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EXECUTIVE SUMMARY

For more than ten years, the Air Force Office of Scientific Research (AFOSR) has
supported research in the field of multiphase mechanics, i.e. the mechanical response of
materials consisting of a porous skeleton of solid-phase material having its pore space filled with
liquid or a mixture of liquid and gas. For the Department of Defense (DoD), the primary
motivation for such efforts is the study of the effects of explosions in fully or partially saturated
soils and porous rocks, which exhibit significantly different behavior than equivalent dry
materials. This fundamental research in multiphase mechanics is also applicable to other
problems such as earthquake induced liquefaction and shock-wave therapies for kidney stones.
The results or the past decade of AFOSR-sponsored research has contributed significantly to
numerous DoD studies, including:

o an evaluation of nuclear craters in the Pacific which led to a revision in the

perceived cratering effectiveness of nuclear weapons;

° evaluations of the vulnerability of deep underground structures in saturated porous

rock geologies;

o development of simplified weapons effects prediction techniques for use by

targeting analysts throughout the DoD community;

| analysis of the vulnerability of U.S. Air Force aircraft shelters and other

hardened facilities sited in saturated soils to attack from conventional weapons;

o development of countermeasures to enhance the survivability of hardened

structures in/on saturated soil; and

o analysis and experimental support for the U.S. Navy’s surf zone mine

countermeasures research.

Analysis of the response of saturated porous materials is complicated by the fact that they
are composed of multiple constituents, e.g. sand and water, having fundamentally different
mechanical response characteristics. A computation of the deformation of the multiphase
material under load must account for the partitioning of load between the solid and fluid phases.

In addition to the deformation of the solid skeleton caused by the load it carries, it is also
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deformed by the pore fluid pressure acting on it. Thus, a theoretically rigorous formulation
must account for the deformations of both materials and the coupling between them while
maintaining full compatibility of deformations as well as tracking mass transfer of the fluid
phase. All geologic and cemeniitions materials exhibit frictional strength characteristics, i.e.
over a wide stress range, their shear strength increases with increasing normal stress. However,
in the case of fluid-saturated materials, only that component of normal stress that is carried by
the solid skeleton is effective in increasing its shear strength. This "effective stress" concept,
which was developed by Terzaghi over 50 years ago, was largely ignored by the DoD weapons
effects community until the results of the AFOSR research began to influence the community

in the last few years.

The research effort described in this report, which was conducted by Applied Research
Associates, Inc. (ARA), was designed to further advance the state of knowledge in multiphase

mechanics. It was a rather ambitions program with three major objectives:

1. development of a Material Element Model (MEM) to automate the determination
of parameter values for multiphase material models and to predict the response

of saturated undrained porous materials to specified stress and strain inputs;

2. verification and calibration of a fluid friction model for soils and rocks covering
a wide range of pore pressure gradients, and correlation of the fluid friction

parameters with the microscopic structure of the pore space; and

3. development of a better understanding of the fundamental mechanics of wave
propagation in saturated porous media through theoretical, numerical and

experimental studies of wave propagation in confined saturated porous bars.

While the principles of multiphase mechanics and the effective stress law have been
known for many years, their application to problems of interest to the DoD community and the
accomplishment of further research were impeded by the lack of analysis tools. Even the

simplest problems in multiphase mechanics are analytically tractable only with numerical
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methods on computers. Because of the direct influence of pore fluid pressure on strength and
the sensitivity of pore pressure to changes in volume, it is extremely important in multiphase
calculations that the volume change behavior of the solid skeleton under shear and normal
loading be modeled correctly. Under this contract, ARA developed a Material Element Model
(MEM) to support constitutive modeling of multiphase materials. It is a quasi-static finite
element program that was specircaily designed to facilitate implementation of new skeleton
constitutive models. It provides a very convenient platform for constitutive model parameter
evaluation and parameter sensitivity studies. The resulting material model parameter values are
directly transportable to dynamic analysis programs, a highly desirable feature in view of the
fact that the modern elastoplastic constitutive models may have as many as 40 parameters.
MEM includes an extremely robust set of boundary conditions, making it possible to exercise

material models over virtually any combination stress, strain, and/or fluid flow conditions.

A description of the formulations implemented in MEM is presented in Section 2. An
advanced three-invariant elastoplastic constitutive model which is included in MEM for modeling
of multiphase materials is described in Section 3, along with a discussion of the procedures for
fitting the model parameters for a granular material. An important application of MEM,
presented in Section 5, involves the analysis of a conventional triaxial compression test on a
porous limestone specimen in the saturated undrained condition. When the test data were
interpreted using conventional approaches, the results led to the apparent paradox that the pore
fluid pressure in the specimen remained constant while the volume of the specimen increased
under triaxial compression loading at constant confining pressure. A study involving carefully
conducted tests and a detailed analysis using MEM led to the conclusion that the conventional
triaxial compression test applied to saturated undrained material is fatally flawed, and that even
for dry materials, it can lead to erroneous measures of volume change under shear loading. It
has long been recognized that triaxial compression test specimens deform nonuniformly owing
to the additional effective radial confinement resulting from end friction. However, the
traditional approach has been to assume that error occurs only at the ends of the specimen, and
that the behavior of the center third of the specimen is representative of the material’s response
to the idealized triaxial compression loading. In fact, both the test and the MEM analysis

showed that the deformation of the specimen was nonuniform in both the axial and radial




directions, with the large expansive radial deformation in the center of the specimen
accompanied by a larger than average compressive axial strain. Thus, the traditional approach
of volume strain computation from the radial deformation at the center of the specimen and the
axial deformation averaged over the entire length substantially overstates the volumetric
expansion of the specimen. In subsequent work, motivated by the results of this study, a
procedure was developed to reduce end friction using lubricating membranes. Using that test
technique, we have demonstrated that, at contining pressures above the brittle-ductile transition,
porous limestone will undergo axial strains up to 15% with no tendency to dilate. This contrasts
with the conventional approach which inferred dilation as a result of the nonuniform strain tieids
in the test specimen. As a result of this study of test techniques for saturated porous materials
using MEM, modifications have been implemented to rock testing techniques in laboratories at
both ARA and WES. These results were also presented at an international conference on

constitutive modeling (Chitty, et al., 1991).

The second major thrust of this research was in the area of fluid flow through granular
materials and porous rocks at high pressure gradients. Dynamic loading of a saturated porous
material will induce pore pressure gradients. The development of pore pressure, and hence the
strength of the saturated material, under these conditions is strongly influenced by its fluid flow
characteristics. Therefor, to properly model such dynamic loading, it is necessary to analytically
treat the fluid flow as well as the compressibility and strength of the material. We have
proposed and validated an equation of motion for fluid flow that includes inertial terms as well
as flow resistance terms that are linear and quadratic in flow velocity. While the drag equation
involving the linear and quadratic terms was first proposed by Forchheimer near the beginning
of this century and has been used in chemical engineering, it was virtually unknown in the civil
engineering literature and had not been validated at high pressure gradients. We initially
believed that the appearance of the quadratic term was related to turbulent flow, analogous to
flow in pipes. However, analysis of test data for both granular materials and porous rocks has
shown that, unlike pipes in which there is a change from linear to quadratic dependence on
velocity at the transition from laminar to turbulent flow, both terms are present over the entire
range of pressure gradients in porous materials. We now believe that the linear term is a result

of drag forces related to the size of the narrow passages or throats through which the fluid must

Vi




flow, and the quadratic term is a result of changes in momentum due to direction changes as the
fluid flows along a tortuous path through the material. The Darcy equation in conventional soil
mechanics is equivalent to retaining the linear term and neglecting the quadratic term. This
approximation has served well over the years because the effect of the quadratic term becomes
small in comparison with the linear at the low velocities (pressure gradients) encountered in
hydrology and in conventional civil engineering applications. We have adopted a form of the
flow equation in which the flow coeificients have dimensions involving only powers of length
and are functions only of the properties of the porous material, independent of fluid properties.
The fluid density and viscosity appear explicitly in the equation. Flow tests were performed on
granular materials with a range of sizes and shapes and, under sponsorship of the Defense
Nuclear Agency (DNA), on porous limestone. Relationships have been developed to relate the
fluid flow coefticients to the geometry of the porous materials. The linear flow coefficient is
related to representative throat dimensions of the porous material by a dimensionless constant
over the whole range of granular materials and rock tested. A similar relationship was
developed for the quadratic flow coefficient, but it is found to be applicable only to the granular
materials. Since the tortuosity in rock is fundamentally different than in granular materials, this
1s consistent with the view that the quadratic coefficient is related to the inertial forces associated
with direction changes. The fluid flow test results and theoretical development of the flow

model are documented in Section 4 of the report.

The final major objective of this research was to perform laboratory wave propagation
tests on saturated porous materials for the purpose of validating the analytical and numerical
formulations, and observing their fundamental mechanical response characteristics. The early
part of the research effort involved parallel efforts to design the laboratory apparatus and
perform numerical analyses of the planned experiments. The calculational portion of the effort
was performed using the MultiPhase Dynamic Analysis Program (MPDAP) which was developed
under a previous AFOSR-sponsored effort. For this work, MPDAP which was originally an
implicit finite element program was converted to have an explicit integration option which will
more efficiently treat wave propagation problems, as described in Section 2. Our approach to
design of the test apparatus was similar in appearance to a Split Hopkinson Pressure Bar

(SHPB). A striker bar is fired from a gas gun and impacts the incident bar inducing a
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compressive wave which is propagated into the test specimen. In contrast to the SHPB, the
Wave Propagation Bar (WPB) makes measurements directly on a test specimen which is many
bar diameters in length. The ARA WPB uses a specimen 2 inches in diameter and up to 24
inches long. Because of the necessity to saturate the test specimen, it was originally proposed
to confine the specimen within pressurized gas in a concentric pressure vessel, much like a
triaxial compression apparatus. However, the MPDAP numerical calculations revealed that the
experiment as planned had significant shortcomings. Because the confining pressure remained
essentially constant throughout the test, the pore pressure generated by the propagating wave was
prematurely relieved by a relief wave propagating in from the surface of the porous specimen.
This discovery motivated further calculations to find a solution to the problem and caused a
delay in construction of the test equipment. Eventually, based on the calculationdl results, an
apparatus was designed and constructed in which the confining vessel consisted of a thick
(approx. 2 inches) steel sleeve with a thin (approx. 0.2 inch) liquid filled gap between its inner
wall and the test specimen. A porous metal bar was chosen as a test specimen because it
appeared to have a combination of skeleton response and fluid flow properties which would
accentuate the influence of relative fluid motion on the wave propagation characteristics. The

design of the equipment and the preliminary calculations are presented in Section 6.

The WPB test apparatus was constructed and a series of tests was run on a specimen of
porous stainless steel in both the saturated and dry states, as described in Section 7.
Measurements were made of dynamic skeleton strains at three locations on the specimen and of
dynamic pore pressure respor<e at one location. The experimental apparatus produced highly
repeatable measurements of excellent quality. As also documented in Section 7, the test results
were analyzed using MPDAP calculations which simulated, as closely as possible, the lab tests.
There is excellent qualitative and quantitative agreement between the calculations and the
laboratory measurements. The calculational results clearly exhibit a secondary disturbance
propagating at a relatively slow speed behind the compressional wave. This wave of the second
kind is predicted by analysis to exist in saturated porous materials but has not, to our knowledge,
previously been observed. Guided by the calculations, we were able to identify this
phenomenon, which appears to be related to a surge of pore fluid within the porous skeleton,

in the laboratory test data. Thus, we believe that we have observed a phenomenon in the
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laboratory which has previously only been predicted by analysis. The excellent overall
agreement between experimental wave propagation test data and the numerical calculations of
these experiments provides strong validation of these analytical techniques. It should provide
confidence in their application to the much more complex real-world problems of interest to the

DoD and others.
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SECTION 1
INTRODUCTION

This report presents the results of a research effort directed at improving the fundamental
understanding of the dynamic response of fully or partially tluid-saturated porous materials. The
work was performed by Applied Research Associates, Inc. (ARA) under Contract No. F49620-
89-C-0037 with the Air Force Office of Scientific Research (AFOSR). The laboratory research
was conducted by the Materials Testing Laboratory of ARA’s New England Division in South
Royalton, Vermont, which was also responsible for the data analysis and numerical simulations.
An ARA subcontractor, COMTEC Research of Clifton, Virginia developed the multiphase
analysis programs, MEM and MPDAP.

1.1 BACKGROUND

For more than ten years, AFOSR has supported a number of researchers in the field of
multiphase mechanics, with particular emphasis on blast induced liquetaction. This research has
significantly advanced the state of knowledge in this field of geomechanics and has provided
strong support for Air Force and Department of Defense studies of weapons effects in saturated

geologies. Studies which this work has supported include:

L an evaluation of nuclear craters in the Pacific which led to a revision in the

perceived cratering effectiveness of nuclear weapons;

. evaluations of the vulnerability of deep underground structures in saturated porous

rock geologies;

o development of simplified weapons effects prediction techniques for use by

targeting analysts throughout the DoD community;




o analysis of the vulnerability of U.S. Air Force aircraft shelters and other

hardened facilities sited in saturated soils to attack from conventional weapons;

. development of countermeasures to enhance the survivability of hardened

structures in/on saturated soil; and

o analysis and experimental support for the U.S. Navy’s surf zone mine

countermeasures research.

1.2 OBJECTIVES

The research described in this report was designed to further advance the state of

knowledge in the are of dynamic multiphase mechanics. There are three major objectives of this

research:

1. development of a Material Element Model (MEM) to automate the determination
of parameter values for multiphase materiai models and to predict the response
of saturated undrained porous materials to specified stress and strain inputs;

2. verification and calibration of a fluid friction model for soils and rocks covering
a wide range of pore pressure gradients, and correlation of the fluid friction
parameters with the microscopic structure of the pore space; and

3. development of a better understanding of wave propagation mechanics in

saturated porous media through theoretical, numerical and experimental studies

of wave propagation in confined saturated porous bars.

|




1.3 SCOPE

Model development work under this effort is summarized in Sections 2 and 3. The
formulation of the computer program, MEM, a tool for the development of multiphase
constitutive models for fully and partially saturated porous materials, and the extension of
MPDAP, a finite element program for multiphase dynamic analysis, to allow for explicit
integration, making it more efficient for wave propagation problems are detailed. The
tormulations of the multiphase mechanics are presented in Section 2. Section 3 describes the
constitutive relationships used to model the individual constituents in a multiphase problem,
including the porous skeleton, the solid grains, and the pore fluid. The source codes and user
guides for MEM and MPDAP were presented in the first two Annual Technical Reports

submitted under this contract (Blouin, et. al; 1990, 1991)

Laboratory tests to support development of fluid flow models for porous media were
conducted at a wide range of pressure gradients in granular materials with a range of grain sizes
and in porous rock. The results of fluid flow research are presented in Section 4 along with
analysis which results in a unified fluid friction model. Section 5 presents the results of an
analysis of the undrained triaxial compression test on saturated undrained triaxial compression
test on a porous limestone specimen using data and models from the previous sections. The test
results are compared with a detailed multiphase numerical simulation of the test. In addition to
exercising and validating the numerical modeling techniques, this analysis identified fundamental

problems with the test and provided suggestions for correcting them.

In order to further study the dynamic response of saturated porous materials and validate
procedures for numerical simulation of that response, a laboratory apparatus was designed and
fabricated to study wave propagation through fluid-confined saturated porous materials. Section
6 documents the development of that apparatus, including a suite of supporting numerical
simulations. A series of tests was performed on a bar of porous (sintered) stainless steel in both
the dry and fully saturated conditions. Section 7 describes those tests and presents the test
results along with comparisons to a numerical simulation of one of the tests that was performed

using the models described in the previous sections.
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SECTION 2
NUMERICAL MODELING OF MULTI-PHASE MEDIA

The differential equaidons governing wave propagation in saturated porous media are so
complex that closed-form analytical solutions are totally impractical for all but the simplest one-
dimensional geometries. The analytical difficulty is further exacerbated in the case of nonlinear
fluid or skeleton properties. a great variety of numerical algorithms have been developed to
model the mechanical deformation of materials under static and dynamic loading. However,
numerical techniques that can treat saturated porous media have not been well developed. This
section describes two different numerical procedures for analysis of saturated or partially

saturated porous materials.

The Material Element Model (MEM) is a quasi-static finite element program that was
developed under this research effort to facilitate constitutive model development for saturated
porous materials. It models deformation and fluid flow under arbitrary loading, specified in
terms of either stress or strain, and it is designed to simplify inclusion of new skeleton
constitutive models. Because pore pressure, and hence strength, are strongly dependent on the
volumetric behavior of the porous skeleton, accurate constitutive modeling of the skeleton is

particularly important in the analysis of saturated materials.

Multi-phase analyses require greater computation time and computer memory than single-
phase dynamic analyses because of the required additional degrees of freedom to represent the
motion of pore fluid. Consequently, computational efficiencies are an essential consideration
in the formulation of solution schemes for real problems of interest in weapons effects and
earthquake engineering. This section describes an efficient explicit formulation for the multi-
phase dynamic analysis. In contrast to implicit solution techniques, the explicit formulation does
not require assembly and solution of a global stiffness matrix. For numerical stability, the
explicit approach requires time steps that are no greater than the wave transit time of the
smallest elements. While this is smaller than the step size required for numerical stability in an

implicit calculation, wave propagation problems typically require time steps of that size to




capture the physics of interest. Thus, the explicit solution, with its greatly reduced numerical

complexity, is the preferred method for real wave propagation problems.

2.1 MATERIAL ELEMENT MODEL

MEM is a finite element program that models the quasi-static response of saturated
porous materials to prescribed stress, strain ard pore pressure boundary conditions. As currently
implemented, MEM has both single element and multiple element options. The single element
option includes full three dimensional capability. The multi element option is two- dimensional,
and both options model pore fluid flow between elements. MEM is written in updated
Lagrangian format to enable modeling cf nonlinear geometric distortions including changes in

porosity.

MEM is used to compute the stress, strain and pore pressure response of saturated,
nonlinear porous materials. As depicted in Figure 2.1, MEM formulates the constitutive
relaitonships for 9 saturated porous materials in terms of the nonlinear response of the individual
material components, including the stress-strain response of the porous skeleton in the drained
or unsaturated condition, and the pressure-volume relationships for the solid grains and the pore
fluid. These are combined using fully coupled two-phase theory as described by Kim, Blouin,
Chitty and Merkle (1988) and Simons (1989). In the fully coupled model, the overall material
response is governed by the response of the material skeleton to the applied effective stresses
as well as the response of the skeleton to compression of the solid grains by the effective stresses
and pore fluid pressure. In addition to the material property inputs, a set of boundary conditions

and/or loading histories is input.

MEM is highly versatile in that it can handle a wide variety of input boundary conditions.
As shown in Figure 2.2, individual stress, strain and pore pressure inputs can be prescribed on
any face of the material element. In addition, boundary conditions can include prescribed stress
followed by prescribed strain, or prescribed strain followed by prescribed stress. Pore fluid
boundary conditions include drained, undrained, and prescribed pressure, as well as drained

followed by undrained and vice versa. A good example of a test using a combination of these
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boundary conditions is the shock consolidation test described by Kim, Blouin and Timian (1987).
In this uniaxial strain test, a saturated material undergoes an undrained load-unload cycle

followed by a period of drained consolidation under constant effective stress and pore pressure.

Two nonlinear skeleton material models are currently implemented in MEM, a
generalized elastic-perfectly plastic model described by Kim, Piepenburg, and Merkle (1985)
(and updated by Kim and Blouin, 1990), and the ARA Three Invariant Conic Model described
by Merkle and Dass (1985). The elastic-plastic model requires seven material parameters to
completely describe the material properties. The failure and vield surfaces are coincident and
are speciried as one of three options: Von Mises, linear Mohr-Coulomb, or nonlinear Mohr-
Coulomb with Von Mises limit. The slope of the nonlinear failure envelope for rock is
prescribed according to Hoek and Brown’s empirical data table (1982) as a function of rock type
and in situ rock mass quality (Kim, Blouin and Timian, 1986). Beneath the failure surtace the
shear behavior is linear-elastic and the pressure-volume response 1s noniinear-inelastic. Along

the failure surface dilatancy is prescribed according to the associated flow rule.

The ARA Three Invariant Conic Model (ARA 3-1) is a sophisticated elastic-plastic model
with compressive and expansive work hardening. It requires about 40 parameters to fully
describe the material model properties. These are determined by computational fits to laboratory
test data as described in Section 3. Dilatancy is controlled by a plastic potential functica and
is generally not associated with the yield surface. Details of the current ARA 3-1 model are
described in Section 3, including improvements that have been implemented to better describe

material behavior.

The multi-element option of MEM permits the study of two-dimensional problems with
pore fluid flow, e.g., two dimensional consolidation, the simulation of saturated undrained
laboratory tests to study the effects of pore fluid migration on sample response, and simulation
of permeability tests. The multi-element option has all the boundary condition options listed for
the single element in Figure 2.2 with the exception of the changes from one boundary condition

to another.
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Other applications of MEM include the following:

o provide a general-purpose tool for testing engineering material models,
o provide a means of constructing sophisticated two-phase material models from
drained laboratory test data and of predicting equivalent single-phase response to

prescribed loadings,

o define the shear strength of saturated porous materials for prescribed undrained
loadings,
. verify the two-phase models through comparison to laboratory test data obtained

from less conventional strain and stress paths,

| permit analysis and prediction of liquefaction phenomena under complex loading
conditions,
o perform analysis of standard and non-standard laboratory tests to gain a better

understanding of test results and to develop modifications to methods used in the

determination of material model parameters.

2.1.1 Theory

The theoretical formulations used in MEM are similar to those used in the multiphase
dynamic code MPDAP described by Kim, Blouin, Chitty and Merkle (1988). The formulatior.

is briefly summarized in the following subsections.

Full documents along with MEM Users Manual and the listing of the program are
presented by Blouin, et al., 1990.

Notation
Note that positive signs are used for elongation and tension. A comma denotes

differentiation with respect to the subsequent indices and the superposed dot denotes

differntiation with respect to time. Prime indicates effective stress or effective pressure.




: skeleton displacement

: absolute fluid displacement

: apparent fluid displacement relative to the solid skeleton
: total stress

: effective stress

: total pressure

. effective pressure

: pore fluid pressure

: pore fluid pressure gradient vector

: skeleton strain

: element nodal skeleton displacement vector

: element nodal pore fluid pressure

: global nodal skeleton displacement vector

: global nodal fluid pressure

: applied boundary traction

: specified boundary flow velocity (flux)

: body force vector (generally equals gravity force)

: elasto-plastic stress-strain matrix for skeleton

: unit vector ()T =<111000>

: porosity

: pore fluid compressibility = 1/K;

: compressibility of solid grains

: compressibility of soil-water mixture with zero effective stress = 1/K,
: bulk modulus of soil-water mixture with zero effective stress
: bulk modulus of skeleton

: bulk modulus of pore fluid

: constrained modulus

: bulk mass density of mixture

: dry mass density of skeleton

: fluid mass density

: mass density of solid grains




M)
(K}
[C]
[E]
[H]
{F}
{R}
{Q}

: pore fluid viscosity

. linear pore fluid flow coefficient (defined in Section 4)
: quadratic pore fluid flow coefficient

: mass matrix

. tangent skeleton stiffness matrix

: coupling matrix between solid skeleton and pore fluid
: pore fluid compressibility matrix

: fluid friction energy dissipation matrix

: nodal force vector

: internal resistance force vector

: equivalent boundary flow vector

Formulations

The current version of MEM can only handle the quasi-static response of the saturated

porous medium. The formulations in MEM are obtained by dropping the inertia terms out of
the general equations that were derived for MPDAP by Kim, Blouin, Chitty, and Merkle (1988).

The first global equation is based on the equilibrium of the total stresses with the applied

boundary tractions and is given by

where:

K] {auw}, + [C] {A®), = (P}, 2.1)

), =B, - X, [B]" o, } av
M) = Z/, INI" (p-np)) [N] dv
[X] = X/, [BY [D7] [B] dv
B, = LI [N (B, ds

[a-==xf, 8" ({1} - % (D] {1}) <G> dv
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The second global equation is based on the fact that the internal fluid movements relative
to the solid skeleton are compatible with the specified boundary flux and is given by

[C] A, + (—[E] -3 [H]] (am, = P}, 2.2)

where:
[E] = [ <G>T (a L8 gy (D) {1}] <G> dv
8
[H] = va [A]T k'[A] av

P} = Ar[H]-@, - -Az—‘ (@, + {Qh)

Q= X[ <G>T Qs
-1
12 e
w, = n(U; - &)

C, = an +(1 - n)Cg

The shape functions , [N] and <G>, and their derivatives [B] and [A], respectively, in

Equations 2.1 and 2.2 relate the field variables within each element to e element nodal values

as follows:
{ut = [N lul, (2.3)
& = [B] @,
n = <G> (=},

{n,} = [4] =},
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2.3 EXPLICIT FINITE ELEMENT FORMULATIONS FOR MULTI-PHASE
DYNAMIC ANALYSIS

Kim, et al. (1988) and Blouin, et al. (1991) describe the implementation of the multi-
phase dynamic equilibrium equations using implicit integration schemes. In the implicit method,
the element stiffness, damping, and mass matrices are assembled to form a generalized structural
stiffness matrix. The linearized structural equilibrium equations are then solved simultaneously
at each step in the calculation. For large scale nonlinear problems, the implicit method requires
considerably longer computation at each time step, mostly for solving linear equations, and
considerably more computer memory to store the generalized structural stiffness matrix, than
a comparable problem solved using an explicit formulation. In many structural problems, the
penalty in computation time required by the implicit approach at each step is more than offset
by a greatly reduced number of time steps required to solve the problem. However, in the wave
propagation problems of interest to members of the DOD community, time steps on the order
of the wave transit time across an element are required to simulate the physical processes with
adequate fidelity. In this, the explicit approach which requires approximately the same number

of time steps, has an advantage because of the smaller computational effort at each time step.

Explicit direct integration schemes, combined with mass lumping techniques, have been
successfully used to solve dynamic equilibrium equations for the single-phase media. The main
advantages of such an explicit method over the implicit method are that the generalized structural
stiffness matrix does not have to be formed and the structural equilibrium equations are easily
solved by just inverting the diagonal components of the lumped mass matrix. However, the
disadvantage of the explicit method is that the stable time step size, which depends on the

smallest period of the finite element, is sometimes unduly small.
This section presents efficient explicit formulation for the multi-phase dynamic analysis

along with verification problems to demonstrate the computational algorithms implemented in
the Multi-Phase Dynamic Analysis Program (MPDAP).
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Notation

Note that positive signs have been used for elongation and tension. A comma denotes
differentiation with respect to the subsequent indices and the superposed dot denotes

difdferentiation with respect to time.

{fu} solid phase displacement

{w} apparent fluid displacement relative to solid skeleton

{a} total stress

{o’'} effective stress

T : fluid pressure

{fu} solid phase displacement vector at element nodal degrees of freedom

{w} apparent fluid displacement vector relative to skeleton at structural nodal degrees
of freedom

{T} applied boundary traction

7 : specified boundary pore fluid pressure

[D*] elasto-plastic stress-strain matrix

{1}y : unit vector {1}T=< 111000 >

n porosity

K, bulk modulus of solid grain

K, bulk modulus of soil/water mixture

KP bulk modulus of elasto-plastic skeleton

p : bulk mass density of mixture

Ps : fluid mass density

® : dynamic viscosity of pore fluid

a : linear permeability coefficient

B quadratic permeability coefficient

Kronecker delta

o
=
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Explicit Formulations

The fully coupled global equilibrium equations for the multi-phase medium have been
derived by Blouin, et. al. (1991) and are given by:

Mm Mc z‘-..n 0 0 Qn K‘.,.EE C Agn (2.4)
M] M| |%®, +[0 H] w| " lcr  E||aw

where:

M, =3[, I o IN) av
D

M =3[, p, [V dv
M= X[ N o IN] dv

K =3 | [BI [D] [B] dv
EE = Y} [ [BY {1} {1} [B] av
C=X |, m B {1} {1} [B] av
E = Zj m (BI” {1} {1}7 [B] dv

F, =X [, W (T} as

Ry =X [ B {o} av
RL =Y I (BT {1} =, dv

-1
k/ = M + p_f IW|
« e
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The inertial force terms associated with the coupling mass matrix M, and M.T in Equation 2.4
can be expressed in the following simple form:

My +Hg =F, 2.5)
where:
M_ 0

- [

- _100

H =]o H]

ped Fn R"S + Rnf M" ’ ﬁ/n-l

F" ) {G"} ) R"f ) M"T.En-l

_ lu

un = w

Employing a central difference scheme, accelerations and velocities at step n can be expressed

in terms of displacement increments at steps n and n+1:

o=—(Au, -AT) (2.6)

and

U =— @@u, +Au) 2.7)

where Az denotes time step.

Now substituting Equations 2.6 and 2.7 into 2.5, we obtain:

1wl mlag, -F+L M-au--L H-au 2.8)
A2 2At " "oAr 24t

It should be noted that for practical purposes, the mass matrix M and the dissipation matrix H
in Equation 2.8 can be lumped out so that the solution can be performed on the element level

without the factorization of the structural matrix.
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Verification of Explicit Algorithms

Two problems are presented here to demonstrate the validity of explicit algorithms
implemented in MPDAP.

The first problem considers a 12 inch hollow spherical hole in an infinite elastic medium.
A 100 psi step load is suddenly applied to the internal surface of the spherical hole as shown in
Figure 2.3. Material properties and time steps used for the calculation are also included in
Figure 2.3. Figure 2.4 shows the radial stress profiles at 5.5 msec. The MPDAP calculation

using the explicit method agrees very well with the closed-form solution.

The second problem considers a planar compression wave propagating through saturated
elastic sand. The input loading, as shown in Figure 2.5, is a short rise time triangular pulse
with a peak stress of 5,000 psi and a positive duration of 10 msec. Material properties and time
steps used for calculations are also included in Figure 2.5. Two MPDAP calculations were

performed; one with the explicit method and the other with the implicit method.
Figures 2.6 and 2.7 show profiles of effective vertical stress and pore pressure,

respectively, at 20 msec. At the wavefront, there are slight differences between explicit and

implicit methods. But behind the wavefront, the stress profiles are almost identical.
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o
100 psi
1
[}

Time Step At =0.005 ms

Young’s Modulus E = 12,457 psi
Poisson’s Ratio v=10.25

Mass Density p=188x 10* Ib-s/in*

Figure 2.3. Verification problem 1, elastic spherical
wave propagation in one-phase medium.
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EXPLICIT METHOD
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120
1 | ! | ! | | ;
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" with Explicit Method -
S0 1 — —

a 20 40 60 80

OISTANCE (INJ

Figure 2.4. Radial stress profile at 5.5 msec, verification
problem 1.
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P (psi)
!
5000 -
L
i
)
1
f —=t(s)
- 0.01
At=155x10"
ASSUMED MATERIAL PROPERTIES
Pore Water 0.29 x 10° psi
Solid Grains
Bulk Modulus 5.0 x 10° psi
Specific Gravity 2.67
Drained Skeleton Properties
Bulk Modulus 3000 psi
Constrained Modulus 6000 psi
Poisson’s Ratio 0.20
Porosity 0.35
Permeability 1.0 in/s
Explicit Calculation at = 0.8 x 10° sec and C, = 0.8
Implicit Calculation at = 0.4 x 10* sec, 8 = 0.563
and y = 1

Figure 2.5. Loading time history, material properties, and
time steps used in 1-D plamne strain elastic wave
propagation for verification problem 2.
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Effective vertical stress profile at 20 msec,
verification problem 2.
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Figure 2.7. Pore fluid pressure profile at 20 msec,
verification problem 2.
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SECTION 3
MATERIAL MODELS

3.1 MODELING APPROACH

To improve our understanding of the mechanical response of saturated, porous materials,
we pertormed numerical simulations of labcratory experiments as described in Sections § and
7. These calculations were completed using the finite element codes MEM and MPDAP which
are discussed in Section 2. Central to the success of these calculations are the numerical models
used to represent the materials. These models are described in this section with the application

to specific material given in later sections of this report.

In general, our approach is to model the nonlinear response of the individual material
components; that is, the drained stress-strain response of the porous skeleton and the pressure-
volume relationship of the solid grains, pore water, and pore air. The behavior of these
constituents are combined using fully coupled two-phase theory as described by Kim, Blouin,
Chitty and Merkle (1988) and Simons (1989). In a simple decoupled model, the soil or rock
skeleton acts in parallel with the solid-fluid mixture such that the net compressibility is the sum
of the mixture modulus and the appropriate skeleton modulus. The shortcomings of a decoupled
model are demonstrated by Blouin and Kim (1984). A fully coupled approach incorporates the
mixture model with the additional considerations of the strain in the skeleton resulting from the
compression of individual grains by pore pressure, and the volume change in the solid-fluid
niixture due to effective stresses acting on the solid grains. In addition, the flow of pore water
within the porous skeleton (from element to element in a finite element mesh) is governed by
a permeability law. This sophisticated formulation provides an accurate means of predicting

undrained material response for many porous materials up to very high pressures.
This section describes the individual components of the material model in detail. Note

that not all of these models were used in this study but are included for completeness in

describing the models available in the MEM and MPDAP codes. These models include:
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o ARA Three Invariant model for the drained response of the porous skeleton,
° nonlinear solid grain model,

o pore water compressibility model,

. partial saturation model that accounts for the presence of pore air, and

o permeability models.

3.2 ARA THREE INVARIANT SKELETON MODEL

In simulating the behavior of saturated materials, it is particularly important to accurately
model the response of the soil skeleton. Under saturated conditions, the material strength is
strongly influenced by the pore pressure response which is, in turn, controlled by the volumetric
deformation characteristics of the porous skeleton. That is, collapse or compressive straining
of the skeleton transfers more load to the fluid in the pore spaces which leads to reduced
effective stresses and shear strength in the material. On the other hand, dilation or expansive
strains reduce the pore pressures, increase the effective stresses, and generally result in greater
shear strength. Consequently, the skeleton model is crucial to the performance of any saturated,

two-phase material simulation.

We elected to use a relatively advanced skeleton model known as the ARA Three
Invariant (ARA 3-I) model which was originally developed by ARA under sponsorship of the
Air Force Office of Scientific Research and described by Merkle and Dass (1985) and Dass and
Merkle (1986). This model is called the Three Invariant Model because the controlling surfaces
in stress space are formulated in terms of three independent stress invariants; the octahedral
normal stress, octahedral shear stress, and Lode’s angle. Several modifications have been made
to permit modeling both soil and rock response over a wider range of stresses, including very

high stresses associated with explosive loadings.

The ARA 3-I model is a work hardening, elasto-plastic model with two independent yield
surfaces, as depicted in Figure 3.1. The compressive yield surface is an ellipsoid with its center

at the origin in principal stress space. It is associative, only strain hardens, and the strain

3-2




hardening parameter is the corresponding plastic work. The expansive yield surface is a
hyperboloid with its apex on the hydrostatic axis in principal stress space. It is non-associative,
strain hardens, and the strain hardening parameter is the corresponding plastic work. The

parameters for the ARA 3-I model are summarized in Table 3.1.

Fitting and evaluating the ARA 3-I model for specific materials is accomplished using
the MEM (Material Element Model) code outlined in Section 2. Cne portion of this code
contains algorithms for fitting the model while another part is used to exercise the model under
a variety of boundary conditions on a single, three dimensional finite element. The fitting
portion of the MEM code outputs the ARA 3-I model parameters in the format described in
Table 3.2. Other codes can then read this file directly and, hence, this is a convenient format

for presenting the model parameters for a given material.

The model is fit to the measured response of the material skeleton. Usually, the model
is fit directly to laboratory data obtained on drained test specimens. The minimum test data
required to fit the model are:

o one hydrostatic (isotropic) compression test with at least two unload/reload cycles;

. three triaxial compression tests at confining pressures in the range of interest and

with unload cycles to determine Poisson’s ratio;

o one conventional triaxial extension test to establish the material strength in this

mode.
Other test data, such as uniaxial strain tests, undrained triaxial compression tests, etc., are used

to evaluate the performance of the model. Section 5.1.1 of this report presents an example of

fitting the ARA 3-I model to test data for a porous limestone.
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3.2.1. Notation

sign convention

Compression is POSITIVE

atmospheric pressure

total strain vector

elastic strain vector

plastic compressive strain vector

plastic expansive strain vector

volumetric strain

octahedral shear strain

stress vector

octahedral normal stress (mean pressure)
octahedral shear stress

maximum past mean pressure

ultimate octahedral shear stress at infinite mean
stress in triaxial compression mode

tensile strength (negative)

second invariant of deviator stress tensor
third invariant of deviator stress tensor
Lode’s angle

bulk modulus

unload/reload bulk modulus at zero pressure
unload/reload bulk modulus at initial unloading
Poisson’s ratio

compressive yield criterion

compressive yield stress function
compressive yield hardening function
expansive yield criterion

expansive yield stress function

expansive yield hardening function

expansive plastic potential function
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W, : compressive plastic work
W, : expansive plastic work
W, pea : expansive plastic work at peak shear stress
£ : normalized expansive plastic work
YV : ratio between the triaxial compression and extension

strengths at a given mean stress

M : expansive yield hardening parameter

7, : expansive plastic potential parameter

dA, : compressive yield proportionality constant

dA, : expansive yield proportionality constant

af : fraction of ultimate 7, in triaxial compression mode

3.2.2. Total Strain Formulation

The ARA Three Invariant model computes the total strain in parts consisting of the

elastic, compressive plastic, and expansive plastic strain components:

{de} = {de} + {do ) + {de)} 3.1)

Each strain component is calculated independently within the model as described in the following

subsections.
3.2.3. Elastic Response

At stress states inside the yield surfaces, the skeleton response is treated as nonlinear
elastic and governed by the previous maximum peak stress. Two options are available for
modeling the elastic response within the framework of the three invariant skeleton model: the
ARA elastic model and the 1 ‘e and Nelson elastic model. In both options, Poisson’s ratio is

assumed to remain constant.
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ARA elastic model. During virgin loading, the elastic bulk modulus is given by:

Kur Pa

= Toct 3.2)
31 -2) ] = K,

A

where K,, and n are material constants obtained in the parameter fitting. K; represents the initial
bulk modulus at low pressures and is necessary for modeling the behavior of rock-type materials
that have a definite initial elastic behavior. In uncemented soils, K; can be taken as a very small
value. The initial bulk modulus is also used to determine the initial position of the compressive

plastic yield function (cap) by defining the initial elastic range.

During unloading or reloading, the skeleton modulus is described by one of two segments
as depicted in Figure 3.2. Between the previous peak mean Stress, 0. ma, and the transition

into the nonlinear segment at g,,, the elastic bulk modulus is constant and is given by:

K-k = Swfe | % (3.3)
30 -2 | P,
The transition into the nonlinear segment occurs at:
o..,=\Ng0 (3.9

where \ is a model parameter. At mean stresses less than g,,;, the nonlinear bulk modulus is

given by:

B] o 3.5

y=1-2_° (3.6)

where K, is the bulk modulus at zero pressure and
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g=1-_2= 3.7

where K. is the bulk modulus at one quarter of the transition pressure o, ,.

While this formulation allows for relatively accurate curve fitting of observed soil
response, the model has three disadvantages:
a) for certain closed-loop stress/strain paths, the model may violate the energy

conservation principle;

b) unloading at low pressures could potentially generate expansive volumetric
strains; and
C) at the transition pressure, d,,,, the modulus is not continuous.

Lade and Nelson elastic model. The second elastic model option is based on a
relationship derived by Lade and Nelson (1987). This formulation is continuous and was derived

from the energy conservation principle. Lade and Nelson’s model can be expressed as:

n

2 )
L6 I (3-8)
1 - 2» Pa2 !

P

a

- KurPa ( 3 oocl
3 (1 - 2) l

where the parameters K,,, n, and K; are the same as used in Equation 3.2. Since this model is
fit strictly using the slope of an initial unload curve, it can be difficult to closely match the

observed characteristic of an unload cycle.

Fitting. Poisson’s ratio (v) for a given material can be determined in a number of ways
using unload/reload data which represents the elastic response of the skeleton. Lade and Nelson
(1987) recommend obtaining Poisson’s ratio directly from strain measurements in triaxial

compression unload/reload cycles right after stress reversal at hydrostatic conditions where:
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y=-i=l[1-3] (3.9)
€, 2 €,
where ¢, = axial strain

¢, = radial strain

¢, = volume strain

In addition, since the elastic response is completely defined by any two independent
elastic parameters, Poisson’s ratio can be obtained from the bulk modulus, (K), measured in
a hydrostatic compression unload, and any other elastic modulus. For example, a triaxial
compression unload yields the shear modulus (G), an uncontined compression unload gives the
Young’s modulus (E), and a uniaxial strain unload produces the constrained modulus (M). Any

one of these parameters can be used with the bulk modulus to obtain Poisson’s ratio:

. 3K -26 (3.10)
2 3K + G)
3K - E
- 3.11
v 2% ( )
, = K- M (.12)
IK + M

To obtain the elastic model parameters K,, and n, Equation 3.2 is rewritten in the form:

P

a a

Iog [3K (1 - 2V)] = log K,‘, +n log [(;(:‘t] (3.13)

Values of K and o, from the initial unloading response at various pressures in the hydrostatic
compression test, are then plotted as log (3K (1-2v)/P,) versus log ( 0,/P,). A least squares
linear regression is then applied in log-log space. The parameter n is the slope of this line while
K, is the intercept where (0,/P) is 1.0. The parameters A, v, and @ for the ARA elastic

unlcad model are determined from a single unload/reload cycle in the hydrostatic compression
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test as depicted in Figure 3.2. The parameters are computed using Equations 3.4, 3.6, and 3.7.
3.2.4 Compressive Plastic Response

The compressive yield surface, or cap, is an ellipsoid with its center at the origin in
principal stress space as shown in Figure 3.1. The ratio of the major axis to the minor axis is
defined by the constant r, as shown in Figure 3.1, and is determined in the parameter fitting

process. The compressive yield criterion is given by
£ =f::/ 'fc” = (3.14)
where the compressive yield stress function, f.’, is given by

£l=3,2 + Y (3.15)

and the compressive yield hardening function, f.”, is given by

P (3.16)

In the model, f.” is defined in segments with the parameters ¢; and p; determined for each

segmert in the fitting process. W, is the compressive plastic work given by
W, = [ (o) {de} (3.17)

The compressive flow rule, which is associative, is given by

’ (3.18)
{dec”} = d\ 9

‘|l do

where d), is the compressive yield proportionality constant.
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Fitting. The elliptical cap ratio, r, can be determined directly from special tests
following a hydro-triax-hydro type stress path (Applied Research Associates, Inc., 1991).
However, this special test data is seldom available and the results are still subject to considerable
interpretation. Hence, the cap ratio is generally selected to give reasonable model behavior

based on experience and engineering judgement.

Other parameters which define the compressive plastic response are derived directly from
the hydrostatic compression test data. At a given pressure in the hydrostatic data, the elastic
component of the volume strain is computed from the elastic model and parameters described
in Section 3.2.3. The compressive plastic strain is obtained by subtracting the elastic component
from the total measured volume strain and the compressive plastic work is then computed
according to Equation 3.17. Then, for hydrostatic compression, the octahedral shear stress is

zero and Equations 3.14, 3.15, and 3.16 reduce to:

2

W, . ] (3.19)

=c | 3=

Pa l Pa

Taking the logarithm of both sides yields:
’ (3.20)
w g .
l —| =logc +p, I 3 1=

Plotting log (W./P) versus log [3 (0../P,)?] allows us to determine the parameters ¢; and p; as
the intercepts and slopes, respectively, of straight line fits to the data. Since the shape of this
data is usually curved in log-log space, multiple straight line segments are defined by fitting c;

and p, over specific ranges.
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3.2.5 Expansive Plastic Response

Yield surface. The expansive yield surface, or shear yield surface, is a hyperboloid with
its apex on the hydrostatic axis in principal stress space as shown in Figure 3.1. The expansive
yield surface has the same shape as, and approaches asymptotically to, the ultimate failure
surface as shown in the same figure. The shape of the expansive yield surface in the = plane,

perpendicular to the hydrostatic axis (see Figure 3.1), is a triple ellipse in polar coordinates.

The expansive yield criterion is given by:
j; =f;/ _j;// =0 3.21)

where the expansive yield stress function, f, is given by

T ot - P, . (3.22)
P] (1 Ecos3w) [o T ml

where E and m are parameters determined in the fitting process. E is computed as:

-y -1 3.23
B (3.23)

where V¥ is the ratio between the triaxial compression and extension strengths at a given mean
stress as indicated in Figure 3.1. It should be noted that ¥ must be less than 9/7 or the ultimate
failure surface will become convex in the « plane thereby violating uniqueness. Lode’s angle,
w, shown in Figure 3.1, is defined in the = plane and varies from 0° to 120°. An w of 120°
corresponds to the triaxial compression mode (cos 3w = 1.0) and a value of 60° corresponds
to the triaxial extension mode. Lode’s angle is related to the second and third deviatoric stress

invariants by:
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A 3.24
, [i] (3.24)

The expansive yield surface hardens isotopically with the yield hardening function:

fp” =, Epa [erm -z)] (3.25)

The coefficient 7, is a failure parameter representing the maximum value of " and § is an
expansive hardening parameter determined in the parameter fitting process. £, is the normalized

expansive plastic work given by

Ep - » (3.26)

where the expansive plastic work, W, is given as
v, | 02

and W, .. is the peak plastic expansive work at the ultimate f>ilure envelope for a given mean

stress.

In the model, two options exist for defining W, ,.,. The first option uses a multilinear

function of mean stress:

=aq 0,6 +b (3.28)

p.peak i “oct i

The coefficients a; and b; are determined in the parameter fitting process for specific ranges of
mean stress. This option was added to the model to permit more accurate modeling of rock.

The second option for defining W, .., uses an exponential form:
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i
Toct ‘ (3.29)

where p and / are model parameters.

Triaxial compression strength. In evaluating a model fit, it is useful to plot the strength
envelope for triaxial compression stress paths. On the strength envelope, the plastic work equals

W, e such that £, = 1.0. Then, Equation 3.25 becomes
f;,” = n, (10) e?i(a) = m (330)

In triaxial compression mode, cos 3w equals 1.0 and Equation 3.22 reduces to:

7 [,,] (- [ ~ *m] -

Substitution of Equations 3.30 and 3.31 into Equation 3.21 yields an equation for the triaxial

compression strength envelope in the octahedral stress space:

2 = 2 (3.32)

As the mean stress goes to infinity, the triaxial compression strength envelope asymptotically

approaches the ultimate shear strength given by

Tocl,mu,TXC = 1 nl
_P:_ n - (3.33)
E
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Expansive flow rule. The expansive flow rule, which governs the nonassociative

expansive plastic flow, is given by

{de ) = dn { 6gp} (3.34)

?] a0

where d\, is the expansive yield proportionality constant. The incremental expansive plastic

strain vector is perpendicular to the expansive plastic potential function defined by

Tocl

P

a

(3.35)

g, = (I-Ecos3w)-

[UD“‘T
1 +m
P

The plastic potential parameter 7, can be defined in two ways within the model. The first
option defines the parameter in terms of a multi-segment function of the expansive yield

hardening:
n, =t + Sif,,” (3.36)
where t; and s; are determined for specific ranges of f, in the fitting process. This option was

added to the model to improve the capability for modeling rock. The second option employs

a nonlinear function of the form:

T, Sf,,” (3.37)

a

n, =t +R

where the parameters t, R, and s are constant at all ranges. This option produces a continuous

function for 7,.

Potential function at high pressure. In general, the ARA 3-1 model uses nonassociative
flow for computing plastic strain increments related to the expansive or shear yield surface.
That is, the expansive plastic strain vector, {¢F}, is computed perpendicular to the plastic

potential function given in Equation 3.35. However, in the special case where 9, = f,
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Equation 3.35 can be shown to reduce to:

= —p (3.38)

Thus, for the special case when 5, = f,’, the potential function is some fraction of the expansive

yield surface and plastic flow becomes associative.

At very high pressures, where the expansive yield surface is approaching the ultimate
strength asymptote, the material should behave like a fluid where shear stresses do not generate
plastic volume strains. To model this high pressure behavior, the plastic potential function is
modified in the higher pressure regime to yield associative flow, as depicted in Figure 3.3.
First, we define o; as the fraction of the ultimate octahedral shear stress at infinite mean

pressures:

(3.39)

Tocl,af = af Toct,max,TXC

Then, using the strength envelope, the corresponding mean stress, o,,, can be found for any

given fraction ay.

As indicated in Figure 3.3, the potential function is defined in three pressure regimes
delineated by o equal to 0.5 and 0.8. In the low pressure regime (0, < 0oy o =.5), the potential
function parameter 7, is determined using the values of s, t, and R derived from the model fit.
At very high pressures (0, > 0oy of = 03), the 1, parameters are arbitrarily set to produce
associate flow. Finally, in the transition zone (O, of = 0.5 < Oot < Orar = 08) the s, t, and R

parameters are linearly interpolated.

Fitting. The first step in determining the expansive plastic response parameters is to
define the ultimate failure surface and the corresponding peak expansive plastic work as
functions of mean stress. In the conventional manner, the failure envelope is fit to the triaxial

compression test data at the peak shear stress or the shear stress at 15% axial strain if no peak
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is observed. The tensile strength T can be measured directly in an unconfined tensile test (for
rocks) or inferred from the shape of the failure surface. For uncemented soils, T is generally
very small. In the triaxial compression mode, the failure surface is defined by Equation 3.32

which can be rearranged to the form:

(3.40)

By plotting the failure stress points from each triaxial compression test in terms of (o, - T)/7,,
versus (o, - T)/P,, a straight line fit will yield an intercept of (1 - E)/n, and a slope of
[m (1-E)/n,). Then, the parameter m is obtained simply as the ratio of the slope to the intercept
of this line. The parameter E is obtained directly from the ratio of triaxial compression and
triaxial extension strength (¥) as defined in Equation 3.23. Substitution of E into the intercept

value yields the parameter 5,. This completes the definition of the shear failure surface.

The next step is to determine the peak plastic expansive work as expressed in Equations
3.28 or 3.29. The plastic expansive strain is first computed by subtracting the elastic and
compressive plastic strain components from the total strains in the triaxial compression tests.
The plastic expansive work at the peak stress, W, .., is computed by integration according to
Equation 3.27. If W, ., is to be modeled with Equation 3.28, the values are plotted versus the
mean stress and fit with straight line segments. On the other hand, if W, ., is to be modeled

using Equation 3.29, we first rewrite the relationship as:

a a

w g
p.peak  _ )/ = 11 oct (341)
log.-__P og p + og[P]

A least squares, linear fit to log (W, .../P) versus log (o,,/P,) will then yield 1 and p from the

slope and intercept, respectively.

The next step is to define the expansive yield hardening function of Equation 3.25. The
coefficient », has been obtained previously from the fit to Equation 3.40 and the peak plastic
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expansive work is defined by Equation 3.28 or 3.29. Thus, only the exponent § must be
obtained in order to completely define the hardening function f,". Solving Equation 3.25 for §

gives:

f“,_//
M
& g,

In (3.42)

6:

To obtain a representative value for g, a plot of "/, as a function of £, is computed for the
triaxial test data at each confining pressure. We then match the hardening function for each
triaxial test at a value of f,"/n, equal to 0.80 according to Equation 3.42. The q values obtained

in this manner are then averaged to produce the parameter q for the model fit.

The final step remaining is to specify the expansive flow rule and expansive plastic
potential function as defined in Equations 3.34 and 3.35 and illustrated in Figure 3.1. The
expansive plastic strain increment is perpendicular to the plastic potential function as defined in
Equation 3.35. Below 50% of the ultimate shear strength, the potential function has a form
similar to the expansive yield function given in Equation 3.22, but in general the two functions
are not equal and the expansive plastic strain is not normal to the yield surface; i.e., a
nonassociative flow rule is used. Recall from the previous subsection that the potential function
transitions to give associative flow at very high pressures as depicted in Figure 3.3. In order
to define the plastic potential function, we need only to determine the parameter 7,, since all

other parameters have been previously derived.

The physical meaning of parameter 7, is depicted in Figure 3.4 at the intersection of the
potential surface and the compressive yield surface. The expansive plastic strain vector (de.?),
compressive plastic strain vector (dé.?) and total plastic strain vector (deP) are depicted at the
point of intersection. From normality, the ratio of the shear component of the expansive plastic
strain vector to the volumetric component equals the ratio of the partial derivative of the
expansive potential function with respect to the shear stress to the partial derivative of the

potential function with respect to the mean stress as given by:
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ag,
d d
Vour - 7o (3.43)
_1_ de agp
37 do,,
Substituting Equation 3.35 for g, in Equation 3.43 and solving for 7, gives:
d 2
4 -T
n, = | -1 L (1 - }-3) |+ m Jo (3.44)
3 d‘ypodp P“
In the triaxial compression test:
_ V2 _ 3.45
dyooct.p B (depap deprp) ( )
and
de,, = de,, + 2d¢, (3.46)

where ¢, and ¢, denote the axial and radial strains, respectively. Equation 3.44 shows that the

parameter 7, is linearly proportional to the inverse slope of the plastic potential surface.

Hence, the plastic potential function parameter 7, is computed at points along the triaxial
compression response using Equation 3.44. Then, if Equation 3.36 is employed, multi-segment
linear fits z-e determined for 7, as a function of f,". If Equation 3.37 is used to define 7, , a

regression analysis is used to determine t, R, and s for a single function defining 7,.

This completes specification of the ARA Three Invariant model and derivation of all

model parameters from the test data. A summary of the model parameters is given in Table 3.1.

3.2.6 Tensile Failure of Skeleton

It is possible, particularly in materials around an explosive detonation, for the skeleton
to fail in tension. In a soil or rock mass, the material is literally pulled apart such that

individual grains are physically separated or pieces of unconnected material may form. In
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modeling rocks or concrete, this is a spall condition and occurs when the tensile strength is
exceeded. After failing in tension, the skeleton has no stiffness but can collapse back together
to again form a contiguous mass. While the exact nature of this behavior is not easily described
for the general case, particularly the characteristics of a reformed skeleton, the material model

must be able to track the appropriate skeleton behavior under these conditions.

In the ARA 3-I skeleton model, the tensile strength is given by the parameter T which
is the apex of the expansive plastic strength envelope. When tensile stresses exceed the tensile
strength, the volume strain at which the tensile failure occurred is stored. The skeleton stiffness
is set to zero and the three principal stresses are set equal to the tensile strength. The volume
strains, which are initially expansive, are then tracked with respect to the volume strain at tensile

failure.

At some point the volume strains may become compressive and again return to the total
volume strain at which the tensile failure occurred. At this point, the material is considered to
be reformed and possess the same stiffness and properties as the soil had when the tensile failure
first occurred. In reality, we would expect the reformed skeleton to be significantly different
from when the tensile failurc occurred. While this model does not consider this altered
behavior, it does ensure that the skeleton will begin to support compressive loads upon

reforming.

3.3 GRAIN COMPRESSIBILITY MODEL

To model the nonlinear response of the solid grains to both the applied pore pressure and
effective stress, analytic expressions for the deformation of solids at high pressure are employed.
High pressure data for many rocks and minerals show a linear relationship between loading wave
velocity and particle velocity (e.g. Allen, 1967). The loading wave velocity can be expressed

as:




c,=c, * 5, (3.47)
where: } ¢, = loading wave velocity
¢, = the initial wave velocity at relatively low pressure
v, = peak particle velocity
S = experimentally determined constant relating ¢, to v, (generally

equal to about 1.5 for most dense rocks and minerals).

Conservation of mass and momentum on either side of the wavefront yield the familiar

relationships:
Up = paCva (3.48)
M = paCL2 (3.49)
where: 0, = peak axial stress
p, = initial material density
M = constrained secant modulus = o,/¢,
e, = peak axial strain corresponding to the peak stress g,

Substitution of Equation 3.47 into 3.48 gives:

g, = PLY + p Sv? (3.50)

0o p oMp

and solving for peak particle velocity as a function of peak stress yields

flo)
= 3.51
vP 2 po S ( )
where:
fla) = (pJc} + 4p,50)"" - pc, (3.52)
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Substitution of Equation 3.47, 3.51, and 3.52 into Equation 3.49 gives:

M = F) = pel + cfo) + L@ (3.53)

4

The tangent constrained modulus, M,, used in the numerical model is defined as the slope

of the stress strain curve by:

_ do

M = ZZ 3.54
Y de (3-34)
From Equation 3.53 and the definition of constrained modulus, M:
g
e = P 3.55)
P F (op)

Differentiating Equation 3.55 with respect to o, and inverting gives the tangent constrained

modulus as
2
M-__ 1 (3.56)
F(s) - orpF’ (d,)
Differentiating Equations 3.52 and 3.53 with respect to o, yields:
/
Fioy - .1y + 12T 357
and
20,8
fl (Up) = Ps (358)

(p02co2 + 4poSO.P)l/2

Hence, Equations 3.51 through 3.58 can be used to define the high pressure constrained stress

strain and modulus relationships for the solid grains.

For two phase, coupled calculations, the volumetric relationships for the solid grains

should be specified in terms of the bulk modulus, K, rather than in terms of the constrained
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modulus. At high pressures, the shear strength of the grain materials becomes insignificant
compared to the applied stress and the materials tend to behave like fluids. At these pressures,
the tangent bulk modulus equals the tangent constrained modulus with Poisson’s ratio equal to
0.5. Beneath some threshold pressure, p,, Poisson’s ratio begins to decrease from 0.5 at p, to
an initial value of Poisson’s ratio, »,, at a low value of mean stress. We have used a simple

relationship to approximate the influence of mean stress on Poisson’s ratio for the solid grains:

K, = g(p)M, (3.59)

The ratio of the bulk modulus to the tangent constrained modulus, g(p) at pressures less than p,

is given by:

d-2)p, 0w (3.60)

$P) =3 Ty 5 T 3T =y

wito

For pressures greater than p,;
gp) =1 (3.61)
Poisson’s ratio can be computed as a function of the modulus ratio at a given pressure as:

, =80 - 1 (3.62)
1+ 380p)

3.4 PORE WATER COMPRESSIBILITY

The model for the nonlinear, elastic compressibility of the pore water is derived from an
equation of state reported by Ahrens (1988) and attributed to Bakanova, et. al. (1976). This
equation relates the shock velocity in water to the peak particle velocity. In the lower pressure
regime, a quadratic relation is used while a linear relation is used in the higher pressure regime.
The transition point between the two regimes is defined in terms of a peak particle velocity at

the transition, v,,. Bakanova’s equations can be expressed as:
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’ c=c *+Sy, + Sy, (3.63)
vV, >V,
P o c=c, + Sy, (3.64)
where: ¢ = shock propagation velocity in the fluid
v, = peak fluid particle velocity
¢, S, S; = constants used to fit data below the transition
C,, S; = constants used to fit data above the transition

Equation 3.64 can also be expressed in terms of the shock velocity at the transition point, c,.

Substituting v, into Equation 3.64 yields:

¢, =¢ - Sy (3.63)

3°pt

Substituting 3.65 into 3.64 produces this expression for the shock velocity above the transition:

v, > Vv,
P c=c +8 v -v) (3.66)
where: ¢, = shock velocity at the transition
v, = peak particle velocity at the transition (model constant)

At the transition point, the shock velocity from Equations 3.63 and 3.66 should be equal to

preserve continuity. Setting Equations 3.63 and 3.66 equal at v, = v, gives:

c, =c + SV, + S (3.67)

thereby defining ¢, in terms of the model constants. Equations 3.63, 3.66, and 3.67 (with the
constants ¢,, S;, S,, and S;) define the shock velocity as a function of peak particle velocity.

To derive a bulk modulus for water as a function of pressure, we first need an expression

for the peak particle velocity as a function of pressure. Conservation of mass and momentum
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on either side of the wavefront yields the familiar relationship from shock physics:

T, = pLY, (3.68)

p

where: %, = pore fluid pressure

i

P mass density of fluid

Substitution of Equation 3.63 into 3.68 yields an expression for the transition fluid pressure (7,):

T = 0V, (€ + SV, + SVp) (3.69)

17 pt

For water, the transition pressure is greater than 30,000 MPa.

Below the transition pressure, substitution of Equation 3.63 into 3.68 will give:

S c T
3 2
vi+ Lyt o+ vy - =

1 1 (3.70
’ S, ’ S, 7opS, )

B
|
[}

This cubic equation can be solved to yield an expression for v, as a function of fluid pressure

below the transition pressure .

= m cos 1 cos™ 3B AT i (3.7

p 3 am 3 35,

where: )
SV R O ) (3.72)
S, 318,

3

g S LIS |al, 2[5 (3.73)
S, 315, S, 27 | S,

m=2|_% (3.74)
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Above the transition pressure, substitution of Equation 3.66 into 3.68 yields a quadratic

equation:
2 Cc - S3V [ g 3 75
v, + St __om y - = 0 ( . )
’ S; ’pS,

Solving this equation for v, as a function of fluid pressure gives v, for pressures above the

transition pressure ,:

2 2
v o= - [C: - S}"p[] + [C‘ - S3vpl] + 7|'p (3.76)

The elastic bulk modulus of water (K,) is defined as:

K - dvr‘p ) dwp/dvp (3.77)
e de dev/dvp

v

where ¢, is the volume strain corresponding to the pressure ,. Taking the derivative of

Equation 3.68:

d
i) B (c'v, + 0 (3.78)
dv e
P
The volume strain is given by:
¢, = 2 (3.79)
Yo
and taking the derivative yields:
- /
de, _ € v (3.80)
dv c?

Substitution of Equations 3.78 and 3.80 into 3.77 gives an expression for the bulk modulus in
terms of the shock and peak particle velocities:
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2 /
K = PLE T Ve (3.81)

* c -vc'
.

The derivatives of the shock velocity with respect to the peak particle velocity are given by:

F < 7
or m, Tou ¢! =S‘ +2$2Vp (3.82)

For m, > m,: o = s, (3.83)

This completes the derivation of the water compressibility model. To summarize the use

of the model:

1. begin by computing the transition shock velocity and pressure using Equations
3.67 and 3.69,
2, compute the peak particle velocity using either Equation 3.71 below the transition

pressure or Equation 3.76 above the transition pressure,

3. compute the corresponding shock propagation velocity from Equation 3.63 or
3.66 and the derivatives from Equation 3.82 or 3.83;
1. substitute the results into Equation 3.81 to get the bulk modulus.

The material constant values for this model are given in Table 3.3 for fresh water and sea water.
The fresh water values are from Bakanova, et. al. (1976) as reported by Ahrens (1988).
Parameters for sea water were fit to compressibility data described by Kim, et. al. (1986) and
attributed to Britt (1985). The pressure-volume response of fresh water and sea water as

predicted by this model are given in two pressure ranges in Figures 3.5a and 3.5b.

Distention and Rejoining. Just as it is possible for the skeleton to separate into pieces
in a tensile failure, gas-filled voids develop in the pore fluid if subjected to tensile (vacuum)
pressures. These voids will contain either water vapor or air drawn in from the atmosphere and
may exist as bubbles or separaticns between soil clumps or rock fragments. In this condition,
the fluid has essentially zero stiffness and will expand indefinitely. Sufficient volumetric
compression can eventually collapse the void spaces such that the pore fluid will again carry

compressive pressures.
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In developing a model for this behavior, several simplifying assumptions are made:

° A single pore fluid model will be used to represent the pore water and any gas-

filled void that may develop under vacuum;

. No attempt is made to model ihc actual process of gas void formation: the voids
are simply assumed to develop, without bounds, with expanding pore volumes;

. The vapor pressure required to form water vapor is neglected;

o If the pore fluid was partially saturated at the start of the problem (see the model
described in Section 3.5), the fluid is assumed to return to the initial partial

saturation condition when the voids created under vacuum have collapsed.

In discussing this feature of the water model, the term “distended" is used to describe the
condition of the pore fluid under vacuum pressure. A "rejoined" condition is said to exist when
subsequent compressive strains return the pore water to the initial condition which may, in fact,

be a partially saturated condition.

Given the assumptions, distention and rejoining of the pore water can be modeled in a
fairly simple manner. A negative volume strain in the pore fluid, computed with respect to the
initial, unloaded condition indicates the onset of distention. While the pore fluid is distended,
the stiffness of, and pressure in the pore fluid is set to zero. The fluid is considered to be
rejoined (at the initial conditions) when the pore water volume strain becomes compressive
(positive). The total volume strain in the pore fluid is computed from the current porosity of
the material, but an adjustment is made to account for movement of water in and out of the
material as simulated in the MPDAP and MEM codes.

2.5 PORE FLUID MODEL FOR PARTIAL SATURATION CONDITIONS

When rock or soil is unsaturated, compression of the pore water and solid grains is

nearly insignificant when compared with the compression of pore air. Under these conditions,
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material behavior is governed mostly by the skeleton model. With sufficient compression, the
pore air gets squeezed out and the material becomes saturated. Rischbieter, et. al. (1977)
demonstrated that even a minute amount of entrapped air drastically alters the pore pressure
response in multiphase porous materials. To simulate this behavior, the pore fluid model is
modified to account for the compressibility of pore air and converges to a saturated condition.

Note that this model is invoked only when the initial saturation is less than 100%.

The compressibility of the air-water mixture, C,,, is defined as:

c, = e (3.84)

where =, is the fluid pressure. The volumetric strain in the air-water mixture, ¢, ,4, i the sum

of volume strain in the air and water. Using the definition of the initial saturation, it can be

shown that:
EV.GW = (l _SO) ev,a + SO e\’,w (3.85)
where €,aw = Vvolume strain of air-water mixture
€., = volume strain of air bubbles
€vw = volume strain of water (from Equation 3.79)
S, = initial saturation

From Equations 3.84 and 3.85 we can get an expression for the compressibility of the air-water

mixture;

C,=(l1-5)C, +SC, (3.86)

Since the compressibility is the inverse of the bulk modulus, Equation 3.86 can be expressed as:

1 1-S S,
= o+ _2 3.8
aw Ka KW ( 7)
where: K,. = bulk modulus of air-water mixture

K, = equivalent bulk modulus of air bubbles in the fluid

~
£
Il

bulk modulus of water (from Equation 3.81)
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Kim (1982) developed a formulation for the volume strain and equivalent bulk modulus
of air bubbles in the pore fluid. This formulation, which was summarized by Kim, Blouin, and
Timian (1986) explicitly modeled the dissolution of gas in liquid. This formulation was
implemented and tested in MPDAP. While it is fundamentally sound, its practical application
requires the evaluation of some parameters which are nearly impossible to obtain directly.
Initially, the surface tension forces were assumed to remain constant. In reality, the surface
tension forces are related to the inverse of the bubble radius. Thus, surface tension grows
tremendously as the air bubbles are compressed and eventually collapse. If this effect is not
modeled, the effective modulus of the fluid is unrealistically low. Since there is no available
procedure for determination of the bubble radius, the full theoretical complexity of the

formulation is not justified.

As an alternative, a much less complex model was implemented for pore air based on the

adiabatic ideal gas law:

V. = VY (3.88)

where: T, = initial air pressure (absolute pressure)
w, = current air pressure (absolute pressure)
V,, = initial air volume
V, = current air volume
v = ratio of heat capacity (C,/C,)

For non-adiabatic compression of air at constant temperature, v has a value of 1.0 and Equation
(3.88) reduces to Boyle’s Law.

The volume strain of air can be defined in terms of engineering strain.
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e, , =1~ (E] (3.89)

Substituting Equation (3.88) into Equation (3.89), we can express the volume strain in the air

in terms of air pressure:

1
e =1 - (."g)v (3.90)
va T
a
Neglecting the influence of surface tension,
n, =n + P, (3.91)
where: o = current pore water pressure (gage pressure)

P, = reference atmospheric pressure

Substitution of Equation (3.91) into Equation (3.90) yields

1
e =1 -{_Te |y (3.92)
va T + P,
The tangent bulk modulus of air bubble can be defined as
d
K, - - (3.93)
de, .
Differentiating Equation (3.92) with respect to =,
1
de,, 1 o \*9) (3.94)
dn, ym, \n +P,

Substitution of Equation (3.94) into Equation (3.93) yields
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K -y n“(" PaJ(‘ ) (3.95)

3.6 PERMEABILITY MODEL

The finite element code MPDAP is capable of calculating the flow of pore fluid between
elements. The flow of fluid with respect to the skeleton is controlled by Forchheimer’s
permeability model which is described in detail in Section 4. The Forchheimer model can be

expressed as:

(3.96)

A i

. by
1r,=ﬁwi+~fw‘.2+pr
a ¢4

where: 7, = pore pressure gradient
g = acceleration of gravity
p; = mass density of pore fluid
= pore fluid viscosity
= linear flow coefficient

7]
03

B = quadratic flow coefficient

w = apparent flow velocity relative to the skeleton
8]

= absolute acceleration of pore fluid

The first term in Equation 3.96 is simply Darcy’s law while the velocity squared term was
apparently first proposed by Forchheimer (1901). The first two terms represent the energy loss

due to fluid flow while the last term accounts for fluid inertia.

Equation 3.96 can also be written in the form:

x =28y . 0,0, (3.97)

g k/
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where k' represents an equivalent, high pressure permeability coefficient given by:
P -1
k' = £ + 2w (3.98)
a B8

Hence, the flow of pore fluid in the soil skeleton is governed by Equations 3.97 and 3.98 and

the flow coefficients o and 8 which can be determined from laboratory test data.

If the soil skeleton undergoes significant volumetric strains, the permeability of the
skeleton will change. This is particularly true near an explosive detonation where large
volumetric compression restricts pore fluid flow or, for some materials, expansion of the
skeleton yields greater fluid flow. We have implemented a simple empirical model to account

for this behavior which varies the Darcy permeability coefficient with changes in porosity

a = oA (3.99)
where: a, = Initial linear flow coefficient
a = flow coefficient at a porosity of n
c, = slope of straight line relationship between porosity and the

logarithm of the permeability
n = current porosity

n, = initial porosity

The form of Equation 3.99 is suggested by test data reported by Blouin and Timian (1986) and
shown in Figure 3.7. A similar relationship may exist between porosity and the quadratic
coefeicient 8 in the flow equation, but there is insufficient high pressure permeability data
available to establish such a relationship. Hence, $ is assumed to remain constant as the porous

skeleton deforms.
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Table 3.1. Parameters for the ARA Three Invariant Material Model.

Elastic Response:

v .
K, -

n .

K,

.
i -

Ay, 8

Poisson’s ratio

elastic modulus constant

elastic modulus exponent

initial bulk modulus at low pressure

unload/reload bulk modulus constants used in ARA elastic model

Compressive Plastic Response:

r:

C

J27

.
P

elliptical cap (compressive yield surface) axis ratio

compressive hardening constant for segment "i" of fit

: compressive hardening exponent for segment "i" of fit

Expansive Plastic Response:

: apparent tensile strength (negative)

: expansive yield constant

: expansive yield exponent

: constants for segment "i* in a multilinear fit for defining W, .,

: constants in an exponential fit for defining W, ..
: expansive hardening exponent

constants for segment "i" in a multilinear fit for defining 7,

: constants in a single line fit for defining 7,
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Table 3.2. Format of input data file specifying the ARA Three Invariant
Model parameters for a given material.
Model Input Variable Description
Parameter
... ___________________________
Stress units | IUNITS IUNITS =1 Pa
used in fit = 2 dynes/cm’
=3 psi
=4 psi
=5 kst
=6 MPa
= 7 kg/cm’
= 8 Mbar
T, P, APEX, ATMO APEX = apparent tensile strength (negative)
ATMO = atmospheric pressure in units of the
calculation
K, n, » AKUR, AN, APOI AKUR = elastic modulus constant
AN = elastic modulus exponent
APOI = elastic Poisson’s ratio
r AR, ACRV AR = elliptical cap major/minor axes ratio
ACRV = Number of pairs of ¢, and p,
describing compressive hardening
function (max ACRV = 4)
<o B AACC(), AAPC() AACC(i) = compressive hardening constant for
=1t , segment "i"
ACRV) , AAPC(i/) = compressive hardening exponent
AACC(ACRYV), AAPC(ACRYV) for segment "i"
E, m, , AEY, AMY, AETAl AEY = expansive yield constant
AMY = expansive yield exponent
AETAl = expansive yield hardening constant
Option for | NETA2 NETA2 = 1 multi-segment, linear fit of », as
plastic function of f"
potential NETA2 = 2 nonlinear fit of n, as function of
definition f," and o,
t; If NETA2 = 1: NPTS = number of pressure points
S NPTS defining linear ranges of 7,
SOCTA(), i = 1 to NPTS SOCTA() = pressure points, 0y,
ATGAC(i), i = 1 to NPTS ATGA() = =, constant t, at SOCTA()
ASGA(), i = 1 to NPTS ASGA(}) = n, constant s, at SOCTA()
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Table 3.2.

Format of input data file specifying the ARA Three Invariant

Model parameters for a given material (continued).

Model Input Variable Description
Parameter
t,R, s If NETA2 = 2: AATG = constant t in nonlinear 7, definition
AARG = constant R in nonlinear 5, definition
AATG, AARG, AASG AASG = constant s in nonlinear n, definition
Option for | NWPPK NWPPK = 1| multi-segment, linear fit for
specifying W, oca @S a function of o,
W, peak NWPPK = 2 nonlinear fit for W, ., as a
function of o,
a, b, If NWPPK =1 PDPK(i) = pressure points, 0.,
PDPK(j), i = 1 to 4 WPDPK(i) = W, ., at PDPK(i)
WPDPK(),i = 1to 4 (values of a; and b, implied)
B! If NWPPK = 2 APBAR = constant defining W, .y
APBAR, AL AL = exponent defining W, ..,
1/q AALPH AALPH = inverse of expansive hardening
exponent q
N v, 8, K, | AHLAM, AHGAM, AHBET, AHLAM, AHGAM, AHBET = unload/reload
AHBLK constants in
ARA elastic
model
AHLAM = -1.0 invokes Lade and Nelson
elastic model (AHGAM,
AHBET not used)
AHBLK = initial bulk modulus at very low
pressure
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Table 3.3

Fluid compressibility model constants
(see Section 3.4 for definitions of constants).

Parameter Fresh Water Sea Water
1002.8 1026
c, m/s 1500 1522
S - 2.00 1.97
S, s/m -1.07 x 10* -0.898 x 10*
S; - 1.144 1.123
Vo m/s 4000 4573
C, m/s 7788 8653
T MPa 31,240 40,600
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g, = Expansive Plastic Potential Surface
oct t. = Expansive Yield Surface (Hyperbolia)
c

f . = Compressive Yield Surface (Ellipse)

Failure Surface

| Octahedral Stress Space

o] Note:
2 2 g
[} W< '-/T

Principal Stress Space Octahedral Cross Section

Figure 3.1. Yield surfaces used in the ARA Three Invariant

material model (after Dass and Merkle, 1986).
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Mean Stress, ©

pr = e W W T e e e E e e E  ow e o W e e = = .

e e e e e e o e e e oam = a.

- e e e e - ww w  Ye oes = o e e o

Figure 3.2.

Volumetric Strain, € v

Fitting of ARA elastic formulation to unload/reload
hydrostatic compression response.
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oct

toct,max,TXC

)

10— - - - — . ————— - —_— e —

0.8 r

0.5 -

(nonassociative flow

High Pressure
Zone
{asscciative flew)
ofy =05

—— m— — —— —

I

|

{

|

Transition l
Zone |
l

!

|

I

l

|

Pressure |
l

Coct, o f 1 oct, @ fs

s,t.R Linearly Set
Parameters Interpolate s=1.0
from Model Fit s,t,R t=R=0.0
Parameters

Figure 3.3 Extrapolation of plastic potential function to

produce associative flow at very high pressures.
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SECTION 4
RELATIONSHIP BETWEEN MICROSCOPIC
PROPERTIES AND MACROSCOPIC FLOW PARAMETERS

Section 2 of this report describes analytical formulations and their computer
implementations for simulating the mechanical behavior of a saturated porous material based on
knowledge of the mechanical properties of its constituent materials, i.e. the porous skeleton
(possibly soil or rock), the solid grains, and the pore tluid. An advanced three-invariant
plasticity model for simulating the nonlinear response of a sand or rock skeleton is presented in
Section 3, along with nonlinear models for solid grains and pore water that are applicable to
very high pressures. Since the fluid pressure is determined by the volume of pore space the
fluid occupies, skeleton strain gradients can induce pore pressure gradients, resulting in flow of
the pore fluid. The rate of pore tluid flow in response to imposed pressure gradients 1s a
function of the properties of both the fluid and the porous (and permeable) skeleton. The flow
characteristics do not strongly influence the deformation response of unsaturated materials.
However, in saturated porous materials, they can be very important, particularly if the loading

1s dynamic.

This section begins with a discussion of the governing equation for fluid flow through
a porous material. With that as a theoretical framework, fluid flow test data are presented for
a range of porous materials. Included in the data set are granular materials, both spherical and
angular, and porous limestone. Finally, there is a discussion of the relationship between the

permeability coefficients and the microscopic geometric characteristics of the porous media.

4.1. GOVERNING EQUATIONS OF FLOW THROUGH POROUS MEDIA
Flow through porous materials has long been studied by investigators in a variety of

disciplines, including hydrology, petroleum resci . oir engineering, chemical engineering and

filtering. In traditional civil engineering, where pressure gradients and the resulting flow
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velocities are typically small, problems are almost exclusively formulated using the Darcy flow
equation which assumes a linear relationship between pressure gradient and flow velocity.
However, in previous AFOSR-sponsored work, Kim, et.al. (1988) reported that in dynamic
problems of interest such as blast-induced liquefaction, weapons effects, and possibly
earthquakes, pore pressure gradients and flow rates are of sufficient magnitude that the Darcy
equation does not adequately describe the pore fluid response. To analytically treat the dynamic
problems, Kim, et.al. (1988) adopted a more general expression for pressure gradient which
includes a term that is proportional to the square of the fluid velocity in addition to the linear
(Darcy) term, along with inertial terms related to fluid acceleration. The use of the velocity-
squared term was apparently first proposed by Forchheimer (1901), and has been used in various
forms by investigators over the years. Forchheimer’s equation, which does not consider fluid

acceleration, has the general form:

T, = aw, - by.v‘.2 (4.1)
where: w; = pore pressure gradient in the i direction
W, = apparent fluid velocity in the i direction

®
o
Il

constants which are functions of both skeleton and fluid properties

This formulation, with the addition of the inertial terms, was used by Kim, et.al. (1988), and
again as the framework for investigating the influence of microscopic skeleton properties on fluid
flow by Blouin, et.al. (1990). While Forchheimer’s equation appears to be virtually unknown
in the civil engineering literature, its use is widespread in chemical engineering, particularly with
reference to porous metal filters. The constants, a and b, in Equation 4-1 are functions of the
properties of both the pore fluid and the porous medium. A more useful form of the equation
will result if it can be expressed in terms of constants that are dependent on either fluid or
porous medium properties, but not both. Green and Duwez (1951) argue, based on dimensional
analysis, that if the factors controlling the pressure gradient are assumed to be fluid viscosity,
fluid density, a length characterizing the pore openings, and the apparent fluid velocity, then

Forchheimer’s equation must have the form:
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w, w
T, - const, F 2‘ + const, p,b ! 4.2)
8

where: p = dynamic viscosity of the fluid

D¢ mass density of the fluid

0 = unknown length related to pore geometry

If the constants are combined with the unknown pore dimension term, §, and called « and 3,
the resulting expression has the desired separation between quantities dependent on skeleton

properties and quantities dependent on fluid properties:
x - Py . ifwlz (4.3)
o

The relationship between the two sets of coefficients is:

R
1

(4.4)

R~
1
Q-LP 8 |e

If the term containing W? is neglected the result is Darcy’s equation with the constants in a
different form. In some soil mechanics texts, « is called the coefficient of permeability or
absolute permeability and is often represented by the symbol, K. It has units of length squared
and the coefficient of the quadratic term, 3, has units of length. The relationship of « to the

Darcy permeability, k, is given by:

« - KB 4.5)
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where: g = acceleration of gravity

In previous work, we have referred to the linear term as the laminar response and the
quadratic term as turbulent, an analogy to flow in pipes. However, Equation 4-3 does not have
the same form as the linear and turbulent flow equations for pipes. In pipes, the quality of the
flow is related to the Reynolds number, Re, defined as:

Re - L5 Py (4.6)
7}

where: V = fluid flow velocity,

and the other quantities are as defined above. Laminar flow occurs in pipes at low velocity
(Reynolds number), and the pressure gradient is characterized by a linear dependence on flow
velocity. At some value of Reynolds number, the flow changes rather abruptly from laminar
to turbulent. If the length quantity in the Reynolds number is taken as pipe diameter. then flow
is sure to be laminar if Reynolds number is less than 2100, and for practical purposes, it can be
assumed to be turbulent if Re is greater than 4700. In pipes, the pressure gradient in the
turbulent regime is proportional to the square of the fluid velocity, and there is no linear
dependence on velocity. In contrast Forchheimer’s equation (4-3), retains its dependence on
both the first and second powers of velocity over the full range of fluid velocities, and the
relative importance of the two terms varies according to the details of each specific problem.
Green and Duwez (1951) attributed the velocity squared term to inertial effects, related to the
tortuosity of the flow path. Bear (1972) also concluded, based on the work of Lindquist (1933),
Schneebeli (1955), Hubbert (1956), and Scheidegger (1960), that the appearance of the square
term in Equation 4-3 is the effect of inertial forces associated with the flow along the tortuous
path through the porous material. These forces are proportional to fluid density and independent
of viscosity, consistent with the form of Equation 4-3. Thus, reference to turbulent flow has
been dropped. Instead, we have adopted the nomenclature, linear and quadratic flow coefficients

for the quantities o and 3, respectively.
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4.2 PERMEABILITY MEASUREMENTS ON GRANULAR MATERIALS

In order to investigate the relationship between the macroscopic fluid flow coefficients
and the microscopic geometric properties of the porous medium, measurements of fluid flow
were made in a variety of granular materials. These tests were conducted at a wide range of
pressures on specimens of granular materials packed in a circular duct. he grain sizes of the
materials tested span a range of more than an order of magnitude, and both spherical and angular

grains shapes are represented.

The apparatus used to perform flow tests on the granular materials is shown schematically
in Figure 4.1. It was fabricated trom a standard hydraulic cylinder by adding a sample tube and
the necessary additional ports. Screens fastened to each end of the sample tube contain the
granular material. Kerosene was selected as the test tluid rather than water to avoid rusting the
iest apparatus. The piston of the hydraulic cylinder serves to separate the test fluid from the
energy source fluid, which was either hydraulic fluid or high-pressure nitrogen. To expedite the
testing, the system was equipped with solenoid operated valves so that the tests could be
conducted by a single operator from the control console. Plumbing was also installed external
to the test apparatus to allow the fluid to be returned from the downstream side of the test

specimen to the upstream reservoir without pumping it through the test specimen.

The tests were instrumented with two pressure transducers to measure fluid pressure
upstream and downstream of the test specimen. In practice, the flow resistance between the
downstream end of the specimen of granular material and the low pressure reservoir was always
negligible in comparison with the flow resistance of the specimen. This was verified by the
negligible output of the downstream pressure transducer, and the pressure gradient was
calculated as the steady state upstream pressure divided by the specimen length. A displacement
transducer (a Linear Variable Differential Transformer or LVDT) was used to measure the
displacement of the piston. The time derivative of the piston displacement, with the appropriate
area corrections, 1s the fluid flow rate. The apparent fluid velocity was computed as the flow

rate divided by the gross cross sectional area of the specimen.
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Only the steady-state portion of each test was considered, 1.e. where the pressure gradient
and flow rate were constant. Previous work experimentally validated the non-steady state
portion of the flow equation accounting for the acceleration of the pore fluid (Kim, et al., 1988).
Figure 4.2 presents typical time histories of upstream pressure and piston displacement. The
data shown for piston displacement represent the entire measurement range of the displacement
transducer. The steady state piston velocity was found by a least squares fit to the portion of
the LVDT output where the gage was on scale. The steady state value of upstream pressure was

tound by averaging the pressure transducer output over that same time window.

For each test specimen installed in the permeability apparatus, a series of flow tests was
conducted at a range of pressure gradients. Each run vielded of values of steady state pressure
zradient and flow rate. Data from a number of such runs are plotted in Figure 4.3. When
Equation 4-1 is divided by w, the resulting expression plots as a straight line on the axes shown
in Figure 4.3. The slope of the line is b, or p,/B3, and its intercept is a, or u/a. For each
different granular material tested, least-squares fits to the data as plotted in Figure 4.3 have been

used to derive the linear and quadratic flow coefficients.

Figure 4.4 is a summary plot showing all of the flow test data acquired for granular
materials during the course of this effort. The characteristics of the granular materials used in
each test series are presented along with the resulting tlow parameters in Table 4.1. The table
contains the flow coefficients both in terms of a and b, and in terms of o and 3. They are most
conveniently derived from the test data in terms of a and b. However, for comparison with
other materials tested with different fluids, it is desirable to express the flow coefficients as «

and 8.

The test data were further analyzed to examine the influence of grain geometry on flow
characteristics. Figure 4.5 is a log-log plot of the linear flow coefficient, a, as a function of
grain size for materials consisting of spherical grains. A least squares fit to the spherical grain
data results in the following relationship for between grain diameter and the linear flow

coefficient, «:
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« - 8.03 x 1074 g'% 4.7

where: « = linear flow coefficient with units of in.>

d = grain diameter with units of in.

The fit given by Equation 4-7 is shown as a line on Figure 4.5. The exponent on the grain
dimension in Equation 4-7 is nearly 2. If, instead of an unconstrained least squares fit, the fit

is constrained to give the best fit line with a slope of 2.0, the resulting line is:

« - 0.00104 4? (4.8)

With the exponent of d forced to 2, « and d* have the same units and the coefficient, 0.00104,
is dimensionless. Since « is independent of fluid properties, Equation 4.8 is applicable to flow
of any fluid. Equation 4-8 is shown as a dashed line in Figure 4.5. Over the range of grain
sizes tested, the difference between this equation and the unconstrained least squares fit is

insignificant.

Hazen (1911) published the following approximate expression for estimating Darcy’s

permeability coefficient, k:

k - C(D,)? (4.9)

where: k = Darcy permeability coefficient in cm/s
C = a constant in the range 1-1.5 cm/(mm?-s)
D,, = size in mm for 10% pass on the grain size curve

Assuming for the moment that C has the value 1 cm/(mm?-s), then in dimensionally
homogeneous form, C = 10 mm-s! = 254 in.”-s'. This can be converted to an expression
for « using Equation 4-5. Since the Hazen expression applies to water flow, the conversion is
made using and the viscosity and density values for water at 20°C, p = 1.45 * 107 Ib-s/in.? and
pr = 9.35 * 107 1b-s¥/in.%, respectively. Substituting Equation 4-9 into 4-5, and using the value

of C in inch units and g = 386.4 in./s?, results in the following expression:
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a - 0001 (D)} (4.10)

For a material of uniform grain size, Dy, is equal to d, and this is essentially the same
expression as Equation 4-8. The good agreement between the data from our high pressure flow
tests and the Hazen expression is an indication that the current test and analysis procedures in
the high pressure gradient regime produce results consistent with conventional low pressure
engineering measurement techniques for the linear part of the problem. Returning to the original
range of values for C in Equation 4-9, the constant in Equation 4-10, using Hazen's range of

coefficients, can have values in the range 0.00! - 0.0015.
Figure 4.6 presents values of the quadratic flow coefficient, 8, derived from flow tests

on spherical grain materials. The following expression represents a least squares fit to the

quadratic flow coefficient data as a function of grain size:

B - 0.117 dLlZS (4.11)

w
]

where: quadratic flow coefficient with units of in.

d = grain diameter with units of in.
If the data are fit with the exponent of d constrained to be unity, the resulting expression is:

B - 0.067 d (4.12)

Similar to Equation 4-8, the coefficient, 3, and the grain size, d, both have units of length, and
the constant, 0.067, is dimensionless, making the expression valid for 8 and d in any length

units. Also, since @ is independent of fluid properties, it is valid for any fluid.

Green and Duwez (1951) suggested that the ratio o/@, which has units of length, is an
appropriate value to use for é in the computation of Reynolds number (Equation 4-6). This
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would mean that systems with the same Reynolds number would have the same ratio of viscous
to inertial dissipative forces. This definition of Reynolds number could be used to design a scale
model of a saturated porous system for laboratory experiments. If a scaled system could be
developed with grain sizes much larger than the prototype materials of interest, then it might
become practical to measure effects using available instrumentation that, in the prototype, would
be microscopic. While it may be possible to relate the Reynolds number defined in this way to
the onset of turbulence in the porous material, it would not be expected to occur at the same

values of Reynolds number that apply to pipes since the geometry is completely different.

Tests were also performed on materials with non-spherical grains, including a carbonate
sand from Enewetak Atoll in the Pacific. and crushed marble and granite. Figure 4.7 presents
o as a function grain diameter for all of the flow tests on granular materials, including both
spherical and non-spherical grains. The non-spherical grain data scatter on both sides of the
fit for spherical grains. For the linear flow coefficient, «, the difference between spherical and
non-spherical grains appears to be within the overall scatter of the data, indicating that its
dependence on grain shape is no more significant that other uncertainties that remain

unquantified.

Figure 4.8 shows the relationship between quadratic flow coefficient, 8, and grain size
for both spherical and non-spherical grains. Unlike the linear coefficient, quadratic flow
coefficient clearly takes on lower values for the non-spherical grains than in the baseline
spherical case. This means that the resistance to flow through the matrix of angular grains
increases with velocity at a greater rate than through spherical grains of the same size. To first
order, B8 for angular grains might be taken as one half the 8 for spherical grains of the same

size.
4.3 PERMEABILITY MEASUREMENTS ON SALEM LIMESTONE
A series of permeability tests was conducted on specimens of Salem (Indiana) limestone

under sponsorship of the Defense Nuclear Agency. Tests were conducted at a range of pressure

gradients to define both the linear and quadratic flow coefficients for the material. To
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investigate the influence of rock skeleton stress on flow properties, tests were performed on
specimens under hydrostatic pressure, including pressures high enough to permanently crush the

rock cementation.

For the permeability testing of noncohesive granular materials described in the previous
subsection, the test specimens were prepared by packing the granular materials in a circular
duct. Because of the material’s granular nature, the packing process produced a test specimen
in intimate contact with the wall of the cylinder, thereby minimizing any error due to flow along
the cylinder wall. It would be impractical, if not impossible, to achieve a close enough fit
between a rock specimen and a steel cylinder to preclude unwanted flow along the rock-cylinder
interface. Thus, an alternative approach was required. Permeability testing of the porous rock
was performed in a specially modified triaxial compression apparatus. Figure 4.9 is a schematic
depiction of the apparatus used to conduct permeability tests on porous limestone. The tests
were performed on cylindrical rock specimens approximately 1-7/8 inch in diameter by 4 inch
iong. An impermeable, flexible membrane of heat shrinkable polyolefin tubing was applied so
that it fit tightly to the rock and was sealed on each end to a perforated steel endcap as shown
in Figure 4.9. The specimen, thus prepared, was installed in the triaxial compression apparatus,
which was specially equipped with fluid flow passages. As illustrated in Figure 4.9, the top
and bottorn endcaps were sealed to the piston and pressure vessel base, respectively, with O-
rings. Pressurized water was introduced to the specimen through a port in the base of the vessel
and drained to the exterior of the pressure vessel through a hole in the triaxial loading piston.
In order to assure that no significant flow was allowed between the specimen and the membrane,
the triaxial pressure vessel was pressurized, and the pore fluid pressures were always kept lower

than the confining pressure in the vessel.

Flow generation and measurement techniques for the rock specimens were very similar
to those used in the tests on granular materials described in Section 4.2. The water was
pressurized and the flow rate measured with a pressure intensifier which is shown schematically
in Figure 4.9. The intensifier consists of two coupled hydraulic cylinders as shown in the
tigure. The cylinders have an area ratio of 6.25, allowing a water pressure output of 20,000

psi with an input of hydraulic fluid at 3200 psi. The intensifier displacement was measured with
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an LVDT to determine the pore fluid flow rate.

In all cases, the specimen was first loaded hydrostatically to a specified total stress level
using a combination of fluid pressure and piston load. For a simple hydrostatic load, it would
not be necessary to use the axial loading piston. However, for permeability testing axial loading
was applied with the piston in order to maintain the seal between the perforated top cap and the
piston which was necessary to prevent flow of the contining fluid into the pore space of the
specimen. Once the specified level of hydrostatic total stress on the rock was reached, it was
held constant while tests were performed at a series of pore pressure gradients. For each of
those tests, the hydraulic fluid flow to the low-pressure side of the intensifier was quickly raised
to the desired level and held constant. When the steady state condition (constant pressure
gradient and flow rate) was achieved, data acquisition was initiated to measure and record the
pore fluid pressure upstream of the specimen and the fluid tflow rate. These measurements were

processed as described in Section 4.2.

A Salem limestone specimen with porosity of 0.169 was the subject of a series of fluid
flow tests. It was initially loaded to 10 MPa confining pressure. The first fluid flow test was
conducted with the pressure at the upstream end of the rock specimen set to approximately
2.5 MPa. In successive tests, the upstream pore fluid pressure was incremented until it reached
a value of about 90% of the confining pressure. It was not raised above that level to ensure that
the confining pressure was always higher than the pore pressure to keep the membrane pressed
firmly against the rock specimen. Once the pore fluid pressure reached 90% of the current
confining pressure, the confining pressure was incremented and the test series was repeated with
the pore pressure beginning at 2.5 MPa. Figure 4.10 presents data from tests on a single
specimen at a range of confining pressure and pore pressure gradient conditions. In Figure 4.10,
one line is shown for each confining pressure, and each line is identified by that pressure value.
The data are plotted, as in Figure 4.3, such that the intercept and slope of the line are the linear

and quadratic flow coefficients, a and b, respectively.

At pressures of 70 MPa and below, the data points fall on a straight line within each

confining pressure set, and there is only slight sensitivity to changes in confining pressure. As
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confining pressure is increased above 70 MPa, the cementation of the rock skeleton begins to
be crushed, thereby changing the geometry of the microscopic flow paths through the rock. This
results in a more pronounced variation in flow coefficients with increasing confinement. It is
also apparent from Figure 4.10 that, at the higher confining pressures, the lines are no longer
straight. Their slopes decrease with increasing pore pressure gradient. To understand this
behavior, it is necessary to consider the stress conditions in the test specimen. The decrease in
permeability of the rock specimen with increasing confining pressure is caused by compaction
of the rock skeleton and the resulting reduction in the tlow area through its pore space. The
deformation of the skeleton is controlled, to first order at least, by the effective siress. i.c. the
difference between confining pressure and pore pressure. While fluid 1s flowing through the
specimen during the test, there is a pressure gradient in the pore fluid along the length of the
specimen. As a result. there is also a gradient in the effective stress acting on the rock skeleton,
with the lowest effective stress at the upstream end. If the pore pressure at the upstream end
is a small fraction of the confining pressure, then the etfective stress is approximately the same
as the confining pressure, and the variation in effective stress along the length of the specimen
is small in comparison with the confining pressure. At the other end of the spectrum, if the
upstream pore pressure is nearly equal to the confining pressure, then the effective stress at the
upstream end of the specimen is nearly zero, and the variation in effective stress along the
specimen length is very significant, being approximately equal to confining pressure. At low
confining pressures, where the rock skeleton is elastic, and the flow properties are relatively
insensitive to changes in effective stress, the rock has nearly the same flow properties along its
entire length and the lines in Figure 4.10 appear nearly straight. However, at the higher
confining pressures where the skeleton cementation is being crushed, i.e. greater than 70 MPa,
the flow properties are more sensitive to changes in effective stress and hence exhibit significant
variation along the specimen length in those cases where the upstream pore pressure is
significant in comparison with the confining pressure. Thus, for confining pressures above
approximately 70 MPa, the curves in Figure 4.10 exhibit an initial linear range where the
effective stress acting on the rock is approximately constant and equal to the confining pressure.
However, with increasing upstream pore pressure, the effective stress on the upstream portion
of the specimen is reduced, resulting in increased flow capacity and a downward curvature of

the curves in Figure 4.10.
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Values of the flow coefficients determined from the data in Figure 4.10 are presented in
Table 4.2. These values were derived from the test data using an analysis approach similar to
that used for sands and illustrated by Figure 4.3. The difference is that for the limestone, only
data from tests in which the upstream pore pressure was less that half the confining pressure
were used in the analysis. As explained above, this eliminates those tests that had large effective
stress gradients along the flow path which tend to obscure the fundamental flow properties of
the rock. The coefficients are presented in the table both in terms a and b, as they were derived
from the test data, and in terms of « and 3, which are properties only of the porous rock. The
variations in the linear and quadratic flow coefficients with effective stress are illustrated in

Figures 4.11 and 4.12. respectively.

4.4 RELATIONSHIP BETWEEN PERMEABILITY COEFFICIENTS AND SKELETON
PROPERTIES

Section 4.2 describes relationships between the flow coefficients, « and 3, and grain size
for flow through porous materials consisting of spherical grains of approximately uniform size,
and Figures 4.4 and 4.5 present the data from which those relationships were derived. If the
relationships between flow coefficients and grain size are derived based strictly on mathematical
fits to the finite sets of data points, the results are the empirical expressions for o and 8 given
by Equations (4.7) and (4.11). If, instead, the flow coefficients are assumed proportional to
integral powers of grain size, as suggested by dimensional analysis, the resulting relationships
are those given by Equations (4-8) and (4-12). In the latter set of equations, the numerical

constants are dimensionless.

The grain size was a convenient independent variable for analysis of granular materials.
However, as attention is turned toward identifying a more fundamental relationships between
microscopic geometric properties and permeability for various iypes of materials, it is no longer
suitable. A conceptual model that is widely used for the study of flow through porous media
is a matrix of openings, or pores, interconnected by smaller channels, or throats. For spherical
grains, the throats have dimensions of the order of the grain size. The effective diameter of a
throat was estimated as the diameter of the circle whose area is equivalent to the actual area of

the throat. If the spherical grains are assumed to be close packed, the smallest throats will be
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formed by the three tightly packed spheres, and the equivalent diameter of the throat is 0.23 d.
Assuming that the throat diameter, t, is equal to 0.23 d, equations 4.8 and 4.12 can be rewritten

in terms of t as:

a - 0.0197 ¢ (4.13)

B - 0.509 ¢ (4.14)

It is of interest to see how well Equations (4-13) and (4-14), which were derived from
test data from granular materials, predict the permeability properties of the porous limestone.
Wardlaw, et.al (1987) reported the throat dimensions of two different rock types, including
Indiana limestone, derived from Wood’s metal porosimetry. In this technique, molten Wood's
metal, a low melting point (70 C) alloy of bismuth, is used to saturate the pore space of the
rock. The Wood’s metal saturated specimen is then sectioned and polished, and the rock
skeleton is dissolved away with acid leaving the metal matrix in the shape of the pore space of
the rock. The degree of saturation achieved is a function of the pressure applied to force the
molten metal into the rock. The highest degree of saturation reported by Wardlaw, et.al. was
94 %, a result of the application of 1700 psi saturation pressure. Measurements were made of

the resulting metal matrix on enlarged scanning electron micrographs.

In 480 observations, Wardlaw, et.al. reported throats ranging from 2 x 107 to 8 x 10
inch with an average of 1 x 10*. If it is assumed that the flow is controlled by the smallest
throat size, and « and (3 are computed using a throat size, t, of 2 x 107 inch in Equations 4-13
and 4-14, the resulting permeability coefficients are o = 7.88 x 10" in* and 8 = 1.02 x 10°
in. The linear permeability coefficient value of 7.88 x 10 in? is in remarkably good agreement

with the measured value of 1.26 x 10! in%.

Admittedly, the choice of the minimum measured
pore size as input to Equation 4-13 was somewhat arbitrary. However, we believe that this
result suggests a strong dependence of « on the throat dimension as would be expected for a
viscosity related term. In contrast, the value of the computed quadratic flow coefficient, 8 =

1.02 x 107 inch, differs by about four orders of magnitude from the measured value (at low
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effective stress) of 1.2 x 10® inch. This limited evidence appears to suggest that 8 has a

stronger dependence on some characteristic of the porous skeleton other than throat diameter.

This finding is consistent with the hypothesis that the quadratic flow coefficient is
dependent on the tortuosity of the flow path through the porous material. For the granular
materials, an approximate linear correlation was found between the grain size and the quadratic
flow coefficient, 8. However, if tortuosity can be characterized by a quantity with units of
length, such as curvature (1/length), then it scales with grain size. Thus, if 8 is proportional
to inverse curvature, then for granular materials, it will also be proportional to grain size, even
if it is not the size of the throats that determine 3. Since the pore geometry of the rock has
completely different shape characteristics than the granular materials, it would not be expected
to scale with throat size in the same way as the sands, and hence the expression relating 8 to

throat dimension for granular materials would not be applicable to the rock.

4.5 RELATIVE IMPORTANCE OF LINEAR AND QUADRATIC TERMS

The existence of the quadratic term in the Forchheimer expression for relating pressure
gradient to fluid flow velocity can readily be demonstrated in the laboratory. However, it is
apparently not widely known or used in civil engineering. This leads to the question of where
it is significant. Figure 4.13 represents an attempt to shed some light on that question. The
figure shows the relative contributions of the linear and quadratic terms to the pressure gradient
for two sands and a porous rock under a range of flow conditions. Table 4.3 presents the
properties of the materials used to compute the data points in Figure 4.13. The two sands were
assumed to have grains that would just pass U.S. Standard No. 10 and No. 100 sieves. Flow
coefficients for the sands were computed using Equations 4-13 and 4-14. The limestone flow
coefficients were taken from the low flow end of the test data presented in Table 4.2. In all
cases, the flow coefficients were assumed to remain constant over the entire range of pressure
gradients considered. The fluid was assumed to be water at 20° C, and its properties are
included in Table 4.3. The variable on the vertical axis in Figure 4.13 is the ratio of the
quadratic to linear terms in Equation 4-1. The figure illustrates the range of pressure gradients

at which the quadratic term becomes important for the various materials.
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A horizontal line is shown on Figure 4.13 at a ratio of 0.10. At this point, the
contribution of the quadratic term is 10% of the linear term contribution. Taking that as a
criterion for significance, flow conditions above the line on the figure are significantly influenced

by the quadratic term which is missing from the traditional Darcy permeability formulation.
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Table 4.2.

Permeability Test Data for Salem Limestone

Effective Flow CoefTicients
Stress a b alpha beta
L (psi) 4________(lb-s/in*4) (Ib-s"2in"5) (in*2) (in)
1450 1.26E+C4 8.79E+04 1.15E-11 1.06E-09
2175 1.33E+04 8.32E+04 1.09E-11 1.12E-09
2900 1.47E+04 7.37E+04 9.59E-12 1.27E-09
3625 1.54E+04 7.37TE+04 9.41E-12 1.27E-09
4350 1.71E+04 7.13E+04 8.49E-12 1.31E-09
5800 1.86E+04 1.02E-+05 7.81E-12 9.15E-10
7250 2.26E+04 1.21E+05 6.42E-12 7.72E-10
10150 3.09E+04 2.47E+05 4.71E-12 3.78E-10
13050 4.95E+04 6.91E+05 2.94E-12 1.35E+-10
15950 9.13E+04 1.49E+06 1.59E-12 6.30E-11
18850 1.41E+05 5.15E+06 1.03E-12 1.82E-11
21750 2.88E+05 1.11E+07 5.04E-13 8.39E-12
Note: for water at 20°c,
p = 1.45 x 107 1b-s/in?
o = 9.35x 10° Ib-s¥in*
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Table 4.3. Properties of materials used to create Figure 4.13.

a B a l b
(in°) (in.) Ib-s/in* Ib-s*/in®
Sand No. 10 6.20 x 10° 0.0053 0.0235 0.018
Sand No. 100 3.48 x 10°® 0.00040 4.17 0.236
Salem Limestone 1.26 x 10" 1.2 x 10° 12161 71250

Note: Water at 20°¢
p = 1.45 x 107 Ib+s/in

o= 9.35 x 10° 1b-in'/s?
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SECTION 5
ANALYSIS OF QUASI-STATIC UNDRAINED, TRIAXIAL

COMPRESSION RESPONSE OF SALEM LIMESTONE

Applied Research Associates conducted a series of laboratory material property tests on
drained and undrained samples of porous limestone from the Salem formation in Indiana. This
work was performed under sponsorship of the Defense Nuclear Agency (DNA) with the goal
of providing data to formulate and validate two-phase models of the limestone response. The
results of those tests. which are reported by Chitty & Blouin (1993) and summarized by Kim,
Blouin, Chitty and Merkle (1988), provide an excellent opportunity to exercise the analytical

formulations developed under AFOSR sponsorship.

In the DNA effort, drained tests were performed to define the rock skeleton properties.
Based on those skeleton properties, two-phase analytical models were derived to characterize the
saturated undrained behavior of the material. In order to validate the two-phase analytical
models, tests were also performed in the saturated undrained condition, including undrained
triaxial compression tests. The undrained triaxial compression test results contained apparent
inconsistencies that motivated further study. Specifically, the test data showed that pore pressure
remained essentially constant while the sample underwent several percent of volumetric
expansion. In an effort to better understand the pore pressure and volumetric strain behavior
of these tests, ARA performed a supplemental study, sponsored by the U.S. Army Engineers
Waterways Experiment Station (WES), in which additional instruments were used to better

define the deformed shape of the test specimens (Chitty & Blouin, 1990).

The objectives of the analysis described here were to exercise and validate the material
modeling capabilities of MEM as developed for this project, and to gain a fundamental
understanding of the undrained triaxial compression test and its applicability to undrained

material property characterization.

This section presents an analysis of the observed response of Salem limestone in a

conventional, undrained triaxial compression test. First, the appropriate model parameters used
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in numerical simulations of the trniaxial test are presented. Then, the assumptions and data
analysis procedures that are conventionally applied to triaxial compression tests of rock are
described together with the results of undrained tests on Salem limestone including special
deformation measurements that were acquired. Finally, the results of a finite element simulation
a the laboratory test are described followed by a discussion of the conclusions resulting from this
investigation. The results presented in this section were summarized in a paper by Chitty, et.
al, (1991).

5.1 MODEL PARAMETER DETERMINATION FOR SALEM LIMESTONE

Salem limestone is a porous rock of exceptional uniformity. The samples used in the
undrained triaxial tests had an average porosity of 0.128. Table 5.1 summarizes the physical

properties of the material used in the numerical simulations.

The solid grains of the limestone were modeled using the parameters given in Table 5.2
together with the numerical model described in Section 3.3. The limestone was saturated with
fresh water in the simulations; the partial saturation model described in Section 3.5 was not
used. The pore water compressibility was modeled as nonlinear corresponding to the model
described in Section 3.4 and the parameters given in Table 3.3. The initial bulk modulus of the
pore water is 2220 MPa. Given that the triaxial tests were quasi-static with very low pore water
velocities expected, the Forchheimer permeability model was not necessary. A representative,
constant Darcy permeability of 4.70 x 107 m/s was used in all of the numerical simulations.
This value is higher by approxiately a factor of 6 than the test data presented in Section 4. The
value used in the analysis was based on a very preliminary laboratory test which was shown to
be significantly in error as a result of the subsequent, more precise tests described in Section 4.
This error does not significantly affect the conclusions of this anlaysis because the permeabilities
in both the triaxial compression test and the MEM calculation were high enough that any pore

pressure gradients equilibrated essentially instantly on the time scale of the test.
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§.1.1 Fitting of ARA Three Invariant Skeleton Model

The determination of the parameters for the ARA 3-1 model to represent the skeleton
response of Salem limestone is described in this subsection. The model was fit to the data from
the drained hydrostatic and triaxial compression tests shown in Figures 5.1 and 5.2. The model

parameters are summarized in Table 5.3.

Using the measured response of Salem limestorne in the elastic regime during an
unconfined compression test, a Poisson’s ratio of 0.25 was determined. The initial bulk modulus
measured in the linear portion of the drained hydrostatic loading in Figure 5.1 was 24,000 MPa.
This corresponds to an initial Young's modulus of 36,000 MPa for a Poisson’s ratio of 0.25.
Also, from the cycled load/unload hydrostatic compression data in Figure 5.1, values of the
initial unload bulk moduli at various maximum pressures were determined, converted to Young’s
moduli according to Equation 3.11, and plotted as shown in Figure 5.3. A least squares linear
regression was then used to fit the line in log-log space as shown in Figure 5.3. This is
equivalent to the procedure outlined in Section 3.2.3 and gives the elastic parameters n =

0.2286 and K,, = 71,560 as given in Table 5.3.

The option for the ARA elastic model was selected to match the unloading response of
the limestone as closely as possible. The unloading cycle from 200 MPa during the hydrostatic

compression test (Figure 5.1) was used to obtain the parameters:

A = 0.644
v = 0.893
B = 0.487

These parameters are defined in Equations 3.4, 3.6 and 3.7. This completes the definition of

the elastic response for the skeleton model.

The hydrostatic compression data from Figure 5.1 are also used to define the compressive
plastic response as outlined in Section 3.2.4. The ratio of the major to minor axes of the
elliptical compressive yield surface (r in Equation 3.15 and Figure 3.1) was selected to be r =

2.0 based on previous experience. The parameter fitting routines in MEM were then used to
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compute the plastic compressive work from the plastic volume strains according to Equation 3.17
in the manner described in Section 3.2.4. The normalized compressive plastic work was plotted
as a function of pressure as shown in Figure 5.4. Four line segments were then fit to this data
defining four sets of the parameters c; and p; as given in Equation 3.20. The resulting
parameters are given in Table 5.3 and complete the definition of the compressive plastic

response.

The first step in determining the expansive plastic response parameters is to define the
ultimate failure surface and the corresponding peak expansive plastic work as functions of mean
stress. The failure envelope is fit to the ultimate shear strengths from the triaxial compression
test data of Figure 5.2a in the conventional manner. Below the brittle ductile transition, the
ultimate octahedral shear stress is used. In the ductile regime, the octahedral shear stress at

15% axial strain is used.

The expansive plastic respouse 1s fit as outlined in Section 3.2.5. The failure envelope
is fit by plotting the failure points as shown in Figure 5.5 (note that o, = o4, - T in Figure
5.5). Then, according to Equatior 3.40, m is determined to be 4.203 x 10" from the ratio of
the slope to the intercept of the straight line fit to the data in Figure 5.5. Then, from available
test data on Salem limestone, a value of Yy = 1.25 was determined which gives E = 0.1111
according to Equation 3.23. Then, substitution of m and E into the intercept value from Figure
5.5 gives n, = 0.4197 (refer to Equation 3.40). The tensile strength of the skeleton was

measured to be T = 32 MPa. These parameters are summarized in Table 5.3.

The next step in the fitting process is to define the function for the peak plastic expansive
work using a multi-segment fit (Equation 3.28) or using an exponential function (Equation 3.29).
We elected to use the multi-segment function to permit as accurate a fit as possible. The peak
plastic work was computed using the MEM fitting routines to integrate the plastic expansive
strains up to the failure surface according to Equation 3.27. The peak plastic work from each
test was then plotted as shown in Figure 5.6 and three straight line segments were fit using least-
squares linear regression. The fit is specified in terms of the four pressure-peak plastic work

data pairs given in Table 5.3 which correspond to the following parameters for Equation 3.28:
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Segment & b;
1 0.0037 0.118
2 0.10 -8.63
3 0.098 -8.33

The next step is to define the expansive yield hardening function given by Equation 3.25.
Since the coefficient , and the peak plastic expansive work have been previously defined, only
the exponent § is needed to define the hardening function. In accordance with Equation 3.42,
the triaxial test data is plotted as shown in Figure 5.7 using the MEM fitting routines. Then,
q is computed at a value of f,"/n, = 0.80 and plotted as a function of mean stress in Figure 5.8.
A representative value for q is the average value of about 0.4. This yields the model
relationship plotted in Figure 5.9 which is a good approximation of the test data plotted in

Figure 5.7.

The final step in fitting the ARA 3-1 model is defining the expansive flow rule and
expansive plastic potential function as defined in Equations 3.34 and 3.35. Of the parameters
in these functions, only the coefficient 5, is yet to be determined. For Salem limestone, we
elected to define 1, as a multi-segment function of the expansive yield hardening (Equation
3.36). As outlined in Section 3.2.5, 7, is computed from the expansive plastic strains using

Equations 3.44 through 3.46 for each triaxial test.

Expansive plastic volumetric strains are plotted in Figures 5.10a through 5.10d as a
function of shear strain for drained triaxial test data at confining stresses of 50, 100, 200, and
400 MPa. These plots are generated using the fitting routines in MEM. In the case of low
confining stresses (50 and 100 MPa), the expansive plastic volumetric strains are initially
compressive and then continuous!: dilative as the shear strain increases. In the case of high
confining stresses (200 and 400 MTz), however, the expansive plastic volumetric strains show
continuous dilation with no initial compression. To obtain representative average slopes for the
computation of 7,, the expansive plastic strain data have been fit with segments described by
quadratic least squares fits as shown by the solid lines in Figure 5.10. The plastic expansive

strains are also compared to the total volume strain in Figure 5.10.

5-5




The plastic potential parameter 5, (Equation 3.44) is then computed and plotted as a
function of f,” (Equation 3.25) in Figure 5.11. The expansive plastic potential coefficients t, and
s; (Equation 3.36) are then found by a least squares fit to the data as shown in Figure 5.11. The
computed values of t; and s; are plotted as a function of the average mean stresses in Figures
5.12 and 5.13, respectively. Both t; and s; change rapidly at mean stresses near 200 MPa where
the limestone undergoes a change of failure mode from brittle to ductile. Fits to these data are
approximated as straight line segments with the plastic potential coefficients given in Table 5.3.
This completes the specification of all the parameters required for representing the limestone

skeleton with the ARA 3-I model.

5.1.2 Prediction of Drained Limestone Response

In this subsection the fit of the ARA 3-I model is verified by comparisons between
numerical simulations and laboratory tests. First, MEM is used to compute a set of synthetic
drained hydrostatic and triaxial compression test data for comparison to the data from which the
material parameters are extracted. Next, the drained uniaxial strain response of Salem limestone
is predicted and compared to drained uniaxial strain test data. This last comparison serves as
a check of the model and material parameters against a set of test data obtained along a strain

path not used in developing the model parameters.

The drained hydrostatic compression response computed by MEM is shown in
Figure 5.14 along with the laboratory data. The calculation is in excellent agreement with the
laboratory data. It should be noted that for this calculation, the expansive part of yield surface

in the model is not active since material is in pure isotropic compression.

A series of four MEM calculations were performed to predict the drained triaxial
compression response at confining stresses of 50, 100, 200 and 400 MPa. The computed results
are presented in Figure 5.15 through 5.18 along with the corresponding laboratory test data for
the corresponding confining stresses. For each confining stress, both stress differences and
volumetric strains are plotted as functions of axial strain. Overall, the MEM calculations agree

well with the laboratory drained triaxial compression test results. In the case of 200 MPa
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confining stress, the MEM calculations shown in Figure 5.17b overpredict the peak volumetric
strain by about 20%. This overprediction is probably due to the coarse linear approximation of

the expansive potential parameter 7, at the transition pressures between 150 MPa and 280 MPa.

The last MEM computation in this section is the drained uniaxial strain response
prediction shown in Figure 51.9 and compared with test data. The computed axial stresses are
slightly underpredicted in the elastic region and are slightly overpredicted beyond the elastic
limit. Considering the ARA 3-I1 material parameters are solely determined fr- .. the drained
hydrostatic and triaxial compression tests, such close agreement indicates strong potential

applicability of the model to other more complex loading problems.

5.2 CONVENTIONAL TRIAXIAL COMPRESSION TESTING

In a triaxial compression test, a right circular cylinder of material is first loaded
isotropically to a predetermined value of confining pressure. That confining pressure is then
held constant while a compressive strain is imposed along the axis of the cylinder. The axial
strain is applied to the sample by a hardened steel piston and the sample is supported at the
opposite end by a similar hardened steel platen. Several triaxial compression tests at different

confining pressures are typically used to define a strength envelope for a material.

Since the elastic modulus of the steel end caps is greater than that of a typical
geotechnical sample, there is a mismatch in radial expansion between the sample and the mating
steel surfaces, with the sample tending to expand more than the steel. If the interface were
perfectly frictionless, this mismatch in radial deformation would not be significant since one
surface would simply slide relative to the other leaving a state of pure normal stress acting
across the interface. However, because there is friction, the unequal deformation imposes shear
stresses on the ends of the sample in addition to the desired axial stress. These shear stresses
are directed approximately toward the center of the sample and have the effect of increasing the
effective confinement at the ends of the sample. As a direct result of this apparent elevated

confinement near the sample ends, a typical triaxial compression sample has a nonuniform
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distribution of radial strain along its axis, with substantially more radial expansion near the mid-
height of the sample than at its ends, i.e. it becomes barrel shaped. This barreling effect can
be sharply reduced in soils testing by lubricating the surfaces that mate with the sample.
However, in rock testing, where tests are typically conducted at significantly higher pressures,

lubrication was not in general use.

In order to account for nonuniform strains in test data interpretation, it is typically
assumed that the test section of interest consists of the central third of the test cylinder. In that
region the radial stress is equal to the confining pressure and the influence of end constraint is
considered negligible. Under this assumption, the radial strain measured at sample mid-height,
where radial expansion is greatest, is considered representative of the deformation under the
nominal stress conditions. The strains in the radial and tangential directions are assumed to be
equal as they would be if the loading were applied by a perfectly uniform normal traction on the
ends and along the sides. Further, since axial strain is typically derived from a deformation
measurement over the entire length of the sample, the axial strain is assumed to be uniform

throughout the sample.

While there may be justification for these assumptions in dry or drained testing, they
immediately lead to problems when applied to an undrained test. The strength measured in an
undrained triaxial compression test is a function of the mean effective stress, which is equal to
the difference between total mean stress and the pore pressure. The pore pressure depends on
the change in volume of the pore spaces, which is closely related to volume strair  Thus, the
nonuniform radial strains and the corresponding nonuniform volume strains result in nonuniform
development of pore pressures in the sample. If the sample is highly impermeable, a pore
pressure gradient will be induced. If, on the other hand, the sample is sufficiently permeable
to allow the pore pressure to equilibrate as the test progresses, then the pore pressure depends
on the volume strain averaged over the entire sample and not at any one position. In either case,
as illustrated by Figure 5.20, the volume strain measured at the center of the sample does not

correspond to the pore pressure measured at one end.
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5.3 SPECIAL TEST TO STUDY PORE PRESSURE AND VOLUME STRAIN

In an effort to understand the pore pressures measured in undrained triaxial compression
tests, ARA conducted a small WES-sponsored test program to measure additional details of
sample deformation. Limitations of available equipment precluded measurement of a complete
radial strain profile during high pressure testing. Instead, the approach was to derive a shape
function for the bulged shape that could be defined with a few measurements. The shape
function was derived from a set of passive radial deformation measurements on triaxial test
specimens. For the passive measurements, lines were scribed around the circumference of a
virgin cylindrical sample of Salem limestone at approximately 6 mm spacings. The initial
diameter and height above the base of each line were recorded prior to testing. The sample was
then subjected to a typical triaxial compression test, and the circumfrential lines were
remeasured. Active instrumentation consisted of three radial measurements, one at mid-height
and two at different heights on one side of the middle, instead of the usual single gage at mid-

height.

The passive radial deformation data obtained over the full sample height were used to
derive a shape function which, in turn, was used to derive total volume strain estimates at each
time increment from the three radial deformation measurements. As a validation of the volume
strain measurement procedure, comparisons were made against total volume strain estimates
derived from pore fluid displacement measurements made during saturated drained tests. Here,
the volume of water drained from the sample during testing was measured and used to compute
an alternative estimate of total volume strain. Throughout this procedure, the volume
determination based on the shape function and three radial displacement records was found to

be imperfect, but a very great improvement over the conventional technique.

Stress-strain data from a typical 200 MPa undrained triaxial compression test are shown
in Figure 5.21. The figure does not include the hydrostatic loading portion of the test and
begins with the initiation of the shear phase, i.e., the application of the axial strain at a constant
confining pressure. The axial strain plotted in Figure 5.21 is an average over the entire sample

height. Three radial strain curves are presented, corresponding to three different positions as
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shown in the figure. The stress strain response is approximately linear up to an axial strain
value of 0.95% where brittle failure occurs at a true stress difference of 125 MPa. As axial
strain is further increased, there is a slight drop in stress difference, followed by a region of
approximately constant stress. The stress difference then increases slightly at strains beyond

5%, eventually reaching almost 140 MPa before the test was unloaded at 15% axial strain.

Figure 5.22 depicts the measured pore pressure and Figure 5.23 presents volume strains
determined through two different techniques from the same 200 MPa undrained test shown in
Figure 5.21. Axial strain was selected as the independent variable for these ;'ots because it is
independently cuntrolled during testing. As shown in Figure 5.22, the pore p:essure increases
from 105 MPa at the end of the hydrostatic phase to 145 MPa at the point of brittle failure
(0.95% axial strain). From that point, there is a slight additional increase in pore pressure
followed by a very slight decrease to 142 MPa at 15% axial strain. During the post failure

shear, the pore pressure is nearly constant.

The volume strain determined in the conventional manner using the radial strain measured
at mid-height and the average axial strain, Figure 5.23, shows an initial compressive volume
strain peaking when the axial strain reaches 0.95%, corresponding to brittle failure of the
sample. As axial strain increases, that measure of volume strain decreases, i.e., becomes more
dilatant, until it reaches a value of approximately -7.5% at 15% axial strain. Comparison in
Figure 5.20 of the relationship between pore pressure and volume strain before and after the
brittle failure point leads to the conclusion that the apparent large increase in volume suggested
by the conventional volume strain determination is inconsistent with the measured pore pressure.
This result is to be expected since the conventional volume strain is derived from a radial
deformation measurement at the largest point in a nonuniform radial strain distribution, a
procedure which clearly overestimates the volume strain relative to the average total volume

strain.
The total volume strain determination, based on three radial deformation measurements

and the shape function, the second curve presented in Figure 5.23 shows markedly different

behavior. In the small strain region, prior to brittle failure, the two curves are essentially
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identical. Beyond that point, the total volume strain line stays within 0.5% of the zero volume
strain line. While this is much more consistent with the pore pressure behavior, the variations
are still greater than expected. Note that the variation in total volumetric strain is greater after
failure (0.95% axial strain) than before but the pore pressure change occurs almost entirely
before. It appears that both measures of volume strain result in a reasonably correct
approximation in the region prior to brittle failure where the strains are relatively small and
uniform. Subsequent to failure, both axial and radial strains grow very large with essentially
zero change in stress difference. Here, it is very difficult to obtain an accurate measure of
volume strain and neither method gives a volume strain determination with less than 0.5%
variation in volume strain that would be required to completely resolve the details of pore

pressure and volume strain behavior.

In the course of performing the passive shape measurements on the triaxial samples, it
became apparent that there are nonuniform axial, as well as radial, deformations. Based on the
pre- and post-test measurements, axial and radial strains were computed for each (approximately
6 mm) segment of the sample. The passive measurements were not designed to produce
accurate axial deformation information. The width of the scribed lines was approximately 0.5
mm, and over the gage length of 6 mm, an error of half a line width translates to 5% axial
strain. In spite of the measurement inaccuracies, the passive data clearly indicate the axial strain
is larger at the center of the sample than at the ends. Figure 5.24 shows profiles of radial, axial
and volume strain along the axis of a 47.5 mm diameter by 95.8 mm long sample that were
computed from the passive measurements, along with an indication of the average axial strain
based on the overall length change of the sample. Figure 5.25 presents a scatter plot of radial
and axial strain computed from the passive measurements for the individual sample segments.

Also shown is a least squares fit demonstrating the trend in the data.

The non-uniformity of axial strain is significant even in the case of drained triaxial
compression where the conventional assumptions described in Section 5.3 are applicable. To
the first order, the volume strain computation consists of adding the axial strain, which is
positive, and twice the radial strain, which is negative. Thus, the volume strain is the difference

of two numbers of like magnitude and is very sensitive to small changes in either number. In
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the case where the test section is considered to be the central third of the sample and the radial
strain is measured at or near the largest point on the bulged section, an underestimate of the
axial strain near the mid height would result in an overestimate of the dilatancy at that
measurement point. This is exactly what happens when the axial strain is measured in the

conventional manner by averaging over the entire length of the specimen.

5.4 NUMERICAL SIMULATIONS OF UNDRAINED TRIAXIAL COMPRESSION
TESTS

As described in the previous section, it is known that the loading conditions in real
triaxial compression tests, while approximating the desired perfectly normal traction, actually
include shear stresses that cause significant non-uniformities in the induced stress and strain
tfields. In an effort to better understand the actual behavior of the material during these tests,
finite element simulations of the test were performed using MEM, the two-phase material
modeiing program with fluid transport that is described in Section 2. The material models
discussed in Section 3 and the parameters discussed earlier in this section were used in these
calculations. An effort was made to correctly model the non-ideal behavior that occurs during
areal test. A ten-by-ten multi-element axisymmetric grid was used in order to model any stress
and strain gradients in the sample. A symmetry boundary condition was used at sample mid-
height, making it necessary to explicitly model only one half of the sample. The finite element
grid and boundary conditions are shown in Figure 5.26. At the end where the hardened steel
end cap bears on the sample, boundary constraints were set to allow no deformation parallel to
the interface, an idealization that slightly exaggerates the physical effect observed in the tests.
The flow of pore water from element to element within the mesh was modeled in these

simulations.

Since the multi-element version of MEM does not currently have the capability to change
from stress to displacement boundary conditions in the course of one run, the analysis was
started with the hydrostatic load already in place. The initial pore pressure, porosity, and
permeability were computed based on the 200 MPa confining pressure and input to the

calculation. The confining pressure was held constant throughout the calculation and no pore
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fluid drainage was allowed. In the axial direction the loading was strain controlled. The applied
axial strain was linearly increased with time to a maximum of 15% at 3000 seconds (S0

minutes), approximating the duration of an actual laboratory test.

Figure 5.27 presents radial, axial, and volume strain contours computed from the output
of the MEM analysis of a 200 MPa undrained triaxial compression test. The plots in Figure
5.27 represent the end of the analysis where the average axial strain was 15% (positive strain
represents compression). The contour plots exhibit the same trends observed in the test data.
There is a significant variation in both axial and radial strain along the axis of the sample. The
axial strain varies from 4 to 10% at the end of the sample and from 20 to 26% at mid-height.
At approximately the quarter point of the sample, the axial strain is equal to the average value
of 15%. Similarly, in the radial direction the strain is essentially zero at the end cap, where the
boundary condition prevents radial deformation, and at mid-height radial expansion ranges from
10 to 15%. Taken together to arrive at volume strains, these data show a net compression near
the end of the sample and a net expansion at the center. Another result that has been
consistently obtained in the calculations, but which does not make a very interesting plot is
constant pore pressure throughout the grid. This indicates that strain rates during the test are
slow enough to permit pore pressures to equilibrate and that pore pressures measured at the base

are representative of those throughout the specimen.

The above results are all at least qualitively in agreement with the test data. The volume
strain contours clearly show that the sample undergoes a loss of void volume near the end caps
with a corresponding void volume increase near the center. This is accompanied by a
redistribution of pore water within the sample, with the vater migrating from the ends toward

the center.

One way of comparing the MEM results with test data is to assume the calculational
results represent test measurement and to process them in exactly the same manner as test data.
Figure 5.28 shows pore pressure plotted as a function of volume strain. Included are two
different curves computed from the 200 MPa MEM simulation along with the same test data that

was presented in Figure 5.20. The dashed curve was computed from the MEM output in the
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same way the test data curve was computed from measurements. In boih cases the conventional
approach was used, with axial strain based on overall axial deformation of the sample and radial
strain computed from the radial deformation at mid-height. Both curves indicate that the pore
pressure init'ally increases to a peak, corresponding to the initial compression and cementation
crushing, at a fraction of a percent positive (compressive) volume strain. In the initial loading
regime where volume strains are relatively uniform and measurements are relative'y accurate,
the slopes of the curves representing test data and finite element analysis are reasonably

consistent and are representative of the expected sensitivity of pore pressure to volume strain.

As loading continues, the pore pressure in the test data remains essentially constant while
there is a steady pore pressure decrease in the calculation. This indicates that the net pc.e

v

volume in the test sample stayed approximately constant through this phase of loading. 'n
contrast, the calculation appears to have undergone a slight volumetric expansion, resulting in
a pore pressure drop. The dilatancy in the computational model of the rock skeleton is not
surprising considering the fact that the skeleton model was derived from test data processed in

the conventional manner which has been showu to overestimate dilatancy.

Both the test data and the MEM output that was processed like test data have rates of
change of pore pressure with volume strain in the post-crush-up regime that are significantly
low, i.e., well below the expected sensitivity of pore pressure to volume strain as characterized
by comparison with the initial loading slope. The third curve on Figure 5.28 shows voluine
strain computed from the MEM output by taking the actual volume change element by element
and summing over the entire grid. The slope of this curve is consistent with the initial loading

slope as the skeleton dilates and the pore pressure diminishes.

Figure 5.29 is a plot of volume strain as a function of axial strain, comparing
experimental and analytical results for both the volume strain determined by the conventional
laboratory approach and the total volume strain averaged over the en*ire sample. The figure
shows that when the volume strains are computed consistantly, there is _ood agreement between
the test data and the finite element simulation. The figure also clearly demonstrates the

importance of correctly interpreting the strain definitions in a manner relevant to undrained
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testing. Finally, comparison of Figure 5.29 to 5.28 emphasizes the sensitivity of the pore
pressure to changes in volume strain and suggests that pore pressure response data from
undrained tests might provide an excellent means of fine tuning the dilatancy parameters in the

material model.

5.5 CONCLUSIONS RELATED TO UNDRAINED TRIAXIAL TESTING

The use of numerical calculations of laboratory tests is a powerful tool for improved
understanding of test results and for obtaining more accurate material model parameters. The
comparisons presented in this section have demonstrated good agreement between laboratory test
results and two-phase tinite element simulation with fluid transport. Because of inaccuracies in
the skeleton model parameters, the simulation predicted more dilatancy than was actually
observed in the laboratory. This raises the possibility of performing iterative numerical
calculations of test results to better define the model param-=ters. Since the pore pressure
response in an undrained test is very sensitive to small changes in pore volume, pore pressure

response is well suited for fine tuning the volumetric strain behavior of a model.

The lab test results and the simulations are both consistent with the fundamental view that
pore pressure response is a function of total volume change. In an undrained triaxial
compression test, volumetric compression occurs near the ends of the sample because of the
lateral constraint imposed by the end caps. Near the center of the sample, volumetric expansion
occurs due to shear induced dilatancy. Because of the variation in volumetric response along
the axis of the sample, pore pressure gradients are induced which in turn cause flow of pore
water from the ends of the sample where the volume is being reduced to the center of the sample

which is expanding.

While it is clear from post-test inspection of triaxial compression test samples that there
is a non-uniform radial strain response, both laboratory measurements and finite element
simulations support the less obvious conclusion that there are also non-uniform axial strains.

Axial strains are smaller than average in the constrained material near the ends of the sample
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and larger than average in the less constrained material at the center of the sample. Thus, the
volume change response computed at the center of the sample based on radial strain at the center
and average axial strain tends to be significantly more expansive than the actual behavior at any
point in the sample. This introduces errors in model parameters causing the models to predict

more dilatancy than actually occurs.
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Table 5.1. Physical Properties of Salem limestone.

Property Value Units i
Specific Gravity of the Solid Grains G, 2.72 -- ‘1
Porosity n 0.128 ---
Saturation s 100 %
Dry Bulk Density YVary 2.37 Mg/m?
Saturated Bulk Density Yeat 2.50 Mg/m?
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Table 5.2. Grain compressibility parameters for Salem limestone.

Parameter Value Units
Initial bulk modulus of grains K, | 69,000 MPa
Initial mass density of grains P 2.72 Mg/m?
Initial wave velocity at low pressure C, 6,760 m/s
Initial Poisson’s ratio v, 0.25 --
Constant relating loading wave velocity to peak particle velocity S 1.5 --
Threshold pressure beyond which solid grains behave like a fluid p, 5,000 MPa
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SECTION 6
DEVELOPMENT OF EQUIPMENT TO PERFORM WAVE PROPAGATION
STUDIES IN SATURATED POROUS MEDIA

Both theoretical and analytical solutions for wave propagation in saturated porous
media were presented by Kim, Blouin, and Timian (1987), and expanded by Kim, Blouin,
Chitty, and Merkle (1988). These solutions predict two types of waves, termed waves of the
first and second kinds. The wave of the first kind appears to correspond to the familiar
compressional wave in a single phase medium. It is characterized by the skeleton and pore
fluid, both in compression, moving in the direction of propagation. The wave of the second
kind propagates at a lower velocity with compression in the pore fluid and tensile effective
stress in the skeleton. These analyses also predict that certain aspects of the wave
propagation behavior are dependent on the frequency of excitation, i.e. pulse duration, as
illustrated in Figure 6.1. The speed of the wave of the first kind varies with excitation
frequency, asymptotically approaching a lower bound at low frequencies, an upper bound at
high frequencies and a having transition in the intermediate frequency range. For the
particular combination of materials considered in the analysis, the transition occurs between
about 10,000 and 100,000 rad/s. The energy dissipation in the wave of the first kind is
significantly greater in the transition region than at frequencies either above or below.
Similarly, the wavespeed and energy dissipation of the wave of the second kind are dependent

on excitation frequency as illustrated in Figure 6.1.

While the analytical and numerical solutions consistently predict these phenomena,
some of them have not been observed in the laboratory. Thus, in order to verify the analysis
results, and gain additional insight into the physical processes involved, a program of
laboratory experiments was undertaken. This involved construction of a laboratory apparatus

capable of propagating compressive waves through saturated porous materials under

controlled conditions. This section of the report describes the design of laboratory test

apparatus and presents the results of a series of parameter calculations that were used to guide

the equipment design.




The calculations presented in this section of the rgort were performed prior to the
availability of property measurements for the porous stainless steel bars that were eventually
used as test specimens. The material properties used in these calculations were estimated
based on available product information supplied by manufacturers that turned out to be
significantly different than the properties that were eventually measured. Section 7 presents
the properties of the specimen that was tested and the results of analyses based on those

updated properties.
6.1 LABORATORY TEST APPARATUS

The principal design objective of the test apparatus was to provide a means for
detailed study of waves propagating through a fully saturated porous medium. Specific
design objectives included requirements to: saturate a specimen of porous material with
controlled boundary conditions, induce a compressive wave in the saturated specimen and
measure the resulting disturbance, preferably in both the fluid and solid phases. The design
that was selected for the Wave Propagation Bar (WPB) is similar in appearance to a Split
Hopkinson Pressure Bar (SHPB), which is described by Nichols (1982). However, there are
important differences between the two devices. The SHPB uses a sample much shorter than
the wavelength of excitation so that there are several reflections through the sample in the
duration of the loading and the strain field in the sample is assumed to be uniform. Strain
measurements are made on metal bars on either side of the sample ard a mathematical
transformation is used to infer the strain in the sample. In contrast, the wave propagation bar
being developed under this project uses a sample longer than the excitation wavelength so
that wave propagation along the sample can be observed by strain measurements made
directly on the sample. Details of the analyses that lead to -he specific design decisions were
presented by Blouin, et al. (1990). The resulting design is depicted in Figure 6.2 and
described briefly in the following paragraphs.

The device is designed to accommodate a specimen of porous material in the shape of

a cylinder 2 inches in diameter and up to 24 inches long. The specimen is held between two

50-inch long hardened steel bars, also of 2-inch diameter, designated the incident bar and

6-2




transmitter bar. On the incident bar end, is a third 2-inch diameter bar, called the striker bar.
In order to induce compressive waves in the test specimen, a gas gun is used to propel the
striker bar through a guide tube to a point where it impacts the incident bar. The impact
results in a compressive wave that propagates through the incident bar and into the specimen.
The system has been used with striker bars ranging from 5 inches to 20 inches long. This
corresponds to a range in pulse durations of 50 to 200 ps. If the pulse duration is assured to
be half the period of a sine wave, the resulting range of frequencies is 2,500 to 10,000 Hz or
15,700 to 62,800 rad/s. This range could be extended somewhat on either end by fabrication

of different striker bars.

The duration of the excitation pulse was identified in the previous analytical work as a
key variable responsible for changes in the wave propagation behavior that are under
investigation. In the test apparatus, the duration of the incident wave is determined by the
length of the striker bar. When the striker bar impacts the incident bar, the time before it
rebounds, and hence the duration of the incident pulse, is equal to the time required for a
compressive wave to travel from the point of impact to the opposite end of the striker bar and

return to the impact point as a tensile wave which causes separation between the two bars.

The magnitude of the incident wave is determined by the velocity of impact, which is
determined by the pressure in the gas gun. For this work, the tests were designed with the
objective of keeping all material response in the elastic regime. Thus, the gas gun pressure
was selected to give adequate resolution in the instrumentation without yielding the test
specimen. Since the material stays elastic, the exact magnitude of the stress wave does not

strongly influence the outcome of the experiments.

In order to achieve saturation of the specimen, all of the air in its pore space must be
removed and replaced with fluid. Further, in order to apply the necessary boundary
conditions, we impose the requirement that no fluid flow into or out of the specimen during
testing. This condition is accomplished by encasing the specimen in a jacket, a tight-fitting
flexible membrane, which is sealed to the solid bars on either end of the test specimen. The

exterior of the jacket is pressurized to a leve} greater than the maximum pore pressure,
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ensuring that the jacket remains tight against the test specimen and that no fluid flows across
the specimen boundary.

Since the exterior of the jacketed spccimen must be pressurized to maintain the
required boundary conditions, it is necessary that the test apparatus include a pressure vessel
to contain the specimen. In this case, the pressure vessel consists of a standard double ended
hydraulic cylinder in which the piston has been replaced by the test specimen, with the

incident and transmitter bars passing through the seals on either end of the cylinder.

In light of the calculational results presented in Section 6.2, a steel sleeve was added
to the pressure vessel, leaving a gap of approximately 0.2 inch between the jacket covering
the specimen and the inner surface of the sleeve. This results in a stiffer radial confinement
condition which is intermediate in stiffness between a constant-pressure fluid confinement and
a uniaxial strain condition. The latter is desirable, but is not readily achievable in the

laboratory.

In addition to the radial confinement provided by the sleeve and fluid in the pressure
vessel, axial confinement is required to maintain the required boundary conditions. This is
provided by a hydraulic cylinder attached to the end of the transmitter bar. To react against
the axial force applied by the hydraulic cylinder, a collar attached to the incident bar bears

against a fixed stop.

Connection to the pore space of the installed test specimen is required to evacuate the
air and introduce pore fluid. This is achieved by means of an axial hole in the transmitter bar
originating at the specimen and intersecting a radial hole outside the pressure vessel. The
entire apparatus is assembled on top of a 27-inch deep wide flange steel beam which provides

a stiff surface to align the parts and a convenient working elevation.

—— -




6.2 CONSTRUCTION OF THE TEST EQUIPMENT

The device described above was constructed in ARA’s Materials Testing Laboratory
in South Royalton, Vermont. A 20-ft section of 27-inch deep by 10-inch wide steel I-beam
(W27X84) was drilled for attachment of the various components, shimmed level and fastened
to the floor in the laboratory. Both the pressure vessel and the axial loading cylinder were
fabricated to specification by a hydraulic cylinder vendor. The pressure vessel was retrofitted
with electrical penetrations to pass instrumentation signals through the pressure boundary.
The pressure vessel and axial loading cylinder were carefully aligned and bolted to the top of
the steel beam. Also attached to the top of the beam are the guide tube for the striker bar

and a bracket to react to the axial load in the bar/specimen assembly.

The gas gun incorporated into this apparatus was available at ARA at the time of the
design. While it is much larger than required for this purpose, it was the most economical
choice since no additional hardware purchase was required. In order to isolate any
mechanical noise developed in the gas gun from the instrumented portion of the test
assembly, the gas gun is supported on a separate steel base structure. The support structure
for the gas gun and the steel beam supporting the bar assembly are aligned so that the outlet
of the gas gun slides a short distance into the upstream end of the striker bar guide tube

without any mechanical contact.

Figures 6.3 through 6.7 are photographs of the completed test device. Figure 6.3
shows as much as possible of the entire assembly, which is over 20 ft long. The gas gnn is
out of the picture to the right. On the right end of the picture is the guide tube for the striker
bar. Moving to the left are the incident bar, pressure vessel, transmitter bar, and the axial
loading cylinder. Figure 6.4 presents a different view of the assembly, looking down axis
with guide tube in the foreground. The upstream end of the incident bar is shown in Figure
6.5. Also shown in Figure 6.5 are the downstream end of the striker bar guide tube, the
collar and reaction frame that support the axial load in the incident bar, and a strain gage
station near the upstream end of the incident bar. Figure 6.6 shows the incident bar entering

the pressure vessel that contains the test specimen. The hose and valves are for filling and
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draining the pressure vessel. The downstream end of the pressure vessel is shown in Figure
6.7, with the transmitter bar passing through a seal in the end of the vessel. Also on this end
of the pressure vessel are the electrical penetrations used to transmit signals from the
instrumentation internal to the pressure vessel out to the recording equipment. Attached to
the transmitter bar, near the seal of the pressure vessel, is a tubing fitting with integral valve
which connects to the pore space in the test specimen by means of an axial hole in the end of

the transmitter bar.

6.3 PERFORMANCE TESTS

A series of performance tests were conducted prior to testing a saturated porous
specimen. For these tests the device was set up with a 2-inch diameter by 24-inch long
hardwood specimen in place of the planned saturated porous material. As with the saturated
porous metal, the hardwood specimen has a lower acoustic impedance than the steel incident
bar. The tests were conducted with no fluid and no confining pressure in the pressure vessel.
The axial loading cylinder was pressurized to hold the incident bar, the hardwood specimen,

and the transmitter bar tightly together.

A pair of electrodes with one inch separation along the axis of the bar was installed at
the end of the striker bar guide tube. Using a simple two-step voltage divider circuit, and a
20 MHz oscilloscope, measurements were made of the striker bar velocity immediately
preceding impact with the incident bar. Using this procedure, it was determined that 12 psi
pressure in the gas gun results in an impact velocity of 13 - 14 ft/s. For lik.e materials
impacting, the magnitude of the resulting stress wave, G,, is given by:
o, - P 62"’ d

where: p = mass density of the material
C, = compressive wavespeed of the material

V = impact velocity
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A thin steel bar has mass density and compressional wavespeed of 0.00073 1b s¥in. and
200,000 in./s, respectively. At an impact velocity of 14 ft/s (= 168 in./s), the resulting
computed stress is 12,300 psi. Similar velocities were obtained using 3.5 psi gas gun
pressure with a 5-inch striker bar and 5 psi with a 10-inch striker bar.

Several trial runs were made with 12 psi gas gun pressure, the 20-inch striker and the
hardwood specimen. There were no instruments on the specimen, but two full strain gage
bridges were installed on the incident bar, one 10.5 inches from the end that is impacted by
the striker and the other 2.25 inches from the specimen end, resulting in a separation distance
of 37.25 inches. Both strain gage bridges were monitored with a 20 MHz digital storage
oscilloscope. The data recorded in one typical run are presented in Figure 6.8 where the
origin of the time scale is arbitrary. The measured voltages were converted to stresses using
a calibration factor computed from the nominal values of strain gage factor, excitation
voltage, amplifier gain, elastic modulus, and Poisson’s ratio. The measured stress wave

amplitude of approximately 12,300 psi matches the value computed from the impact velocity.

The duration of the wave should be equal to two wave transit times of the striker bar.
For the 20-inch striker bar, the expected pulse duration is 200 ps. In the measured signals,
the edges of the pulse exhibit some spreading due to dispersion of the wave. However, the
main part of the wave very closely matches the expected value. The pulse velocity along the
incident bar can be measured by comparing the signals from the two strain gage stations in
Figure 6.8. There is more spreading on the leading edge of the pulse at the second strain
gage station than at the first. If the propagation time between the two station is measured on
the steep portion of the leading edge of the waveform, the resulting velocity is 199,000 in/s
which matches the value computed using the (unconfined) elastic modulus 6f steel.
Theoretically, this is the wave propagation velocity in a thin rod that is free to deform
laterally as the wave propagates along its axis. There is also a component of the wave that is
travelling faster as evidenced by the difference in first arrival times at the two stations.
Based on first arrivals, a wavespeed of 213,000 in/s is computed. This is somewhat slower

than the 231,000 in/s speed that is computed for the fully confined (or halfspace) case, but
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apparently indicates some tendency in that direction resulting from outrunning along the

central axis of the bar.
64 DA RAMETRIC CALCULATIONS OF LABORATORY TEST APPARATUS

The propagation of stress waves in a multiphase, cylindrical bar is a complex
mechanical phenomenon. In order to design laboratory experiments which can be effectively
correlated with theoretical predictions, we performed a series of numerical simulations of
various test specimen loading and confinement conditions to ensure that the experiments
would have a maximum chance of success. These calculations were performed using the
finite element code MPDAP, described in Section 2, and the material models discussed in
Section 3. These calculations simulate stress wave propagation in a cylindrical bar of
saturated, porous, elastic material with the primary objective of assessing various aspects of

the planned experiments.

Three sets of parametric calculations were performed as shown in Table 6.1. In the
first set of calculations the porous bar is loaded in uniaxial stress while confined in a fluid at
constant confining pressure. Both the loaded surface at the end of the bar and the sides of
the bar are sealed to prevent pore fluid from moving across these boundaries. In the
experiment this would be accomplished by jacketing the sample between the incident and
transmitter bars within a constant pressure gas. Two types of uniaxial stress calculations were
performed. In the first, the pore fluid was free to displace within the porous skeleton as
governed by a realistic permeability for the porous bar. In the second, the movement of pore
fluid within the skeleton was prevented by using a very low value of permeability. The
results of the uniaxial stress loading calculations showed very little influence of relative pore
fluid motion because, in both the permeable and impermeable cases, excess dynamic pore
pressures within the bar are relieved almost immediately by relief waves propagating into the
bar from the cylindrical surface. Within the elastic regime, this phenomenon was found to be

independent of the confining pressure.
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A second set of calculations was performed in which the porous bar was loaded in
uniaxial strain. Based on previous analyses (Kim, et al., 1988), it was expected that this
loading condition would show a dramatic influence of the relative pore fluid motion. This
was verified by comparing the permeable bar calculation to the companion calculation using
an impermeable bar. Experimentally, however, it is extremely difficult to achieve a true

dynamic uniaxial strain condition in the laboratory.

In order to approximate the uniaxial strain condition as closely as possible, so as to
maximize the influence of relative pore fluid motion, an experimental configuration using a
porous bar confined in a small volume of liquid within a rigid walled pressure vessel was
considered. The idea of this approach is to develop dynamic confinement of the porous bar
in the relatively stiff confining liquid. The thin annulus of confining liquid provides
confinement with minimum shear resistance and high lateral stiffness. The third set of
calculations replicates the experimental conditions using this test configuration. Two
companion calculations were performed. The first accurately modeled the permeability of the
porous bar and the second assumed that the bar was impermeable so as to delineate the

influence of the relative pore water motion.

As described by Blouin, et al. (1990), porous stainless steel was selected for the first
set of ~xperiments because its combination of high skeleton stiffness and high permeability
should accentuate the influence of the relative fluid motion. The published properties of the
materials chosen for the experiment were used in these calculations and are shown in Table
6.2. The permeability properties of the porous bar were obtained from the manufacturer and
the stiffness properties were estimated based on available information. Kerosene was chosen

for the pore fluid because it is non corrosive.

Moculi and wavespeeds were computed frrm closed form solutions for the various
materials and loadings used in the calculations wih the properties in Table 6.2. These values
are listed in Table 6.3. Both Young’s modulus and the constrained modulus for the porous
skeleton are listed, as appropriate, from which wavespeeds corresponding to the uniaxial

stress loading and uniaxial strain loading, respectively, are computed. The wavespeed for the
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uniaxial stress loading of the saturated porous bar is computed using Young's modulus of the
dry skeleton because of the immediate lateral relief of the excess pore pressures. Two
bounding wavespeeds are computed for the uniaxial strain loading of the saturated porous
steel. As described by Kim, et al. (1987), the compressional wavespeed is a function of the
permeability and the loading frequency. For low frequency excitations (or low
permeabilities), a lower bound wavespeed is obtained which is that associated with the
undrained fully coupled modulus computed according to procedures described by Blouin and
Kim (1984). For high frequency excitations (or high permeabilities), an upper bound
wavespeed is obtained according to the analytic procedures developed by Kim, et al. (1987).
The computed wavespeed relationship as a function of frequency for the saturated porous
steel to be used in the experimental validation is shown in Figure 6.1a. This profile was
computed using the program TWAVE which is documented in Kim, et al. (1987). In part b
of Figure 6.1, the damping for the compressional wave is plotted as a function of excitation
frequency. In parts ¢ and d, the wave velocity and damping for waves of the second kind are

plotted as functions of excitation frequency.

A rectangular loading pulse with a peak stress of 1,000 psi was used in all the
calculations listed in Table 6.1. The loading pulse had a duration of 0.1 ms with a rise time
and decay time of 1.0 pus. This loading excitation frequency is on the upper bound of the
wavespeed profile of Figure 6.1. As described earlier, the excitation frequency in the

laboratory experiment can be varied by changing the length of the striker bar.

Schematic section views of the calculational grids and data output locations for each
of the three sets of calculations are shown in Figures 6.9 through 6.11. The uniaxial stress
calculations used an axisymmetric cylindrical grid of 1680 elements. There are 7 equally
spaced elements in the radial direction making up the 1 inch radius porous bar and 240
elements in the axial direction making up the 24 inch total length. Data output locations are
shown at points A through D spaced at 5 inch increments within the bar. The rectangular
loading pulse is applied on the circular face of the bar against an impermeable free surface.
There is an impermeable free boundary surrounding the bar. In the uniaxial stress

calculations reported here, no confining pressure was applied to the lateral surface, simulating
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an unconfined loading. Other uniaxial stress calculations, not reported, involved bars
confined under constant uniform stress conditions. The response was virtually identical to

that reported here for the unconfined bar.

The uniaxial strain calculations, shown schematically in Figure 6.10, consisted of the
same rectangular pressure pulse applied to a 1 inch radius bar confined by an impermeable
roller boundary such that no lateral motion at the boundary is allowed. The element size in

the axial direction is identical to that used in the uniaxial stress calculations.

The fluid confined calculations, shown schematically in Figure 6.11, model a 1 inch
radius saturated porous steel bar confined within a 0.2 inch annulus filled with kerosene. The
kerosene is confined within a rigid impermeable roller boundary which approximates the steel
pressure vessel. The porous steel bar is confined in the kerosene by an impermeable free
boundary. The uniform rectangular pressure loading is applied to both the impermeable
surface of the bar and to the confining fluid. The finite element grid for the bar is identical
to that used in the uniaxial stress calculations, but an addidonal 720 elements are included to
model the confining fluid. Additional output points, subscripted with the letter f, are included
to monitor the response of the confining fluid. Selected comparisons and analysis of the

calculational results are presented in the following subsection.

6.5 ANALYSIS OF PARAMETRIC CALCULATIONS

4

Confinement conditions have a dramatic influence on the dynamic response of the
saturated porous bar. Figure 6.12 compares the total axial stress waveforms at ranges of 5,
10 and 15 inches from the point of load application (locations A, B and C qf Figures 6.9
through 6.11) for the calculations in which relative fluid motion within the porous skeleton
was prevented. The waveforms and propagation velocities of the uniaxial strain and fluid
confined calculations are similar, but in stark contrast to those of the uniaxial stress
calculation. The rectangular waveform of the loading function is well preserved throughout
all ranges in the fluid confined and uniaxial strain calculations. The wave in the uniaxial

stress calculation is rapidly transformed into a sinusoidal waveform with considerable
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broadening of the pulse width. The propagation velocity in the uniaxial strain calculation, as
measured at the half height of the initial rise to peak between the 5 and 15 inch ranges, is
1170 m/s. This is nearly identical to the calculated wavespeed for the uniaxial strain,
saturated lower bound wavespeed of Table 6.3. As noted previously, this is the applicable
wavespeed for the case in which there is no relative fluid motion. The propagation velc.ity
in the uniaxial stress calculation, as measured from the peak stress arrival between the 5 and
15 inch ranges, is 835 m/s which compares to 834 m/s computed for the uniaxial stress,

saturated case in Table 6.3.

The propagation velocity in the fluid confined porous bar is 1210 m/s, which is
slightly faster than that for the uniaxial strain loading. This indicates that the lateral
confinement in the fluid confined bar is somewhat higher than that in the uniaxial strain
calculation. The propagation velocities measured from the three calculations with no relative
fluid motion are listed in Table 6.4. Another indication of the excess confinement in the fluid
confined bar is that the peak axial stresses are higher than those in the uniaxial strain

calculation. The total axial stresses are also greater than the stress applied to the end of the

bar.

Another interesting aspect of the propagation velocity of the uniaxial stress pulse is

that the first arrival tends to be coincident with the first arrival of the uniaxial strain pulse.

This would be expected, since some small fraction of the energy propagates to the observation

point along the center of the bar at the constrained wavespeed, uninfluenced by the cylindrical
unconfined boundary. Since the bar is elastic, relief waves from the unconfined boundary

cannot overtake tne initial waves travelling in the interior of the bar.

The pore pressure profiles, corresponding to the total stress profiles above, are shown
in Figure 6.13. The shape of the profiles is similar to that of the total stresses, however, the
magnitude of the pore pressure in the uniaxial stress case is relatively small because of the
relief provided at the unconfined boundary of the bar. The corresponding particle velocity
and displacement profiles for the calculations with no relative fluid motion are shown in

Figures 6.14 and 6.15. The velocity profiles are very similar in shape to the total stress
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profiles. The displacement profiles show larger displacements in the uniaxial stress case, due
to the lack of confinement. At early times, displacements in the fluid confined case are
greater than those in the uniaxial case because of the faster wavespeed and greater particle
velocities in the former case. However, at later time the fluid confined and uniaxial strain
displacements come into close agreement as the significant negative velocity phase in the

fluid confined case works to reduce the late time displacements.

Comparison plots showing the influence of confinement for the three sets of
calculations in which relative fluid motion is allowed, as governed by the published
permeability of the porous steel bar, are shown in Figures 6.16 through 6.21. The total stress
profiles at the 5, 10 and 15 inch ranges are shown in parts a, b and ¢ of Figure 6.16.
Comparison to the companion calculations with no relative fluid motion (Figure 6.12) shows
that there is very little influence of relative fluid motion in the uniaxial stress case, but a
dramatic influence in the uniaxial strain case. On the basis of these comparisons, we decided
to replicate the uniaxial strain condition as closely as possible in our experiments. The total
stress profile for the fluid confined bar proposed for the laboratory experiments is
significantly altered in shape and reduced in amplitude by the relative fluid motion, though

not as dramatically as are the uniaxial strain profiles.

The relative fluid motion strongly influences the development of early-time peak stress
in the uniaxial strain loading as demonstrated by the comparison of the uniaxial and fluid
confined waveforms in Figure 6.16a. Only 5 inches into the bar, the initially square shape of
the wave has been altered considerably by the relative fluid motion. The uniaxial strain

waveform is rapidly attenuated and broadened compared to that in the fluid confined bar.

The wave propagation velocities measured from the calculations with relative fluid
motion are listed and compared to the velocities without fluid motion in Table 6.4. There is
little change in the unconfined bar velocity because the relief from the cylindrical surface of
the bar tends to minimize pore pressures and pore pressure gradients within the bar. There is
a substantial increase in the velocity in the bar under uniaxial strais, from 1170 to 1375 mv/s.

This is in agreement with the velocity increases predicted by the analytical TWAVE
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calculation of the upper bound wavespeed shown in Figure 6.1a. As explained by Kim, et al.
(1987), the upper bound wavespeed is approached as either frequency or permeability
becomes large. The permeability of the bar should be such that significantly higher
wavespeeds will be measured than indicated by the closed form solution for the undrained
fully coupled loading condition derived by Blouin and Kim (1984). The wavespeed in the
fluid confined bar also shows an increase once relative motion is allowed. However, the
wavespeed of 1290 m/s is 85 m/s slower than the wavespeed under pure uniaxial strain

conditions.

The pore pressure time history comparisons of Figure 6.17 show some trends similar
to those observed in the total stress comparisons, though the initial rapid decay of the pore
pressure pulse during the uniaxial strain loading is less pronounced. The pore pressure in the
uniaxial strain calculation exhibits more pulse broadening and modification than that in the
fluid confined case. Pore pressures developed in the uniaxial stress case are much less than

those in the other two cases because of the relief from the surface of the bar.

A comparison of the skeleton velocity time histories for the three calculations with
relative fluid motion at various locations along the bar is shown in Figure 6.18. The
waveforms, waveform dispersion, and other alterations in shape closely match those for the
stress time histories shown in Figure 6.16. The peak velocities are significantly highcr in the
uniaxial stress loadings because of the lack of confinement. The peak velocity attenuation is
greatest in the uniaxial strain case and least in the uniaxial stress case. The corresponding
displacement time histories are shown in Figure 6.19. These reflect the differences in the
velocity time histories including larger displacement in the uniaxial stress case. There is

more dispersion in the uniaxial strain waveform than in that for the fluid confined case.

In order to help understand the differences in the three calculations with relative fluid
motion, as well as the influence of the relative motion on the overall response, relative motion
time histories at three locations along the axis of the bar are presented in Figures 6.20 and
6.21. Figure 6.20 shows average relative velocity between the pore fluid and the porous

skeleton at the 5, 10 and 15 inch ranges. The relative velocity waveforms for the uniaxial
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strain and fluid confined cases are similar in shape, with the fluid confined case having the
highest amplitude at all ranges. Waveforms for both confined conditions jump rapidly to a
peak, begin a gradual decay, and then drop suddenly into a negative phase. At the close in
ranges peak relative velocities are higher than the corresponding skeleton velocities shown in
Figure 6.18. At further ranges they are about equal to the peak skeleton velocities. Thus,
just behind the wavefront, the pore fluid surges ahead of the skeleton as fluid is squeezed out
of adjoining elements by compression of the skeleton. Then the relative velocity gradually
diminishes during which time the skeleton velocity is gradually increasing (see Figure 6.18).
This is followed by a sharp drop in relative velocity and a large negative phase during which
the pore fluid is moving backward relative to the skeleton. The sharp drop .and negative
phase in the relative fluid motion corresponds with a sharp reduction in skeleton velocity.

The end of the negative phase occurs at about the time the skeleton velocity drops to zero.

The relative fluid velocity in the uniaxial stress loading (Figure 6.20) is much lower in
magnitude and later in time than the corresponding signal in the confined bar calculations.
This is in keeping with previous analysis which showed that relief waves from the sides of
the bar immediately relieve pore pressures in the fluid. The character of the uniaxial stress
waveform is opposite of those in the confined bar calculations in that the relative velocity
rises gradually to a peak and then decays into a negative phase, resulting in a sinusoidally

shaped waveform.

The displacement of the pore fluid relative to the porous skeleton is shown in Figure
6.21 for the three ranges of interest. In the case of the uniaxial strain and fluid confined bar
calculations the pore fluid shows a strong surge ahead of the porous skeleton which peaks
well before the maximum skeleton displacement (see Figure 6.19 for comparison). By the
time of peak skeleton displacement, the pore fluid has moved back toward its original
position in the bar. The backward motion continues into a negative phase during which the
pore fluid is behind its original position in the bar. The negative phase gradually lessens until
the fluid returns to its original position. There is very little relative displacement in the

uniaxial stress case, with only a mild oscillation developing.
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In the remaining illustrations in this section we take a more detailed look at the
influence of relative fluid motion on stress and motion propagation in the uniaxial stress
(Figures 6.22 - 6.25) uniaxial strain (Figures 6.26 - 6.29) and fluid confined loadings (Figures
6.30 - 6.33). Comparison of total stress time histories for the uniaxial stress loadings at the
three ranges of interest with and without relative fluid motion are shown in Figure 6.22.
There is very little difference in the waveforms because so little relative motion develops in
this loading geometry. The influence of lateral position within the bar on the total stress at a
range of 10 in is shown in Figure 6.23, both without and with relative fluid motion. The
waveforms are very similar, but in the case without motion slightly higher peak stresses
develop toward the center of the bar. In the case with fluid motion these differences in peak
stress are reduced substantially. The influence of relative fluid motion on the skeleton
velocities in the uniaxial stress loading is illustrated in Figure 6.23. As was the case with
total stress, there is very little influence of the relative motion for this loading condition,
though the relative fluid motion appears to damp out some of the high frequency oscillations

in the calculation without relative motion.

The most dramatic influence of relative fluid motion is seen in the uniaxial strain
calculations. Figure 6.25 shows comparisons of total stress time-histories at the three ranges
of interest with and without relative fluid motion. The relative fluid motion dramatically
alters the wave shapes by increasing the propagation velocity, reducing the peak stress and
smearing both the rise time and decay. As noted in the previous discussion, the increased
wavespeed is predicted by the closed form solution shown in Figure 6.1 (listed in Table 6.4).
Despite the rapid attenuation of peak stress due to the relative fluid motion, there appears to

be very little reduction in total impulse transmitted by the stress wave. Thus, the relative

fluid motion tends to spatially redistribute the energy in the wave, with very little absorption

of energy due to the relative fluid motion.
The total stress waveforms for the calculation with relative fluid motion (Figure 6.25)

are resolved into components of effective axial stress and pore pressure in Figure 6.26. At all

ranges there is a rapid rise in pore pressure commensurate with a slower rise in effective
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stress. This is followed by a levelling off in pore pressure, then a sharp decline. The sharp
decline in pore pressure is accompanied by only a modest decline in effective stress with the

total stress during the later portion of the waveform composed entirely of effective stress.

The waveform comparisons for axial skeleton velocity shown in Figure 6.27 are very
similar to those for total stress shown in Figure 6.25. The integration of the velocity
waveforms in Figure 6.28 shows that the late time displacements at all ranges are nearly
identical between the two cases confirming the conclusion that little energy dissipation occurs
in the case with pore fluid flow and that the changes in waveform are a result of the relative
motion itself rather than due to energy dissipation mechanisms. While the late time
displacements are about equal, the rise v peak displacement is much more rapid in the case
of no relative fluid motion because of the large amount of dispersion in the calculations with

fluid motion.

The motion of the pore fluid relative to the porous skeleton is shown in Figure 6.29 at
each of the three ranges of interest. The absolute displacement of the pore fluid is much
greater than that of the skeleton at early time due to the surge of pore fluid ahead of the
skeleton. Eventually, the skeleton overtakes and passes the pore fluid, followed by a very

gradual return of the pore fluid to its original position in the skeleton at very late times.

The fluid confined pressure bar calculation shows many of the same characteristics as
the uniaxial strain calculation, but with less relative fluid motion and dispersion in the case
where relative fluid motion is allowed. Comparison of the fluid confined total stresses with
and without relative motion is shown in Figure 6.30. The case with relative motion has a
faster wavespeed, more peak attenuation and more dispersion, all trends observed in the
uniaxial strain comparisons. Figure 6.31 demonstrates that the fluid confined loading is very
uniform over the entire width of the bar, both with and without relative motion. Figure 6.32
shows that the uniaxial velocity time-histories are very similar to the total stresses. Finally,
the fluid displacement and skeleton displacement time histories for the case with relative fluid
motion are compared in Figure 6.33. The response is again similar to that for the uniaxial

strain case in that the fluid initially surges ahead of the skeleton, the skeleton overtakes and
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passes the fluid, then finally the two return to their initial state of relative equilibrium.
6.6 CONCLUSIONS FROM PARAMETRIC CALCULATIONS

The set of calculations discussed in this section were of value in planning and
designing the dynamic pressure bar experiments. Principal conclusions from the analysis of

these calculations include the following:

1. Pore fluid within an unconfined bar or within a bar confined at a uniform
pressure (such as by confining the bar within a pressurized gas) has very little
influence on the dynamic response of the bar. Because of the immediate relief
offered by waves propagating inward from the sides of the bar, there is almost
no buildup of pore fluid pressure and only very minor relative fluid motion
developed. Neither configuration was considered satisfactory for the

experimental portion of this study.

2. The dynamic uniaxial strain loading condition, in which the bar is perfectly
restrained to zero expansion or contraction in the lateral direction, shows
dramatic influence of relative pore fluid motion on both the wavespeed and
shape of the propagating wave. Allowing pore fluid motion, as governed by
the stipulated porosity and permeability of the bar, results in increased
wavespeed, rapid attenuation of peak velocities and stresses, and rapid
dispersion in the waveform. These changes occur in conjunction with the
relative fluid motion, but are not a result of the minor amount of energy
dissipation due to fluid friction. During the dynamic loading with pore fluid
motion, the pore fluid initially surges well ahead of the porous skeleton,
followed by the skeleton overtaking and passing the pore fluid and finally the
fluid and skeleton returning to their initial relative positions very late in the
loading. Though the uniaxial strain loading is an ideal one for studying the
influence of relative pore fluid motion, in practice it is nearly impossible to

satisfactorily confine a pressure bar under such conditions.
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Confinement of the pressure bar within a thin annulus of liquid confined within
a steel vessel around the bar appears to provide a satisfactory means of
replicating all of the characteristics of the uniaxial strain loading. Even though
the bar is not perfectly confined, confinement is sufficient to generate all of the
phecncmena observed above in the uniaxial strain case. However, these
phenomena are somewhat less prominent in the case of the fluid confined bar,

though they should be easily detected and measured in our test apparatus.
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Table 6.1.

Confined Condition

Summary of parametric calculations.

Permeable Porous Bar

Impermeable Porous Bar

Uniaxial Stress - Constant

Small Annulus

6-20

Confining Pressure WB-U-SR WB-U-SN
Uniaxial Strain WB-C-SR WB-C-SN
Liquid Confinement,

WB-F-SN

e




Table 6.2. Properties of porous skeleton and pore fluid used in parametric

calculations.
| Porous skeleton (316 L. Sainless Seek SIKAR100) |
Skeleton:
Porosity: n = 0465
Permeability: k = 0.01542 in/sec (kerosene)
Drained Bulk Modulus: K, = 0.26 x 10°psi
Poisson’s Ratio: v =02
Solid Grain:
Specific Gravity: G =78
Bulk Modulus: K, = 16.67 x 10° psi
Pore Fluid (Kerosene) |
Specific Gravity: G, =081
Bulk Modulus: K, = 0.188 x 16° psi |
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Table 6.4. Wavespeeds in saturated, porous bar determined from
parametric calculations.

RELATIVE RELATIVE

FLUID MOTION | FLUID MOTION

CALCULATION SET PREVENTED ALLOWED
(m/s) |
Uniaxial Stress (constant confining pressure) 835 845
Uniaxial Strain 1170 1375
| Liquid Confinement (small annulus) 1210 1290 |
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Figure 6.la. Speed and damping of the wave of the first kind as a function of
excitation frequency computed with the program TWAVE using the
initial estimated properties of the porous stainless steel bar,
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Figure 6.1b. Speed and damping of the wave of the second kind as a function of
excitation frequency computed with the program TWAVE using the
initial estimated properties of the porous stainless steel bar.
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Drawing of the wave propagation bar showing dimensions of the iwmportant components.

Figure 6.2,




Figure 6.3.

Photograph of the wave propagation bar from the side.
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Figure 6.4.

Photograph of the wave propagation bar looking down axis.
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Photograph of the upstream end of tne incident bar showing
the axial load reaction frame.
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Figure 6.6.

Sk .
DR i,

Photograph of the incident bar entering the upstream end
oI the pressure vessel.
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Figure 6.7.

Photograph of the downstrean end of the pressure vessel
show’r - the electrical penetrations and the connection

to the specimen pore space.
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Figure 6.8. Stress waves measured in two different locations on the
incident bar of the wave propagation device due to impact
of a 20~inch striker bar.
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Figure 6.9. Schematic section view of uniaxial stress calculation.




Uniaxial Strain Model
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Figure 6.10. Schematic section view of uniaxial strain calculation.
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Fluid Confined Model
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Figure 6.11. Schematic section view of fluid confined calculation.
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Figure 6.26b. Composite stress time-histories for uniaxial loading with fluid motion at Range
B (10 in.).
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SECTION 7
WAVE PROPAGATION BAR TESTS AND NUMERICAL SIMULATIONS

This section presents the results of a series of tests that was performed using the test
apparatus described in Section 6 to investigate wave propagation through a fluid-saturated porous
medium. Tests were performed on a specimen of sintered stainless steel under both dry and
fluid-saturated conditions. This section describes the porous stainless steel specimen, including
mechanical and fluid flow properties, and presents the results of the wave propagation tests. Also
presented in this section are the results ¢f a numerical simulation, performed with the finite

element program, MPDAP, of one wave propagation bar test on a saturated specimen.

7.1 WAVE PROPAGATION BAR TEST DESCRIPTION

The Wave Propagation Bar (WPB) apparatus used to conduct the laboratory experiments
is described in Section 6.1, and depicted in Figures 6.2 through 6.7. The subsection describes

the sintered stainless steel specimen and the procedures and instrumentation used to conduct the

tests.
7.1.1 Porous Stainiess Steel Specimen

All of the WPB tests reported in this section were performed on a specimen of porous
stainless steel. This material was selected because it has several advantages over a geologic
material for studies of the fundamental mechanics of wave propagation. The metal skeleton is
more nearly linear elastic than any sand or porous rock. It is very important that the properties
of the constituent materials be well characterized so that the inherent complexity of the wave
mechanics is not furraer confused by unknown or nonlinear skeleton response. Porous metal is
formed by processing granular material at high temperature and pressure to form a solid with
void spaces similar to a porous rock. Since this is a controlled process, the properties of the

resulting material can be specified within some range. This, along with the fact that the skeleton
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is metal, makes it possible to obtain a material that has both relatively high permeability and high
skeleton stiffness, a combination that was expected to accentuate the phenomenology of interest.
Blouin, et.al. (1990) listed fifteen grades of porous stainless steel that are commercially available,
covering a broad range of porosity and permeability. Since the elastic modulus is apparently not
of interest in the normal commercial uses of the material, no data on compressibility properties
were available at the time of the initial design. The original equipment design and calculations
of specimen response were based on estimates of the mechanical properties of the various grades

of porous stainless steel, as described in Section 6.

Two bars of porous stainless steel were fabricated for use as test specimens by Newmet
Krebsogé of Terryville, CT. The nominal dimensions of the bars were 2 inches diameter and 24
inches long. One bar was cut into shorter lengths for mechanical property and fluid flow testing,
and the other was used at almost full length for WPB tests. In order to avoid closing the pore
spaces on the cut as would happen with conventional cutting techniques, the bars were cut using

a modern machining technique known as wire electric discharge machining.

The bars were specified to be Sika R 100. However, since the material is not normally
manufactured in such large sizes, some variation from the normal R 100 specifications was
expected. The nominal porosity of the Sika R 100 based on the specified density is 0.465, and
it was estimated to have an elastic modulus of 4.7x10” psi and Poisson’s ratio of 0.2. In order
to determine the actual properties of the test specimens, an unconfined compression test was
performed on a cylindrical specimen of the porous stainless steel (approx. 2 in. diameter by 4 in.
long). Plots of the resulting axial and radial strain against axial stress are presented in Figure
7.1. From the data in Figure 7.1 the elastic modulus and Poisson’s ratio were found to be 3.6
x 10° psi and 0.25, respectively. Thus, the stiffness of the porous bars as fabricated was nearly
and order of magnitude greater than originally estimated. Confirmation of the unconfined
compression test result is provided by data acquired while preparing the full length specimen for
wave propagation testing. The strain gage circuits on the porous specimen and axial load
measurement gages on the incident bar were monitored during initial static axial preloading of
the specimen. The elastic modulus computed from those measurements was found to be

essentially identical to the value determined from the unconfined compression test on the
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specimen cut from the other bar of porous material. The physical and mechanical properties of

the porous specimen are summarized in Table 7.1.

The results of a series of permeability tests on a specimen of the porous stainless steel
are presented in Figure 7.2. A straight line was fit using the complete data set, as depicted in
the figure. The intercept and slope of the line were used to define flow coefficients a and b,
respectively, as defined in Section 4. The permeability is lower by approximately a factor of five
than the value given by the manufacturer, reported by Blouin, et al., (1990), and used in the

parametric calculations reported in Section 6.2.

The expected wavespeed and damping for compressional waves of the first and second
kinds in kerosene saturated porous stainless steel with the measured material properties were
computed as a function of the frequency of the excitation pulse with the computer program
TWAVE, as described in Section 6. The resuits of those calculations are presented graphically
in Figure 7.3. Table 7.2 presents the wavespeeds of the saturated material and its various
constituents, computed from the properties listed in Table 7.1, using the procedures described in
Section 6.6. Comparison of the values in Table 7.2 with the corresponding quantities in Table
6.3 reveals that the wavespeeds computed based on the initial estimates of specimen stiffness are

significantly in error.

The transition in the wave of the first kind occurs in the range of approximately 10,000
to 100,000 rad/s. Thus, the range of frequencies possible with the wave propagation apparatus
as fabricated (15,700 to 62,800 rad/s) falls within the transition region for the specimen material.

7.1.2 Test Procedures
The specimen was 21.3 inches long, and its cylindrical surface was rough due to the
fabrication process, having a diameter of 1.90 £ 0.02 inches. Prior to installation of the specimen

in thc test apparatus, two foil strain gages, one each in the axial and circumferential directions,

were bonded to the bar at specially prepared locations on its surface at distances of 5, 10, and
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15 inches from the upstream end of the specimen and a pore pressure gage was also placed on
the surface of the specimen at the 5-inch station, as described in Section 7.1.3. The specimen
was then placed inside a heat-shrinkable polyolefin tube and installed between the incident bar
and transmitter bar as illustrated in Figure 6.2. The tubing was shrunk to a tight fit around the
specimen. The tubing also extended approximately 1 inch onto the bars on either end and was
sealed to the incident and transmitter bars with epoxy adhesive and wire clamps. At this point,
the pressure vessel was closed, and all of the instrumentation was connected and checked. Wave
propagation measurements were made on the dry specimen with no confining pressure. During
these tests, approximately 350 psi average axial stress was applied :0 the specimen to tightly seat

the various components of the WPB assembly.

Upon completion of the dry tests, the pressure vessel was evacuated and then filled with
de-aired kerosene. Access to the pore space of the specimen was by means of an axial hole
drilled in the transmitter bar and an intersecting radial hole outside the pressure vessel. In
preparation for saturation, the pore space was evacuated. It was then filled with de-aired
kerosene. A quantity of kerosene slightly larger than the void space of the specimen was
introduced, resulting in a layer of fluid between the specimen and the polyolefin membrane. The
confining fluid in the pressure vessel surrounding the specimen was then pressurized to 1000 psi.
Axial load equivalent to 1000 psi average axial stress was also applied to the specimen. Because
of the excess fluid surrounding the specimen, this also had the effect of pressurizing the pore
fluid. This tends to force any remaining pore air into solution. The pore fluid valve was then
opened momentarily, allowing the excess pore fiuid to drain. The quantity of fluid drained was
manually controlled to obtain the desired initial pore pressure of 500 psi. These initial stress
conditions of 1000 psi confining pressure and axial stress, and
500 psi pore pressure were maintained throughout the wave propagation tests on saturated

specimens.




7.1.3 Instrumentation

During each test, a high-speed digital data acquisition system was used to record eight
channels of instrumentation, consisting of strain gages on the porous stainless steel specimen,
pore pressure at the surface of the specimen, and a strain gage bridge on the incident bar to
measure the loading applied to the test specimen. The locations of the instruments on the porous

specimen and on the incident bar are shown in Figure 7.4.

Standard foil strain gages were bonded to the stainless steel were used to monitor skeleton
deformation. As manufactured, the surface of the porous stainless steel is much too rough to be
strain gaged. However, experimentation in the laboratory showed that by grinding the surface,
it is readily possible to obtain a surface that can be strain gaged. The grinding not only smooths
the roughness but also smears some material into the void spaces, creating a surface with an
appropriate texture for strain gaging. Axial and radial strains were measured at there stations.
The three stations, designated A, B, and C were located at distances of S, 10, and 15 inches,

respectively, from the incident end of the test specimen.

One pore pressure measurement was made at the surface of the porous bar at Station A,
located S inches from the upstream end of the specimen. A special instrumentation package was
devised for that purpose. An ENTRAN Model EPL6-125-5000X pressure transducer (0.125 inch
diameter and 0.07 inch thick) was installed under a specially designed aluminum shroud which
distributed the confining pressure load around the pressure transducer so that it was exposed only

to pore pressure.

The load applied to the test specimen was measured with a full strain.gage bridge on the
incident bar external to the pressure vessel. The foil strain gages were bonded to the
incident bar 37.5 inches upstream from the contact with the test specimen. They were arranged

and wired in the conventional manner for a column load cell.

All channels were digitized at a sampling interval of 1 ps. In each test, the start time for

data acquisition was initiated when the striker bar made contact with a switch in advance of
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impacting the incident bar. Due to variations in switch positioning and.bar velocity, this is not
a reliable zero-time indication. In all of the test data plots, zero time has been set to
approximately the time the stress wave arrived at the interface between the incident bar and the
test specimen. This was done by choosing a point 55 ps before arrival of the wave at strain gage
Staion A. It is estimated that the difference between the zero time selected in this manner and
the actual arrival of the stress wave is less than S ps. All of the traces for each test are plotted

with respect to the same time reference.

7.2 WAVE PROPAGATION BAR TEST RESULTS

This subsection presents the results of the WPB tests on a porous stainless steel specimen
described in Section 7.1. Table 7.3 presents a summary of all the tests performed. The results
of tests on the porous specimen in the dry condition are presented in Section 7.2.1, and Section

7.2.2 presents the tests performed with the specimen saturated.
7.2.1 Wave Propagation Tests on Dry Specimen

As indicated in Table 7.3, tests on dry porous stainless steel specimens were performed
with three different length striker bars, 5-, 10-, and 20-inch. Three nominally identical tests were
performed with each striker bar. There were no significant differences between tests with a given
bar type, and a typical test of each type was selected for further analysis. Figures 7.5 through
7.7 present the results of three typical tests on dry specimens, one with each striker bar length.
Each of Figures 7.5 through 7.7 has three parts, designated a, b, and c. Part a of each figure
presents the input force time history measured on incident bar for that test. Parts b and ¢ of
Figures 7.5 through 7.7 present axial and radial strains, respectively, on the test specimen. Each
of the strain plots shows three strain histories, corresponding to the three strain measurement

stations as defined above and illustrated in Figure 7.4.

By examining parts a of Figures 7.5 through 7.7, it can be seen that, as expected,

durations of the applied stress pulses are proportional to their respective striker bar lengths. The
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5-, 10-, and 20-inch striker bars produced pulse durations, as measured from the beginning of the
rise to the onset of unloading, are 50, 100, and 200 ps, respectively. All three tests exhibit
wavespeeds of about 90,000 in./s (2300 m/s) when determined from first arrivals and
approximately 80,000 in./s (2000 m/s) when measured from the mid-points of the initial rise
portions of the stress wave signals. The wavespeed determined from first arrivals is in good
agreement with the rod (uniaxial stress) wavespeed listed in Table 7.2. This result differs from
the numerical simulation results presented in Section 6, in which the wavespeed at mid-height
of the first rise to peak was in reasonable agreement with the computed uniaxial strain
wavespeed. Recall that the actual elastic modulus of the porous stainless steel is almost a factor
of eight larger than the elastic modulus used in the calculations presented in Section 6. The
difference in wavespeeds is an indication that the fluid confinement is not as effective in
maintaining a uniaxial strain condition with the real material as it was computed to be with the

erroneously soft porous skeleton.

The reflections from the downstream end of the specimen are evident in the strain data
presented in Figures 7.5 through 7.7 (parts b and c). The reflection arrives first at Station C, at
approximately 350 us. It is followed by arrivals at Stations B and A at times of approximately

400 and 450 ps, respectively.
7.2.2 Wave Propagation Tests on Saturated Specimen

Wave propagation bar tests were performed on the same porous stainless steel specimen
fully saturated with kerosene, as described in Section 7.1. Those tests are summarized in Table
7.3. In addition to tests with the 5-, 10-, and 20-inch striker bars, a test was performed on the
saturated specimen with a 1/8-inch thick rubber pad attached to the front of the 20-inch striker
bar to produce an input stress pulse with a longer rise time to peak. Figures 7.8 through 7.11
present data plots for one representative test with each type of excitation. Figures 7.8 through
7.11 correspond respectively to excitation by 5-inch striker, 10-inch striker, 20-inch striker, and
20-inch striker with rubber pad. As with the dry specimens, each figure has parts a, b, and ¢
showing the input force pulse, axial strains, and circumferential strains, respectively. In addition,

each figure for the saturated tests has a part d which presents the pore pressure time history at
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Station A, 5 inches from the interface with the incident bar.

The wavespeed in the saturated porous bar, as determined from the first arrivals is 90,000
in./s (2300 m/s). When determined by the mid-points of the initial rise portions of the waves at
the first and last strain gage stations, the wavespeed is 80,000 in./s (2000 m/s). These values are
the same as the corresponding measurements for the dry porous bar. This is consistent with the
calculated wavespeeds presented in Table 7.2, which show no significant difference in computed
wavespeeds between the dry and saturated cases. This lack of sensitivity of wavespeed to the

degree of saturation results from the dominant stiffness of the material skeleton.

One measure of the consistency between the experimental results and the analytical
understanding of the physics of the problem is thc amount of the load carried by the water
relative to the porous skeleton. Blouin and Kim (1984) present the following expression for the

ratio, f3,, of effective stress to pore pressure under uniaxial strain loading given by:

2 2
] K, M, + K K -MK K - Kg K, K, (1-1)
K, Ks (Kx -K)
where: K, = mixture modulus = (K, Kp /[K; + n(K, - Kp]

K, Ki K = bulk modulus of grains, fluid, skeleton
M, = constrained modulus of skeleton = 3K,(1-v)/(1+V)
v = Poisson’s ratio of skeleton

n = porosity of skeleton

Using the properties for the porous stainless steel skeleton, solid grains, and kerosene given in
Table 7.1, the resulting value of B, is 9.75. For comparison, consider the test data from a
saturated specimen impacted by a 10-inch striker bar which are shown in Figures 7.9b-7.9d. The
peak in the pore pressure history occurs at approximately 120 ps. The initial peaks in both
skeleton strains at Station A occur at the same time. Using the axial and circumferential strains
at 120 ps and the elastic constants given in Table 7.1, the axial stress in the stainless steel

skeleton is found to be approximately 3500 psi. At the same time the pore pressure was
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approximately 345 psi. The ratio of effective stress in the skeleton as derived from strain
measurements to the measured dynamic pore pressure at the same time is 10.1. This quantity
is comparable, although not exactly the same, as the B, derived from theory. The ratio, B, is
derived assuming a uniaxial strain condition. While this is known not to be the case in the
experiment, the close match between measured and calculated values is a clear indication that
the porous skeleton was fully saturated and that the partitioning of load between skeleton and

pore fluid was approximately as predicted by theory.

7.2.3 Comparison between Dry and Saturated Test Results

Figures 7.12 through 7.14 present comparisons of strain records from dry and saturated
tests for striker bar lengths of 5, 10, and 20 inches, respectively. Parts a of Figures 7.12 through
7.14 show axial strains and parts b present circumferential strains. The traces have been shifted,
as necessary so that the initial arrivals occur at the same time. The records from the dry tests
in Figures 7.13 and 7.14 were also scaled in amplitude by the ratios of the loading amplitudes
so that they are approximately the same size on the comparison plots. The loading amplitudes
for the dry and saturated tests were within 2% of each other for the records shown in Figure
7.12, and no scaling was done. In all three tests, the arrivals of the waves at Stations B and C
occurred at essentially the same times in both dry and saturated specimens. This shows, as noted
in the preceding subsections, that the wavespeeds in the saturated tests were essentially identical

to those in the dry tests.

In the tests with the 5-inch striker bar, shown in Figure 7.12, the wave propagating
through the dry specimen exhibited more dispersion than saturated specimen, as evidenced by the
longer durations of the strain pulses. This trend does not appear to carry over to the tests with

the longer striker bars shown in Figures 7.13 and 7.14.
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73 NUMERICAL SIMULATION OF LABORATORY EXPERIMENT

To improve our understanding of the laboratory results and to validate our numerical
models, a detailed finite element calculation was performed to simulate wave propagation test
number D31K1. The calculation was completed using the MPDAP code and was similar to the
parametric calculations discussed in Section 6. The finite element mesh geometry and boundary
conditions were the same as used in the parametric calculations of the fluid confined bar as
depicted in Figure 6.11. For this simulation, however, the material properties, 1nitial stress
conditions, and input loading wave were carefully selected to model the actual test conditions as

closely as possible.

The porous, stainless steel test specimen and the kerosene fluid were modeled as linear
elastic materials. This is an appropriate assumption for the stress wave amplitudes induced in
the tests. Properties for the test specimen and pore fluid are summarized in Table 7.1. Elastic
properties for the porous steel skeleton were obtained from the unconfirmed compression test on
a sample of the specimen material, as described in Section 7.1.1 and shown in Figure 7.1. The
specific gravities and bulk moduli for the solid steel grains and the kerosene were obtained from
standard references on material properties. Note that kerosene is used for both the pore fluid
inside the porous skeleton and the confining fluid. The permeability parameters for the porous-
steel test specimen are also given in Table 7.1. They were derived from the test data presented
in Figure 7.2. Since the porosity of the bar is practically unchanged during passage of the stress

wave, the permeability parameters were considered as constant.

The parametric calculations described in Section 6.4 were started with a zero stress
condition in the specimen. In test number D31K1, an axial stress of 1000 psi was applied to the
test specimen to ensure full contact with the incident and transmitter bars. Furthermore, a
500 psi initial pore pressure was applied to the specimen to maintain saturation necessary for
accurate pore pressure measurements. Both the initial axial stress of 1000 psi and pore pressure
of 500 psi were applied at the start of the numerical simulation to maintain a complete simulation
of the test. However, since only linear elastic material models were used, modeling the initial

stress condition should have no effect on the simulation results.

7-10

hd

o

Al gl




To permit a direct comparison between the simulation and test results, it was necessary
to match, as closely as possible, the loading conditions in the test. First, the loading was
modeled by specifying uniform velocity time history across the end of thie bar. The velocity
boundary ensures that the end of the specimen will displace uniformly in the simulation. This
is a more accurate model of the actual loading condition than the pressure loading used in the
parametric calculations. Further, the input loading was applied only to the end of the specimen

and not to the confining fluid as was done in the parametric calculations reported in Section 6.4.

To develop an appropriate boundary velocity-time history to simulate the stress wave
loading, the input stress pulse was recorded using a load cell on the incident bar. From the
recorded stress wave, seven time points were used directly in the load history. for the simulation.
To determine the appropriate velocity magnitude at each point, a trial and error procedure was
used to determine a correlation factor between the recorded axial load and the corresponding
particle velocity to be used in the simulation. In this manner, a seven-point, velocity time history
was developed that accurately simulated the input pulse in test number D31K1. This loading

condition is plotted in Figure 7.15.

The calculated axial strains in the test specimen are overlaid with the actual test data from
D31K1 in Figure 7.16a, b, and c for ranges of 5 inch, 10 inch, and 15 inch, respectively.
Consideiing the complexity of the problem, the overall agreement between the calculation and
the data is excellent. The wavespeeds in the simulation are slightly higher than those measured
in the experiments. The wavespeed calculated based on initial arrival is 95,000 in./s (2410 m/s),
as compared with 90,000 in./s (2290 m/s) measured in the experiments. Similarly, at the mid-
points of the initial rise to peak in the strain signals, the calculation shows a speed of 92,000 in./s
(2340 m/s) while the rise to peak in the tests was slower, exhibiting a wavespeed at the mid-point
of approximately 80,000 in./s (2030 m/s). The amplitudes of both the initial peak and the overall

peak are in quite good agreement between calculation and experiment.

Figures 7.17a, b, and c present comparisons of circumferential strain records at Stations

A, B, and C, respectively. The numerical simulation under-predicted the circumferential strain
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at every station relative to the test measurements. This is an indication that the confinement

system was somewhat more effective than the calculatior - would suggest.

In Figures 7.16a and 7.16b is evidence of what may be the wave of the second kind. The
simulation clearly shows an initial peak in axial strain followed by a second significant rise. At
Station A (Figure 7.16a), the second rise begins at 105 ps, which is 10 ys after the initial peak.
At Station B (Figure 7.16b), the second rise begins at 205 ps, which is about 55 us after the
initial peak. This secondary strain pulse is propagating at a velocity of 50,000 in./s (4170 ft/s
= 1270 m/s), which agrees very well with the computed velocity of the wave of the second kind
(4100 ft/s) at the high frequency end of Figure 7.3b. At the time where this wave pulse would
be expected at Station C (approx. 350 pus), the reflection from the far end of the bar dominates
the waveform, making it impossible to detect the slow moving forward propagating pulse. The
same phenomenon is present in the lab test data, although som:what less pronounced. The
arrival of the secondary wave is easier to observe in the circumferential strain data shown in
Figures 7.17a and 7.17b than in the axial strain records. In the test data, the second wave is
propagating at about 40,600 in/s (3380 ft/s = 1030 m/s). As with the wave of the first kind, this

is somewhat lower than the speed predicted by analysis for the case where radial strains are fully

constrained.

If the secondary wave discussed in the previous paragraph is in fact the wave of the
second kind, which is associated with a fluid saturated porous material, then it should not appear
in the tests performed on the dry bar. Attention is referred back to Figures 7.14a and 7.14b. At
Station A, the saturated waveforms for both axial and radial strains clearly exhibit a secondary
pulse that is different than those for the dry material. At Station B, which is 5 inches further
downstream, the secondary wave is significantly attenuated, but still appears in the records from

the saturated specimen and not those for the dry condition.

Figure 7.18 compares the measured and calculated dynamic pore pressures. (In this
figure, zero dynamic pore pressure corresponds to the initial pore pressure of 500 psi). In this
case, the calculated pore pressures are about one half of the measured values. Only one pore

pressure measurement location was available in this test, so only the comparison in Figure 7.18
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is possible. The computed pore pressure responses at 5, 10, and 15 inch ranges are compared
in Figure 7.19. At the times of the secondary strain pulses discussed in the previous two
paragraphs, simulation results exhibit a sharp drop in pore pressure at both locations. In the
measured strain records shown in Figure 7.14, the arrival of the secondary wave occurs at
approximately 130 ps. Consistent with the analysis results, the one measured pore pressure
record also has a major negative-going excursion at that time. However, in the simulations, the
first negative-going pulse in the pore pressure corresponds with the arrival of the secondary wave
in the strain records. In contrast, in the laboratory test records, the pore pressure contains a prior

negative-going pulse.

Figures 7.20a through 7.20c present time histories of particle velocity of the porous
skeleton and of velocity of the pore fluid relative to the skeleton at Stations A, B, and C,
respectively. Particularly at Stations A and B, the skeleton velocities exhibit secondary pulses
of the same form as the strain records. In the apparent relative fluid velocity records, both the
arrival of the initial wave and the secondary wave, there are short duration (less than 50 us)
negative pulses of relative fluid velocity, i.e. the fluid momentarily lags behind the skeleton.

Unfortunately, there are no analogous laboratory measurements for comparison.

Figures 7.21 and 7.22 compare the computed axial strains and dynamic pore pressures at
various locations within the bar at a range of 10 inches. Since measurements can only be
acquired at the surface of the specimen in the test, the finite element simulation can be used to
study variations in the stress wave with distance from the surface of the bar. From Figures 7.21
and 7.22, it appears that a very uniform stress condition is propagating through the bar in this

simulation.

7.4 DISCUSSION OF WAVE PROPAGATION BAR TESTS
The research effort described in this section involves both laboratory experiments and

numerical simulations of wave propagation through saturated porous media. A laboratory test

apparatus was designed and assembled and a series of tests was performed on a specimen of
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porous (sintered) stainless steel. The tests were conducted with the specimen both dry and fully
saturated with kerosene. Instrumentation on the specimen was used to measure axial and
circumferential strains at three stations and pore fluid pressure at one station. Mechanical waves
were induced in the test specimen by impacting a hardened steel bar that was in contact with the
specimen by second hardened steel bar called the striker bar. The duration of the stress puise
was determined by the length of the striker bar, and strikers of three different lengths were used
in the tests to produce stress pulses of nominally 50, 100, and 200 ps duration.

The numerical simulations were performed with MPDAP, a special purpose finite element
computer program specifically designed for the analysis of fully or partially saturated porous
materials. A simulation was performed with the test apparatus and input boundary conditions
carefully defined to match, as closely as possible, one of the laboratory experiments.
Comparisons were made between the measured and computed response, and between measured

response of the porous stainless steel specimen in the dry and fully saturated conditions.

In a saturated porous material, the stress resulting from an imposed load is partitioned
between the porous skeleton and the pore fluid. In the test apparatus, the stresses carried in by
the solid and fluid phases were measured and the distribution of stresses between the two was
found to be consistent with theoretical predictions. Unfortunately, because of the very high
stiffness of the porous stainless steel specimen with respect to the pore fluid, a.lpproximately 90%
of the load was carried by the steel skeleton. Thus, while the saturated specimen did behave as
expected, its response was, in many ways, not very different from that of a dry specimen.
However, using the results of the numerical simulations for guidance, we were able to find
evidence in the both the strain and pore pressure records from the laboratory experiments of the

wave of the second kind that has been theoretically predicted to exist in saturated porous

materials.

We believe that our ability to resolve the phenomena of interest in the test data was
limited because of the very high stiffness of the porous skeleton that we inadvertently chose for
the experiment. In future work it is recommended that softer (less stiff) skeleton materials be

used in order tu accentuate the effect of the pore water on the overall response of the saturated
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porous material. Further, it would be very desirable to devise an instrumentation scheme that

would measure the velocity of the pore fluid relative to the porous skeleton.
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Table 7.1.

Porous Stainless Steel

Properties of test specimen used in numerical
simulation of laboratory test.

n Model: linear elastic
| porosity n 0.42

Poisson’s ratio v C.25
Young’s modulus E 3.6 x 105 psi
bulk modulus K 2.4 x 10° psi
shear modulus G 1.44 x 10° psi
constrained modulus M 4.32 x 10° psi

Solid Stainless Steel Grains
Model: linear elastic
specific gravity G, 7.8
bulk modulus K, 16.67 x 10° psi

Kerosene Pore Fluid and Confining Fluid
Model: linear elastic
specific gravity G, 0.81
bulk modulus K, 0.188 x 10° psi
viscosity M 2.65 x 107 1b-s/in? t

Permeability of Skeleton 1
Permeability coefficient a 7.8 Ib-s/in* I
Permeability coefficient b 2.3 Ib-s%in’ I
Permeability coefficient B=p,d |34x10%in’
Permeability coefficient 4.1 x 107 in
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Figure 7.3a. Speed and damping of the wave of the first kind as a function
of excitation frequency computed with the program TWAVE using
' ) the measured properties of the porous stainless steel bar.
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Figure 7.3b. Speed and damping of the wave of the second kind as a function
of excitation frequency computed with the program TWAVE using
the measured properties of the porous stainless steel bar.
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