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I CLASSICAL AND GENERALIZED

I SOLUTIONS OF TIME-DEPENDENT LINEAR

DIFFERENTIAL ALGEBRAIC EQUATIONS1I
BY

PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2

ABSTRACT. A reduction procedure is developed for linear time-dependent differential alge-

braic equations (DAEs) that transforms their solutions into solutions of smaller systems of

ordinary differential equations (ODEs). The procedure applies to classical as well as distri-

bution solutions. In the case of analytic coefficients the hypotheses required for the reduction

not only are necessary for the validity of the existence and uniqueness results, but they even

allow for the presence of singularities. Straightforward extonsions including undetermined

systems and systems with non-analytic coefficients are also discussed.

I
1. Introduction.3 A time-dependent linear differential-algebraic equation (DAE) is a problem of the form

I (1.1) A(t)d + B(t)x = b(t), t E J'7

I where J C R is an open interval, A(t),B(t) E £(R•) and A(t) is not invertible for any

t E J. In the simplest case, when A(t) is diagonal. this condition implies that - at least5 locally - some of the scalar equations in the system (1.1) are purely algebraic, which justifies

the terminology "differential-algebraic equation". In order to provide a perspective to ourU work. we begin with a brief review of what is currently known about such problems without.

however, including some earlier contributions now subsumed by more general theories.

A significant simplification is the case when A(t) and B(t) in (1.1) are constant. The

corresponding existence and uniqueness theory for initial value problems has been known

'The work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR-9203488
2 Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260
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I
for some time: A full accnnt can be fowr,. ;in Griepentrog and Maerz [GrMS6] who

credit Gantmacher's theory of matrix pencils, [G59]. The book [GrM86] also contains

a treatment of the general system (1.1) utilizing a condition of "transferabilitv'" which.

broadly speaking, cor-esponds to a generalization of the index 1 case of the constant

coefficients theory. Subsequent generalizations to the case of the index 2 and 3 have been

obtained by Maerz ([M89a], [M89b]).

A different approach is taken in Campbell and Petzold [CP83] who consider "solvable

systems with analytic coefficients. The solvability assumption requires that an existence

and uniqueness theory similar to that for linear ODE's is available. The result of [CPS3]

is that such systems can be transformed into the form

I (1.2a) •' + C(t)y = f(t), t E 3,

(1.2b) N(t); + z = g(t), t E 1,

where C(t) and N(t) are analytic functions of t and N(t) is nilpotent upper (or lower)

triangular for all t E J. From the structure of N(t), it follows that the operator Y(t)l7
n

is nilpotent, so that (1.2b) has the unique solution z = E (-1)k(N(t)-)kg, and (1.2a) is
k=1 it

an explicit ODE. But no calculable criterion for solvability is given in that paper.

Later, Campbell [CS7] proved results of similar type for the case of non-analytic coef-

ficients in (1.1) and provided a calculable necessary and sufficient criterion for solvability.

This condition requires, in particular, the characterization of the null-spaces of some aug-

mented systems for each t EG . He also showed that the solutions of (1.1) can be obtained

* as the solutions of an explicit ODE in Rn satisfying consistent initial conditions.

Recently, Kunkel and Mehrmann [KuMe92] have taken a different approach. Under

various constant-rank conditions they show that the solutions of (1.1) can be obtained

in the form x = Uy where U is a smoothly parametrized family of linear isomorphisms

of R n and y = (g-.Y2 ,Y 3 )T solves a simple DAE of the form !*I = c(t), 2 = c 2 (t).

0 = c3 (t), where c = (cI, c2 , c 3 )T depends upon n' and its derivatives. Solvability requires

the dimension of the third variable to be zero, for otherwise Y3 is arbitrary if c 3 = 0 or no

solution exists when c3 :A 0, and hence either uniqueness or existence fails to hold. This
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I approach does not require a solvability assumption, for the dimension of the third variable

is determined in the process of finding U. On the other hand, when the DAE is solvable.

the hypotheses made in [KuMe92] to reach this conclusion are sufficient but not neccesary.

Finally, we mention new theories for general implicit DAE's F(t. x, X') = 0 developed by

the authors ([RRh91]. [RRh92]), that can be applied to linear problems. But, of course.3 these general theories do not capture the special features due to the linear structure.

In all mentioned results only classical solutions are considered: that is. all solutions

x j J - R' of (1.1) are assumed to be (at least) differentiable. As far as we know.

the problem of characterizing generalized (distribution) solutions of (1.1), when the right-

I hand side b is a distribution, has been successfully investigated only for constant A and

B and in special cases (see [VLKa81], [Co82], [Ge93]). The difficult'y with distribution

3 solutions is that arguments from the "classical" theory involving the numerical values of

the solutions can no longer be used. This is the reason why most approaches do not extend

to distributions. It appears that the method in [KuMe92] may allow for such an extension.

but there is no comment to that extent in that paper.

In this paper, we focus mainly on the case when A and B are analytic. Under com-

putationally verifiable assumptions - weaker than the solvability condition of [CP83]

we prove that both the classical and distribution solutions of (1.1) are of the form

x(t) = F(t)x,(t) + r(t) where xv solves a smaller system

(1.3) Avi + B,x, = b,, in J,

and A,(t) is invertible for all but isolated values of t. It turns out that. when (1.1) is

solvable in the sense of [CP83], (1.3) can also be derived by the method briefly sketched

at the end of that paper. But extending this method without the solvability hypothesis

requires a much closer investigation of its mechanism, especially in the distribution case.

SEquation (1.3) is obtained at the vth step of a recursive process involving a number

of arbitrary choices. We show, however, that both the so-called index v of (1.1) and any

singularities of A, are independent of these choices. We also prove that invertibility of

A,(t) for each t E J is necessary and sufficient for solvability in the sense of [CP83]. But
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since solvability is not a prerequisite for the validity of our reduction. singularities may

exist in (1.3) and the methods of the Fuchs-Frobenius theory are available for the study

of the related phenomena.

We also outline a more or less straightforward generalization of our reduction procedure

to characterize the classical solutions of any analytic system (1.1), although either existence

or uniqueness (or both) for corresponding initial value problems is necessarily affected

whenever the hypotheses of the main case break down. Distribution solutions can be

characterized as well for more general, but perhaps not all non-analytic systems.

The inherent globality of the reduction is especially important to handle boundary value

problems, which reduce to boundary value problems for (1.3).

Finally we examine problems (1.1) in the case when A and B are sufficiently smooth

but no longer analytic. It turns out that then additional hypotieses are needed (except

in the index 1 case) to compensate for the lack of analyticity. Because of this, we are not

able to cover fully the "solvable case" of [C87]. On the other hand, our method remains

valid with weaker smoothness hypotheses, say C", for A, B and b in (1.1), continues to be

applicable for distribution solutions, and can be easily generalized to handle undetermined

problems satisfying a Fredholm alternative.

This work and [KuMe92] are certainly close in spirit, but major differences exist in the

execution of the main idea. Our reduction appears to be technically much simpler and

allows for clearer proofs. More importantly, it is this relative simplicity that permitted a

deeper analysis under weaker hypotheses.

Our approach makes crucial use of Kato's "transformation functions", and the next

section presents a brief review and some applications of this concept. Very closely related

but somewhat less precise results can be found in [D64] and [SiB70]. Throughout the paper

analytic mappings will be referred to as "mappings of class C".

2. Transformation functions.

A main tool for the proof of the globality of the reduction procedure is the concept

of "transformation functions" introduced by T. Kato [K50]. We use only the following

simplified version:
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Theorem 2.1. Let J C R be an open interval and P E Ck'(J;12(Rn)), 1 < k < 3c or

k = w, a family of orthogonal projections onto IV(t) = rge P(t). t E J. Then, for any

fixed to E J, there exists a mapping U E Ck(n; 0(n)), where O(n) denotes the orthogonal

group of R", such that

(2.1) P(t) = U(t)P(to)U(t)T, Vt E J.

Hence U(t)P(to) is a linear isomorphism of WV(to) onto WV(t) for t E 37.

The proof of a more general result involving arbitrary projections and a complex variable

in place of t may be found in [K82] (p. 113). It will be useful to outline the proof of the

somewhat simpler Theorem 2.1. The transformation U is determined as the solution of

the li1ear initial value problem

(2.2) = [P,P]U,

(2.3) U(to) ==I,

where [PP] = PP - PP is the commutator of P and P. Because of pT = p. the

commutator [P. P] is skew symmetric whence Td(UTU) = uTTU + ,UTU = UT[P,P]U-

UT[PP]U = 0. Therefore, with (2.3), it follows that U(t)TU(t) = I,, and hence that

U(t) E O(n) for t E J. For the proof of (2.1) we use P 2 = P which yields PP + PP = P

and thus PPP = 0 and [P, P]P = PP, P[P, P1 = -PP. With this we find for Y = PU

that i- = PU + PU7 = (P - PP)U = PPU = [P,P]Y which shows that Y solves (2.2)

with the initial condition Y(to) = P(to). Since the general solution X of (2.2) is given by

X = UX(to), it follows that Y = UP(to) and, therefore, that PU = UP(to) which is (2.1).

For later use we observe that the above relation 5 = PPU also reads 15 = PY and

hence that Y satisfies the differential equation

I (2.4) f= I .

From pT = P we infer that PT = P5, so that, by (2.4), yT satisfies the differential equation

(2.5) 1 ,-T = yT .r
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Our applications of Theorem 2.1 rest on the following result (see also Lemma 2.2).

Lemma 2.1. Let J C R be an open interval. n > 0 an arbitrary integer, and -11 E

Ck(7;12(IRn)), 1 < k < oc or k = ,. such that rank M(t) = r. Vt E J. Then. the

orthogonal projections onto rge M(t) and ker l(t), respectively; are cf class Ck in J.

Proof. Let i E J be given and consider an orthonormal basis {il,--. i , ir} of rge M(i).

Let vl,. .. , Vr be linearly independent vectors such that ai = Al(t)vi, 1 < I < r. The

vectors ui(t) = M(t)vi remain linearly independent for t near t, say, for t in the open

interval Ji C J. containing i. In other words, since rank .11(t) = r, they form a basis

of rge M(t) for t E Ji, and they are of class Ck in Ji since this is true for .11. By

applying the Gramm-Schmidt process to u 1(t), ... , u,(t), we obtain an orthonormal basis

{wi(t),... ,wr(t)} of rge Ai(t) for t E Ji"- Since the Gramm-Schmidt process involves

only algebraic operations. the vectors w,(t),... ,Wr(t) are again Ck functions of t E Ji.

Because the orthogonal projection of IRn onto rge Al(t) can be expressed as a sum of dyadic

products of wi(t),... , Wr(t), it follows that it is of class Ck in Ji and, hence also in J

since t E J was arbitrary. The corresponding result for the orthogonal projection from R"

onto kerWi(t) follows directly by replacing M(t) with M(t)T in the above argument. El

Theorem 2.2. Let J C R be an open interval, n > 0 an arbitrary integer, and .l E

C k(J; L(Rn)), 1 < k < oo, such that rank M(t) = r for all t E J.- Then the following

operators exist:

(i) S E Ck(3'; C(Rr, Rn)) such that S(t) E GL(Rr, rge M(t)), Vt E J,

(ii) T E Ck(3; C(Rn-r,IRn)) such that T(t) E GL( Rnr-,ker.l(t)), Vt E ,J.

S(iii) E E Ck(3';C(Rn,Rr)) such that V(t)l,,yg.•,M E GL(rge M(t),IRr), Vt E '.7 where

V can be chosen so that ker 11(t) = [ rge AI(t)]- for all t E 3'.

Proof. (i) Denote by P(t) the orthogonal projection from Rn onto rge Af(t), t E J. By

Lemma 2.1, we have P E Ck(J; C(Rn)). Consequently., the mapping U C Ck(J;:£(Rn))

of Theorem 2.1 satisfies U(t)P(to) E GL(rge M(to), rge .l(t)). Vt E J. Now, choose

So E £(IR'.Rn) such that S0 (R") = rge M(to) and set S(t) = U(t)S0 . Vt E J.

(ii) Let II(t) be the orthogonal projection from IRn onto kerM(t), t E J. By Lemma

2.1. we have 11 E Ck(3';IC(Rn)). Hence the corresponding mapping U E Ck('7;C(Rn))
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of Theorem 2.1 satisfies U(t)rI(to) E GL(kerM1(to),kerM1(t)). Vt E J. Now. choose

To E £(R"-rR") such that To(Rf-r) = kerM(to) and set T(t) = U(t)To, Vt E J.

(iii) With P and U as in the proof of part (i), let L E £(R",Rr) be such that

L(rge M(to)) = Rr. Then, set V(t) = LP(to)U(t)T, Vt E J. It is readily seen that

V(t)lrge M(, E GL( rge M(t), R). Furthermore. kerV(t) = kerP(to)U(t)r = {x E R' :

U(t)Tx E [rge I(t0 )]J-} = U(t) [rge .Ml(t0 )]-'. As U(t) E O(n) maps rge .\l(to) onto

rge M(t), it also maps [rge JV(t 0 )]' onto [rge M(t)]-. and hence kerl'(t) = [rge M1(t)]'.

Vt E J7, as claimed. El

Note that by (2.4) and (2.5) the mapping T of Theorem 2.2 was found to be the unique

solutions of the initial value problem

(2.6) T=fiT, T(to) = To.

where to E J is some fixed value, rI(t) denotes again the orthogonal projection onto

kerM(t), t E J', and To E £(Rfn-r, Rn) is any operator such that To(R"-r) = ker3M(to).

Analogously, the mapping V is the solution of

(2.7) ',= Vp. V(to) = LP(to),

where P(t) is the orthogonal projection onto rge Ai(t), t E 3' and L E £(Rfl.Rr) is any

operator such that L(rge M(to)) = R".

In the analytic case, the assumption that rank M(t) = r, Vt E J'. can be dropped

without major consequences for Theorem 2.2 because of Lhe following %,arianL of Lcxi,,nr

2.1:

Lemma 2.2. Let J' C R be an open interval, n > 1 any integer, and AM E C'(,7: £(R')).

Set r = maxEj rank M(t). Then, there is a subset S C J' of isolated points such that

rank .I(t) = r if and only if t E J' \ S. Furthermore. the orthogonal projections onto

rge M(t) and kerMl(t). t E _' \ S, which are analytic on t E J' \ S. can be extended as

analyvtic functions over the entire interval J'.



Proof Since rank .\1(t) achieves only the discrete values 0.1.. , n. there exists a t ,

such that rank M(tf) = r. Identifying .11(t) with its matrix in the canonical basis of R'.

we see that some r x r minor of .11(t) does not vanish identically in J. and hence. by

analyticity, can vanish only on some subset S of isolated points of J. Since rze -1I(t =

rge M(t)M(t)T, Vt E J., we may replace .11 by .1timT without modifying rge .1(t) or

affecting the analyticity. It then follows from the symmetry of _.1iT and Theorem 6.1.

p.139 in [K82] that the orthogonal projection P(t) onto rge M(t), t E J \ S. can be

extended as an analytic function in J.. (In the notation of [KI82], P is the sum of the eigerF-

projections Ph corresponding to the eigenvalues Ah of .I.AIT that do not vanish identically

in J, because eigenprojections of symmetric operators are orthogonal projections). Let

now P(t) denote the orthogonal projection onto kerM(t). t E J' \ S. For the proof that

P can be extended as an analytic function in J. it suffices to replace .11(t) by .M1(t)TrI(t)

and to use once again Theorem 6.1. p. 1 3 9 in [K 82]. 0

Let Al, r, and S be as in Lemma 2.2. and call P(t) the orthogonal projection onto

rge .11(t), t E J \ S. so that P E C'O(J; £(R')). By the denseness of J. \ S in J and the

relation PM = M in S, \ S. we find that PM = M in J and. in particular, rge .11(t) C

rge P(t) for t G S. Moreover. P(t) remains an orthogonal projection at points of S as

follow from the relations p 2 = P and pT = P extending from J. \ S to J. In other words.

P(t) is a projection onto a subspace containing rge -11(t). Let now Pi E C"(,7: £(R')) be

any other family of projections such that rge P1 (t) = rge M(t), Vt E J \ S. Obviously. in

J \, and hence in J. we have PP1 = P1 so that rge P1 (t) C rge P(t).Vt IE J. By an

exchange of the roles of P and P1, it follows that rge Pl(t) = rge P(t). Vt E J. This shows

that even at points of S. the range of P(t) is independent of the specific choice of P. For

this reason, we call rge P(t) the eztended range of MI(M) to be denoted by ext rge .11(t).

Then. we have

(2.8a) rge .11(t) C ext rge AM(t), Vt E J.

(2.8b) rge Al(t) = ext rge .11(t). Vt E J \ S.

Let [I(t) again denote the orthogonal projection onto kerM(t). t E J \ S. so that

RlG C-(,.7; C(IR)). The denseness of J \ S in J and the relation MI1 = 0 in j\S imply



that ME = 0 in J. In particular. for t E S. we have rge IIMt) ýC ker .1( t) and hence M1 t)

projects onto a subspace contained ;,. ker Al t). Let now 11, t C`(J: (R"!)) be any other

family of projections such tha, ge (t) = ker .11(t). Vt E J \ S. Obviously. -IrI1 =l

and ',IJ = rI in J \ S. and hence in J. so that rge rl(t) = rge rI(t), vt tE J. Thus. the

range of I1(t) remains independent of the specific choice of rI at points of S. and we' call

rge ti(t) th- re.,tricted null-,pace of .11(t) to be denoted by rest ker .11(t). Then

(2.9a) kerM(t) D rest ker M(t). Vt E J,

(2.9b) kerM(t)= rest ker .11(t), Vt E J \ S.

By Theorem 2.1. ext rge M(t) and rest ker .1(t) are isomorphic to ext rge M( to) and

rest ker .1I(to). respectively, for any t.to E J. Hence, by (2.Sb) and (2.9b). we have

dim ext rge MI(t) = r. Vt E J and dim rest ker Al(t) = n - r, Vt E j which shows that

the inclusions (2.8a) and (2.9a) are strict for t E S.

Using the concepts of an extended range and restricted null-space. and by a proof similar

to that of Theorem 2.2. we obtain now the following version of that result:

Theorem 2.3. Let j C R be an open interwaJ n > 0 any integer. and .11 E C;(JC: C(Rn.

Set r = maxtE'r rank .11(t) and let S C J be the set of isolated points where rank- 11( t) < r

(see Lemma 2.2). Then the following operators exist:

(i) S E CN(J:C(Rr.R", )) such that S(t) E GL(R".ext rge .1(t)). Vt E J. and. in

particular, S(t) E GL(R' rge .11(t)). Vt E 9 \ S.

(ii) T E C-'(J:£(ý -,R'R)) such that T(t) E GL(Rnr,rest ker M(t)). Vt J S. and.

in particular. T(t) E GL(R"-.,ker l(t)), Vt E , \ S.

(iii) V E C'(J: £(RnR•)) such that '(t) E GL(rge .1(t),R). Vt E J, and. in par-

ticular. V(t) E GL~rae .11(t).Rr). Vt E , \ S and V can be chosen so that ker V(t) =

[ext rge .11(t)]-', Vt E J.

Remark 2.1. For the validity of (2.6) and (2.7). 11(t) and P(t) must be chosen as the

orthogonal projections onto rest ker .11(t) and ext rge _11(t). respectively. El
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3. The reduction of analytic pairs.

Let 3 C R again be an open interval and A., B E C-(J; L(Rf)). We denote bv A. B E

C(J,; f(R" x R". Rf)) the parametrized fanmily of operators

(3.1) (px) E xRnxn ,o (A(tM B(t))(p.x)-A(t)p+B(t)x. VIE J.

Definition 3.1. The pair (A. B) is called regular i1 , if the rank condition

(3.2) rank A(I) e B(t) = n. Vt 3.

holds.

For later use, we note that (3.2) is equivalent with either one of the conditions

(3.2') rank [A(t)A(t)' + B(t)B(t)T] = n, Vt E J,

(3.2") kerA(t)T nkerB(t)T = {o}, Vt E 3.

(3.2"') rge A(t) + rge B(t) = R', Vt E J.

although (3.2"') will not he particularly useful here.

Suppose that (A. B) is regular in the sense of Definition 3.1. By Lemma 2.2. it follows

that

(3.3) rank A(t) = r, Vt E J \ S,

where S C 3" consists of isolated points, and that there is a family of projections P E

C'((J:;(IRn)) with rge P(t) = ext rge A(t), Vt E J. Set Q = I- P. so that Q(t) projects

onto a complement of rge A(t), Vt E J\S. Clearly, rge A(t)eB(t) = rge A(t)eQ(t)B(t) =

rge A(t) rge Q(t)B(I). Hence, it follows from (3.2) and (3.3) that rank Q(t)B(t) = r--.

Vt E , \S S. or, equivalently, that

(3.4) dimkerQ(t)B(I)=r, VtEJ7\S.

10



Remark 3.1. Using (3.2) we see easily that (3.4) actually holds for t E J. Indeed.

given uw E R', there are u,v E R" such that t(t)u + B(t)t = w. Since QA = 0 in J'.

it follows that Q(t)B(t)v = Q(t)w. Letting u' run over the (n - r)-dimensional subspace

rge Q(t) we infer that rank Q(t)B(t) _> n -r, Vt E J. Thus. equality holds since, by (3.4)

and the lower semi-continuity of the rank. rank Q(t)B(t) _< n - r. Vt E J. As a result.
";"rest ker Q(t)B(t)" couid be replaced by "ker Q(t)B(t)" in the subsequent considerations.

However, we have chosen to ignore this fact, as this will later enable us to ascertain that

the results of this section can be generalized with the same proofs. to a case when (3.2)

fails to hold. r-

Now. let C E C'(,.7, (Rr;n R")) be such that

(3.5) C(t) E GL(Rr, rest ker Q(t)B(t)), Vt E J'.

The existence of C is ensured by (3.4) and Theorem 2.3 (ii) with M = QB. Analogously.

let D E CO(J. £(Rtn .R)) be such that

I (3.6) D(M) G GL(ext rge A(t),NR), Vt E ,

3 where now the existence of D is ensured by (3.3) and Theorem 2.3 (iii) with AI = A.

Remark 3.2. For t E J \ S we have kerQ(t)B(t) = {x E Rn : B(t)r E rge A(t)}.

I which shows that kerQ(t)B(t) is independent of the particular choice of Q; that is. of P.

Consequently, C(t) is independent of the specific choice of P for t E j \ S and hence forI tEj7.

Definition 3.2. For the regular pair (A.B) in J let C E C'(,7.[T£(R'.R',)) and D £

C'Q(,: L(IR, R")) satisfy (3.5) and (3.6), respectively. Then the pair (A 1, B 1 ) defined by

I (3.7) A 1,B1 E Cw(J;£r(Rr)), A1 = DAC. B, = D(BC+ AC).

I is a reduction of (A. B) in J.

Clearly, a reduction (A 1, B1 ) of a regular pair (A. B) is not unique. since it depends

I upon the choice of C and D. However, any two reductions of (A. B) are equivalent under

the following equivalence relation already used in [CS7] and rediscovered in [KuMe92].

11
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Definition 3.3. For any A, B, A, B E C-(J;£(Rn)) the pairs(A,B) and (A-.i) are called

equivalent in J, to be denoted by (AB) -- (A,-f3) in J, if

(3.s) MAN and M(BN +A.Ný),

Ufor some M, N E C"(J; GL(R")).

Lemma 3.1. The relation of Definition 3.3 is an equivalence relation.

Proof. In this proof. the interval J will be implicit; that is, (A,B) -, (A, fB) shall mean

that this relation holds in J. Clearly, (A,B) - (A, b) is trivial. If (A.B) -, (A.-f3)

holds then A = M-'AN- 1 and we obtain B = M-'(BN-1 + A+1N-'). Indeed, we have

M-1 (BN-' ±A-iN-') = (BN+AN)N-1 +ANON-1 = B+A(•ýN-' +NAN-') = B.

since ]ýN-' + N-d V-1 = I=0. This shows that (A, B3) (A, B).

Now, suppose that (A,B) (A,B) and (A,B) (A,B); that is, A = MlAN, B

IfM(BN^ + AN) and A = MAN, B = M(BN + AN) for M, N, M, N E GL(J; GL(R-)).

Then, by a straightforward calculation, we find A = MMiANqN, B = MN(bN N +

A-i, (NN)) and therefore (Ao,) -' (AB). L]

In the proof of part (iii) of our next theorem and in other places later on we require the

following lemma.

Lemma 3.2. Let P E CW(J; £(R')) be a family of projections such that rge P(t)

ext rgeA(t), Vt E J and set Q = I - P. Then for any integer m > 0 and K E

C°(J; C(R',RU)) we have

(i) rge K(t) C rest ker Q(t)B(t), Vt E J,

if and only if

(ii) rge B(t)K(t) C ext rgeA(t), Vt E 3,

Note: The equivalence between (i) and (ii) above is not true for fixed t E J, although (i)

implies (ii) in this case as well.

Proof. Suppose that (i) holds, so that rge K(t) C kerQ(t)B(t), Vt E J. This is equivalent

with QBK = 0: that is, rge B(t)K(t) C ker Q(t) = rge P(t) = ext rgeA(t), Vt E J, which

is (ii). Conversely, assume (ii) to hold, so that QBK = 0 and thus rge K(t) C ker Q(t)B(t).

12
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3 Vt E J. Let H E C"'(J;I2(R n)) be the orthogonal projection onto rest ker Q(t)B(t).

Since rest ker Q(t)B(t) = kerQ(t)B(t) except at isolated points of J, we find that (I -

I fl(t))K(t) =0 except at isolated points. But by denseness and continuity, it follows

that necessarily (I - II)K = 0: that is. K = [1K, whence rge K(t) C rge [1(t)

rest ker Q(t)B(t), Vt E J which is (i). 0

Theorem 3.1. Suppose that (A,B) P, (AB) in J. Then.

(i) rank A(t) = rank A(t), Vt E J.

(ii) (A. B) is regular in J if and only if (A-, B) is regular in J.

(iii) If (A, B) and (A, B) are regular in J, any reduction (A 1 , B 1 ) of (A, B) in J is

equivalent to any reduction (A 1 , B1 ) of (A.t) in J.

3 Proof. By (3.8), (i) is trivial. To show that (3.2), or equivalently (3.2"), either fails or

holds simultaneously with A and .A, it suffices to show that if (3.2") is valid for the

pair (A, B), then it also holds for the pair (A., f). Indeed, symmetry of the equivalence

relation implies that the converse is true as well. Suppose then that (3.2") is valid and let

It E J and x E kerA(t)T n ker il(t)T . By (3.8), this means that N(t)TA(t)TM1(t)Tx = 0

and N(t)TB(t)TA I(t)Tx + N1ý(t)T4A(t)TM(t)Tx = 0. Because of NT(t) E GL(R"). the

3 first relation provides that Al(t)Tx E kerA(t)T, and hence the second one reduces to

Ny(t)TB(t)TAI(t)TX = 0; that is. (t)Tx E kerB(t) T . Thus. M(t)T E E kerA(t)T n

I kerB(t) T, whence Al(t)Tx - 0 by (3.2"). Because of M(t)T E GL(R") we find that x = 0

which proves (ii).

To prove (iii), we write

(3.9) A 1 = DAC, B, = D(BC + AC), A, = A.C, B1l = D(BC + A C)

where C, C E C'(3; C(R'r, Rn)) and D. D E CW(,7; 2(RnRr)) satisfy the conditions of

3 Definition 3.2. Note here that the integer r is the same for both pairs (A, B) and (A. t)
by part (i) of this theorem. From (3.8), we infer that

ad
(3.10) .- 1 = DMANCI, B1, = DMI(BNC + A -d(NC)).

13



Now the proof hinges on the remark that there are mappings H. L C C(,7; GL(RT )) such

that

(3.11) NC = CL

(3.12) D(t)Mlext rge A(t) = H(t)Dlext rge A(,), Vt E 3,

where the existence of H and L will be established further below. For the time being, we

show how the validity of (3.10), (3.11) provides for the proof of (iii). From (3.10), (3.11)

and (3.12), we obtain at once

(3.13) A1 = HDACL = HAIL,

and B)1 = D)MBCL + HDA-(CL). Recall that C(t) maps into rest ker Q(t)B(t) for

t E 3', where Q(t) is a projection onto a complement of ext rgeA(t). Therefore, by Lemma

3.2 with K = C, B(t)C(t) maps into ext rgeA(t), t E 3, and hence (3.12) implies that

DMBC = HDBC. As a result. /)1 = HDBCL + HDAd (CL) = HD(BC + ACý)L +

HDACL. Using (3.9) we thus get b1 = H(BlL + A1L) and, together with (3.13), this

implies the equivalence of (A 1,BI) and (A,, ,i3 1) since H,L E C'(J;12(Rr)).

To complete the proof, we now verify the validity of (3.11) and (3.12). By hypothesis.

B = M(BN + ANV) and, by construction of C, b(t)O(t) maps into ext rge A(t) for t E ,'.

Since ext rge A(t) = ext rge M(t)A(t)N(t) = ext rge M(t)A(t) = M(t)(ext rge A(t)), this

amounts to saying that M(t)(B(t)N(t)+A(t)lN(t))C(t) maps into _M(t)(ext rge A(t)); that

is, B(t)N(t)C(t)+A(t)N(t)C(t) maps into ext rge A(t). But then, B(t)N(t)C(t) maps into

ext rge A(t). By Lemma 3.2, N(t)C(t) maps into rest ker Q(t)B(t) = rge C(t). Vt C ,J

with Q E C'(J;£(Rn)) as in (3.4) and (3.5). By rank C(t) = r and N(t) E GL(IRn)

we have rge N(t)O(t) = rge C(t). On the other hand, injectivity of C(t) implies that

C(t)TC(t) E GL(Rr), Vt C j. Set L(t) = (C(t)C(t)T )-lC(t)T N(t)O(t), for t E 7,

so that L E C"'(J::C(Rr)). In fact, L E Cd(,.; GL(Rr)), for as was just seen above.

N(t)C(t) maps onto rge C(t) and C(t)T is one-to-one in rge C(t). Thus, rank L(t) = r

as desired. Next, for ý E IR" we have L(t)ý = (C(t)TC(t))-l(C(t)TN(t)O(t)ý, whence

14
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C(t)TC(t)L(t)ý = C(t)TN(t)C(t)c. Since C(t)T is one-to-one in rge C(t) = rge N(t)O(t),

this gives C(t)L(t)ý = N(t)O(t)ý; that is, CL = VC which completes the proof of (3.11).

To prove (3.12) let S E C'(J;.C(R',Rfl)) be such that S(t) E GL(R",ext rge A(t)).

Vt E J, as provided by Theorem 2.3 (i). Note that D(t)S(t) E GL(Rr). Vt E 3, and

set H(t) = D(t)M(t)S(t)(D(t)S(t))- 1 , so that H E C'(J;:C(Rr)). In fact. we obtain

H E Cw"(J; GL(R")) because M(t) E GL(R") implies that M(t)S(t) is a bijective mapping

into M(t)[ext rge A(t)] = ext rge A(t), whereas D(t) is one-to-one in ext rge .A(t). Now.

for x E ext rge A(t). we have x = S(t)ý for some E R RT , whence D(t)x = D(t)S(t)ý and

H(t)D(t)x = H(t)D(t)S(t)ý. Thus, H(t)D(t)x = b(t)M(t)S(t)ý = D(t)M(t)x, which

proves (3.14). 0

Theorem 3.1 makes it easy to define inductively a reduction procedure which, up to

equivalence, is independent of any particular choice that must be made at each step.

Specifically, suppose that the pair (A.B) is regular in J, and let (A 1 ,B 1 ) and (A1,P 1 )

be any two reductions of (A,B) in J. By Theorem 3.1, (A 1,B 1 ) - (A 1,b1 ) and hence

(_41, B 1 ) and (A,, B1 ) are simultaneously regular or not regular in J. If they are. then once

again by Theorem 3.1. any reduction (A 2 , B 2 ) of (A 1, B 1 ) is equivalent with any reduction

(A2, B 2) of (A 1 ,,B1 ). Therefore, (A 2 , B2 ) and (A 2 ,Bf2) will be simultaneously regular. and

so on. This suggests the following definition:

I Definition 3.4. The pair (A, B) is said to be completelv regular in J if the above in-

ductive reduction procedure can be continued indefinitely. In particular, the complete

I regularity of a pair (.4, B) in J implies its regularity in 37.

3 A trivial but important case is when (A, B) is regular and maxtEj rank A(t) = n and

thus r = n. Then we have ext rge A(t) = R', Vt E 3, whence P(t) = I is the only

3 possible choice for a parametrized family of projections onto ext rge A(t). As a result.

Q = I - P = 0 and therefore QB = 0 and rest ker Q(t)B(t) = Rn, Vt E J. This

3 shows that C(t) = D(t) = I is a possible choice for the reduction of (A.B) for which

then, by (3.7), (A 1. B 1 ) = (A. B). Hence it follows that (A, B) is completely regular and

3 that all the possible reductions are equivalent to (A, B). In other words, up to equivalence.

reduction has no effect on the pair (A, B). The importance of this case is that it will always

15
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occur eventually at some stage of the reduction procedure of any completely regular pair.

Therefore, despite the fact that the reduction can be theortically continued indefinitely, it

ceases to have any effect (up to equivalence) after a finite number of steps. This is the

content of the following result:

Theorem 3.2. For a completely regular pair (A, B) in J set A0 = A, B0 = B and consider

a sequence (Aj, Bj), j = 0,1,..., where (AjBj) is some reduction of (A,- 1 , B,-_) in 3'

for each j > 0. Then.

(3.14) rj = maxiEJ rank Aj(t), Vj > 0,

is independent of the specific choice of (Aj,B 3 ), j > 0, and with r- 1 = n we have

(3.15) A,(t) E £(Rri•-), Vt E 3, Vj > 0,

and

(3.16) r-.==n>_roŽ_...>r3' (r_0).

Hence there is a smallest integer 0 < v < n such that r, = r,_ 1 and v has the property

(3.17) A,(t) E GL(Rr•-l) (= GL(R',)), Vt E J\S,

where S, C 3' consists only of isolated points, and v is also characterized by the fact that

it is the smallest integer j for which Aj(t) E GL(Rrj-1) for some t E J.

The proof is a trivial consequence os? Theorem 3.1 and the various definitions.

From the remarks preceeding the theorem, it follows by (3.17) that. up to equivalence.

the reduction has no effect on the pair (A, B,) and hence the process could as well be

stopped at this point.

Definition 3.5. For a completely regular pair (A,B) in ,. the integer 0 < v < n of

Theorem 3.2 is called the index of the pair in ,.. Since, v is independent of th - choice of

the reduction at each step of the process the i n,', depends only on the pair (A. B).

16



4. Global reduction of differential-algebraic equations: classical solutions.

We apply now the reduction procedure of the previous section to the differential algebraic

equation

(4.1) A(t)± + B(t)x = b(t), t E 3, A,B E CO(T;£(Rn))

and show that it reduces (4.1) to an explicit iinear ODE on the interval J. Naturally A

and B in (4.1) shall now be called the coefficients of the DAE.

Definition 4.1. The DAE (4.1) with analytic coefficients is reducible (resp. completely

reducible) if the pair (A, B) is regular (resp. completely regular) in J. For completely

reducible (4.1) the index of the pair (A, B) in J is the index of (4.1).

Theorem 4.1. For the reducible DAE (4.1) with analytic coefficients let (A1 , BI) be any

reduction of the pair (A, B) in J; that is,

(4.2) A1 = DAC, B, = D(BC + AC"),

where Ce CE (; j(3r, Rn)), D E C'(J; L(R", R")) satisfy (3.5) and (3.6), respectively.

and r = maxtEj rank A(t). Suppose that b E Ck(J; Rn) where L < k < oc or k = w.

Then

(i) There exist uo E Ck(J; Rn) such that

(4.3) B(t)uo(t) - b(t) E ext rge A(t), Vt E 3,

and indeed (4.3) holds for

(4.4) u0 BT(AAT + BBT)- 1 b.

(ii) A differentiable mapping x 3 -* R' solves (4.1) if and only if for given uo satisfying

(4.3) we have

(4.5) x = CX1 + uo

17



where x, : - R' is a differentiable solution of the DAE

(4.6) A.I(t)x' + Bi(t)x = b1(t), t E J,

with b, given by

(4.7) b= = D(b - Buo - Aio).

Proof. (i) By the reducibility of (A,B) and (3.2'), we have A(t)A(t)T + B(t)B(t) T E

GL(R'), Vt E J. Thus, with uo given by (4.4) and vo = AT(AAT + BBT)-1 b, we obtain

Avo + Buo = b which shows that (4.3) holds.

(ii) Let x : j - R" be a differentiable solution of (4.1) so that B(t)x(t) - b(t) E

rge A(t), Vt E J. For u0 E Ck(j; R") chosen according to part (i) we have B(t)(x(t) -

uo(t)) E ext rge A(t), Vt E J. Then, by applying Lemma 3.2 with Q(t) as stated there

and K E CO(J;£(R',RI)) defined by K(t) = x(t) - uo(t), we obtain x(t) - uo(t) E

rest ker Q(t)B(t). But now (3.5) implies that x(t) - uo(t) = C(t)xl(t) for a (unique)

x1 (t) E Rr, and xi(t) = [C(t)TC(t)]-lC(t)T(x(t)- uo(t)) shows that x, : j - Rr

is differentiable. By differentiating x = Cxj + uo we obtain ACil + (BC + AC)xj =

b - Arto - Buo and hence, after multiplication by D, that x, solves the DAE (4.6).

Conversely, let x, 3 - Rr be a differentiable solution of (4.6). Then, by (4.2), we

have

(4.8) 0 = D[A(Cii + Cx1 + rio) + B(Cxi + uo) - b].

By (3.5) and Lemma 3.2 B(t)C(t) maps into ext rge A(t) while, by (4.3), B(t)uo(t) - b(t) E

ext rge A(t). This shows that the bracketed term in (4.8) belongs to ext rge A(t) for each

t E J. But, by (3.6) D(t) is an isomorphism of ext rge A(t) onto Rr, Vt E J. and hence

this bracketed term vanishes. Therefore, x defined by x = Cx1 + uo is a solution of

U (4.1). 1
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Corollary 4.1. Let the DAE (4.1) with analytic coefficients be completely reducible on

j with index ' > 0 and assume that b E Ck(J: R') with v < k < Cc or k = . Set

Ao = .4. Bo = B and consider a sequence (A,.Bj. j = 0.1..... where (.4JBI) is some

reduction of (A._ .. B,._ i) in j for each j > 0; that is.

(4.9) Aj = Dj-.A-,_C)_1 , B) = Dj-.(B,-1 Cj- 1 + A 3-IC,-I)

where C,_1 and D,_ 1 satisfy the condition of the reduction procedure and r), j > 0 are

defined by (3.16) and rI = n. Then the following holds:

(i) There exist sequences u), bj E Ck-J(J; Rr-), 0< j < v. such that bo = b and

(4.1Oa) B,(t)uj(t) - b,(t) E ext rge Aj(t), Vt E 3. j = 1. .v,

(4.10b) b i = Dj_j (bj-l - Bj-juj-j - A4j-li j-j), J = 1'.... V.

(ii) A differentiable mappinz x1 : j - Rr'-I. j = 0,..... v - 1, is a solution of the DAE

(4.11) AI(t)±,j + Bj(t)xj = bj(t), t E 3. j = 0, v - 1,

if and only if xj has the form

(4.12) Xj = Cxj+I + u3

where Xj+1 :"7 - Rr: is a diffcrentiable solution of the DAE

(4.13) .4j+I(t).ij+l + Bj+3 (t)xj+l = bj+1(t), t E J.

(iii) A differentiable mapping, x : -+ IR" is a solution of (4.1) if and only if

(4.14) x = F,_ 1 xv + 1 ,V-l
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Iwhere F,- 1 E C'(J3:1 (R'--I,Rf)) and vt,-, E Ck-t+l(J; Rn) are given by

(4.15) rF, 1  Co0"C -I,

(4.16) V,,-1 = Co ""Cv- 2u,- 1 + Co Cv- 3 uL- 2 + ''' + CouI + uo,

and xL, j 3 R' -I is a differentiable solution of the linear ODE

(4.17) A., (t) i , + B, (t) x,, = b,,(t).

Proof. Parts (i) and (ii) follow from by an inductive application of Theorem 4.1. and (iii)

is an immediate consequence of (ii). fl

The essential difference between (4.1) and (4.17) is that the latter is almost an explicit

S ODE since A,(t) E GL(Rr.-,) except perhaps at isolated points. Of course, the case when

A4(t) E GL(Rrv-I) for every t E j is of special importance. For this case we have the

I result:

Corollary 4.2. Under the same hypotheses and with the notation of Corollary 4. 1.

(i) the condition

I
(4.18) A,(t) E GL(Rr-'), Vt E 3,

I
is independent of the reduction, and

(ii) if (4.18) holds. the initial value problem

(4.1) A(t)i + B(t)x = b(t) in J,

x(t.) = x., t. E J, x. E R

has a differentiable solution if and only if

(4.20) x. = r,_I,(t.)x,. + v"_I0(t.)
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for a (unique) x,,. E Rr-. Moreover, if (4.20) holds, the differentiable solution x of (4.19;

is unique and of class Ck-'+,.

Proof. (i) If (Ai,,, ) is another possible choice for (A,,, B,,), then (.4-, ,,) -- (A,. B,) by

Theorem 3.1 (iii), and rank A,,(t) = rank A.(t), Vt E j by Theorem 3.1 (i).

(ii) If (4.18) holds, then (4.17) is an explicit linear ODE. and hence the conclusion

follows from Corollary 4.1 and standard existence and uniqueness results for linear ODEs

- which in particular implies that solutions are defined in all of J. Note that uniqueness

of x,. in (4.20) follows from the injectivity of r,,-(t.). o

Remark 4.1. Condition (4.20) expresses the consistency of the initial value x. with the

DAE at t.. 0

For b = 0 in (4.19) we may choose uj = 5i = 0 in Corollary 4.1 which shows that

vIl(t.) = 0 in (4.20). Hence it follows from Corollary 4.2 (ii) that on 7 the homnxogeneou,

system

(4.21) Ai,+Bx=0, in J,

has r, 1 linearly independent (and analytic) solutions which are uniquely determined by

their value at any point t. E J. We now show that the hypotheses of Corollary 4.1 are

necessary for the existence of a solution for arbitrary right-hand side in (4.1), and that the

same is true of the hypotheses of Corollary 4.2 (ii) if the aforementioned property of the

solutions of (4.21) is to be preserved as well.

Theorem 4.2. (i) In order for the DAE (4.1) with analytic coefficients to have at least

one differentiable solution in j for every b E Cw(J;Rn). it is necessary that (4.1) be

completely reducible.

(ii) Let (4.1) be completely reducible with index v > 0. If the homogeneous problem

(4.21) has r,_ 1 linearly independent differentiable solutions uniquely determined by their

value at any given point t. E J. then A,(t) E GL(Rr-1), Vt E J' and rank A,4 1 (t) =

rV_ 1. Vt E J if v > 1.

Proof. (i) It suffices to prove that if (4.1) has a differentiable solution in 7 for every

21



b E CJ(,7; R"), then the pair (A,B) is regular in J and the reduced DAE

(4.22) Al(t)ii + BI(t)xl = b1(t), t E J,

has at least one differentiable solution in j for every b, E C'(J7: R') where. of course.

r = maxtEj. rank A(t). Indeed, if this property is established, it may evidently be used

to prove inductively the complete reducibility of (4.1).

The regularity of (A, B) in j is trivial since the value b(to) can be arbitrarily chosen

for any given to, and existence of a differentiable solution of (4.1) ensures that b(to) E

rge A(to) E B(to), whence rank A(to) E B(to) = n.

Let (A,,BI) be a reduction of (A,B) so that (3.7) holds with C E C'(,J;C(Rr, Rn))

and D E CIO (J; £(R',Rr)) satisfying (3.5) and (3.6), respectively. For any bl E C",`(J; Rr)

the existence of S E C'(J7; £(R', Rn)) such that S(t) E GL(Rr, ext rge A(t)), Vt E 3 is

guaranteed by Theorem 2.3 (i). Clearly, D(t)S(t) E GL(Rr), Vt E 3, and with b(t) =

S(t)(D(t)S(t))-1b1 (t), Vt E 3, we obtain b E CW(3; Rn) such that b(t) E ext rge A(t) and

D(t)b(t) = bi(t), Vt E 3.

By hypothesis, the DAE (4.1) has a differentiable solution x for this b. and, in addition.

we can choose u0 = 0 in Theorem 4.1 (i). Thus, part(ii) of that theorem ensures that x

has the form x = Cxj where x, is a differentiable solution of (4.22) in J. Thus. (4.22)

does have a differentiable solution, as claimed.

(ii) The r,,- 1 linearly independent solutions of (4.21) can be viewed as the columns of

an n x r- 1 differentiable matrix i1(t) satisfying the equation

(4.23) A(t)4 + B(t)I = 0, t E 3.

Since -ID(t) is uniquely determined (as a solution of (4.23)) by its value (I,(t.) at any t. E 3.
it follows that 1(t) has rank r,_ 1 for all t E J. Since we may choose uj = bj = 0 when

b = 0 in (4.1), Corollary 4.1 provides that -1,(t) = rF-_(t)4I,(t) where 4,, is r.-I x rx-,

and solves the system A,(t)-, + B,,(t)4, = 0 in 3. Because of rank D(t) = r,_1 we also

have rank 4c, (t) = r,.-1 and therefore -I),(t) E GL(Rrý-), Vt E 3. From the proof of part
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(i), the existence of a differentiable solution x of (4.1) for every b C- C-(J: R") implies

the existence of a differentiable solution x,, of (4.17) for ex'ery b, E C'(; R-) Clearly

yI, = -'x,, is differentiable and solves the system .4,(t)P,, = b,(t) in j which, In turn.
inphies that b,(t) E rge A,,(t), Vt E J. Since b,(t) can be arbitrarily chosen for given t '7 J

this shows that rank- A,(t) = r,-I and therefore A•(t) E GL(Rr'-- ). Vt E J.

To complete the proof, we have to show that rank A,,_(t) = r, Vt E J. assuming, of

course, v > 1. For this. it is obviously not restrictive to confine attention to the case I, = 1

and hence to show that rank A(t) = r(= r 0 ), Vt E J. The necessary conditions already

established in this proof enable us to use Corollary 4.2 with b = 0 which shows that D in

(4.3) is not only differentiable but also analytic in J. By Lemma 2.1 and Theorem 2.1.

with Al = 4, we obtain U E C"'(j: 0(n)) such that U(t) E 0(n) is a linear isomorphisms

of (rge 4b(t0 ))-L onto (rge 4I(t))-L for each t E J. Thus. if {It, . ,_c,-, denotes a basis of

(rge 4(to))', the matrix -i(t), obtained by adding the column vectors U(t)t,. 1 < i < n -r.

to the matrix (I(t). has full rank n for every t E 3, whence ( E Cw(,7: GL(R")).

The change of variables y = ,-l'x transforms (4.1) into the DAE A(t)O(t)'i+(A(t)A,(t)+

B(t)F(t))y = b(t) in 3, which therefore has at least one differentiable solution for ever-,

b EC'"(J; R"). By part (i), this implies that the pair (.4<ý.A4) + B4) is regular. On the

other hand. by (4.23) the matrix A4) + B4D has r vanishing columns. Thus, rank .4(t),(t) +

B(t)(D(t) :_ n - r. Vt E J. But then. by the regularity, we must have rank A(t)(D(t) > r.

Vt E J, which implies that rank A(t) _ r and therefore rank A(t) = r, Vt E J. El

We note here that some of our arguments in the proof of Part (ii) were borrowed from

[CPS3] and [CS7]. Part (ii) of Theorem 4.2 cannot be improved to guarantee rank -4A(t)

rj j 0,... v - 2. for all t E j as the following 2-dimensional counterexample

(x >+ x=b(t)

shows. Thifs DAE has index 2 and the unique solution (x1r,x 2 ) = (b, - tb2, b2 ). In this case

we have r1 = 0 and (4.17) is the trivial equation 0 = 0 in R' = {0}.

In connection with Theorem 4.2. the setting of Corollary 4.1 is optimal for the existence

of solutions of (4.1 ) for arbitrary ( sufficiently smooth) right-hand sides, and the setting of
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Corollary 4.2 (ii) is optimal if. in addition, a uniqueness theory similar to that for standard

ODE's is to be valid. However. Corollary 4.1 has a broader range of applications since it

also allows for the study of singularztZes in (4.1), which may arise if the matrix A,(t) in

(4.17) becomes singular at some values t E J'. For related results see. for instance, [H641

or [F65].

At this stage, it is important to note that the reduction procedure of Section 3 for

analytic pairs (A4, B) does not require regularity of (A, B) and indeed can also be performed

under the weaker assumption that rmaxtErj rank A(t) ; B(t) = n. In particular, the

relation (3.4) remains true after enlarging the set S so as to incorporate the (isolated)

points where rank A(t) • B(t) < n. All the results of Section 3 remain valid with the

same proofs if complete regularity is now replaced by the more general assumption that

maxEj rank Aj(t) . Bj(t) = rj-.1 (r-i = n). But under these weaker assumptions, the

DAE (4.1) need no longer be reducible, for the conclusion of Theorem 4.1 (i) does not

remain true for arbitrary right-hand sides b. As a consequence. for the validity of Theorem

4.1 (ii) it can no longer be proved, but must be assumed, that there exists a u0 E Ck(J;: Rn')

for which B(t)uo(t) - b(t) E ext rge A(t). A similar assumption must be made about the

b,'s in Corollary 4.1 to arrive at the reduced problem (4.17). In other words, the reduction

of (4.1) remains possible only for restricted choices of right-hand sides, independent of the

smoothness. To give an idea of the nature of the required restrictions, we mention without

proof that if b E C(j.: Rn), then Theorem 4.1 (i) remains valid if the zeroes of the vector

B(t)TAdj[A(t)A(t-)T-B(t)B(t)T]b(t) - where "Adj" stands for the "Adjugate"; that is.the

transpose of the "matrix of cofactors" - all have order greater than or equal to the order

of the zeroes of det(.4(t)A(t)T + B(t)B(t)T).

Finally, we note that a generalization of the reduction procedure of Section 3 for analytic

pairs (A. B) is always possible without any additional assumptions. However, then the

reduced pairs (.4,. B,) are such that Aj, B,, E Cw(J;C(R"n, R? . -I )) with nj > r. _1. in

other words. A, and B, need no longer be square matrices. Once again, the reduction

stabilizes after a finite number v > 0 of steps, up to a straightforward generalization of

the equivalence of Section 3. But, in the case when n, > r, -1 for at least c1nie index j.

it can be shown that local uniqueness for the solutions of the initial value problem (4.19)
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I is not true. This is due to the fact that, when possible. the reduction to the form (4.17)

leads to a system with more unknowns than equations and a surjective A,(t) except at

isolated points. On the other hand. the condition nf = r3 1 ,, Vj >_ 0. amounts exactly to

ma.xt(Ejrank Aj(t) Bj(t) = r,-i, Vj > 0, the case discussed above. For some further

comments along this line see also Section 7.

1 5. Global reduction of differential-algebraic equations: generalized solutions.

Let TD(J) denote the space of infinitely differentiable real valued functions with compact

support in J and 'D'(J) its dual, the space of distributions in J. For x = (xi) E

g and ; = (is) E (D(J))", we set

(X -s) = E(Xt, ý0,0,

3 where, on the right. (-,-) denotes the duality pairing between D'(J) and D(J). For

.M E C'(,7;.C(R',Rm )) and x E (D'(J))", the product Mx E (E)'(J))' is defined byI
(Mx,) = (x,_IT,,), VP E ()(J)) mI

We consider now the generalized DAEI
U (3.1) A(t)i + B(t)x = b, b E (D'(J)) n

where. as before, the coefficients A and B are analytic in J. A solution of (3.1) is any

x E (D'(J))" such that (Ai4 + Bx, yp) = (b, (p), for all ýp E (D(J))". where, of course. .-

3 denotes the derivative of x in the sense of distributions.

For the extension of the reduction of Section 4 to (5.1) we need a preliminary lemma.

I Lemma 5.1. Suppose that the pair (A. B) is regular and set r = maxtEjrank. A(t). Let

P E C"(J:,C(IR)) be such that P(t) is a projection onto ext rge A(t). Vt E J.. and denote

3 by 1I(t) the orthogonal projection onto kerQ(t)B(t), Vt E J, where Q = I - P. Then:

(i) For evern ýý C- (D(J))n there exists a t, E (D((J))n such that (I - rI)Ip = BTQTL,.
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I (ii) Let C E C'(J; £(R",R)) satisfy (3.5). Then, for x E (T'(J))". there exists a

xE E (DI(J))r such that x = Cxl if and only if(I - [I)x = 0.

(iii) Let D E C•(J;L(R",RT )) satisfy (3.6). Then, for t,' E (D)(J))'. there exists a

ie (.(J))r such that pT•, = pTDT•.

Proof. (i) In line with Remark 3.1 we have dim ker Q(t)B(t) = r for t E J and hence it

5 follows that rge B(t)TQ(t)T = [kerQ(t)B(t)]- = rge (I-1I(t)) is (n-r)-dimensional. and.

because of rank Q(t)T = rank Q(t) = n - r, that B(t)T E GL(rge Q(t)T, [kerQ(t)B(t)]± ).

3 By Theorem 2.2 (i) and (iii), there are mappings S E C-(J7;(R"-r, Rn")) and V E

C'(,.7;£(Rn , IR-r)) such thatl
S(t) E GL(R nr, rge Q(t)T), V(t)lre Bf T Qc,• T E GL(rge B(t)TQ(t)T, Rn-r)

and kerV(t) = kerQ(t)B(t), Vt E J. This implies that VBTS E CW(,J7;GL(Rn-r)).

I Thus, for P E (D(J7))', the choice ?b = S(VBTS)-lVýO, provides that QT, = t, and

IB BTW = V1p; that is, (I - H)(BTQTO - ý0) = 0. But since (I - II)BTQT = BTQT, this

means that BTQTO = (I - II)O.

(ii) Suppose first that x = Cxl. Since, again in view of Remark 3.1, kerC(t) T =

[rge C(t)]-L = [kerQ(t)B(t)]' we have CT(I - H1) = 0 and therefore. (x,(I - H)•p) =

3 (x]. CT(I - Ij),) = 0. VýO E (E)(J))n; that is, (I - II)x = 0.

Conversely, suppose that (I - H)x = 0 and set x, = (CTC)-ICTX. Then. for ; E

I ((J7)) , we have (C'xI,cp) = (x,C(CTC)-1CTp). But, C(t)(C(t)TC(t))-1 C(t)T is the

orthogonal projection II(t) onto rge C(t) = kerQ(t)B(t) (see once again Remark 3.1).

3 Thus, because (x, (I- rI)) = 0 by hypothesis, we find that (Cxl, -z) = (X, 1 .L) =(x)

which gives x = Cxl.

5 (iii) If we can show that P(t)T E GL(rge D(t)T, rge P(t)T), Vt E J, the method used in

the proof of (i) above will provide the desired result. Since rank D(t)T = rank D(t) = r.

3 and rank P(t)T = rank P(t) = r, Vt E J, it suffices to show that P(t)Tu = 0 for some

u E rge D(t)T implies that u = 0. Such a u is an element of [ker D(t)]'fl [ext rge A(t)]± =

3 [kerD(t) + ext rge A(t)]-. But, since kerD(t) n ext rge A(t) = {0}, we have kerD(t)

ext rge A(t) = R', so that, indeed, u must be 0. []
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UWe axe now in a position to prove the "distribution" version of Theorem 4.1.

Theorem 5.1. Suppose that the DAE (5.1) with analytic coefficients and r = max(EjA(t)

is reducible, and let (A,, B 1 ) be any reduction (3.7) of the pair (A. B) in J with mappings

C E C' (J; C(Rr,R")), and D E C' (J; C(R",Rr)) satisfying (3.5) and (3.6). respectively.

Then:

(i) There exists a uo E (D'(,))" such that

U (5.2) Q(Buo - b) = 0,

where Q = I-P and P E C' (J; £(R')) is such that P(t) is a projection onto ext rge A(t),

Vt E J. In particular, (5.2) holds forI
(5.3) uo = BT(AAT + BBT)-lb.I

(ii) A distribution x E (r-'(J))n solves (5.1) if and only if for any uo satisfying (5.2)I
(5.4) x = Cx1 + uo,

where xr E (DI(J))r solves the DAE

(5.5) Alic + Blx, = b= ,

where b, is given by

I (5.6) b, = D(b - Buo - A*o 0).

Proof. (i) Let uO be defined by (5.4) and set vo = AT(AAT+BBT)- 1b. Then, Avo +Buo =

I b and for y E (E(J))rl we have (Q(Buo- b), ) = (Buo - b, QT%) = (Avo. QT.) =

--(co., TQTýO) = 0 since ATQT = (QA)T = 0.

S(ii) Let x E (D(J))n be a solution of (5.1), so that for any ý; E (DT(J))n we have

I (Q(Bx - b),,p) = (Q(Ai + Bx - b),jp) = (Ai + Bx - bQy) = (0,Qo) = 0 and therefore
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3 Q(Bx - b) = 0 which, because of Q(Buo - b) = 0. implies that QB(x - u0 ) = 0. Thus

(X - uo,BTQT,) = 0. for all 4' E (E(J))' and, hence, by Lemma 5.1 (i), (x - UoI -

I II);) = 0, Vcp E (T(hJ))n; that is, (I - [I)(x - uo) = 0. Thus, Lemma 5.1 (ii) ensures

that x = Cxi + uo for some xi E (D'(J))". Substituting this into (5.1). we find that

ACi + (BC + AC)xl = b - Buo - AU0 , and multiplying both sides by D we obtain that

I ix solves (5.5).

Conversely, let x1 E (D'(J))r solve the DAE (5.5) and set x = Cxl + uo, whence

D(A* + Bx - b) = 0. By construction of x, we have Q(Bx - b) = Q(BCxl + Buo - b) = 0

since QBC = 0 (see Remark 3.1) and Q(Buo - b) = 0. Since QA = 0. this implies that

I
(5.7) Q(Ai + Br - b) =0,I
and therefore DP(Ax + Bx - b) = D(Ai + Bx - b) = 0 which is equivalent withU
(5.8) (Ax' + Br - b, pTDTO) = 0, Vp E (D(J))r.

Let 0) E (p(J))n, so that 0 = PTI,+QT,. By Lemma 5.1 (iii), there exists a p E (D(J))r

such that pTV, = pTDTý;" Thus, i/, = pTDT, + QT4 ,, and (Ai + Bx - b,v) = (Ax* +

U Bx - b, pTDT~p) + (A.' + Bx - b, QTOb) = 0 by (5.7) and (5.8). This shows that x solves

(5.1). [

3 By recursive application of Theorem 5.1, we see that when the DAE (5.1) is completely

reducible, its solutions are of the form x = Ir",_xV + v--I where x, E ()'(J))r.-1 solves

I
(5.9) Avi + B,,, = b,

and A,(t) is invertible for all but isolated values of t E 3J. Here, As,, B,,, r,,- 1 and v,,- 1 are

3 obtained as in Corollary 4.1 with the obvious modifications that now uj, bj E (DM(J))r_-

(hence v,,-, E (''(J))") and that, instead of (4.10a), uj is required to satisfy the condition

I Qj(BIuj - b,) =0 , where Qj = I - P, and Pj E CW(J; £(Rr,-' )) is such that P,(t) is a

projection onto ext rge Aj(t), Vt E J.

I



If A,(t) is invertible for every t E J, then (5.9) is simply the explicit ODE with analytic

coefficients
Sx,, 

+ A'B,,x, = A-lb,

whose solutions form an r.i_-dimensional affine subspace of(DI(J))r- (see e.g. Schwartz

[S66]). The solutions of (5.1) thus form an r_.--dimensional affine subspace of (V'(j))".

Of course, in this framework, initial value problems make no sense, in general. since dis-

tributions need not have pointwise values. However, Corollary 4.2 can be extended for

special choices of b. as, for example, b E IVjkl(J) for some k > v. In this case we note.

without proof. that Corollary 4.2 has an obvious generalization due to the fact that the
k V~k-+l,1

solutions of (4.1) are in U'"o (J) C C°(j) and hence have numerical values at all the

points of J.

Initial value problems also make sense when the right-hand side of (5.1) is a discontin-

uous function, provided that the initial value is not chosen at a point of discontinuity. It

turns out that this result yields rather complete answers to the problem of solving (4.1)

with "inconsistent" initial condition; that is, with an initial condition x. that does not

satisfy the requirement (4.20). This problem has been discussed at some length in the

constant coefficient case because of its relevance in problems from various applications.

Details will be presented elsewhere.

Remark 5.1 At the end of Section 4. we observed that the reduction procedure for

the DAE (4.1) could be extended to any system with analytic coefficients, provided that

suitable limitations are placed on the right-hand sides bj. It is interesting to note that

this is no longer true if the problem is understood in the sense of distributions. Indeed.

if the pair (A,B) is not regular, part (i) of Lemma 5.1 fails to hold even in the case

when maxtEgrank A(t) E B(t) = v .,nd hence when kerQ(t)B(t) must be replaced by

rest ker Q(t)B(t). Indeed, at a point *o E j where rest kerQ(to)B(to) C kerQ(to)B(to).

we have rge B(to)TQ(to)T C rge (I - II)(t 0 ), and if ý0 E (D)(J))" is chosen such that

(I - II)(to)(p(to) ý rge B(to)TQ(to)T, it is clear that no 0 E ((V(J))" exists such that

(I - 1)14 = BTQTt". But, without Lemma 5.1 (i), it is no longer possible to ascertain

that every solution of (5.1) must have the form (5.5), even if existence of u0 , as in (5.2),

is assumed. The converse, however, remains true: that is, if xi solves (5.6), then x given
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I by (5.5) solves (5.10). This discrepancy may be explained by the fact that the crucial

implication (ii) => (i) in Lemma 3.2 relies heavily upon a continuity argument for K

I ~(Mmeaningless when K = x - uo is a distribution) if rest ker Q( t )l(t) and ker Q( t)B( t) do

not coincide for all t E 3. El

6. Boundary value problems.

3 The global reduction result of Corollary 4.1 (iii) is especially convenient for handling

boundary value problems. Indeed, suppose that we associate the completely reducible

I DAE (4.1) with index v with a condition of the form

1 (6.1) g(a, b, x(a), x(b),4i(a), i(b)) = 0,

3 where g • x j x R' x R' x R' x -R' - R m , and a,b E J. By Corollary 4.1 (iii) (and

using the notation of that corollary) we know that x :3 -- R' solves (4.1) if and only if

(6.2) x = x,-ixV + vV,- 1,

where xv 3 --- solves the ODEI
(6.3) x + A,,(t) -B,(t)x- = A,,(t)-b•,(t), t E 3,

assuming, of course. A,(t) E GL(Rr"--), Vt E J. Thus, by substituting (6.2) into (6.1),

we see that x : J --+ R' solves (4.1) and satisfies the boundary condition (6.1) if and only

if x has the form (6.2) with a solution x, of the ODE (6.3) that satisfies the boundary

I condition

3 (6.4) gv(a, b, x,(a), x,(b), x(a), i(b)) = 0,

S where g, x 3 x 3x x R'- - I x R"-x I- -* R' is given by

Sg,(t, T,•,,pv, .VJ,7,T ) = g(t. 7,1.-_,(t)X, + V,,-i(t), F ,- I (t)p., + F ,-I(t)xV + f,,,_(t).

(6.5) l,-(r)• + v,-1(r),IF.-(r)r, + t,- 1 (T) + i.,_j(r)).
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But in fact, since by (6.3). -+(a) and 4,(b) are given in terms of a, x,,(a) and b, x,(b),

respectively, the boundary condition (6.4) takes the form

(6.6) h, (a,b,x,(a),x.(b)) = 0,

where h:, x .x W- x R'- : - R' is obtained by substituting

Xp = A.,(t)-[b,(t) - B.,(t)x,], r, = A,,(r)-[b,(Tr)- B-(7),,],

into the arguments of g, in (6.5).

The problem (6.3) with the boundary condition (6.6) is a boundary value problem for an

3 explicit linear ODE which therefore can be handled by the standard theory. Furthermore,

if g = g(t,r,X,p,yr7) in (6.1) is an affine function of (xp, ,r7), then h, = h,(tX,,

I in (6.6) is an affine function of (xv, ,).

The exact same considerations apply to the distribution case if b E IV,' W(J). Indeed, if

so, we may guarantee that the sequence (6j) of Corollary 4.1 satisfies bj E W..lo' (3) for

0 v. whence x, E IV,"lo (J) C C 0(J) has a numerical value at each point of 3.

7. The non-analytic case.

3 For A. B E C'(,J; £(R')), the regularity condition (3.2) is no longer sufficient to repeat

the arguments of Section 3 and define reductions (A 1, B 1 ) of (A, B). This is due to the

3 fact that the concepts of extended range and restricted null-space do not necessarily make

sense, and that rank A(t) need no longer equal its maximum value in J at all but isolated

3 points. However, if we strengthen the regularity condition as follows

I (7.1) rank A(t) E B(t) = n, rank A(t) = r, Vt E J,

3 then reductions (A 1, B,) of (A, B) can be obtained by the method of Section 3. To see

this, it suffices to replace "ext rge" and "rest ker" by "rge" and "ker", respectively, and

3 to use Theorem 2.2 in lieu of Theorem 2.3. If (7.1) again holds for the pair (A 1, B 1 )

with n replaced by r, and r replaced by a new integer r, < r, then we obtain a new
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pair (.42 ,B 2 ) by reduction of (A,1 ,B 1 ). and so on. The proof of Theorem 3.1 can be

repeated verbatim, provided that "C"" is replaced by "C•" everywhere, including in the

equivalence definition of pairs (Definition 3.1). Likewise, Theorem 3.2 has an obvious

extension if complete regularity of the pair (A. B) is replaced by the stronger requirement

that for j > 0 the pair (.4, B.) satisfies the appropriate analog of condition (7.1). In

particular, an index v > 0 can be assigned to the pair (A. B) in this case.

In line with this. it should be evident how the results of Section 4 up to and including

Corollary 4.2 and those of Sections 5 and 6 can be extended when, with A 0 = A, B 0 = B.

we have

(7.2) rank Aj(t) • Bj(t) = rj-i Vt E J, Vj >_ 0,

(7.3) rank Aj(t)=r,, VtEJ, Vj_Ž0,

where r-I = n > r0 _> .. .> r. _> - _ 0, and for each J > 1, (Aj, B.) denotes a reduction

of (A,- 1 , Bj- 1 ). On the other hand, Theorem 4.2 has no interesting generalization to this

case. and most of the discussion concluding Section 4 becomes immaterial with one notable

exception: The reduction of pairs (A, B) remains possible with Aj, Bj being n. x rj_1.

n3 _> rj-Ž , if (7.3) is unchanged. and (7.2) is replaced by the weaker condition

(7.4) rank .4j(t) e Bj(t) = pj, Vt E J. rj _ pj < n, Vj >_0.

Once again there is a smallest integer v > 0 such that r,_ 1 = r", and A,(t) is onto TR"-, for

all t E J. As in Section 4, if nj > rj_ 1 for at least one j, local uniqueness of the solutions

of (4.19) is lost. Furthermore, because of (7.4) it is easy to characterize those right-hand

sides b for which the sequences uj, bj are defined, and hence for which the reduction of

(4.1) to the form (4.17) is possible. In fact, it is both necessary and sufficient that (with

b0 = b)

(7.5) bj(t) E rge A.(t) J Bj(t) = rge (Aj(t)Aj(t) T + Bj(t)B,(t)T ), t E 3', 0 <j v 1- 1.

where the surjectivitv of AL,(t) ensures that this condition holds for j = v. If so, there exists

a wi as smooth as b, such that b. = (Aj(t)Aj(t) T + Bj(t)Bj(t)T)wj, and we may choose
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it = BTw,. Obviously, the condition (7.5) is also necessary for existence of a solution. If

b is a distribution, the condition (7.5) is replaced by bj = (A 3(t)A,(t)T + B,(t)B,(t) ,

where w, E (D'(R))': we shall not enter into the details.

Similar conclusions regarding this "Fredholm Alternative" for undetermined system

(n, > r,_ 1 for at least one j) are obtained in [KuMe92] assuming three, instead of our

two, constant rank conditions at each step of their reduction.

Remark 7.1. When A and B are analytic and the DAE (4.1) has index 1, it follows from

Theorem 4.2 that both conditions in (7.1) as well as rank .41 (t) = r, Vt E J, are necessary

for the validity of an existence and uniqueness theor' similar to that for ODE's. Thus.

I the hypotheses of this section are identical to those made in the analytic case for index 1

problems "without singularities". This is no longer true for higher index problems. 0

Extending the results about classical solutions from A, B E C°c(if; £(Rn)) to A. B E

Cm(J; £(]R')), m > n, requires nothing more than replacing "Coo" by "C"m! everywhere.5 and v < k < oc by v < k < m in Theorem 4.1 as well as Corollaries 4.1 and 4.2. In

fact, even C" regularity is mostly superfluous and only C' regularity is needed where i'

is the index of (A. B). But since v (and even the existence of v) is not known a priori.

the hypothesis A, B E C'(,7; £(R")) is ambiguous and should be replaced by "A. B are

sufficiently smooth".

A little more care must be exercised regarding generalized solutions. Recall that. given

an integer k > 0, a distribution x E (D'(J))n is said to be of order k if (x..) extends

by continuity to elements of (D9k(j))", where Dk(j) is the space of real-valued, k-times

continuously differentiable functions in J with compact support (see [S66] for details).

I Distributions of order k can be multiplied by C' (matrix) functions if ( > k but not if

C< k. As a result. if .4 B E C m (J,: C(R ")) has index v in the sense of this section (so that

necessarily m > v). then A, and B, are of class C -, and b, is of order k + v. In order

to transform (5.10) into an explicit ODE by inverting A,, we must be able to multiply bV

I by A4'. Since A-' is Cm ', this requires m - v > k + v and hence k < m - 2v. In other

words, in general. the reduction of Section 5 can be performed only if m > 2v. and only

I when the right-hand side b is a distribution of order m - 2v or less. On the other hand. if

b E IVL'o• (J) it is easily seen that m > v suffices as in the case of classical solutions.

33

I



Problems with index 1 have been studied extensively, at least when no singularities

are present and when attention is confined to classical solutions. Since the hypotheses for

index 1 used in this section prohibit existence of singularities, it may be of interest to check

how they relate to others made in the literature. Throughout this discussion the stronger

hypotheses of this section are used under which "ext rge" and "rest ker" become "'rge'

and "ker", respectively.

Theorem 7.1. For A.,B E CI(Jv;C(Rln)) the pair (A,B) has index 1 in J in the sense of

this section if and only if

(i) rank-A(t)= r, VtEJ

and one of the following four equivalent conditions hold:

(ii-a) {x E kerA(t), B(t)x E rge A(t)} == x = 0, Vt E,,

(ii-b) A + QB E C'(J; GL(Rn)), where Q = I - P and P E C'(J;C(Rn)) is such that

P(t) is a projection onto rge A(t), Vt E 3'.

(ii-c) A + Q(B + A) E C'(J; GL(Rn)) with Q as in (il-b).

(ii-d) A + BK E C'(3';GL(R")), where K E C 1(3';£(1')) is such that K(t) is a

projection onto kerA(t), Vt E 3'.

I Proof. (a) Suppose that (A, B) has index 1 in 3', so that (i) holds. Using the previous

notation, we have AI(t) E GL(Rr), Vt E 3', whence by (3.6) and (3.7), A(t)C(t) has

rank r for t E 3'. By (i) this occurs if and only if rge C(t) n kerA(t) = {0}. But

I rge C(t) = kerQ(t)B(t) by (3.5), and hence we have kerQ(t)B(t)flkerA(t) = {0}. Vt E 3'.

Since Q(t) projects onto a complement of rge A(t), it follows that x E ker Q(t)B(tflker A(t)

if and only if x E kerA(t) and B(t)x E rge A(t) which proves (ii-a). Conversely, assume

that (i) and (ii-a) hold. Condition (ii-a) and the second part of(7.1) coincide. By (i) and (ii-

I for each t E J the null-spaceof the mapping (p,x) E R' x R' -* (A(t)x A(t)p+B(t)x) E

R'x R" has dimension dim ker A(t) = n - r. Hence, its rank equals p = n + r. But

1 clearly p < rank A(t) + rank A(t) ( B(t) = r + rank A(t) z B(t). This implies that

rank A(t) E B(t) = n. Vt E 3' which proves the first part of (7.1) and allows us to speak

now of a reduction (.41, B 1 ) of (A, B) in 3'. Then, reversing the steps in the first part of

the proof. we arrive at rank Al(t) = r, Vt E 3; that is, the index of (A,B) in 3' is 1.
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(b) By Lemma 2.1. condition (i) ensures the existence of P E C'(,7; C(Rn)) such that

P(t) is a projection onto rge A(t), Vt C- J, (actually it is the orthogonal projection). With

Q = I - P it is obvious that (ii-a) is equivalent with (11-b).

(c) In order to show that conditions (ii-b) and (11-c) are equivalent, suppose first that

(0-b) holds and let u E R" be such that A(t)u + Q(t)(B(t) + .4(t))u = 0 whfich. obviously.

requires that u E kerA(t). Now, using QA = 0 we see that QA = -QA, and hence that

Q(t)B(t)u = 0. Thus. A(t)u + Q(t)B(t)u = 0, whence u = 0 and (ii-c) holds. Conversely.

I if (ii-c) is valid then for u E ker(A(t) + Q(t)B(t)) we have u E kerA(t) n kerQ(t)B(t)

and, because of u C kerA(t), it follows that u E kerQ(t)A(t) = kerQ(t)A(t). Thus.

I E ker (A(t) + Q(t)B(t) + Q(t)A(t)) and (ii-c) implies that u= 0 which proves the

validity of (ii-b).

I (d) For the equivalence of (11-b) and (ii-d) assume first that (ii-b) is valid and let u E Rn

be such that A(t)u + B(t)K(t)u = 0 and hence Q(t)B(t)K(t)u = 0. Then we have

I [A(t) + Q(t)B(t)]K(t)u = 0, since AK =_ 0, and therefore K(t)u = 0 and A(t)u = 0:

that is, u E kerA(t). But then u = K(t)u = 0 shows that (ii-d) holds. Conversely.

suppose that (ii-d) holds so that A(t)T + K(t)TB(t)T E GL(R"). Since K(t)T projects

onto a complement of rge A(t)T, it plays the same role as Q(t) above, but with A(t),

B(t) replaced by A(t)T, B(t)T, respectively. Likewise, Q(t)T plays the role of K(t) in

this case. Thus, from the first part, we have A(t)T + B(t)TQ(t)T E GL(Rn), and hence

A(t) + Q(t)B(t) E GL(Rn) by transposition. This shows that (ii-b) holds. El

I
Conditions (i) and (ii-a) are exactly the index 1 conditions in the sense of [RRh92]

for the DAE (1.1). The simplest way to see this is to use the remark in [RRh92] that

"index 1" in the sense of that paper is the same as "index 1" in the sense of [RRh9l], and

that the conditions given in the latter paper are equally valid without the second-order

derivative terms. With this simplification, the constant rank condition and condition (2.22)

of [RRh91] - which are necessary and sufficient for index 1 - become rank DpF(t. x,p) = r

and {u E kerDpF(t..x.p), D1 F(tx,p)u E rge DPF(t, x,p)} ===> u = 0, respectively, where

I F(t, x,p) = A(t)p + B(t)x - b(t), so that they coincide with (i) and (ii-a) of Theorem 7.1,

respectively.
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Remark 7.2. More generally, it can be shown that the index of this section always

coincides with the index of [RRh92] for the DAE (1.1). The proof of this. although concep-

I tually simple, involves notational complications and the details will not be given here. But

we note that the independence of the index of this paper from the specific choices made

at each stage of the reduction can be viewed as a consequence of the fact that different

choices merely express the geometric, and hence intrinsic, procedure of [RRh92] in different

charts. [-

Condition (it-b) is useful for the study of numerical algorithms: see [RRh93].

As a straightforward verification reveals, conditions (i) and (11-c) are exactly those of

the case "Jo = 1" in Theorem 3.3 of [C871].

Conditions (i) and (ii-d) of Corollary 7.3 are used in [GrM86] as a criterion for "'trans-

3 ferability", a concept therefore equivalent to the index 1 condition of this section.

Acknowledgement: We thank Steve Campbell for pointing out to us several contribu-

tions related to this work and for helpful discussions.
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