of parameters.

'he simulation results verify that the new algorithn outperforms the others with its low number of shared
memory references in the fast path. For large numbers of processors, Alur and Taubenfeld's algorithm always
outperforms Lamport's algorithm despite its higher number of shared memory references in the fast path.
due to the increasing cost of the slow path of Lamport's algorithm.

5 Conclusions-
Fast mutual exclusion with only reads and writes is a topic of considerable theoretical interest, and of some
practical interest as well. We have presented a new fast mutual exclusion algorithm that has an asymptotic
time complexity of 0(n) in the presence of contention. while requiring only 2 reads and 4 writes in the absence
of contention. The algorithm capitalizes on the ability of most memory systems to read and write atomically
at both full- and half-word granularities. The same asymptotic result has been obtained independently
by Alur and Tanbenfeld, without the need-for multi-grain memory operations, but with a higher constant,
overhead: 3 reads aiid 5 writes on the fast code path.

From a practical point of view, our results confirm that mutual exclusion with only reads and writes is
a viable, if not ideal, means of synchronization. Its most obvious potential problem-contention-can be
mitigated to a large extent by the use of exponential backoff.

Most modern microprocessors intended for use in multiprocessors provide atomic instructions designed
for synchronization (test.and-set. swap. compare-anddswap, fetch-anddadd, load.3.inked/store.condi-
tional. etc). For those that (to not, system designers are left with the choice between implementing hardware
synchronization outside the processor (as in the synchronization bus of Silicon Graphics machines), or em-
ploying an algorithm of the sort discussed in this paper. Backoff makes the latter option attractive.

On the SGI Iris, our new algorithm outperforms the native hardware locks by more than 30%. For
arbitrary user-level programs, which cannot assume predictable execution rates, Lamport's second algorithm
(with backoff) outperforms the native locks by 25%. These results are reminiscent of recent studies by Yang
and Anderson. who found that their hierarchical read- and write-based mutual exclusion algorithm (line
•1 iti table 1) provided performance competitive with that of fetch-and.4-based algorithms on the BBN
TC2000 [10]. Both Laamport's second algorithm and Yang and Anderson's algorithms require space per lock
linear in the number of contending processes. For systems with very large numbers of processes, Merritt and
'raubenf,old have proposed a technique that allows a process to register, on the fly. as a contender for only
the locks that it will actually be using [6].

For the designers of microprocessors and multiprocessors, we remain convinced that the most cost-
effective synchronization mechanisms are algorithms that use simple fetch..and.4 instructions to establish
links between processes that then spin on local locations [5]. For machines without appropriate instructions,
however, fast mutual exclusion remains a viable option.
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A Proof of Lemma 1

Lemma 1: Vi E A U B, ,]j E A U B such that j5 < i12 < j12.

Proof:

Let the order of a subprocess in A U B be the number of subprocesses that set Y to free before it does.
A proof by induction on the order of subprocesses involves proving that: (1) The lemma is true for the
subprocess of order 0, and (2) If the lemma is true for subprocesses of order less than n, then it is true for
the subprocess of order n.

Basis:

"* Let i be the subprocess of order 0, and assume that 3j E A U B such that j5 < i12 < j12.

"* Assume that i5 < j3. Since j5 < i12 then j3 < i12. Then i5 < j3 < i12. Then for Y to be equal to
free at j3 it must be the case that 3k E A U B that sets Y to free before j3 i.e. before i12. Then i
is of order greater than 0. Contradiction. Therefore, it must be the case that j3 < i5.

"* Assume that j5 < M3. Since i12 < j12 then i3 < j12. Then j5 < i3 < j12. Then for Y to be equal to
free at i3 it must be the case that 3k E A U B that sets Y to free before i3 i.e. before i12. Then i is
of order greater than 0. Contradiction. Therefore, it must be the case that i3 < j5.

"• Considering the four possible cases for i and j belonging to A or B:

1. i and j E A: Since i3 < j5 then i2 < j6 then for X to be equal to j at j6 it must be the case
that i2 < j2. Since j3 < i5 then j2 < i6. Then i2 < j2 < i6 then at i6 X # i. Then i V A.
Contradiction.

2. i E A and j E B:

- Assume that j5 < i5. For Y to be equal to j at j8 it must be the case that j8 < i5. Then
i3 < j5 and j8 < i5, which is not possible with sufficient delay. Therefore, it must be the
case that i5 < j5.

- Since i5 < j5 then with sufficient delay it must be the case that i1O < j8. For F to be equal
to out at j8 it must be the case that 3k E A U B such that i1O < k12 < j8 (it is possible
that k = i). If k = i then for Y to be equal to j at j8, i12 < j5 which contradicts the initial
assumption. If k • i then k12 < j5 < i12, then i is not of order 0. Contradiction.

3. i E B and j E A:

- Assume that i5 < j5. For Y to be equal to i at i8 it must be the case that i8 <j5. Then
j3 < i5 and i8 < j5, which is not possible with sufficient delay. Therefore, it must be the
case that j5 < i5.

- Since j5 < i5 then with sufficient delay it must be the case that jl0 < i8. For F to be equal
to out at i8 it must be the case that 3k E A U B such that jlO < k12 < iM (it is possible that
k - j). Then i is not of order 0. Contradiction.

4. i and j E B: For Y to be equal to i and j at i8 and j8 respectively, it must be either the ease
that, i8 < j5 or j8 < i5. Then it must be either the case that i3 < j5 and j8 < i5; or j3 < i5 and
i8 < j5. Both cases are not possible with sufficient delay.

* Therefore, /8j E A U B such that j5 < i12 < j12, i.e. the lemma is true for the subprocess of order 0.

Induction

"* Assume that the lemma is true for all4ubprocesses of order less than n. Let i E AUB be the subprocess
of order n.

"* Assume that 3j E A U B such lhat j5 < i12 < j12.
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"* Assume that i5 < j3. Since j5 < i12 then j3 < i12. Then i5 < j3 < i12. Then for Y to be equal to
free at j3 it must be either the case that 3k E A U B such that i5 < k12 < j3 i.e. i5 < k12 < i12.
This contradicts the inductive hypothesis. Therefore, it must be the case that j3 < i5.

"* Assume that j5 < i3. Since i12 < j12 then i3 < j12. Then j5 < i3 < j12. Then for Y to be equal
to free at i3 it must be the case that 3k E A U B such that j5 < k12 < i3 i.e. j5 < k12 < j15 and
k12 < i12. This contradicts the inductive hypothesis. Therefore, it must be the case that i3 < j5.

"* Considering the four possible cases for i ard j belonging to A or B:

1. i and j E A: Since i3 < j5 then i2 < j6 then for X to be equal to j at j6 it must be the case
that i2 < j2. Since j3 < i5 then j2 < i6. Then i2 < j2 < i6 then at i6 X : i. Then i V A.
Contradiction.

2. iEAandjEB:

- Assume that j5 < i6. For Y to be equal to j at j8 it must be the case that j8 < i5. Then
i3 < j5 and j8 < i6, which is not possible with sufficient delay. Therefore, it must be the
case that i5 < j5.

- Since i5 < j5 then with sufficient delay it must be the case that i1O < j8. Then j3 < i1O < j8.
For F to be equal to out at j8 it must be the case that 3k E A U B such that ilO < k12 < j8
(it is possible that k = i). If k = i then for Y to be equal to j at j8, i12 < j5 which contradicts
the initial assumption. If k 6 i then k12 < j5 < i12, then ilO < k12 < i12, which contradicts
the inductive hypothesis.

3. i E B and j E A:

- Assume that i5 <j5. For Y to be equal to i at i8 it must be the case that i8 <j5. Then

j3 < i5 and i8 < j5, which is not possible with sufficient delay. Therefore, it must be the
case that j5 < i5.

- Since j5 < i5 then with sufficient delay it must be the case that jlO < i8. Then i3 < jlO < i8.
For F to be equal to out at i8 it must be the case that 3k E A U B such that jlO < k12 < i8
(it is possible that k = j). If k = j then for Y to be equal to i at i8, j12 < i5 which
contradicts the initial assumption. If k 0 j then k12 < i5 < j12, then jlO < k12 < j12,
which contradicts the inductive hypothesis.

4. i and j E B: For Y to be equal to i and j at i8 and j8 respectively, it must be either the case

that i8 < j5 or j8 < i5. Then it must be either the case that i3 < j5 and j8 < i5; or j3 < i5 and
i8 < j5. Both cases are not possible with sufficient delay.

* Therefore, ,Bj E A U B such that j5 < i12 < j12 0
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