AD-A272 838 o

L

The Effects of Block Size
on the Performance of Coherent Caches
in Shared-Memory Multiprocessors

L} ? g iz Cezary Dubnicki
ELFCTE :
[TV V 1 8 1993 :
A Technical Report 462
May 1993
‘-—'}“‘nis :‘.o-':'_'n:~ “.v"wﬂ 25 ‘z::“?e‘d j 303

LI R
UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

> .. .
9¢ 1; 17 o3




The Eftects of Block Size on the Performance
of Coherent Caches in Shared-Memory
Multiprocessors

by

Cezary Dubnicki

Submitted in Partial Fulfillment

of the

- w0 v TNSPECTED 8

Requirements for the Degree

DOCTOR OF PHIIOSOPHY

' Arzeron For
Fe T T
VRN EN '
|
Supervised by | "li
it H
o
Thomas J. LeBlanc L A
, =
Department of Computer Science Ve T
College of Arts and Science !r’" e e
( . Ly '
T
. . \, ot i
University of Rochester . el
i~ Qoo
]

Rochester, New York

1993




e ————————————— e ]

REPORT DOCUMENTATION PAGE

form Appeoveq
OMB No. 07040188

b v

cotiecuon of

-

”ne
s Dureen, tO W

mmm'ummﬂmmnmmwnw‘W:m mmmmmmw-':‘mmmmm
e dsth -

WTOrMEuOn, \NCUIng M SUAGLOR HEsONutyry Mw
Cavn regiver sy, S4uste 1204, Arengton, VA 121034301, 80 t0 the Office of Management 3nd Sudqet, Fagerwore Reducbon Proapect 10704-8 1081 Weshungton, OC

or

OUAGY SIDECT OF they

ton. Seng
Servces. Drrectorane for l‘-u‘, 1219 jetfenson

2. REPORT DATE
May 1993

e
1. AGENCY USE ONLY (Leave biank)

3. REPORT TYPE ANO DATES COVERED
technical report / Ph.D. thesis

BTy gy —— 1
4. TITLE AND SUSTITLE

Caches in Shared-Memory Multiprocessors

The Effects of Block Size on the Performance of Coherent

S. FUNDING NUMBERS
N00014-92-J-1801

[ AUTHOR(S)

Cezary Dubnicki

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
Computer Science Dept.

734 Computer Studies Bldg.

University of Rochester

Rochester, New York 14627-0226

S PERFORMING ORGANIZATION
REPORT NUMBER

TR 462 .

Office of Naval Research DARPA
Information Systems

Arlington, VA 22217

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES)

3701 N Fairfax Drive
Arlington, VA 22203

10. SPONSORING / MONITORING |
AGENCY REPORT NUMSER

Ty g
11. SUPPLEMENTARY NOTES

T
123. DISTRIBUTION/ AVAILABILITY STATEMENT

Distribution of.this document is unlimited.

126. DISTRISUTION CODE

13. ABSTRACT (Maximum 200 words)
(see page iv)

14. SUBIECT TERMS

parallel programming:
scalable multiprocessors

shared memory: cache organization:

1S. NUMBER OF PAGES
111

16. PRICE CQODE

Pe————
17. SECUNITY CLASSIFICATION
OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

e . B —————— Y YR
19, SECURITY CLASSIFICATION | 20. UMITATION OF ABSTRACT

OF ABSTRACT
unclassified

uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Craycnbed Dv AN Sta 119-18




ii

Curriculum Vitae

Cezary Dubnicki was born in Warsaw, Poland on 2 July, 1961. After finishing high
school (Liceum im. K. Gottwalda) in 1980, he enrolled in the Department of Math-
ematics, Informatics and Mechanics at Warsaw University to study computer science.
Cezary graduated with the Magister degree in Computer Science in 1985. His Master’s
thesis was devoted to an implementation of the distributed programming language Edi-
son on a network of microcomputers. This project, supervised by Professor Jan Madey,
was joint work with Piotr Kalamjski and Wojciech Wygladala.

After graduation, Cezary accepted a position as a Research Assistant with the Com-
puting Center at Warsaw University. He was employed there from 1985 to 1988, with
the exception of 1986, when he severed in the army.

Cezary enrolled in the graduate program in Computer Science at the University of
Rochester in the winter of 1989. He pursued research in parallel programming under the
direction of Professor Tom LeBlanc and received the Master of Science degree in 1990.
In 1993, after completing his Ph.D. degree, Cezary accepted a position as a Research
Associate with the Computer Science Department at Princeton University.




i

Acknowledgments

It is difficult to overestimate the role of my advisor, Tom LeBlanc, in my graduate
studies as a whole, and in the preparation of this thesis in particular. His guidance
and encouragement were crucial for the progress of my research at Rochester. Most of
this dissertation is derived from publications produced jointly with Tom. He helped in
defining the adjustable block size cache and provided invaluable input on the contents
and organization of this thesis.

Michael Scott, Rob Fowler and Alexander Albicki offered numerous comments on
this research, which helped broaden and strengthen its results.

William Bolosky deserves special thanks for providing the traces of parallel appli-
cations and their description. I am also indebted to William Bolosky, Mark Crovella,
Kai Li, Evangelos Markatos, Jack Veenstra and Jonathan Sandberg for comments on
various stages of this work.

1 would also like to thank the entire Department of Computer Science, including
fellow students and the staff, for the friendly atmosphere which made my graduate
studies highly enjoyable.

I wish to thank special friends, Anabelle and Henry Martin, who always made me
feel welcome in their home and provided me with invaluable help in organizing my life
in Rochester.

Finally, this thesis would not have been possible without my family. The love and
support of my wife, Katarzyna, my parents Walerian and Barbara, and my sister Iga,
gave me the strength to endure the stress of students life and to overcome all obstacles
on the bumpy road to graduation. I feel extremely fortunate to be a member of this
family.

This research was supported under NSF CISE Institutional Infrastructure Program
Grant No. CDA-8822724, and ONR Contract No. N00014-92-J-1801 (in conjunction
with the DARPA HPCC program, ARPA Order No. 8930).




iv

Abstract

Several studies have shown that the performance of coherent caches depends on the
relationship between the cache block size and the granularity of sharing and locality
exhibited by the program. Large cache blocks exploit processor and spatial locality, but
may cause unnecessary cache invalidations due to false sharing. Small cache blocks can
reduce the number of cache invalidations, but increase the number of bus or network
transactions required to load data into the cache. In this dissertation we use reference
traces from a variety of parallel programs and detailed simulation of a scalable shared-
memory multiprocessor to examine the effects of cache block size on the performance of
coherent caches and quantify this impact with respect to the network bandwidth and
latency.

Our results suggest that, regardless of the available bandwidth or latency, appli-
cations with good spatial locality favor long cache lines, and for these applications the
relative benefits of longer cache lines increase with the bandwidth and latency. For those
applications with poor spatial locality, the best choice of cache line size is determined
by the product of the network bandwidth and latency, and for these applications, the
performance penalty induced by long cache lines increases as this product decreases.
We also found that the performance penalty of a mismatch between the cache block size
and the sharing patterns exhibited by applications increases with an increase in latency,
and decreases with an increase in bandwidth, and can be substantial even on machines
with infinite bandwidth.

To reduce this penalty we propose a new cache organization that adjusts the size
of data blocks dynamically according to recent reference patterns. In this new cache
organization, blocks are split in two when false sharing occurs, and merged back together
to exploit spatial locality. Results of simulations in which we varied both the network
bandwidth and latency indicate that, for the suite of applications we consider, the
adjustable block size cache organization performs better than every fixed block size
alternative (including caches that prefetch multiple lines). In addition, the performance
benefits of adjustable block size caches increase with an increase in the ratio of network
latency to bandwidth. We conclude that adjusting the block size in response to reference
behavior can significantly improve the performance of coherent caches, especially when
there is variability in the granularity of sharing exhibited by applications.




Table of Contents

Curriculuna Vitae

Acknowledgments

Abstract

List of Tables

List of Figures

1

Introduction

1.1 Statement of the Problem . . . . .. ... ... ... ... ........
1.2 Statementofthe Thesis . . .. ... ... ... ... ... ... .....
1.3 Dissertation Contributions . . . . . . .. ... ... ... ... . ... ..

1.4 Organization of the Dissertation . . ....................

Related Work

2.1 Coherent Caches . . . ... ... ... ... ... ...
2.2 Sharing Patterns and Their Effects on Cache Performance . . . . . . ..
2.3 Alternative Solutions . . . . .. ... ... .. ... . o L.
24 SUMMATY .« . o v v v e e e e e e e e e e e e e e e e e

Methodology for Cache Evaluation

3.1 Architectural Assumptions. . . ... ... ... ... .. L ...
3.2 Coherency Protocol . . . . . ... .. .. ... ... ..,
3.3 SimulationModel . . . . .. ... ... L
3.4 Cache Organizations . . . . ... .. ... .. ... ...
3.5 Performance Metrics . . .. .. ... .. ... .. ... ... .. ...,
3.6 Memory Reference Traces . . . ... ... ... ... .. ..0......
3.7 Simulation Software . ... .......... ... ... .. ... .

it

il

v

viii

ix

N N e

12
13
16




vi

4 Evaluation of Fixed Line Size Caches 29
4.1 Properties of Miss Rateand DTPR . . . . . .. ... ... ........ 29
4.2 The Effectsof Bandwidth . . . . . . . ... .. ... ... ... ..... 33
4.3 The Effectsof Latency . . . . . . .. ... .. .. ... ... ....... 43
4.4 Summary . ... . .. i e e e e e e e e e e e 45

5 Adjustable Block Size Caches 47
5.1 Overview . . . . . . . . e e e e e e 47
5.2 Implementation in a Scalable Multiprocessor . ... ... ... ... .. 49
5.3 AdjustingtheBlock Size . . . . . ... ... . L L oL, 51
5.4 Integration with the Coherency Protocol . . . . . ... ... ... . ... 52
5.5 Summary . ... ... e e e e e e e e 54

6 Evaluation of Adjustable Block Size Caches 55
6.1 Cachelnstamces. . . . ... ... .. ... . . ... . ... 55
6.2 Network-Independent Analysis . ... ... ................ 56
6.3 Effecton MCPR . .. .. . . . . . . .. i, 60
6.4 CacheSize. . .. ... . .. . ... 62
6.5 Summary . ... ... ... e 64

7 Selecting an Instance of the Adjustable Block Size Cache Organization 67
7.1 Effects of Adjustable Block Size Cache Parameters . . . . ... ... .. 67
7.2 High Bandwidth Machines . . . . .. ... ... ... ........... 71
7.3 Medium Bandwidth Machines . . . . . ... .. ... ........... 74
7.4 Low Bandwidth Machines . . . ... ... ... .............. 75
7.5 High Latency Machines . . .. ... ... ... ... ... ........ 77
7.6 Summary . . . . . .. e e e 79

8 Conclusions and Future Work 81

Bibliography 85

A Figures and Tables for All Applications 89
Al bsort . . .. 90
A2 gauss. . . . . L e e 92
A3 kmerge . . . . ... e 94
Ad matmult . . . ... 96

AbS mpdd. . . . 98




vii
A6 pgauss . . . . . . e e e e 100
AT plytrace . . . .. .. 102
A8 pmatmult . . . . ... 104
A9 gsort . . .o e e 106
Ad0sorbyc . . . . o o e e e e e 108




viii

List of Tables

3.1 Summary of Reference Traces.. . . . ... ... ... ... ........ 26
4.1 Cache Line Size with Minimal Miss Rate. . . . ... ... ..... ... 30
4.2 Best Fixed Line Size Histogram . . . . . . ... ... ... ... ..... 42
4.3 Ranges of Preferred Line Sizes . . . ... ... ... ... ........ 44
6.1 M(50,10) Machine - MCPR Relative to Vblock(4,64,16,(1,1)) . . . .. 61
7.1 M(50,0) Machine - MCPR Relative to Vblock(16,64,64,(1,1)) . .. .. 72
7.2 M(50,1) Machine - MCPR Relative to Vblock(16,64,64,(1,1)) . .. .. 73
7.3 M(50,5) Machine - MCPR Relative to Vblock(8,64,64,(1,1)) . . . . .. 74
7.4 M(50,20) Machine - MCPR Relative to Vblock(4,64,16,(1,1)) . . . . . 76
7.5 Utility of Adjustable Cache as a Function of Latency and Bandwidth. . 77
7.6 MCPR of Best Fixed Line Size Cache Relative to Vblock(16,64,64,(1,1)). 78
A.1 Split and Merge Statistics- bsort . . . .. ... ... ... ... ..... 91
A.2 Split and Merge Statistics-gauss . . . . . ... ... ... ..., 93
A.3 Split and Merge Statistics - kmerge . . . . . .. ... ... L. 95
A.4 Split and Merge Statistics - matmult . . . . .. ... ... ... ... .. 97
A.5 Split and Merge Statistics-mp3d . . . .. ... ... ... ... ... 99
A.6 Split and Merge Statistics- pgauss . . . . ... ... .. ... ... 101
A.7 Split and Merge Statistics - plytrace . . ... ... ... ... ...... 103
A.8 Split and Merge Statistics- pmatmult . . ... ... ... ... ..... 105
A.9 Split and Merge Statistics- gsort . . . .. ... ... .. ......... 107
A.10 Split and Merge Statistics- sorbyc . . . . ... ... ... ... L. 109

A.11 Split and Merge Statistics- sorbyr . . . . . .. ... . ... L. 111




3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

A.l1l
Al12
A.l3
Al4
A21
A22
A23
A24
A3l
A3.2
A33
A34
A4l
A4.2
A43
A4d4

List of Figures

Flow of Messages in the Coherency Protocol . .. ... .. ... ...

Relationship Between MissR and DTPR - pgauss . . . . ... ... ..
Relationship Between MissR and DTPR - plytrace . . . ... .. ...
Relationship Between MissR and DTPR - bsort . . . . . . .. ... ..
Mean Cost Per Reference as a Function of Bandwidth - bsort . . . . .
Mean Cost Per Reference as a Function . Bandwidth - sorbyr . . .
Mean Cost Per Reference as a Function of Bandwidth - pmatmult
Mean Cost Per Reference as a Function of Bandwidth - matmult . . .
Mean Cost Per Reference as a Function of Bandwidth - mp3d . . . . .

Mean Cost Per Reference as a Function of Bandwidth - sorbyc . . . .

Miss Rate- bsort . . . . . .. . .. . . .. .. ...
Data Words Transferred Per Reference - bsort . . . .. ... .. ...
Cache Size - bsort. . . . . ... ... .. ... ...
Fraction of Block Transfers of Given Size - bsort . . .. ... .. ...
Miss Rate - gauss . . . . . . . .. ... ... ...
Data Words Transferred Per Reference - gauss . . . . . ... ... ..
Cache Size - gauss. . . . . .. ... ... ... ...
Fraction of Block Transfers of Given Size - gauss . . . . ... .. ...
Miss Rate - kmerge. . . . . . . .. ... ... ... . ... ...
Data Words Transferred Per Reference - kmerge . . . . ... .. ...
Cache Size-kmerge. . . . . . . . . ... ... ... .. ...
Fraction of Block Transfers of Given Size - kmerge . . . . .. ... ..
MissRate-matmult . . . . . ... ... ... ... ... .......
Data Words Transferred Per Reference - matmult . . . . . .. ... ..

Cache Size - matmuit. . . . .. .. . ... . . . . ...

ix




AS.1
A.5.2
Ab53
Ab.4
A6.1
A6.2
A.6.3
A6.4
AT71
A.7.2
A.7.3
A74
A8.1
AB8.2
A8.3
A84
A9l
A9.2
A93
A9.4
A.10.1
A.10.2
A.10.3
A.10.4
A1l
A11.2
A113
All4

Miss Rate - mp3d

Data Words Transferred Per Reference - mp3d . . . . . . . ... .. 98
CacheSize -mp3d. . . . . . . ... ... ... 99
Fraction of Block Transfers of Given Size - mp3d . . . . . .. .. ... 99

fiss Rate - pgauss . . .. ... ... ... ... ... L. 100
Data Words Transferred Per Reference - pgauss . . . . . . . . ... .. 100
Cache Size - pgauss. . . . . .. . . . .. ... 101
Fraction of Block Transfers of Given Size - pgauss . . . . .. ... .. 101
Miss Rate - plytrace . . . . .. ... .. ... ... ... ..., 102
Data Words Transferred Per Reference - plytrace . . . . . . . .. ... 10<
Cache Size - plytrace. . . . . . .. ... ... L. .. 103
Fraction of Block Transfers of Given Size - plytrace . . . . . . . . . .. 103
Miss Rate - pmatmult . . . . . .. ... L o oL 104
Data Words Transferred Per Reference - pmatmult . . . . . . . . ... 104
Cache Size - pmatmult. . . . . ... ... o L 105
Fraction of Block Transfers of Given Size - pmatmult . . . . . .. . .. 105
MissRate-gsort . . . . . . . . .. .. o 106
Data Words Transferred Per Reference - gsort . . . .. ... .. ... 106
Cache Size - gsort. . . . . .. . . . ... e 107
Fraction of Block Transfers of Given Size - gsort . . . . ... .. ... 107
Miss Rate - sorbyc . . . . . . . .. . . oL 108
Data Words Transferred Per Reference - sorbyc . . . . . ... .. ... 108
Cache Size - sorbyc. . . . ... .. ... oo oo 109
Fraction of Block Transfers of Given Size - sorbyc . . . ... ... .. 109
Miss Rate - sorbyr . . . . . . . .. . . e 110
Data Words Transferred Per Reference - sorbyr . . . . . .. ... ... 110
Cache Size - sorbyr. . . . . . . . ... 111

Fraction of Block Transfers of Given Size - sorbyr . .. ... .. ... 111




1 Introduction

Caches in uniprocessor systems have been successful in reducing the speed gap between
fast processors and much slower memory. For multiprocessors this gap poses an even
bigger problem because it is so much wider - due to data sharing, there are usually
more levels in the memory hierarchy of a multiprocessor. In particular, a multiprocessor
must provide a way to share data between processors, which is usually done by allowing
one node to access the local memory of another, or by introducing system-wide shared
memory. Both of these methods introduce memory that is non-local to a processor, with
delays substantially greater than those for local memory. Therefore it seems natural to
use caches in multiprocessor systems to reduce memory latency.

Unfortunately, computers with two or more processors require a technique for ensur-
ing that data remain consistent: all changes to a piece of data must be propagated to all
cached copies. In spite of this coherency problem, coherent caches are very popular in
modern multiprocessors because they provide the programmer with a hardware imple-
mentation of an abstraction of shared memory, which simplifies paraliel programming.

1.1 Statement of the Problem

To realize the advantages of a shared-memory model the programmer should be free
to forget about peculiarities in the organization of the memory system. The hardware,
together with the system software (operating system, libraries, compiler) should allow
for the efficient execution of well-written, architecture-independent parallel programs.
Unfortunately this is not the case in today’s multiprocessor systems.

Several studies have shown that the performance of coherent caches, and in particular
the number of invalidations, depends on the relationship between the granularity of
sharing and locality exhibited by the program and the cache line size [28; 29; 33]. Long
cache lines improve application performance when there is substantial spatial locality
(i.e. all words allocated to one cache line are accessed by one processor in some window
of time). If the cache line is smaller than the objects used on a per-processor basis,
then accessing a single object can generate references to multiple cache lines, increasing
misses and decreasing the prefetching effect of spatial locality [33]. However, if the
cache line is too large, then false sharing [48] is introduced (wherein two data items not
being shared happen to reside in the same cache line), which increases the number of




invalidations [29]. Since the granularity of sharing can vary widely among programs, the
likelihood of a mismatch between the line size and the grain size used by some programs
is high.

One compromise solution is to use short cache lines and prefetching. A short cache
line minimizes false sharing, while prefetching reduces the number of transactions re-
quired to load an object larger than a cache line into the cache. Unfortunately, prefetch-
ing has its limitations as well. The overhead of prefetching cannot be recovered unless
the prefetched data is referenced, which may not be the case when the object size used
by the program is smailer than the amount of data being prefetched. Also, as with large
cache lines, prefetching may increase the number of invalidations, since prefetched data
becomes a candidate for invalidation, even if it is never referenced.

1.2 Statement of the Thesis

Although there is no single coherency block size that is optimal for all applications,
we claim that we need only a few block sizes to satisfy many different applications,
regardless of the available network bandwidth. Moreover, we claim that we can avoid
the performance loss caused by a mismatch between the size of the coherency unit and an
application’s sharing patterns by making the coherency protocol operate on variable-size
data blocks instead of fixed-size cache lines. In this scheme, each data block represents
a contiguous segment of address space on which coherency is maintained, and the size
of each data block is adjusted dynamically, according to recent reference patterns. We
propose a new cache organization based on this idea, hereafter referred to as adjustablc
block size coherent caches, which are desigred specifically for scalable shared-memory
multiprocessors.

1.3 Dissertation Contributions

The first contribution of this dissertation is a thorough analysis of fixed line size cache
performance based on extensive simulations of parallel applications. In this study we
consider eleven applications with various degrees of spatial and processor locality. We
simulate these applications on five multiprocessors with various network bandwidth
levels. We identify the relationship between cache performance metrics, like the miss
rate, the amount of data transferred per reference, and the mean cost per reference, and
the characteristics of an application and the host multiprocessor.

The second contribution is a proposal for adjustable block size caches, which can
be used to reduce the penalty caused by a mismatch between the cache line size and
an application’s sharing patterns. We describe the implementation of this new cache
organization in a scalable multiprocessor, and discuss the tradeoffs involved in the im-
plementation. Using simulation, we compare the performance of the new cache organi-
zation with existing cache implementations, and quantify the relative advantages and
disadvantages of adjustable block size coherent caches. We also identify how the perfor-




mance of each cache implementation depends both on the application and the network
latency and bandwidth of the host multiprocessor.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows.

Chapter 2 discusses previous research related to this thesis. It includes a description
of coherent caches in bus-based and scalable multiprocessors, and gives an overview of
the work on analysis of data sharing patterns and techniques proposed for dealing with
the tradeoff between locality and sharing.

Chapter 3 describes the multiprocessor architecture we simulated in our experiments,
and the parallel applications used in our studies. It also contains a description of the
simulation software, and the performance metrics recorded during each simulation.

Chapter 4 evaluates the performance of fixed line size caches on our application
suite. First, we examine the relationship between the miss rate and the amount of data
transferred per reference for each program in our application suite. Next we investigate
the range of cache line sizes preferred by the applications in our suite, and explain how
changes in the network bandwidth and latency influence this range.

Chapter 5 describes the idea of adjustable block size coherent caches, together with
the implementation details for a scalable multiprocessor.

Chapter 6 evaluates the performance of adjustable block size caches. Using the
results of chapter 4 we propose specific instances of adjustable caches for a number of
machines with various network bandwidth levels. Next we compare the performance
of selected instances of adjustable block size caches against fixed line size caches with
various degrees of multi-line prefetching. In this comparison study we use network-
independent metrics, such as the miss rate, the amount of data transferred per reference,
and the cache size. Finally we show just how much an adjustable cache can reduce the
mean cost per reference for our application suite.

Chapter 7 investigates in detail how the performance of adjustable caches (expressed
as the mean cost per reference) depends on specific parameters used in the implemen-
tation. We vary the network bandwidth and latency in a series of experiments to show
how the performance of adjustable caches depends on the network characteristics of
the host multiprocessor. We then show how to select an instance of the adjustable
cache organization that is best suited for a particular machine, and quantify how much
improvement over the best fixed line size cache we can expect to achieve.

We conclude the dissertation and suggest directions for future work in chapter 8.







2 Related Work

There is a large body of work related to coherent caches in general, and the tradeoff
between spatial locality and sharing in particular. We organize our discussion of this
work as follows. Section 2.1 describes different ways to implement coherency, including
coherent hardware caches, operating system implementations of coherent memory, and
other software-based coherence schemes.

In section 2.2 we describe research on the properties of data sharing in parallel
programs and their effects on cache performance. We consider the role of the cache line
size, and discuss attempts at modeling the behavior of parallel programs.

Section 2.3 contains a discussion of various solutions for dealing with the trade-
off between locality and sharing. We include here cache-sensitive restructuring of pro-
-gram code, software and hardware prefetching, clever implementation of synchronization
primitives, and multiple context processors.

Section 2.4 summarizes the related work and distinguishes the work described in
this dissertation from previous work.

2.1 Coherent Caches

Hardware solutions to the coherency problem provide data coherency through a co-
herency protoco! bhuilt into the hardware, which automatically detects modifications
and requests for .hared data and ensures that each user sees these data according to
the particular data coherency scheme implemented. The details of the implementation
of a coherency protoce! strongly depend on the architecture.

The two families of shared-memory architectures are bus-based systems and scalable
architectures. The former group includes the Sequent Symmetry, Encore Multimax and
Silicon Graphics Iris. These machines are usually built around a single bus, to which a
limited number of processors (up to 30) may be connected. There is more architectural
variation in the latter group, which consists of switching-network based systems like the
BBN Butterfly, ring-based systems like the KSR1, mesh-based systems like the MIT
Alewife, and muitibus machines like the Wisconsin Multicube. Finally there are hybrid
architectures, like the Stanford DASH, in which bus-based clusters of processors are
connected by an interconnection network.




Most of the bus-based multiprocessors implement coherent caches using broadcast
protocols [4; 30]. Given the inherent limitations of bus bandwidth in these machines,
there is increasing interest in coherence schemes that do not require a broadcast medium.
Recent proposals for scalable coherent caches implement coherency using a directory-
based protocol [15; 38]. In this type of protocol, a directory associated with a memory
module maintains information about the distribution of copies of data across caches.
When write requests are serviced, invalidation messages are sent to the caches containing
a copy of the data.

There are also software-based solutions to the coherency problem which are imple-
mented on top of standard uniprocessor caches. Coherency is maintained by software,
usually by a smart compiler. Minimal hardware support is assumed, like special read
instructions that bypass the cache. Other software-based solutions include operating
system implementations of coherent shared memory, where coherency is maintained by
allowing only one writer to a page and replicating read-only pages. These implementa-
tions use the standard virtual memory mechanism to control page accesses.

Both groups of solutions are important for this dissertation. Software-based solu-
tions introduce new possibilities for avoiding the performance hit caused by a mismatch
between the line size and an application’s sharing pattern. Hardware implementations
are relevant because this thesis proposes a hardware solution to the problem of a mis-
match between the line size and an application’s sharing pattern.

2.1.1 Coherent Caches in Bus-Based Multiprocessors

Coherent caches in bus-based multiprocessors are usually implemented with a technique
called snooping [4]. Each processor is connected to the bus and has a snooping module
that watches the bus traffic. If a bus transaction affects the data in a processor’s cache,
the snooping module undertakes the proper action as defined by the protocol.

Snooping is possible because the bus, with its broadcasting capability, provides a
system-wide synchronization and communication device. One consequence of a cheap
broadcast is that it is always possible to extract the information about copies of a given
piece of data by broadcasting a request on the bus. Therefore bus-based systems do not
need a directory, which is necessary for scalable multiprocessors. Instead, a processor
cache line is usually extended with a few bi. that indicate the coherency state of the
line. The set of possible states depends on the protocol.

There are three main types of coherency protocols used i~ bus-based machines. The
first category consists of write-through with invalidate protocols usnd in dual-processor
machines like the IBM 3033 and the VAX 11/780, and early multiprocessors like the
Encore Multimax and Sequent Balance 8000. In this type of protocol each write is
propagated to main memory, which results in heavy bus traffic. Since the bus is usually
a bottleneck in such systems, this kind of protocol is not very efficient.

The second category consists of write-invalidate with copy-back protocols. 1 he key
idea here is the concept of ownership of modified data: after the first write to a block of
. data, the processor performing the write becomes the ¢ 'rer of the block. Subsequent
writes from this processor are to the local cache only, untii the data is requested by




-3

another processor. Upon such a request, the modified data is usually written back to
main memory. This scheme allows for a reduction in bus transactions proportional to
the processor locality present in a given application.

Write-invalidate protocols are very popular now, which has lead to a proliferation
of variants of this general idea. Ownership by the main memory was introduced in the
Synapse N+1 protocol [31]. On a read miss to modified data, there is no cache-to-cache
transfer, but instead the data is written back to memory and the requesting cache must
reissue the read request. This results in a penalty of three bus cycles for external reads of
modified data. In the Berkeley Ownership protocol [35] modified blocks are not written
back to main memory on cache-to-cache transfers. Therefore it is possible for data to
be in the shared dirty state. The write back takes place when a dirty line is evicted
from the owning cache. The Ilinois protocol [44] extends the concept of ownership to
unmodified data, which avoids unnecessary bus transactions on the first write to local
data.

The third category cousists of write-update protocols. In this scheme each write to
shared data is propagated to all copies with one bus transaction. There is a special
bus line that is asserted when a write is propagated and there are copies of this data in
other caches. If there are no such copies, a writer notices that it has the only copy and
subsequent writes go to the local cache until the data is requested by another processor.
In this way write-update protocols implement a copy-back policy for blocks that are not
shared. This protocol is used in the DEC Firetly [47].

Analysis of sharing patterns of parallel programs indicates that write-invalidate pro-

tocols are the best in most cases. This conclusion is supported by the increasing popu-
larity of this type of protocol in the design of new multiprocessors [5].

2.1.2 Coherent Caches in Scalable Multiprocessors

A popular method for maintaining cache coherency in large-scale shared-memory multi-
processors is called the directory scheme [13]. In this scheme physical memory is divided
into blocks of a fixed size. There is a tag (or directory entry) associated with each block.
Tags form a directory. Each entry contains the state of the block (defined by two bits:
modified and locked) and one bit per processor. Bit P is set if this block is cached by
processor P. Additionally, each cache eatry maintains status bits for the entry (valid,
modified). A cache entry may be in one of the following states: Valid, Valid-Modified,
and Invalid. A memory block may be in one of 4 states:

e Absent - no cache holds a copy
o Read-shared - one or more caches hold a copy and it is not modified
o Modified - exactly one cache holds a copy and it is modified

o Locked - an operation on this block is in progress

Two different protocols are used: write-invalidate causes invalidation of all copies of data
kept in the caches upon a write request; write-update updates these copies with a new




value. These protocols are similar to those used in bus-based machines. However, there
are significant differences due to the underlying architecture. The complete definition of
state transitions and actions taken by a write-invalidate protocol can be found in [13].

The directory scheme is well-suited for large-scale multiprocessors because it does
not require broadcast, as do bus-based coherence schemes. It allows for memory and
directory distribution to avoid bottlenecks. However, there are two drawbacks to this
scheme. First it requires O(P?) memory, where P is the number of processors. This is
because we have to keep a bit for each processor and each memory block, and the total
mermory size is usually proportional to the number of processors. The second drawback
is that the coherence protocol may result in substantial communication overhead, for
example when a variable is used in a producer-consumer style (read-write) and a write-
invalidate protocol is used.

A lot of work has been done on reducing memory requirements of the original direc-
tory scheme, which we will call the full directory scheme, to distinguish it from newer
versions. One proposal, called Limited Direciories [3], limits the number of processors
that can keep a copy of a datum in their caches Instead of one bit per processor, now
a directory has to keep pointers to a few processors that cache the data. When more
than the allowed number of processors wants to cache a particular block, some of the
copies are invalidated to make room for new copies. The memory requirement of this
scheme is on the order of Plog P, because a pointer occupies log P space. It has been
shown [14] that it is possible to achieve good performance with this scheme for many
applications. However, there are a few applications for which the results are poor due to

- directory thrashing caused by data shared by many processors. It is possible to improve
the performance even in this case, but at the cost of program transformations.

Another approach limiting the memory requirements of the directory-based scheme
is the chained directory [14; 34]. In this scheme a linked list of caches containing the
copy of a given data is maintained. The head of the list is usually a directory entry.
Double-linked lists may be used to efficiently implement cache replacement. In this
scheme write invalidation or update takes time proportional to the length of the list.

A similar idea of keeping the directory information with the caches has been pre-
sented in [46]. In this solution the bits indicating where a given copy resides are asso-
ciated with each cache entry.

Many simulations have shown that parallel programs have relatively few variables
that are shared by many processors. However, it is important to support such sharing
efficiently. This observation was used in the design of two schemes: LimitLESS di-
rectories and Tag caches. LimitLESS directories [15] were designed for the ALEWIFE
multiprocessor system [2]. A limitless directory is a limited directory scheme with the
added feature that exceptional sharing of data by many processors is managed in soft-
ware. ALEWIFE supports this efficiently using very fast context switch. The tag cache
scheme implements a directory in the form of two-level caches associated with memory
modules. Each memory module has one cache indexed by a memory block, which is
able to keep a few (usually one) pointers to processors caching the block. The second
cache, much smaller than the first, keeps full directory entries, i.e. one bit per processor.
This scheme allows performance quite close to that of full directories, with much lower




memory requirements [43].

One concrete example of a coherent cache implementation for large-scale shared-
memory multiprocessors is the DASH project [38]. In this multiprocessor each cluster
consists of a small number of processors and a portion of the shared memory connected
together by a bus. Memory coherency is maintained with a snooping protocol within a
cluster and with a distributed write-invalidate protocol across clusters. This distributed
protocol uses a presence bit directory, where one bit represents one cluster. The direc-
tory is distributed across all clusters - each one has a part of the directory responsible
for maintaining coherency of the portion of shared memory associated with a cluster.

There are also other propcsals for scalable coherent caches that are not derived
explicitly from the directory scheme. An example of such a scheme is cache management
in the PLUS system {8]. This scheme is based on page replication. There is a memory
coherence manager associated with each node (and its memory). For each virtual page
there is a master physical page and replicas. All these pages are arranged in one list,
with the master page at the head. On each node there is a replication structure which
consists of two tables. The master table contains the global physical page address of
each locally replicated page; the next-copy table identifies the successor, if any, along
the list. A write-update protocol is used and each write starts with the master copy.
Although pages are replicated, the unit of coherence is not a page, but one word. There
is a cache of pending writes associated with each memory coberence manager. While
a write is in progress, a read to this location from the same processor that issued the
write is blocked until the write completes. Note that write-update is essential for this
organization; it would not be efficient to replicate pages and maintain coherency of
words with a write-invalidate protocol.

The PLUS system is a hybrid scheme because software plays a significant role in
cache management. In particular, page replication and migration is done by software.
This makes the system similar to the operating system solutions described below. How-
ever, hardware support is significant - there are cache coherence managers and special
counters that count references from each processor to each page to determine when
migration or replication should occur.

2.1.3 Operating System Implementations of Coherent Memory

There is a large body of work on operating system solutions to the memory coherency
problem in large-scale multiprocessor systems. This work uses standard virtual memory
hardware and implements coherent memory in the operating system layer. It it impor-
tant to note that in many cases this work is directly relevant to coherent caches. In
fact, we can treat operating system solutions as cache coherence protocols with a large
cache block size (equal to the page size).

This work has been motivated by NUMA and NORMA architectures. NUMA stands
for Non-Uniform Memory Access and denotes multiprocessors with nonuniformity of
- memory- explicitly visible to the programmer (i.e. no coherent caches). However, re-
mote reference is directly supported by the hardware. NORMA stands for No Remote




10

Memory Access and denotes machines in which only message passing is available for
communication between nodes.

Early work in this area reached different conclusions. Solutions based on page mi-
gration and periodic examination of reference bits were found to be not much better
than good initial placement of data [41]. Other work [10] used replication and migration
driven by page faults to minimize memory latency and froze frequently shared pages
in global memory to avoid excessive copying. The conclusion was that it is possible to
obtain very good results, within 5% of a hypothetical execution with ideal placement
of all data in local memories. Encouraging results with a dynamic page placement
policy were reported by the PLATINUM project[20]. Unlike [10], page daemons for
"defrosting” previously frozen pages were used, which allows for dynamic adjustment
of per-page coherence mechanisms according to recent reference behavior.

An extensive study of replication and migration policies is presented in [37]. Seven
different applications were run, each with 46 different memory management policies.
Slowdown was measured by comparing the execution time of a given application under
a given policy to the time it took to execute a NUMA-tuned version of the application.
The best "worst-case” policy can be defined as that which causes the smallest slowdown
for all seven applications. For these experiments the best worst case policy slowed down
one application by 40%, but for others it did very well, even speeding up some of them.

Another study of replication and migration policies compared them against an op-
. timal, off-line policy- (computed with future knowledge of references) [11]. This study
assumes a fixed size for the hardware coherency unit (a virtual memory page in this case)
and a write-invalidate protocol augmented with remote references. This algorithm can
also be used to evaluate the performance of coherent caches provided we use a fixed line
size organization. Another interesting aspect of this study is its comparison of different
architectures. It is concluded that there is no single policy that will be close to the
optimal for all possible architectures. For example, freezing pages is a good policy for
one machine, in which the cost of a page transfer is high in comparison to remote access.
As the cost of page movement decreases, it pays to move a page between processors to
use the temporal locality of references to a page.

For NORMA machines, the implementation of coherent memory by the operating
system is called distributed shared memory (DSM) and has been proposed by Li and
Hudak [40]. Asin NUMA machines, this implementation uses the paging mechanisms to
control and maintain single-writer and multiple-reader coherence at a page level. There
is no support for remote memory access in the hardware however, so it becomes more
expensive, as a page fault followed by message passing is needed.

To achieve good performance of parallel applications on machines with operating
system implementations of coherent memory, we need to minimize fine-grain and false
sharing. This conclusion is reached by all the studies described above, but unfortunately
for many programs, false sharing is a serious problem due to large virtual memory pages.
This is also one reason why there is no commercial implementation of coherency by the
operating system.




11

2.1.4 Software-Based Cache Coherence

In software-based cache coherence, a compiler analyzes when it is safe to cache shared
read-write datum. At the end of this interval, main memory is made consistent and the
cached datum is invalidated.

An example of such a scheme is selective invalidation [16]. In this scheme accesses
to shared variables within a computational unit are classified as always up to date
or possibly stale. Three cache instructions are assumed: Memory-Read (used to read
possibly stale data), Cache-Read (reads up-to-date copy from a cache), and Cache-
Invalidate (invalidates one local cache line by setting a special change bit which is
associated with each cache line).

Another software scheme [17] uses version numbers associated with each variable
and birth numbers associated with each cache line. A version number is updated at the
end of each phase of a program that resulted in a write to this variable. This update is
inserted by the compiler and it affects the local version number only. The birth number
is set to the current version number on a read miss or the current version number plus
one on a write. A reference results in a cache hit only if the current version number of
referenced data is not greater than the birth number of the cache line that contains the
requested data. '

2.1.5 Line Size in Multiprocessor Caches

The cache line sizes for different multiprocessor systems vary wildly.

Both the VMP project [19] and its follow-on effort, ParaDiGM, support long cache
lines, up to 512 bytes. The NYU Ultracomputer project [24] uses 32 byte cache lines.
In both DASH [38] and Alewife 2] the cache line size is 16 bytes.

The SPUR bus-based multiprocessor uses 32-byte lines. The SGI 4D multiprocessor
has two-level caches: the first level has one 4-byte word lines and implements a write-
through policy; the second level cache implements a write-invalidate protocol and has
16-byte lines.

The choice of line size in a multiprocessor is affected by a number of factors. Long
cache lines can lead to cache pollution, which occurs when data fetched intc the cache is
not used because the cache line is too big. Worse yet, long lines can lead to an increase
in cache misses caused by line replacements, because only a limited number of long
cache lines can be stored in a given amount of cache space. However, as caches continue
to increase in size, this latter consideration is no longer crucial.

Another argument against long cache lines is based on the observation that network
contention increases as the square of the message length [1; 36]. Long cache lines do not
necessarily result in long messages however. For example, packetizing long lines into
small packets may be used to avoid network congestion.

The most important factor influencing the choice of cache line size for a multipro-
cessor is the expected pattern of sharing in applications. If we expect fine-grain sharing,
only small lines should be used. To exploit spatial locality and coarse-grain sharing,
longer lines are preferable.




12

Many studies have shown that no matter which line size is selected, there are always
cases that result in severe performance degradation. This happens when expectations
about an application’s sharing pattern do not agree with the actual behavior of an appli-
cation. The next section describes such cases, as well as research on the characterization
of sharing.

2.2 Sharing Patterns and Their Effects on Cache Perfor-
mance

An extensive analysis of data sharing in parallel programs was done by Eggers [27; 28;
29]. She developed a write-run model of sharing, which is independent of a particular
protocol and, to a certain extent, independent of the multiprocessor architecture. A
write run is defined as a sequence of write references to a shared address by a single
processor, uninterrupted by any other processor. A write run can contain read . eferences
as well as writes, but it must start with a write. It ends with the first ieference from
another processor. Long write runs suggest that data is shared sequentially, whereas
short runs indicate fine-grain sharing. The number of external rereads (i.e. reads that
do not belong to any write run) may be used as a measure of read sharing.

Based on the notion of write run, Eggers defined a three state finite automaton. The
first state represents the same write run, the second state represents a different (new)
write run, and the third state represents external rereads. The transitions between
states correspond to references that change a write run. By collecting a number of
particular transitions we can obtain a full characterization of sharing according to the
write-run model. This characterization is architecture independent and was used by
Eggers to compare write-invalidate and write-update protocols. Each protocol defines
the coherence cost of the transactions of the finite automaton. The comparison was
done by computing the total coherency cost for each protocol. This cost is the sum
of the costs of each type of transaction, which is in turn a product of the number of
transactions recorded for this trace and the cost of one transaction for a particular
protocol.

The predictions of the write-run model were compared with the results of detailed
simulations. The write-run model was very inaccurate when the actual cache line size
was different from the line size used in the analysis. This is because changes in the size
of a coherency block produce either a saving or an additional coherency cost, depending
on the inter-processor memory access pattern to words within a block, false sharing,
and per-processor locality. Eggers concluded that the size of ¢ coherency block has
to be included in the model to give realistic results. Therefore, the write-run model is
architecture dependent to a certain degree, because we have to know in advance the
cache line size before the model data is collected.

The mismatch between cache line size and program sharing patterns has been studied
both in the context of bus-based machines and scalable multiprocessors. Eggers and
Katz [28; 29] examined the effect of sharing on cache and bus performance using traces
from four application programs. They showed that the miss ratios for some parallel




13

programs increase when the cache line size increases, while for other programs the miss
ratio decreases with an increase in the line size. This behavior is caused by the different
degree of sh: (i~~ in the various applications. For those programs exhibiting fine grain
sharing, the number of invalidation misses rises with line size; when there is spatial
locality on a per-processor basis, invalidation misses decrease with line size. Both false
sharing and per-processor locality were shown to be important factors affecting cache
performance when a longer line size was used (32 bytes versus 4 bytes). Coherency
overhead (expressed in terms of bus cycles needed to maintain coherency) for a write-
invalidate protocol increased by over 75% for two applications, and decreased by 48%
and 66% for the other two programs.

Simulation results of three parallel applications on the VMP multiprocessor also
show that no single line size is best for all programs [19]. The best cache line size for
the three programs they considered varied between 32 and 132 bytes.

Gupta and Weber [33] examined the effect of cache line size on the number and
size of invalidations in a multiprocessor syvstem with a directory-based caclie coherency
protocol. With a four-byte line size, most shared writes generated one invalidation. In
some cases, larger line sizes (16 and 64 bytes) increased the number of invalidations
substantially (over 50% in one case) and the size of invalidations (increasing the per-
centage of shared writes affecting more than one processor from 13% to 22%). In other
cases, an increase in line size reduced the average number of invalidations from 1.77 to
0.34. Once again, these discrepancies were traced to different sharing patterns in the
various applications.

2.3 Alternative Solutions

Each of the studies of the impact of the cache line size concluded that a close match
between the degree of sharing in an application and the cache line size is desirable. A
number of techniques have been proposed to achieve this goal.

One class of techniques is cache-sensitive application restructuring and data reallo-
cation. Another class consists of solutions which assume that the fetch size is different
(usually bigger) than the cache line size. This class includes software and hardware
prefetching, and two-levcl caches. A third class includes techniques not directly re-
lated to the tradeoff between cache line size and application’s sharing pattern. These
techniques include contention-free synchronization, hardware support for low-contention
synchronization and multiple context processors, all of which may, in some cases, reduce
the severity of the problem.

2.3.1 Cache Sensitive Restructuring

One technique to achieve a match between the degree of sharing in an application and
the cache line size is to align data objects on cache block boundaries [48]. This technique
has several disadvantages, one of which is that it wastes cache space. More important,
it wastes bus or network bandwidth to transfer the unneeded portion of a cache line.




14

This method also requires some knowledge about program .emantics to determine the
allocation. Therefore we need a smart compiler or user-supplied hints. Finally the size
of an object may change dynamically, depending on the number of processors available,
scheduling policy, the particular input, or phase behavior of an application.

Two interesting techniques are described in [25]. The first is to group objects ac-
cording to sharing patterns, i.e. objects that are written by the same processor are
allocated close to each other. The second technique, called indirection, replaces a vec-
tor of shared objects by a vector of pointers to these objects. Objects themselves are
allocated in separate memory blocks, which eliminates false sharing. This approach is
especially useful for objects with a dynamic usage pattern (for example, usage depends
on the input), because the first technique fails in such cases. After applviag both these
transformations manually to programs with a significant degree of false sharing, the
fa'se sharing miss rate was reduced typically by 50% to 60%, and the total miss rate
by 20% to 40% [25]. In spite of these encouraging results there are serious problems
with automating these transformations, which was admitted by the authors. First of
all, the analysis of aliases must be performed to identify (and possibly change) accesses
to reallocated objects. Also, the portion of the code where the parallelism occurs must
be identified. Finally, object sharing patterns must be found.

Even better results in improving the performance of a parallel application by re-
structuring are described in [18]. Two kinds of transformations were applied manually
to mp3d, a parallel particle simulator for rarefied flow. In the first transformation the
global arrays of particle attributes were replaced by an array of instances of the par-
ticle class, aligned to cache block boundaries. The second trarsformation changes the
handling of processor task allocation - instead of an allocation around the particles, the
allocation is done around the space (i.e. a processor works on particles currently present
in its part of the space). The first transformation reduced false sharing drastically, while
the second one increased processor locality. The overall improvement in the cache miss
ratio was an order of magnitude. This was possible in part because the original program
was badly written.

Practical elimination of false sharing is also reported in [7]. which uses software
caching at the application level. In this approach, shared data is explicitly copied
from shared memory to local memory, modified locally, and then copied back to shared
memory.

All of these techniques illustrate the importance of programming style. Unfortu-
nately, they do not solve the problem of false sharing, as it is extremely difficult for a
compiler to automatically apply these techniques, since many of them exploit knowledge
of the semantics of the problem.

2.3.2 Prefetching

Fetching more than one cache line on a cache miss may look like an ideal solution to
the problem of a mismatch between the size of a coherency unit and an application’s
sharing pattern, especially if we keep the cache line short. This is because a small unit




15

of irvalidation (that is, the short cache line) minimizes the effect of false sharing. while
the large fetch size allows for the exploitation of processor locality.

To a certain degree this solution was implemented in the SGI bus-based multipro-
cessor [5], where the fetch size from memory is four (second-level) cache lines, each of
which is 16 bytes long. Unfortunately, there are a few important problems introduced
by this technique. Since the fetch size is usually constant, we can at best approximate
the average case. Programs that exhibit much less or much more processor locality than
allowed by the fetch size will still suffer. The large fetch size may also result in wasted
network bandwidth if the fetched data is not used. In addition, insertion of many short
lines locks up the cache from the processor. To avoid this effect, complicated solutions
are needed, like two-level caches. Last but not least, sometimes it is not clear whether
we should prefetch. For example, in a scalable multiprocessor if a write request is sent
to the home node, and the lines to be prefetched are in the read-only state, and are
distributed between caches of many different nodes, it is easy to come up with examples
that perform poorly for any decision on prefetching.

A more refined technique than hardware prefetching is software prefetching [12].
Here, a special instruction is generated by the compiler which initiates the prefetch of
the required data long before it is needed. Again, if the cache line is short, software
prefetching may reduce false sharing, bringing in the necessary data, and hiding the
memory latency. The disadvantages of software prefetching include the extra instruction
overhead to generate the prefetch. Moreover, we need a sophisticated compiler and good
branch prediction to figure out exactly what data will be needed in the future. This is
especially difficult in a scalable machine, where delays are large; we would need to start
a prefetch very early to hide these delays.

2.3.3 Clever Synchronization

Naive implementation of synchronization operations often results in fine-grain sharing.
For example, busy waiting on a lock implemented with test_and_set generates a series
of writes to the lock location. Much better is a lock implementation based on test-
and-test_and_set, but still, after a lock is written, invalidations follow, and all waiting
processors reread a new lock value in their caches. Only one processor wiil succeed
however, so the activity of the others unnecessarily consumes system resources. Similar
problems occur in the naive implementations of barrier synchronization.

However, if synchronization primitives are implemented carefully (see [42]) the fine-
grain sharing caused by the use of these primitives is limited. In such cases the affinity
of applications for short cache lines is reduced, which may result in the domination of
long cache lines. More studies are needed to verify how much fine-grain sharing present
in parallel applications is caused by inefficient synchronization primitives.

2.3.4 Multiple Context Processors

Multiple context processors [2] hide latency by switching from one context (thread) to
another when a high latency operation (like a cache miss) is encountered. The cosi of




16

a context switch is usually very low in such processors, on the order of a few cvcles.
This approach may solve the problem of a mismatch between the cache line size and an
applicaiion’s sharing pattern, but only if there are enough contexts to fill the delavs.
Since a user cares about the completion time, we would need enough contexts in one
application. If such a mismatch is present, we need even more contexts, because there
are more coherency transactions due to false sharing or poor exploitation of processor
locality. Moreover, the increase in network contention caused by such a mismatch would
still be a problem.

2.4 Summary

In the studies discussed above, the relationship between program sharing and cache line
size was not the primary emphasis. Thus, this relationship has only been examined using
a small set of applications and a few line sizes, and program restructuring techniques are
the only remedy that has been offered for a poor match between line size and program
sharing.

By limiting the focus to the relationship between program sharing and line size, we
hope to quantify the effect of a mismatch over a wide range of sharing patterns and line
sizes, and quantify the performance benefits of hardware solutions intended to minimize
the impact of any disparity. In doing so, we expand the scope of previous studies to
examine the relationship between line size, bandwidth, latency, and cache performance.




17

3 Methodology for Cache Evaluation

This chapter describes the methodology used in our evaluation of coherent caches. Our
evaluation is based on trace-driven simulation of the execution of parallel applications
on multiprocessors with various cache organizations.

Section 3.1 characterizes the machine architecture used in our studies. The co-
herency protocol is described in section 3.2. Simulation-specific assumptions about the
multiprocessor architecture are discussed in section 3.3. These assumptions extend the
multiprocessor organization described in section 3.1. The parameterized notation of
various cache organizations explored in this work is given in section 3.4. Metrics used
for the comparison between different cache organizations are discussed in section 3.5.
The parallel applications used in our study and their memory reference characteristic
are described in section 3.6. The simulation software is discussed briefly in section 3.7.

We use the following cache terminology:

e cache line - the unit of organization of the processor cache, consists of the data
part and the control part (including the address tag and additional control fields
like valid bit, modify bit).

® cache line size - the size, in 4-byte words, of a cache line.

e data block - a contiguous segment of an address space, on which coherency is
maintained.

e directory entry - an entry corresponding to one data block, used by the coherency
protocol.

For fixed line size caches the distinction between data block size and cache line size is

not crucial because both sizes are equal. However we need this distinction when we
discuss adjustable block size coherent caches in chapter 5.

3.1 Architectural Assumptions

We will consider a multiprocessor architecture consisting of a number of processing nodes
connected by an interconnection network. Each processing node contains a processor,




18

a processor cache, and a memory module. A memory module contains random access
smemory and a directory used by a coherency protocol. All nodes are equidistant from
each other in the network.

This multiprocessor organization has several levels in the memory hierarchy. The
first level consists of the local processor caches. Local memory is the second level. The
third level includes the caches of all other nodes. The fourth and final level consists of
all nonlocal memory modules. There is no global memory equidistant from all nodes in
the machine model; each memory module is local to exactly one processor. A range of
physical addresses is assigned to the memory module of each node.

Data coherency is maintained in the hardware. A directory protocol [13] is assumed.
Although the coherency protocol described in section 3.2 is able to support various types
of data consistency [23], sequential consistency is used in the experiments.

3.2 Coherency Protocol

Data coherency in our machine model is implemented with a variant of the write-
invalidate, ownersls> protocol used in the DASH multiprocessor [38]. (Unlike DASH,
there are no local clusters of processors connected by a bus.) This protocol was selected
because it is efficient in the number of messages required to maintain coherence. More-
over, it is one of the first protocols to be used iu a scalable multiprocessor. In what
follows we present a brief description of this protocol; more details are given in section

54.

Each data block is assigned to a memory module. This assignment is determined by
the physical address of a block. All data in a block must reside in one memory module
(i.e. data blocks do not span memory modules). The node containing the memory
module to which a given data block is assigned is called the home node for the data
block.

A data block can be in one of three states: uncached data is not cached by any
processor; read-shared (shared-remote) data is cached in an unmodified state by one or
more processors; modified (dirty-remote) data is cached in a modified state on a single
processor. The processor containing a data block in the modified state is called the
owner of the data block. There are also in-transit states indicating that an operation is
in progress on a particular data block.

The flow of protocol messages in four different cases is depicted in Figure 3.1. Each
case is determined by the current state of the referenced data block (i.e. read-shared or
modified) and the requested operation (read or write). A circle represents a node and
arrows represent messages. The figure depicts the order of messages in time, rather than
the paths messages take. Time flows from top to bottom in each diagram. Whenever
a node participates in more than one message for a particular transaction, that node is
represented by more than one circle in the diagram.

The simplest case is when a node wants to read data and the corresponding data
block is in the-read-shared state. On a cache miss, the requesting node sends a read
request message to the home node of the data block. The home node fetches the data




19

Read-shared STATE Modified

req req
node node

OPERATION lmd request 1 read request

home home
node node

l read request

forwarded

l read reply
Read

re
node

read sharing
reply  writeback

req req
node node
l write request l write request

home

node

write request
forwarded

Write

write reply

plus number

of expected .
N ownership
invalidation ) change
acknowledgment write
reply
ownership
change ack

re
node

Figure 3.1: Flow of Messages in the Coherency Protocol




20

from memory, updates its directory information, and returns the requested data in a
read reply message.

When the requested data block is in the modified state, a read request is forwarded to
the owner of this block. The owner provides the requesting processor with the data, and
writes the data back to the home node. The new state of the data block is read-shared.

On a write request, the home node must invalidate all copies (if any) of the re-
quested data. In the read-shared state, the home node immediately sends the data to
the requesting node. This message also contains the number of invalidation acknowl-
edgements the requesting node should receive before the write can be regarded as having
been performed globally. Next, the home node sends invalidations to all nodes contain-
ing copies of the data block. Those nodes invalidate their copies and send invalidation
acknowledgements to the original requesting node. The new state of the data block is
modified.

This protocol admits the use of weak consistency [22; 23], wherein a node can proceed
immediately after it receives the data. On a synchronization operation, the processor
is stalled until all outstanding writes are performed globally (i.e. until all expected
invalidation acknowledgements arrive). Even when sequential consistency is required,
this protocol is preferred because it is efficient in the number of messages sent; invali-
dated nodes send acknowledgements directly to the requesting node, which limits the
involvement of the home node.

When a write to modified data is requested, the home node forwards the write
request to the owner node. This node sends the data to the requesting node indicat-
ing that one acknowledgement should arrive. The owner then notifies the home node
about the change in ownership. The home node in turn acknowledges completion of the
write transaction. This extra acknowledgement is needed to avoid problems that could
arise when the requesting node evicts the cache line before the home node receives the
ownership change.

3.3 Simulation Model

It is difficult to fully evaluate a new cache organization with a fixed computer arclitec-
ture. First, there are many different multiprocessors available on the market now or in
the research stage. For scalable multiprocessors there is no single architectural model
followed by all designers. Instead we can observe a wide variety of different architectures
distinguished by such factors as processor and memory speed, number of processors, and
network configuration.

A second factor limiting the use of a fixed architecture model is the rapid progress in
hardware. Not long ago 100 MHz processors and 400Mb/sec memory bandwidth were
well beyond reach. Today DEC Alpha chips and RAMBUS technology let us achieve or
surpass these specifications.

Because of these two factors we decided to parametrize the multiprocessor machine
described in section 3.1. This parametrization assumes a scalable multiprocessor with
coherent caches, but it is independent of the particular cache organization. No particular

-




21

interconnection network is assumed, except that all nodes are equidistant and there is
no contention in the network. The parametrization is concerned primarily with the
normalized time cost (used in computing the mean cost per reference, see section 3.5)
of message transmission between nodes. We assume that all machines use the same
processor. The time to satisfy a memory reference from the cache is normalized to 1.
The time required for a message transmission of length X (in 4 byte words) between
any two nodes is given by a linear function (F stands for Factor)

ﬂatency + Fbandwidth * X

where Flgtency is the network latency contribution, or the normalized time to send
a zero-length message, and Figndwiatn is the network bandwidth contribution, or the
incremental cost of sending one more word of data. Note that as the bandwidth factor
Fyandwidth increases, the bandwidth of the network decreases.

We assume that the normalized memory latency time is 5, i.e. it takes 5 time units
to fetch the first word from memory. We assume that memory bandwidth is always
equal to the network bandwidth. In effect fetching from memory contributes only the
memory latency to the total cost (provided there is network transmission), regardless
of the actual length of a fetched line.

Our simulations assume a machine with 8 processors (due to available traces), local
reference time normalized to 1, and an interconnection network characterized by Fiatency
and Fyandwidth- Again, the coherent cache implementation is not specified, which allows
for experiments with different cache organizations.

A particular machine is denoted by

M(-Flatencyy Fbandwidth)

Sometimes we use a star () instead of Fygnduwiarn t0 denote a group of machines with
particular Figtency and various levels of bandwidth.

As shown in section 3.5, for any two caches the order established by their perfor-
mance for a given application P is the same for all machines with the same ratio of
Flatency t0 Fyandwidth. Therefore we use that ratio as a characterization of a class of
machines if we want to order various caches according to their performance on a given
application.

3.4 Cache Organizations

The adjustable block size coherent caches (introduced in detail in chapter 5) are com-
pared with more traditional, fixed line size coherent caches with various degrees of
prefetching. To eliminate the effect of cache size and to simplify the simulations, we
assume that all caches are big enough to avoid capacity misses completely. As was
shown in [26], the effect of cache size on coherency overhead is minimal, especially when
compared with the effect of cache line size. All caches are fully associative, so we do
not deal with conflict misses.




22

The simplest organization, a fixed line size cache without any prefetching is denoted
by
Fized(LineSize)

where line size is given in 4 byte words.

We also consider an aggressive implementation of prefetching. A cache with a fixed
line size of LineSize words and prefetching fetches several LineSize word data blocks
at once, but maintains coherence on each N word block individually. This organization

is referred to as
Prefetch(LineSize, NumBlocks)

where NumBlocks is the maximum number of data blocks that can be prefetched on a
cache miss (including the requestcd one). Blocks can be prefetched in both read-shared
and write-modified states. However, for a given prefetch operation, all blocks have to
be in the same state, equal to the state of the referenced block. That is, blocks are
prefetched up to the first block whose state is different from the state of the referenced
block. Moreover, prefetching is possible only if there is an agreement between the
state of the referenced block and the reference operation (i.e. read-shared and read , or
modified and write). Additionally, for prefetching in the modified state, all blocks have
to be owned by the same node (to avoid excess network messages). Prefetching begins
with the first block after the requested one.

Over a wide spectrum of parallel applications, prefetching should offer better per-
formance than a simple fixed line size cache because it is more flexible. That is, a
-prefetching cache has more options than a non-prefetching cache with respect to how
much data it fetches. Additionally, a prefetching cache uses more knowledge related to
the sharing behavior of an application because the decision of how much data should be
fetched is based on inspection of the coherency states of multiple blocks adjacent to the
requested one. If an application exhibits fine-grain sharing, the number of prefetched
blocks should be close to zero, and a prefetching cache emulates a fixed line size cache
with line size equal to LineSize. On the other hand, if there is sufficient spatial locality
to be exploited in a parallel application, prefetching should take place, and the cache or-
ganization emulates a fixed line size cache with line size equal to NumBlocks+* LineSize.

The notation for the adjustable block size cache introduced in this thesis is given in
chapter 5.

3.5 Performance Metrics

Traditionally the miss rate (MissR) has been the metric of choice for quantifying the
performance of uniprocessor, as well as multiprocessor, caches. Unfortunately the miss
rate is not sufficient as a performance metric in our case for a number of reasons. First
of all, in a scalable multiprocessor the time needed to satisfy a miss is not constant,
because requested data may reside in many different levels of the memory hierarchy. For

example, it may be available in the memory of the requesting node or in the memory of a
- remote node. The cost will differ in these two cases by at least twice the network latency.
Another reason the miss rate does not capture the performance effects of interest is that




23

the cache block size is not constant in adjustable caches, so the cost of a miss depends
on the size of a block containing the requested block. In spite of these problems we
consider the miss rate a metric worth considering because it gives an upper bound on
how much network latency matters for a particular cache organization.

The cache size (CacheS) metric gives us the minimum size of the cache needed for
conflict-free (no conflict and capacity misses) execution of a given parallel application.
We assume here that cache lines invalidated on coherency transactions can be reused.
For the purposes of this metric, the cache size includes not only the data part of the
cache, but also the tag part and the additional control fields of a particular cache
organization (for example, modify and valid bits). As a result this metric depends on
the cache organization, even if we assume that all caches are fullv associative.

We define the data transferred per reference (DTPR) metric to be the total number
of data bytes transferred during the execution of a parallel program (excluding message
headers) divided by the number of references. Just as the miss rate captures the effect
of network latency, this metric captures the effect of network bandwidth; the lower the
bandwidth, the greater the impact of DTPR on total execution time.

We define the mean cost per reference (MCPR) metric to be the normalized time
(in units of local cache accesses) a processor has to wait for data in the absence of
contention. (A similar metric was used in {11]). For data requests satisfied by the local
cache, the MCPR is equal to 1. In the case of a miss, we assume that a processor is
stalled till all fetched data arrives. For data requests, the MCPR includes the time
needed for memory fetches, network transmission, and directory operations. There are
also additional costs of block adjustment taken into account in computing the MCPR
metric for adjustable caches (see chapter 5). These costs are described in detail in
section 5.3. However, we do not charge anything for handling multiple cache lines in
the case of prefetching caches (except for the cost of increased bandwidth consumption
due to fetching more data). As a result the mean cost per reference for prefetching
caches is somewhat optimistic.

To compare the performance of two caches we will use their relative difference defined
as the absolute difference between their MCPR values divided by the lower MCPR of
the two.

It is important to note that the miss rate and DTPR metrics do not depend on
network latency or bandwidth. MCPR does depend on these factors, and can be
viewed as a combination of the miss rate and DTPR, weighted by network latency
and bandwidth. That is, for each miss, we incur a delay of at least twice the network
latency, and for each word transferred we consume network bandwidth. !

MCPR can be expressed as follows:
MCPR =14+ COPR (3.1)

where COPR is the coherency overhead per reference. We can compute the overhead
for each type of coherency transaction (e.g., a read or write access to read-shared data),

1Since we assume sufficiently large caches to avoid capacity misses, there are no misses to local
memory other than those associated with a cold start.




24

sum this overhead over all references, and divide by the total number of references, to
arrive at COPR. For example, the coherency overhead associated with a read miss of
read-shared data (ignoring the overhead due to initiating a fetch from memory) is:

CO(read,readshared) = 2 * Figtency + CacheLineSize x Fignguidih (3.2)

which includes the network round-trip time, and the overhead of sending a full cache
line through the network. Similar equations can be used to define the overhead for
each coherency transaction. For each such equation, we observe that if we multiply
Flatency and Fyandwidth by the same constant k, then the overhead for each coherency
transaction increases by a factor of k. This fact allows us to formulate the following
scaling property:

Property 1 Scaling Property: Let COPR(P,C, M(Fiatency, Frandwidin)) denote the co-
herency overhead per reference for execution of program P on machine M( Figtency+ Foandwideh)
with cache C. Then, for any cache C, any program P, and any positive constant k. the
following holds:

COPR(P’ C’ M(k * Hatencyv k« Fbandwidth)) =k= COPR(P, Ca M(Flatencys }Landwidth))

That is, if we scale both Figtency and Fiangyiatn by the same constant &, then the
total coherency overhead per reference scales by the same factor.

Given the COPR for one machine, and the scaling factor for another machine with
the same ratio of Fitency 10 Frandwidtn, We can compute COPR and MCPK for the
new machine using the scaling property. From the scaling property we can also infer
that the relative performance of two cache organizations on the same application ex-
pressed as the ratio of their coherency overheads does not change if we scale the network
characterization.

When comparing the performance of two caches, we are most interested in the ratio
of their MCPRs, not COPRs. We note here that the relative performance of two caches
expressed as the ratio of MCPR does change if we scale the network characterization.
which follows from equation 3.1 and the scaling property. However, if cache 'y offers
better performance (i.e. lower MCPR) than cache C; for program P executed on a given
machine M, then cache C; is always better than C; for program P executed on any
machine with the network characterization scaled from M by any factor k > 0. Again we
can prove this fact using the scaling property and equation 3.1. If we scale both Figseny
and Figndwidth, then what changes is the relative difference in cache performance. If
k > 1, then this difference increases; for 0 < k < 1, it decreases.

Recall that Fygnduwiden is inversely proportional to the network bandwidth. Therefore
the product of network latency and bandwidth determines the order of caches according
to their performance for a given application P. As a consequence, a cache that deliv-
ers the best performance among a group of caches for a given application and a given
machine remains the best cache for that application and all machines with the same
product of network latency and bandwidth. A similar result on the independence of op-
timal memory placement with respect to scaling of machine characterization is reported
in [9].




25

3.6 Memory Reference Traces

We use memory reference traces to drive our simulations. These traces were collected
on an 8-node IBM ACE and in addition to our work, have been used by others to study
memory management policies and the performance benefits of disabling coherence to
minimize short-term false sharing [11].

The programs in our trace suite fall into three different classes:

o (-threads applications - The majority of the programs were implemented using
the C-threads package on a non-uniform memory access (NUMA) multiproces-
sor. Sorbyr and sorbyc implement red-black successive over-relaxation. The two
programs differ in the order of their inner loops: sorbyr operates on rows, while
sorbyc operates on columns. Plytrace is a scene rendering program. Matmult im-
plements matrix multiplication. Both bsort and kmerge perform a merge sort; in
bsort half the processors drop out in each phase, whereas in kmerge all processors
are busy until the end. Gauss is a Gaussian elimination program. All of these
programs exhibit coarse-grain parallelism and good processor locality. however
spatial locality differs widely among these programs.

e SPLASH application - From the SPLASH suite [45] we took one application, mp3d
which solves a problem in fluid flow simulation. This program has been selected
because it exhibits extremely large amount of sharing and very poor spatial local-
ity.

o Presto applications - The following programs were implemented in Presto [6]: gsort
implements parallel quicksort, pgaussis a Gaussian elimination program, pmatmult
is a matrix multiplication program. Like mp3d, these applications were written
for a bus-based multiprocessor. The first two programs exhibit fine-grain sharing
and poor processor locality. Pmatmult performs much better than other Presto
programs.

Each of these programs was executed on the IBM ACE and detailed memory refer-
ence traces were collected. The number of memory references made by each program
and the fraction of writes is presented in Table 3.1. For each application we give the
number of references which are not explicit synchronization references (i.e. lock tests
and test-and-sets were deleted from the trace).

As we can see, (table 3.1) both the total number of references and the faction of
writes varies widely among the programs.

Unlike in our earlier work on adjustable caches [21] we decided to eliminate syn-
chronization references from the traces. This is because we believe that synchronization
seriously distorts cache behavior if not treated specially. For example, synchronization
introduces a lot of fine-grain sharing if remote spinning is allowed and spin-locks are
grouped together, which in turn overly favors short cache lines. In scalable multipro-
cessors, synchronization should bypass cache coherence {42] or be explicitly integrated
into it as a special case [32]. In either case the effect of synchronization references on
our metrics would be minimal.




26

Table 3.1: Summary of Reference Traces.

Application | Millions of References | Fraction of Writes
bsort 23.62 0.36
gauss 269.70 0.17
kmerge 10.92 0.35
matmult 4.641 0.03
mp3d 19.58 0.42
pgauss 21.67 0.34
plytrace 15.32 0.34
pmatmult 6.81 0.04
gsort 17.53 0.32
sorbyc 104.40 0.21
sorbyr 103.90 0.21

3.7 Simulation Software

We use a two-stage simulator to compare cache organizations for a wide range of host
machines. Qur simulator consists of two programs (stages). The first stage takes as input
an address trace of a parallel application and a particular cache organization (adjustable
or fixed, with or without prefetching) with specified parameters. The output of this stage
is an intermediate representation of the execution of the program represented by the
input trace on a (partially specified) machine with the input cache. Both bandwidth and
latency of the host machine are unspecified. The intermediate representation records
the number of coherency transactions of a given type encountered during the simulation,
where types are defined according to a particular cache organization. For example, one
of the transition types for adjustable caches is the transition from the modified state
to the read-only state, where we record the type of adjustment (if any) and the size
of the affected blocks. For prefetching caches, a transaction type includes the number
of blocks prefetched. Broadly speaking, a transaction type is defined by a relation, so
the intermediate representation produced by the first stage can be seen as a relational
database.

Apart from this intermediate representation the first stage produces architecture-
independent statistics like the miss and data transfer rates, and the amount of cache
space required.

The second stage of the two-stage simulator takes as input the intermediate repre-
sentation produced by the first stage and the specification of a machine (in the form of
Fiatency and Fianawiath factors), together with other costs, like the cost of block adjust-
ment, and the memory bandwidth. The output of the second stage is the mean cost per
reference metric.

The first stage takes quite a long time to execute, on the order of several minutes up
to an.hour, depending on the trace and the machine executing simulations. The second
stage, on the other hand, is completed within a few seconds. This simulator design




allows for time and space efficient research of the multi-dimensional parameter space of
cache organizations and machines.




28




29

4 Evaluation of Fixed Line Size
Caches

This chapter evaluates the performance of fixed line size caches. First, we examine the
relationship between the miss rate and the amount of data transferred per reference
for fixed line size caches and our application suite. Next we investigate the effects of
bandwidth and latency on the performance of fixed line size coherent caches.

4.1 Properties of Miss Rate and DTPR

In this section we examine the values of MissR and DTPR for the programs in our
application suite, and identify any dependencies between these two metrics. We also
describe how a change in the cache line size affects these metrics.

In simulations in which we varied the cache line size between 1 and 128 words, the
minimum miss rate varied widely among applications. The minimum miss rate was
highest for mp3d (6.7%), pgauss (2.7%), and gsort (2.1%). All of the other applications
exhibited a minimum miss rate below 1% (i.e., plytrace 0.64%, matmult, 0.34%., sorbyc
0.27 pmatmult 0.23%, kmerge 0.1%, bsort 0.08%, gauss 0.06%, and sorbyr 0.03%). The
minimum data transferred per reference was also highest for mp3d at 0.214 words per
reference. DTPR for the other programs was below 0.1 words per reference (i.e., pgauss
0.072, gsort 0.065, plytrace 0.035, matmult 0.034, sorbyc 0.006, pmatmult 0.033, kmerge
0.067, bsort 0.042, gauss 009 and sorbyr 0.006). There is a positive correlation between
a low minimum miss rate and a low minimum DTPR for nearly all programs; however,
three programs exhibit a negative correlation: bsort and kmerge have both low minimum
miss rate and a relatively high minimum DTPR, while sorbyc has a relatively high
minimum miss rate and a very low minimum DTPR.

For a given application, there is always some line size that minimizes the miss rate.
An increase in line size may cause an increase in miss rate, a sure sign of false sharing
(if we neglect cache size related effects like cache pollution). Although false sharing
affects all applications, some applications exhibit false sharing only with very long cache
lines. Table 4.1 gives the line size at which the miss rate is minimized for each of our
applications. For most applications the optimal line size (with respect to miss rate) is
less than or equal to 64 words.

The mirimum DTPR is indicative of the amount of true sharing in a given applica-
tion, since DTPR is always minimal when the cache line size is 1 word. The minimum




30

Table 4.1: Cache Line Size with Minimal Miss Rate.

Application | Minimal Miss Rate Cache Line Size
bsort 1024
gauss 128
kmerge 1024
matmult 16
mp3d 32
pgauss 16
plytrace 32
pmatmult 64
gsort 32
sorbyc 64
sorbyr 16384

miss rate depends on two independent characteristics of an application - processor lo-
cality (sharing) and spatial locality. When the cache line size is 1 word, the miss rate
measures true sharing, and the extent to which this miss rate can be lowered using
longer cache lines depends on the degree of spatial locality in the application. For most
applications there is a tradeoff between lowering the miss rate with longer cache lines
and a corresponding increase in DTPR. In the remainder of this section we discuss this
tradeoff for specific applications.

Figures 4.1-4.3 show how a change in cache line size affects the miss rate and data
transferred per reference for three applications: pgauss, plytrace, and bsort. We chose
these three applications to illustrate various degrees of spatial locality, from poor locality
(pgauss) to excellent locality (bsort). For each application we plot both the observed
and ideal changes to MissR and DTPR as we increase the line size from 1 word to 128
words (i.e., 512 bytes). Our goal is to identify trends in how the miss rate and DTPR
change with cache line size, and therefore we deliberately omit any scaling information
on the yaxis.

Ideally, doubling the line size cuts the miss rate in half, and doesn’t affect DTPR.
Therefore, in figures 4.1-4.3 the ideal change in miss rate (relative to the miss rate for 1
word cache lines) is in proportion to the increase in line size, while the ideal DT PR (again
relative to the DTPR for 1 word cache lines) remains constant. In reality, increasing
the cache line size may not lower the miss rate proportionally and can affect DTPR;
longer lines may fetch unused data and can also introduce false sharing. By plotting
both the ideal and observed changes in MissR and DTPR, we can identify trends in
how the miss rate and DTPR change with cache line size for a given application, and
relate the memory reference patterns of the application to the trends.

It is evident from figures 4.1 and 4.2 that there is much more spatial locality present
.- in plytrace than in pgauss. An increase in line size produces a greater decrease in MissR
for plytrace than for pgauss. In fact, the changes in the observed miss rate are fairly




31

o————— o miss rate
&————» ideal miss rateéMissR 2x) = 1/2*MissR(x))
o-~------ o data transferred per reference

&-~------ a ideal data transfer rate (DTPR(1))

1 2 4 8 16 32 64 128
Cache Line Size

Figure 4.1: Relationship Between MissR and DTPR - pgauss

o———————¢ miss rate

#——————» ideal miss rateéMissR 2x) = 1/2*MissR(x))
L s o data transferred per reference

F-------- s ideal data transfer rate (DTPR(1))

1 2 4 8 16 32 64 128
Cache Line Size

Figure 4.2: Relationship Between MissR and DTPR - plytrace




32

o——o miss rate
s——= ideal miss ra.te‘gMissR 2x) = 1/2*MissR(x))
o------=-=-= o data transferred per reference

& -------- a ideal data transfer rate (DTPR(1))

1 2 4 8 16 32 64 128
Cache Line Size

Figure 4.3: Relationship Between MissR and DTPR - bsort

close to the ideal for plytrace across most of the range of line sizes shown in the figure.
For pgauss, false sharing causes the miss rate to rise when the cache line size grows
above 16 words. The same effect occurs above 32 words for plytrace. With longer lines,
the miss rate increases in proportion to the incidence of false sharing in the application.

For an application with extremely good spatial locality, such as bsort (figure 4.3), the

miss rate decreases very quickly with an increase in line size. For this application, the

- observed miss rate for longer cache lines is essentially the ideal miss rate (i.e., doubling

the cache line size cuts the miss rate in half). There is no false sharing effect in the

range of line sizes we considered. Also, the data transferred per reference remains flat
throughout the range of line sizes; that is, DTPR is equal to the ideal.

From these figures we can see that MissR and DTPR are almost always inversely
related to line size. That is, the miss rate usually decreases with an increase in line
size, while the data transferred per reference increases with the line size. If we ignore
data transfers due to write-back and local misses, then DTPR for a given application is
dependent on the miss rate according to the following equation:

DTPR(LineSize) = MissR(LineSize) * LineSize (4.1)

That is, for a given application and cache line size (LineSize), the data transferred per
reference is equal to the miss rate times the line size. Clearly then, spatial locality and
false sharing influence both the miss rate and DTPR.

The rate at which MissR decreases with an increase in line size depends primarily
on the spatial locality in an application. If the application exhibits good spatial locality,
then an increase in line size produces a proportional decrease in MissR. If an application
does not exhibit good spatial locality, then even if false sharing doesn’t occur (as when
doubling the line size from 1 word to 2 words in our case), increasing the line size may
not produce a proportional decrease in MissR, since longer lines may fetch unneeded
data.




33

Unlike the miss rate, DTPR routinely increases with an increase in cache line size.
This is not surprising, since longer lines may fetch more data than is actually referenced,
and unrelated data may share a cache line, and thereby introduce false sharing. A cache
line size of 1 word fetches the minimum amount of data required for the correct execution
of the program; the minimum miss rate cannot be generalized as easily, since it depends
on the application.

4.2 The Effects of Bandwidth

In this section we consider how changes in the network bandwidth affect the MCPR for
the programs in our application suite. We also investigate how the optimal (with respect
to MCPR) cache line size for a given program depends on the network bandwidth. In
these experiments we set the latency factor Figieney to 50, corresponding to a round-
trip time of 100 cache cycles per remote reference, which is characteristic of a scalable
multiprocessor {39]. The impact of this assumption on our results is investigated in
section 4.3.

Figures 4.4 to 4.9 plot MCPR for a given application as a function of the network
bandwidth for a range of cache line sizes. We vary the bandwidth factor Fyongwidin
over the following range of values: 0,1,5,10,20. Assuming 100 MHz processors and
a four-byte wide network, these values for Fy ngwidin correspond to a machine whose
bandwidth is infinite, 400 MB/sec, 80 MB/sec, 40 MB/sec, and 20 MB/sec respectively.
(We consider a machine with infinite bandwidth so as to determine the extent to which
our conclusions depend on the current state of network technology; future advances are
more likely to increase the available bandwidth than to reduce the latency.)

Figure 4.4 illustrates the behavior of bsort. This application has very good spatial
locality, and no false sharing, even for very long lines. Nearly all fetched data is refer-
enced (recall the flat data transfer line from figure 4.3), so longer cache lines provide
better performance regardless of the network characteristics. The curves representing
different line sizes run in parallel in the graph, evidence that the DTPR remains flat.

We can see from figure 4.4 that doubling the cache line size offers diminishing returns
for MCPR. For example, increasing the cache line size from 4 to & words substantially
reduces MCPR, while an increase from 16 to 32 words offers much less improvement,
and an increase from 64 to 128 words offers almost no improvement at all. Given the
excellent spatial locality exhibited by this program, DTPR remains constant across these
line sizes, and therefore the dominant factor in the MCPR is the miss rate. Doubling
the cache line size cuts the miss rate in half for this program, so the improvement in
MCPR decreases exponentially as we repeatedly double the line size. Thus, although
we can expect longer cache lines to improve MCPR, the rate of improvement diminishes
so rapidly with an increase in line size, that we quickly reach a point where further
improvements in MCPR through longer cache lines are not worth pursuing (however,
as will be shown in section 4.3 the relative utility of very long lines also depends on the
latency).

Overall the best line size for this program (that is, the maximum line size) offers
an MCPR very close to 1 for the high bandwidth machines, and around 1.6 for the




34

e line size 4

3 -
‘
line size 8
MCPR 2
line size 16
line size 32
line size 64
line size 128
1.5
1

l I i 1 |
50/0 50/1 50/5 50/10 50/20
Ratio of Latency to Bandwidth

Figure 4.4: Mean Cost Per Reference as a Function of Bandwidth - bsort




35

low bandwidth machine. The low MCPR illustrates once again that this application is
well-matched to shared-memory multiprocessors. Like bsort, the MCPR of kmerge is
low for all machines, and close to 1 for the high bandwidth machiues (figure not shown).

Sorbyr (in figure 4.5) displays characteristics similar to bsort, with two important
differences. First, the longest cache line (128 words) apparently fetches more data than
needed, which adversely affects performance on limited bandwidth machines (despite
the lower miss rate provided by the long cache line). Thus, on the three highest band-
width machines, the longest cache line (128 words) offers the lowest MCPR (due to the
reduction in miss rate), while on the two machines with limited bandwidth, a cache line
size of 64 words offers the lowest MCPR. The other difference between sorbyr and bsort
is that the MCPR is even closer to 1 for sorbyr, which suggests that there is less sharing
in sorbyr than in bsort.

Pmatmult (figure 4.6) exhibits worse spatial locality than either sorbyr or bsort.
Although the curves for small cache lines run nearly in parallel, which indicates that
little unused data is fetched, the performance of caches with longer lines deteriorates
quickly with decreasing bandwidth. For the unlimited bandwidth machine, the best
performance is delivered by a cache with line size of 64 words, which also minimizes the
miss rate for this application. However, the best cache line size is 32 words on the other
two high-bandwidth machines, and 16 words on the remaining low-bandwidth machines.

Gauss’s performance as a function of a cache line size is similar to that of pmatmult
except that the best MCPR is even lower, below 1.3 for all machines (figure not shown).

For most of the remaining applications, the longest line size shown in the figures is
32 words, because longer cache lines perform poorly. These applications prefer shorter
lines and usually exhibit a much higher MCPR than the applications discussed above.

Matmult (figure 4.7) is an example of an application with low MCPR. which has
more fine-grain sharing than gauss or pmatmult. The best line size is 16 words for the
infinite-bandwidth machine and the high finite-bandwidth machine. It drops to 8 words
for the three lower bandwidth machines. Analogous results (not shown here), but a
higher MCPR, are displayed by plytrace.

Mp3d and gsort have comparable sensitivity to bandwidth; we will only discuss
mp3d (figure 4.8). The infinite-bandwidth machine favors a line size of 32 words, which
provides the minimum miss rate. The high-bandwidth machine also favors a 32-word
cache line. The machine corresponding to a network with 80 MB/sec bandwidth favors
a cache line with 16 words, and the other two machines with the lowest bandwidth
prefer a line size of 8 words. This preference for short lines on low-bandwidth machines
illustrates the limited spatial locality in this application. In addition, the lowest MCPR
(on an infinite-bandwidth machine) is close to 10, which indicates a lot of sharing (i.e.,
poor processor locality). The best possible MCPR increases to over 20 on the lowest
bandwidth machine. The range for gsort is better, between 4 and 7, but still represents a
high MCPR, and the sensitivity to bandwidth measured as a relative change in MCPR is
similar to that of mp3d. In both cases the best MCPR for the lowest bandwidth machine
is about twice as high as for the infinite bandwidth machine. No other application
displayed such extreme sensitivity to bandwidth.




36

o line size 4

1.6 —
o
e
................ “‘
| line size 8
1.4 —
MCPR o
line size 64
1.2 —
line size 32 0+
].ine Size 128 L LA
1

| | I I I
M(50,0) M(50,1) M(50,5) M(50,10) M(50,20)
Machine

Figure 4.5: Mean Cost Per Reference as a Function of Bandwidth - sorbyr




37

o line size 128

line size 64

_- line size 2

MCPR ’

o line size 32
________ . e line size 4

-
-
-

1 I T I T I
M(50,0)  M(50,1)  M(50,5)  M(50,10)  M(50,20)
Machine

Figure 4.6: Mean Cost Per Reference as a Function of Bandwidth - pmatmult




38

Q line size 32

3.5
3 —
.o.'.
MCPR 2.5 — g
line size 2
line size 16
9 — line size 4
line size 8
1.5 —

B ] {
M(50,0) M(50,1) M(50,5) M(50,10) M(50,20)
Machine

Figure 4.7: Mean Cost Per Reference as a Function of Bandwidth - matmult




MCPR

39

o line size 32

40
*
o
30 )/
/I - -~
EUPETY 20 line size 8
_____ ' S / s line size 4
line size 2 g -------"- L Py .
20
line size 16 « 1.’?.77'_'"'_"
[«
10 T | T T |
M(50,0)  M(50,1)  M(50,5)  M(50,10)  M(50,20)

“achine

Figure 4.8: Mean Cost Per Reference as a Function of Bandwidth - mp3d




40

line size 64
3
2.5 —
© line size 32
MCPR
2 —
line size 16
line size 2
7 .
line size 4 ¢ -+ - oS
line size 8

1 T ] T T 1
M(50,0) M(50,1) M(50,5)  M(50,10)  M(50,20)
Machine

Figure 4.9: Mean Cost Per Reference as a Function of Bandwidth - sorbyc




41

Sorbyc is an interesting exan:ple of an application with little sharing, but the sharing
that exists is fine-grain in nature. Figure 4.9 shows that the mean cost per reference
(assuming the best possible line size) varies from 1.3 to 1.6 depeuding on the bandwidth.
This fact seems to suggest that longer cache lines are preferred, as is the case on the
high-bandwidth machines. However, for the two medium-bandwidth machines, the best
cache line size is 8 words, and the limited-bandwidth machine prefers a linc size of 4
words! Longer cache lines do not perform well for this program, due to a mismatch
between the way data is referenced (by column) and the way the data is stored (by
row). Thus, the mean cost per reference is higher when compared to sorbyr, bat is low
in absolute terms. The results for pgauss are similar, except that pgauss has a much
higher MCPR. The best MCPR varies between 5 (on the infinite-bandwidth machine
with a cache line size of 16 words) and 7 (the limited-bandwidth machine with a cache
line size of 8 or 4 words).

We note here that good spatial locality does not guarantee a low MCPR. To achieve
a low MCPR, we also need good processor locality (which amounts to a low degree of
sharing), where data that is brought into a cache is used repeatedly by the associated
processor. Both sorbyr and gauss have optimal MCPR below 1.3 on every machine,
whereas bsort, which has the best spatial locality, has an MCPR greater than 1.6 in
some cases. Moreover, programs with very similar spatial locality characteristics, such
as mp3d and sorbyc, can have very different MCPR metrics due to different degrees of
sharing.

In the remainder of this section we limit our attention to lines not longer than 64
words. Longer cache lines increase the likelihood of false sharing. and the benefits of
increasing the cache line size soon reach a point of diminishiug returns. Although long
cache lines offer optimal performance for parallel programs with good spatial locality,
such as bsort or sorbyr, the improvement in MCPR over a cache with 64-word lines
is small (between 2% and 5% for bsort depending on the bandwidth, and only 1% for
sorbyr). Since this result holds even on infinite-bandwidth machines, there is little
argument in favor of increasing the cache line size beyond 64 words for these programs.
On the other hand, for programs like plytrace, sorbyc, pgauss and matmult. cache lines
longer than 64 words seriously degrade performance, and the amount of degradation
depends on the bandwidth and the application sharing patterns. For sorbyc, which
has both a low optimal MCPR and poor spatial locality, the MCPR increases by 60%
on the lowest bandwidth machine when the cache line size increases from 64 words to
128 words. As the bandwidth increases, the performance penalty associated with the
128-word cache line starts to decrease, from 60% on the lowest bandwidth machine, to
41% on the 40 MB/sec machine, to 26% on the 80 MB/sec machine, and to 6% on the
400 MB/sec machine. The penalty practically disappears on the unlimited bandwidth
machine. The same trend can be observed for other programs, although the penalty
does not always go to zero with unlimited bandwidth. In particular, the penalty for
matmult drops from 150% on the 20 MB/sec machine down to 17% on the unlimited
bandwidth machine, and for gsort it drops from 133% to 21% when moving from the
20 MB/sec machine to the infinite bandwidth machine. Applications like gsort and
matmult show that even with infinite bandwidth, the penalty of cache lines longer ti.an
64 words can be substantial.




42

Tablz 4.2 illustrates how the best choice of cache line size depend: on the ratio of
- Figtency 1O Fyanduidth - Each entry in the table is the number of applications for which
the given line size produced the best MCPR on the given machine. The blank entries
mean that a particular line size was never the best for a given machine. The results
presented in this table are valid for all machines described by the correspending ratios
of Flatency 10 Fhandwidth, With the exception that the preference for a cache line size of
64 words indicates a preference for lines 64 words or longer.

Table 4.2: Best Fixed Line Size Histogram. A+ entry in this tabie indexed by cache line
size and machine gives the number of applications for which that iine size was the best
fixed line size for that machine. Lines longer than 64 words are not considered.

;-I'—;:": Cache Line Size
1121418116 32| 64
50/0 21316
50/1 6|14
50/5 51 3 3
50/10 115) 2 3
50/20 4121 2 3

This table not only shows that different programs prefer different cache line sizes,
but that the range of line sizes favored by our application suite changes with bandwidth
(when latency is held constant). For the two highest bandwidth machines, the range is
narrowest, and longer lines (16..64 words) are favored by all programs. When bandwidth
is limited, the range of preferred sizes is much wider and the preferred line sizes are
smaller. On the lowest bandwidth machine, most applications favor lines of 4 or 8
words, but not shorter. In general, we seek to minimize DTPR on low-bandwidth
machines, thus shorter lines are preferable. We are more concerned with the miss rate
on high-bandwidth machines, where longer lines are likely to perform best.

It is interesting to note how much performance can degrade for some programs if
we restrict ourselves to one cache line size for each machine. No matter what line size
we select, for each machine there is at least one application (never mp3d) that suffers
between 11% and 36% increase in the MCPR (depending on the machine) compared to
the lowest mean cost per reference for that application. This increase in MCPR, due to
a mismatch between an application’s sharing pattern and the cache line size, is based on
the assumption that network latency is 50 cycles. In the next section we will consider
how a change in latency affects the performance penalty associated with a mismatch
between the application and the line size.




43

4.3 The Effects of Latency

Until now all our experiments have been performed on machines with Figene, set to
50 cycles, i.e. a round trip latency of 100 cycles. Although we believe this latency is
representative for a scalable multiprocessor, it is important to realize how our results
would change with a change in latency. We are especially concerned here with latencies
larger than 50 cycles, since they may be required for really large machines.

Increased latency makes reductions in the miss rate more important because there is
now a higher cost associated with each miss. This in turn extends the range of preferred
line sizes by including longer lines. Recall that in the previous section we decided to
consider lines not longer than 64 words because lines 128 words long only improved
performance for programs with excellent spatial locality, and by not more than 5%.
However, this observation was made when the latency was 50 cycles. When we increase
the latency, lines longer than 64 words offer higher improvements in MCPR (but only
for programs with good spatial locality). Longer lines become more useful with higher
latencies because the relatively small decrease in the miss rate becomes more important.

For example, in the case of kmerge, Fized(64) was worse by 4% than Fized(128)
for M(50,1). However, if we increase the latency to 100 cycles (machine M (100, 1)),
Fized(64)is 9% worse than Fired(128), and with latency 200 cycles {machine M(200,1))
it is worse by 17%. Clearly we cannot discard lines longer than 64 words for machines
with latencies larger than 50 cycles. If we do not care about small differences in perfor-
m: nce (< 5%), then for machines with latency of 100 cycles, we can limit our attention
to lines not longer than 128 words. For machines with latencies of 200 cycles, this limit
is €56 words.

The scaling property can be used to illustrate that short cache lines become less
useful with an increase in latency. Recall that in section 3.5 we showed that for any two
caches their relative performance (measured in MCPR) on a given application P and
a given machine M(Fiatency, Foandwidth) does not change if we scale both Flatency and
Fyandwiden, by the same constant £ > 0. What changes is the magnitude of the difference
in MCPR between the two caches, and for k¥ > 1 this difference grows. Now consider
what happens when we increase the latency of machine M(50,20) by a factor of four
to obtain machine M(200,20). The ratio of Figtency t0 Fhandwidtn in this new machine
is 10, which is also the ratio of machine M(50,5). From the scaling property, we know
that the relative performance of the caches we consider is identical for both M(50,5)
and M (200,20), and that the range of preferred line sizes for machine A7(200,20) is an
upward extension of the range for machine M(50,5). However, the range for M(50,5)
starts with a line size of 8 words, while the range for the original machine M (50, 20)
starts with a line size of 4 words. In this case, increasing the latency by a factor of four,
eliminated the need for cache lines of 4 words.

A similar argument illustrates that long cache lines become more useful with an
increase in latency. For example, long cache lines offer greater performance benefits
for M(200,20) than for M(50,5), because scaling by k£ > 1 magnifies differences in
cache performance. As a result, the range of preferred line sizes for machine M(200,20)
includes 128 words, even though this line size did not offer significant improvements for




44

machine M (50, 5).

Table 4.3: Ranges of Preferred Line Sizes. An entry in this table indexed by Figtency
and Figndwidin gives the range of preferred line sizes by our applications for machine
M (Fiatencys Foandwidin). Longer lines are not included if the improvement in the MCPR
is below 5%.

Fbandwidth F;atency
50 100 200
0 (infinite) 16..64 | 16..128 | 16..256

1 (400 MB/sec) | 16..64 | 16..128 | 16..256
5 (80 MB/sec) | 8..64 | 16..128 | 16..256
10 (40 MB/sec) | 4..64 | 8..128 | 8..128
20 (20 MB/sec) | 4..32 | 8.64 | 8.128

Table 4.3 illustrates how the range of line sizes preferred by our applications changes
with a change in latency and bandwidth. The upper limit for each range means that
longer lines don’t improve performance by more than 5% for any application on a given
machine. The lower limit for each range means that there was at least one application
for which a cache with that line size provided the best performance on a given machine.

We see that with an increase in latency, the range of preferred line sizes either
extends or shifts upward. (Of course this change in the range does not continue forever
since there is limited spatial locality in each application.) Increasing the bandwidth has
greater effect on lower latency machines, where it shifts the range of preferred line sizes
upward. With higher latencies, an initial increase in bandwidth also shifts the range
upward, but soon the range of preferred line sizes becomes insensitive to increased
bandwidth for these machines.

Not unexpectedly, an increase in latency exacerbates the performance effects of a
mismatch between the cache line size and an application’s sharing pattern. For example,
consider two groups of machines: (1) the M(100,#*) group, which consists of the five
machines with Fysnawidin equal to 0, 1, 5, 10, and 20, and latency equal to 100, and (2)
the M (200, *) group, which consists of five machines with the same range for Fysnawidih,
but with latency equal to 200. If we consider all cache line sizes between 4 and 256
words (in powers of two), and attempt to select a single line size for each machine, we
find that for the M (100, *) group, there is always at least one application that suffers an
increase in MCFR between 26% and 44% (depending on the bandwidth) compared to
the performance provided by the best fixed line size cache for that application. For the
M(200, +) group, this increase in MCPR is between 37% and 68% (again, depending on
the bandwidth). In general, the performance degradation in MCPR due to a mismatch
between the cache line size and the application increases with increased latency, and
decreases with increased bandwidth.




45

4.4 Summary

In this chapter we evaluated the performance of fixed line size caches. First, we ex-
amined the relationship between the miss rate and the amount of data transferred
per reference for our application suite. Next we considered how increases in network la-
tency or bandwidth impact the performance of fixed line size coherent caches in scalable
multiprocessors. Using application reference traces that cover a wide range of sharing
behavior, and a multiprocessor simulator that allows variations in network costs, we ex-
amined the relationship between application sharing behavior, cache line size, network
latency and bandwidth, and performance (as captured by the mean cost per reference).

Our results suggest that, regardless of the available bandwidth or latency, applica-
tions with good spatial locality favor long cache lines, and for these applications the
relative benefits of longer cache lines increase with the bandwidth and latency. For
those applications with poor spatial locality, the best choice of cache line size depends
on the ratio of Figtency t0 Fhandwidth, and for these applications, the performance penalty
induced by long cache lines increases as the ratio decreases.

Our results also suggest that unlimited bandwidth (above 400 MB/sec) does not sig-
nificantly improve the mean cost per reference for most applications, and in particular,
does not produce a low mean cost per reference for applications with fine-grain sharing
or poor spatial locality. When the latency is 50 cycles there is not much difference
between the best MCPR on the infinite-bandwidth machine and the best MCPR on
the next highest bandwidth machine for all applications except mp3d and gsort. Thus,
an increase in bandwidth beyond 400 MB/sec is not likely to reduce AMCPR substan-
tially. The impact of high bandwidth is even less noticeable on the machines with higher
latencies.

With respect to the range of preferred line sizes, our results indicate that there
is little benefit to be gained from using cache lines shorter than 4 words for scalable
multiprocessors. The utility of short lines decreases as bandwidth and latency increase,
and our simulations suggest that cache lines less than 4 words long are unnecessary on
current machines.

While it is no surprise that very short cache lines are unnecessary in the absence
of synchronization references, one might expect long lines to be of substantial benefit
to programs with excellent spatial locality. We found however that the incremental
performance improvements of using long cache lines diminish rapidly, and there is always
a line size beyond which these improvements are negligible, even when an application
has enough spatial locality to make use of long cache lines. This upper limit on line size
depends on the network latency of the host multiprocessor, and for latency equal to 50
cycles, it is equal to 64 words. Additionally, longer cache lines increase the likelihood
of false sharing. Thus, the benefits of even longer lines do not justify the increase in
invalidations suffered by programs that favor shorter lines.

With respect to the range of preferred line sizes favored by programs in our ap-
plication -suite we also found that it shifts upward with an increase in latency. This
range moves upward with an initial increase in bandwidth, but at some point the higher




46

bandwidth does not affect the range. The higher the latency, the earlier increases in the
bandwidth stop influencing the range of preferred line sizes.

To estimate the effect of a mismatch between the cache line size and an application’s
sharing pattern we investigated how much the MCPR increases from the lowest per-
application MCPR if we select one cache line size for all applications. We note that this
increase gives a lower bound on the penalty associated with a mismatch between the line
size and the granularity of sharing exhibited by a program. For at least one application
this increase was between 11% and 36% (depending on the bandwidth) for AM(50, %)
machines, between 26% and 44% for M(100, ) machines, and between 37% and 68%
for M(200,*) machines. Generally, the penalty decreases with increased bandwidth,
but we can see that even for infinite bandwidth machines it remains substantial. Also,
there is a strong positive correlation between network latency and this penalty.

As we can see, the penalty associated with a mismatch between the line size and an
application’s sharing pattern is substantizl and will likely be a serious problem in future
scalable machines. Therefore we need an effective solution that eliminates this penalty,
which provides the motivation for the adjustable block size coherent caches introduced
in the next chapter.




47

5 Adjustable Block Size Caches

This chapter describes the idea and details of a new cache organization called adjustable
block size caches. Section 5.1 gives an overview of the new cache organization. Section
5.2 describes the architectural extensions to the multiprocessor introduced in section
3.1 needed for implementation of adjustable caches. The details of adjustable cache
implementations are given in section 5.3. We discuss the integration of dynamic block
adjustment with the coherency protocol in sectiou 5.4. A summary of this chapter is
given in section 5.5.

5.1 Overview

Our new coherent cache organization adjusts the data block size to match the granularity
of shaiing observed during program execution. It uses a power-of-two buddy scheme to
split and merge data blocks based on recent access patterns. Under this scheme, a data
block is split in two when a processor references only one half of the data block. Two
adjacent data blocks of the same size are merged when both halves of both blocks are
referenced by a single processor. Initially all bloc! = are of equal size, called the initial
block size.

More than one copy of a given data block may exist in caches associated with different
processors, but all such copies are read-only. Only one writable copy of a data block
may exist.

Logically each copy of a data block has a number of fields associated with it. In

addition to the data field and address tag field the following fields are associated with
each copy of a data block:

e size - Indicates the size of the data block. The size may be any integer power of
two from MinBlockSize to MazBlockSize.

o LU - Reference bits for the lower and upper half of the data block. Each time
data is referenced in one half of the data block, the corresponding reference bit is
set.

o . split-merge counter - Records the number of processors that accessed only the
lower or upper walf of the data block while it was resident in their caches. The




48

counter is incremented if only one half of the data block was accessed, and is
» decremented if both halves of the data block were accessed.

The mapping between data blocks and cache lines depends on the implementation
of adjustable caches, which is discussed in section 5.2.1.

A data block may be split or merged when it has been modified by one processor
and is then requested by another processor. Only one copy of this data block exists
in such cases. ! The decision to split a data block is based on the value of the split-
merge counter associated with it. The counter is updated according to the value of
the reference bits when the data block is requested by another processor; the value of
the split-merge counter is transferred to the requesting processor with the contents of
the block. A positive counter suggests that processors do not on average access both
halves of the data block, and therefore the data block should be split in two. A negative
split-merge counter suggests that processors do access both halves, and therefore the
data block should not be split.

The decision to merge two adjacent data blocks is based on the value of their re-
spective split-merge counters. Merging is encouraged when adjacent data blocks of the
same size both have negative counters.

Within this basic organization, there are several parameters that can affect how
quickly and accurately the data block size converges to the desired value. The maximum
block size must be large enough to exploit spatial locality. The minimum block size must
be small enough to avoid false sharing, The initial block size must be close to the average
block size, if data blocks are to converge to an appropriate size quickly.

The accuracy of the reference information and the way it is used also affects how
quickly the desired block size is reached. Rather than allow the short-term reference
pattern of a single processor to determine when to split or merge cache blocks, we
define separate split and merge threshold values that must be exceeded before a split
or merge occurs. High thresholds can discourage excessive splitting or merging, but
the thresholds must not be so high as to prevent splitting or merging. When the split
(merge) threshold is N, a data block must have been modified and then requested by
another processor N times before the block can be split (merged).

An instance of the adjustable block size cache is denoted by
Vblock(MinBlockS, Maz BlockS, Init BlockS,(SplitThr, MergeThr))

where MinBlockS$ is the minimum block size, Maz BlockS is the maximum block size,
InitBlockS is the initial block size, SplitThr is the split threshold and MergeThr is
the merge threshold.

Regardless of the specific values chosen for these parameters, the main advantage
of this cache or; ization is that the size of data blocks varies depending on references
to the data. When appropriate, the largest possible block size is used, minimizing the

1The block size adjustment is restricted to modified blocks because there is only one copy to consider.
It is possible to adjust the block size of read-shared blocks, but it would incur the cost of reaching a
global consensus on the new block size.




49

number of bus or network transactions needed to retrieve the data. False sharing causes
a data block to be split, reducing the number of subsequent invalidations. We would
expect this adaptive scheme to produce fewer invalidations than a cache with a large,
fixed block size, and require fewer bus or network transactions than a cache with a
small, fixed block size.

5.2 Implementation in a Scalable Multiprocessor

We will now illustrate the implementation of an adjustable block size cache in the
scalable, shared-memory multiprocessor described in section 3.1.

5.2.1 Processor Caches

The challenge in implementing an adjustable block size processor cache is to map each
data block’s control and data fields into cache lines. Our goal is to minimize the cache
cycle time, provide good cache utilization, and avoid excessive complexity.

We assume that all processor caches are fully associative, and all cache lines are
of the same size. We propose two alternative implementations of an adjustable block
size cache. These implementations differ in the size of a cache line. The maz-block
implementation assumes that the size of the data part in each cache line is equal to
the maximum block size allowed by the adjustable block size cache. The min-block
implementation assumes that the size of the data part in each cache line is equal to the
minimum block size. In both implementations each cache line contains space for a tag
for a block of the minimum block size. Additionally, each cache line includes control
fields, like valid and modify bits, block size bits, block state bits, two reference bits and
a split-merge counter.

In the maz-block implementation, a data block occupies exactly one cache line. If a
block is smaller than the maximum block size, some space in the cache line is wasted.
Under this scheme, the effective line size of the cache is equal to the average data block
size, which could be much smaller than the actual line size. On the other hand, splitting
and merging is easy because all data for a given block is in just one cache line.

In the min-block implementation a copy of a data block larger than the minimum
block size occupies more than one cache line. Such a block is represented by a head cache
line, which contains the first part of the data block, and tail cache lines, which contain
the remainder of the data block. Each cache line tag contains a valid tag corresponding
to the part of the data block kept in the line. The head line for a block is different from
the tail lines because it keeps the actual size of the block, as well as other control fields,
like reference bits and the split-merge counter. These control fields are unused in tail
lines. We need one bit per cache line to indicate the head/tail status of each line.

To split and merge blocks in this organization we manipulate only the head/tail
status of cache lines and associated control fields, without moving any data. Fetching a
block from the cache is now more difficult because blocks may span cache lines and we
do not know the size of a block. To fetch the block at a given address, we first fetch the




50

head line. Next we extract the size of the block from the size bits of the head line and
fetch subsequent tail lines (if any). We note that fetching or invalidation of the whole
block is needed only on the coherency transaction. Therefore fetching the tail lines can
be overlapped with the network transmission. On a cache hit we do not need access to
the whole block; all we need to do is update the reference bits and fetch the referenced
data, which can be easily done in parallel.

An implementation with cache lines of the maximum block size sometimes wastes
cache line data space, whereas the alternative implementation with lines of the minimum
block size uses many more cache lines, and many more tag and control parts of cache
lines, most of which are wasted for blocks larger than the minimum block size. The
tradeoffs in cache space introduced by these two implementations are quantified in
section 6.4.

In general, we would expect an adjustable block size cache to be used as a second-
level cache. Doing so would shield the processor from the effects on cycle time caused by
complications in the logic of an adjustable block size cache. The first-level cache could
use very short lines (say, one word) and be direct-mapped. None of the fields introduced
above would have to be stored in the first-level cache. The reference bits for a block in
the second-level cache would be updated on the first reference to a sub-block, when the
sub-block is brought into the first-level cache. Subsequent references to the sub-block
would not require accesses to the second-level cache, as long as the data remains in the
first-level cache.

In the remainder of this work, we will ignore the details of interaction between the
first and second-level caches, focusing instead on the role of the adjustable block size
cache in coherency transactions.

5.2.2 Tag Caches

Every memory module in the simulated machine organization has a tag cache [43].
which is used to implement a distributed directory. A tag cache is fully associative and
indexed by block address. Each tag cache line maintains information about the nodes
that currently have a copy of the data block indexing the tag cache line.

As originally described in [43], a tag cache actually consists of two subcaches - one
large cache for short cache lines, and a smaller cache for long cache lines. A short cache
line contains a few pointers to processors that currently cache the data block. Only a
few processors can have a copy of a bluck tiat has beez assigned to a short tag cache
line. If the number of processors sharing a block of data exceeds the number of pointers
in a short cache line, then a long cache line is used. Long cache lines keep track of the
copies of the data with a bit vector instead of pointers. The bit vector has an entry for
each processor in the system, so a data block associated with it can be cached by every
processor in the system.

When a block is first referenced it is allocated a short line. When the number of
processors caching the block exceeds the number of pointers in a short line, the short
line is freed,-and a long line is allocated. When there are no free tag lines, one tag line
is freed. Tag lines within each tag cache are freed on an LRU basis.




51

Tag caches make use of the observation that only a few blocks are shared by more
than a few processors. Therefore, there is no need to maintain a full-length bit vector
for most of the blocks. Another important observation is that tag caches need ouly
maintain directory entries for blocks currently cached in processor caches. Hence the
size of the directory is limited by the sum of the sizes of the processor caches, and not
by the total size of the memory modules.

Tag caches are useful not only for their memory-efficient representation of directories,
but also because they admit an implementation of the adjustable cache organization (as
discussed in section 5.1). Since the potential cost of limited pointer space in tag caches
is not a focus of our work, we assume that all tag cache lines are long. Even with long
tag lines, tag caches consume much less space than the standard directory organization.

5.3 Adjusting the Block Size

In addition to maintaining data coherency, the coherency protocol described in section
3.2 must be extended to distribute reference information, and to choose when to split
or merge cache blocks.

The reference bits associated with a copy of a data block record reference information
on a per-processor basis. These bits are used to update the split-merge counter, which
records reference information across processors. The split-merge counter is updated as
follows:

e When a requesting node receives data directly from the home node, it clears its
split-merge counter.

¢ When a data block changes owner, the previous owner updates its split-merge
counter based on the current values of its reference bits, and includes the new
value of its counter with the data. The new owner initializes its counter to this
value. If the change in ownership results in a split or merge, the new owner
initializes its split-merge counter to zero.

e When a node receives invalidation acknowledgements from other nodes containing
copies of a data block, the acknowledgements include the split-merge counters for
each copy. The requesting node adds these values to its split-merge counter.

The decision to split a data block is made by the owner on a transition in ownership.
When an owner receives a request forwarded from the home node, it updates its split-
merge counter and compares the new value to the split threshold. If the split-merge
counter exceeds the split threshold, a split occurs. The owner provides the request-
ing node with the half of the original block containing the requested offset within the
block. The original owner maintains ownership of half the block (clearing the split-
merge counter for the block), and transfers ownership of the other half (containing the
requested offset). The home node updates its tag cache and memory (if necessary) when
notified of the split by the original owner, as part of the sharing-writeback message or




52

ownership-change message. Thus, no additional messages are required to implement a
- split, and the amount of data transferred is actually less than in the case where a split
does not occur.

Two adjacent data blocks of equal size can be merged to form a single block at two
different points:

1. If we load the tag for the longest possible block on a tag cache miss, we implicitly
merge blocks after the block tags are evicted from the tag cache.

2. A merge can be ordered by the owner when a block in the modified state is re-
quested by another node. The following conditions should be met when a merge
is ordered by the owner: (a) both blocks are owned by the same node, (b) they
are buddies in the power-of-two buddy scheme, and (c) the split-merge counters
of both blocks exceed the merge threshold.

The owner invalidates the processor cache lines containing the two subblocks being
merged on a write request, and changes the state of the blocks to read-shared on a
read request. The owner also sends a reply message containing the merged blocks to
the requesting node. Merging does not require extra messages, since the home node
is notified as part of the sharing-writeback message or ownership-change message, but
the amount of data transferred is increased because both the requested block and its
neighbor are sent to the requesting node.

If a merge is attempted but cannot be performed because of the state of the buddy
block we call it a failed merge.

In our simulations we charge 2 cache cycles for a split, 4 for a merge, and 1 for a
failed merge. This additional cost is reflected in MCPR, measured in cache cycles of the
processor cache. We make merge operations more expensive than splits because merge
is more complicated, i.e. more conditions need to be checked and, in case of a successful
merge, more state needs to be updated.

5.4 Integration with the Coherency Protocol

The directory entry for a given data block attempts to maintain up-to-date informa-
tion associated with the block including its coherency state and the distribution of its
copies. Unfortunately, multiple coherency transactions related to one data block can be
simultaneously in progress. In such cases the information maintained by the directory
may become out of date.

In the original DASH protocol, both the block state and its distribution may change
while the directory keeps old information. For example, the owner of a modified block
may decide to evict it from the cache in order to reclaim the cache line. In such a case
the owner sends an eviction writeback message to the directory, so it will be eventually

updated. In the meantime, there may be another request issued for the data block,
which would result in the request being forwarded to the old owner. When this request




reaches the old owner, it replies with a negative acknowledgment (NAK). which will
cause the request to be re-issued later, upon reception of a NAK message. Interested
readers may find details of this solution in {38].

Extending the DASH protocol with dynamic block adjustment requires that the
directory keep track of the block size, in addition to any previously maintained infor-
mation. Moreover, dynamic block adjustment may result in a situation where the block
size stored in a directory entry is not the actual block size. This may happen when the
owner of a modified block has split it in two or has merged it with its buddy block, and
the sharing-writeback message or ownership-change message conveying the information
about this adjustment has not yet reached the directory.

To deal with such cases, we propose to lock the directory entry each time a request
is forwarded to the owner. When a read request is forwarded, the entry remains locked
until a sharing-writeback message is received by the home node. When a write request is
forwarded, the entry remains locked until the home node receives an ownership-change
message. In both cases the directory entry is unlocked when the writeback message
generated by block eviction is received by the home node. While the directory entry
remains locked, any request for a data block represented by this entry is rejected by
sending a NAK message to the originating node.

This locking scheme solves the out-of-date block size problem in cases of splits be-
cause the associated entry remains locked while a split is in progress. Merges are more
complicated, because we can have two requests forwarded to two buddy blocks, both
of which are locked. The first request reaching the owner (which owns both blocks)
causes the merge to occur, followed by a sharing-writeback or ownership-change mes-
sage. When the second request reaches the owner, it no longer has the requested data,
so it must answer with a NAK message, as in the original DASH protocol after eviction.
Upon receiving a sharing-writeback or ownership-change message containing merge in-
formation, the home node unlocks and deletes both directory entries corresponding to
the two merged sub-blocks, and creates one entry representing a newly merged block.
This new entry is unlocked, as the home node knows, due to the merge information
received, that the second request has not been satisfied.

It is easy to verify this extended protocol is correct, since each of the possible actions
in the extended protocol corresponds to a legitimate scenario in the DASH protocol.
Each locked entry eventually will be unlocked, because the owner must reply with one of
the following messages affecting the locked entry: sharing-writeback, ownership-change,
eviction writeback. Splits do not introduce any new cases in the protocol since (due
to locking) requests for data in a block being split are postponed (using NAK) until
the split is completed. Merging introduces no new cases as long as no requests are
issued for a block after it has merged with its buddy but before the directory has been
notified. There is one special case however; if a request to the buddy block is issued
while merging is in progress, the request cannot be postponed because the buddy block
is not locked. (Anticipatory locking of the buddy block is one possible solution, but it
would adversely affect the performance of the protocol.) This case is analogous to a
- situation that can arise in the DASH protocol: (1) the home node receives and forwards
two separate requests for two data blocks owned by the same owner, (2) the second




54

request is to the buddy block of the first request, (3) the owner happens to evict the
block corresponding to the second request after the first request has been received.
but before the second request arrives. The only difference between these two cases is
that in our protocol, the home node would receive merging information as part of a
sharing-writeback or ownership-change message, while in the DASH protocol the home
node would receive a sharing-writeback or ownership-change message followed by an
eviction writeback message. Since we can translate protocol actions on merge and split
operations into legitimate DASH operations, the extended protocol functions correctly
if the DASH protocol is correct.

5.5 Summary

In this chapter we introduced a new cache organization with an adjustable block size,
which is intended specifically for shared-memory multiprocessors. In this organization
the size of the coherency unit (block size) is not constant but may vary depending on
-the particular block and point in time. The recent reference pattern is used to adjust
the block size dynamically by splitting blocks to minimize false sharing and by merging
blocks to maximize the prefetching effect of large blocks.

We described two alternative implementations of processor caches for our new cache
organization. In one scheme each cache line is large enough to accommodate a block
of the maximum allowed size; the other scheme assumes that blocks may span multiple
short cache lines.

Finally we discussed the details of adjusting the block size and how it is integrated
with a directory-based coherency protocol.

We expect adjustable caches to provide good performance for a wide range of shar-
ing behaviors exhibited by parallel applications. The most important question in the
evaluation of an adjustable cache is to determine how well it performs compared with
traditional fixed line size caches. We need to quantify this comparison not only with
regard to sharing behavior of parallel programs but also with regard to the characteriza-
tion of the host multiprocessor, especially the network latency and bandwidth. It is also
interesting to see if a prefetching cache offers performance competitive with our new
cache organization. The cache comparison study should be performed for both network-
independent metrics, like the miss rate and DTPR, and machine-specific metrics, like
the mean cost per reference. This complete approach should help us understand the
behavior of adjustable caches as well as offer specific performance numbers. We also
need to quantify the overhead in cache space introduced by adjustable caches. Another
important issue is to identify how to select an instance of the adjustable cache for a
particular machine and a representative set of applications. All of these issues will be
addressed in the following chapters.




6 Evaluation of Adjustable Block Size
Caches

This chapter contains our evaluation of the adjustable block size cache organization,
which we compare with more traditional fixed line size caches with various degrees of
multi-line prefetching. In section 6.1 we describe the instances of cache organizations to
be included in our comparison study; the selection of adjustable caches is motivated by
the results of chapter 4 on the ranges of line sizes preferred by our applications. In sec-
tion 6.2 we compare the performance of the selected caches using network-independent
metrics, like the miss rate, DTPR, and cache size. We examine the impact of dynamic
block adjustment on the mean cost per reference in section 6.3. We compare the amount
of adjustable cache space required for conflict-free execution of our applications with the
space requirements of fixed line size caches in section 6.4. We summarize our evaluation
of adjustable block size caches in section 6.5.

6.1 Cache Instances

In this section we define the instances of cache organizations used in the comparison
study. We focus on the M(50,*) machines introduced in section 4.2. The effects of
latencies higher than 50 cycles are discussed in section 7.5.

For the fixed line size cache organization we select four caches with line sizes between
4 and 64 words in powers of two. These upper and lower bounds follow from the
discussion in section 4.2. We saw that under no circumstances is a fixed line size less
than 4 words optimal for any of our applications (see table 4.2). When latency is 50
cycles, lines longer than 64 words resulted in serious performance degradation for most
applications, and the improvements in MCPR were negligible for the others.

We will use three instances of adjustable block size caches in our comparison. Qur
choices are motivated by the wide range of architectures we want to cover, but for any
specific machine we will advocate one particular instance of the adjustable cache. The
three instances selected are:

o Vblock(16,64,64,(1,1)) (or Vblock(16,64,64))
o Vblock(8,64,64,(1,1)) (or Vblock(8,64,64))
e Vblock(4,64,16,(1,1)) (or Vblock(4,64,16))




56

All these instances use the same values for split and merge thresholds, therefore we
will omit these thresholds in our short form notation.

The first instance, Vblock(16,64,64), is intended for high bandwidth machines be-
cause it encourages the use of longer lines and prevents the use of short and medium
lines, since the minimum block size is 16 words. The range 16..64 includes the optimal
line sizes for unlimited bandwidth machines and high bandwidth machines (see table
4.2).

The second instance, Vblock(8,64,64), extends the range to include blocks of size &
words. This block range allows this instance to cover all optimal line sizes for the medium
bandwidth machine (wiith Fignduwiden €qual to 5, which corresponds to 80 MB/sec in our
model).

The third instance, Vblock(4,64,16), extends the range of block sizes even further
to include blocks of 4 words. Also, the initial block size is now 16 words. This cache
instance is better suited to the two low bandwidth machines because most ol our ap-
plications prefer block sizes of between 4 and 16 words on these machines (see table
4.2).

For comparison, we also include one prefetch cache organization, denoted by Pre fetch(8.8).
This cache uses a line size of 8 words and may fetci up to 8 lines (64 words). including
the requested line, in one coherency transaction.

6.2 Network-Independent Analysis

In this section we compare the performance of the adjustable cache instances defined
in section 6.1 against fixed line size caches, using network-independent metrics like the
miss rate and DTPR. In our discussion we group applications according to these two
metrics. For each application we describe the behavior of adjustable caches using *he
split and merge statistics, and the distribution of block transfers by block sizes.

6.2.1 Minimal Miss Rate Group

We call the first group of applications the minimal miss rate group with respect to the
performance of adjustable caches. This group consists of gsort, pgauss, and matmult.
For these applications the three instances of adjustabie caches result in the three lowest
miss rates among all the caches tested. The best Fized miss rate is greater than the
best adjustable cache miss rate by 42% for matmult (figure A.4.1), 15% for pgauss (figure
A.6.1), and 13% for gsort (figure A.9.1). The amount of data transferred per reference
was low for the adjustable cache with an initial block size of 16 words (V block(4,64,16)).
For gsort this cache organization achieved DTPR equal to that of Fized(8), whereas
for the other two applications it resulted in DTPR substantially tetter (up to 20%)
than that of Fized(8). The other two adjustable caches achieved DTPK well below
that of Fized(32), even though their initial block size was 64 words. The cache with

minimum block size of 8 words (Vblock(8,64,64)) even managed a lower DTPR than
that of Fized(16) in the case of gsort (figure A.9.2).




37

Splitting is the dominant form of block adjustment for these three applications. For
each adjustable cache and each of these applications, the number of splits was higher
than merges (see tables A.6, A.9, A.4). Moreover most of the transfers (between 60%
and 80%) used the minimum block size on all three adjustable caches and two out of
three applications - (gsort (figure A.9.4) and matmult (figure A.4.4)). In the case of
pgauss (figure A.6.4), the dominance of the minimum block size in the transfer statistics
is apparent for the adjustable cache with the smallest minimum block (4 words), which
accounted for 77% of all transfers. The adjustable cache with minimum block size of
16 words performed close to 60% of all transfers with this block size for pgauss. The
adjustable cache with minimum block size of 8 words used block sizes of 8, 16, and 32
words for a significant fraction of transfers (22%, 0% and 40% respectively).

For two applications - gsort (table A.9) and pgauss (table A.6) - the number of failed
merges was high, which is the result of a high miss rate for these applications. That
is, more misses give more opportunities to split or merge. With small split and merge
thresholds, there are more merge attempts because blocks of the minimum size are used
so often (and we cannot split a block of the minimal size!).

Although the minimum block size was used most frequently (except for pgauss and
Vblock(8.64,64)) the larger blocks accounted for a significant fraction of transfers. at
least 20%. This suggests that apart from fine-grain sharing in these three applications,
there are data structures that prefer longer lines. That is, there is a certain degree of
spatial locality that adjustable caches are able to exploit, as illustrated by the lower
. miss rates than those for fixed line size caches with short lines. On the other hand. fine-
grain sharing makes longer cache lines impractical for these applications because of false
sharing. Overall, adjustable caches are able to reduce false sharing by splitting down
and using small blocks for some data and by exploiting spatial locality with larger blocks
for other data. These two effects, i.e. elimination of false-sharing and exploitation of
limited spatial locality, resulted in the lowest miss rates and reasonable DTPR among
all caches tested.

The minimal miss rates achieved by adjustable caches for these applications ensure
good performance (in relation to fixed line size caches) as captured by MCPR. This is
especially true for high bandwidth machines, where the miss rate is the dominant factor.

6.2.2 Reduced Dominant Metric Group

We call the next group of applications the reduced dominant metric group with respect to
the performance of adjustable caches. This group includes three applications - plytrace,
pmatmult, and sorbyc. The name of this group suggests that ‘he effect of adjustable
caches for these applications depends on the parameters of the cache. That is, a cache
with small initial and minimum blocks, like Vblock(4,64,16), reduces DTPR much more
than the miss rate. Since this cache is intend for low bandwidth machines, this is the
correct behavior. The other two adjustable caches, with large initial blocks. reduce the
miss rate more than DTPR. Again, this is beneficial, as long as we want to use these
caches in higher bandwidth machines.




58

For all three applications, an adjustable cache with the minimum block size of 4
words and initial block size of 16 words (Vblock(4,64,16}) results in a miss rate close
to that of Fized(16) and DTPR close to that of Fired(8). The other two adjustable
caches produce miss rates within 4% of the best fixed line size cache for sorbyc (figure
A.10.1) and even better than the best fixed line size cache (by 5%) for pmatmult (figure
A.8.1) and (by 8%) for plytrace (figure A.7.1). However, the DTPR was between that of
Fized(16) and Fized(32) for both these caches on plytrace and pmatmult. Only in the
case of sorbyc was DTPR close to that of Fized(8), and only for the adjustable cache
with a minimum block size of 8 words. The other adjustable cache, with minimum block
size of 16 words, results in DTPRX close to that of Fired(16).

The split and merge statistics for pmatmult (table A.8) and plytrace (table A7)
show a surprisingly low number of adjustn ents, with few merges. The transfer statistics
clearly show that two types of data exist i1t these applications - one which prefers larger
blocks and the other which prefers the sinallest possible blocks. For each adjustable
cache, the smallest block accounted for between 30% and 60% of all transfers. On
the other hand the largest block (64 words) was used for 30% (pmatmult) and 20%
(plytrace) of the transfers for the two adjustable caches with initial block size equal
to the maximum block size. The third cache, with an initial block size 16 words, was
unable to merge blocks so all of these transfers were done with the initial block size. The
exclusive use of small block sizes (between 4 and 16 words) explains why this particular
cache results in higher miss rates for these two applications than the other two caches,
which manage to exploit spatial locality by using larger blocks.

Sorbyc (figure A.10.4) is a bit different from the other two programs in this group
because the smallest blocks dominate the transfer statistics (for two out of three ad-
justable caches), and there are few transfers with blocks of 32 or 64 words. Such a low
utilization of large blocks is surprising in light of the fact that the number of merges
is not much lower than the number of splits (table A.10). However, closer examination
of this table shows that there were very few merge operations with blocks of 16 or 32
words. In the case of sorbyc, the tradeoff between the miss rate and DTPR is resolved
mainly through the minimum block size. The cache with small minimum block size
results in a higher miss rate, while the other two caches with larger minimum block
sizes reduce the miss rate at the expense of DTPR.

6.2.3 Reduced DTPR Group

We call the next group of applications the reduced DTPR group with respect to the
performance of adjustable caches. This group includes gauss and mp3d and consists of
applications for which adjustable caches reduce DTPR at the expense of the miss rate.

For mp3d, the miss rates (figure A.5.1) of adjustable caches are comparable to that
of fixed line size caches with line size equal to the minimum block size of the adjustable
cache. Vblock(4,64,16) managed to reduce the miss rate of Fized(4), but it is still
higher than the miss rate of Fized(8). Also the DTPR (figure A.5.2) of the adjustable
- caches is comparable to the fixed line size caches with line size equal to the minimum
block size of the adjustable cache. In effect, adjustable caches degencrate to fixed line




size caches for mp8d. This is confirmed by the transfer statistics (figure A.5.4). Between
78% and 98% of all transfers were performed with the smallest block allowed.

For gauss, a substantial number of transfers (close to 20%) are performed with blocks
larger than 16 words (figure A.2.4). Even the adjustable cache with an initial block size
of 16 words managed to merge these initial size blocks and use blocks of 32 words in a
substantial fraction of transfers. However, the minimum block size still has a big impact
on the performance of adjustable caches, because it was used in between 76% and 84%
of all transfers, depending on the cache organization.

For these applications even the small fraction of transfers that use large blocks help
to improve the miss rate. The miss rate still depends strongly on the minimum block size
(figure A.2.1), but is usually better than the miss rates of fixed line size caches with line
size equal to the minimum block size of adjustable cache. For example, Vblock(4,64,16)
has a much lower miss rate than that of Fired(8), the miss rate of Vblock(8,64,64) is
equal to that of Fized(16), and Vblock(16,64,64) has the miss rate of Fized(32). On
the other hand, the data transferred per reference (figure A.2.2) for each adjustable
cache closely follows the DTPR of the fixed line size cache with line size equal to the
minimum block size.

Adjustable caches reduce DTPR for these two applications at the expense of the miss
rate. This behavior is caused by too much splitting (especially in the case of mp3d),
which in turn is a result of a low split threshold. We would expect adjustable caches
to perform well on low bandwidth machines for this group of applications, but for very
high bandwidth machines, some fixed line size caches may result in better performance
(measured in MCPR) due to lower miss rates.

6.2.4 Largest Block Preferred Group

Finally, there is a group of applications which we call the largest block preferred group.
This group includes three applications: bsort, kmerge, and sorbyr, whici: prefer large
blocks regardless of the available bandwidth. For these applications, the goal of an
adjustable cache should be to use the largest allowed block as often as possible (by
merging blocks if the initial block size is different from the maximum block size) and
avoiding splitting.

The two adjustable caches with a maximum block size of 64 words result in a miss
rate equal to (for sorbyr and kmerge) or lower (for bsort) than the miss rate of the best
fixed line size cache, which is always Fized(64) for these programs. The DTPR for
these caches is close to that of Fized(64) for all three applications. There is also a
limited amour. of splitting for these two adjustable caches and practically no merging.
A high fraction of all transfers (96% for bsort, 95% for kmerge, and 80% for sorbyr) are
performed with a block size of 64 words.

The third adjustable cache, Vblock(4,64,16), has a much harder task in the case of
these applications, because its initial block size, 16 words, is much too small to result in
good performance. Therefore, the only way for this cache to improve performance is via

.merging. For sorbyr, the program runs long enough (recall that this application trace
was one of the longest) to allow this adjustable cache to merge blocks. Close to 506%




60

of all transfers are performed with blocks of 64 words (figure A.11.4), even though the
.initial block size is 16 words. However, this is much less than the other two adjustable
caches, which use blocks of 64 words for more than 80% of all transfers. As a result
Vblock(4,64,16) produces a miss rate close to that of Fized(32) (figure A.11.1), instead
of Fi.ed(64), but manages to cut DTPR down to that of Fired(4).

For the other two applications in this group, bsort and kmerge, merging is not
very successful in Vblock(4,64,16). Both of these applications have short traces and
there are not enough opportunities to merge. In effect, close to 70% of all transfers are
produced with the initial block size of 16 words (figures A.1.4 and A.3.4). Longer blocks
(especially blocks of 32 words) are responsible for the remaining 30%, which indicates
that there is ongoing merging activity in both of these cases. As a result, the miss rate
of Vblock(4,64,16) is 24% lower than that of Fized(16) for bsort (figure A.1.1) and 16%
lower for kmerge (figure A.3.1). However, both miss rates are substantially higher than
that of Fized(32). The DTPR remains flat for all caches since these programs have
excellent spatial locality.

6.3 Effect on MCPR

In this section we discuss the performance of adjustable caches expressed as the mean
cost per reference (MCPR) for one particular machine. Of the five machines described
in chapter 4, we select the machine with bandwidth equal to 40 MB/sec. This machiune
is denoted in our notation by M(50, 10), i.e. Figtency is equal to 50 and Fiunduwides 1s
equal to 10. We believe this choice represents a reasonable machine of today. The
performance of adjustable caches for the remaining machines is investigated in chapter
7.

Table 6.1 gives the mean cost per reference relative to the adjustable cache Vblock(1.64.16)
for five fixed line size caches (with line sizes between 4 and 64 words) without prefetch-
ing, and two prefetching caches, Prefetch(8,8) and Prefetch(16,4). If the performauce
of a fixed line size cache for a given application is described by a number greater than 1,
this indicates that Vblock(4,64,16) resulted in better performance than that fixed line
size cache. On the other hand, if this number is less than 1, the fixed line size cache
was better.

Our first observation is that nearly all numbers in this table are greater than 1, i.e.
the adjustable cache is better in most of the cases. The two significant exceptions are
bsort and kmerye, for which caches with long lines perform better than Vblock(4, 64, 16)
by up to 13%. This is an effect of short traces, however, as noted in section 6.2.4. That
is, both of these programs are too short to allow merging to minimize the effect of the
initial block size, which is 16 words. As a result, this adjustable cache has MCPR only
slightly better than Fized(16) (6% for bsort and 4% for kmerge). However, for long
traces like sorbyr, merging is effeciive, and Vblock(4,64,16) results in a mean cost per
reference within 1% of Fized(64).

A second observation is that all fixed line size caches without prefetching suffer at
least 2 29% increase in MCPR for at least one application. Caches with short lines like




61

Table 6.1: M(50,10) Machine - MCPR Relative to Vblock(4,64,16.(1,1))

Application Cache
Fxd(4) | Fxd(8) | Fxd(16) | Fxd(32) | Fxd(64) | Prftch(8,8) | Prftch(16,4)

matmult “ 1.15 1.09 1.18 1.67 2.89 1.12 1.24
pgauss 1.18 1.18 1.37 2.15 3.84 1.16 1.37
gsort 1.17 1.10 1.25 1.77 3.56 1.08 1.29
plytrace 1.11 1.02 1.08 1.38 2.31 1.06 1.15
pmatmult 1.30 1.13 1.07 1.14 1.42 1.08 1.06
sorbyc 1.03 1.01 1.07 1.22 1.55 1.00 1.07
gauss 1.09 1.05 1.02 1.07 1.19 1.03 1.02
mp3d 1.06 0.99 1.16 1.63 3.01 1.13 1.29
bsort 1.76 1.29 1.06 0.95 0.89 1.19 1.02
kmerge 1.79 1.29 1.04 0.92 0.87 1.21 1.01
sorbyr 1.33 1.14 1.05 1.01 0.99 1.13 1.05

Fized(4) and Fized(8), suffer on the largest block preferred group, especially bsort and
kmerge. For Fized(4), both of these applications exhibited a 70% increase in MCPR;
for Fized(8), the increase was 29%.

. Caches with longer lines suffer on the minimal miss rate group of applications, for
which the adjustable cache managed to eliminate false sharing. For Fized(16), the
increase in MCPR was 37%, 25% and 18% for the three applications belonging to this
group. These percentage increases are much larger for Fized(32), (115%, 77% and 67%
respectively). And for Fized(64), the mean cost per reference increases by a factor of
3 or so for each of these applications when compared against Vblock(4,64,16).

Prefetching caches offer little improvement. Prefetch(16,4) results in a higher
MCPR than Fized(16) for the minimal miss rate group of applications. Although
Prefetch(8,8) is an improvement over Fized(8), the 29% increase in MCPR introduced
by Fized(8) on kmerge and bsort remains significant (21% for kmerge and 19% for bsort).
The performance of both prefetching caches, as well as the miss rates and DTPR data
for Prefetch(8,8) (see appendix A), show clearly that prefetching has limited effect
on all metrics. That is, prefetching caches behave like fixed line size caches without
prefetching. Therefore, prefetching with shorter lines, for example Prefetch(1,64),
would result in poor performouce, i.e. close to that of Fized(1). The reason for this
anomaly is that a prefetching cache does not have enough flexibility to correctly pre-
dict the sharing patterns. That is, it prefetches blocks only when there is a write to a
modified block or a read of a read-shared block. However, for kmerge and bsort, more
than 90% of all coherency transactions are of another type (i.e. write to read-shared or
read of a modified block). In effect, in more than 90% of the misses, the prefetching
cache operates like a simple fixed line size cache for both of these applications. One
remedy would be to prefetch during this 90% of coherency transactions. This approach
would cause the prefetching cache to behave like a fixed line size cache with long lines




62

however, which is unacceptable for programs with fine-grain sharing.

The two caches most competitive with Vblock(4,64,16) are Fized(8) and Pre fetch(8,8).
For Fized(8), we have 2 programs that suffer a 29% increase in MCPR, and 6 out of
11 programs suffer at le..ct a 10% increase compared to Vblock(4,64,16). On the other
hand, Fized(8) is better only in the case of mp3d, and only by 1%. For Prefetch(8,8),
two programs suffer a 20% or so increase in MCPR, and 6 out of 11 suffer at least
a 12% increase. Also, there is no program for which Prefetch(8,8) performs better
than the adjustable cache. We note also that the biggest increases in MCPR were
recorded for kmerge and bsort for both of these caches, even though the adjustable
caches were not able to exploit fully the advantages of merging for these programs be-
cause they were too short. We conclude that for programs with a strong preference for
large blocks, and sufficient duration to allow a high degree of merging to occur, both
Fized(8) and Prefetch(8,8) would result in a much higher MCPR than the adjustable
cache. This conclusion makes both Fired(8) and Prefetch(8,8) even less competitive
with Vblock(4,64,16) then is suggested by table 6.1.

6.4 Cache Size

This section discusses the size of the cache needed to execute our applications. We still
assume fully associative caches, which eliminates conflict misses. We want to know the
minimum cache space needed to store all referenced data (plus any additional cache
control bits) while avoiding capacity misses and reusing cache lines invalidated on co-
herency transactions. Qur metric is given in bits of cache space needed per reference
to allow comparison across applications. This metric also provides a rough estimate of
how much space overhead is introduced by adjustable caches.

For fixed line size caches (with or without prefetching), the value of the metric is
the maximum number of cache lines used in the execution of a given program times the
length of a cache line. This length includes tag bits and additional control bits, like the
modify bit and state bits.

For adjustable caches we compute the size for two possible implementations. The
first size of interest is the maximum size of an adjustable cache implemented as a fully-
associative cache with line size MazBlockSize (i.e. the maz-block implementation de-
scribed in section 5.2.1). The total line size in bits includes tag bits (for MinBlockSize),
size bits, state bits, the modify bit, two LU bits, and split-merge counter bits (4).

The second size of interest is the size of an adjustable cache implemented as a
fully-associative cache, but with blocks spanning multiple lines, where the size of each
line is equal to MinBlockSize (i.e. the min-block implementation described in section
5.2.1). The control part of each line in this implementation is one bit wider than for the
maz-block implementation (called the head-tail bit), because we now have to distinguish
between head and tail lines. The size of the min-block implementation is the maximum
number of lines (where the data part size is equal to MinBlockSize) occupied during
program execution times the total line length. The total line length includes both data
and control parts for each line, so we account for additional contro! fields in lines used
to hold blocks larger than MinBlockSize.




63

These two implementations represent two very different choices. The mar-block im-
plementation is simpler but may result in low cache utilization if the average length
of a data block is much smaller than Maz BlockSize. On the other hand, this im-
plementation results in good cache utilization if most of the blocks are large and only
a few are small. The min-block implementation is more challenging for the hardware
designer because blocks spanning multiple lines introduce an additional level of com-
plexity. However, the min-block implementation may be much more space efficient than
the maz-block implementation in some situations.

The conditions under which a given implementation is more space efficient become
apparent if we compute how much space is needed on the average to house a unit of data
(say one word). For the min-block implementation we use ControlSize + MinBlockSize
space to keep MinBlockSize data, where ControlSize is the size of the coutrol part of
a cache line, including the tag. Therefore the space overhead per word of data in the
min-block implementation is given by:

ControlSize + MinBlockSize 14 ControlSize
MinBlockSize - MinBlockSize

For the maz-block implementation we use ControlSize + Maz BlockSize space to keep
each block of data. We assume that the sizes of control parts are very similar for both
implementations. If AvgBlorkSize is the average block size then the space overhead
per one word of data is given by:

ControlSize + MaxBlockSize  MazBlockSize ControlSize

AvgBlockSize "~ AvgBlockSize + AvgBlockSize

We see that this overhead depends on the maximum block size in the maz-block imple-
mentation, but is independent of the maximur. block size in the min-block implemen-
tation. If the average block size is close to the minimum block size, then %ﬁ'ﬁﬁ
is much larger than 1 and in effect we need much more space for the mazr-block imple-

mentation. On the other hand, if the average block size is close to the maximum block

H MazxBlockSizc ControlSize , ControlSize X
size, then AvgBlockSiae 15 close to 1 and AvoBlockbers 15 smaller than 22t 50 the

maz-block implementation may be more efficient.

The good news is that in many cases the space overhead of adjustable caches is
reasonable regardless of the implementation. These cases include two instances of ad-
justable caches in which the initial block size is equal to the maximum block size:
Vblock(8,64,64) and Vblock(16,64,64). These two caches need relatively small cache
space for our application suite, sometimes comparable or even smaller than some of
the Fized caches, and always within 40% of the best Fized caches for the following
applications: matmult, pmatmult, sorbyc, gauss, bsort, kmerge, sorbyr. These are the
programs that keep most of the data in large blocks (although it does not necessarily
mean that most of the transfers are done with such blocks). And large blocks make the
maz-block implementation space efficient. For this implementation the largest increase
in the cache space needed by either of these two adjustable caches over the best Fized
cache is 39% (in the case of pmatmult, figure A.8.3). Also, the minimum block sizes
for these two caches are lurge enough (8 and 16 words, i.e. 32 and 64 bytes) to make
the space overhead resulting from additional control parts of MinBlockSize cache lines




64

manageable for the min-biock implementation. For this implementation, the largest in-
.crease in the cache space needed by either of these two adjustable caches over the best
Fized cache is 37% (again in the case of pmatmult).

For other applications (which use small blocks a lot), the space overhead of these
two adjustable caches {(compared against Fized caches) depends very much on the
implementation. For the min-block implementation, the cache space increase is less
than the 37% recorded for the previous group of applications because of the increased
use of small blocks. For the maz-block implementation some programs resulted in a
large amount of wasted data space. Compared to the most space efficient Fired cache,
these two adjustable caches need 150% more space for pgauss (figure A.6.3), 168% for
mp3d (figure A.5.3), 170% for plytrace (figure A.7.3) and up to 358% for gsort (figure
A.9.3. All these overheads result from long cache lines (64 words) and a much smaller
(close to the minimum block size) average block size produced by heavy splitting.

The third adjustable cache we considered, Vblock(4,64,16), introduces even more
overhead in the maz-block implementation, and this is true for practically all applica-
tions. As in the previous examples, heavy use of small blocks caused by splitting wastes
a lot of space, but there is another factor which makes this implementation especially
wasteful: The initial block size is different from the maximum block size, and we waste
data space by default. The minimum overhead this cache introduces over the best Fired
cache is equal to 138% (in the case of gauss, figure A.2.3), while the maximum overhead
is equal to 670% (in the case of gsort, figure A.9.3). On the other hand, the min-block
implementation of Vblock(4,64, 16) results in moderate overhead. The largest overliead
over the most space-efficient Fized cache, equal to 46%, was recorded for gsort and the
adjustable cache with a minimum block size of 4 words. This maximum overhead is
37% when the minimum block size is 8 words, and 28% when it is 16 words. We note
that this maximum overhead is reduced with larger minimum block sizes.

From this analysis we conclude the following: the min-block implementation of ad-
justable caches introduces manageable space overhead (up to 46%) compared with the
best Fired caches. The maz-block implementation offers reasonable cache utilization
only if the initial block size is equal to the minimum block size, and ouly if small blocks
are rarely used.

6.5 Summary

In this chapter we proposed three instances of adjustable caches intended to cover wide
range of multiprocessors with various levels of network bandwidth. We compared these
three adjustable caches with fixed line size caches by running the simulations for all our
applications. For three out of eleven applications all three adjustable caches managed to
reduce the miss rate below that of the best fixed line size cache. The best fixed line size
cache had a miss rate higher by between 13% and 43% compared to the best adjustable
cache. At the same time the amount of data transferred by the adjustable caches was
- also low, usually close to the DTPR recorded by the fixed line size caches with line size
equal to the minimum block size.




65

For three other applications, two adjustable caches reduced the miss rate at the
expense of DTPR, while the other adjustable cache, (with a small minimum block size)
reduced DTPR at the expense of the miss rate.

There were two applications for which all adjustable caches split down to the min-
imum block size quickly. In effect, the adjustable caches performed like fixed line size
caches with the line size equal to the minimum block size. Finally, for the three applica-
tions preferring large blocks, the adjustable caches correctly avoided splitting and tried
to merge up to the maximum block size. The success of merging depended on how long
the program ran.

Overall, the adjustable caches behaved in many different ways depending on the
initial parameters and the application. In a few cases very little adjustment took place,
because the initial block size was the optimal one. In a few another cases, merging was
the dominant method of adjustment. For most of the applications both splitting and
merging took place, however the number of splits was usually much higher than the
number of merges, which is in part a consequence of large initial blocks.

We continued the comparison study by computing the mean cost per reference for all
our applications on 40 MB/sec machine with varying cache organizations. In this part of
the study we compared an instance of the adjustable cache that was well-suited to this
machine against all fixed line size caches and two prefetching caches. It turned out that
the adjustable cache was a winner in nearly all cases, i.e. it resulted in the lowest mean
cost per reference. The most competitive fixed line size cache was better for only one
application (and only by 1%), whereas for six out of eleven applications, it was worse
by more than 10%, and for two applications by 29%. The most competitive prefetching
cache performed worse for all applications, by at least 12% for 6 applications, and up
to 21% in the worst case. Prefetching did not help much because, in most of the cases,
there was not enough of it.

For all applications the number of splits and merges performed by any adjustable
cache was low compared to the number of references or even to the number of misses.
Therefore, even more expensive split and merge operations would not change the mean
cost per reference substantially. However, the number of failed merges was high for
some programs, and therefore it is important to keep the cost of a failed merge low.

The min-block implementation of adjustable caches introduces limited space ove:
head over the most space efficient fixed line size cache. For all three adjustable caches
and all applications this overhead was no higher than 46%. The maz-block implemen-
tation is space efficient only if the initial block size is equal to the maximum block size.
and only if small blocks are rarely used.




66




67

7 Selecting an Instance of the
Adjustable Block Size Cache
Organization

This chapter discusses how to select an adjustable cache for a particular machine and
how much improvement over fixed line size caches we can expect to achieve.

In section 7.1 we examine the effect of the parameters used to control changes in
block size on the performance of adjustable block size caches.

In sections 7.2, 7.3, and 7.4 we discuss the selection of an adjustable cache for
M (50, +) machines. That is, we vary the network bandwidth, while keeping latency
constant at 50 cycles, and show how to select an adjustable cache for each such machine.
We also evaluate how much adjustable caches can improve the mean cost per reference
relative to fixed line size caches depending on the available bandwidth.

Finally, in sectioa 7.5 we consider how adjustable caches would perform on machines
with latency higher than 50 cycles.

7.1 Effects of Adjustable Block Size Cache Parameters

In this section we discuss the tradeoffs to be considered when selecting the split and
merge threshold values, the initial block size, the maximum and minimum block sizes,
and the amount of reference history maintained in the split-merge counter. We also
quantify the effect of each of these parameters in our simulations. All MCPR results in
this section are given for machines with latency of 50 cycles.

7.1.1 Split and Merge Thresholds

The split and merge thresholds determine how quickly the block size adjusts to reference
behavior. By choosing small values for these thresholds, we can encourage both splits
and merges to occur. In our simulations, we set the split threshold to 1 and the merge
threshold to 1. We chose small values for both to encourage changes in the block size.

Additional simulations showed that small changes in the split threshold do not alter
the results significantly. In these experiments we used Vblock(8,64,64,(1,1)) as the
base cache, because this cache should be sensitive to changes in the split threshold.




68

Setting the split threshold to 2 instead of 1 resulted in a 6% increase in DTPR and the

.same miss rate for matmult. When the split threshold was 3 instead of 1 the DTPR
increased 9%, while the miss rate still remained unchanged. For other applications this
pattern was similar, i.e. an increase in the split threshold caused small increases (up to
9%) in DTPR and had very little effect on the miss rate (usually it was reduced by no
more than 1%). One exception was sorbyr, for which a split threshold of 2 reduced the
miss rate by 9%. Apparently a split threshold of 1 makes this application too sensitive
to splitting (recall that sorbyr prefers large blocks).

We used Vblock(4,64,16,(1,1)) as the base cache to test the impact of the merge
threshold. Small changes in the merge threshold affect performance only for programs
that prefer large cache blocks. Raising the merge threshold to 2 increased the miss rate
by 20% for bsort, 10% for kmerge and only 2% for sorbyr. The data transferred per
reference remained unchanged. For other applications, raising the merge threshold had
very little effect.

In general the split threshold has lower impact on the performarnce of adjustable
caches than the merge threshold. Since it is much more difficult to merge than to split,
the merge threshold should be low to facilitate merging.

7.1.2 Initial Block Size

The initial block size is an important parameter for the adjustable block size cache
because it sets the starting point from which we attempt to converge to the optimal
block size. The smaller the number of steps (in splits or merges) between the initial
block size and the optimal block size for a given piece of data within an application, the
better the performance of the adjustable block size cache.

It follows from table 4.2 that the optimal cache line size depends on two factors:
application characteristics and the network specification. Selection of the initial block
size for a given machine depends on the set of applications we expect to run on it. The
lower the bandwidth, the wider the range of optimal block sizes, and the more difficult
the selection of the initial block size.

For low bandwidth machines we selected an initial block size equal to 16 words. even
though this selection is far from optimal for applications that prefer large blocks. The
majority of applications prefer blocks smaller than 16 words, and only two out of eleven
of our applications prefer cache lines of 16 words (table 4.2) for these machines. Clearly
the choice of initial block size is a compromise between applications with good spatial
locality and those with fine-grain sharing.

Since merging is a much slower process than splitting, we generally recommend large
initial blocks. In the maz-block implementation of adjustable caches, the initial block
size should be equal to the maximum block size, because cache utilization is very poor
otherwise (see section 6.4). Additionally, large initial blocks make programs with good
spatial locality perform better and we should encourage the use of such programs.

At times we need to start with larger blocks to exploit a preference for two or more
block sizes by one application. For example, an initial block size of 16 words proved to




69

be better in terms of MCPR than an 8-word initial block size for matmult on the lowest
bandwidth machine, even though Fized(8) performed better than Fized(16). We can
see from figure A.4.4 that, when the initial block size is 16 words, the vast majority of
all transfers are of size 4 words or 16 words. Although only 3% of all transfers use blocks
of 32 words or larger, these transfers account for 12% of all the data transferred. If we
change the initial block size to 8 words, too few merge operations occur. As a result,
only a few transfers use a cache block of 16 words or larger. It is this lack of merge
operations that causes a cache with an initial block size of 8 words to perform worse
than a cache with an initial block size of 16 words, even though Fired(8) performs
better than Fized(16).

7.1.3 Maximum Block Size

For the maz-block implementation of adjustable caches, the maximum block size is
determined by the size of a cache line. A single cache line should be big enough to
exploit spat il locality, but not so big that most of the cache line goes unused. Thus,
there is a tradeoff between the performance benefits of a larger cache line and the cost
of unused cache space.

For programs that prefer large blocks the maximum block size defines the limit ef
how well a given adjustable cache can perform. Additionally, if the initial block size
is equal to the maximum block size, the performance of an adjustable cache for these
programs is very close to that of the fixed line size cache with line size equal to the
maximum block size. Therefore, to see the effect of a smaller maximum block size ou
an adjustable cache with the initial block size equal to the maximum block size, it
is sufficient to compare the performance of Fized caches. For example, reducing the
maximum block size from 64 words to 32 words increases MCPR between 5% and 8% for
gsort, 4% and 10% for kmerge and up to 3% for sorbyr. Reducing the maximum block
size from 32 words to 16 words would increase MCPR even more due to the reverse
effect of diminishing improvements, as discussed in chapter 4.

When the initial block size is smaller than the maximum block size, then reducing
the maximum block size has one more effect: Apart from limiting the performance of
programs preferring large blocks, it may now avoid some merges and thereby reduce
DTPR at the cost of the miss rate for programs preferring small blocks. especially if the
merge threshold is low. For example, when the maximum block size is set to 16 words
instead of 64 wnords in Vblock(4,64,16,(1,1)), the miss rate increases by 10% for gsort,
but the DTPR is reduced equally.

This result also points out the relationship between the merge threshold and the
maximum block size. When the merge threshold is low (as it was in our simulations),
additional merges take place, as in the case of gsort. For these programs, a large
maximum block size simply increases the opportunity for merge operations. Shrinking
the maximum block size or raising the merge threshold would prevent merges, but either
alternative would adversely affect the performance of other programs that require merge
- operations to produce an appropriate block size. Raising the merge threshold makes it
difficult for programs such as kmerge, bsort, and sorbyr to quickly adjust the block size




70

upwards, while shrinking the maximum block size prevents these programs from ever
achieving the desired larger block sizes.

7.1.4 Minimum Block Size

The choice of minimum block size depends on the following factors:

e How much fine-grain sharing do we expect in our applications ?

e What is the ratio of latency to bandwidth? The lower the bandwidth, the smaller
the minimum block size needed (see table 4.2).

e If the adjustable cache is implemented with the min-block approach, how much
space overhead are we willing to bear? The smaller the minimum block size,
the more overhead incurred by the min-block implemc . tation. For the maz-block
implementation, the minimum block size together with the maximum block size
defines the upper bound on wasted cache space.

To see the effect of the block size range on performance, we increased the mini-
mum block size of Vblock(4,64,16,(1,1)) to 8 and reran our simulations for a num-
ber of traces. Mp3d is an example of a program which may benefit from the higher
minimum block size, depending on the host machine. The miss rate was reduced by
17%, but D1PR shot up by 42% with the increased minimum block size. Recall (fig-
ure 4.8) that Fized(8) is the best fixed line size cache for 50/5 and 50/10 machines.
Clearly there is too much splitting (or the minimum block size is too small) when using
Vblock(4,64,16,(1,1)) for these machines. On the other hand, on the 50/20 machine
(table 7.4) this adjustable cache performs quite well, a little better than the optimal
fixed line size cache, Fiized(4). In the case of gauss the effect of the increased minimum
block size was similar; the miss rate decreased by 6% and DTPR increased by 37%. For
other programs, like gsort, matmult and pmatmult, the miss rate did not change, but
DTPR increased substantially, up to 40%.

The relationship between the minimum block size and split threshold is analogous to
the relationship between the maximum block size and the merge threshold. When the
split threshold is low and the minimum block size is small, too many splits can occur
(as in mp8d and gauss). This situation arises for example when a program initializes
adjacent data from different processors (which causes splits), but then exhibits good
processor locality for subsequent accesses. On the other hand, some programs like gsort
perform best with a small block size, and a low split threshold that allows blocks to
shrink quickly. An increase in the split threshold or the minimum block size penalizes
these programs.

7.1.5 Reference History

The split-merge counter records the reference history to a cache block as it moves from
one cache to another. We would like the information in the counter to be as current




as possible without resorting to time-stamps or aging. We would also like to ensure
that slight changes in reference behavior do not cause an excessive number of splits or
merges Lo occur.

One way to control the ease with which the cache adjusts to changes in reference
bekavior is to limit the size of the split-merge counter. With a small counter, reference
information is quickly replaced, ensuring that information accumulated during an earlier
phase of execution cannot prevent splits or merges during a subsequent phase. With
a larger counter, the cache is less sensitive to short-term reference patterns. Of course
the counter must be big enough to hold the integers between the merge threshold and
the split threshold, but a larger counter can also record reference information that
temporarily exceeds the thresholds, such as occurs when reference information from
several copies is brought together.

All our previous experiments used a 4-bit split-merge counter. To test the sensitivity

of our results to this parameter we reran our experiments with a 3-bit counter and a 5-bit
counter for Vblock(4,64,16,(1,1)). All other parameters remained the same. Several
-applications including bsort, matmuli, and km: -y, showed no seusitivity to the size
of the split-merge counter, which suggests there are no changes in reference behavior
during execution of these applications. For mp3d, the miss rate increased by 1% and
DTPR decreased by 1% when a 3-bit counter was used. With the 5-bit counter the
opposite effect was observed. The miss rate dccreased by 1% and DTPR increased by
2%. Similar changes were observed for gsort.

We conclude from these experiments that the size of the split-merge counter does
not significantly influence the performance of adjustable ciches. Only programs with
fine-grain sharing are sensitive to changes in the size of this counter. Reduction of the
counter size increased the miss rate and decreased DTPR, whereas a large counter had
the opposite effect. However, the observed changes were minimal. on the order of 1%
change for both the miss rate and DTPR. As a result the use of small counters (say. 3 or
4 bits) not only save space, but also provide good performance across all applications.

7.2 High Bandwidth Machines

In this section we compare one instance of the adjustable cache organization with fixed
line size caches and prefetching caches using MCPR for two machines: one with infinite
bandwidth (A7(50,0) machine), and one with high finite bandwidth (A{(50.1) machine).

For high bandwidth machines the range of optimal cache line sizes is quite narrow.
Recall table 4.2, where this range included <nly three line sizes: 16, 32 and 64 words
for the two machines with the highest bandwidth.

On the infinite bandwidth machine, six out of eleven applications preferred a line size
of 64 words. The adjustable cache we recommend for this machine is Vblock(16.64.64. (1.
An initial block size of 64 words allows for optimal performance for these six applica-
tions. Split threshold equal to 1 makes the adjustable cache very responsive to the recent
reference pattern and allows applications that prefer blocks of 16 words 1o perform well.




72

On the infinite bandwidth machine, the miss rate is the dominant metric influencing
. the mean cost per reference. The amount of data transferred (DTPR) does not matter in
this case tecause we have infinite bandwidth. The incurred cost per reference depends
directly on the miss rate and network latency. Infinite bandwidth machines are the
ultimate test case for adjustable caches, because any improvement in performance comes
from cuts in the miss rate only, not DTPR. And to reduce the miss rate, we need to
reduce false sharing.

Table 7.1: M(50,0) Machine - MCPR Relative to Vblock(16,64,64,(1,1))

Application Cache
Fxd(4) | Fxd(8) [ Fxd(16) | Fxd(32) | Fxd(64) | Prftch(8,8) | Prftch(16,4)

matmult 1.21 1.09 1.04 1.13 1.23 1.06 1.03
pgauss 1.49 1.27 1.13 1.16 1.20 1.17 1.10
gsort 1.60 1.29 1.14 1.09 1.25 1.18 1.11
plytrace 1.41 1.17 1.06 1.03 1.11 1.11 1.03
pmatmult 1.58 1.28 1.12 1.04 1.01 1.21 1.09
sorbyc 1.11 1.04 1.01 1.00 1.00 1.03 1.01
gauss 1.15 1.08 1.02 1.00 0.99 1.06 1.01
mp3d 1.47 1.16 1.01 0.94 1.01 1.15 1.00
bsort 2.27 1.59 1.25 1.08 1.00 1.44 1.19
kmerge 2.56 1.73 1.31 1.10 1.00 1.59 1.25
sorbyr 1.38 1.18 1.07 1.02 1.00 1.16 1.07

Table 7.1 gives the mean cost per reference of all applications on the infinite band-
width machine. The MCPR, given for five Fized and two prefetching caches, is relative
to Vblock(16,64,64,(1,1)), in a format similar to table 6.1.

Fixed line size caches with shorter lines (4 or 8 words) are not competitive in the
presence of infinite bandwidth because they result in high miss rates. Compared to
Vblock(16,64,64,(1,1)) they introduce substantial overhead. This overhead is especially
noticeable for programs with good spatial locality, like bsort and kmerge, for which the
MCPR of Fized(4) is at least 120% higher than that of Vblock(16,64,64,(1,1)). For
Fized(8), the MCPR is at least 59% higher than Vblock(16,64,64,(1,1)) for these two
programs. Prefetch(8,8) does not improve MCPR significantly; it was still higher by
59% (kmeryge) and 44% (bsort).

Fized(16) operates with relatively short cache lines of 16 words and introduces
overhead in MCPR equal to 31% for kmerge and 26% for bsort. Prefetch{16,4) reduces
this overhead to 25% for kmerge and 19% for bsort.

Fixed line size caches with longer line sizes of 32 and 64 words result in MCPR closer
to that of Vblock(16,64,64,(1,1)) for both kmerge and bsort. However, these fixed line
- size caches introduce more overhead for the minimal miss rate group of applications.
which comsists of gsort, pgauss and matmult. This confirms our observation that the




73

miss rate is the most important metric for high bandwidth machines. Compared to
Vblock(16,64,64,(1,1)), Fized(64) introduces at least 20% overhead for these three
applications. Fizred(32) is the most competitive fixed line size cache; the highest over-
head over Vblock(16,64,64,(1,1)) introduced by Fired(32) is 16% (for pgauss). The
overhead is 13% for matmult and 9% for gsort. For the minimal miss rate group of
applications, Vblock(16,64,64,(1,1)) manages to reduce the mean cost per reference
only by eliminating the false sharing introduced by a fixed line size of 32 words. The
prefetching effect of a large initial block size (equal to 64 words) is not very useful here
because all three applications prefer blocks smaller than 64 words. This prefetching
effect is crucial for both kmerge and bsort however.

Overall for five out of eleven applications the most competitive fixed line size cache,
Fized(32), introduces overhead in MCPR between 8% and 16%. For four other appli-
cations this overhead is between 0% and 4%, and for one application (mp3d) Fired(32)
reduced MCPR by 6%. This failure of the adjustable cache to out-perform a fixed line
size cache is due to the low split threshold and the small minimum block size, both of
which reduce the DTPR at the expense of the miss rate.

Table 7.2: M(50,1) Machine - MCPR Relative to Vblock(16,64.61.(1.1))

Application Cache
Fxd(4) | Fxd(8) | Fxd(16) | Fxd(32) | Fxd(64) | Prftch(x.8) | Prftch(16.4)

matmult 1.20 1.07 1.04 1.15 1.34 1.06 1.04
pgauss 1.33 1.15 1.06 1.18 1.44 1.07 1.04
gqsort 147 1.21 1.10 1.14 1.52 1.1 1.08
plytrace 1.33 1.12 1.03 1.04 1.21 1.07 1.01
pmatmult 1.53 1.25 1.10 1.04 1.06 1.19 1.08
sorbyc 1.09 1.03 1.01 1.02 1.05 1.02 1.01
gauss 1.15 1.08 1.02 1.00 1.00 1.06 1.01
mp3d 1.38 1.11 1.00 1.01 1.25 1.11 1.01
bsort 2.24 1.58 1.25 1.08 1.00 1.42 1.18
kmerge 2.50 1.70 1.30 1.10 1.00 1.56 1.24
sorbyr 1.38 1.17 1.07 1.02 1.00 1.16 1.07

If the bandwidth is high but finite, as in the M (50, 1) machine (which corresponds to
400 MB/sec given 100 MHz processors), the relative performance of V'block(16,64, 64, (1, 1)
is even better (table 7.2). The best fixed line size cache is still Fizcd(32), but the over-
head in MCPR over that of Vblock(16,64,64,(1,1) is now larger than for the unlimited
bandwidth machine. For minimal miss rate applications this overhead is now 18% in-
stead of 16% for pgauss, 15% instead of 13% for matmult and 14% instead of 9% for
gsort. The adjustable cache was able to improve its performance due to a reduction
in DTPR. However, there is no change in overhead for applications with good spa-
tial locality because the amount of data transferred was the same for Fired(32) and




74

Vblock(16,64,64,(1,1) (see figures A.1.2, A.3.2, A.11.2).

One more important observation is that even if the available bandwidth is high.
the penalty introduced by 64 word lines is substantial for programs with false sharing.
If the adjustable cache manages to reduce false sharing (as in the minimal miss rate
applications), Fized(64) introduces 20-25% overhead with infinite bandwidth and 34-
52% with 400 MB/sec bandwidth. We conclude that even for high bandwidth machines,
we cannot accept long cache lines if we also want to run programs with fine-grain sharing
efficiently. And infinite bandwidth does not eliminate this problem.

7.3 Medium Bandwidth Machines

In this section we discuss the mean cost per reference for a medium bandwidth machine
(M (50,5)), which corresponds to 80 MB/sec. For this machine, five out of eleven
applications prefer a « che line size of 8 words (table 4.2), three prefer a cache line of
16 words, and the ren. .ning three prefer a line size of 64 words.

We use Vblock(8,64,64,(1,1)) for this machine. This selection makes explicit our
preference for applications with good spatial locality, because large initial blocks of 64
words allow for optimal performance of Vblock(8,64,64,(1,1)) with these applications.
The low split threshold should allow applications with fine-grain sharing to split down
to a block size of & words. The relatively high bandwidth of the host machine should
allow this adjustable cache to perform close to the optimal fixed line size cache, even
for applications with fine-grain sharing.

Table 7.3: M(50,5) Machine - MCPR Relative to Vblock(8,64,61,(1.1))

Application Cache
Fxd(4) | Fxd(8) | Fxd(16) | Fxd(32) { Fxd(64) | Prftch(&.8) | Prftch(16.1)

matmult 1.18 1.08 1.10 1.40 2.10 1.08 1.13
pgauss 0.94 0.88 0.91 1.26 2.02 0.84 0.91
gsort 1.20 1.04 1.07 1.35 2.39 1.00 1.08
plytrace 1.09 0.95 0.94 1.09 1.61 0.95 0.97
pmatmult 1.41 1.19 1.09 1.10 1.25 1.13 1.07
sorbyc 1.06 1.02 1.04 1.12 1.29 1.01 1.04
gauss 1.10 1.05 1.00 1.0! 1.07 1.02 0.99
mp3d 1.19 1.02 1.06 1.32 2.19 1.10 1.14
bsort 2.11 1.51 1.22 1.07 1.00 1.38 1.16
kmerge 2.28 1.59 1.25 1.09 1.01 1.48 1.20
sorbyr 1.36 1.17 1.07 1.02 1.00 1.15 1.06

Table 7.3 gives the mean cost per reference of all applications on the Af(50.5) ma-
chine. The MCPR, given for five Fized and two prefetching caches, is relative to
Vblock(8,64,64,(1,1)).




=-J

[

As expected the adjustable cache is equal to Fired(64) for programs with good
spatial locality like bsort, kmerge and sorbyr. U we consider good performance on
these programs essential for a cache associated with the M(50.5) machine, then we
can immediately eliminate Fized(4) (up to 128% overhead over V block(8,64,64,(1,1)),
Fized(8) (up to 59% overhead) and Pre fetch(8,8) (up to 48% overhead).

Fized(64) cannot be taken seriously for this machine if we want to run appli-
cations with fine-grain sharing. This cache resultes in at least 100% overhead over
Vblock(8,64,64,(1,1)) for four applications. We can also eliminate Fized(32), but now
the overheads are much smaller. The maximum overhead is 40% (matmult), and for
four applications it is at least 26%.

The two caches most competitive with the adjustable cache are Fired(16) and
Prefetch(16,4). Fized(16) introduces 25% overhead for kmerge and 20% overhead for
bsort, but is better than Vblock(8,64,64,(1,1)) on two programs with fine-grain sharing
by 9% and 6%. Prefetch(16,4) reduces the overhead on programs with good spatial lo-
cality down to 20% (kmerge) and 16% (bsort), while outperforming V'block(8.64,64,(1.1))
on three programs by 9%, 3% and 1%.

As noted earlier we optimized the adjustable cache for programs with good spatial
locality. That means we provide the optimal Fired cache performance for those pro-
grams at the expense of relatively weaker performance for applications with fine-grain
sharing. If a 20% performance hit is acceptable for programs with good locality we can
use Prefetch(16,4); otherwise we should use Vblock(8,64,64,(1,1)). For applications
without fine-grain sharing both caches provide more or less equal performance. with
Vblock(8,64.64,(1,1)) winning for six applications by up to 14% and Prefetch(16.4)
winning for three applications by up to 9%.

7.4 Low Bandwidth Machines

In this section we discuss the mean cost per reference for a machine with jow bandwidth
(Fyandwidth = 20). The range of cache line sizes for fixed line size caches preferred by our
applications is the widest for low bandwidth machines (table 4.2) and includes cache
lines between 4 and 64 words.

The lower the bandwidth, the wider the range, and the more applications prefer
shorter lines over longer lines. Therefore the adjustable cache we selected for these
machines, Vblock(4,64,16,(1,1)), has a relatively small initial block size, equal to 16
words, and a small minimum block size of 4 words. The selection of the initial block
size is a compromise between applications with fine-grain sharing and applications with
good spatial locality. If we selected an initial block size of 64 words as in the previous
machines, applications with fine-grain sharing would perform very badly because of the
high cost of data transfers. For long running programs splitting would eventually adjust
the block size downward for fine-grain sharing. However, in our case all programs which
preferred small blocks were quite short, so the effect of the initial block size is very
important.




76

Table 7.4: M(50,20) Machine - MCPR Relative to Vblock(4,64,16,(1,1))

Application || Cache
(| Fxd(4) | Fxd(8) | Fxd(16) [ Fxd(32) | Fxd(64) | Prf' (8.8) | Prftch(16.,4)

matmult 1.12 1.11 1.29 2.07 4.09 1.18 1.41
pgauss " 1.06 1.19 1.53 2.71 5.27 1.19 1.55
gsort 1.02 1.07 1.35 2.13 4.72 1.08 1.41
plytrace 1.01 0.99 1.16 1.65 3.09 1.10 1.29
pmatmult 1.23 1.12 1.12 1.28 1.74 1.09 1.11
sorbyc 0.99 1.00 1.13 1.41 2.01 1.00 1.13
gauss 1.08 1.08 1.08 1.17 1.41 1.06 1.08
mp3d 1.02 1.07 1.40 2.19 4.37 1.28 1.61
bsort 1.64 1.25 1.05 0.95 0.91 1.i6 1.02
kmerge 1.62 1.23 1.03 0.94 0.92 1.17 1.01
sorbyr 1.30 1.13 1.05 1.01 1.00 1.12 1.05

Table 7.4 gives the mean cost per reference of all applications on the M (50,20)
machine. The MCPR, given for five Fized and two prefetching caches, is relative to
Vblock(4,64,16,(1,1)). The adjustable cache outperformed the other caches in most of
the cases, because only very few numbers are less than 1.

For programs with good spatial locality, like bsort and kmerge, the two fixed line
size caches with the longest lines outperform Vblock(4,64,16,(1,1)), but not by more
than 9% (Fized(64)). On the other hand, caches with long lines like Fized(32) and
Fized(64) perform very poorly for applications with fine-grain sharing, as expected.
Compared with Vblock(4,64,16,(1,1)), they introduce at least 300% overhead in MCPR
for Fized(64) and at least 100% overhead for Fized(32) on programs like matmult,
pgauss, and gsort.

Fized(16) and Prefetch(16,4) are always inferior to Vblock(4, 64, 16.(1.1)) for this
machine, and introduce substantial overhead (up to 50%) for programs with fine-grain
sharing.

On one out of eleven applications Fized(4) outperforms the adjustable cache, and
the improvement in MCPR is negligible (1%). For ten out of eleven applications,
Fized(4) is worse than the adjustable cache, and for both kmerge and bsort the overhead
in MCPR is at least 60%.

The two caches most competitive with the adjustable cache are Fized(8) and Prefetch(8,8).
However, Fized(8) was better than the adjustable cache only once, and only by 1%.
And Fized(8) performed poorly for bsort, introducing 25% overhead in MCPR, and
kmerge (23% overhead). For six out of eleven applications, Fized(8) was worse by more
than 10%. Prefetch(8,8) is always worse than the adjustable cache, and for seven out
-of eleven applications it is worse by 10% or more. This prefetching cache improves a lit-
tle over Fired(8) for programs with good spatial locality, but is worse than Fized(8) for




programns with fine-grain sharing. The maximum overhead in MCPR over the adjustable
cache is 28% (mp3d).

Overall, for low bandwidth machines, adjustable caches improve the mean cost per
reference more than for high bandwidth machines. This is because the range of line
sizes preferred by applications is wider for low bandwidth machines. Moreover the cost
of transferring unneeded data is higher for low bandwidth machines, and adjustable
caches are effective in cutting the amount of data transferred.

7.5 High Latency Machines

As we noted in secticn 4.3, increases in network lat.:ncy increase the penalty of a mis-
match between an application’s sharing pattern a.ad the cache line size. Therefore
we would expect that the benefits of adjustable c:iches increase with increased latency.
This should be true as long as the dominant factor in the reduction of MCPR by an
adjustable cache is due to a reduction in the miss rate rather than DTPR, because
longer latencies increase the impact of the miss rate on MCPR.

To verify the impact of latency we ran our simulations for machines with latencies
set to 100 and 200 cycles. We did 1.0t try to select the best possible adjustable cache for
each machine, but instead used one reasonable instance of the adjustable cache for all
these experiments, namely Vblock(16,64,64,(1,1)). This cache was also used to study
. high bandwidth machines with latency set to 50 cycles.

Table 7.5: Utility of Adjustable Cache as a Function of Latency and Bandwidth. This
table gives the maximal increase in MCPR for the best per-machine fixed cache line
size when compared with V'block(16,64,64,(1,1)). For each machine we define the best
fixed line size cache as the cache that minimizes this increase.

Fbandwidth - : Hatency
50 | 100 | 200
0 (infinite) 10% | 20% | 31%

1 (400 MB/sec) | 18% | 22% | 31%
5 (80 MB/sec) | 25% | 39% | 40%

Table 7.5 illustrates how much we lose if we select the best fixed line size cache inst=ad
of Vblock(16,64,64,(1,1)). For each machine, we define the best fixed line size cache as
the cache that minimizes the maximal relative difference between its performance and
Vblock(6,64,64,(1,1)) across our application suite. We consider only high bandwidth
machines, because high latency machines are likely to have high network bandwidth.
We see that the benefits of Vblock(16,64,64,(1,1)) increasc with an increase in latency,
and decrease with an increase in bandwidth, which confirms the results presented earlier
in this chapter. The results for unlimited bandwidth machines are very close to those




78

machines with 400 MB/sec bandwidth, which suggests that increased latency makes
adjustable caches more useful regardless of the bandwidth.

Table 7.6: MCPR of Best Fixed Line Size Cache Relative to Vblock(16,64,64,(1,1)).

Application || BestFixed(M(50,1)) | BestFixed(M(100,1)) | BestFixed(M(200,1))
matmult wr 1.15 1.22 1.29
pgauss 1.18 1.19 1.20
gsort i 1.14 1.13 1.13
plytrace 1.04 1.05 1.06
pmatmult 1.04 1.06 1.09
sorbyc 1.02 1.02 1.02
gauss 1.00 1.00 1.00
mp3d 1.01 0.97 0.96
bsort 1.08 1.15 1.26
kmerge 1.10 1.18 1.31
sorbyr 1.02 1.04 - 1.08

It is interesting to look closer at the results for the 400 MB/sec machines as it
is most likely that big machines with high latencies will also use a high-bandwidth
interconnection network. Table 7.6 gives the performance of the best fixed line size
cache relative to Vblock(16,64,64,(1,1)) for three machines with bandwidth set to 400
MB/sec and latencies of 50, 100 and 200 cycles. Interestingly, for all these machines,
the best fixed line size cache is Fized(32). Increased latency does not change the best
fixed line size cache because our application suite contains a number of programs with
fine-grain sharing.

For all applications except mp3d, Vblock(16,64,64,(1,1)) outperformed the best
fixed line size cache for each machine. In the case of mp8d, the adjustable cache came
within 4% of the best fixed line size cache. We can see that in nearly all cases the higher
the latency the better the adjustable cache looks compared to the best fixed line size
cache. When latency is 50 cycles, we have four applications for which the best fixed line
size cache is worse by 10%-18%; when latency is 100 cycles, the best fixed line size cache
is worse by 15%-22% for four applications, and with latency of 200 cycles this range
increases to 20%-31%. This trend is due to the lower miss rate of adjustable caches
compared to Fired(32) (as seen in the miss rate figures in appendix A).

In short, this data indicates that an increase in network latency, whether due to
improvements in processor speeds or the longer communication paths required in large-
~-gcale-machines,- will maenify the performance benefits of adjustable block size caches
seen here, and render fixed line size caches even less competitive.




7.6 Summary

The select’on of an adjustable cache for a given multiprocessor depends on the expected
workload and the characterization of the host machine. If we expect to run programs
which unifornly prefer long cache lines or which only exhibit fine-grain sharing, then we
do not need an adjustable cache. On the other hand, if our workload is not uniform with
respect to sharing behavior, and different programs prefer different cache line sizes, then
an adjustable cache can be used to make our programs perform well. We can get even
more performance improvement if, within one program, different data prefer different
block sizes.

The most important knowledge needed for the selection of a particular instance of
the adjustable cache organization for a given machine is the range of cache line sizes
preferred by our workload on that machine and the distribution of applications within
this range. This range determines the minimum and the maximum block size for our
adjustable cache. Both the merge and split thresholds should be low to ensure good
response to the sharing behavior exhibited by an application. For the same reason the
size of the split-merge counter should be small. The initial block size depends on the
distribution of the applications within the range of preferred (fixed size) cache lines
and on the fact that splitting is much easier than merging. Usually the initial block
size can be larger than the most popular optimal cache line size, especially for higher
bandwidth machines. A larger initial block size makes programs with good locality
perform better and allows for fetches of private data with large blocks. In such cases
a low split threshold is also necessary to ensure fast convergence to the optimal block
size for shared data.

For each machine we were able to select an adjustable cache that outperformed all
of the fixed line size caches for at least nine out of eleven applications. For infinite or
very high bandwidth machines (with latency of 50 cycles) the best fixed line size caches
introduced overhead between 16% and 18% for at least one application. When latency
was doubled to 100 cycles this overhead shot up to 30%, and with latency of 200 cycles
it was 44%. On medium or low bandwidth machines (with latency of 50 cycles) the
overhead incurred by every fixed line size cache was between 21% and 29% for at least
one application.

We conclude that the utility of adjustable caches depends on the latency and band-
width of the interconnection network of the host multiprocessor. Higher bandwidth
makes adjustable caches less useful, whereas increased latency has the opposite effect.
The impact of increased latency is much stronger than increased bandwidth, and even
with infinite bandwidth, there are applications that benefit substantially from adjustable
caches.




80




81

8 Conclusions and Future Work

In this dissertation we investigated the effects of block size on the performauce of co-
herent caches in shared-memory multiprocessors. Qur experiments confirmed that the
size of coherency blocks can have a significant impact on the performance of parallel
applications, and that there is no single block size that satisfies all applications. We
discovered that a small number of block sizes suffices, even if we consider applications
with very different sharing patterns, and a range of multiprocessors with wide varia-
tions in network latency and bandwidth. Exploiting this fact, we proposed a new cache
organization that varies the block size over a small range of sizes according to recent
reference behavior. We showed that by dynamically adjusting the block size, the new
cache organization provides performance comparable to the best fixed line size cache
for each individual application.

In experiments evaluating fixed line size caches, we found that there are applica-
tions with good spatial locality which have a strong preference for long cache lines,
independent of the network characteristics of the host multiprocessor. However, the
performance improvements offered by increasing the cache line size dimiunish rapidly,
and are negligible beyond a certain point (as determined by the latency). In particu-
lar, when latency is 50 cycles, there is no benefit to cache lines longer than 64 words;
however, when latency is 100 cycles, there are applications that can benefit from cache
lines of 128 words.

For applications lacking good spatial locality, the optimal cache line size depends on
the product of network bandwidth and latency. An increase in latency or bandwidth
favors longer cache lines, while limited bandwidth or low latency favors shorter cache
lines. Nonetheless, in the absence of synchronization references, there is no need for
cache lines shorter than 4 words.

The range of line sizes favored by programs in our application suite moves upward
with an increase in latency. This range also moves upward with an initial increase in
bandwidth, but eventually reaches a point at which additional bandwidth has no effect.
The higher the latency, the sooner increases in bandwidth no longer affect the range of
preferred line sizes. Regardless of the latency, additional bandwidth beyond 400 MB/sec
has little effect on the performance of the best fixed line size cache.

Since our applications prefer very different line sizes, there is always a performance
penalty if we select one fixed line size cache for each machine. To estimate this penalty




82

for a given fixed line size cache, machine, and set of applications we considered the
..maximum relative difference between the performance of that cache for each application
and the performance of a fixed line size cache whose line size is best suited to that
program. The line size that minimizes this difference is an optimal selection for a given
machine and a given application set. In our experiments this minimal relative difference
in performance was substantial, ranging from 36% to 68% depending on the latency.
Even on a machine with infinite bandwidth, the performance penalty ranges between
11% and 37%. We observed that this performance penalty increases with the latency,
and decreases with an increase in bandwidth, although the effect of latency is greater.

To satisfy the needs of multiple applications, spanning various degrees of spatial
locality and granularity of sharing, we proposed a new cache organization, called ad-
justable block size coherent caches. In comparing adjustable block size caches with fixed
line size caches (with and without prefetching), we found that the adjustable block size
caches offer better performance in most cases. The performance improvements are due
to a reduction in the miss rate, while keeping the amount of data transferred low. The
.miss rate is reduced in two ways: by splitting long cache blocks that are referenced
from different processors we avoid false sharing, and by merging short cache blocks used
by the same processor we exploit spatial locality. The amount of data transferred is
also reduced when we split cache blocks to eliminate false sharing, since in this case, a
reduction in the number of transfers contributes to a reduction in the amount of data
transferred per reference (DTPR).

In some cases the adjustable block size cache managed to reduce the miss rate by up
to 30% below the lowest miss rate achieved by any fixed line size cache. This happens
when the application prefers more than one block size, i.e., when there is both fine-
grain sharing and good spatial locality. In other cases the miss rate produced by the
adjustable block size cache was comparable to the lowest miss rate achieved by a fixed
line size cache.

The amount of data transferred by the adjustable cache was never below the best
DTPR achievable by a fixed line size cache, because some fixed line size caches use very
short lines, even though short lines result in a very high miss rate. For those fixed line

size caches with reasonable miss rates, the adjustable cache usually produced a lower
DTPR.

Over a range of machines, representing a wide variation in network latency and
bandwidth, the adjustable cache was able to out-perform the most competitive fixed
line size cache on nine out of eleven applications, and come within 9% of it for the
other two applications. The amount of improvement introduced by an adjustable cache
d>pends on the bandwidth and latency of the host machine. For very high bandwidth
machines (400 MB/sec or more), the best fixed line size caches introduce overhead
between 16% and 18% for at least one application when latency is 50 cycles. When
latency is 100 cycles, this overhead rises to 30%, and when latency is 200 cycles, the
overhead is 44%. On medium or low bandwidth machines, the overhead is between 21%
and 29% for at least one application when latency is 50 cycles.

With respect-to cache size, the min-block implementation of adjustable caches in-
troduces manageable space overhead over the most space-efficient fixed line size cache.




X3

For the three adjustable caches we considered, this overhead was no higher than 46%.

The choice of parameters for an adjustable cache for a given wultiprocessor depends
on the expected workload and the network characteristics of the host machine. The most
important knowledge needed for the selection of a particular instance of the adjustable
cache organization for a given machine is the range of cache line sizes preferred by the
workload, and the distribution of applications within this range. This range determines
+he minimum and maximum block size for the adjustable cache. Both merge and split
thresholds should be low enough to ensure good response to the sharing behavior exhib-
ited by an application. For the same reason the size of the split-merge counter should
be small. The initial block size depends on the distribution of the applications within
the range of preferred (fixed size) cache lines, and on the fact that splitting is much
easier than merging.

This dissertation presents the motivation, rationale, and performance implications
for adjustable block size caches. The next logical step is to build a multiprocessor
that incorporates this cache organization. There are several problems to resolve: the
additional complications to the logic of the processor cache, the design of a tag cache
to implement the directory, and the complications to the coherency protocol to support
multiple block sizes. A successful hardware implementation would provide the ultimate
validation of the ideas in this thesis. It is possible to validate the concepts in this thesis
without significant hardware modifications however. Many of these ideas apply equally
well in an operating system implementation of distributed shared memory (see section
2.1.3) with multiple page sizes.

The implementation of a distributed shared memory with adjustable page sizes would
not only provide arguments in favor of adjustable block size coherent caches, but would
also constitute a legitimate research project that could increase the viability of dis-
tributed shared memory. Currently, the large page sizes used for virtual memory make
the false sharing problem even more important for DSM systems than for coherent
caches. Small virtual memory pages would address the problem of false sharinz, but
at the expense of a significant increase in the number of TLB misses. Multiple page
sizes seem like an ideal solution for DSM, provided we have an algorithm for deciding
which page size to use for each data object. Fortunately, we can use exactly the same
algorithm we used to adjust the block size in coherent caches! That is. with each vari-
able size page we could associate size bits, a split-merge counter, two reference bits, and
state bits, and then -plit and merge pages on a coherency miss according to the recent
reference stream to a page.

In order to implement this idea, we would require the virtual memory hardware to
support multiple page sizes. Such hardware already exists. For example, the TLB in
the R4000 microprocessor already has size bits in each TLB entry indicating the size
of the page. (Unfortunately the smallest page supported, 4KB, is still too big for our
purposes.) We would still require a hardware modification to support two reference bits
per TLB entry, although these bits could be simulated in the operating system software
(which would of course slow down the distributed shared memory system). All other
control fields associated with a block in the adjustable cache organization, like the split-
merge counter and page state, can and should be handled by the operating system, as




84

they are referenced and changed quite rarely.

- In summary this dissertation quantifies the performance penalty associated with a
mismatch between an application’s sharing pattern and the block size in coherent caches.
We proposed a new cache organization that adjusts the size of data blocks dynamically
according to recent reference patterns, and thereby reduces this penalty substantially.




85

Bibliography

{1] A. Agarwal. Limits on interconnection network performance. IEEE Transactions
on Parallel and Distributed Systems, 2(4):398—412, October 1991.

[2] A. Agarwal, B. Lim, D. Krantz, and J. Kubiatowicz. April: A processor archi-
tecture for multiprocessing. In Proc. 17th International Symposium on Computer
Architecture, pages 104-114, June 1990.

[3] A. Agarwal, R. Simoni, J.L. Hennessy, and M. Horowitz. An evaluation of directory
schemes for cache coherence. In Proc. 15th International Symposium on Computer
Architecture, pages 280-289, June 1988.

[4] J. Archibald and J-L. Baer. Cache coherence protocols: Evaluation using a multi-
processor simulation model. ACM Transactions on Computer Systems, 4:273-298,
1986.

[5] F. Baskett, T. Jermoluk, and D. Solomon. The 4d-mp graphics superworkstation.
In 33rd IEEE Computer Society Intl. Conference, pages 468-471, 1988.

[6] B.N. Bershad, E.D. Lazowska, and H.M. Levy. Presto: A system for object-oriented
parallel programming. Software - Practice and Ezperience, 18(8), August 1988.

{7] R. Bianchiniand T.J. LeBlanc. Software caching on cache-coherent multiprocessors.
In Proc. 4th IEEE Symposium on Parallel and Distributed Processing, pages 521-
526, December 1992.

[8] R. Bisiani and M. Ravishankar. Plus: A distributed shared-memory system. In
Proc. 17th International Symposium on Computer Architecture, pages 115-124,
June 1990.

[9] W. J. Bolosky and M. L. Scott. Evaluation of Multiprocessor Memory Systems Us-
ing Off-Line Optimal Behavior. The Journal of Parallel and Distributed Computing,
August 1992. Also URCS Tech. Rpt. 403.

[10] W.J. Bolosky, R.P. Fitzgerald, and M.L. Scott. Simple but effective techniques for
- NUMA memory management. Proc. 12th ACM Symposium on Operating System
Principles, pages 19-31, December 1989.




86

[11] W.J. Bolosky, M.L. Scott, R.P. Fitzgerald, R.J. Fowler, and A.L. Cox. NUMA
policies and their relation to memory architecture. Proc. 4th Intl. Conf. on Ar-
chitectural Support Support for Prog. Lang. and Oper. Sys., pages 212-221, April
1991.

[12] D. Callaham, K. Kennedy, and A. Porterfield. Software prefetching. In Proc. 4th
Intl. Conf. on Architectural Support Support for Prog. Lang. and Oper. Sys., pages
40-52, April 1991.

[13] L.M. Censier and P. Feautier. A new solution to coherence problems in multicache
systems. IEEE Transactions on Computers, 27:1112-1118, December 1978.

{14] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-based cache coher-
ence in large-scale multiprocessors. IEEE Computer, pages 49-57, June 1990.

{15] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A scalable
cache coherence scheme. In Proc. 4th Intl. Conf. on Architectural Support Support
for Prog. Lang. and Oper. Sys., pages 224-234, April 1991.

[16] H. Cheong and A. Veidenbaum. A cache coherence scheme with fast selective
invalidations. In Proc. 15th International Symposium on Computer Architecture,
pages 299-307, May 1988.

[17] H. Cheong and A.V. Veidenbaum. Compiler-directed cache management in multi-
processors. IEEE Computer, pages 39-47, June 1990.

{18] D.R. Cheriton, H.A. Goosen, and P. Machanick. Restructuring a parallel simulation
to improve cache behavior in a shared-memory mutiprocessor: A first experience.
In Proc. Intl. Symp. on Shared Memory Multiprocessing, pages 109-118, April 1991.

[19] D.R. Cheriton, A. Gupta, P.D. Boyle, and H.A. Goosen. The VMP multiproces-
sor: Initial experience, refinements, and performance evaluation. In Proc. 15th
International Symposium on Computer Architecture, pages 410-421, June 1988.

[20) A.L. Cox and R.J. Fowler. The implementation of a coherent memory abstraction
on a NUMA multiprocessor: Experiences with PLATINUM. Proc. 12th ACM
Symposium on Operating System Principles, pages 32-44, December 1989.

[21] C. Dubnicki and T.J. LeBlanc. Adjustable block size coherent caches. In Proc. 19th
International Symposium on Computer Architecture, pages 170-180, May 1992.

[22] M. Dubois and Ch. Scheurich. Memory access dependencies in shared-memory
multiprocessors. IEEE Trans. on Software Engineering, pages 660-673, June 1990.

{23] M. Dubois, Ch. Scheurich, and F.A. Briggs. Memory access buffering in multi-
processors. Proc. 13th International Symposium on Computer Architecture, pages
434-442, June 1986.




87

[24] J. Edler, A. Gottlieb, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, M. Snir, P.J.
Teller, and J. Wilson. Issues related to MIMD shared-memory computers: The
NYU Ultracomputer approach. Proc. 12th International Symposium on Computer
Architecture, pages 126-135, June 1985.

[25] S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In Proc. 1991 Intl.
Conf. on Parallel Processing, pages 377-381, 1991. Volume I.

[26] S.J. Eggers. Simplicity versus accuracy in a model of cache coherency overhead.
IEEFE Trans. on Computers, 40(8):893-906, August 1991.

[27] S.J. Eggers. Simulation analysis of data sharing in shared-memory multiprocessors.
PhD thesis, Computer Science Division (EECS), University of California, April
1989.

[28] S.J. Eggers and R.H. Katz. A characterization of sharing in parallel programs
and its application to coherency protocol evaluation. In Proc. 15th International
Symposium on Computer Architecture, pages 373-383, May 1988.

[29] S.J. Eggers and R.H. Katz. The effect of sharing on the cache and bus performance
of parallel programs. In Proc. 3rd Intl. Conf. on Architectural Support Support for
Prog. Lang. and Oper. Sys., pages 257-270, April 1989.

[30] S.J. Eggers and R.H. Katz. Evaluation of the performance of four snooping cache
coherency protocols. In Proc. 16th International Symposium on Computer Archi-
tecture, pages 2-15, May 1989.

[31] S.J. Frank. Tightly coupled multiprocessor systems speed memory access times.
FElectronics, 57:164-169, January 1984.

[32] J.R. Goodman, M.K. Vernon, and P.J. Woest. Efficient synchronization primitives
for large-scale cache-coherent multiprocessors. Proc. 3rd Intl. Conf. on Architectural
Support Support for Prog. Lang. and Oper. Sys., pages 104-112, Apr 1989.

[33] A. Gupta and W.D. Weber. Analysis of cache invalidation patterns in shared-
memory multiprocessors. In Cache and Interconnect Architectures in Multiproces-
sors, pages 83-108. Kulwer Academic Publishers, 1990.

[34] D.V. Jaines, A.T. Laundrie, S. Gjessing, and G. Sohi. Scalable coherent interface.
IEEE Computer, pages 74-77, June 1990.

[35] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon. Imple-
menting a Cache Consistency Protocol. In Proc. 12th International Symposium on
Computer Architecture, pages 276-283, 1985.

[36] C.P. Kruskal and M. Snir. The performance of multistage interconnection networks
for multiprocessors. IEEE Trans. on Computers, 32:1091-1098, 1983.

[37] R. P. LaRowe and C. S. Ellis. Experimental comparison of memory management
- policies for NUMA multiprocessors. ACM Transactions on Computer Systems,
9(4):319-363, November 1991.




88

[38] D. Lenoski, J. Laudoa, K. Gharachorloo, A. Gupta, and J.L. Hennessy. The
« directory-based cache coherence protocol for the DASH multiprocessor. In Proc.

17th International Symposium on Computer Architecture, pages 148-159, May
1990.

[39] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J.L. Hen-
nessy. The DASH prototype: Implementation and performance. In Proc. 19th
International Symposium on Computer Architecture, pages 92-103, May 1992.

{40] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. Proc.
5th Annual ACM Symp. on Principles of Distributed Computing, pages 229-239,
August 1986.

[41] Holliday M.A. Reference history, page size, and migration daemons in local /remote
architectures. Proc. 3rd Intl. Conf. on Architectural Support Support for Prog. Lang.
and Oper. Sys., pages 104-112, April 1989.

[42] J.M. Mellor-Crummey and M.L. Scott. Synchronization without contention. In
Proc. 4th Intl. Conf. on Architectural Support Support for Prog. Lang. and Oper.
Sys., pages 269--278, April 1991.

[43] B.W. O’Krafka and R.A. Newton. An empirical evaluation of two memory-efficient
directory methods. In Proc. 17th International Symposium on Computer Architec-
ture, pages 138-147, June 1990.

(44] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In Proc. 11th International Sympo-
sium on Computer Architecture, pages 348-354, June 1984.

[45] J.P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications
for shared-memory. Technical Report CSL-TR-91-469, Department of Computer
Science, Stanford University, April 1991.

[46] P. Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE
Computer, 23(6):12-24, June 1990.

[47] Charles P. Thacker and Lawrence C. Stewart. Firefly: a multiprocessor workstation.
In 2nd Intl. Conf. on Architectural Support Support for Prog. Lang. an d Oper. Sys.,
pages 164-172, Palo Alto, CA, October 1987.

[48] J. Torrellas, M.S. Lam, and J.L. Hennessy. Shared data placement optimizations
to reduce multiprocessor cache miss rates. In Proc. 1990 Intl. Conf. on Parallel
Processing Volume II, pages 266-270, August 1990.




89

A Figures and Tables for All
Applications

For each application we give here the following data:

e miss rate, data transfer rate and cache size. Each of these figures contain data for
our 9 base cache instances (five fixed, three adjustable, and one prefetching - see
section 6.1),

o for adjustable caches, split and merge statistics giving the distribution of adjust-
ment operations according to block size before each operation,

e for adjustable caches, transfer statistics giving the fraction of transfers according
to block size.




90

A.1 Dbsort
Fixed(4), —0.0117
Fixed(8), 9.0059
Fixed(16 )¢ +0-0029
Fixed(32)g——0.0015
Fixed(64),——0.0008
Vbl(4,64,16) p— ——0.0022
Vbl(8,64,64)4—0.0007
Vbl(16,64,64)—0.0007
Prefetch(8,8), —0.0044
Figure A.1.1: Miss Rate - bsort
. Fixed(4), 0 042
Fixed(8), —30.042
Fixed(16), W0.042
Fixed(32), 20.043
Fixed(64), —0.043
Vbl(4,64,16), 0,042
Vbl(8,64,64), 0.043
Vbl(16,64,64), _0.043
Prefetch(8,8), —,0.042

Figure A.1.2: Data Words Transferred Per Reference - bsort




91

Fixed(4) o © 0.485
Fixed(8) o © 0.435
Fixed(16) o © 0.412
Fixed(32) o © 0.402
Fixed(64) o © 0.398
Vbl(4,64,16) 9 __CCCooIonoIIonees 2. o 1.271
VbI(8,64,64) & LU I IS 0506488
VbI(16,64,64) - _ Uil Uil %
Prefetch(8,8) o © 0.440

Figure A.1.3: Cache Size (bits per reference) - bsort. For adjustable caches dashed line
gives the size of the maz-block implementation, dotted line gives the size of the min-block

implementation.
------- Vbl(4,64,16) -----VbI(8,64,64) —— Vbl(16,64,64)

05= N
0.8 — =
06 B
0.5— P
0.4 — Ly
0.3— !
0.2 — !
0.1 — : :

[ T I~ o i el

4 8 16 32 64

Block Size
Figure A.1.4: Fraction of Block Transfers of Given Size - bsort

Table A.1: Split and Merge Statistics - bsort

Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 | 32 | 64 418 16 32
Vbl(4,64,16) 53 19130 4 5442 | 1| 1| 5120 | 320 15432
Vbl(8,64,64) 50 6 |17|2r] 2 1 1 52
Vbl(16,64,64) 44 17 | 27 2 1 1 42




92

A.2 gauss
Fixed(4),- —0.0025
Fixed(8), +0.0017
Fixed(16)4 —0.0010
Fixed(32), 20.0007
Fixed(64), +0.0006
Vbl(4,64,16 )¢ —0.0013
Vbi(8,64,64), —0.0010
Vbl(16,64,64), +0-0007
Prefetch(8,8), 0.0013
Figure A.2.1: Miss Rate - gauss
Fixed(4), +0-009
Fixed(8), -0.012
Fixed(16), <0.015
Fixed(32),~ +0.023
Fixed(64), —0.038
Vbl(4,64,16), —0.009
Vbl(8,64,64), —o0.012
Vbl(16,64,64), J0.016
Prefetch(8,8), —0.012

Figure A.2.2: Data Words Transferred Per Reference - gauss




93

Fixed(4) o— © 0.177
Fixed(8) o © 0.161
Fixed(16) o— © 0.157
Fixed(32) o © 0.162
Fixed(64) o © 0.178
Vbl(4,64,16) S S TTT IR L -~ 0.373
VbI(8,64,64) 9 S iU IIII DI04
Vbl(16,64,64) 3 U o ioIononinnn o0 e
Prefetch(8,8) o— © 0.165

Figure A.2.3: Cache Size (bits per reference) - gauss. For adjustable caches dashed line
gives tke size of the maz-block implementation, dotted line gives the size of the min-block

implementation.
------- Vbl(4,64,16) -----Vbl(8,64,64) Vbl(16,64,64)
1 .
0.9 — QA —
0.8 — 0!
0.7 — '
0.6 — 1!
0.5— b
04— )
0.3 - o
8.2 - L
d— 1! T - -
| . .Ll..' .:.l. - e L‘..-D
4 8 16 32 64

Block Size
Figure A.2.4: Fraction of Block Transfers of Given Size - gauss

Table A.2: Split and Merge Statistics - gauss

Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4|8 16 32
Vbl(4,64,16) 1069 | 505 | 564 7008 7008 15345
Vbl(8,64,64) 1035 39 | 461 | 535 1 1 62
Vbl(16,64,64) || 1154 618 | 536 || 158 157 | 1| 5026




94

A.3 kmerge

Fixed(4), 0.0151
Fixed(8), _0.0076
Fixed(16), -0.0038
Fixed(32),———40.0020
Fixed(64),——0.0010
Vbl(4,64,16)—0.0032
Vbl(8,64,64),—0.0010

Vbl(16,64,64),—0.0010
Prefetch(8,8), +0.0059
Figure A.3.1: Miss Rate - kmerye
Fixed(4), —0.067
Fixed(8), 20067
Fixed(16), ——0.068
Fixed(32), —0.069
Fixed(64),— —0.071
Vbl(4,64,16), _0.068
Vbl(8,64,64),— +0.069
Vbl(16,64,64) — J0.069
Prefetch(8,8), —0.068

Figure A.3.2: Data Words Transferred Per Reference - knierge




95

Fixed(4) o 3 ,.1al
Fixed(8) o— — 1.025
Fixed(16) o © 0.973
Fixed(32) o © 0.952
Fixed(64) o © 0.948
Vbi(4,64,16) UL L CUUIUTULITIITIeAS o - 2.492
VbI(8,64,64) Q. _ Sl LIl Il e 08408
Vbl(16,64,64) S oLl I 0D oS08
Prefetch(8,8) o © 1.036

Figure A.3.3: Cache Size (bits per reference) - kmerge. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the
min-block implementation.

------- Vbl(4,64,16) - --- - VbI(8,64,64) VbI(16.64.61)
0 é _ e
. 1
0.8 — Vo
0.7 — .
0.6 - Pt
0.5 - V!
0.4 — '
0.3 — i
0.2 — .
0.1 — Do L P L]
== e - D a— ol d
| CET S | "l
4 8 16 32 61
Block Size
Figure A.3.4: Fraction of Block Transfers of Given Size - kmerge
Table A.3: Split and Merge Statistics - kmerge
Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 J16 ] 321 64 48] 16 32
Vbl(4,64,16) 68 19 | 38 9 2 4550 173990 | 559 9690
Vbl(8,64,64) 61 10213 4 2 2 38
Vbl(16,64,64) || 51 2130 4 2 2 39




96

A.4 matmult

Fixed(4),-

_0.0059

Fixed(8),-

00040

00034

Fixed(16),—

Fixed(32),-
Fixed(64),—

0.0039

40.0049

Vbl(4,64,16),-

40.0030

_0.0024

Vbl(8,64,64),-

Vbl(16,64,64) -
Prefetch(8,8)

40.0027
0.0035

Fixed(4),——0.021

Fixed(8) ——40.029
Fixed(16),—0.049

Fixed(32),-

Figure A.4.1: Miss Rate - matmult

J0.118

Fixed(64),-

0.296

Vbl(4,64,16),—0.023

Vbl(8,64,64),—0.034

Vbl(16,64,64)y———0.053

Prefetch(8,8),——40.037
Figure A.4.2: Data Words Transferred Per Reference -

matmult




Fixed(4) o —o 0.462
Fixed(8) o- © 0.420
Fixed(16) o— © 0.409
Fixed(32) o © 0.412
Fixed(64) o— © 0.426
Vbl(4,64,16) QS UL oIUIIIII00809 L _____ o Less
VbI(8,64,64) & U U U oIlllllio 0483
VbI(16,64,64) & 00U U Il I I U0 0450,
Prefetch(8,8) o- —o 0.458

97

Figure A.4.3: Cache Size (bits per reference) - matmult. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the

min-block implementation.

- Vbl(4,64,16) ----- Vbl(8,64,64) Vbl(16,64,64)
09— —
0.8— ra
0.7— '
0.6 — Vot
05— vl
0.4 — -
03— v
0.2 — -
0.1— '
| I:_IJ e U == - [Ij ]
4 8 16 32 64
Block Size
Figure A.4.4: Fraction of Block Transfers of Given Size - matmult
Table A.4: Split and Merge Statistics - matmult
Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 | 32 | 64 4 8 16 | 32
Vbl(4,64,16) 290 114 | 116 | 56 | 4 183 29| 29| 112 ] 13 3309
Vbl(8,64,64) 252 109 | 79 | 64 65 37| 20 8 805
Vbi(16,64,64) 146 81 | 65 35 25 | 10 528




98

A5 mpid

Fixed(4) 4

Fixed(8),- ~0.0850

Fixed(16),- _0.0730

Fixed(32),- 0.0677

Fixed(64),- 0.0738
Vbl(4,64,16) -

400963

Vbi(8,64,64)— 00804
Vbl(16,64,64),— _0.0724

Prefetch(8,8) —0.0840

Figure A.5.1: Miss Rate - mp3d

Fixed(4),——30.416
Fixed(8),———40.641

Fixed(16),— _J.108

Fixed(32),— 42.059

0.1100

Fixed(64),
Vbl(4,64,16),—0.481
Vbl(8,64,64),—0.689

Vb(16,64,64),— J1.121
Prefetch(8,8)y————0.905

Figure A.5.2: Data Words Transferred Per Reference -

mp3d

o1-500




99

Fixed(4) o———00.186
Fixed(8) o———00.183
Fixed(16) o———010.196
Fixed(32) o——o0.197
Fixed(64) o———00.203

VbI(4,64,16) S STl IIOY e ooo-. - 1.254
Vbi(8,64,64) 3 oo ooe0282 -0.499
Vbl(16,64,64) 3 - 000214

Prefetch(8,8) o————¢0.217

Figure A.5.3: Cache Size (bits per reference) - mp3d. For adjustable caches dashed line
gives the size of the maz-block implementation, dotted line gives the size of the min-block

implementation.
Lo Vbl(4,64,16) ~----- Vb(8,64,64) Vbi(16,64,64)

0.9-— Q0 [ ]

0.8 — ¢!

0.7— '

0.6 — |

0.5— '

04— '

0.3 — '

02— : ]

0.1 - : Y : -

. ' ....LI_ -::-LI.JL. ....-l-— ..I-_
4 8 16 32 64
Block Size

Figure A.5.4: Fraction of Block Transfers of Given Size - mp3d

Table A.5: Split and Merge Statistics - mp3d

Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4 8 16 32
Vbl(4,64,16) 12816 | 9625 | 2937 254 10025 | 8186 { 1585 254 593940
Vbl(8,64,64) 20814 17538 | 2709 | 567 || 18508 16462 | 1942 | 104 361734
Vbl(16,64,64) 3670 3106 | 564 2447 2347 | 100 122035




100
A.6 pgauss
Fixed(4) - ~0-0379
Fixed(8), _0.0318
Fixed(16), 0.0276
Fixed(32), 0.0291
Fixed(64), S0-0311
Vbl(4,64,16), —0.0254
Vbl(8,64,64),, 0.0244
Vbl(16,64,64), —0.0240
Prefetch(8,8) —0.0290

Figure A.6.1: Miss Rate - pgauss

Fixed(4),——g0.145
Fixed(8),——0.241
Fixed(16)yp———— 0415

Fixed(32),- 20.869
Fixed(64),~ »1-849
Vbl(4,64,16),——0.198
Vbi(8,64,64),- 40.630
Vbl(16,64,64 ), 40659

Prefetch(8,8),———40.259
Figure A.6.2: Data Words Transferred Per Reference - pgauss




Fixed(4) o © 0.314
Fixed(8) o © 0.353
Fixed(16) o © 0.349
Fixed(32) o © 0.369
Fixed(64) o © 0.388
VbI(4,64,16) . L Ll L 0SS oo o 1.331
VbI(8,64,64) 3 ST UIIIIIR0I L ©0.788
Vbl(16,64,64) 3 - _Coooo00368 . ©0.778
Prefetch(8,8) o © 0.382

Figure A.6.3: Cache Size (bits per reference) - pgauss. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the

min-block implementation.

~~~~~~~ Vbl(4,64,16) -----Vbl(8,64,64) ——— Vbl(16,64,64)

cocoooo00
=0 N =100 O

e Jd

rFr==="
[N |
F===="
[ S |

L - i | ””:l::
4 8 16 32 64
Block Size

Figure A.6.4: Fraction of Block Transfers of Given Size - pgauss

r==ia

Table A.6: Split and Merge Statistics - pgauss

101

Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4181 16 32
Vbl(4,64,16) 851 289 | 435 64 63 429 1 325 | 103 227285
Vbl(8,64,64) 2837 72 | 1436 | 1329 1 1 188092
Vbi(16,64,64) || 2765 1436 | 1329 || 2 1 |1 182610




102

A.7T plytrace

Fixed(4),
Fixed(8), —0.0091
Fixed(16), +0.0070
Fixed(32), —0.0063
Fixed(64), 200070
Vbl(4,64,16), —0.0076
Vbi(8,64,64) — _0.0058
Vbl(16,64,64), 00058
Prefetch(8,8), <0-0073

Figure A.7.1: Miss Rate - plytrace

Fixed(4),—0.055

Fixed(8)—— 0.075
Fixed(16),— 0.112

Fixed(32), —0.201

—0.0132

Fixed(64),
Vbl(4,64,16),—0.078
Vbi(8,64,64), _0.155

Vbi(16,64,64), 0171
Prefetch!8,8), —0.101

_0.439

Figure A.7.2: Data Words Transferred Per Reference - plytrace




103

Fixed(4) o——o1.320

Fixed(8) o———v01.273
Fixed(16) o————o1.245
Fixed(32) o——01.275

Fixed(64) o © 1.474
Vbl(4,64,16) & _ Lo ST ioo--- 0 6.766
Vbi(8,64,64)Q c__II 01465 o 3.375
Vbl(16,64,64) - 01368 ___ 0 2.769

Prefetch(8,8) o————e¢1.362

Figure A.7.3: Cache Size (bits per reference) - plytrace. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the
min-block implementation.

L Vbl(4,64,16) ----- Vbl(8,64,64) Vbl(16,64,64)
0.9—
0.8—
0.7—-
0.6 —
0.5—
04— P :
L : ! =9 - -9
0.1— : : Do : ! 1 1, D : ! D
: Dy Tl U T N T
| I | I [
4 8 16 32 64
Block Size
Figure A.7.4: Fraction of Block Transfers of Given Size - plytrace
Table A.7: Split and Merge Statistics - plytrace
Cache Splits i Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4 8 16 | 32
Vbl(4,64,16) 9688 | 4047 | 5513 | 128 625 30 | 66 | 488 | 41 23261
Vbi(8,64,64) 9681 2623 | 3881 | 3177 170 30| 87 | 53 12098
Vbl(16,64,64) || 7067 3890 | 3177 || 150 97 | 53 10133




104

A.8 pmatmult

Fixed(4),

Fixed(8)e

_0.0058

Fixed(16)4

00037

Fixed(32)¢
Fixed(64)4

0.0027
_0.0023

Vbl(4,64,16),

40.0038

Vbl(8,64,64),

40.0022

VbI(16,64,64),

40.0022

Prefetch(8,8)¢

Fixed(4),

+0-0048
Figure A.8.1: Miss Rate - pmatmult

—40.040

Fixed(8),

0047

Fixed(16),

0.059

Fixed(32),
Fixed(64),

0083

20.0096

_0.142

Vbl(4,64,16),

0.043

VbI(8,64,64),

0.062

Vbl(16,64,64),
Prefetch(8,8),

0.071
—40.054

Figure A.8.2: Data Words Transferred Per Reference - pmatmult




105
Fixed(4) o~ © 1.310
Fixed(8) o— ©1.233
Fixed(16) o— © 1.200
Fixed(32) o © 1.306
Fixed(64) o— © 1.548
Vbl(4,64,16) S SoUI Il oI I0 AN .- -0 4.891
VbI(8,64,64) S -l
Vbl(16,64,64) S _ oo loosr o882
Prefetch(8,8) o- © 1.522

Figure A.8.3: Cache Size (bits per reference) - pmatmult. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the
min-block implementation.

------ Vbl(4,64,16) -----Vbl(5,64,64) Vbl(16,64,64)
1 —_—
0.9—
0.8 —
0.7—
0.6 — - EEE
0.5— F L
0.4— . o
03— v Do ra
02— Vo D Vo
0.1- et rA Vo
' ..Ll_ ....='= ....LIJ LlJ
4 8 16 32 64
Block Size
Figure A.8.4: Fraction of Block Transfers of Given Size - pmatmult
Table A.8: Split and Merge Statistics - pmatmult
Cache Splits " Merges Failed Merges
Total Block Size ]| Total Block Size
8 16 | 32 | 64 4| 8] 16| 32
Vbl(4,64,16) 285 27 | 257 1 17 17 6785
Vbl(8,64,64) 332 13 | 22 | 297 1 1 421
Vbl(16,64,64) 319 22 | 297 1 1 445




106

A.9 gsort

Fixed(4),

0.0335

Fixed(8)4 +0.0260

Fixed(16), _0.0223
Fixed(32), +0.0214

Fixed(64), 0-0260

Vbl(4,64,16), 40.0206

Vbl(8,64,64),, 0.0193
Vbl(16,64,64), —0.0190
Prefetch(8,8), —0.0235

Figure A.9.1: Miss Rate - gsort

Fixed(4),——0.128
Fixed(8),——0.196
Fixed(16)y——F—0.334
Fixed(32), —0.638
Fixed(64),

_,1.556

Vbl(4,64,16),——,0.198

Vbl(8,64,64),——_ 0.308
Vbl(16,64,64), ,0.403
Prefetch(8,8),———0.217

Figure A.9.2: Data Words Transferred Per Reference

- gsort




107

Fixed(4) o———mo0.168

Fixed(8) o——00.176
Fixed(16) o——o 0.141
Fixed(32) o——v0.157
Fixed(64) o————o0.167

Vbl(4,64,16) & — LTl i00 206 o= 0 1.089
VbI(8,64,64) g o CCoo00M92 L © 0.646
Vbi(16,64,64) S - oo i00118 L ©0.456

Prefetch(8,8; o—————e0.225

Figure A.9.3: Cache Size (bits per reference) - gsort. For adjustable caches dashed line
gives the size of the maz-block implementation, dotted line gives the size of the min-block

implementation.
L Vbl(4,64,16) ----- Vbl(8,64,64) —— Vbl(16,64,64)
0.9—
0.8 — [ ]
0.7 — '
0.6 — '
0.5— |
0.4— o
0.3~ !
02— » s
01— | ‘:”E:'IJ [Ij_ ::::E': ::::[I]D
4 8 16 32 64
Block Size

Figure A.9.4: Fraction of Block Transfers of Given Size - gsort

Table A.9: Split and Merge Statistics - gsort

Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4 8 16 32
Vbl(4,64,16) 3444 | 886 | 1390 | 845 | 323 1456 | 17 | 56 | 1044 | 339 131255
Vbi(8,64,64) 2972 1053 | 1193 | 726 318 47 | 250 21 41504
Vbl(16,64,64) 1928 1202 | 726 285 264 21 36709




108

A.10 sorbyc

—40.0049

Fixed(4),

Fixed(8), _0.0037

Fixed(16),- 0.0031

Fixed(32), _0.0028

Fixed(64), 0.0027
Vbl(4,64,16), ~0.0032
Vbi(8,64,64), 0.0028
Vbl(16,64,64), _,0.0028
Prefetch(8,8), _0.0033

Figure A.10.1: Miss Rate - sorbyc

Fixed(4),——0.012

Fixed(8),—— 40.020
Fixed(16), 0.036
Fixed(32), _0.069

0137

Fixed(64),—
Vbl(4,64,16),——0.020
VbI(8,64,64)y———0.023

Vbl(16,64,64), 20.037
Prefetch(8,8)——0.020

Figure A.10.2: Data Words Transferred Per Reference

- sorbyc




Fixed(4) o ©0.135
Fixed(8) ¢ ©0.121
Fixed(16) o ©0.116
Fixed(32) o ©0.112
Fixed(64) o ©0.111
vbl(4‘64’16)8_ ....................... 00144
Vbl(8,64,64) 3 cCClloooo0nt .
Vbl(16,64,64) 3 Il 008 .0
Prefetch(8,8) o © 0.129

109

Figure A.10.3: Cache Size (bits per reference) - sorbyc. For adjustable caches dashed
line gives the size of the maz-block implementation, dotted line gives the size of the
min-block implementation.

------- Vbl(4,64,16) -----Vbl(8,64,64) Vbl(16,64,64)
1- —
0.9 — -
0.8 — o
0.7- b
0.6 — .
0.5— L
0.4 — !
0.3 — Sy
0.2 - : !
0.1— : Dy e
: l : LI.. LIJ L . =|= == :|= =
4 8 16 32 64
Block Size
Figure A.10.4: Fraction of Block Transfers of Given Size - sorbyc
Table A.10: Split and Merge Statistics - sorbyc
Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 64 4 8 16 32
Vbl(4,64,16) 21396 | 11903 | 9129 | 229 | 135 || 19605 | 11567 | 7617 | 270 | 151 59077
Vbl(8,64,64) 11257 9790 | 507 | 960 9685 9321 | 231 | 133 50133
Vbl(16,64,64) 1436 476 | 960 333 200 | 133 1325




110

A.11 sorbyr

Fixed(4), 00047
Fixed(8)4 —40.0024
Fixed(16), +0-0012
Fixed(32)y———30.0006
Fixed(64)—0.0003
Vbl(4,64,16) 40— 0.0007
Vbi(8,64,64),—40.0003
Vbl(16,64,64)4—0.0003
Prefetch(8,8), ——0.0020

Figure A.11.1: Miss Rate - sorbyr

Fixed(4), —J0.011

Fixed(8), 20.011
Fixed(16), 20.012
Fixed(32), 20012

Fixed(64), W0.013

Vbl(4,64,16), 0.011
VbI(8,64,64), ,0.012
VbI(16,64,64), 0.012
Prefetch(8,8), 20.012

Figure A.11.2: Data Words Transferred Per Reference - sorbyr




111

Fixed(4) o ©0.134
Fixed(8) o © 0.121
Fixed(16) o ©0.117
Fixed(32) o ©0.112
Fixed(64) o ©0.112
Vbl(4,64,16) 3 oo oUoooe0 4 oo- -0 0.462
Vbl(8,64,64) 3 Ut lIT g 818T
Vbl(16,64,64) 3 ool Tilo 948,
Prefetch(8,8) o © 0.130

Figure A.11.3: Cache Size (bits per reference) - sorbyr. For adjustable caches dashed
line gives the size of the maz-black implementation, dotted line gives the size of the
min-block implementation.

------- Vbl(4,64,16) -----Vbl(8,64,64) Vbl(16,64,64)
1 -—

gg —

0.7 — N

0.6 — o

0.5 — o :

0.4 — o

0.3 - gy !

0.2 — . o

0.1— . faa o ! o

o s = Lis =0 D
4 8 16 32 64
Block Size
Figure A.11.4: Fraction of Block Transfers of Given Size - sorbyr
Table A.11: Split and Merge Statistics - sorbyr
Cache Splits Merges Failed Merges
Total Block Size Total Block Size
8 16 32 | 64 4| 8 16 32

Vbl(4,64,16) 1066 | 3 | 1063 468 24 | 300 | 144 1989
Vbl(8,64,64) 738 8 18 | 712 12 12 1580
Vbl(16,64,64) || 730 18| 712 f 12 12 1571




