
UNCLA SSIfIED

AD-A272 895 / y

RESEARCH NOTE
ERL-0719-RN

A FULLY REPLICATED DISTRIBUTED DATABASE SYSTEM Ii

by

SJ. Miller

// j(/93-28040 i

APPROVED FOR PUBLIC RE-LEASE

93 i 5Qi

THE UNITED STATU'S NAT:CNAL

TECHNCAL IWORMAMiN SERVICE

lfPRODU., AND SELL THIS REPORT

UNCLASSIFIED

AR-W•470

DSTOA
A U S T R A L I A

ELECTRONICS RESEARCH LABORATORY

Information Technology
Division

RESEARCH NOTE
ERL-0719-RN

A FULLY REPLICATED DISTRIBUTED DATABASE SYSTEM

by

S.J. Miller

SUMMARY

This paper investigates a fully replicated distributed database system suitable for Naval
single platform combat systems. It is found that the fully-distributed approach to update
synchronisation, where each site completely executes every update, can be tailored to
minimise the control message traffic between sites. Database reliability issues are discussed
and a number of possible approaches for maintaining data consistency in a fully replicated
database are considered.

© COMMONWEALTH OF AUSTRALIA 1993

JUNE 93

APPROVED FOR PUBLIC RELEASE

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. jrsp,.Of94t

UNCLASSIFIED

ERL-0719-RN UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,

criticism or review, as permitted under the Copyright Act 1968, no part may be

reproduced by any process without written permission. Copyright is the responsibility

of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the

Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

UNCLASSIFIED

U

UNCLASSIFIED ERL-0719-RN

CONTENTS
Page No

I INTRODUCTION 1

2 FULLY REPLICATED DATABASES

3 CONCURRENCY CONTROL FOR REPLICATED DATABASE SYSTEMS 2
3.1 Description of FDA 3

3.1.1 FDA embedded synchronisation 4
3.1.2 The FDA process 4
3.1.3 FDA proof of correctness 5

3.2 Effects of site and media failures 5
3.2.1 Loss of messages 5
3.2.2 Site failure
3.2.3 Network partition 6

4 TAILORING THE FDA TO THE COMBAT SYSTEM APPLICATION
4.1 Transaction Manager

4.1.1 Transaction types 8
4.1.2 Transaction Handler 8
4,1.3 Transaction Processor 8
4.1.4 Reliability Manager 9

4.2 Database Manager 9
4.3 Site recovery 9

4.3.1 Broadcast method 10
4.3.2 Nearest Site method 10
4.3.3 Guardian approach 10

4.4 Network repair for partitions 10

5 CONCLUSION I1

REFERENCES 13

FIGURES

I A Fully Replicated Database Architecture Az ,C 15
NtqIS.

2 Transaction Manager 16

. , i UC SI•j;EC-D 5 ED

I

SUNCLASSIFIED tii

ERL-0719-RN UNCLASSIFIED

APPENDIX 17

SAMPLE OF TYPICAL TRANSACTION DEFINITIONS 17
1 1 Database Files 17
1.2 Transaction Definitions 17

1.2.1 New, Contact 17
[.2.2 Update Contact 18
1.2.3 Read Contact 18
1.2.4 Delete Contact is
1.2.5 New Track 19
1.2.6 Update Track Position 19
1.2.7 Update Track Supplementary Data 20
L.2.8 Read Track Position 20
1.2.9 Read Track Supplementary Data 21
1.2.10 Delete Track 21
1.2.11 Copy Request 22

UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

ABBREVIATIONS

ADDAM Admiralty Research Establishment Distributed Database Manager
C Clock value at site i
DDBM Distributed DataBase Manager
DM Database Manager
DOQ Data Output Queue
DRAM Dynamic Random Access Memory
FDA Fully Distributed Algorithm
f Function
LRQ Local Request Queue
RM Reliability Manager
RQ Read data Reply Queue
RRQ Request Reply Queue
RSQ ReadSct Queue
rs Readset
SN Sequence Number
S, Site i
TH Transaction Handler
TM Transaction Manager
TP Transaction Processor
TS>U) Timestamp of transaction U
t A clock value
ts Timestamp
ts I Updated timestamp
U Transaction
ws Writeset
XOQ External Output Queue
XRQ External Request Queue

S

UNCLASSIFIED v

ERL.0719-RN UNCLASSIFIED

THIS IS A BLANK PAGE

vi UNCLASSIFIED

S
"UNCLASSIFIED ERL-0o19-RN

I INTRODUCTION

During the last decade there have been a number of proposals for singie platorm Naal Combat
S,,stems using a distrbuted processing architecture. These s,,stems contain a number or processors
loosely connected by a high speed bus or a Local Area Network iLAN). Increased reliabilit, and
a,,ailabilitv have been achieved through the redundancy pro',ided by this architecture and by
distributing the real-time tactical database over the networked processors. Because combat s., stems
are required to process high rate input data in real-time, the database must be stored in main
memory. In these early distributed systems. processor main memory 'wýas expensive and bulky.
resulting in processors with relatively small main memory capacities. As a consequence. databases
in these early systems were not fully replicated but. were partitioned and portions replicated at
different processor sites.

Increased processor speeds. lower main memory access delays. and cheaper and smaller main
memory, now make the implementation of fully replicated real-time distributed database s stems
for Naval combat systems practical. In the fully replicated database, data objects are redundanth
stored at all sites giving maximum reliability and responsi,,eness to the database system.

The update of distributed and replicated data objects, whether in a fully or partially replicated
database system, must be done using concurrency algorithms. These algorithms control the
interleaving of conflicting actions so as to maintain the database integrity. Updates are generally
expensive in time because they involve extensive communication tor synct'ronisauon: howe',er. it
a fully distributed method for controlling updates is employed, a significant mipro.ement in
performance can be achieved over that possible for a partially replicated database.

Singhal() suggests that a way of reducing the overhead and resulting delays of synch-onising
communications is to use a Fully-Distributed Algorithm kFDA). This algorithm requires
significantly less synchronising communication as the actual data object values are not sent to each
site with the update. Instead. a "readset" of the data objects required, a function, a data object
'writeset", and a timestamp are broadcast to each site. The readset is a list of the data objects
required to be read and used as input to the function. The function is applied and the results are
written to the database objects listed in the writeset. Processors at each site can perform the
required update at its site independently and in parallel with the other sites without the need for
a large number of control communication messages being sent between the originating site and the
other processor sites. A further improvement in the FDA may be possible in situations where the
types of transactions (atomic sequences of updates which may include functions), can be pre-
determined during design and built in as known types. The single platform Naval combat system
has a well defined functional requirement and would allow suitable tailoring of the FDA to improve
its performance in this manner.

Investigations in this paper show that. although the FDA does provide significant performance gains
%hen considering updates on existing database data using other existing database data. these gains
are much reduced when the creation of new records. and the updating of existing records. from
external data are considered. In such cases. data values do need to be communicated between the
distributed sites. Singhal does not address this aspect at all.

This paper investigates the applicability of fully replicated databases and their associated control
in real-time distrbuted processing systems suitable for future single platform Naval combat
systems. Section 2 addresses the fully replicated database in terms of the inherent architectural
advantages and the physical hardware implications. Section 3 discusses distributed database
management update protocols and the improvements in performance obtainable when using the

UNCLASSIFIED

ERL-0719-RN UNCLASSIFIED

FDA in conjunction with a fully replicated database system, while section 4 looks at possible
specialised tailoring of the FDA to further improve update performance in applications such as
combat ;.,stems. Section 5 summarises the advantages of the fully replicated database and the
relevancc of the FDA to Naval combat systems employing this database architecture.

2 FULLY REPLICATED DATABASES

Distributed processing systems incorporating fully replicated databases are inherently more reliable
than systems having partitioned and partially replicated databases. Since every site has a complete
copy of the database, greater system functional integrity is provided in the event of network
partitions. A network partition can occur when a break occurs in the communication medium
isolating one or more processor sites. In addition to the greater reliability, there is a reduction in
the associated control required. There is no need for the complicated mechanisms for maintaining
owners (the primary data copy) and an acceptable number of subscriber copies (secondary copies
or replications) of each database partition. as used in the Admiralty Research Establishment U.K.
Database Manager (ADDAM) and similar systems(2,3). There is also an improvement in
pertormance obtainable from the use of local copies of data at each site. Faster access memory
systems and higher speed communications improve performance of both partially and fully
replicated database systems. However, potential improvements in performance can only be
achieved by using update algorithms which require significantly less inter-site communication.

An example of a homogeneous distributed processing system architecture incorporating a fully
replicated database system is shown in figure 1. This figure depicts a three site distributed system
connected by a communication medium. Each site has identical processing hardware and the same
software architecture. The data base is fully replicated and managed by the local Distributed
DataBase Manager (DDBM).

3 CONCURRENCY CONTROL FOR REPLICATED
DATABASE SYSTEMS

Updates of data objects in a replicated environment are expensive as they involve extensive
communication for synchronisation. Several algorithms have been developed over the last decade
for synchronising updates. Basically, all algorithms can be divided into two fundamental classes.
e,,gorithms which perform synchronisation before accessing data objects, referred to as
"pessimistic" algorithms, and those which perform synchronisation after accessing the data objects,
referred to as "optimistic" algorithms. Generally, algorithms used for updates in replicated
databases adopt one site as the controlling site for performing the synchronisation. executing the
update, and finally distributing the new values to other sites. Such algorithms are referred to as
"semi-distributed".

Singhal(i) proposes a fully distributed approach and suggests that a fully replicated database
system, where each site completely executes the update using an FDA, would have the following
features:

a. High parallelism, because after an update is sent to each site, the sites can be execute it in
parallel with the other sites.

UNCLASSWFIED

UNCLASSIFIED ERL-0719-RN

b. Being fully replicated, there is less reliance on communication among sites; there are no
complicated control protocols for implementing commit strategies, and hence is a more
reliable algorithm.

c. No need to transfer data object values between sites and hence shorter messages are required.

d. Higher data security and privacy as there is no exchange of data values.

e. Greater update performance, as there is no waiting required for the computing of "alues and
writing of values at other sites, as each site performs the update in its entirety.

The above features lead to a system having improved performance, greater reliability and lowker
communication overhead. This increased performance was evident in performance studies of the
FDA(I r. The study confirmed that not only is the communication overhead cut down, but there
is also an enhanced performance gain due to the faster access available to main memory data
objects.

It should be pointed out that Singhal's study only addressed the clear cut companson betieen the
two situations of having and not having data object values communicated between sites and not a
combik:ation of both. Singhal does not consider the need to communicate actual data values in
practical distributed database systems. In a real system. data must be input into the database from
an external source and this data must be distributed to other sites. Further, at initalisation, when
a site joins a distributed network, or rejoins after a network partition or site failure, there has to be
a data exchange to make the database replications consistent.

In spite of these apparent oversights, there does appear to be benefits to be gained from using a
modified form of the FDA in fully replicated database systems Its tailoring for use in the Na',al
combat system application is addressed in section 4.

3.1 Description of FDA

A full description of the FDA will not be given here as this is available in reference I.
Instead, only a sufficient description will be given to provide a basic understanding of its
protocol. its application interface and inter-site message requirement, to provide a base for
understanding how it can be tailored to an application like the Naval combat system.

A user or application modifies a database by submitting an update at its local site in the
network. An update U is defined(l) by a three-tuple U = (rswsf) where:

a. rs" indicates the data objects read by U and referred to as the "readset".

b. "ws" indicates the data objects that are written to by U and referred to as the
"writeset".

c. "T' is a function which models the computation required and results in new values
f(rs) for the wnteset.

An update U. when executed alone, is required to take the database from one consistent state
into another. When two or more updates co-exist and where conflict exists between them.
an inconsistent database can result. The FDA provides concurrency control using timestamps
and a set of synchronisation rules to prevent these inconsistencies occumng.

UNCLASSIFIED

ERL-0719-RN UNCLASSIFIED

The timestamp of an update is unique across the entire system. Each site S ha, a ,
clock C. which takes on a monotonically increasing integer valuet4) When a user ,uhrn:mt
an update at a site S. C, is incremented by one and a two-tuple (C Ji) is assigned to t T-h ,
is referred to as the timestamp TS(U) of U. Every message contains the current clock , aluc
of its sender site, and when a site S, receives a message with clock value t it = C). ji cLt. 1hL
local clock value C to max(t+l.C,).

When a site receives an update from a user, it forms an update message containing a
timestamp and sends it to all other sites. Each site performs the update completel\ Ui n'L
local database data. That is, each site looks after synchronisation and executes the read.
compute, and write actions. The update execution is performed in a fully dismnhuted manner
The synchronisaton is embedded into the FDA.

3.1.1 FDA embedded synchronisation

The FDA performs read and write synchronisation(1). A site executes the read action
of an update U when:

a. the site has received a message with a timestamp larger than TS L)
from every other site. received all updates up to timestamp TS(U) ne
there are no earlier updates yet to be delivered from external nodes),
and

b. write action of all updates having their timestamps smaller than TS(UL
and having write-read (w-r) conflict with U have been executed at that
site.

Similarly, a site executes the write action of an update U when:

(a) read action of all updates having their timestamps smaller than TS(U) and
having read-write (r-w) conflict with U have been executed at that site, and

(b) write action on all updates having their timestamps smaller than TS(U) and
having write-write (w-w) conflict with U have been executed at the site.

3.1.2 The FDA process

When a site S, receives an update U = (rs,wsf) from a user, it takes the following
sequence of actions(1):

(a) It updates its clock and assigns a timestamp, say "ts" to U.

tb) It sends an UPDATE(rsws.f.ts) request message to all other sites and saves

the update along with its timestamp.

When a site S receives an update request from site S, it takes the following actions:

(a) Site S. responds to the update request by first updating its clock.

(b) returns a REPLY(tsl) (tsl is the updated timestamp) to S,, and

(c) it saves (rs.ws.f.ts).

4 UNCLASSIFIED

a.S

UNCLASSIFIED ERL-0719-RN

Site S, increments its clock from the reply (see section 3.1) and all sites execute Lhe
update in accordance with the synchronisation rules in section 3. 1. 1.

3.1.3 FDA proof of correctness

A formal proof of the FDA correcmess is provided in reference I. Singhal showks that
internal and mutual consistencies of a replicated database are maintained despite
concurrent update execution and that every update does execute in a finite time. Singhal
also proves that the FDA is free from deadlocks and updates will not wait indefinitely
in a circular chain.

3.2 Effects of site and media failures

Sites and communication media are prone to failures. These failures may result in lost
messages and network partitions. Singhal(l) mentions a number of possible strategies to
handle these failure situations. The actual strategy will be driven by the degree of reliability
required. Reliability can be built into transaction processing by employing mechanisms vhich
timeout if reply messages are not received from all database replications, and then retry the
transaction a number of times before finally aborting the transaction.

Update reliability, and hence database consistency, is often traded for availability in combat
systems(ref. 2). That is, in the eventuality of a network partition or node failure, the database
system is maintained in a useable condition with some degradation of performance and loss
of data consistency. In these systems, the update transactions will not abort; instead. they will
be allowed to complete at the originating site even without replies from all the remote sites.
Remote sites perform the externally requested update immediately in accordance with the
synchronisation rules. They do not need to wait for a further message from the originator to
proceed with the update. A "crash" algorithm will need to be implemented at the originating
site so that when unavailable sites recover or the network recovers, recovery algorithms can
be run to bring all the database replications into a globally consistent state.

3.2.1 Loss of messages

One method of handling the loss of messages is to use a timeout mechanism. When a
site S, sends an update message to Si, it initiates a timer. If the timer expires before the
return of the reply messages from all S, then. S, again sends the update. When S,
receives the update request message, it responds to it. and all subsequent duplicates of
it, with a reply message. However, it requires a unique identifier to be sent with both
the update and reply messages to ensure they can be matched together. If a site S,
receives a duplicate message it will reply without performing the update process.
Depending on the degree of reliability, this process can continue until a reply has been
received from all sites or, if the emphasis is on availability, continued for a
predetermined number of times, or a timeout can be employed. A journal (time ordered
log of transactions) of updates missed by any given site S, (no replies), can be kept and
used to restore global consistency when communication is again possible with that site.
This journal will need to be replicated across all the available sites to ensure it is not
lost because of a site or network failure. The complexity of maintaining journals and
their application in the recovery process is addressed in a separate paper(8).

UNCLASSIFIED

ERL-0719-RN UNCLASSIFIED

3.2.2 Site failure

A site failure can also result in a message being lost. In this case there Aill be no repl.
from the failed site. This will either block the update at the ;ending site from being
performed. or if the availability approach has been adopted then. after a given number
of tries. the update \,ill continue, the update request being kept in a journal for the failed
site to proceed on its repair. Of course long down times require large journal storage.
An alternative is for the failed site, on repair, to request a new copy of the database to
re-initialise itself. An incremental recovery strategy(7.8) would be used to achie\,e this.

3.2.3 Network partition

A network is partitioned when divided into two or more network groups by a sevenng
of the media or by interface hardware failures. Each group can work independently if
the availability strategy is adopted; however, no update is possible between them. This
situation is the most complex, as updates could occur on different copies of the same
database, and so on repair it would be necessary to take into consideration all the
updates from all portions and merge them together. In this case journals must be kept
on each partition and when repair occurs, all inconsistencies must be resolved to produce
a globally consistent database from the individual journals. The precedence graph
method(5) or the log transformation technique(6) can be used to do this.

4 TAILORING THE FDA TO THE COMBAT SYSTEM
APPLICATION

Each application makes certain demands on a database. The Naval single platform combat system
is required to perform a set of defined functions including sensor data collection, data processing
and evaluation, tracking. target assessment, threat analysis, weapon allocation and engagement. All
these functions require database access for compilation. calculations and data presentation or
display purposes. Further, the data must be processed and acted upon within the time constraints
and deadlines imposed by the current threat.

As the combat system is required to process large numbers of contacts and tracks derived from
different input sensors in a similar manner, track data and contact data are stored in similar record
formats and can be accessed by means of a contact (CN) number or track number (TN). Further.
since many of the operations to be performed on each track are the same and involve data
previously updated, the required operations can be defined and implemented by a transaction
sequence. It is then only necessary for an application to provide a TN and the transaction type,
instead of the data object readset, function, and writeset, when requesting an update. In essence,
there are two basic types of transactions involving updates, those concerned with inputting new data
and requiring the communication of data between sites, and those essentially operating on existing
database data which can be performed in parallel at each site without any data transfer.

There are two further cases, requesting for a database copy or a local read, where the exchange of
data between sites or between the local database and the application is also required. At
initialisation when a node first joins or rejoins the network and during periodic database consistency
checking, if employed, an exchange of data is necessary. The "copy -request" transaction is useful
in these cases. A copy-request message includes the database partition or record, depending on
the database granularity required, and a timestamp. If a number of "copyrequest" messages are
required to initialise a site's database, then it may be necessary to lock the relevant database
partitions until each transaction has completed. A copy-request updates the local database from

UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

the relevant reph, data. The special case of the local read transaction does not require data values
hc exchanged between sites. However, it does return data from the local database to the
application.

A lurther distinguishing feature of transactions relates to how they are to be performed. They may
be performed in a "reliable" fashion, or by a "performance" process. A "reliable" transaction is one
in which the copies of the appropriate data objects in all replications, or some pre-determined
minimum number of them, must be updated or, if this is not possible then none of them is to be
changed (see section 3.2). An example is the case when data relating to a contact classification,
is inserted by an operator. In the case of high input data rate sensor tyVp data, it is not so
important if the odd input is missed as new data will soon be available; any database
inconsistencies will be only temporary and will be eventually rectified. In this situation a reliable
process can be traded for a performance one(2,3).

The FDA synchronisation protocol can be used for transactions involving reliable updates even
when data must be communicated between sites. In order to provide the required senalisation of
updates to provide concurrency, a timestamp system is often used. as is the case with FDA. Each
time an application requests any transaction, it increments its local clock counter C, and formats
a transaction request message containing the transaction type and an updated timestamp ts = (t.fl
where I = C (section 3.1).

Transaction processing and database control can be divided between two processing modules. The
transaction message handling, decoding and reliability enforcement can be performed by a
Transaction Manager (TM) while the database control, including concurrency using the FDA, and
the simple performance update. can be handled by a Database Manager (DM).

The FDA protocol integrity is not compromised in this application. The protocol is implemented
with the minor addition of some handshaking in the form of acknowledgments from each external
node when a reliable process is required. This addition was included to deal with the typical real
world communication system which may not be error free or fault tolerant. Handshaking is not
used for the performance update. The following sections examine this approach in greater detail.

4.1 Transaction Manager

Transactions are processed by the TM. Typically. a TM could have the functionality shown
in figure 2. consisting of a Transaction Handler (TH), a Transaction Processor (TP), a
Reliability Manager (RM), and a number of interface queues. The TM interfaces with the
application, the database and the communication interface. All interfaces are by means of
message queues.

The application is interfaced by a Local Request Queue (LRQ), and a read data Reply Queue
(RQ). while the TM interfaces to the communication interface through the External Request
Queue (XRQ). the external Request Reply Queue (RRQ). and the External Output Queue
(XOQ). Three extra interface queues are provided to the DM. These are the ReadSet Queue
(RSQ), the WriteSet Queue (WSQ), and the Data Output Queue (DOQ).

Communication with the TM queues is by means of messages containing a timestamp and
identifying information. These messages may also include data object values as in the special
transaction types of copy-request and read. The identifying information could be transaction
type. writeset data objects, readset data objects. or reply data, depending on the queue
applicable. Each group of identifying information will also include a sequence number for

I matching requests with replies.

UNCLASSIFIED 7

ERL-0719-RN UNCLASSIFIED

4.1.1 Transaction types

Transactions are groups of database accesses, associated computations. and database
changes, or combinations of them, which must be performed as a single unit or process.
To ensure that the database remains consistent, transactions must be serialised so that
updates from one transaction do not conflict with those from a second transaction. A
transaction must be able to be totally performed or not performed at all. In a typical
real-time database application such as a Naval combat system, a set of transactions can
be defined at system design, and hence built into the system as pre-defined types. These
may be called by an application process simply by their name type and by supplying the
data object set involved. A sample list of typical transaction types is defined in
Appendix I.

4.1.2 Transaction Handler

The TH accepts messages from the external and local queues in timestamp order.
External messages are handed over to the TP for decoding and further processing.
Locally initiated transaction messages are accepted and passed to the RIM to hold for
local processing when the reliability requirements have been met. Only the onginating
site for the transaction addresses the reliability issues.

4.1.3 Transaction Processor

The TP further decodes and processes the external transaction messages passed to it
from the TH and the local transaction messages passed on from the R.M. according to
their types. Each time an external transaction is accepted the local clock is set to
max(C,.t+l) and the sequence number is checked to determine if it is a repeat of a
previously accepted transaction. If it is a repeat of a previous transaction, no local
action is taken except. a reply message including an updated timestamp and the sequence
number is formatted and placed on the XOQ for posting to the requesting site.
Otherwise, the reply message is generated as above and appropriate actions are taken.
In the special case, when the external transaction is a copy-request, the reply is delayed
until the required data has been obtained from the DM. The read data is formed into
an external output reply message and placed on the XOQ for the communication
interface to send to the requesting site. For both local and external transaction
messages. readsets are generated and sent to the local DM together with the appropriate
timestamp and a sequence number. Readset replies from the DM are sorted according
to type and sequence number.

When the readset reply is associated with an update transaction requiring specified
calculations, the calculations are performed and the appropriate writeset data object
values generated, formatted into a message including the transaction tmestamp and
posted on the WSQ for the DM. In the special case, "update contact", where the data
values are also included with the read set, then the TP does not perform any calculations
but simply updates the writeset values with them.

If the readset reply is for a remote copy-request transaction, the local clock C, is set to
max(Crt+ I) (C, is obtained from the external timestamp and t is the current value of C),
and the read data is formatted into a message together with an updated timestamp (C,i)
and posted to the requesting site by placing it on the XOQ. The requesting site is
derived from the timestamp (C1 j) accompanying the rmadset reply. Finally, if the readset

UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

reply is in response to a Read type local transaction, the read data is formatted into a
message and placed on the RQ for the application

When a reply is received to a local copy-request. the reply data is converted into a
writeset and posted on the WSQ for the DM.

4.1.4 Reliability Manager

The RM must ensure the reliability and availability characteristics required tkr the
database are met. It implements such measures as timeouts for reliable transactions sent
to other sites and initiates a repeat sending of the transaction copy ibroadcasti. or it
passes the transaction over to the TP for processing. Background consistency checking
measures could also be implemented. In the special case of a performance transaction
(update contact). no reply messages are expected or looked for and the transaction is
passed immediately over to the TP.

For each local transaction request requiring the reliable protocol, the RM formats a
broadcast message, places it on the XOQ, and then waits for transaction replies on RRQ
from each site, or until a set timeout. Each time a reply is received, the local clock is
set to max(C,,t+l) (see section 3.1). An update reply is of the form REPLY(ts.SN)
where ts is the timestamp and SN a Sequence Number. If the reply is as the result of
a copy-request, it will include the read data (REPLY(ts.data.SN)). When all associated
replies have been received, or at timeout and predetermined availability criteria have
been met. the transaction request is passed on to the TP for processing. In the case of
a copy-request the request and the reply data is passed on to the TP.

If replies are not received from all the replications, possibly due to a lost message or
site/network failure, then a new copy of the broadcast message is placed on the XOQ.
This procedure will be repeated a pre-determined number of times and eventually, if the
required number of site replies are not received, will timeout and an appropriate crash
algorithm will be implemented to retain a transaction log for the apparently unavailable
sites(8). The crash algorithm will need to ensure the log is not unique and therefore
vulnerable in the case of a site failure, see section 3.2.1.

4.2 Database Manager

The DM processes the messages from the RSQ and WSQ queues containing the readsets and
writesets values according to the FDA synchronisation rules, section 3. Readset messages
which meet the synchronisation rules are executed and their values are formatted into
messages and sent back to the TP through the DOQ. Writesets and associated values obtained
from the writeset queues which meet the synchronisation rules, are used to update the local
database.

4.3 Site recovery

The recovery process for a site in a network having a fully replicated database system is
similar to when a new site joins the network. A recovering site must first update its database
to match the global database. To do this, the recovering site must issue a sequence of
"Copy-Requests" (transaction), one for every record or page, depending on the database
granularity, for which updates have occurred during the failure. In the case of a new site, a
complete copy of the database is required. CopyRequests must be synchronised at the

* external site by concurrency control algorithms just as with database update transaction

UNCLASSIFIED 9

ERL-0719-RN UNCLASSIFIED

processes. After the first Copy-Request has been issued by a recovering site. all the
follow ing transactions issued over the network must be senalised (logged in timestamp order i
at the recovering site. No data item is to be read on the recovering site until it has been
,nitten to by a Copy-Request. This could be achieved by the use of "guardians"(7., see
section 4.3.3. After the local database is updated and the recovery process is complete. all
logged transactions can be processed in accordance with the synchronisation rules. There are
a number of %,ays in which the copy request process can be applied. Two methods are as
follow s:

(a) Broadcast the Copy-Requests and accept the first reply.

(b) Post the CopyRequests to the nearest numbered site in the global network.

4.3.1 Broadcast method

Site recovery using the broadcast method is a heavy user of communications. It
involves broadcasting a sequence of CopyRequests to all sites in the global network
and processing the first reply received. Each site receiving the requests, provided it is
not itself recovering, reads its local database copy, formats a sequence of replies
containing the portions of the database requested, and posts it to the requesting site The
first sequence of replies reaching the requester is accepted and used to update its local
database. All subsequent reply sequences are ignored.

4.3.2 Nearest Site method

A simpler approach to site recovery is to keep track of the available nodes in a network
partition using a simple site availability algorithm. and request a copy of the data from
the nearest available site. A site is considered available if it is active and not currently
in the process of recovery. The recovery process requires the recovering site to first
perform an availability algorithm to obtain local knowledge of the available sites. and
then post a transaction sequence of CopyRequests to the nearest site, either the next
lowest or next highest numbered available site determined by a simple algorithm. Very
little overhead would be required to keep an updated list of available sites.

4.3.3 Guardian approach

The guardian approach(7). can be used to ensure a logical data item at a recovening site
is not updated until it has been written to by the recovery process. For each logical data
item at the new site, designate a "guardian copy" at an old site. After the new site is
added, the site holding the guardian copy alerts all transactions that updates should write
into the new copy also.

4.4 Network repair for partitions

Network partitions are much more difficult to recover from than site failures. If two

partitions have been operating independently from each other, and there has not been any
restrictions placed on the way database objects could be updated at either partition, then the

databases will have diverged. On repair. the two databases need to be merged together in

some way taking into account the time sequence of events in both halves (section 3.2.3).

10 UNCLASSIFIED

UNCLASSIFIED ERL-.719-RN

The network repair situation can be reduced to simply multi-site recover-, it certain
restrictions are placed on the updating of data objects during a partition. If each data object
is given a token site on the non-partitioned network then when a partitioning occurs, the
updating of data objects can be restricted to the partition holding the token site for that data
object. Such a scheme however, is not always practical as several sites often require update
privileges on the same object set. Further, if the token site fails, the object %ill not be able
to be updated. An alternative token site cannot be selected because of the uncertaint, whether
the token site has actually failed or a network failure has left it in a separate partition.

The subject of maintaining fully replicated distributed databases in the presence of nct\,ork
or node failure and repair is considered to be a topic in its own right and \.ill be co,.cred in
another paperigi.

In practice the likelihood of network partitions can be minimised in combat ','tems bh
adopting a dual ring LAN such as the Fiber Distribution Data Interface iFDDI) sec ret 9)

FDDI has two relevant techniques for improving combat system network reliabilit.

a) A station bypass switch to bypass failed or powered down stations.

(bi Counter rotating ring connections where the second ring may be used for standb,
and when a link fails the two rings can be folded into one double length nng to
maintain Connectivity.

Further. by paying careful attention to the physical placement of the fibre medium. and the
use of duplicated and triplicated bus solutions, the possibility of action damage can hi-,
minimised.

5 CONCLUSION

Recent technological advances in microprocessor performance, together with much greater main
memor, capacity at reduced cost and reduction in memory access times, has led to a revival of
interest in distributed processing systems with fully replicated real-time databases. In real-time
applications, such as Naval combat systems, the fully replicated database requires simpler database
control mechanisms. In addition it does not need complicated control mechanisms for the
maintenance of replicated partitions or to dynamically distribute them around the distributed
processing network in the events of network partitions, site failures and on repair. Greater update
performance is also available from the fully replicated database systems.

Stnghal has suggested that concurrency control can be more efficiently performed in fully replicated
database systems and has developed an algorithm (FDA) to provide the necessary synchronisation
for updates. The FDA as proposed does not require data values to be transferred between sites.
results in much less message transfer and provides a significant update performance gain.
However, in real life practical databases, such as used in combat systems. there is a requirement
for data to be input to them from the outside world (eg new contact data from sensors). In these
cases it is not practical or desirable to interface all input sources to all sites. Thus to maintain the
replicated database when new data is entered, data values will have to be communicated between
sites. Further, at initialisation of the network or when a site is being introduced or reintroduced
after a site failure, all replications of the database must be made consistent and will need an update
process which also involves data value transfer.

UNCLASSIFIED II

ERL-0719-RN UNCLASSIFIED

This paper has outlined a method where the FDA synchronisation protocol can be incorporated into
a database manager. and transaction types can be decoded and managed by a transaction manager
in a %,a% whtch maximises the benefits obtainable from the FDA w4hen updates are on existing
database data. It also accommodates the requirements for value transfer during updates inol ing
new data inputs and site initialisation.

Site and network partition recovery have also been addressed. The simpler method of obtaining
a database copy from the nearest neighbouring site has been put forward as being the most efficient
and least expensive of communications for site recovery. The problem of recovery after a network
partition is much more complex and is not fully investigated in this paper. This subject needs
further investigation and is to be covered in a later paper.

12 UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

REFERENCES

\o. Author Title

I Singhal, M. "Update Transport: A New Technique For
Update Synchronisation in Replicated
Database Systems".
IEEE Transactions on Software
Engineering,
Vol. 16. No. 12. Dec 1990

2 Miller, S.J. "Distributed Processing Test-Bed Syrstem:
First Interim Report for the DPTBS.
WSRL-TM-26/90, Sep 1990

3 Reilly. M. and "Maintaining Consistenc• and
Tilman. P.R. Accommodating Network Repair in a Self-

Regenerative Distributed Database
Management System".
AGARD-CP-360, Feb 1985

4 Lamport. L. "Time Clocks and Ordering of Events in
Distributed Systems",
Communications. ACM Jul 1978

5 Davidson. S.B. "Optimism and Concurrency in Partitioned
Database Systems".
ACM Transactions Database Systems.
Sep 1984

6 Blaustein, P.A. "Maintaining replicated Databases even in
Garcia-Molina, H. Presence of Network Partitions".

EASCON, 1983

7 Attar, R. "Site Initialisation. Recovery, and Backup
Bernstein. P.A. in a Disributed Database System"

Proceedings of the Sixth Berkeley
Workshop on Distributed Data
Management and Computer Networks,
Nov 1982

Miller. S.I. "Maintaining Fully Replicated Distributed
O'Dea, D Databases in the Presence of Network or

Node Failure and Repair".
To be published.

9 Ross, F.E. "FDDI - a Tutorial"
IEEE, Communications Magazine, May
1986,
Vol. 24. No. 5

UNCLASSIFIED 13

ERL-0719-RN UNCLASSIFIED

14 UNCLASSIFIED

UNCLASSIFIED ERL.0T719-RN

APPLICATION APPLICATION APPL ICATION

D REPLICATED REPLICATED REPLCICTED
DATABASE DATABASE DATABASE

COPM NATION COmJMICATION COCM"ICATICM
INTERFACI INTEFACE INTERFACE

R-T OPERATING SYSTE R-T OPERATING SYSTEM R-1 OPERATING SYSTE

CWW.ICATION MEDIA

Figure I A Fully Replicated Database Architecture

UNCLASSIFIED 15

ERL-0719-RN UNCLASSIFIED

IPPL!CATION

TRANSACTION MANAGER
A

RIR

TRANSACT ION

HANDLER RSQ

XRQ

DATABASE

- 4 MANAGER

RELIABILITY TRANSACTION '-

MANAGER " PROCESSOR

S XOQ

SCOMM ICATION [NT.

Figure 2 Transaction Manager

16 UNCLASSIFIED

UNCLASSIFIED LRL.-0719-R\

APPENDIX I

SAMPLE OF TYPICAL TRANSACTION DEFINITIONS

This appendix defines a representative set of database files and a group of t.picaJ tran,,act•on,
Ahich interact wkith these files.

1.1 Database Files

The folloving database files types are typical of a combat system:

(a) SENSOR CONTACT

(Nb TRACK POSITION

(c) TRACKHISTORY

(d) TRACKSUPPLEMENTARY

(e, TARGETDATA

1.2 Transaction Definitions

A typical set of transaction types suitable for combat systems are defined in terms of a call
statement including any inputs (IN) parameters required. and output (OLT) parameters
obtained b\, the relevant processing, in the following sections.

1.2.1 New Contact

(a) Call statement

NEW CONTACT)IN SENSOR.OUT:CN,ERROR CODE)

where; SENSOR is an identifier for the associated sensor.
CN the allocated contact number, and
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code -

0 = OK
I= SENSOR does not exist
2= Contact file full
3 error in generating the replications
4 = reliable process error

4b) Transaction processing

Obtain the next available contact number CN and create a sensor contact data file for
the sensor type SENSOR. Store the CN and SENSOR identification in the sensor

UNCLAS: IED 17

ERL-0719-RN UNCLASSIFIED

contact file. This must be a reliable transaction process to ensure that all the required
replications are generated. Return the result of this process in ERRORCODE

1.2.2 Update Contact

JaI Call statement

UPDATE CONTACT(IN:CN.SENSOR DATA;OUT.ERRORCODE

where; SENSORDATA contains the new data values
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code
0 = OK
I = track CN does not exist
2 = SENSOR undefined

(b) Transaction processing

Update track CN with new data from SENSORDATA. A performance update protocol
can be used. Return the result of the process in ERRORCODE. This transaction
requires the new SENSORDATA values to accompany the readset.

1.2.3 Read Contact

(a) Call statement

READCONTACT(IN :CN;OUT:CONTACTDATAERRORCODE)

where; CONTACT DATA is the read data returned, and
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code
0 = OK

= track CN does not exist

ibN Transaction processing

Reads the local contact CN file and returns the CONTACT DATA. Return the result
of the process in ERROR-CODE.

1.2.4 Delete Contact

(a) Call statement

DELETECONTACT(I N:CN;OUT:ERRORCODE)

UNCLASSIFIED

£

UNCLASSIFIED ERL-0719-RN

where; ERROR-CODE is a code returned to indicate the succes/failure of' the
operation.

Code
0 = OK
I = contact CN does not exist
2 = system track exists
3 = reliable process error

(b) Transaction processing

Delete using a reliable process (essential that all copies be deleted) the contact CN data
file, including all its replications, if it is not associated with a s~stem track. Return the
result of this process in ERRORCODE.

1.2.5 New Track

(a) Call statement

NEWTRACK(OUT:TN,ERROR CODE)

where; TN is the allocated track number, and
ERROR-CODE is a code returned to indicate the success/failure of the
operation.

Code
0 = Ok
I = track file ;ull
2 = error in generating the replications
3 = reliable process error

(b) Transaction processing

Obtain the next available track number TN. Create all the relevant track, history and
supplementary records. This must be a reliable transaction process to ensure that all the
required replications are generated. Return the result of this process in ERRORCODE.

1.2.6 Update Track Position

(a) Call statement

UPDATETRACKPOSITION(IN :TNCN;OUT:ERRORCODE)

where: ERROR-CODE is a code returned to indicate the success/failure of the
operation.

Code
0= OK
I = track TN does not exist
2 = contact CN does not exist
3 = reliable update error

UNCLASSIFIED 19

ERL-OTI9-RN UNCLASSIFIED

(b) Transaction procesing

Update track TN with SENSOR DATA from CN The process %kill in.olxe the
updating of the historN records. calculauon of track vector and present track po.iton
parameters. and the updating of the relevant track record. A reliahlc update process
,hould he used. Return the result of the process in ERRORCODE.

1.2.7 Update Track Supplernentar. Data

ia) Call statement

UPDATETRACK_SUPPLEMENTARY(IN:TN.DATA TYPE.DATA.
OUT.ERROR CODE)

where: DATATYPE is data like Classification, Threat Designation etc.
DATA contains the new values, and
ERRORCODE is a code returned to indicate the

success/failure of the operation.

Code -
0 = OK

I = track TN does not exist
2 = DATATYPE does not exist
3 = DATA address does not exist
4 = reliable update error

(b) Transaction processing

Update track TN supplementary record with new data from DATA of DATATYPE
A reliable update process should be used. Return the result of the process in
ERRORCODE. This transaction sends the new DATA values vith the readset

1.2.8 Read Track Position

(a) Call statement

READTRACKPOSITIONdIN:TNOUT:TRACKPOSITIONERROR CODE)

where, TRACK-POSITION is the returned data. and
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code
0= OK

= track TN does not exist

20 UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

(b) Transaction processing

READTRACKPOSITION reads the track TN position data from the local file and
returns it in TRACKPOSITION. It also returns the result of the process in
ERRORCODE.

1.2.9 Read Track Supplementary Data

(a) Call statement

READTRACKSUPPLEMENTARY(IN: TN;
OUT:TRACK_SUPPLEMENTARY.
ERRORCODE)

where. TRACKSUPPLEMENTARY is the returned data. and
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code:-
0 =OK
I = track TN does not exist

(bI Transaction processing

READTRACKSUPPLEMENTARY reads the track TN supplementary data from the
local file and returns it in TRACKSUPPLEMENTARY. It also returns the result of
the process in ERRORCODE.

1.2.10 Delete Track

(a) Call statement

DELETETRACK(IN:TN;OUT:ERRORCODE)

where; ERROR-CODE is a code returned to indicate the success/failure of the
operation.

Code
0= OK
1 = track TN does not exist
2 = target track exists
3 = reliable process error

(b) Transaction processing

Delete using a reliable process all the associated track TN data records, including all its
replications. if it has not been designated as a target. Return the result of this process
in ERRORCODE.

UNCLASSIFIED 21

ERL-0719-RN UNCLASSIFIED

1.2.11 Copy Request

(a) Call statement

COPYREQUEST(IN:PARTITION:OUT:DATA.ERRORCODE)

vhcre. PARTITION is a database portion identifier eg page.
DATA is the read data. and
ERRORCODE is a code returned to indicate the success/failure of the
operation.

Code
0 OK

= PARTITION does not exist
2 = reliable process error

(b) Transaction processing

COPYREQUEST requests a copy of a database PARTITION from an appropriate
remote site. The data read at the selected site is returned to the application at the
requesting site in DATA. It also returns the result of this process in ERRORCODE.

22 UNCLASSIFIED

UNCLASSIFIED ERL-0719-RN

DISTRIBUTION

Copy No.

Defence Science and Technology Organisation

Chief Defence Scientist
Central Office Executive) I shared copy
Counsellor. Defence Science. London Cnt Sht
Counsellor. Defence Science. Washington Cnt Sht
Scientific Adviser to Defence Central 1 copy

Electronics Research Laboratory
Director I copy
Chief. Communications Division I copy
Chief. Electronic Warfare Division I copy
Chief. Information Technology Division I copy
Research Leader, Command & Control and Intelligence Systems I copy
Research Leader, Human Computer Interaction Laboratory I copy
Research Leader, Military Computer Systems I copy
Head. C31 Systems Engineering Group I copy
Mr S. Miller. C31 Systems Engineering Group 2 copies
Mr J. Schapel. C31 Systems Engineering Group I copy
Mr A. Allwright. C31 Systems Engineering Group I copy
Mr D. O'Dea, C31 Systems Engineering Group I copy
Head. Program and Executive Support 1 copy
Head. Trusted Computer Systems Group I copy
Head. Software Engineering Group 1 copy
Head. Computer Systems Architecture Group I copy
Head. Command Support Systems Group 1 copy
Head. Image Information Group I copy
Head. Information Acquisition and Processing Group 1 copy
Head, Information Management Group I copy
Head. Systems Simulation and Assessment Group I copy
Head. Exercise Analysis Group ! copy
Publications and Publicity, Information Technology Division I copy
Graphics and Documentation Support I copy

Department of Defence
Director General, Communications and Information Systems I copy

Defepce Intelligence Organisation
Scientific Adviser - Defence Intelligence Organisation 1 copy
Mr P. Drewer. PRS Intelligence Development and Systems I copy

Army Office
Scientific Adviser - Army I copy

Navy Offce
Director. Naval Combat Systems Engineering I copy
Naval Scientific Adviser I copy

UNCLASSIFIED 23

ERL-0719-RN UNCLASSIFIED

Air Force Office

Air Force Scientific Adviser I copy

Libraries and Information Services

Australian Government Publishing Service I copy
OIC, Technical Reports Centre, Defence Central Library, Campbell Park I copy
Manager, Document Exchange Centre, Defence Information Services I copy

National Technical Information Service United States 2 copies
Defence Research Information Centre, United Kingdom 2 copies
Director Scientific Information Services, Canada I copy
Ministry of Defence, New Zealand I copy
National Library of Australia 1 copy

Defence Science and Technology Organisation Salisbury, Research Library 2 copies
Librarian Defence Signals Directorate Melbourne I copy
British Library Document Supply Centre 1 copy

Spares
Defence Science and Technology Organisation Salisbury, Research Library 6 copies

24 UNCLASSIFIED

Department of Defence Page Classification
Unclassified

DOCUMENT CONTROL DATA SHEET Prvacy Marlung/Caveat
(of Document)
N/A

ia. AR Number lb. Establishment Number 2. Document Date 3. Task Number

AR-008-470 ERL-0719-RN JUNE 93 NAV87/226

4. Title 5. Secunty Classification 6. No. of Pages 29

E W 7 No. of Refs. 9
A FULLY REPLICATED DISTRIBUTED Document Title Abstract

DATABASE SYSTEM
S (Secret) C (Confi) R (Rest) U (Unclass)

For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.

8. Author(s) 9. Downgrading/Oelmiting Instructions

S.J. Miller N/A

1 Oa. Corporate Author and Address 11. Officer/Posdtion responsible for

Electronics Research Laboratory N/A
PO Bo x 1500 S ecurity

SALISBURY SA 5108 N/AD o w n g ra d in g I........ -. 1.. .

10b. Task Sponsor Approval for Release L.

NAVY

12. Secondary Distribution of this Document

Approved for Public Release

Any enquines outside stated lImitations should be referred through DSTIC, Defence Information Services,
Department of Defence, Anzac Park West, Canberra, ACT 2600.

13a. Deliberate Announcement

No limitation

13b. Casual Announcement (for citatlon in other documents) W No Lmiation

F] Ret. by Author. Doc No. and date only.

14. DEFTEST Descrptors Combat systems 15. OISCAT Subject Codes
Distributed database systems 1207,10
Real time operations
Naval avplications

16. Abstrac

This paper investigates a fully replicated distributed database system suitable for Naval
single platform combat systems. It is found that the fully-distributed approach to update
synchronisation, where each site completely executes every update, can be tailored to
minimise the control message traffic between sites. Database reliability issues are discussed
and a number of possible approaches for maintaining data consistency in a fully replicated
database are considered.

'Ss m!

Pae Classitficaton

Unclassified

16 Abstract (CONT)

17. Impnnt

Electronics Research Laboratory

PO Box 1500
SALISBURY SA 5108

I8. Document Series and Number 19. Cost Code 20. Type of Report and Period Covered

ERL-0719-RN RESEARCH NOTE

21 Computer Programs Used

N/A

22. Establishment File Peference(s)

N/A

23. Additional informaton (if required)

LI~~~

