=
0=
N=
N=
N=
ﬁt%
()
<

[]

NASA Contractor Report 191532
ICASE Report No. 93-65

ICASE E
ot

DISTRIBUTED COMPUTING FEASIBILITY IN A
NON-DEDICATED HOMOGENEOUS DISTRIBUTED
SYSTEM

Scott T. Leutenegger
Xian-He Sun

NASA Contract No. NAST-19480
September 1993

Institute for Comprter Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

S

ippxov o 1 y.whc xel "’4" 93_

AR A T

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

’/

93 11 15 072

Foyuss

Distributed Computing Feasibility

in a Acceien For

—
CRA&S

&l
3

Non-Dedicated Homogeneous Distributed System S_IT'S
i

. . . Just
Scott T. Leutenegger Xian-He Sun -

Institute for Computer Applications in Science and Engineering D1

NASA Langley Research Center —— .

Hampton, VA 23681-0001

Abstract W‘ ’

Ur i,

I/'\i

The low cost and availability of clusters of workstations have lead researchers to re-explore dis-

tributed computing using independent workstations. This approach may provide better cost/performance

than tightly coupled multiprocessors. In practice. this approach often utilizes wasted cycles to run
parallel jobs. In this paper we address the feasibility of such a non-dedicated parallel process-
ing environment assuming workstation processes have preemptive priority over parallel tasks. We
develop an analytical model to predirt paralle] job response times. Our model provides insight
into how significantly workstation owner interference degrades parallel program performance. A
new term task ratio which relates the parallel task demand to the mean service demand of nay
parallel workstation processes. is introduced. We propose that task ratio is a useful metric for
determining how large the dermand of a parallel applications must be in order to make ofticient ase

of a non-dedicated distributed svstem.

tICASE). NASA Langley Research Center, Hampton, VA 23681-0001

“This recearch was supported by the National Aeronautics and Space Administration under NASA contract NAN]-

194%0 while the authors were an residence at the Institute for Computer Applications in Saience and Engineening

1 Introduction

Most early parallel processing research focused on using distributed systems to speedup computa-
tions. The basic approach was to utilize many computers connected via a local area network (LAN)
to execute a paralle] job. We will refer to this environment as distributed computing. With the advent
of multiprocessor architectures the majority of the focus shifted from distributed computing to multi-
processing, the major distinction being the tightly coupled architecture allowing more finely grained

parallelism.

Recently, a significant portion of the parallel community has returned to the distributed processing
approach. Several commercial and noncommercial tools have been developed to support distributed
computing. One widely used tool is the Parallel Virtual Machine (PVM) project {9, 5,1, 2]. According
to the authors, PVM is now being used at more than 100 sites. A major driving force behind
the reevaluation of distributed computing is the high cost of parallel computers. Using a group of
workstations connected via a LAN may provide better cost/performance, or may be the only way to
achieve high performance within budget constraints for some organizations. Another factor in favor
of distributed computing is the availability of many lightly loaded workstations. These otherwise
wasted idle cycles can be used by a distributed computation to provided speedups and/or to solve

large problems that otherwise could not be tackled.

It is clear that many problems are amenable to the distributed computing approach [3]. However.,
for some applications, the inherent synchronization requirements, communication/computation ratio.
and the granularity of parallelism may limit the obtained performance. Even for the “good™ applica-
tions, a tacit assumption of the expected high performance is that a system of dedicated workstations
are used. which may not be true in practice. In this paper we study the performance of distributed
computing in a non-dedicated system assuming workstation owner processes have preemptive priority

over parallel tasks

We assume the paralle] application considered belongs to the class of programs that can run
efficiently in a dedicated distributed computing environment. We do not consider the effects of
syvnchronization, communication, or granularity of parallelism. Given the program executes efficiently
in a dedicated system, we wish to determine whether we can achieve good performance in a non-

dedicated system.

One factor that must be considered in a non-dedicated system is how intrusive the parallel pro-
grams are to the owners of the workstations and vice versa. The priority of the parallel tasks relative
to the priority of processes initiated by the owner of the workstation can have a significant impact on
the perforiance of both the parallel job and the owner's serial jobs. We assume that a workstation

owner is not tolerant of other peaple using their workstation, and hence surmise the most appropriate

model of such a system is to assume workstation owner processes have preemptive priority over pro-
cesses belonging to a parallel job. Hence, use of the workstation will interfere with parallel program
performance. The major goal of this paper is to provide insight into how significantly workstation
owner interference degrades parallel program performance. We seek to answer the question, *When
is distributed computing in a non-dedicated environment where workstation owner processes have

preemptive priority over parallel tasks a viable approach?”

An analytical model is developed to predict the performance under the non-dedicated assumption.
The new term task ratio is introduced along with new metrics that incorporate the utilization of
workstations by owner processes. We find that the task ratio plays an important role in the overall
performance, possibly as important as the communication/computation ratio in a dedicated system.
The analytical model provides the relationships between the identified parameters and shows how

these parameters influence the overall response time.

In addition to our analysis, a hypothetical local computation {11] problem is implemented with
PVM on systems with 1 to 12 homogeneous workstations. These initial experimental results confirm

the qualitative results from the analytical model.

This paper is organized as follows. In Section 2 we present the analytical model and introduce
new parameters and metrics for non-dedicated distributed computing. The results from our analysis
are presented in Section 3. Experimental results with PVM on 12 homogeneous workstations are

presented in Section 4, and our conclusions are in Section 5.

2 Model Description, Analysis and Simulation

In this section we describe our system model, our analysis technique, and simulation model. We
make simplifying assumptions that favor the distributed computing approach. In particular, we
assume a paralle] job is composed of W tasks (one per workstation), and the computation is perfectly
balanced among these tasks. In addition, the parallel job is composed of one single parallel phase
with no communication or synchronization requirements other than the final synchronization which
occurs when all of the tasks have completed. Hence, we are assuming perfect parallelism of the
problem. This model is simplistic, but provides the best case scenario for a distributed computing
environment. In addition, by not incorporating communication or synchronization requirements into
the model we are able to attribute all degradation of parallel program performance to workstation
process interference. Since our assmmptions are always optimistic, the model predictions provide an

upper bound on expected performance,

We assume there are W homogeneous workstations in the system and that there is one owner per

workstation. Workstation owners are in a continuons cycle of thinking (idle time) and then use time.

Table 1: Notational Definitions

Total demand of the parallel job.

Number of workstations in the system.
Demand of one parallel task = 7 / W.
Time a owner process uses the workstation.
Utilization of a workstation by owner.
Probability of the owner requesting the
processor during a given time step.

E; | Mean expected task completion time.

E, | Mean expected job completion time.

~|=[o] =l

We assume there is one parallel job being executed on the system at a time.

In table ! we define our notation used through out the paper. The demand of a job is the total

computing cycles (time) needed for the job.

2.1 Model Description

Our model is a discrete time model. We assume a geometric distribution with mean 7‘; for the owner
think time, i. e. at each time unit the owner requests the processor with probability P. When an owner
process starts execution an executing parallel task is suspended and the owner process is immediately
started. The owner process executes for) units. Once the owner processes completes execution, the
parallel task restarts execution and is guaranteed to complete at least one unit of work before the

owner may issue another process requesting the processor.

The model guarantees the parallel task will complete in at most 7 +(7 x O) units. Task execution
time at a single workstation is thus the sum of task demand plus the time to complete any owner

processes that occur during the tasks tenure in the system, i. e.

task time = T + (n x O), (1)

where n equals the number of owner process requests. The owner process can make a request after
each unit of time the parallel task uses the processor, hence the number of owner requests is binomially
distributed:

Bin(T,n, P) = (:) P (1 - P, (2)

Thus, expected task execution time is equal to

T
E;=T+) 0-i-Bin(T,i,P). (3)

=0

The job execution time is the time until the last of the parallel tasks completes execution. Thus,
job completion time is at least 7 units and at most 7 + (7 x Q) units. We first derive the probability

that job execution time equals i and then from these probabilities get the expectation.

Let S[n] equal the probability that an individual task is interrupted by at most n owner processes.

S[n] = z": Bin(T ,i, P). (4)

=0

Let C[W,n] equal the probability that all parallel tasks are interrupted by at most n owner

processes. By independence,

CIW,n] = (S[n))" . (5)

Let Max[W,n] equal the probability that the maximum number of owner process interferences

over all the parallel tasks is equal to n.

Maz[W,n] = C[W,n] - C[W,n - 1]. (6)

Using these functions, expected job execution time is calculated as:

T
E;=T+)_ 0-i-Maz[W,n). (7)
=0

Owner utilization (I/) can be calculated as:

0

U=ev1/p

(%)

For the purposes of analysis we were forced to make some simplifving assumptions. Our maodel
makes assumptions that favor the distributed computing approach, hence the model provides a lower
hannd on expected response time. In particular, the model is optimistic with regards to the three

following points:

¢ We assume parallel task times are deterministic. Although this is one of the goals of parallel

algorithm design, in practice there is often some imbalance of load.

e Variance of owner process service demands. We have assumed a deterministic owner process
service demand when in fact typical processes experience a much larger variance [7]. Assuming
a distribution with more variance could cause some parallel tasks to be delayed much longer

than 7 + (7 x O).

o Guaranteeing the parallel task at least one unit of execution between requests. In a real system
owner processes may be reissued in less time, thus parallel tasks could be delayed longer than

(T x Q).

These assumptions together clearly show that our results are optimistic. and hence actual perfor-

mance could be worse than predicted by our observations.

2.2 Simulation Description

We have simulated the system using the CSIM simulation language [%]. The purpose of the simulation
is solely to validate the coding of our analysis. We intend to use our simulation in future work to

explore other service demand distributions.

All results have confidence intervals of 1 percent or less at a 90 percent confidence level. Counfidence
intervals are calculated using batch means [4] with 20 batches per simulation run and a batch size
of 1000 samples. We duplicated the experiment found in figure 1 of this paper and the simulation
results were identical to the analysis thus verifving the correctness of analysis code. We did not plot

the results since they are indistinguishable from the analysis.

3 Analysis Results

In this section we present the results from our analysis. All results in this section assume an owner
process has preemptive priority over a parallel task. We first present results for a fixed size problem.

and then discuss the impact of scaling problemn size with the number of workstations.

3.1 Fixed-Size Speedup

We first address the benefit of the distributed computing approach for a fixed-size job. In this
case, the desired goal of parallelizing the program is to achieve faster execution times, hence we nse

expected speedup as our primary metric. Since the standard definition of speedup does not take into

Al

consideration the cycles consumed by the (higher priority) owner processes, we also define the metric
weighted-speedup. We also consider the metrics efficiency and weighted-efficiency to illustrate more
concretely the achieved percent of optimal performance. Specifically, once again let 7 equal the total
job demand, W equal the number of workstations, E, equal the expected job completion time, and

U equal the owner process utilization of the workstations. Then:

Task Ratio = %
Speedup = ‘5:7_,
Weighted-Speedup = (l_-l%—E—,
Efficiency = lp{‘,ﬁ
Weighted-Efficiency = “_’_7%

The expected speedup and efficiency metrics are of interest if a user wishes to determine the
henefit of parallelizing the job relative to running the program on a single dedicated machine. The
weighted metrics incorporate utilization to clearly demonstrate how effectively the parallel program
is able to use the idle system cycles. We focus primarily on the weighted metrics since theyv provide

a better metric for determining how well the distributed computing approach can utilize idle cyeles.

In figure 1 we plot speedup versus the number of workstations for workstations utilizations of
17%. 5%, 10%. and 20% assuming a parallel job demand (7) equal ta 1000 units. and an owner
processes demand () equal to 10 units. For a given utilization we assume all workstations have the
sate owner process utilization. The top curve is the theoretical optimal speedup. i.e. unitary linear.
The speedup cnrves are concave increasing, i.e. the benefit of adding more nodes decreases as nodes
are added. despite ignoring overhead for parallelizing the program (synchronization. communication,
non-halanced load. etc). At 100 nodes the speedup for a system with only 1% utilization is only 61%

of the optimal speedup. for a 20% utilization the speedup is only 32.5% of the optimal speedup.

To present the efficiency of the system. i.e. how close to optimal speedups are achieved. we plot
) A I

efticiency versus number of nodes in figure 2.

In both of the preceding plots we compare the performance of the parallel program executed on
a system of workstations with a given owner utilization to that of the same program executed on a
single node with no owner utilization. To focus on the how effective distributed computing utilizes
wasted cycles we consider the weighted-speednp and weighted-efficiency metries. In figures 3 and 4 we

plot weighted-speedup and weighted-efficiency versus the number of nodes for the same parameters as

6

in figures | and 2. Note the weighted-efficiency is still only 61.5% (41%) for a utilization of 1% (20%).
Hence. even once owner utilization is taken into consideration achieved performance is significantly

worse than optimal.

One cause for the degradation of performance is that the probability of one of the workstations
experiencing a transient period of high utilization increases as the number of nodes increases. Since
the parallel job must wait for each task to complete execution. just one workstation experiencing a
transient high utilization will slow down the entire computation. hence performance degrades as the

number of workstations increases.

A second more subtle cause of performance degradation results from a decrease in the ratio of
parallel task time to owner process task time (task ratio). To demonstrate this effect consider what
happens if we increase the paralle] job demand from 1K units to 10K units. In figure 5 and 6 we plot
the weighted-speedup and weighted-efficiencies for the same experiment as in figures 3 and 4. except
job demand equals 10K. The weighted-speedups and weighted-efficiencies for a job demand of 10K
units are much higher than their counterparts in figure 3 and 4. For J equal to 10K, 7 equals 100
units for a 100 workstation system, whereas 7 equal to 1K results in a 7 equal to 10 units for a
100 workstation system. Tasks of demand 10 units experience a proportionally larger delay by owner

processes than tasks requiring 100 units,

To more clearly illustrate the point. we plot weighted-efficiency versus the task ratio for a system
with 60 workstations in figure 7. (The plot for weighted-speedups is identical except the y-axis is
scaled from 0 to 60 instead of 0 to 1.) From the figure we conclude that in order to achieve acceptable
efficiencys, and thus good speedups, we must ensure that the parallel task demand is sufficiently large

relative to the average demand of owner processes, i. . we must ensure a large task ratio.

In the previous experiment we fixed the number of workstations equal to 60. In figure 8 we
plot the weighted-efficiency versus task ratio for various svstem sizes for an owner utilization of 10%.

Sensitivity to the task ratio increases with system size.

One of the main conclusions from these experiments is that in order to achieve good speedups for
fixed size problems. it is essential that the task ratio be sufficiently large. Similar to the computation
to communication ratio being an important consideration for parallel computations, the task ratio is

an important factor in non-dedicated distributed computing.

3.2 Scaled Problem Size

We now consider the effect of scaling the problem size with the number of nodes. We assume job
demand scales linearly with the number of workstations. This type of scaling has been called memory-

bounded scaleup [10]. With memory-bounded scaleup and perfect parallelism. ideally, we may be able

-~

to complete W times the amount of work in the same time as the original problem on a single
workstation by using a system with W nodes [12]. In figure 9 we plot job execution time versus the
number of workstations assuming job demand is eoual to 100 units times the number of workstations.
Since the problem size scales, the parallel task demand is a constant 100 units, and hence, the task
ratio is fixed at 10. Initially there is a sharp increase in response time as system size increases, but
the increase diminishes as system size becomes large. For system utilizations of 1. 5, 10. and 20%. the
response time for a problem using 100 workstations increases by 1.4, 30, +1, and 719 relative to the
response time for a problem using one workstation with the same owner utilization. In other words,
the distributed computing approach offers the potential to increase the problem size by a factor of

100 and only increase respouse time by 419 assuming all workstations have a wtilization of 10%.

Memory-bounded scaleup exhibits better performance than fixed-size computing since the task
ratio is fixed. while the task ratio in fixed-size compuating decreases with an increase in the number of
workstations. We also considered larger job demands and found the increase in response time to be
even less. Hence, we conclude that the distributed computing approach offers significant potential for
scaling of problems even if workstation owner pracesses are granted preemptive priority over paralle]

tasks.

4 Experimental Validation

In this section we present preliminary results from experimental studies to validate the analvsis. in
these initial studies we focus ouly on fixed size problemns. We have chosen to implement our parallel
program using the PVM package. We chose the PV M package based on the package heing well known
and highly available. We made no attempt to compare the PVM package with any other distributed

computation packages.

To isolate the effects of workstation owner interference we assume the parallel program is a
local computation problem [11]. That is, the problem has perfoct parallelism and no interprocess
communication. The parallel program forks 1 parallel tusks, one for each workstation in the system,
and each task executes independently. Each parallel task is “uiced™ (runs ot low priority) granting

workstation owner processes preemptive priority over the paralle] tasks,

Our primary metrics are maxinmm task execution time and speedup. The most common metrie
for a studyv such as this is job response time, io e the time from the parallel job is started until it
cotmpletes. This metrie is influenced by the overhead of the parallel compating package for initiating
the processes and collecting the resnlts. We want to focus only on the interference of workstation
owner processes and thus rejected defining response time i this ~standard wav, Instead, we foens on

the maximum task execution time. This tiie was obtained by having each task record the system time

when it started computation and noting the system time immediately when completing computation.
Each of the parallel tasks then return their task execution titne to the master process which selects
and reports the maximum. By considering the maximum task execution time we isolate the impact

of workstation owner process interference.

We report the results from one experiment. Further experiments are currently being conducted.
The system studied is composed of at most 12 Sun ELC Sparcstations. We varied the number of
workstations from 1 to 12, first ensuring that none of the workstations are executing long running
jobs. In general the only interference is from more trivial usage such as editing files, reading mail,
news, etc. For each number of workstations considered we ran the parallel program 10 times for
each parameter value and calculated the mean of these 10 runs as our metric. Given the number
of workstations. the input parameter to our parallel program is the problem size. We consider five
different problem sizes: 1,2,4.8. and 16 minutes are the service demands of these problems on a single
dedicated machine. No attempt has vet been made to provide confidence intervals or more detailed

statistical analvsis.

If figure 10 we plot the maximum task execution time versus the number of workstations for the
five different job demands assuming a fixed problem size. The solid lines are the measured values
from our experiment. The dashed lines are predictions from our analvtical model where the input
parameter for workstation owner utilization ix set to 3%. We obtained the 3% value by computing
the mean of the machine utilizations (by using the unix uptime command) over two working davs
when no PV M programs were executing. The madels qualitative and quantitative predictions are in

close agreement with the measured results,

In figure |1 we plot the speedup versus the nmmber of workstations. The values plotted were
obtained from measurement of the system. In this case we define speedup as the ratio of the max-
imum task execution time using one workstation over the maximnm task execution time nsing W
workstations. The utilization of the machines is very low and thus there is not significant degrada-
tion of parallel program performance. In a more heavily loaded system we would expect much more
degradation. Focusing on the % and 12 workstation cases we see that the speedup decreases as the job
demand decreases. i.e. the speedup for a job demand of 1 is lower than the speedup for a job demand
of 16. This is because the task ratio is smaller for a joh demand of 1 than it is for a job demaud of
16. This experiment thus qualitatively validates the analvsis. Note that the analvsis shows a more
significant drop in speedup as svstem size increases, Unfortunately we only have 12 homogeneons

workstations with which to validate our results and hence can not experimentally validate this resalt,

9

5 Conclusions and Discussion

In this paper we have developed an abstract model of a distributed computing system to determine

the feasibility of using distributed computing in a non-dedicated system assnming workstation owner

processes have preemptive priority over parallel tas The model is an abstraction of a parallel
program ignoring communication and synchronization overheads. We assume the targeted parallel
programs execute efficiently on a dedicated distributed system, hence we can ignore these overhieads
and focus on the iinpact of a non-dedicated environment. The purpose of considering a non-dedicated
svaten is 1o determine if idle (wasted cyeles) workstations can be utilized to reduce exeention time

and to solve large problems.

For fixed-size problems we have found that good speedups can be achieved. but only if the
amount of work allocated to each machine is sutficiently large compared to the wean service demand
of workstation processes. Hence! for non-dedicated systems where the workstation owner processes
have preemptive priority over parallel tasks, the parallel task demand to owner task demand ratio
{task ratio) is a determining factor in performance of the parallel program. In particnlar, we find that
the task ratio should be at least N for a parallel job to achiieve <0 percent of the possible speedup. even
adjnsting for svstem utilization. for a svstem in which each homogeneous workstation has a ntilization
of 5 percent. In addition, the task ratio needed to achieve X0 percent of the possible speedup increases
with sv<tem utilization. At a utilizaticn of 10 percent the task ratio must be 13 or higher, and at o

utilization of 20 pereent the task ratio st he 20 or greater.

Fhe model propased in this paper assumes local workstation processes have deterministic service
requiremnents. This assumption implies that resnlts presented in this paper is conservative, Hence,
even larger task ratios are likely to be necessary to achieve goad performance. Thus, based on our
~tudy, distributed compnting in a non-dedicated environment where workstation owner processes have
preemptive priority over parallel vasks is a viable approach only if the task ratio is sufficiently large.

Fhe exact size of the ratio needed s both application and environment dependent.

For <caled problems nnder a non-dedicated environment, we have found that distributed comput-
ing otfers significant potential for the efficient execution of sraled problems. In particular. assuming
cach work-tation in the svstem has a utilization of 5 percent (20 percent). mean job response time
i~ onlv nereased by 30 percent (71 pereenty when comparing the response time of o scaled prob
et using 100 workstations relative to that of problem nsing one workstation with a 5 percent (20
pereenty atilization. The performance difference between fixed size and scaled problems is due to
the fact it the task ratio of scaled problems is fixed. while the tack ratio of fixed.size problems
decreises as the nimber of wark<tation inereases. Note that the result< are hased on anr idealized

a-sunption and hence are optimistie. The actual response time of these problems would be dependent

10

(1]

Tyl
12

(9]

(10]

(1]

on communication bandwidth requirements which are ignored in our model.

We assume the workload of the non-dedicated environment is light and the effect of long running
workstation owner jobs is not considered. How to provide reasonable execution times for parallel johs
in a non-dedicated system with long running workstation owner jobs must be solved if distributed
computing is to be feasible in a non-dedicated environment. Currently our model only provides some
initial insights into the general problem of distributed computing in a non-dedicated system. In the
future we intend to extend the model to handle more complex workloads. In addition. we are currently

pursuing further experimental validation of our model.

References

Beguelin, A., Dongarra, J.J., Geist, G.A., Mancheck, R., and Sunderam. V.5.. "A Users’ Guide
to PVM Parallel Virtval Machine,” Technical Report ORNL/TM-11826, Oak Ridge National
Laboratory, July 1991.

Beguelin, A.. Dongarra. J.J., Geist, G.A.. Mancheck, R., Moore. K., and Sunderam. V.S.. “Tools
for Heterogeneous Network Computing”. Proc. 6th SIAM conf. on Parallel Processing For Sci-
entific Computing, Vol 2. March 1993.

3. (i. Fox and et. al.. Solving Problems on Concurrent Processors, Prentice-Hall Inc.. 198R.

| Kobayashi. Modeling and Analysis, Addison-Wesley, 1978.

Geist. G.A.. and Sunderam, V.S., “Experiences With Network Based Concurrent Computing
on the PVM System™, Technical Report ORNL/TM-11760. Oak Ridge National Laboratory.
January 1991.

J.L. Gustafson and G.R. Montry and R.E. Benner, “Development of Paralle] Methods for a
1024-processor Hypercube™, SIAM J. on SSTC, Vol. 9, No. 4, 1988.

| Sauer, C.H., Chandy, K.M., Computer System Performance Modeling, Prentice-Hall, 1981, page

16.

Schwetman, H.D., *CSIM: A C-Based Process-Oriented Simulation Language”. Proc. of the 19%6
Winter Simulation Conference, December, 1986.

Sunderam, V.S., "PVM: A Framework for Parallel Distributed Computing”, Concurrency: Prac-
tice and Experience, Vol. 2, No. 4, December 1990,

Xian-He Sun and L. Ni. “Another View on Parallel Speedup™, Proc. of Supercomputing "90. Nov.
1990.

Xian-He Sun and L. Ni, *A Structured Representation for Parallel Algorithm Design on Multi-
computers”, Proc. of the Sixth Conf. on Distributed Memory Computing. April, 1991,

[12] Xian-He Sun and L. Ni, “Scalable Problems and Memory-Bounded Speedup”, J. of Parallel and

Distributed Computing, Vol. 19, Sept. 1993.

Speedup

100 - v v

perfect —»—

util = 0.01 —-

util = 0.05 —%—

util = 0.1 -e--

util = 0.2 -=--
80
60
40}
20 ¢

I A

20 40 60
Number of Processors

Figure 1: Speedup, J = 1000 units

80

100

*

Efficiency

.2

util = 0.01 -=+-
util = 0.05 -
ut@l

i A .

20 40 60
Number of Processors

Figure 2: Efficiency, J = 1000 units

13

100

|

Weighted Speedup

100

80

60

40

20

perfect —e—
util = 0.01 -+
util = 0.05 -w—

i 1

20 40

60

80

100

*

Number of Processors

Figure 3: Weighted Speedup, J = 1000 units

14

Weighted Efficiency

—
T T T +
.
.
O
I .
h‘. A .,
L I N
N -
VN ., 4
.. AN
. "_\ .
" N .
" b \ s
E Y .
- \\\ ‘_\\
~a S~ et
n . “x.
. A . \-\\ -, .
= . h Sx y n
- Tral . e h
.. S
“\ - -
. Tl -
. .
- R %
. .
. o1
3 s
-
- 4
util = 0.01 -~
util = 0.05 =
util = 0.1 -&--
util = 0.2 -=-
1 i i Al

20 40 60 80 100
Number of Processors

Figure 4: Weighted Efficiency, J = 1000 units

Weighted Speedup

100 —_ T T v
perfect —+—
util = 0.01 —+--
util = 0.05 -
80 t
60 |
40 t
20 F
7,

20 40 60 80
Number of Processors

Figure 5: Weighted Speedup, J = 10,000 units

16

100

Ry e -

Weighted Etticiency

0.

n

mi-\&\ - - ' '
N N SEU
N Rk S
T
. ea TS T el
K A \"\, --------- e
e W T +-e
-, ~a. TWeel T -
N A T T
! T e
e Teea R o8
L e Sm
T el -
[- .. TreaL
- b N T - W
T -)
..
| 4
util = 0.01 -»--
util = 0.05 =
util = 0.1 -e--
util = 0.2 -=-
1 1
" s 1 L
a 20 40 0 R 100
Number ~f Procenzors

Figure 6: Weighted Efficiency, J = 10,000

Weighted Efticiency

[] . . . |
1 Af | | ' '
e J
L)
. - .
9t] i | (1
I.' “ . C ‘
"' R . |
! g ‘ o - -
- e o
' //V))
B .
+ /)
g} L4
i P .
i
i
|G / E
I S
h ,/ ‘1
P
- '.’I ¢ .
+ / K
x|/
A
Eﬁ" util = 0.01 -
.‘ util] = 0.0% e
! util = 0.1 =
o util = 0.2 -e-
.6 F ."’ -
*
.
:
.5 | i ‘
%
N

2 N N

0 10 20

30 40
Task Ratio

Figure 7: Effect of Task Ratio, 60 Workstations

18

50

60

1 T T T v T
0.9
0.8
oy
I
]
-
3 ;
- i
L] H
Lol H
w 0.7 Fi numProc = 2 -+ b
o] i numProc = 4 8-
M numProc = 8 -
= numProc = 20 -#--
ot numProc = 60 -~
% numProc = 100 ——
0.6 f |
0.5 F 1
0.4 N . . N N
0 10 20 30 40 50 60

Task Ratio

Figure 8: Effect of Task Ratio, Number Workstations Varied, Owner Utilization = 0.1

[] ° o . . .
180 ; ' | |
B o4
------- -
e T
_______ POrR S
...... L
e
L
-
160 } » util = 0.2 -=--)
g util = 0.1 -#--
. util = 0.05 -*—
m.' Uil = 0.05
;
: ‘
E ‘_ B
: ,‘ et o
6 ’. vvvvvv —— et
S 140 ! i |
@ ; pe
d i -
. ”
: /
’ PSS o
‘ T -
: Py
; -
 § v ',r/n
§ o
120 Ilil |
; ------- e ammmeaene g eeemeeene]
: / e PP SIS S e m e
'y e
- g
/ "/‘-’
We
/7
‘/l
100 s) . ‘
0 i e i 80 100
Number of Processors
Figure 9: Effect of Scaling Problem
20
o o Py o . . .

Job Response Time in Seconds

Number of Processors

Figure 10: Experimental Validation: Response Time

2]

[[] ® ® L]
1200 v r — -y
measured 16 -=—
measured 8 -+—
! measured 4 -+—
E measured 2 -o—
1000 ¢+ ! measured 1 —+—
: analytic 16 -=--
analytic 8 -+--
analytic 4 -x--
analytic 2 -e--
analytic 1 -+--
800 |
600
400 }
200 |
0
0

Speedup

12 T r — r —
10 ¢
8 -
6 |-
4F perfect —— 1
demand = 8 -
demand = 4 -%
demand = 2 -+
demand = 1 %
2 F .
0 i . A A A
0 2 4 6 8 10

Number of Workstations

Figure 11: Experimental Validation: Speedups

22

12

orm Approved
REPORT DOCUMENTATION PAGE o e oo 0188

I I N e P Tt
o T e

L

1 AGENCY USE ONLY .eave oianx! |2 REPORY DATE 3 REPORT TYPE AND DATES COVERED
September 1993 contractor Report

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

DISTRIBUTED COMPUTING FEASIBILITY IN A NON-DEDICATED C NAS1-19480

HOMOGENEOUS DISTRIBUTED SYSTEM
WU 505-90-52-01

6 AUTHOR(S)
Scott T. Leutenegger
Kian-He Sun

7 PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
. . REPORT NUMBER
Institute for Computer Applications in Science
and Engineering ICASE Report No. 93-6h5

Mail Stop 132C, NASA Langleyv Research Center
Hampton, VA 2368]1-0001

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING MONITORING
o) . AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Langley Research Center NASA CR-191532
Hampton, VA 23681-0001 ICASE Report No. 93-63

11 SUPPLEMENTARY NOTES
Langiey Technical Moulitor: Michael . Card To appear in Supercomputing '3
final Report

1232 DISTRIBUTION AVAILABIL'TY STATEMENT 126 DISTRIBUTION CQODE
“nclassified - Unlimited

Subject Categorv bl

13 ABSTRACY "‘Maxim,m 220 wo-ds!

The sow cost and availdbility of clusters o! workstations have lead researchers to
re-exgiore distributed compiating using inderendent workstations., This aprroach mav
rrovide better cost/performance than tightly coupled multiprocesscrs. In practice,
this approach often utilizes wasted cvcles to run parallel jobs. In this paper we
address the feasibilitv of such a non-dedicated parallel processing environment as-
suming worestation procaesses have preemptive priority over parallel tasks. We devel-
op an analvticali model to predict parallel job response times. Our modes provides
insight into how signifi-~antly workstation owner interference degrades parallel pro-
gram performance. A new term task ratio, which relates the parallel task demand tn
the mean service demand of non parallel workstation processes, is introduced. We
prupose that task ratio is a useful metric for determining how large the demand of a
parallel apriications must be in order to make efficlent use of a non-dedicated dis-
tributed svstem.

14 SUBJECT TERMS 15 NUMBER OF PAGES
24
distributed systems, parallel computing 16 PRICE CODE
A03
17 SECURITY CLASSIFICATION |18 SECURITY CLASSIFICATION [19 SECURITY CLASSIFICATION J20 LIMITATION OF ABSTRACT
OFf REPORT OF THIS PAGE OF ABSTRACT
tnclassifiecd Unclassified
NN 754007280 5500 S*ardad to'T 298 Rev . A9
Brever Doy ty ANY V1 49w
98 ")

71 S GOVERNMENT PRINTING OFFICE 1991 715.064/ 56066

