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SUMMARY

A new procedure has been developed for the general solution of the minimal angles-

only problem in which an orbit is determined from three line-of-sight observations. The

basis of the approach is a higher-order Newton correction of the assumed values for two of

the unknown ranges, appeal being made to the author's (published) universal solution of

Lambert's orbital boundary-value problem.

The new procedure is free of the inherent limitations of the traditional methods of

Laplace and Gauss. these methods being outlined in a summary of previous approaches to
this classical problem. In particular, the observations are permitted to span several

revolutions when the orbit is elliptic; multiple solutions can be obtained; arid there is no

restriction on the configuration of the three observing sites.

The procedure has been carefully tested, some of the examples being taken from the
literature. A number of test problems have been solved that would have failed by existing

methods.
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1 INTRODUCTION

Determining a body's orbit from three line-of-sight observations is one of the 0
classical problems of orbit dynamics, being significantly more difficult than solving either of
Kepler's equationsl. 2 or Lambert's problem 3. It resembles Lambert's problem (the
derivation of a Keplerian orbit from positions at two given times) in its minimal nature, the
difference being that we have two items of data (angles only) at three times instead of three
items of data (range also) at two times. The greater complexity arises because details of the
observers' locations must be available in the angles-only problem, whereas they are entirely
irrelevant in Lambert's problem since absolute positions are known. In pre-radar days it
was the angles-only problem alone that was of real practical significance; the two may now
be regarded as of equal importance. 0

To present the problem in its starkest form, we suppose that nothing is known about
the hypothetical orbit, other than through the three observations, except that the observed
body can be assumed to have a Keplerian motion about a given force centre (parent body),
C , of gravitational strength ,p ; it is even conceivable that the observations are not really of
the same body, in which case the problem would be an illusory one. Thus all possible
solutions are sought, the problem being usually described as one of 'initial' (or
Gpreliminary') orbit determination. If an approximate orbit can be established from the *
minimal data available, then a more accurate orbit can be derived later, using as many

observations as desired, but that would be an entirely different problem (see, for example,
Refs 4 and 5 for details of the author's computer program, PROP), in which the techniques
of linearization (relative to the initial orbit), least squares and differential correction can be

applied. (These techniques, and a program such as PROP, are irrelevant until a sufficiently
accurate set of orbital parameters is available for differential correction to converge.)

To specify the angles-only problem precisely, we suppose that observations are
available at times tj (j = 1,2,3) from the sites Oj defined by the vectors Rj, and that they 0

are given (after conversion from pairs of angles if necessary) by the unit vectors (direction
cosines) )j. An underlying (inertial) coordinate system, Cxyz, is assumed to have been
adopted, relative to which the known locations Rj may be specified as (Xj,Yj,Zj). The
unknown orbital positions, Pj, are referred to by the vectors jj , with components
(xj,yj,zj) and the unknown ranges* are denoted by pj, so that the equation for the
geometry at time tj may be expressed as

pi Aj = j= 11 - (j

Since the 'directions', as opposed to 'anti-directions', of the observations are known,
only solutions with all pj > 0 are valid; however, an 'invalid' solution becomes valid,
and a 'maximal family' of solutions is generated, if the problem is transformed by
moving the Oj far enough 'backwards' along the sight-lines.
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It is normal, but not obligatory, to take the tj as such that tl < 12 < t3 , and it is convenient

to use the notation tjk for the differences tk - ij. Since most approaches to the problem are

iterative but with fewer than three iteration variables, the observations are not normally all 0

dealt with in the same way; in particular, one pair of suitable iteration variables consists of

pl and P3 , and another of p2 and 02 • In view of the implied special role for j W 2

(which will be assumed even when t2 is not the intermediate time), it will be convenient to
assume (for r and p in particular) that, when the suffix is suppressed, j = 2. 0

The importance and antiquity of the angles-only problem are reflected by its

appearance in standard text-books - Refs 6 to 11 are cited (in chronological order) as
providing good background material. For specialized papers with new approaches, and in
the context of geocentric satellite orbits rather than heliocentric comets or minor planets,
Refs 12 and 13 are to be recommended. In the present paper, section 2 provides
summaries of the classical solution procedures devised by Laplace and Gauss some two
centuries ago. The methods of these giants are limited by certain assumptions, in particular
the assumption that the observations span only a limited orbital arc, and this is why more
general methods, suitable for the Space age, have had to be devised. The approach of these
more general methods, also summarized in section 2, is to iterate on the ranges associated
with two of the observations 12, or even all three13, whilst making the orbit computations in 0 *
essentially closed form (ie without truncation).

The function of the present Report is to give a detailed description of the author's
own new method for the angles-only problem. It is a range-iteration method, but unlike
previous ones in that it places an efficient and universal algorithm 3 for the subordinate
Lambert problem at the heart of the solution procedure. The description of the method
appears in section 3, and section 4 shows how the method, as implemented in a Fortran-77
computer program, performs with some example problems from the literature; a number of
special examples have also been constructed, and show that the new method can solve

problems that existing methods could not.

To conclude this introduction, it is noted that in the operational use of an angles-only
solution procedure it is essential to include 'aberration' corrections for the finite speed at
which light- or radio-waves travel down the sight-lines. The way to make these corrections •
is covered by the text-books, and they have not been included in the procedure described in
sections 3 and 4. It has already been indicated that orbit perturbations, also, will be
ignored.

2 PREVIOUS APPROACHES

There have been two traditional approaches to the solution of the angles-only

problem. They are known as Laplace's method and Gauss's method, though the latter 0
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(which is more flexible) is also associated, in the evolution of its various versions, with the
names of Lagrange and Gibbs. The basic principles of the two methods are summarized in ()
sections 2.1 and 2.2, and then section 2.3 provides an introduction to the more recent range- 0
iteration methods.

2.1 Laplace's method

laplace's method suffers from two major limitations; these have not, however, been
a serious drawback in the traditional application to the determination of initial orbits for

comets and minor planets. The first limitation is the necessity for all three observations to
be, in essence (but see the second remark at the end of this summary), from the same
location (with due allowance for the site's rotation with the Earth, and/or its heliocentric
motion, as appropriate). The second limitation is to a set of observations that only span a
relatively short arc of the orbit. The reason for these limitations is that the method is
directed towards the determination of P2 and 62 (after which, r2 and r2 are known,
an.d hence also the orbit) by following an implicit assumption: namely, that the Pj are
instantaneous values of a well-defined continuous vector, p , for which first- and second-

order time derivatives are also well-defined.

The effect of the foregoing assumption, and the two basic limitations which underlie
it, is that tde three Aj may be transformed (via numerical.difference formulae) into the triad * *
ý (= 12), and . . This leaves p (= p2), 0 and p as three unknown scalar quantities,
to be connected via the vector dynamical condition that must hold at time t(2), viz

F r/r3. (2) 0

The vectors r and F, appearing linearly in equation (2), can immediately be eliminated
via equation (1), with R assumed known, but there remains a fourth unknown scalar, r.

Hence we need a fourth scalar equation to supplement the three corresponding to the vector 0

equation derived from (1) and (2). The fourth equation is provided by the geometry, since

the cosine fermula, applied to the triangle COP with the angle at 0 denoted by V, or
(equivalently) the inner product of r with itself via (1), gives

*

r2 = R2 + p2 - 2Rp Cos y, (3)

A
where cos Vf - R . A (using the usual notation for unit vectors) and so is known. *

Elimination of # and P (via scalar multiplication by . A ̂) from the vector
equation leads to an approximate linear relation between p and 1/r3 . Then the elimination
of either r or (preferably) p, by use of (3), lc-ds to an octic equation in the other quantity.
This equation is analysed in the literature7, but celestial mechanicians have found it more
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fruitful to work with an equivalent trigonometric equation in the angle 0 at P - both r and
p can be expressed in terms of 0 by two applications of the sine formula to the triangle *
COP. The form of the trigonometric equation* is

sin 4o = M sin(O + m), (4)

where M (> 0) and m are quantifies known6 in terms of R, A. •, A and the subsidiary W. 0

The fundamental equation, whether an octic polynomial in r or having the form (4)

in *, has7 at most three relevant roots (such that r > 0 and, correspondingly, 0 < 0 < r) as
well as (in general) exactly one irrelevant one (for which r < 0 and 0 > ir); of the 'relevant'
roots, only those are valid for which p > 0 and, correspondingly, 0 < 0 < r - o. In the
traditional application, however, for heliocentric orbits observed from the surface of the
Earth, the radius of the Earth is essentially negligible and the observer's location is itself
effectively in an unperturbed heliocentric orbit; thus there must exist a trivial solution (giving
the observer's orbit) with pj essentially zero for all j. So there are traditionally at most
two non-trivial solutions. If two solutions exist and one cannot be rejected on the basis that
it involves pj < 0 for some j or (alternatively) a set of impossible orbital elements, then
the normal way to distinguish the true solution from the spurious one would be by the
introduction of a fourth observation. 0

In the familiar Earth-satellite application, on the other hand, there is no trivial
solution, since a ground-based observer (even on the equator) cannot be in geocentric orbit.
Thus there may be as many as three a priori valid non-trivial solutions, with the consequent
need to reject up to two. If the 'observer' is satellite-based, however, then we are back to

the existence of a trivial solution with at most one other to be rejected.

Various techniques have been applied to the solution of the fundamental equation,
usually involving iterative refinement by the Newton-Raphson process or a similar
technique. It must be remembered, however, that the equation can provide no more than an
approximation to the solution for p2 and r2 (whence b2 and therefore i2, since h?2 is

assumed known), as the transformation from A1 and A3 to ?± and a2 is itself only
approximate. Thus Laplace's method, in its simplest form, leads merely to initial estimates 0

for p and /, If an accurate solution of the problem is required, an iterative differential-
correction procedure (on p and 0) can then be used, to fit directly to (residuals in) A1

and A3 . Alternatively (but less accurately), and more in the spirit of Laplace's method6,
the initial solution can be improved by using it to estimate values for the hitherto neglected •
components of higher derivatives, A etc; in this approach, the accuracy remains limited by
the use of assumed values for R and ,

I The trigonometric approach was due to Gauss - an ocic equation appears in Gauss's
method that is of the same form as the octic equation in Laplace's method, as we shall see.
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This summary of Laplace's method is concluded by three remarks. The first is that

the inherent errors in the method are least when t2 really is intermediate between 11 and

t3 , the optimum situation being when it is just half way. Secondly, with reference to the
limitation to observations from the same location, it is noted by EscoballO that, when this ,V)
does not hold, conceptual values for h and h may nonetheless be taken from the same
numerical-difference formulae as are used for L and ,t . Finally, the method breaks

down, through indeterminacy, when the three line-of-sight vectors, the Xj , are linearly

dependent, the source of the indeterminacy being the consequent singularity of their matrix.
However, we shall find that the angles-only problem, tackled in a different way, is still

accurately soluble in the general case of linear dependency and matrix singularity. It is only
in the much severer circumstance that the Aj are dependent as 'localized vectors' that 0

solution break-down is intrinsically inevitable, the implication of this being that the three

lines of sight then lie in a single plane which is the orbital plane for an infinite number of

solutions to the problem.

2.2 Gauss's method

Gauss's method introduces, directly, a geometric constraint that operates only
indirectly (via the dynamics) in Laplace's method: namely, that the vectors rj are

coplanar, satisfying the relation (say) 0 *

Clrl + C2r2 + C3r3 = 0. (5)

If the cj were known, independently, we could substitute for the Lj , using (1), to obtain 0
three scalar equations in pl, p2 and p3 (cf those, in Laplace's method, in p, A and
&). In reality, of course, the cj are not known and their eliminant from (5) yields the

single scalar equation, of the form det(rLI,r2,r3) = 0 , that expresses the linear

dependence of the Lj . By introducing approximate values for the cj , however, we can 0
proceed as stated, the basis of the approximation being that cI, c2 and C3 are proportional

to r2 A r3, r3 A rI and rl A r2 respectively, le to the algebraic values of the triangular
areas CP2P3, CP3P 1 and CPIP2.

It is, of course, only the ratios of the c's that are needed, and the (approximate) •

formulae for Ci/c2 and c3/C2 introduce the dynamics, from equation (2) again. Thus,
c3/c2 can initially be written in the form -(l + 7"/r 2

3)t12/t13, where the term in y3. would
disappear (by Kepler's second law) if the c's were proportional to swept-out areas (sectors

CP2P 3 etc, as opposed to the triangles). In this way, with the rj replaced via
equation (1), we get a linear relation between p and 1r3 to solve in conjunction with

equation (3), just as with Laplace's method. The basic restriction to observations from a

single location has entirely disappeared now though, since the dynamic equation results

from the elimination of Pi and p3 , rather than the artificial P) and p. In its simplest 0
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form, however, Gauss's method is still limited to short arcs of the orbit, and is certainly not I
applicable to arcs that cover several revolutions of an elliptic orbit. C) *

S
To clarify the foregoing, it should be noted that the three equations derived from (5)

are effectively in the variables (cl/c2)pl, P2 and (c3/c2)p3. After elimination of the first

and third variables, and combination with equation (3), solution of the resulting octic (or

equivalent) equation leads to values for r2 and P2. We can now assign values to IAMr2
3

0
and y3/r 2

3 , and hence to c1/c2 and c3/c2 ; then values (approximate) for pl and p3, and

hence also rl and r3 , become available.

The various versions of Gauss's method diverge at this point. The simplest version

proceeds via more accurate formulae for cl/c2 and c3/c2, using the estimates of r 1
3 and 0

r3
3 (as well as r2

3) that are now available; the octic equation can be solved again ab initio,

or the preliminary value obtained for r2 can be differentially corrected. These formulae (for

C 1/C2 and c3/c2) are still only approximations, however, being based on the series modelling

of the dynamics relative to the time t2 . To avoid this approximation by series, Gauss 0

devised his celebrated algorithm for the iterative computation of the ratio of the swept-out

area to the triangular area for C and any pair of the point- Pj. This algorithm, which was

summarized by the present author in an appendix of Ref 3, leads to the classical solution of

Lambert's problem via the value determined for the appropriate ratio. In the precision * *
version of Gauss's method for the angles-only problem, on the other hand, all three ratios

are required for the evaluation of ci/c2 and c3gc 2 , so the full solution procedure involves

the triple embedding of one iterative process (for Gauss's algorithm) within another (for

solution of the overall problem); the orbit is then given by the solution of Lambert's problem

with the final values for rz and r3 . One advantage from using the precision method is

that multirevolution cases can be covered, the revolutions to be included within each arc

being carried by the differences in eccentric anomaly. But tihere remains a serious difficulty

with long-are problems, namely the generation of initial values (for the overzil iteration •

process) that are sufficiently accurate for the process to converge.

Lagrange's and Gibbs's versions of Gauss's method were published, respectively,

before and after the version due to Gauss himself. Lagrange's version has features in

common with the method of Laplace, his close contemporary, since the orbit is eventually 0

known directly from r and r (at time t2), rather than via r and r3. In Gibbs's version

the orbit is modelled by fourth-order approximations that are efficient for hand computation.

Also, the parameters of the final orbit are obtained symmetrically from all three of the

vectors rj ; the procedure for this essentially elementary problem is outlined in Appendix A. 0

2.3 Range-iteration methods

The methods of Laplace and Gauss were develeped in a very different time from our

own: orbits would be restricted to certain types and always heliocentric; only a relatively 0
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short arc of tb', orbit would be observed; observations would be effectively from a single
site; and rompuhng methods would be severely limited. It was a leisurely age, on the other (X)

hand, and the computing methods did possess one advantage: the computer (human) could 0

improvise, as necessary, with each problem tackled, and would not be restricted by the 4)

constraints of a pre-set 'program'. With the advent of the Space age, however, it was
inevitable that methods of greater universality and robustness would be required, whilst the
flexibility of operation would have to be built into the software of a machine. 0

These factors pointed to approaches based on the iteration of estimated values of the
ranges, pj, or (equivalently) the distances rj from the force centre. In the recent paper by
Lane 13, for example, the pj are treated as a priori independent, so that the iteration is on
three unknown variables. This has the advantage of symmetry, but at the expense of
complexity; Lant. recognized the convergence problem as so acute that he further
complicated the problem by the introdi-ction of penalty functions and other sophisticated

techniques.

There is no prospect of a method for iterating on a single variable, so consideration
can be restricted to two-variable methods*. The methods of Laplace and Gauss may be
regarded as of this type, but suffer from the defects that have been noted. We therefore
summarize the method described in the text-book of Escobal 10- it is essentially the same as * *
the method given previously by Briggs and Slowey12.

We assume that estimates can be made for the distances rl and r3 , these being the
starting values for the procedure. (Escobal actually works with rl and r'2, whilst Briggs

and Slowey regard Pl and p2 as the independent unknowns, but the particular preference
has no significance.) There is no regular procedure, such as the solution of an octic
equation for the methods of Laplace and Gauss, for making the estimates, but 'reasonable'
values will be essential if the overall process is to converge to an acceptable solution for ri

and r3 . Escobal merely suggests that for near-Earth orbits a value 10% greater than the 0

radius of the Earth may be suitable for both variables. (With his three-range method, Lane
needs a grid search on the Pj ; but for a sufficiently fine grid to capture all solutions, the

computer time could be prohibitive, as he notes.)

From the assumed rl and r3 , values of Pl and p3 are available via equation (3).

(The sign of a square-root has to be selected, a decision that is avoided if Pi and p3 are
taken as fundamental, with rl and r3 then the derived quantities.) From Pl and P3,

coupled with the observed A I and A3 , we now have £p1 and P 3 , and hence r1 and

* We are assuming that the variables are a pair of ranges, but Dr A.J. Sarnecki has privately
suggested that a pair of variables that define the orbital plane, eg i and £2, might be
effective; the non-dimensional i and £2 would be unsuitable for Newton-Raphson
iteration, however (see section 3.4).
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X3 ; assuming these to be linearly independent, the location of the orbital plane is then

known. If the (localized) vector _A2 does not lie in this plane*, values for P2. £2 and 3)

hence r2 can now be obtained. (If r 1 and r3 are linearly dependent, or A2 lies in the 0

apparent orbital plane, we could try re-starting with different estimates of r1 and r3 , but it

would be more promising to interchange the roles of, say, j = 2 and 3.)

We now have (on the basis of the assumed rl and r3) the polar coordinates of three

points in the orbital plane, from which we can derive, by Gibbs's procedure (Appendix A

again), the orbital element p (= a(1 - e2)) and e, and the true anomalies of the three points.
Then the eccentric anomalies (elliptic or hyperbolic) are available, and hence the mean

anomalies, which can be converted to equivalent time differences for the three observations 0
after incorporation of an allowance for integral numbers of revolutions (of an elliptic orbit)
when appropriate. But the true time differences are known. So we have a pair of residuals,

which form the basis for Newton-Raphson iterative convergence for the variables rl and

r3. (These residuals are effectively independent, even though the differences t12 and t23
are not independent when t13 is fixed, because Gibbs's procedure does not use the time

differences.)

Once the correct values of the r's are available, with the final values of p, e and
eccentric anomalies as a by-product, it is a routine matter to complete the solution of the * *
problem by the computation of £2

The Newton-Raphson convergence process requires the partial-derivative matrix of
the dependent variables (pair of time differences) with respect to the two independent

variables. Escobal specifies the computation of these derivatives numerically, by 0

recalculation of the time differences after incrementing first rl and then r3 . For the
increments he suggests 4% of rl and r3 themselves, values which seem (to the present

author) far too big: since the derivatives are 'one-sided' (see also section 3.3), the resulting

effect on truncation error is potentially very serious. Escobal also suggests, for near-Earth 0

orbits, a value for the tolerance to be used as the criterion for the completion of

convergence. This topic, as with the increments for partial derivatives, will be considered in

the context of the new method to be presented in the next section.

An important matter that is ignored in both Refs 10 and 12 is the handling of
multiple solutions, the danger with an unlucky choice of the pair of starting values being that

convergence will be to a 'wrong' solution, rather than that it will fail altogether. Lane 13,

* This restriction on Z2 arises from the approach of Refs 10 and 12, and is not inherent in
two-range iteration. The trouble arises from the purely geometric derivation of P2 and
r; it is avoided (as we see in the next section) by bringing in the dynamics via Lambert's
problem. There is no difficulty anyway if just 02 lies in the orbital plane, the implication
then being that p2 = 0.

TR 93004
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however, emphasizes the need to compute all solutions, if possible, and this is a philosophy 4
that the present author strongly supports (see section 3.5).

3 THE NEW METHOD

3.1 Preliminary remarks

The new method is a range-iteration one, but is only broadly in the same family as •

the method just outlined. The fundamental difference is that, whereas Escobal's method

employs the two time differences (relative to t2) as 'target functions', a procedure based on

the new method computes the body's position at r2 from the orbit derived on the basis of

the assumed positions at tI and t3 ; then the target functions are the projections of this

computed position on a plane perpendicular to the known sight-line at t2. The rationale for

this virtual inversion of Escobal's procedure is that it permits the utilization of the author's

robust and accurate procedure for Lambert's problem 3, which always converges and gives

at least 13-digit accuracy after three iterations of a computation based on a single parameter. S

(See section 5 for further comparison of the two approaches.) Particular attention had been
paid to awkward cases in the Lambert procedure, including the allowance for multiple

revolutions and the maintenance of full accuracy and rapid convergence in situations of

marked nonlinearity; it was believed that the Lambert approach to nonlinearity would

minimize any difficulties from this source in the angles-only procedure. Another ready-

made tool for the new method was provided by the author's technique 14 for propagating

state vectors (position and velocity) via the set of 'universal' elements a, q, i, £2, 0 and T,

where a = Wa, q = a(1 - e) and r is the time at a pericentre; the minimal-error Kepler t

solutions2 constitute an important component of this technique.

The next subsection describes the basic method, and the following subsections give

further details of some important aspects, the complication associated with multiple

revolutions being the last to be dealt with. Then section 4 is devoted to the behaviour of the 0

implementing procedure (on a particular computer) in practice.

3.2 Basic method

It is recalled that RB and Aj at tj (for j = 1, 2 and 3), together with q, constitute
the data, but we shall also require an assumed value for k , te number of half-revo!utions

included in the angle PICP3 - only for elliptic orbits can k exceed 1. (The right value for

k will sometimes be known; otherwise, we must run the procedure with several values if

necessary.) It has been assumed that the Aj are unit vectors, such that pj = pj Aj , but in 0

practice they may not (as given) be exactly (or even approximately) 'unit', in which case the

unique oriented unit vector, pi, could be distinguished from the given positive multiple of

it, Aj; to avoid this complication (taken account of in the actual computing procedure),

however, we continue to identify Aj and i.. It should be noted that these (unit) vectors S
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refer to lines having a definite location in space (defined by the points Oj, ie by the &j) as
well as direction, and this 'affine' property (as opposed to a purely vectorial one) will (NJ
routinely be implied in references to the Aj, making them 'localized' vectors rather than just
'free' vectors (cf the remark at the end of section 2.1). The specific positions of the Oj on
the lines are almost irrelevant, however, this will be referred to as 'the principle of observer
independence' and it is desirable that a solution procedure reflects this principle as far as
possible*. S

The foregoing remarks are relevant to the definition of our 'target functions', f and
g , which is based on the sight-line associated with X (= a2). This line, being oriented,
may be identified with the normal to a family of parallel oriented planes, and its intersection 0
with each plane may be taken as the origin of a coordinate system within that plane. In each
iteration of the solution piocedure we compute a position, Pc , at time t (= t2), and this
identifies (unambiguously) the plane of the aforesaid family that passes through Pc. Our
target functions are simply the coordinates (fg) within this plane; since the origin (Pc) has
been specified, it remains to be specific about the directions of the axes of f and g. The
following explanation should be clear if it is borne in mind that the axis system (like the
plane in which it is embedded) is defined afresh for each iteration of the convergence
process.

So long as Pc does not lie precisely on the line A, we can orient our axes (within
the oriented plane) uniquely, and almost magically, just by specifying g = 0 and f > 0.
The 'magic' may be dispelled by noting that, though the axis system is ephemeral, it can
temporarily be thought of as permanent! Thus for different values of pl and p3, which •
we will re-denote by x and y for convenience in the function analysis, different values of
both f and g would result, so that well-defined and non-trivial values exist for partial
derivatives such as (we denote by) fx and gyy. This orientation of axes breaks down, of
course, if Pc lies exactly on A (so that f= g = 0), but we can only have such a Pc when a 0
precise solution of the angles-only problem has already been obtained, so that we do not
have to proceed any further;, the important point here is that there is no loss of computing
accuracy as this 'singularity' is approached.

A considerable advantage over other range-iteration methods is worth repeating •
(from an earlier footnote) at this pohit: whereas Escobal's method breaks down if the vector

A2 lies in the orbital plane, this is of no consequence whatever with the new method.
Linear dependence of the vectors r l and r3 at any stage will still cause failure, but this

S

lThe principle is not reflected at all in th,,- methods of Laplace and Gauss and only partly
in Escobal s; the actual Oj are only relevant because the orientations attached to the A
are known in practice (see the distinction, in an earlier footnote, between 'directions' a;9
'and-directions'). 0
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can be dealt with by an interchange of data, say j = 2 with j = 3 , as suggested in I
section 2.3, unless of course r2 lies in the same direction as both r I and r3 , in which

case there is afundamental indeterminacy. (It may be that one solution, for the given data, 0

is indeterminate in this way, though other solutions exist that are entirely well-behaved.)

The overall structure of the new procedure, written in Fortran-77, is that the main

program calls OBS3LS, the subroutine responsible for generating each individual solution

of a given angles-only problem, whilst OBS3LS calls CALCPS, a subroutine implementing

a self-contained algorithm which uses estimated values for x (= Pl) and y (= P3) to

calculate g , a version of the vector P2 that is independent of the actual observation A2 •
The detailed operation of CALCPS is described in Appendix B, whilst Appendix C provides

a listing of both CALCPS and OBS3LS. An outline of the operation of OBS3LS is given in

the next paragraph. The main program has the following functions (among others): to
register the success or failure of a given solution attempt (by OBS3LS) for a given value of

k ; after a success, to search for a further solution if required (see section 3.5); and to 0
organize two separate sets of solutions if k Ž 2 (see section 3.6).

The subroutine OBS3LS has four dummy arguments, the first two of which are

purely input arguments, viz NHREV (the value of k) and IND (an indicator that

distinguishes between the two sets of solutions just referred to). The other two arguments *
specify Pl and p3, initial estimates (starting values) of which must be supplied as input;

these estimates are updated iteratively by the subroutine, and successful operation leads to a

pair of corrected values that constitute a solution to the problem. The current values of x

and y are used in each iteration, as inputs to CALCPS, to provide c , from which 0

OBS3LS derives f (with g = 0). It continues (within each iteration) with the evaluation of

the relevant partial derivatives of f and g via five additional CALCPS calls with

incremented values of x and y as appropriate (see section 3.3 for details of this evaluation

and for the formulae that use these derivatives as the basis for the update of x and y 0
during each iteration). After the new values for x and y have been obtained in the current

iteration, a test for 'convergence complete' is made (see section 3.4 for consideration of

starting estimates and of convergence completion); if convergence is not complete, a further
iteration (to a limit of 25, which is arbitrary but easily altered) takes place, beginning with 0

the use of CALCPS to derive a new c vector, and hence (with new axes for f and g) a

new value for f. The convergence test is based on the value of f obtained before the
refinement of x and y , so the refinement during the final iteration is often superfluous.

Consideration was given to making the procedure more efficient by placing the test at the 0
beginning of each iteration, rather than the end, but there were. a number of reasons for not

doing this: in particular, the convergence criterion could be relaxed (so that in no case

would it be impossibly severe) in the confidence that best-possible values of x and y

would nevertheless bt produced; this often avoids a superfluous iteration. 0
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It has been noted that OBS3LS requires a separate call for each solution of a given

angles-only problem. The necessary information regarding solutions already derived, if V
any, is held in the common block /KNWNSL/, and further details of the operation of the 0

subroutine from this point of view are given in section 3.5. (The first two arguments will

be the same for all the solutions of a given set, but the other two arguments, pl and p33,
must be reset from the solution values just obtained to the starting estimates required for the

next solution.) 0

When k > 2, two sets of solutions are sought. The problems associated with multi-

revolution coverage are considered in section 3.6.

3.3 Iteration formulae and partial derivatives

The classical Newton-Raphson formula for iterative refinement of the root of an

equation generalizes easily to any number of variables, assuming the same number of

equations. The iteration formula for two variables, in particular, is

45y 9x gy/ g
0

where & and dy are the corrections to the current estimates of one pair of roots of the

equations f(x,y) = g(x,y) =0 . Here we assume g = 0 already, so equation (6) reduces to

&8 = -D'lfgy (7a) 0
and

by = DIfg1 , (7b)

where D = fxgy -fygx, (8)

ie D is the Jacobian (determinant of the derivative matrix).

These simple iteration formulae, involving the partial derivatives of f and g with

respect to x and y , are obtained by truncating the Taylor expansions of f and g after the

linear terms. Then (just as with a single variable) iteration converges to a solution whenever
starting values (for x and y) are available that are not too remote from that solution. So

long as the two terms of D are not nearly equal, moreover (le the derivative matrix is well

conditioned), the convergence is quadratic, reflecting the increasing legitimacy of the 0
truncation as the solution is approached. Ideally we would obtain the partial derivatives

(fx, gx,fy and gy) analytically, in particular by extending the CALCPS algorithm to provide
derivatives for all quantities. There has been no serious' attempt to obtain analytical
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derivative formulae, however, as experience has indicated that numerical derivatives are

accurate enough for the angles-only problem.

The most economical derivation of the four partial derivatives, numerically, requires

only two additional CALCPS calls in each iteration: in the first, x is given a suitable

increment, so that fx and gx can be obtained (it is recalled that the axis-system is not re-
defined within an iteration, so a non-zero value of g will result, in general, from this

increment); in the second additional CALCPS call, it is y that is incremented, so that Jy

and gy can be obtained. But the derivation of .x, say, from [f(x + &) -f(x)]/lx , where

the argument y has been suppressed, involves an unfortunate bias, arising from the one-
sided increment, and derivation via the formula [fix + &) -f(x - &)] /2& would clearly
be much more satisfactory. To get our derivatives this way, we have to increase the number
of additional calls from two to four, but as a bonus we then immediately have estimates for

the second-order derivatives fxx, gxx, fyy and gyy, where the first of these is given by

[f(x + 6x) + f(x - 6x) - 2f(x)] /1(x)2 . Thus to get a complete set of second-order

derivatives, we only require a total of five 'additional' calls to CALCPS, the fifth (and
final) being required for fzy and gxy. This final pair of derivatives will necessarily be

biased, but the use we make of fxy and gxy is sufficiently marginal for this to be

unimportant.

Second derivatives are useful because they permit the Newton-Raphson iteration
process, with quadratic convergence, to be superseded by a process that gives cubic

convergence. As a generalization of the corresponding process for a single variable, we
may refer to this as Halley's process. (Ref 1 provides an account of a number of root-
finding processes for a single variable, of which the basic Halley method is one, the
application being to Kepler's equation.) To derive the formula for Halley's process, we
note that (with third-order derivatives neglected) we want & and 6y to satisfy

f + fx & + fy 6y + /2fxx(&) 2 + fly & 8y + 1/2fyy(6y) 2 = 0 (9)

and the corresponding equation for g. But we have the Newton-Raphson values for &
and 6y , as given by equations (7), and these can be used to linearize (9) and thereby
obviate the need to solve a pair of simultaneous quadratic equations. Thus we replace (&)2

and (gy) 2 by (&X)NR & and (OY)NR(O), respectively, just as with a single variablel;
there is an arbitrary aspect to the corresponding replacement of x 6Y , but replacement by
1/2 [(6y)NR & + (&)N y] is the obvious choice, based on the replacement of

1/2(6X S a A(xx ) & by '/2(&NR 4MNR) (Ax fxly(&).

yu fyy bay! h~y /yy ) (5,)
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Thus we replace (9) by an equation that (because the third derivatives were already being

neglected) is no less valid, viz
0

(fx + '/12fx•&NR + ½2fxy OYNR)I& + (fy + '2fxy 6xNR + '/2fyy 8YNR)y - -f, (10) ,,)

with the corresponding equation for g, Evidently, the Halley iteration formula is just (6)
with the partial derivatives modified in line with the coefficients in (10).

However, another useful possibility exists, just as with a single variablel, viz to
replace each occurrence of "1/2" in (10) by "1". The resulting formula works better than
Halley's formula when two or more solutions for (x,y) are close together relative to the
starting point. (The one-variable formula is obtained on applying the basic Newton-Raphson •
formula to f/f' rather than f, ie to a function that has only a single root where f has a
repeated root; the formula based on (10) can be shown to be the natural extension to two
variables.) Thus a general procedure might be to start iterating with the 'modified Newton-
Raphson' process, ie with the /2 's replaced, and then switch to the Halley process. 0
Subroutine OBS3LS has not been written to work like this, but it has been arranged (via the
Fortran variable HN held in common block /OTHER/) that both modes of operation are
possible (or other modes if HN is given a value other than 0.5 or 1.0); further, at most 20
iterations are allowed under 'modified Newton-Raphson', after which the Halley process • *
automatically takes over. For a test example with comparison of the two processes, see
section 4.2.

Finally, a rare circumstance has been identified (see section 4.5(b)) in which
progress can be made with the geometric mean of the pure Newton-Raphson & and the •
Halley & (and likewise for 6y), though neither is helpful on its own. The situation is
essentially the opposite of the preceding one (in which two solutions are close together
relative to the starting values), arising instead when the starting values are midway between
two solutions. As can be seen very clearly for a single-variable problem, such as the 0
iterative solution of the equation x2 = 1 from a starting estimate close to zero, what
happens is that the Newton-Raphson increments are extremely large, as a result of which,
by equation (10), the Halley increments are correspondingly small and hence useless. But
very large Newton-Raphson estimates are caused by a (numerically) very small value of D, 0
which is itself associated with near singularity of the derivative matrix. Thus the situation

can be recognized from the value of IDI / (Vx g3, + !fy gxl) and a late amendment was made to
OBS3LS such that if this quantity (given by the Fortran variable DELNM) is less than
0.001, then the Halley increments are replaced by the pair of geometric means (ignoring 0
here the complication that arises if either is imaginary). It can be inferred from the pair of

quadratic equations why it is that the geometric means are of the right order of magnitude
and work better than either pair of normal increments in the given circumstance; even better
(of course) would be an exact solution of these simultaneous equations. 0
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A serious risk exists with any root-finding procedure (or with any minimization

procedure 15 based on the use of partial derivatives) that, though a 'step' is taken in a (

desirable direction, the step is too long and does more harm than good. With the angles- 0

only problem, via the approach being described, it was sometimes found that f (> 0)
increased after an iteration, instead of getting smaller. The supposition that in most cases
this involved an 'overshoot' was confirmed when it was found that the new value of f
would have had a negative sign attached if it had not been for the re-orienation of axes. As •
an empirical treatment of the phenomenon, the following action was incorporated in the
procedure whenever the value of f is more than doubled from one iteration to the next: if
the superseded values of x and f are denoted by Xold and fold (< 1/2f), then the new
value of x (and similarly y) is replaced by (V Xold +fold x)/(f+fold); it will be seen that this
is in conformity with the secant or regulafalsi method for one variable if the assumption

above, concerning the effect of axis re-orientation on the sign of f, is correct. This
additional action takes place at the beginning of the new iteration and is immediately repeated
if the revised f still exceeds 2fold. After that, the new iteration is resumed regardless of •

f/fold.

In regard to the numerical evaluation of the partial derivatives, it remains to consider

the values adopted for the increments, ±& and ±6y , to x and y in the 'additional calls' 0 0
of the subroutine CALCPS. The problem here is that & and 6y must not be too small, or
unacceptable rounding error in subtractions such as f&x + &) -fix - &) will occur, equally
they must not be too large, or the truncation error will be too great. The first (arbitrary)
choice was a simple 1% one, with & 0.01lx and 8y = 0.Oly , using the current values 0
of x and y (where it will be recalled that x = Pl and y = p3). For a number of reasons
(see the end of section 3.6 for one of these) it was soon decided that the choice of 0.1%
would be better. However, neither choice took account of the desire, referred to in
section 3.2, to make the procedure as 'observer-independent' as possible, le with results

O
independent of the positions of the points Oj on the lines yj; in particular, the derivation
of the trivial solution for heliocentric orbits (see section 2) would be prone to severe error
for x - y 0 0. The resolution of this difficulty was straightforward, though at the expense

of some efficiency: instead of taking & = 0.001 Pl , we actually take & = 0.001 rI
(and 8y = 0.001 r3), the values of rl and r3 being observer-independent.

It will be noted that the increments used as 8pl and 6p3 will become effectively

constant as the solution is approached, and it might be thought that there would be an
advantage in having them diminish as the iterative corrections themselves diminish. This
possibility was investigated, with the increments used in each iteration (after the first)
limited by the corrections made in the previous iteration. Little effect was found on
convergence, but the tendency seemed to be marginally harmful rather than beneficial. The
good behaviour of unrefined derivatives may be attributed to the fact that the computation of S
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first derivatives using two-sided increments eliminates truncation error due to second

derivatives. (•

3.4 Starting values and convergence criterion

As with so much of the angles-only procedure, there is inevitably a considerable

degree of arbitrariness associated with both the initiation and the termination of the iteration

process. The former is expressed by the starting estimates for the values of Pi and p3 (we

now abandon the notation x and y for these quantities), and the latter by the particular test

selected as the criterion for the completion of convergence.

In regard to starting values, it was considered desirable to set these outside the

subroutine (OBS3LS) for iterating the solution, so that various options could be covered; in

particular, they can be set on the basis of assumed knowledge of the type of orbit, or else

given default values; by whatever method, this is virtually the only point of the overall

procedure at which we have to relax the observer-independence principle. It is enough here

just to state the default values that have been used in the procedure: on a basis that is almost 0

totally arbitrary, both Pl and p3 are set to 2(RI + R2 + R3), which is certainly observer-

dependent. Additional options arise when multiple solutions are sought (see section 3.5).

The convergence test involves two things, the quantity actually tested and the * 0
numerical criterion value. An obvious quantity to test was the non-dimensional* ftc,

where it will be recalled that c is the calculated version of eL2 , but this is not always

satisfactory and a more carefully chosen quantity is needed. First, however, we consider

the criterion value, and here it was decided that (until the solution procedure could be

regarded as an operational tool) accuracy was more important than efficiency. In

consequence the extremely conservative criterion of 10.12 was adopted, related to the
16-digit double-precision accuracy (IEEE standard) available with the Amstrad PC1640

computer on which the procedure was developed. (If the test were conducted at the

beginning of the iteration, this would not be conservative at all; but when a process is
providing cubic convergence, and the test is at the end, it implies that, but for the inevitable

rounding error, a relative precision of 10-36 could be attributed to the results of the final

iteration!)

Returning to the quantity tested, which will be denoted by e, we first note that the

problem with fic is not that it is observer-dependent but that it leads to a ludicrously

stringent test when c is (in relative terms) very small, as with the trivial solution for

*

• Though the testing of a non-dimensional quantity is appropriate, the use of non-
dimensional target functions (f/c and gic) would be disastrous in a Newton-type
convergence process - this point is explained in section 3.5.
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heliocentric orbits again. We avoid this difficulty, very easily, on replacing the

denominator, c , by the larger of c and (the calculat-ed version of) R ; R is more

convenient than the more obvious r, their effects differing by at most a factor of two, after 0

the MAX operation. A more suhtle point arises with highly elliptic orbits, however, since
the modified test may still be unrealistic when the body has been moving rapidly near its

pericentre (see the discussion on testing, in similar circumstances, in Refs 3 and 14). This

has been dealt with, semi-empirically, by introducing V2412 into the MAX operation, 0

where V is velocity.

3.5 Multiple solutions

We know that, even for a fixed value of k (in particular for k = 0 or 1), it is 0

common for there to be more than one solution to the angles-only problem. Thus, we have
seen (in section 2) that the general number of solutions for short-arc coverage is three. It is
assumed in this section that our purpose is to obtain as many solutions as possible for each
value of k that is considered relevant, so there is no questien of resting on our laurels after 0
a first solution has been obtained. To obtain a second solution (and then, maybe, a third)
there are two obvious approaches: to alter the starting values and hope that this is enough
for the same iteration process to produce different results; or to alter the iteration process
itself, in such a way as to steer away from the known solution. We will take the second * *
approach, and for simplicity proceed on the assumption that the starting values are
unchanged. There is no reason why different starting values should not be used, however,
and a particular option for revised values has been built into the overall procedure that calls
the subroutine OBS3LS listed in Appendix C; this option is described at the end of the 0
section.

To 'steer away' from ort. or more 'known solutions' we replace the target functions,
f and g, by related functions, F and G s"y, which have the same unknown roots as f
and g do. At the known root, or roots, we would like F to be non-zero in principle, 0

perhaps even infinite or indeterminate; a zero-value would be permissible, but only if the

attractive pow.r of this zero is sufficiently diminished. (G is necessarily zero, or
indeterminate, because of the way in which G is defined.) To get from f and g to F and

G, therefore, an obvious possibility is to divide by a quantity that vanishes at the known
root(s), but we shall find that this is not sufficiently subtle on its own.

Returning to the notation (x,y) for (PI,P3), we introduce (X,Y) to designate a

known solution, and write

(c•,l) = (x- ,y- X, ). ( 1)

Then if

S= .4 +77 , (12)
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we could work with f/f as our desired F, and g//3 as G. The use of the square root,

which gives /P the dimension of a distance, is appropriate for 'flattening' f out, but the

implicit value of 1.0 as an exponent, when P is actually used, could be replaced by some

other value. (It is easy to make this change in OBS3LS, via a change to the quantity ONE,

set to I DO, and other values have been tried; the effect on convergence was bad, however,
perhaps not surprisingly, even with quite a small variation from 1.0.) If we already have
two known solutions, then we would set F to f/1lP12 , say, so there is no additional

difficulty in principle. Before proceeding, we note that P3 is observer-independent, since

and 77 are unchanged if x and X (and similarly y and Y) change by the same constant.

The problem with fl/f as F is that it generates a function of entirely the wrong

form for convergence by a Newton-type process. The form we want must not be too

different from a polynomial (in two variables), and in particular we want f-- as x - co

or y -- **. Put another way, the objection to f/fl is that the dimensional character of f

has been cancelled uut. So to 'cancel this cancellation' we actually set

F = fr1f, (13)

where y has the same dimension (length) as /P and f; moreover, we choose y so that it is

always positive and (like P) is observer-independent. This still leaves a considerable degree

of arbitrariness, and in practice the choice

S+ rl2k + r32kn (14) 0

was made, where rljkn and r3,kn are the (fixed) values of r, for the known solution, at

times ti and t3. 0

We require the values of the partial derivatives Fx etc, but these can be obtained at

once from the (numerical) values, fx etc, that have been derived by the basic procedure.

All we need to get from the f-derivatives to the F-derivatives are the first derivatives of (3

and y, which are given by

fPfX = rY = and M/Y = y= 7. (15)

It then follows at once that

FX= (r//3')(f- w f) , (16)

where w - 1/2 - 1/y 2  (17)
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and similarly for Fy, Gx and Gy (with g = 0 as usual). Before considering FXX etc, it is

remarked that we do not have to generate F. etc explicitly, since it follows from the (-)

homogeneous form of equations (7), after substitution for D , that it is more convenient just 0

to modify fx etc, writing

fx,mod =f -w • (18)

For the second derivatives it now follows that we merely have to modify f• .tc in

conformity with

fxx,mod = fx - 2w 4fx.mod - wf[1 - ý2(1/P2 + 3/7y2)] (19)

and

fxy.mod = fxy -w (wlfx,mod + 4fymod ) + w 4 71f (1/0 2 + 3/y2). (20)

It is fairly straightforward, as already intimated, to extend the modification of the

derivatives when the number of 'known solutions' allowed for is greater than one. It is also

possible to modify all the formulae to allow for a non-unit exponent to be attached to P3 or

y, but (again as already remarked) this has been found unrewarding.
0 .

Since we are merely aiming to steer the convergence away from existing solutions, it
would be natural to return to unmodified derivatives after (say) two or three iterations with

modified derivatives, but this complication has not been introduced in the present version of

the procedure. To make the convergence criterion the same for all solutions, however, the

test is always on the unmodified f, not F, in spite of the risk (considered negligible) that a

known solution might then be rediscovered. It would not be necessary to evaluate F at all,
in fact, except that the overshoot-avoidance device, if uscj,, must be in terms of F.

We now define the option (referred to earlier) for revising the starting values for

solutions after the first - it has been found more successful, in practice, than re-use of the

original starting values. The starting values for the second solution are defined by

(2XI -X0, 2Y1 - Y0), where (X0,Y0 ) and (XI,Y1 ) denote the original starting values and

the first solution respectively. The starting values for the third solution are defined, as

(2X2- X1, 2Y2 - YI), by the first two solutions, and this use of the last two solutions

continues if yet further solutions are sought.

In subroutine OBS3LS, information about the known solutions is taken from the

common block /KNWNSL/; the number (up to nine) is provided by the integer variable
IKN, which must be set to the appropriate value (zero initially) before each solution to a

given problem is sought. The known Pi and P3 themselves are assumed to be in the

arrays ROIKN and RO3KN, whilst RIKNSQ and R3KNSQ hold r, 2 n and r32An
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3.6 Multirevolution coverage

We now cover situations where the interval between ti and t3 covers more than 0
one complete orbital revolution, so that the orbit is necessarily elliptic. It is possible, in fact,
that a solution (,perhaps mote than one) exists for each value of k up to some maximum f V)

value. The following argument shows that the limiting value is finite: the greater the
number of revolutions that we seek to squeeze in between t) and t3 (as k increases), the S
smaller must be a, the semni-major axis; but there is a non-zero lower bound to a , since

otherwise the three lines of sight, the ýj , would all pass through the force centre, and this
condition ('all observations at the zenith' in the case of observations from a spherical planet)
can be ruled out on the basis that it implies either inconsistency or indeterminacy. (See also
the remarks in Appendix A and the footnote within section 4.2.)

It has been noted that the solution of Lambert's problem over the interval (tl,t3) lies
at the heart of the CALCPS algorithm, and hence at the centre of the angles-only procedure
itself. But there is a crucial difference between Lambert solutions for k ! I and k > 2, as •
follows from Ref 3 and the plot 'of T vs x' within that paper. Thus, for k = 0 or 1 there
is always exactly one solution to a given Lambert problem. For k > 2 (the multk'evolution
cases), on the other hand, there will either be two solutions or else, when the implicit energy

is too great, no solution; Ref 3 also covers the limiting case of a single solution, where two * *
coalesce, but we can disregard this as being of zero probability in practice. (Computational
difficulties associated with two close Lambert solutions cannot be so easily dismissed, but
this issue, more complicated than the related one for k q 1 , has not been addressed.)

For a given value of k (> 2), and for each solution sought, OBS3LS proceeds (as
noted in section 3.21 via calls to subroutine CALCPS (see Appendix B); these calls indicate,
via the Prgument IND, which of the two Lambert solutions (if they exist) is to be used.
Since IND is also an argument (otherwise unused) of OBS3LS itself, to find all solutions of

the angles-only problem two sets of calls to this subroutine are required, with IND set to •

unity for each solution in the first set and then to zero for each in the second set (zero
designates the Lambert solutions of lower energy and unity those of higher energy). Thus
when k > 2 there are considered to be two entirely separate cases, each of which (as
uniquely for k : 1) can lead to a set of several solutions or none; the second case is looked •

at independently of failure with the first case, an eventual such failure being inevitable, of

course, if too many solutions are looked for. An unfortunate new source of failure arises
with the search for solutions of either set, however, as a direct corollary of the 'no

solutions' possibility for the Lambert problem at any stage. Thus a solution may be under 0

way with a value of k that is actually the 'correct' one, when the value of pl and P3 , as

generated by a particular iteration, are such that the next iteration breaks down; the break-

down can occur in the first iteration if the energy implied by the starting values (and the
value of k) is too high. 0
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A fully satisfactory way to deal with the general situation has not been found, but
some fair success has been obtained with the following modes of operation, which have .9

been built into OBS3LS. If there is an immediate failure with the given starting values, then f

these are replaced by the values of Pl and p3 corresponding to the common perpendicular 4)

(shortest transversal) to the two lines of sight; if either of these is negative, it is replaced by

zero. If there is still an immediate failure, then a final attempt is made to get the iteration

going by setting both Pl and p3 to zero. If a failure occurs at the beginning of the second

(or a subsequent) iteration, on the other hand, then it is postulated that PI and P-3 were

over-corrected and the increments just made are replaced by increments of one-third their

value; if this does not work, two further such reductions in the increments are tried. After

three failures, the process is abandoned as if the failure occukred on the first iteration,
whereupon there is recourse to the common-perpendicular or zero starting values. Failures
are registered by means of the Fortran variable NFAIL.

A point of minor irritation was met on a number of occasions, namely, that a
Lambert failure would be encountered in one of the CALCPS calls associated with
incrementation for partial derivatives (even after the change from 1% to 0.1%, made partly
for this reason), though not in the main call. This was dealt with by a reduction of the
increment, for one iteration only, by a factor of 10; should that not suffice, up to two further
reductions are tried (with a final overall reduction by 1000) before the process is abandoned.
The effect of this modification was the virtual elimination of this problem.

4 TEST RUNS

4.1 An example of Herrick

The textbook of Herrick 1I is probably unique (in the field of orbital dynamics) for

the thoroughness of its presentation. In the numerical examples, in particular, he presents
the result of every stage of the calculation, which makes these examples highly suitable for
comparison purposes. To illustrate Laplace's method (Chapter 12 of Ref 11) and Gauss's
method (Chapter 13), he works with three observations of the minor planet 683 Lanzia
(1909 HC), having previously used data for this body to exemplify his algorithms for
ephemerides based on position and velocity (Chapter 7). We take, as data for the RH and
ýj, the numbers he lists (with distances in astronomical units) as part of 'Example 12C V',
together with the times t12 and t13 in conventional units to permit adoption of the value
# = 1 ; these quantities are provided here as Table 1. (All the numbers, curiously, are
positive, though Herrick gives all the Ri components as negative since his definition
involves the vectors OjC rather than COj as here.)

We will not quote Herrick's own solution for pl, P2 and P3 , for a number of
reasons: his results are (unsurprisingly) not quite the same for Gauss's method as for 0
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Laplace's; we will not be incorporating light-time corrections, so that Herrick's results

would not be what we expect to get in any case (the adjusted values of t12 and 413

obtained in Herrick's solution by Gauss's method, are included here in Table 1); the new

procedure operates to many more figures than Herrick worked to; and the new results are

self-checking on the basis of the final value of the convergence criterion for each solution

obtained. It may, however, be of interest to list all the real roots of the octic equation that

Herrick effectively sets up (as part of 'Example 13C3') in Gauss's method - the octic in 0

Laplace's method has significantly different coefficients. The four roots for r (= r2) are
3.239..., 0.963..., 0.875... and -3.368... . Only the positive roots are relevant, and tijese

correspond to values for p of (respectively) 2.563..., -0.040... and -0.926 . Herrick

derives only the first root, which leads to the correct solution of the problem, the others 6

being not merely wrong (for the actual minor planet) but invalid. Here we will give all three

solutions obtained by the new method, only the first being consistent with Herrick's octic

equation; the final solution is an example of the trivial solution for heliocentric orbits

observed from the Earth. 6

The three solutions with k = 0 are the only ones. They are listed in Table 2, each

solution being defined by Pl and P3, with p2 given for completeness. The default

starting values (5.9... for both pl and p3) were used for the first solution, the other two • 0
being generated, with revised starting values, as described in section 3.5. The number of
iterations to generate each solution is tabulated as N , whilst e gives the final-iteration

value of the test quantity that must be less than 10-12 for convergence to be deemed to have

occurred; finally, e is the approximate eccentricity of the orbit.

The maximally significant number of figures* is given for each p-entry, following
their derivation on the computer used, viz an Amstrad working to 16 decimal digits as
already noted. The values of P2 are intrinsically less accurate than for pl and p3 , since

each iteration terminates with the latest pl and p3 for which the corresponding p2 is only

derived if there is a further iteration - the full accuracy for P2 was easily obtained,
however, without recompilation of the program to force an additional iteration, by running

with the built-in option for interchange of the second and third observations.

The first solution has evidently been accompanied by an accuracy loss of no more

than three decimal digits due to rounding error, and the accuracy of the second solution is

even better, which is perhaps surprising; the third solution is as good as the second in

absolute terms, the loss of three more significant figures in relative terms being the

inevitable consequence of the small values involved. The accuracy of the solutions, and the 0

* The precision of an angles-only solution is easily assessed via a sample of runs with
different starting values, or by running with the data-interchange option.
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rapidity of convergence, can largely be attributed to the excellent condition of the derivative 4
matrix in the vicinity of each solution.

0
If the same (default) starting values are used for all three solutions, the second and

third emerge in reverse order, the number of iterations for the three being 4, 11 and 17. If

the progress of each solution is plotted in the plane of (x,y) = (Pl,P3), it appears that the

reduced speed of convergence to the second and third solutions may be araibuted to the fact

that the iteration process must effectively pass through the first solution to locate what has

now become the second, and then through both known solutions to locate the final one -

with 'revised' starting values this phenomenon only occurred with the third solution, and in

a milder form. It is remarkable, on the other hand, how robust the entire" process turned out

to be when experiments with different numbers for the default starting values were made,

whether with revision (for the second and third solutions) or not. Even with enormous

values, eg with Pi = p3 = 1000000 (which takes us more than 25000 times beyond the

orbit of Pluto!) rapid convergence was obtained to all three solutions. 0

It is evident that the new solution procedure for the angles-only problem works

extraordinarily well with Herrick's example.

4.2 Examples constructed from Herrick's
0

Herrick's well-behaved example has been a good basis for the construction of more

taxing problems, of which five will be described here. The general basis for construction

has been that it is easy to alter the data, and the affine placement of the second observation,

in such a way that the first solution of the original problem is still (at least approximately) a 0

solution for the new problem.

In the first constructed example, 02 was moved to make the new A2 linearly

dependent on ;L1 and A3 , since (as noted in section 2.1) this would be enough to

invalidate the classical methods. In practice the new A2 was set to '/2(A 1 + A.3), which is 0

not a unit vector but that did not matter. Then an arbitrary position was selected, for 02,

on the affine placement of A2 required. (The position is 'arbitrary' by the principle of

observer independence, the chosen option being to set 02 in the plane defined by C, O0

and 03 .) The results obtained are listed in Table 3, without N or e. Only two solutions 0

could be found, of which the first is the 'correct' (datum) one: it is only slightly less

accurate* than the corresponding solution in Table 2, a degradation that is reflected in the

condition of the derivative matrix. The second (hyperbolic) solution, thongh formally

'invalid', is as mathematically acceptable (and accurate) as the first, the obvious question 0

then being "What has happened to the third solution?". The answer is that it has "gone to

* The new solution is only in seven-figure accord with the solution of Table 2, but this is 0
merely due to seven-figure truncation in the coordinates of the new 02.

TR 93004



26 6
00,)

infinity", the existence of such a solution being a consequence of the linear dependence*.

This was confirmed when the run was repeated with the (exact) eight-decimal components
of A22, which had been constructed to give exact linear dependence, truncated to only seven

decimal places: then a third solution emerged with all three pj's of the order 30000 (and

only about eight-figure accuracy, associated with severe loss of condition for the derivative
matrix) and c - 6 x 1011. It was of interest that this solution could be obtained from quite

small starting values (<50), without an excessive number of iterations (N < 20); in fact, a
well-defined value, Pwd , was found such that, with starting values P1 = P3 - P0. for
selected values of po, the first solution would be this special one when P0 > pwd but the
'correct' one when PO < Pwd, without N rising beyond 20 for PO -Pwd-

It being established, fiom the first constructed example, that the procedure does not

suffer when the rank of the A-matrix is only 2, it was natural to construct the second

example so as to reduce the rank to 1. This was done by use of parallel lines of sight, with
every A = (0,0,1), and observation sites at (xpyj,O), where (xj,yj,zj) is the location of Pj
in the correct solution of the original problem. Four solutions were found without difficulty •

and are listed, in Table 4, as two pairs: solutions 2 and 4 awe mirror images of solutions 1
and 3, the 'mirror' being the xy-plane which is perpendicular to the lines of sight. (No
further solutions could be found.) It is easy to see why solutions come in pairs: if an orbit
with a given set of elements defines one solution, then another mast be the orbit with all •

elements the same except for D and w which change by x (assuming the inclination, i,
to be relative to the xy-plane). In regard to the normal occurrence (when k = 0) of solution
sets of three, a third pair of solutions might have been expected, but (as in the preceding
example) the missing solutions are at infinity; in fact, there are infinitely many solutions at 0

infinity, since the three parallel observations correspond to a single limiting point.

The third example was constructed with A2 altered so as to be collinear with C,

the obvious way to achieve this being to set 02 at C with A2 = C2 : this is a severe
version of the circumstance where A2 lies in the orbital plane, which is prohibited in
Escobal's method. The new procedure derived the datum solution without difficulty, but no

other solution could be found. Thus there is nothing to tabulate.

In the constructed examples described so far, it will be seen that the actual condition S

of interest (though not its manner of construction) is unrelated to the solutions, the condition
being the rank of the A-matrix or the passage of X2 through C . In the remaining two

Moving the Pj (for one solution) to infinity is effectively equivalent to moving the 0"
towards C, and when the Aj all pass through C we have the inevitable singularity
condition referred to at the enT of section 2.1: if (under these circumstances) the X, are
linearly independent, then there can be no solution; otherwise, the prob6em is
indeterminate in the limit, there being infinitely many solutions,
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examples, the condition relates much more specifically to the 'correct' solution of Herrick's I
example. In the first, we take 02 at P 2 with an arbitrary direction for A. The objective

here was a final verification of the observer-independence principle, in the extreme case of
p2 . 0. No difficulty arose in the derivation or format of the datum solution (though no '

other emerged), the associated value oi p2 being derived in practice as 4.341 x 10-9.

The final Herrick-based example to be constructed is of a different nature from the 0
others, the object being to compare the behaviour of the two possible iteration processes

when two solutions are so close together that we virtually have a 'repeated root'. The
construction was as follows: nearby, or nominal, values (PlnP3n) = (2.399,2.824) were
obtained by truncating the values for the datum solution (Table 2). the corresponding
position for P2n was found, for the resulting orbit, via subroutine CALCPS; a transversal
P2P2n to two orbits now being available, a suitable position for 02 was obtained as the
point on this transversal such that O2P2n = P2n = 2.563 (arbitrary, but in practice by

truncation of Table 2 again) with A2 defined from PPP 2 . Table 5 lists the three
solutions for this data to the appropriate accuracy (the third solution, being isolated from the

others, is accurate to five more significant figures). Solution 2 is exactly as expected, whilst

pl and p3 for solution 1 are in accord with Table 2; the accord does not extend to p2
because of the way in which the new position for 02 was obtained. *

The number of iterations required for convergence was as follows: with the

standard (Halley) iteration process (and the regular starting values), the first solution was
obtained in 10 iterations and then the one labelled 3 (from revised starting values) in 7
further iterations, but the one labelled 2 was not reached at all; with the modified Newton- 0
Raphson process (see section 3.3), on the other hand, a single run yielded all three

solutions, the number of iterations being 7, 12 and 10, the last solution being the one
labelled 2 in Table 5. The relative behaviour for the first two solutions is exactly what one
would expect: for 'solution 1', the Halley process required three more iterations, the reason •

being the proximity of 'solution 2'; then for 'solution 3', derived next, the Halley process
took five iterations less, as a consequence of its normal superiority. It is not so obvious

why the Halley process failed where the modified Newton-Raphson succeeded, in its final
discovery of 'solutior. 2', on the other hand, since 'solution 1' might now be thought of as •

being 'out of the way'. The superior behaviour of the modified Newton-Raphson process
was confirmed in a number of additional trial runs, however, and is apparently related to a
singularity contour in the vicinity of the 'double point'. Under Halley, the 'empirical

treatment of overshoot' (described in section 3.3) plays an important r6le, the eventual •
behaviour being an excruciatingly slow linear progress towards solution 2.

To elaborate on the loss of five significant digits referred to (for solutions I and 2) in
the last paragraph, this can be attributed to the very poor condition of the derivative matrix in
the vicinity of these solutions; thus the two terms of D , in equation (8), then almost cancel, 0

TR 93004

a U



28 0

their values being the same to about four significant figures. In the computation of

solution 1, the condition for the matrix is a direct consequence of the proximity of
solution 2, the effect being that, with the partial derivatives themselves unusually small, the 0
convergence criterion can be satisfied in spite of the large rounding error in the generation of
the final corrections to Pi and p3. The rounding error is unavoidable and there would be
no improvement in accuracy from a further iteration.

S
4.3 Three constructed examples of considerable severity

After the successful results for all the Herrick-based examples, it was decided to
construct some severe examples from first principles. The performance of the procedure
with three of these examples is now described.

For the most severe example that could be contemplated (and which was soon
recognized as officially indeterminate), it was decided to combine two features: the sight-
lines A and A3 would coincide and pass through C ; and the positions of the Oj would
themselves be compatible with an orbit. The data are listed in Table 6, wherein the first
feature (with both observers 'looking in') is immediately apparent; the second feature
follows from the evid-ent choice of f12 and t13 to be 1/2x and 7r , respectively, the
compatible orbit having e = 0 and (with u = 1) a = 1. The sight-line at t2 lies in the plane

through C perpendicular to the coincident lines at tl and t3 ; more specifically, A2 is * _
parallel to the z-axis, whilst AI and A,3 lie in the y-axis.

Now it may be recognized that there exist two infinite families of solutions to this
problem, such that the orbit corresponding to each solution lies in a plane through the y-axis
and is symmetric about the xz-plane. In one family the orbits are direct (i < 1/27 ) and in the 0

other they are retrograde, the same ellipse being described in opposite directions in a pair of
mirror-image paths; the direct family includes the trivial orbit (all pj = 0) whilst the
retrograde family includes the image of this (with P1 = P3 = 2 and P2 = 0). In each

double orbital plane the point P2 is uniquely defined by the intersection with X2 , and is
the apocentre of the double ellipse for which the values of rl and r3 (equal, and the same
for both paths) can be found (and r2 also) by elementary calculation. (The calculation is
most easily based on an assumed value for e: for each e, with 0 • e < 1, rl and r2 may
be determined from V1 = 42 = 1/29 , via El, MI, n and a.) But not every plane through

the y-axis is a possible orbital plane for a pair of orbits, since the limiting cases (e = 1) are
for inclinations given by tan i = #2 , where P22 = r2

2 - 1 and r2 = 3f-2 ; at this point

"•i" has lost all meaning, however, the ellipses having become rectilinear and identical. If
negative values of p2 are allowed, there are effectively twice as many solutions in each
family; they mirror the existing solutions (in the xy-plane) with the mirroring rectilinear
ellipse in the limit.

0
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But how does the solution procedure cope with this really severe example? The

answer is: surprisingly well, so long as the facility to interchange the r6les of the data at (i)

times t2 and t3 is utilizedl (And the regular starting values could not be used, for a reason 0

that will soon be apparent.) The existence of the two families of solutions with Pl = P3 r)

(retaining the original suffix designation for convenience) is demonstrated by convergence

to a solution (in the family determined by the starting value for Pl) for every choice of a

starting value for p2 up to the permitted maximum; p2 remains fixed during convergence, S

the iteration being effectively on pi alone. Solutions are found quite fast, and are well-

determined unless the fixed value selected for p2 is close to its limiting maximum. (The

regular starting values would be above this maximum, which is why they are unusable.)

This behaviour is entirely consistent with expectation. What was nor anticipated,

however, was the appearance of further sets of solutions, in particular of four families of

unsymmetrical solutions. The characteristic feature of an 'unsymmetric' solution is that the

observations at 11 and t3 are exactly one revolution apart, so that all these solutions have

a = 2"% ; the time intervals t12 and t23 correspond to differences of X in mean anomaly

but to 1/2 x and 3/2ir (or vice versa) in true anomaly. The existence of four families, of

essentially equivalent orbits, results from the combination of the two possibilities for true-

anomaly differences with the possibilities for both direct and retrograde orbits. The orbits in * .
the xy-plane have the value e = 0.617... (as opposed to zero for the symmetric orbits), but

at the other extreme (maximum inclination) the limit is provided by the same rectilinear
ellipse as constitutes the limit for symmetric solutions. Since this rectilinear orbit is the limit

of no less than six families of solutions, two symmetric and four unsymmetric, it is not

surprising that the procedure breaks down in its vicinity.

The unsymmetric orbits, like the symmetric ones, are obtained with p2 remaining

constant through all the iterations. Since k , the half-revolution count, is based on t12

rather than W13 (because of the r6le interchange), half the unsymmetric solutions are found

with k = 0 whilst the other half require k = 1. But with k = 1, two further families of

symmetric solutions appeared; the relation of these to the original two families is that the

swept-out angles corresponding to t42 and 113 are 1 /2x and 3K, not 1/2Kr and xr.

The final total for the number of solution families is now seen to be eight. To

illustrate, Table 7 lists all the eight solutions in the xy-plane, to the appropriate accuracy in

each case, the values of p2 (all zero) being omitted but with k and family-type included.

The second constructed example was a distinctly less severe version of the first, the

differences being as follows: the positions of O0 and 03 were moved closer to 02, to

remove the collinearity with C , the adopted coordinates being (0.6,;0.8,0.1); the

corresponding sight-lines were given non-zero z-components, being (arbitrarily) specified

as (0,±1,0.5); and the times were reduced in conformity with retention of the trivial circular
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orbit as a solution, the new value of 412 being given by arc-tan (4/3). The problem was

now fully determinate, solution becoming possible without the interchange of data points. ()

Only two solutions could be found, however, the non-trivial one being P1 = P3 = 0
0.43732746883 and P2 = 0.32596464957 , with e - 0.71 and i - 18 degrees. So there

was little to be learned from this example.
It was noted with the example of extreme severity that solutions could not be

0

obtained near the pair of rectilinear orbits that are multiple limits corresponding to extreme

values, positive and negative, of p2. This was hardly surpwising. But it suggested an

arbitrary rectilinear orbit as the basis for a final constructed example. Assuming such an

orbit along the positive z-axis, with both a and e set to unity, the values of E at PI, P2

and P3 were taken to be 1/Az, 2•x and x respectively, from which the values of z (= r)

are 0.5, 1.5 and 2.0. The resulting values of 112 and 413 are 1/3x and -/sr + -0/2 , as
included in Table 8 (but hand-calculated to 10 digits only); the other tabulated entries follow

from the setting of O1 on the x-axis, 02 on the y-axis and 03 to coincide with C.

Run (with default starting values) in the usual way, the correct solution was obtained

in four iterations, and is the first of those given in Table 9. The values obtained for Pl, P2

and P3 are in proper accord (to the accuracy of the data) with the correct values of

4125 43.25 and 2. The correct values of a (1.0), e (1.0) and i(90*) were obtained, with * *
conventional values of D and co since an orbital plane is not defined for a rectilinear orbit.

Solution 2 is a second rectilinear one that emerged, together with the other six solutions
(non-rectilinear ellipses), when runs in the interchange mode were undertaken. The value of

Pl is the same in all eight solutions because PI (as well as P3) always lies on the z-axis.
The non-rectilinear orbits involve a true-anomaly arc coverage (from PI to P3) of 27r

(solutions 3-6), x (solution 7) or 31 (solution 8); these are basic-singularity conditions,
which is why solutions 3-8 can only be found in interchange mode. The overall conclusion,

for the rectilinear-orbit example, is that the behaviour of the procedure with all its

subordinate subroutines and functions 2,3,14, is remarkably good!

4.4 Two examples of Escobal

In the course of an extended correspondence between Mark Lane of the MIT Lincoln

Laboratory and the present author, Lane drew attention to five problems that he had taken

from the examples and exercises in Chapter 7 of Escobal's textbook1 0. Three of these could

be solved without difficulty by Lane's own methodl 3 , but something was amiss with the

other two and the author was invited to apply the new method. As a result, it was possible

to confinr Lane's conclusion that a major error (such as the date or times) must be present

in the data for the first problem, but that if allowance is made for the effects of perturbations

etc in the second example it might be possible to reconcile the textbook solution with the

(only) one found by Lane and the author. Unlike Herrick, Escobal supplies only the final
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answers, as sets of orbital elements, so no inferences are available from intermediate stages

of the computation. (u)
0

The first problem is Exercise 1 of Escobal (loc cit,which relates to the Earth satellite

1959 Alpha 2. If we express distances in kilometres and times in seconds, with the value

= 398601.3 , then the data for the three observations (ignoring light-time corrections and
all other complications) are as in Table 10. The five solutions obtained (in the usual way,
except that the fifth solution only emerged during a later run) are as listed in Table 11, and it
is seen that no solution can be accepted - in particular because there is at least one negative

range in each case. To avoid the possibility of error in the data preparation, the program

was also run with the data that had been prepared independently by Lane. The units for 0
Lane's data were Earth radii for distance and days for time (with p = 11467.89807) but
essentially the same results were obtained.

In view of his failure to obtain a valid solution at all, Lane computed the sight-lines
that would be needed for consistency with Escobal's nominal solution, assuming no other 0
change in the data. A complete set of 'revised data' is presented in Table 12, therefore,
exactly as supplied by Lane in his own preferred units and obviously entirely different from
the data in Table 10. The solutions are given in Table 13, where it is Solution 3 that agrees
with the nominal result. The notable feature of these results is the existence of a fourth * 0

solution when k = 0. This was entirely unexpected and it was gratifying that the four
solutions were found in the usual way (with revision of starting values) without difficulty.

The second problem was Exercise 6 of Escobal (oc cit), which relates to the Earth
satellite 1959 Eta. Table 14 gives the data (units kilometres and seconds) and it will be seen 0
that this is a very-short-arc problem with all the observations from the same station. The
only solution that could be found (k = 0 of course) is given in Table 15. This is formally
accurate to the number of figures quoted and the value of the eccentricity (0.197) agrees
with that obtained by Lane, though Escobal's official solution involves e = 0.232. The •

result is obviously very sensitive to any allowance for noise in the data, however, and to the
inclusion (or otherwise, as here) of the effects of orbital perturbations, light-time corrections
in the data, etc. So it may be concluded that there is not necessarily any real discrepancy
present for this example. •

4.5 A general survey of single-revolution examples

In addition to the real-fife and artificially-constructed examples already described, it
was natural to wish to make a grid-type survey of all possible nominal orbits (hyperbolic as 0

well as elliptic), with a similar survey of all possible sets of three possible observations at all

possible times. But far too many parameters are involved for all grid points to be covered
without the performance of billions of test runs, so for the exercise to be reduced to
manageable proportions the coverage had to be severely restricted. In practice the following 0
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restrictions were introduced (with pf= 1 in all cases): fixed positions of the observing sites

were selected; times would always be at uniform intervals (so that 412 = V2t43); a particular

orbit would serve as the 'basic nominal'; and a variety of test cases would be generated via

families in each of whtich a single orbital element, or else the value of t1 3 , would be varied. 4)

Each test run consisted of the generation of the observations corresponding to the nominal

orbit under current consideration, followed by the derivation of all the solutions that the new

procedure (run without prejudice of course) could locate. 0

On an arbitrary basis the observing sites were placed, once and for all, at (0.1,0,0),

(0,0.1,0) and (0,0,0.1), and the basic nominal orbit was defined by (a,e,i,Lo.,') =

(1,0,.0,0,0,0), implying an orbital period given by T = 2nr; in the family of e-varying runs,
a was changed to -1 for the (hyperbolic) cases with e > I . The basic value of t13 was

taken as 4, whence t12 = 2 and (since t12 < V2T < 43 for elliptic orbits) all examples are

indeed single-revolution but with k = 1 not 0 (for ellipses). Again, since CALCPS

assumes the time of the first observation to be the time origin (that is, tj = 0), the

implication of T = 0 is that the first observation is made at pericentre, itself a severe test of

the procedure for highly eccentric orbits; a further implication is that the second observation

occurs (for elliptic orbits) before the next apocentre, so that if the facility to interchange the

second and third observations was invoked, as it always was if the 'true' orbit could not be

recovered under the normal mode of operation, then it would be necessary to switch to

k=0

Results from the successive families of test runs will now be given.

(a) Examples for a range of inclinations •

In the first family of test runs, seven values of i were used, viz 00, 30*, &00, 90o,

1200, 1500 and 1800, the first of these defining the basic orbit itself. No difficulty was

encountered in the recovery of the nominal solution in each case, in at most five iterations,

with at least one additional solution always found. For i = 01, 600 and 1800, a third solution

was found, whilst for i = 30* a total of four emerged.

With .0 = 00 , it is clear that both O and 03 lie in the true orbital plane when

i = 90" , whilst O and 02 lie in the orbital plane when i = 00 and 1800. Thus these may

all be regarded as quite severe tests. It will be seen, in the next section, that a non-circular
orbit can be a source of particular difficulty when i = 90°.

(b) Examples for a range of eccentricity

It was decided to run with the following values of eccentricity (input, for

convenience, rather than the 'universal' element, q): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 0.999, 1.001, 1.1, 2, 4, 10 and 100, the elliptic orbits being for a = 1 and the

hyperbolic orbits for a = -1 as already noted. It was assumed (and confirmed) that a run
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with e = 1 (rectilinear ellipse or hyperbola, according to the sign of a) would fail, in
particular because the first observation would then b- of the force-centre itself! By the same C)

token, the orbits with e = 0.999 and 1.001 would then furnish tests of considerable 0
severity. '4)

The initial intention to operate with a single family, using the basic value of i = 00
for all tuns, was revised in favour of three families, using the additional values i = 451 and 0
900. For 00 , the correct iolution was recovered for all orbits other than with
e = 0.999, at most one other solution being obtained. At most nine iterations were
needed for the elliptic orbits, not counting the complete failure (e = 0.999), and five sufficed
for each of e = 2, 4 and 10, but the other hyperbolic orbits required more iterations, the 0
number being 20 for e = 100. Under normal operation, no solution was found at all for
e = 0.999, but two were found in the interchange mode; unfortunately neither corresponded

to the nominal orbit.

"The results for i = 45' were in some ways (but not all) better, as expected. Far
more solutions were found for the elliptic orbits, including the correct one in all cases but
(again) e = 0.999 ; in fact three solutions were found in all cases (up to e = 0.9) except for
e = 0.6 (two solutions) and e = 0.7 (four!). More iterations were required, however, rising
to 15 for e = 0.8. As with i = 0' , the correct solution was found for all the hyperbolic * *
orbits, but the interchange mode was needed for e = 4 and 10. The recalcitrant case

(e = 0.999) was again not helped by interchange.

The results for i = 90' were (as expected) the worst of the three sets, though for
hyperbolic orbits there was little difference from the other two sets. For elliptic orbits the 0

correct solution was only found with e = 0.1, 0.3, 0.4, 0.5 and 0.6, the full number of
iterations (25) being required for e = 0.5, and the interchange mode did not help any of the
other cases. The failure for e = 0.2 was entirely unexpected and, upon investigation,
revealed the bhaviour that was remarked upon in section 3.3, such thai with the regular 0

starting values, (pl,p3) = (0.6,0.6), the unmodified Halley process 'converged' with ever-
increasing slowness to the point (-0.2220...,0.1604...), which is not a solution of the
problem but at which the derivative matrix is totally singular. Apart fiom the true solution,

(PlP3) = (0.7,1.2089...), two other solutions were found by experimentation, 0

(0.4046...,-0.6457...) and (-1.4348...,0.9591), and the false-convergence phenomenon
should be explicable in terms of the configuration of the three solutions; it is naturally much
more complicated than the simple one-variable quadratic equation considered in section 3 3,
however. The effect of the modification (involving geometric means and described in 0

section 3.3) was somewhat paradoxical. On the one hand, there was still no coonveigence
(within 25 iterations) to any solution when the reg'tlar startiaig values were used, The
problem of 'decelerating convergence to a singular point' disappeared, on the other hand;

0
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moreover, when starting values close (by four-figure truncation) to the singular point were

used, a circuitous convergence to the right solution was achieved after just 25 iterations. u)
S

Particular attention was paid to the case just described because difficulty had not

been expected at such a low eccentricity and because the investigation was reveal ing. The

modification to the iteration process was certainly worth making, but the difficulty (in

routine operation) for this case was not eliminated; the reason for this requires further S
investigation.

(c) Examples with alternative values of £2, 0o and "r

To avoid proliferation, it seemed senisible to use only one alternative value for each

of the elements D2, (o and r, the full range of values of e being covered to provide a

family of runs in each case. It was decided to use the value i = 450 , rather than i = 00,

with each family.

With the alternative value 02 = 450 , it was no longer the case that the first observing

site (01) was automatically within the true orbital plane. The results were very little

different from the family with D2 = 00 , however. Two cases failed: for e = 0.999 , as

before; and for e = 1.001 . But the latter was not significant, as there had only just been

convergence (24 iterations) for 2 = 00.

For the next family, the alternative value o) = 45' was introduced, D2 being

retained also at 45°. The results were, unfortunately, marginally worse, since the correct

solution could now not be obtained for e = 0.6 and 0.8 as well as 0.999. A remarkable

feature of the run with e = 0.9 was the derivation of a record number of solutions, six,
when operating in interchange mode with k = 0. For the hyperbolic orbits, however, a

single solution, the correct one, was obtained for every value of e.

For the final family, - was set to the value corresponding to a mean anomaly

(elliptic or hyperbolic) of 450, ao being restored to zero and 12 retained at 45°. This meant

that the use of pericentre as the first observed point was at last being abandoned, the

gratifying effect being the virtual disappearance of all convergence problems, the only

failure being for the largest value (100) used for e. This shift of the first observation away
from pericentre meant, however, that it was zto longer appropriate to set k = 1 for all the S

elliptic runs and k = 0 for all the hyperbolic runs; the switch from k = 1 was now required

between e = 0.2 and e = 0.3. At most five iterations were needed to obtain the corr,-zt

solution for any elliptic orbit, including (for the first time) the rectilinear ellipse. For the

hyperbolic orbits, the maximum number of iterations needed was ten until e = 10, at which 5

point 19 were necessary. It has already been noted that convergence failed for e = 100, no

solution at all being found with the usual starting values, (0.6,0.6), or even with

(0.69,0.69) come to that; with starting values (0.7,0.7), however, the correct solution was

found in twelve iterations. So even the failure for e = 100 was marginal. ,
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(d) Examples with a range of values for c and 4 3

After the runs already described, it remained to consider the scale effects, in distance •

and time, corresponding to a range of values of a and t13 , with the value t42 = 1/2t 13

maintained. The values of the other orbital elements were fixed as for the last family of runs

described (alternative value for T), just a limited range of eccentricity being covered.

The range of semi-major axis covered was, ipsofacto, different as between elliptic 0

and hyperbolic orbits. Thus, for two 'spot' values of e < 1 , viz e = 0.2 and e = 0.9 , the

families of runs were for a = 1, 1.2, 1.5, 2, 3, 5, 10, 20 50, 100, 200, 500 and 1000
(values of a < (2/7) 2/3 would be inappropriate for nominally single-revolution orbits). The
correct orbit (with no alternatives) was derived, usually in six iterations or less, for all •

combinations of (a,e) with the single exception of (1000,0.2). For hyperbolic orbits, a
single value of e was adopted, viz e = 10 , the coverage of semi-major axis being the
negatives of the values for elliptic orbits, supplemented by the values a = -0.1, -0.5, -0.7,
-0.9. The results now were rather poor, since the correct orbit was only derived for the 0

values a - -0.7, -1, -2, -10 and -100, with no solution at all for the other cases.

For the family of runs with t13 varying, a single orbit was used, with a = 1 and
e = 0.1. It will be recalled that the basic value was t13 = 4, this being the mean-anomaly

difference in radians. For increasing values of t13 up to the limit of 27, corresponding to
multirevolution coverage, it was expected that difficulties would be encountered as the limit
was approached, in particular because of the Lambert indeterminacy that would arise with an

angular separation approaching 21 (or 7 when running with interchanged observations) as
well as one of ;r. In practice all was well up to t 13 = 6.1 , but at t13 = 6.2 the problem 0

was met, aggravated (it would appear) by the fact that no less than six solutions were

eventually found after experimentation with this particular case. With decreasing values of
43, on the other hand, entirely predictable results were obtained. They may be summarized
by the remark that the use of r as one of the author's 'universal' elements 14 involves the 0

addition of T to 412 in CALCPS, so that the accuracy of the overall solution process
inevitably degrades without limit as :12 and tl3 decrease in magnitude relative to T.

4.6 A range of multirevolution examples 0

It was decided not to undertake a full (general) survey of multirevolution problems,

but to restrict consideration to a single family of runs based on the particular orbit specified
by (a,e,io2,,M) = (1,0.1,450,450,0o,45'). The family of runs is an extension of the last
one used in section 4.5, with t43 changing from run to run (and t12 = 1/21 3), the values of 0
t13 starting where they previously left off. The single-revolution results indicate that it is

only in regard to e that runs for other values of the orbital parameters might have been
significant, but for multirevolution orbits (with e < 1 , necessarily) it seemed unlikely that

runs with e > 0.1 would be of great practical interest. 0
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In regard to the values of t43 selected, it is remarked that the value t13 = 2Jx (for

any integer j) corresponds to the spanning of exactly J revolutions between the first and (a)

last observations. It was convenient, therefore, to use integral values of t13, starting with

t13 a 7 , to introduce a quasi-random variation in 0, the reduced angle P1CP3 , as 413 , 4)
was increased. To cover nearly eight revolutions, as an arbitrary limit, all (integral) values

of 113 up to 24 were selected and then alternate values (even integers) up to t13 = 48. Thus

the total number of runs was 30. S

The regular procedure, with standard starting values, recovered the correct solution

without difficulty (without the restart with common-perpendicular starting values coming

into play, in particular) in 24 of the 30 runs, the maximum number of iterations required
being six. The correct value of k had to be supplied for each example, of course (several
values might have to be guessed in turn, in real-life runs), and the correct solution could

correspond to either the higher-energy Lambert assumption or the lower-energy assumption.

Additional solutions were found for most of the examples, and these did sometimes involve

the restart procedure (which comes into play automatically). The failures for the remaining

six examples could all be attributed to, or at least associated with, insufficiently close

starting values, since it was checked in each case that convergence followed rapidly from
starting values close to the known solution; this would be of no comfort in real-life
problems, of course, unless good estimates happened to be available. For three of the six

failing examples, the solution could'be found by use of the facility for interchange of the

second and third data sets, but interchange did not help the other three.

To be specific, the failures were for t43 = 9, 15, 16, 22, 28 and 44. An immediate •

conclusion is that there is no marked tendency for a failure to become more likely as the

number of included revolutions increases; this is one reason why the number of included

revolutions was not taken beyond eight. The simplest failure to explain is the one for

t43 = 44 , since this example involved an angle of only 1.150 for 0 . The unreduced angle •

(for the correct orbit) includes seven revolutions, its value being 2521.150, with k = 14 ; the

root of the problem for this value of t43 was the proximity of x to 22/7. Somewhat
surprisingly, this was one of the three examples for which the solution could be found by

the interchange facility, the other two being for t43 = 15 and t13 = 28. 0

4.7 The Molniya example of Lane

The final example to be presented is the second of the three presented in the recent

paper by Lane 13 that has already been referred to. The example was based on a Molniya-

type orbit for which the nominal elements at epoch are given by (a,e,i4L,o,M) =

(4.16347314,0.74,630,2000,2800,300.5411), where the semi-major axis is in Earth radii, the
value of u being taken as 11468 in the appropriate units. The data (taken directly from

Ref 13) are listed in Table 16.
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An attempt was made to find all possible solutions for this problem, the results being

presented in Table 17. In running the new method in the standard way described in (

section 3, with revised starting values (as at the end of section 3.5) for multiple solutions, 0

193 solutions were found, as indicated by the index numbers (when present) in column 1 of

the table. Of these, 137 can be dismissed as impossible, either because at least one of the

three ranges (in columns 4-6) are negative or because the perigee, at geocentric distance

a(1 - e), with approximate values of a and e given (in columns 7 and 8) in the table, is 0

subterranean. The impossible solutions are indicated by the asterisk in (column 2 of) the

table, the 'possible' solutions that were found automatically (and rapidly) being the rest of

the numbered ones. The solutions were obtained by running with successive values

assumed for k (the number of half-revolutions spanned), the value of which is included 0

(column 3) in the table. As no solution could be found with k > 159, with a = 0.961

(about 6129 kin, corresponding to T = 1.327 h), it may be assumed that this is the energy-

limiting value of k referred to at the beginning of section 3.6.
0

Lane himself tabulated only eight possible solutions to his Molniya problem

numbered 2, 5, 6, 8, 9, 10,11 and 12 in Ref 13; his procedure suppressed solutions with

any range negative, so the gaps in his numbering sequence were entirely due to subterranean

perigee. It had been assumed that most of Lane's solutions would be included in the 56
'possible' ones derived by the new method in standard mode, but in fact only his 0

Solution 12 emerged - as the solution numbered 13 in Table 17. The other seven were

obtained in the course of non-routine operation of the method, however, and are included,

with others derived in the same way (mostly by the use of unchanged starting values in 0
deriving multiple solutions), in the table; such solutions, unnumbered in column 1, appear
after the numbered ones, except that the unnumbered solutions of high energy (for a given

value of k) are placed before the numbered solutions of low energy. Lane's solutions may

be identified by the presence of his solution number in column 2 here, since an asterisk 0
cannot be needed for these solutions. The additional solutions derived in this way were 62

in total, of which only eight (the seven remaining Lane solutions and a solution with k =

19) are possible. Thus a grand total of 255 solutions were found, with 64 deemed possible.
The correct solution is Solution 5 of Lane, between the regular solutions numbered 45 and *
46 here (the value of a in this solution corresponds to T = 11.96 h).

It may be thought that the new inethod's performance is curiously unsatisfactory for
Lane's example, since (in routine operation) it located only one of the eight Molniya-type

orbits that Lane found as solutions, and this one not the 'correct' one. (It is worth
remarking that four of Lane's solutions are 'direct' orbits with i - 630 and four are

'retrograde' with i - 1170 ; for the full set of 255 solutions it is similarly irue that about half

the orbits are direct and half retrograde, but the ranges of inclination covered are not so

closely centred on 630 and 1170.) These failures are highly correlated, however, since in 0
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each case we see from the table that (for a given k) Lane's solution is preceded by a @

solution of lower eccentricity but almost identical semi-major axis (and inclination likewise,
it happens) with both pl and p3 close to 6. Now the starting values for the first solution 0

are (in all cases) given by Pl = p3 - 6 (and would be exactly 6 if the observing sites were ,)
anl at exactly one 'Earth radius' from the centre of the Earth), so the solution procedure starts
(for each value of k for which there is a 'Lane solution') by finding this lower-e solution

quite rapidly, After this it appears that (with one exception) the multiple-solution algorithm
is insufficiently robust to locate Lane's solution, the precise reason for this being unknown.

It will be noted that for all the lower-e solutions referred to in the last paragraph

(with Pi and p3 both near 6) the value of p2 is negative; in fact, the difference between 0
the values of p2 for the possible and impossible solutions is always much greater than the
corresponding differences for p1 and p3. Two points may be inferred from this. First, a

certain amount of bad luck was associated with the failure to locate the possible solutions, in
particular because of the solution procedure's use of Pi and p3, but not the more sensitive

p2, as basic unknown variables. Second, there might appear to be some advantage in a
preliminary 'starter modification process', prior to the main iteration process, along the
following lines: from the procedure's standard value of p, defined as the common starting
value of Pl and p3, we obtain the corresponding value of p2 in the normal way; unless • .
this is negative, we start the main process as usual; if p2 < 0 , on the other hand, we
compute a numerical value for dp2/cp (just as for the derivatives fx etc in section 3.3, our
concern now being with the unknown range along the observed line of sight, rather than the
known direction); from P2 (< 0) and dp2ldp we obtain a revised value of p , •

corresponding (on a linearity assumption) to p2 = 0. This 'starter modification' could be
enhanced, if desired, by iteration or by use of the second derivative d2p2/dp2 .

The objective of starter modification is to encourage the solution procedure to go
directly to a valid solution, rather than via an invalid one, in particular for problems such as •
Lane's. In the basic form outlined, the modification was so simple to implement that it was
applied to Lane's example after the first draft of this Report had been completed. The
results were disappointing, however, and it would appear that a more subtle version of the

modification is required. It must be admitted, in the meantime, that the current procedure •
does not perform as well, for Lane's example, as had been expected from its excellent

performance for the previous examples.

5 DISCUSSION 9

Previous researchers10,12,13 have assumed that, when Pi and p3 are the iteration
variables, it is logical to take t12 and t13 (or t23) as the target functions. This certainly
leads to rapid computation, since there is no need to solve Kepler's equation, let alone the
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Lambert problem, but the speed is achieved at the expense of a severe loss of general

applicability (robustness), as suggested in section 3. To confirm this suggestion, it was

decided to program the usual, or 'standard', procedure, to compare its performance with 9

that of the new procedure. The comparison was confined to three 'real world' examples, as

provided by Herrick, Escobal and Lane, since it was already known that the standard

procedure would fail with severely taxing artificial examples.

Before the results of the comparisons are described, it is worth indicating why the

standard approach is prone to such poor performance unless the starting estimates are

good - and sometimes even then. As can be seen from Appendix A, the basic distinction

between the two approaches is as follows: after the current estimates of the ranges Pl and

p3 have been used (in both approaches) to define the (hypothetical) orbital plane and two

positions within it, the new procedure introduces the times, and hence the dynamics, at

once; the standard procedure, on the other hand, continues with geometry alone, obtaining

the implied additional position within the plane; then the parameters of thtn orbital path are

determined, and only after this are the dynamics brought in, computed time intervals being

derived for comparison with the observed time intervals (as opposed to a computed line of

sight at time t2, for comparison with the observed one). The critical parameter is p , the

semi-latus rectum, the (purely geometric) formula for which is immediate from the three 9
linear equations (A-i) in Appendix A. To be dynamically acceptable, the value of p must

be positive (for parabolas and hyperbolas as well as ellipses), so if p 5 0 the standard
!,rlproach must fail though the new one does not. (Negative p is geometrically acceptable

but corresponds to the 'dynamically wrong' branch of a hyperbola that may be interpreted

with a > 0 and e < -1 ; this branch is unacceptable because it implies that the inverse-

square-law force is a repulsion!)

If we consider a continuous evolution of estimates for pl and P3 , in a given

angles-only problem, there are three ways in which p can turn negative: first, and most

obviously, the denominator (in the formula for p) can pass through zero, at which event the

vectors rj represent three collinear points, the implied transition from one branch of a

hyperbola to the other being evident; second, the numerator can pass through zero, at which
event two of the three Zj point in the same direction; third, the (transitional) orbital plane
can be parallel to the line of sight corresponding to r2 , so that this vector is of infinite

magnitude and instantaneously reverses its direction. In this last circumstance, neither the

numerator nor the denominator of p actually passes through zero, but the latter rever.cs
sign while the former changes its value discontinuously without a change of sign (if the

numerator changes its sign as well as the denominator, then p obviously retains its sign);

thus the limiting legitimate orbit in this case (unlike the other two) is not a degenerate one!

(To appreciate the significance of the right choice of target functions in iteration procedures
generally, it is instructive to consider the relatively elementary problem of solving Kepler's 0

TR 93004



equation, E - e sin E - M , with M in the range [OzJ. Then M is of course the 'right'

target function, with e treated as a pure constant, andI a possible universal starting estimate ()

for E is given by E0 = z; if the r6les of M and e are reversed, on the other hand, then to

set Eo = x would be fatal, since it leads to infinity as the computed value of e.)

To make comparisons for the three examples referred to, we look at what happens

with various starting values, restricting ourselves to choices with Pl = p3 , both equal to

p, say. For Herrick's example, we find that nost positive values of p lead to negative p ;
p has to be less than about 2.96, or else lie within the range [3.16,3.49], for p to be

positive. But the wanted solution is given by (P] p3) = (2.39...,2.82...), so we can see

how small a margin there is between this solution and starting estimates that must fail at 0
once - contrast this with the performance of the new procedure, which (as noted in

section 4.1) converges •-apidiy to all three solutions, even from ludicrously high values of

p It was found, in fact, that from no value of p at all cou.d the wanted solution be

obtained, though the other two solutions could both be obtained (by the multiple-solution

facility, carried over from the new procedure to the standard one) from p - 2.0, in

particular.

The example of Escobal used for comparison purposes was the second one from

section 4.4, in view of the unresolved problems with the data for the first example. In this *
case there is no negative-p region near the solution and the standard method succeeds with

quite large values for p (as starting estimates for Pl and p,3), though not for the virtually
unlimited value that is permissible with the new method. Over the complete range [.oo oo]

for p, p changes sign six times, including all the three ways that have been described.

With Lane's example, an important aspect of the comparison arises from the fact that
multiple revolutions are involved. For single-rcvolution problems, we have seen how much
rmiore robust the new procedure is because the subordinate Lambert problem always has a

solution, whereas the subordinate Gibbs problem, in the standard procedure, does not. For 0

multiple-revolution problems, on the other hand, the new method is adversely affected by

the fact that the Lambert problem now does not always have a solution; but the Gibbs
problem is no less tractable than in the sirgle-revolution case, since the derivation of p is

independent of any assumption involving the number of included revolutions. Hence much 0

of the advantage of the new method might be expected to be lost when the true solution of
Lane's problem (the one labelled 5 in column 2 of Table 17) is sought by both procedures.
Now there are actually five solutions with k = 17 in Table 17, of which four involve

positive Pl and p3 that do not differ very much from solution to solution, so we simplify 0

the comparison by looking for any one solution (with k = 17) by th. two methods, with

starting estimates given by Pi = p3 = p for various p. The standard method, which gives
posit!ve p for starting estimates with p in the range [4.5,15.1], only yields a solution if

p is in the range (5.0,7.3]. The new method, on the other hand, delivers a solution for all 0
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positive p up to about 6.7, without advantage being taken of the restarting techniques

described in section 3.6, and for unlimited p if advantage is taken. So the new method is

likely to be more robust even for multirevolution examplei.

To conclude this discussion, a curious finding with Lane's example is worth

recording. Whilst looking at regions of negative p in the vicinity of actual solutions for

(p1,p3), it was found that the first solution with k - 1 (the one labelled '2' in coluni 1 of

Table 17) was extraordinarily close to such a region. Thus, the solution is [6.226...,

5.641...], yet the rounding of this to two significant figures produces starting estimates that

must fail, since (pip3) = (6.2,5.6) lies in a region of negative p, the boundary of which is

marked by transitions of the third type above.

6 CONCLUSIONS

The ultimate goal in the development of algorithms for solution of the minimal

angles-only orbit determination problem may be summarized as follows: an algorithm is
sought that is capable of locating all solutions of an arbitrary 'general problem'; solutions

should be determined it the shortest possible time on the computing device that is used, and

to the maximum possible accuracy inherent in the data; intrinsic limitations, associated with
some form of indeterminacy, should be recognizable; and there should be options to *
increase efficiency by the avoidance of solutions that are incompatible with any legitimate
assumptions about the orbit. The traditional approaches, developed for distant heavenly
bodies and slow hand-computing methods, are not usually appropriate for artificial satellites

and modern computers, so recent years have seen the development of new approaches. The
approach described in the present Report is based on the author's algorithm for Lambert's
problem and has led to a solution procedure with several novel features.

The procedure is based on the iteration of values for two of the three unknown
ranges, with novelty from the placing of a Lambert solution algorithm at the heart of the 0

procedure. The corollary of this approach is that solutions car., in principle, always be
obtained to the accuracy inherent in the data for the problem, with no difficulties associated
with the artificial singularities that have been responsiblu for failure conditions with other

methods. The reason for the qualification 'in principle' is not that solution sometimes fails 0
when iteration is based on the first and last observation, since it is a trivial matter to switch

to a different pair the qualification is necessary only because the question of suitable starting
values has not been fully resolved. With many problems, all solutions can be obtained from
almost any starters; other problems are, much less tolerant, however. •

The approach to multiple solutionm is believed to be completely new, its essence

being the modification of 4hr iteiation pr .cess in such a way that solutions already treated
are not found again. There is unfortunately no guarantee, however, that every solution to a
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given problem will indeed be found. The difficulty is again associated with the starting
values, and two different formulae for assigning these have been tried; the first is just to use (V
the same values for all solutions, whilst the second utilizes the values to the solutions 0
previously obtainred.

It follows, from the critical use made of the author's Lambert algorithm in the new
angles-only procedure, that the procedure must be told how many half-revolutions to
include between the observations whose ranges are iterated. It will often be necessary, in
locating the right solution, to try more than one value of this integer, k , the solutions being
single-revolution if k = 0 or 1, but multirevolution if k > 2. Thus the coverage of multi-
revolution ellipses is inherent in the approach, and this also is believed to be novel. New
difficulties arise with multirevolution problems, however, in particular because the Lambert
problem does not always have a solution when coverage exceeding one revolution is
assumed.

The procedure has performed extremely well with a number of test problems, •
notably with some that were expressly set up to test to the limit. With other problems it was
less successful, usually those involving multiple iterations and in particular the example
taken from Lane's study. The good news with Lane's example was that the procedure,
running in an automatic mode (with increasing values of k), was able to find 193 solutions * *
to the problem; the bad news was that it missed at least another 62, including the only
solution that was really worth having - being the 'correct' one.

Several ways forward are possible with the present form of the new angles-only
procedure (as listed in an Appendix) as starting point. It could be made more efficient for 0

operational use; in particular, the partial derivatives could be derived analytically, rather than
numerically. The choice of starting values could be changed to take more account of the
knowledge of the 'real world' for a particular application, perhaps via the input of estimated
values for one or more of the orbital elem•nts'. And the use of additional observations could 0
be permitted. With this last enhancement, however, the problem would no longer have the
minimal nature that was postulated ab initio.
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Appendix A

THE THREE-VECTOR PROBLEM OF GIBBS

We may describe Lambert's classical problem as a two-vector one, since it consists

in the determination of an orbit from vector positions at two given times. This makes it a

minimal problem, since the six vector components are just what are necessary for the

derivation of six orbital elements. Thus the problem has always at least two solutions3, the

total number being dependent on the interval between the two times. It is far from a trivial

problem, however, and some of the difficulty is a direct consequence of its minimal

character.

It was recognized by Gibbs that things are much simpler when a third vector is

available, since in principle we now have enough data to ignore the times, just as in the

angles-only problem we do not need observations of range, which are assumed not to be

available. It is not quite as simple as that, however, a self-consistent problem being over-

determined even without the times, since three arbitrary vectors would not be compatible 0

with the Keplerian assumption of coplanarity. Thus only five elements can be determined

when the times are ignored; but this is as it should be, of course, since a time item is needed

to disting'uish between the 'orbits' that share a common 'path' (via the mean anomaly, or

whatever sixth element is in use) - the other two times, and likewise one (or more) of the 0 0

ranges, can be used to check the validity of a computed solution.

In regard to the number of solutions to the problem with five items of data, the

general situation is that there are exactly two, involving the same orbital path but described

in opposite directions; only one of these is compatible with the times. The multirevolution 0

problem, which so bedevils the Lambert and angles-only problems, does not arise, since the

times (if compatible with one of the only two possible solutions) will automatically reflect

multirevolution arcs.
0

Our data, then, comprise the three vectors, rj, and the first step is to specify the

orbital plane. This may be doae, in general, via Zj A rk for any two of the three vectors,

since each product gives a vector normal to the orbital plane. This assumes consistency,

with a cnnsistency check implicit, and for maximum accuracy it is natural to select the vector

product of greatest magnitude. The fact that interchange of Cj and rk reverses the sign of

the original vector product reflects the fact that there are two 'orbital' planes, representing

motion in opposite directions in the same 'geometric' plane. If one of these is described

(relative to the axis system in use) by the elements i and D, then the other is described by

x - i and S2 + x. If u (= v + co) is the any'- such that motion in the orbital plane is

described by the polar coordinates r and u , then u for the one plane is associated with

x - u for the other. (For a discussion of the transformations to and from the coordinate

0
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system based on the orbital plane, including the avoidance of all difficulty associated with

indeterminacy or singularity, see Ref 14.) ()

It remains to determine three orbital elements (say, a, e and w , but again see

Ref 14) from the three in-plane positions (rj,uj), but this reduces to the solution of

simultaneous equations in three unknowns. Thus the equation

P- = I+ecosv (A-1)r

holds for any non-rectilinear orbit, and is linear in the unknowns p, e cos w and e sin w.

So we can solve for e, p and w, in general, after which we can get a from p = a(1 - e2), 0
including the infinite value associated with non-rectilinear parabolas, except in the

indeterminate case (p = 0 and e = 1) corresponding to a rectilinear orbiL

It is obvious that the algorithm must fail in the vicinity of a rectilinear orbit. In the

limit, indeed, it is only the time data that give the problem any dynamical structure. (If the 6

indeterminacy of an orbital plane is not considered important 14 , Lambert's two-vector

problem can still be solved for rectilinear orbits3.) The algorithm also fails if the

determinant of the simultaneous equations is zero, in which case (following the standard

theory of linear algebra) the equations are either indeterminate (infinitely many solutions) or

inconsistent (no solution): when two of the uj differ by a multiple of 2xr, for example, the

former conclusion follows if the corresponding rj are equal and the latter conclusion if they
are not; more generally, it is easily seen that the zero determinant arises when the three

points (rj,uj) are collinear and e is infinite. Finally, solution of the equations (A-1) may

lead to a negative value of p ; this is unacceptable as it implies a repulsive force (p < 0), the

orbit being the dynamically unfamiliar branch of a hyperbola.
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Appendix B

DETAILS OF THE CALCPS ALGORITHM

The function of the Fortran subroutine CALCPS is to derive the components of the

calculated vector _p - £ at time t 2, given the vectors p at times t1 and t3. Each vector

is 'topocentric', being relative to an observer Oj (. = 1,2 or 3). The components flj

vectors which locate the observers relative to the force centre, are held in a common block,

/GIVEN/, which also specifies the sight-line unit vectors 11 and A3 , the time intervals

112 (= t2 - t1) and 413 (= t3 - ti), and the gravitational constant 4 (]GIVEN/ also specifies

an observed sight-line A2 , but this is not used by the subroutine). The subroutine has

eight dummy arguments, of which the first four supply input whilst the other four define the

returned output. The input arguments are: k , an assumed count of included half-

revolutions, required in specifying the operation of VALAMB, the Lambert-solving

subroutine; Pl , the assumed 'range' at time t1 (so that el is available as pl ai) ; P3,
similarly; and an indicator, which has to be zero if k = 0 or 1 but can be either zero or unity

if k k 2, thereby indicating which of the two Lambert solutions (when there are two) is to

be used. The first output argument specifies the number of solutions found by VALAMB;

the remaining arguments are the components of the required vector £ . Some subsidiary

quantities, obtained during the computation, are preserved in the comon block /USEFULI,

viz a, q, i, rl, r2 and r3.

The subroutine starts by obtaining r + p) at times t: and t3, and hence
(using both scalar product and vector product, to avoid loss of accuracy) the angle 0

between r I and r3 ; 0 is initially in the interval (O,x), but is converted to the interval

(kx,ik+1z) by use of the input argument k, after a preliminary conversion to 2x- 0 if k

is odd. The data for VALAMB now being available, we obtain 3 radial and transverse

components for the velocity at tl. (VALAMB differs from VLAMB, the subroutine listed

in Ref 3, in only one respect: the energy-equivalent quantity a, equal to Ada where a is

the semi-major axis, has become an output argument of VALAMB though only a local

variable in VLAMB; this value of a is potentially more accurate, for near-parabolic orbits,

than the value subsequently derived by subroutine PV3ELS.)

The subroutine next obtains the full velocity vector, ± I, at ti , the direction of the

transverse component being supplied via the vector (Q1 A r3) A rI ; when k is odd the

direction of this vector must be reversed. From r i and k I we now get the universal

Keplerian elements via 14 subroutine PV3ELS, and hence propagate r to t2 by adding t12

to the element T and calling subroutine ELS3PV; it is in this propagation that the a from 0

VALAMB is used in preference to the a from PV3ELS.

It only remains for £ to be derived as r2 - BR2.

TR 93004

* 0



Appendix C S
LISTING OF SUBROUTINES CALCPS AND OBS3LS

C.1 Listing of subroutine CAL-PS

SUBROUTINE CALCPS (NHREV, ROl, R03, IND, NUN, CX, CY, CZ)
C (CALCulate Position along Sight-line, to
C compare with externally given line of sight)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /GIVEN/ OX1, OYi, OZ1, OX2, OY2, OZ2, OK3, oY3, OZ3,

A ELi, EMI, EN1, EL2, EM2, EN2, EL3, EM3, EN3, T12, T13, GM
COMMON /USEFUL/ AL, Q, EI, R1, R2, R3
PARAMETER (PI-3.141592653589793DO)
RNORM(X,Y,Z) - SQRT(X*X + Y*Y + Z*Z)
X1 - OXI + ROl*EL1
Y1 - OY + ROl*EM1
Z1 - OZI + ROl*EN1
R1 = RNORM(XI, Y1, Zl)
X3 - OX3 + R03*EL3
Y3 - OY3 + R03*EM3
Z3 - OZ3 + R03*EN3
R3 - RNORM(X3, Y3, Z3)
CALL VECHUL (Xl, Yl, Zi, X3, Y3, Z3, X13, Y13, Z13)
TH - ATAN2(RNORM(X13, Y13, Z13), Xl*X3 + Yl*Y3 + Zl*Z3)

C (Fails only if either R1 or R2 is zero)
M M 1OD(NHREV,2)
IF (M.EQ.l) TH - PI - TH • *
TH -T + NHREV*PI
CALL VALAME (GM, Ri, R3, TH, T13, NUM, VR1, VT1, VR3, VT3, ALV,

A WR1, WT1, WR3, WT3, ALW)
IF (NUM.GT.0) THEN

IF (IND.EQ.1) THEN
VRi - WRi
VT1 - WT•
ALV = ALW

END IF
CALL VECMUL (Xl, Y1, Zl, X3, Y3, Z3, XN, YN, ZN)
CALL VECHUL (XN, YN, ZN, Xl, Y1, Zl, XT, YT, ZT)
RT - RNORM(XT, YT, ZT)
IF (M.EQ.I) RT - -RT 0
IF (RT.NE.ODO) RT = ID0/RT
VIX= VRI*X1/R1 + VTI*XT*RT
V1Y = VRi*Yl/Ri + VT1*YT*RT
VIZ = VRI*Zl/R1 + VTi*ZT*RT
CALL PV3ELS (GM, X1, Y1, Z1, VIX, VlY, VIZ, AL, Q, EX, BOM, OM,

A TAU)
CALL ELS3PV (GM, ALV, Q, EI, BOM, OM, TAU + T12, X2, Y2, Z2, 0

A Wi, W2, W3)
C (ALV gives better accuracy than AL for near-parabolic orbits)

R2 - RNORM(X2, Y2, Z2)
C (Only for the convergence criterion in the calling routine)

CX = X2 - oX2
CY Y2 - OY2 0
CZ Z2 - OZ2

END IF
RETURN
END
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C.2 Listing of subroutine OBS3LS

SUBROUTINE OBS3LS (NHREV, IND, RO, R03)
C Orbit got from Observed Three Lines of Sight (angles only)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL LPR, LSPEC '4)
DIMENSION NLDF(5), W(9), Wl(9), W3(9), UW(9), ROlSQ(9), RO3SQ(9),

A ROIKNO(9), RO3KNO(9), ROlQU(9), RO3QU(9), ROl3SQ(9), RO130U(9)
COMMON /GIVEN/ OXi, OYI, OZI, OX2, OY2, OZ2, OX3, OY3, OZ3,

A EL1, EMI, ENI, EL2, EM2, EN2, EL3, EM3, EN3, T22, T13, GM
COMMON /USEFUL/ AL, Q, El, R1, R2, R3
COMMON /OTHER/ LPR, MAXIT, HN, CR, NFAIL, ITNUM, NMOD, CRIT, DELNM
COMMON /KNWNSL/ IKN, ROIKN(9), RO3KN(9), RlKNSQ(9), R3KNSQ(9)
PARAMETER (PI-3.141592653589793D0, RADIAN=180DO/PI, ARBF-ID-3,

A CRIVALflD-24)
RNORM(X,Y,Z) - SQRT(X*X + Y*Y + Z*Z)CO

FCOLD = ODO
NFAIL = 0

C
1 NNOD - 0

DO 14 ITNUM=O,MAXIT
ARBFC- ARBF 0
NPDF - 0

2 NMODFY - 0
C (NMOD for overall mods count; NMODFY is count for current
C iteration, limited to 2)

ONE = ZDO
IF (IThUM.EQ.21) 11W O.5D0

C (To switch to Halley if mod NM initially)
NFLNOD - 0

3 CALL CALCPS (NHREV, RO1, R03, IND, NUM, CX, CY, CZ)
IF (ITNUM.EQ.0) THEN

IF (ROI.EQ.RO3) THEN
CR - EL2*CX + EM2*CY + EN2*CZ
IF (CR.LT.OD0) THEN

DR - .ARBFC*(RI + R3)
CALL CALCPS (NHREV, ROl+DR, R03+DR, IND, NUM, CX, CY, CZ)
DELR DR*CR/(CR - EL2*CX - EM2*CY - EN2*CZ)
RO1 R0I + DEL
R03 - R03 + DEIL
WRITE (2,4) ROI

4 FORMAT ('Prelim starter replacement (both) by ', G23.15) S
END IF

END IF
GO TO 14

END IF
RI0 = Rl
R30 = R3 S
IF (NUM.EQ.0) THEN

IF (ITNUM.GT.1 .AND. NFLMOD.LT.3) THEN
NFLMOD = NFLOD + 1
D3 = D3/3DO
Dl - D1/3D0
R01 - ROOLD + D3
R03 = RO3OLD + D1
IF (LPR) WRITE (2,5) NFLMOD, RO, R03

5 FORMAT ('Lambert faili% 12, ' so cut by 2/3 to', 2E18.10)
GO TO 3

ELSE

TR 93004

a 0



NFAIL = NFAIL + 1
IF (NFAIL.EQ.1) THEN

C Try to avoid Lambert-fail, by common-perpendicular starters
X13 - OX3 - OX1
Y13 - OY3 - OY1
Z13 OZ3 - OZI 'Al
D1 - X13*ELl + Y13*EM1 + Z13*EN1
D3 = X13*EL3 + Y13*E43 + Z13*EN3
D2 - ELI*EL3 + EM1*EM3 + ENI*EN3
D4 - 00 - D2**2
ROI MAX((D1 - D3*D2)/D4, ODO)
R03 = MAX((DI*D2 - D3)/D4, ODO)
WRITE (2,6) ITNt'4, RO, R03

6 FORMAT ( 'Revised Starters after Lambert fail (Iteration',
A 13, ')'/ 'viz (common perpendicur)', E21.13, ' & ', E21.13)

GO TO 1
ELSE IF (NFAIL.EQ.2) THEN

C Last chance via zero starters
RO = 0
R03 = 0
WRITE (2,7) ITNUM, RO1, R03

7 FORMAT ( 'Revised Starters after Lambert fail (Iteration',
A 13, 1)1/ 'viz (both ZERCI)', E21.13, ' & ', E21.13)

GO TO 1
ELSE

RETURN
END IF

END IF
END IF
CR = EL2*CX + EM2*CY + EN2*CZ 41

C (CR used only non-critically in convergence test)
IF (AL.NE.ODO) A - GM/AL
E = 1DO - Q*AL/GM
EIDEG - EI*RADIAN

C (in case these a , e , i are to be output)
CALL VECHUL (EL2, EM2, EN2, CX, CY, CZ, ENX, ENY, ENZ)
CALL VECMUL (ENX, ENY, ENZ, EL2, EM2, EN2, PX, PY, PZ)
PR w RNORM(PX, PY, PZ)
CALL VECHUL (EL2, EM2, EN2, PX, PY, PZ, ENX, ENY, ENZ)
ENR = RNORM(ENX, ENY, ENZ)
IF (ENR.EQ.ODO) THEN

CRIT = ODO
DELNM = OD0
GO TO 13

END IF
F = (P%*CX + PY*CY + PZ*CZ)/PR

C (P is the P-coord; G, the N-coord, should be zero)
FC = F
DO 8 ItI,IKN
ROIKNO(I) - RO1 - RO1KN(I)
RO3KNO(X) R03 - RO3KN(I)
ROlSQ(I) = ROIKNO(I)**2
RO3SQ(I) = RO3KNO(I)**2
ROIQU(I) - ROISQ(I) + RIKNSQ(I)
RO3QU(1) - RO3SQ(I) + R3KNSQ(I)
ROI3SQ(I) - ROISQ(I) + RO3SQ(I) 0
ROI3QU(I) = ROIQU(I) + RO3QU(I)

8 FC - FC*(ROI3QU(I)/RO13SQ(I))**(ONE/2D0)
LSPEC = ITNU`M.GT.1

C (To avoid Amstrad fault when ITNUM.GT.1 direct in next line)

9
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IF (LSPEC .AND. FC.GT.2D0*FCOLD .AND. HI4ODFY.LT.2) THEN
PSUM FC + FCOLD
R01 (FC*RO1OLD + FCOLD'kROl)/FSUM(!
R03 (FC*R03OLD + FCOLD*R03)/FSUM
IF (LPR) WRITE (2,9) ITNTJM, FC, FCOLD

9 FORMAT t Modify it''n', 14, 1; new & old FC are', 2G18.6)
NMODFY -NMODFY + I
NMOD = KMOD + 1
GO TO 3

END IF
C Now get partials for (in principle) 2D-Halley

DROl ARBFC*R10
DR03 -ARBFC*R30
D2ROl = 2D0*DROI
D2R03 = D0*DR03
DR01SQ - DROI**2
DR03SQ - RO3**2
CALL CALCPS (NI{REV, R01 - DR01, R03, IND, NLDF(l), CX, CY, CZ)
PM1 (PX*CX + ?PY*CY + PZ*CZ)/PR - F
GM1 (ENX*CX + ENY*CY + ENZ*CZ)/ENR
CALL CALCPS (tHREV, Rol + DR0l, R03, IND, NLDF(2), CX, CY, CZ)
FPl (PX*CX + PY*C~Y + PZ*CZ)/PR - F
GP1 = (ENX*CX + ENY*CY + ENZ*CZ)/ENR
FD1 (FP1 - FM1)/D2ROl
FODD1 (FP1 + FM1)/DRO1SQ
GD1 -(GP1 - GM1)/D2RO1
GDDl (GP1 + GM1)/DRO1SQ
CALL CALCPS, (NHREV, Rol, R03 - DR03, IND, NLDF(3), CX, CY, CZ)
P143 = (PX*CX + py*CY + PZ*CZ)/PR - F
GM3 = (ENX*CX + ENY*CY + ENZ*CZ)/ENR* *
CALL CALCPS, (NHREV, Rol, R03 + DR03, IND, NLDF(4), CX, CY, CZ)
FP3 -(PX*CX + PY*CY + PZ*CZ)/PR - F
GP3 -(ENX*CX + ENY*CY + ENZ*CZ)/ENR
FD3 = (FP3 - Fk43)/D2RO3
FDD3 -(PP3 + FM3)/DRO3SQ
GD3 = (GP3 - GM3)/D2R03
GDD3 -(GP3 + GM3)/DRO3SQ
CALL CALCPS (NHREV, R01 + DROl, R03 + DR03, IND, NLDF(5),
A CX, CY, CZ)
F13 = (PX*CX + PY*C~Y + PZ*CZ)/PR - F
G13 =(ENX*CX + ENY*CY + 'ENZ*CZ)/ENR
ROFAC DRO1/DRO3
FD13 P13/(DRO1*DRO3) - (FD1/DR03 + FD3/DROl)

A - 0.5D0*(FDD1*ROFAC + PDD3/ROFAC)
GD13 =G13/(DRO1*DRO3) - (GDl/DR03 + GD3/DRO1)
A - 0.5D0*(GDD1*ROFAC + GDD3/ROFAC)
DO 11 1-1,5
IF (NLDF(I).EQ.0) THEN

NPDF -NPDF + 1
IF (NPDF.LE.3) THEN
ARBFC =ARBFC/1ODO
IF (LPR) WRITE (2,10)

10 FORMAT ('Reduce ARBFC')
GO TO 2

ELSE
NFAIL =1
RETURN

END IF
END IF

11 CONTINUE
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DO 12 I=1,IKN
W(I) 1D0/RO13SQ(I) - 100/RO13QU(I)
U'W(I) -ONE*W(I) - (2D0/RO13SQ(I) + 2D0/RO13QU(I))(3
W1(X) = W(I)*RO1KNO(I)
W3(1) = W(I)*RO3KNO(I)
FD1 F D1 - ONE*F*W1(I)
FD3 -FD3 - ONE*F*W3(I)
FDDI FDDI - ONE*(2D0*FD1*Wl(I) + W(I)*F*(1L)0 + ROISQ(I)*IJW(I)))
GODi GDDI - ONE*2D0*Wl(I)*GDI
FDD3 =FDD3 - ONE*(2D0*FD3*W3(I) + W(I)*F*(IDO + RO3SQ(X)*tJW(I)))
GDD3 GDD3 - ONE*2D0*W3(1)*G03 a
FD13 FDP13 - ONE*(FD3*W1(I) + k'D1*W3(I) + W(I)*P*

A RO1KNO(I)*RO31KNO(I)*UW(I))
12 GD13 = GD13 -ONE*(Wl(I)*GD3 + W3(I)*GD1)

DEL =FD1*GD3 - FD3*GD1
D3MR =- GD3*F/DEL
DlNR =GD1*F/DEL
FDlH =FDJ. + HN*(FDD1*D3NR + FD13*DINR)
FD3H =FD3 + HN*(FD13*D3NR + POD3*D1NR)
GDlH =GD1 + HN*(GDD1*D3NR + GD13*DINR)
GD3H = GD3 + HJN*(GD2.J*D3NR + GDD3*D1NR)
DELH -FDlH*GD3H - FD3H*GDlH
03 = -GD3H*F/DELH
Dl =GD1H*F/DELH
DELNM DEL/(DABS(FD1*GD3) + DABS(FD3*GD1))
IF (ABS(DELNl4).LT.lD-3) THEN

D3 = S1014(SQRrI(ABS(D3NR*D3)), D3NR)
Dl - SIGN(SQRT(ABS(D1NR*D).)), D1NR)

END IF
ROIOLD = ROI.
R03OLD =R03
R01l ROI + 03
R03 -R03 + DI
DELNM DELH/(OABS(FD1H*GD3H) + DABS(FD-dH*GDlH))
DEN -DNAX1(CR, R2)
IF (A.GT.ODO) DEN =DHAX1(DEN, T12*SQRT(ABS(AL*(2D0*A-R2))/R2))
CRIT = F/DEN

13 IF (CRIT**2.LT.CRIVAL) GO TO 15
FCOLD mFC

14 CONTINUE
NFAIL = -1
RETURN

15 NFAIL = 0 41
AL = A
Q= E
El =EIDEG
RETURN
END
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%fi

Table 1

DATA FOR EXAMPLE OF HERRICK A)
0

Times 0.325593 (t12) and 0.701944 (013)

E 0.7000687 0.6429399 0.2789211 '4'

R2 0.4306907 0.8143496 0.3532745
R3 0.0628371 0.9007098 0.3907417

S0.9028975 0.0606048 0.4255621

A2 0.9224764 0.0518570 0.3825549

a3 0.9347684 0.0802269 0.3460802
S

(Light-corrected times not used but are 0.325578 and 0.701903)

Table 2

RESULTS FOR HERRICK EXAMPLE

Sol N P1 P2 P3 v e

1 4 2.399197226489 2.563703947213 2.824544883197 3.1E-15 0.049 0 0
2 5 -0.7972181001259 -0.9956194556367 -1.0812024691879 0.7E-15 0.858
3 10 -0.0003632101136 -0.0001443130763 0.0001663085092 0.5E-15 0.015

Table 3

RESULTS FOR HERRICK-BASED EXAMPLE WITH
LINEAR DEPENDENCE

Sol Pi P2 P3 e

1 2.39919799711 2.59571077780 2.82454554661 0.05
2 -3.45697670528 -3.68976500360 -3.94562359213 4.57

Table 4

RESULTS FOR HERRICK-BASED EXAMPLE WITH RANK EQUALS 1

Sol Pi P2 P3 e

1 and2 ±1.299928870 ±1.334032020 ±1.368260609 0.05

3 and 4 ±3.790506796 ±2.223428041 T3.902205940 355
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Table 5

RESULTS FOR HERRICK-BASED EXAMPLE WITH
NEIGHBOURING SOLUTIONS

Sol Pi P2 P3 e)

1 2.3991972 2.5633570 2.8245448 0.05

2 2.3990000 2.5630000 2.8240000 0.05

3 -0.677952469654 -3.106437154553 -5.812102316078 40

6

Table 6

DATA FOR EXAMPLE OF EXTREME SEVERITY

Times 1.570796327 (012) and 3.141592654 (013)
6

el 0.0 -1.0 0.0
B2 1.0 0.0 0.0
E3  0.0 1.0 0.0

Al 0.0 1.0 0.0 0

a2 0.0 0.0 1.0

S0.0 -1.0 0.0

0

Table 7

PARTICULAR RESULTS (WITH P2= 0) FOR EXTREME EXAMPLE 0

Sol k P1 P3 e Type

1 0 0.00000000000 0.00000000000 0 S D
2 0 2.00000000000 2.00000000000 0 S R 0

3 0 0.56960576485 1.43039423515 0.617 U D
4 0 1.43039423515 0.56960576485 0.617 U R

5 1 1.43039423515 0.56960576485 0.617 U D
6 1 0.56960576485 1.43039423515 0.617 U R 0

7 1 1.309904240665 1.309904240665 0.690 S D
8 1 0.690095759335 0.690095759335 0.690 S R

Code: S - symmetric; U - unsymmetric; D - direct; R - retrograde
(k is based on t12 not 413) 0
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Table 8

DATA FOR EXAMPLE INVOLVING RECTILINEAR ORBIT
0

Tunes 1.047197552 (t12) and 2.960420.507 (013)

&1 1.0 0.0 0.0
02 0.0 1.0 0.0

R3 0.0 0.0 0.0 0

Al -1.0 0.0 0.5

A2 0.0 -1.0 1.5

A3  0.0 0.0 2.0

Table 9

RESULTS FOR RECTILINEAR-ORBIT EXAMPLE

Sol P2 P3 a c

1 1.8027756377 1.9999999978 0.999999999 1.000
2 1.8027756377 3.2004916441 14.683154273 1.000 0

3 1.3950850319 0.5000000000 0.605502151 0.984
4 1.2038678317 0.5000000000 0.605502151 0.979
5 0.2904162720 0.5000000000 0.605502151 0.743
6 0.2253738553 0.5000000000 0.605502151 0.481 S
7 0.0468631594 -0.7176281374 0.731442384 0.441
8 0.3982547067 -0.1703288931 0.559537113 0.739

Pl 1.1180339887 forevery solution

Table 10

DATA FOR FIRST EXAMPLE OF ESCOBAL

Times (s) 3296.449 (t12) and 3450.505 (13)

B1 1094.6803 5355.5873 -3275.6560
2 -4718.4298 -2606.2925 3401.1164

R3  -4688.8537 -2659.1335 3401.1164 0

S1 -0.12989024 0.92763536 -0.35017305

b 0.23466879 -0.85577972 0.46105491

ý3 0.42481281 -0.75210323 0.50385991 0
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Table 11

RESULTS FOR FIRST ESCOBAL EXAMPLE

Sol k Pi P2 P3 e it

1 0 -7833.0603681592 2228.5012290292 1257.6207462956 0.79

2 0 -12478.3464866953 2252.4162998993 1213.7982019823 0.77

3 1 -14142.9610065184 -2990.0836578326 -1830.0797713851 0.28

4 1 -3283,1722962962 834.0149392002 -361.0803280551 0.43

5 1 -3202.2860993118 3718.7361430846 3891.0612321812 0.47

'rable 12

REVISED DATA FOR FIRST EXAMPLE OF ESCOBAL

Times 0.0381533 (012) and 0.0399364 (013) S

RI 0.16606957 0.84119785 -0.51291356

R2 -0.73815134 -0.41528280 0.53035336

R3 -0.73343987 -0.42352540 0.53037164 * -

S-0.9?475472 -0.37382824 -0.07128226

a2 0.80904274 -0.55953385 0.17992142

A3 0.8'044131 -0.49106628 0.18868888

Table 13

RESULTS FOR EXAMPLE WITH REVISED DATA

Sol k Pi P12 P3 e

1 0 7.508030354109 2.970622569286 3.290782845481 10.09

2 0 3.591011270710 1.883891729169 2.0318(50787010 1.45

3 0 1.100072662216 1.518998485736 1.578206979185 0.18

4 0 0.014616956287 -0,446474185383 -0.291261277917 0.45

5 1 -0.513529550563 1.194401144814 1.313589989963 0.27

6 1 2.480762217620 -0.843311721142 -0.970019178693 0.90 •

7 1 0.225016498047 0.439481228548 0.235086077861 0.13
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Table 14

DATA FOR SECOND EXAMPLE OF ESCOBAL

Times (s) 60.459 (112) and 128.516 (013)

R 1 3941.7283 -3291.9961 3769.7326

R2 3956.2035 -3274.5861 3769.7326

B3 3972.4058 -3254.9120 3769.7326

-0.25745288 -0.93936322 0.22652759

A2 -0.15323536 -0.96109718 0.22980675

A3  -0.00248708 -0,97435020 0.22502333
S

Table 15 6

SOLUTION FOR• SECOND ESCOBAL EXAMPLE

Pi 02 P3 e
* 4

2728.446508110 2404.741709 2061.116114538 0.197

Table 16

DATA FOR EXAMPLE OF LANE

Times (s) 2.2 ('12) and 4.4 ('13)

R 0.51338024 -0.78261472 0.35225232

E2 0.89263524 0.28086002 0.35277012
B3 -0.02703285 0.93585748 0.35152067

A 0.36526944 0.12314580 0.63182102

A2 -0.21266402 -0.54295751 0.81238609

A3  0.52029946 -0.39083440 0.75930030
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Tabl-2 17

RESULTS FOR LANE EXAMPLE
0

Sol () k Pi P3 a e

1 * 0 0.837595099 -34.922279846 -6.962795558 18.113 0.932
• 0 -1.201563236 35.251656399 0.665839729 17.823 0.976

2 * 1 6.226195556 -30.966211020 5.641736738 17.915 0.735
3 1 3.655412566 34.624802268 7.925507622 17.984 0.925
4 * 2 6.224498976 -30.436814747 5.642945981 17.651 0.731

• 2 -4.592244879 -33.156970920 2.297947486 17.575 0.891
5 * 2 7.043008437 -0.073841273 7.177034987 11.543 0.990
6 * 2 3.6184162!5 1.349813283 5.641096571 11.376 0.996

• 2 -14.976761959 0.483717653 -14.397094839 12.367 0.913
• 3 -1.201387949 35.0931558679 0.665728275 17.744 0.975 0

7 3 0.357582617 0.7561f76743 1.101195403 11.221 0.893
8 4 0.357552418 0.756881606 1.101182380 11.184 0.893

* 4 0.715681869 -16.074598191 -5.428181352 8.674 0.866
• 4 -1.160059994 16.725808742 0.639626121 8.568 0.949

9 * 5 7.022114061 -0.O6 1679948 7. 160031641 10.855 0.989
10 * 5 -13.041724491 0.48,'214899 -12,461028211 10.174 0.894 0
11 * 5 3.623893984 1.352910753 5444619148 11.028 0.996
12 * 5 6.113063159 -12.183403755 5.735762464 8.619 0.457
13 12 5 3.814908783 15.725170236 7.512753553 8.645 0.838

• 5 -1.347402915 -16.301985468 0.761755147 8.571 0.912
14 * 6 6.109805387 -11.896567152 5.739037781 8.479 0.449

10 6 3.821959154 15.328237166 7.495758721 8.453 0.835 0
• 6 -1.348561987 -16.215835054 0.762686952 8.528 0.912
• 6 -3.724080611 -15.123455751 2.046411908 8.469 0,797

15 * 6 6.840279880 -0.161036698 7.010392376 7.283 0.979
16 * 6 -10.335455013 0.490354274 -9.752859758 7.523 0.856

• 6 3.727367055 1.418037228 5.513414148 7.176 0.992
17 * 7 -1.159714114 16.650076229 0.639409390 8.530 0.949
18 * 7 0.709255856 -15.576923099 -5.359701407 8.425 0.863
19 7 0.351984180 0.757780461 1,098766810 7.069 0.831
20 8 0.351931374 0.757789006 1.098743765 7.045 0.830
21 * 8 -1.128900254 11.766048510 0.620247182 6.095 0.928
22 * 8 0.630536717 -11.059572708 -4.600174682 6.158 0.818
23 * 9 6.800767940 -0.181487682 6.977376208 6,826 0.976 0

• 9 3.738405100 1.425825307 5.521031316 6.937 0.991
• 9 -9.320041449 0.492096117 -8.736536971 6.634 0.837

24 9 6.041019575 -7.029150141 5.824139576 6.138 0.319
11 9 3.941520416 10.495594171 7.219703948 6.151 0.777
• 9 -3.167853059 -10.595528041 1.839139953 6.129 0.746

25 * 10 6.037018187 -6.790258941 5.830613202 6.025 0.316 0
9 10 3.951865064 10.192743011 7.196709213 6.012 0.773
• 10 -1.463579232 -11.220014314 0.853605966 6.065 0.866
* 10 -3.137129497 -10.416224254 1.826400002 6.035 0.744

26 * 10 6.649249752 -0.274636956 6.848377683 5.568 0.963
27 * 10 -8.122468268 0.494228051 -7.537698084 5.650 0.80;

* 10 3.833093073 1.501066889 5.589037806 5.484 0.986
28 * 11 -1.128430803 11.712192739 0.619957706 6.068 0.928
29 11 0.346938814 0.758598749 1.096553397 5.395 0.779
30 12 0.346863530 0.758610987 1.096520193 5.377 0.778
31 * 12 -1.102521977 9.304018293 0.604116918 4.870 0.910

• 12 0.561286390 -8.584433580 -4.035301284 4.914 0.779
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Table 17 (continued)

Sol (*) k P1 P2 P3 a e

32 * 13 6.585485324 -0.322853386 6,792610550 5.196 0.956
• 13 -7.4.70360864 0.495379975 -6.884792007 5.142 0.789

• 13 3.851548188 1.517783836 5.602923783 5.285 0.985
33 * 13 5.997706056 -4.347903871 5.924152801 4.912 0.379
34 * 13 -2.655894748 -8.293223274 1.606338565 4.890 0.720

8 13 4.054258362 7.743637603 6.973355905 4.918 0.742
* 13 -1.623200305 -8.748732237 0.974365187 4.875 0.818

35 * 14 5.994774086 -4.104469948 5.937627103 4.806 0.397
6 14 4.068199886 7.467561286 6.943186244 4.801 0.739

36 * 14 6.451436991 -0.450122661 6.671153554 4.607 0.936
37 * 14 3.942942189 1.613639602 5.675548297 4.535 0.979
38 * 14 -6.777869246 0.496535104 -6.191348804 4.621 0.765
39 * 15 -1.101949584 9.260918768 0.603770189 4.849 0.909
40 15 0.342136019 0.759381161 1.094424627 4.454 0.732
41 16 0.342037425 0.759397259 1.094380704 4.438 0,731
42 * 16 -1.079108596 7.789602380 0.590064393 4.119 0.893
43 * 16 0.501483394 -7.070867044 -3.610550759 4.152 0.745
44 * 17 6.343610751 -0.591457361 6.567314506 4.272 0.912 6

• 17 3.972396098 1.650287279 5.700608287 4.354 0.976
* 17 -6.313364048 0.497225404 -5.726136069 4.282 0.747

45 * 17 5.997658907 -2.494991767 6.067616849 4.167 0.,79
5 17 4.158488025 5.876436995 6.743793054 4.163 0.740

46 * 18 6.011121742 -2.122298719 6.115187076 4.047 0.636
2 18 4.176734108 5.581862791 6.701400977 4.055 0.744 •

47 * 18 6.207705855 -0.365299003 6.422515298 3.991 0.863
48 * 18 4.063081080 1.788939357 5.7849,'8395 3.917 0.966

* 18 -5.856182158 0.497788099 -5.268195958 3.958 0.726
49 * 19 -1.078445124 7.753045732 0.589670316 4.101 0.893
50 * 19 0.493797645 -6.906032263 -3.559675134 4.069 0.741

19 0.337447584 0.760148272 1.092326074 3.838 0.689 •
51 20 0.337324382 0.760168475 1.092270656 3.825 0.688
52 * 20 -1.057767132 6.746716271 0.5'/7516105 3.603 0.877

• 20 0.448114374 -6.034823566 -3.27300061Fý 3.629 0.715
53 * 21 4.112046684 1.887395487 5.836799521 3.740 0.958

* 21 -5.503601434 0.498101920 -4.914984311 3.712 0.708
* 22 4.274920242 3.911319258 6.417826,t65 3.537 0.805

54 * 22 4.205884803 2.168938828 5.960356096 3.484 0.936
55 * 23 -1.057020072 6.714608302 0.577081883 3.587 0.877
56 * 23 0.440318364 -5.902503717 -3.226624705 3.562 0.710
57 23 0.332803487 0.760911435 1.090227447 3.399 0.649
58 24 0.332654056 0.760936046 1.090159591 3.387 0.649
59 * 24 0.399485904 *.5.274048002 -2.994890332 3.244 0.688 •
60 * 24 -1.037971837 5.976212100 0.566137052 3.224 0.863

* 26 -4.649742490 0.498107348 -4.059413059 3.138 0.654
61 * 27 -1.037146045 5.947344048 0.56%668353 3.209 0.862
62 27 0.328158919 0.761678034 1.088108797 3.067 0.612
63 28 0.327981359 0.761707408 1.088027409 3.056 0.610
64 * 28 -1.019378287 5.378830225 0.555710684 2.930 0.848 0
65 * 31 -1.018476840 5.3524340-1 0.555212231 2.9 17 0.848
66 31 0.32348187? 0.762453454 1.085955331 2.306 0.576
67 32 0.32327402 , 0.762487997 1.085859163 2,796 0.575
68 * 32 -1.0017439?8 4.899080435 0.546087591 -;.696 0.834
69 * 32 0.3125474138 -4.219866927 -2.557300082 2.710 0.640
70 * 35 -1.000768600 4.874634181 0.545563510 2.684 0.834 •
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Table 17 (continued)

Sol (*)k P1 P2 P3 e

71 * 35 0.304676663 -4.139423022 -2.521034654 2.669 0.636
72 35 0.318747488 0.763241989 1.083755045 2.594 0.542
73 36 0.318506908 0.763282158 1.083642688 2.584 0.540
74 * 36 -0.984888657 4.503305085 0.537160038 2.503 0.821
75 * 39 -0.983840152 4.480435696 0.536614080 2.492 0.820
76 * 39 0.265155717 -3.765528113 -2.346489963 2.480 0.615 5
77 39 0.313935103 0.764047312 1.081497480 2.418 0.509
78 40 0.313659070 0.764093622 1.081367346 2.409 0.508
79 * 40 -0.968672954 4.169801453 0.528847979 2.342 0.808
80 * 43 -0.967551130 4.148231738 0.528283677 2.331 0.807
81 * 43 0.227713581 -3.451828053 -2.192013475 2.320 0.595
82 43 0.309026563 0.764872748 1.079172993 2.269 0.478
83 44 0.308712039 0.764925780 1.079023297 2.261 0.476
84 * 44 -0.952985023 3.883892287 0.521090781 2.204 0.795

• 44 0.199843620 -3.240146383 -2.083382418 2.213 0.580
85 * 47 -0.951788951 3.863409707 0.520511577 2.194 0.794
86 47 0.304005170 0.765721454 1.076772301 2.141 0.448
87 48 0.303648769 0.765781860 1.076601034 2.133 0.446 0
88 * 48 -0.937732537 3.635264647 0.513842069 2.085 0.783
89 * 51 -0.936460559 3.615701948 0.513251414 2.075 0.782
90 51 0.298854976 0.766596536 1.074286150 2.030 0.419
91 52 0.298452924 0.766665048 1.074091051 2.022 0.416
92 * 52 -0.922837189 3.416441108 0.507066370 1.980 0.770• 52 0.132892246 -2.794509822 -1.842549332 1.988 0.545 •
93 * 55 -0.921486942 3.397663738 0.506467818 1.971 0.769
94 55 0.293560276 0.767501140 1.071705075 1.932 0.390
95 56 0.293108360 0.767578587 1.071483593 1.925 0.388
96 * 56 -0.908230900 3.221855968 0.500736884 1.888 0.758
97 * 59 -0.906799304 3.203753597 0.500134182 1.880 0.757

• 59 0.093603813 -2.567250497 -1.713266557 1.873 0.525 •
98 59 0.288105208 0.768438530 1.069019185 1.846 0.363
99 60 0.287598722 0.768525846 1.068768439 1.838 0.361

100 * 60 -0.893853078 3.047273122 0.494833972 1.806 0.746
• 60 0.070745719 -2.444765037 -1.641800951 1.812 0.513

101 * 63 -0.892336306 3.029753742 0.494231153 1.798 0.745
• 63 0.063090345 -2.405198903 -1.618455547 1.792 0.509 0

102 63 0.282473429 0.769412155 1.066217981 1.768 0.337
103 64 0.281907098 0.769510398 1.065934703 1.761 0.335
104 * 64 -0.879648556 2.889406047 0.489344138 1.732 0.734
105 * 67 -0.878041979 2.872391752 0,4S8745624 1.725 0.733

• 67 0.033515032 -2.258672995 -1.530936347 1.719 0.494
106 67 0.276647808 0.770425716 1.063290167 1.698 0.312 •
107 68 0.276015712 0.770536090 1.062970648 1.691 0.310
108 * 68 -0.865565978 2.745662077 (.484259370 1.666 0.723
109 * 71 -0.863864093 2.729085979 0.483670083 1.658 0.721
110 71 0.270610146 0.771483233 1.060223463 1.635 0.288
111 72 0.269905613 0.771607111 1.059863471 1.628 0.286
112 * 72 -0.851556489 2.613965778 0.479576745 1.605 0.711 0

• 72 -0.015618104 -2.035109804 -1.394441154 1.610 0.469
113 * 75 -0.849752811 2.597769698 0.479002235 1.598 0.709
114 75 0.264340873 0.772589122 1.057004391 1.577 0.266
115 76 0.263556365 0.772728077 1.056599086 1.570 0.263
116 * 76 -0.837572606 2.492634106 0.475298242 1.550 0.699

• 77 -2.045823549 0.460902913 -1.452068027 1.557 0.315
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Table 17 (continued)

Sol (*) k Pi P2 P3 a e

117 * 79 -0.835659542 2.476766821 0.474744845 1.543 0.698
118 79 0.257818732 0.773748278 1.053618040 1.524 0.244
119 80 0.256945701 0.773904122 1.053161864 1.517 0.242
120 * 80 -0.823567215 2.380286392 0.471430754 1.499 0.688
121 * 83 -0.821535896 2.364702271 0.470905773 1.492 0.686

* 83 -0.077373558 -1.783376006 -1.237401050 1.489 0.436 5
122 83 0.251020425 0.774966179 1.050047795 1.475 0.224
123 84 0.250049132 0.775141006 1.049534337 1.469 0.222
124 * 84 -0.809492613 2.275778251 0.467986261 1.452 0.677

* 84 -0.095995112 -1.712848879 -1.193004520 1.456 0.427
* 86 -1.826146530 0.445813164 -1.234536042 1.440 0.264

125 * 87 -0.807332692 2.260436185 0.467498189 1.445 0.675 0
126 87 0.243920197 0.776249002 1.046275011 1.430 0.206
127 88 0.242839502 0.776445246 1.045696843 1.424 0.204
128 * 88 -0.795299564 2.178152287 0.464982180 1.409 0.665

* 89 -1.777936005 0.441607788 -1.187077097 1.414 0.252
129 * 91 -0.792998953 2.163014835 0.464540975 1.402 0.663
130 91 0.236489353 0.777603767 1.042278621 1.388 0.191 0
131 92 0.235286448 0.777824277 1.041627090 1.382 0.188
132 * 92 -0.780936303 2.086600793 0.462441898 1.369 0.654

* 94 -1.668066947 0.430398831 -1.079489903 1.358 0.225
133 * 95 -0.778480854 2.071633479 0.462059323 1.362 0.652
134 95 0.228695673 0.779038522 1.038034663 1.350 0.177
135 96 0.227355749 0.779286651 1.037299634 1.343 0.176 0
136 * 96 -0.766347457 2.000437161 0.460395512 1.331 0.643

* 96 -0.172556375 -1.444150120 -1.023826325 1.334 0.384
* 97 -1.624928274 0.425261735 -1.037520646 1.336 0.215
* 98 -1.595301725 0.421450761 -1.008807884 1.321 0.207

137 100 0.219008516 0.780842294 1.032685210 1.307 0.166
138 * 100 -0.751472814 1.919073712 0.458880813 1.296 0.632

* 100 -0.197609980 -1.362544221 -0.972907389 1.299 0.370
139 * 103 -0.748654848 1.904352319 0.458660235 1.290 0.630
140 103 0.211868796 0.782186734 1.028690006 1.280 0.161
141 i04 0.210200187 0.782502824 1.027749901 1.273 0.160
142 * 104 -0.736245876 1.842004317 0.457944559 1.263 0.621

* 106 -1.459787797 0.400413349 -0.878976262 1.254 0.174 0
143 * 107 -0.733213603 1.827362076 0.457833561 1.257 0.618
144 107 0.202746104 0.783923785 1.023520769 1.248 0.158
145 108 0.200879223 0.784281981 1.022454064 1.242 0.158
146 * 108 -0.720592124 1.768790626 0.457644128 1.233 0.610
147 * 111 -0.717317797 1.754199894 0.457667237 1.227 0.607
148 111 0.193078982 0.785788878 1.017964720 1.218 0.159 0
149 112 0.190985433 0.786196191 1.016750927 1.212 0.160
150 * 112 -0.704426850 1.699051034 0.458049635 1.204 0.599

* 113 -1.360037030 0.379949492 -0.785652246 1.207 0.151
151 * 115 -0.700877113 1.684484848 0.458236844 1.198 0.596
152 * 115 0.182802135 0.787800242 1.011970601 1.190 0.164
153 * 116 0.180447739 0.788265325 1.010584736 1.A84 0.165
154 * 116 -0.687652429 1.632451704 0.459246671 1.176 0.588
155 * 119 -0.683786826 1.617883355 0.459634940 1.170 0.586
156 * 119 0.171838035 0.789980072 1.005477002 1.163 0.172
157 * 120 0.169181167 0.790513751 1.003888239 1.157 0.174
158 * 120 -0.670154754 1.568699117 0.461339872 1.151 0.577
159 * 123 -0.665923718 1.554101619 0.461975134 1.145 0.575 5
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Table 17 (concluded)

Sol (*)k Pl P2 P3 a e

160 * 123 0,160093413 0.792355785 0.99840942i 1.138 0.183
161 * 124 0.157082674 0.792971825 0.996579207 1.132 0.186
162 * 124 -0.651798488 1.507533642 0.464457633 1.126 0.567
163 * 127 -0.647140559 1.492879012 0.465397530 1.120 0.564
164 * 127 0.147454338 0.794961820 0.990676151 1.114 0.196
165 * 128 0.144025225 0.795678041 0.988555497 1.108 0.200
166 * 128 -0.632420551 1.448723629 0.468758453 1.103 0.556
167 * 131 -0,627258390 1.433981798 0.470076152 1.097 0.554
168 * 131 0.133779141 0.797842283 0.982162363 1.092 0.211
169 * 132 0.129849099 0,798682270 0.979687813 1.086 0.215
170 * 132 -0.611820843 1.392059400 0.474439728 1.081 0.546

* 133 -0.409083531 -0.757495186 -0.624321289 1.082 0.239
* 134 -0.421522572 -0.725458378 -0.608318388 1.074 0.231
* 134 -1.044133746 0.261006615 -0.519161800 1.073 0.104

171 * 135 -0.606055364 1.377196436 0.476229412 1.075 0.543
172 * 135 0.118887840 0.801054982 0.972721290 1.070 0.228
173 * 136 0.11 43A8667 0.802050790 0.969808722 1.064 0.233
174 * 136 -0.589748502 1.337346183 0.481750361 1.060 0.536

* 138 -0.456012568 -0.638399631 -0.566684835 1.053 0.211
175 * 139 -0.583249809 1.322321254 0.484135476 1.054 0.533
176 * 139 0.102545729 0.804677841 0.962160577 1.050 0.246
177 * 140 0.097251311 0.805874489 0.958695185 1.044 0.251
178 * 140 -0.565880464 1.284394426 0.491009803 1.040 0.526

* 141 -0.478658352 -0.582675730 -0.541590562 1.041 0.198
* 142 -0.496333814 -0.540003665 -0.523273963 1.033 0.188

179 * 143 -0.558473076 1.269154317 0.494156110 1.034 0.523
180 * 143 0.084436557 0.808819625 0.950220050 1.031 0.264
181 * 144 0.078181903 0.810283008 0.946039225 1.024 0.271
182 * 144 -0.539785836 1.233004419 0.502638710 1.021 0.516

* 145 -0.524013061 -0.474702955 -0.496888534 1.022 0.175 0
183 * 147 -0.531222838 1.217473107 0.506776515 1.015 0.513
184 * 147 0.064115851 0.813639040 0.936533174 1.012 0.284
185 * 148 0.056598393 0.815471022 0.931394954 1.006 0.291
186 * 148 -0.510861814 1.182938727 0.517212684 1.003 0.507

* 150 -0.672969313 -0.162159519 -0.406393714 0.996 0.128
187 * 151 -0.500775280 1.166996116 0.522678500 0.997 0.503 0
188 * 151 0.040922622 0.819381779 0.920554498 0.994 0.305
189 * 152 0.031663089 0.821752059 0.914073195 0.988 0.313
190 * 152 -0.478205899 1.133866609 0.535567466 0.985 0.497
191 * 155 0.013792194 0.826461040 0.901406637 0.977 0.327
192 * 156 0.001947228 0.829685243 0.892900917 0.971 0.335
193 * 159 -0.019213373 0.835664974 0.877498653 0.961 0.350

* An asterisk in column 2 indicates an impossible solution; a number in column 2 refers to a
solution found by Lane.
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LIST OF SYMBOLS

a semi-major axis 0
C calculated version of the vector P2
cj coefficients (Gauss's method only)

C centr of force
D determinant (Jacobian) of partial derivatives

e eccentricity

E ccentric anomaly

f,g target functions to be nulled (g = 0 at start of each iteration)
F,C fg multiplied by factors r/fi
i inclination of orbit (to the xy-plane)
j index (1-3) for the observations (often omitted for . 2)

k number of half-revolutions spanned by t13

kn suffix meaning 'known'

m,M quantities used in Laplace's method
M mean anomaly

n mean motion
N number of iterations to convergence * *
NR Newton-Raphson

0 observing site

p orbit parameter a(1 42)

P position in orbit
q pericentre radius
r vector CP

R vector C""
t tm

Ijk tk-tj
T orbital period (ellipses)

v true anomaly
V velocity vector
w 1/fP2 - 1/a2

XYyZ components of r

x,y alternative notation for pi and p3
X,Y,Z components of R

X, Y known solution for Pl and p3

a P/a

P (p2 + 12)' +2(fi + r,2 2*/
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LIST OF SYMBOLS (concluded)

, coefficient (Gauss's method only) •

6 increment

C criterion quantity for convergence

see
0 angle PICP3

A, observed-direction affine vector

p gravitation constant for the force centre

x-X and y-Y,when x=pl etc

components of 2 (P A4) or c 0
e vector OP

I t at pericentre

angles used in Laplace's method (and Gauss's)

(0 argument of pericentre

D2 longitude (or right ascension) of the node

93 Sq

0J

0i
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