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A Formulation of Quantum Statistical Mechanics Based on the

Feynman Path Centroid Density. I. Equilibrium Properties

Jianshu Cao and Gregory A. Voth

Department of Chemistry, University of Pennsylvania. Philadelphia. Pennsylvania 19104-

6323

ABSTRACT

A formulation of quantum statistical mechanics is presented in which the Feynman

path centroid density in Feynman path integration is recast as the central statistical dis-

tribution used to average equilibrium and dynamical quantities. In this formulation, the

path integrai centroid density occupies the same role as the Boltzmann density in classical

statistical mechanics. Therefore, the statistical ensemble of imaginary time path centroid

configurations provides the distribution which is used to average the appropriately formu-

lated effective operators and imaginary time correlation functions. An accurate renormal-

ized diagrammatic perturbation theory for the centroid density and centroid-constrained

imaginary time propagator will also be described with a particular emphasis given to the

mathematical advantages arising from the centroid-based formulation. The present paper

is concerned with the calculation of equilibrium properties from the centroid perspective,

while the companion paper describes a centroid-based formalism for calculating dynamical

time correlation functions.
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I. Introduction

The Feynman path integral representation of quantum mechanics. 1 and in particular

of quantum statistical mechanics. 2 ,3 provides a powerful method to calculate and visualize

natural processes. For example, path integrals are particularly useful in describing the

quantum mechanics of an equilibrium system because the caionical distribution for a

single quantum particle in the path integral picture becomes isomorphic with that for a

classical "ring pulymer" of quasiparticles3, 4 (cf. Fig. 1). In the discretized path integral

representation. the partition function for a quantum particle is given by the expression 3'4

Z -=lim MP)P/ 2  dql ... dqp exp[-3Vp(q)] (1.1)

where m is the particle mass, 0 equals 1/kBT, and the isomorphic quasiclassical polymer

potential Vp is given by

VP(q) = f [_ 2 (qi- q÷12 + (1.2)

In this discrete representation, the coordinates {qij} describe the positions of the classi-

cal quasiparticles and have the cyclic property such that qi+p = q1 (cf. Fig. 1). Each

quasiparticle is harmonically bound to its two nearest-neighbors, and it "feels" the inter-

action potential through the term V(qi)/P. In numerical applications, a finite value of

the discretization parameter P is used which is large enough so that suitable numerical

convergence is obtained. 3 While the above equations have been written for a single quan-

tum particle in one-dimension, a generalization to multiple particles and/or dimensions

is straightforward.- 4 In the discretized representation, the path integral formalism has

allowed for the numerical simulation of highly non-trivial quantum systems using path

integral Monte Carlo (PIMC) or Molecular Dynamics techniques.3

In the fully quantum (P - oc) limit, the path integral for, e.g., the partition function

io expressed as functional integral over all possible paths q(-r) such that 2

Z = E.J (r) exp{ -S[q(-r)]/h]} (1.3)
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where the exponential weighting of the paths is determined by the imaginary time action

functional
2

rh3 Tn

S[q(7-)] = j dr { 2 + V[q(r)]} (1.4)

Analytically, the path integral method has proven to be particularly advantageous in the

theoretical analysis of several condensed matter problems such as the polaron 5 and the

solvated electron. 6

One of the many interesting ideas suggested by Feynman in his formulation and ap-

plication of path integrals is the notion of the path centroid variable.7 denoted here by

the symbol q0 . The centroid is the imaginary time average of a particular closed Feynman

path q(r) which, in turn, is simply the zero-frequency Fourier mode of that path, i.e.,

S= dr q(-r) (1.5)

In the discretized path integral picture (i.e., for finite P), the path centroid variable is

equivalent to the center-of-mass of the isomorphic polymer of classical quasiparticles (cf.

Fig. 1) such that

IP

q0 T= q (1.6)

(It should be noted that in some previous publications the centroid variable has been

denoted by qo rather than qo. The tilde notation will be reserved in the present paper for

another use.)

Feynman noted that a quantum mechanical "centroid density" pc(qc) can be defined

for the path centroid variable which is the path sum over all paths with their centroids

located at some point in space denoted by q,. Specifically, the formal expression for the

centroid density is given by

pc (qý) =J. Dq(-r)6(q,- qo) exp{Stq(-r)]h3 (1.7)
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The quantum partition function in Eq. (1.3) is then obtained by the integration of the

centroid density over all possible positions of the centroid. i.e.,

Z = Jdqcpc(qc) . (1.8)

Some caution in order when one uses the centroid density because it is distinctly different

from the coordinate (or particle) density, p(q), given by

p(q) = (qjeHq) = J... J Dq('r)6[q - q(O)] exp {-S[q(-r)]/h}, (1.9)

where q(O) is the beginning and end point of the cyclic quantum path q(ir) and is definitely

not the centroid variable in Eq. (1.5). Thus, the particle density function is the diagonal

element of equilibrium density matrix in the coordinate representation, while the centroid

density does not have a similar physical interpretation. Nevertheless, the integration over

either density yields the quantum partition function.

Feynman used the definition of the centroid density along with a simple approximation

for the action functional in Eq. (1.4) to derive an expression for a quasiclassical partition

function.' The latter function is expressed as an integration over an effective Boltzmann

factor which, in turn, depends on a variational effective potential determined at each value

of the centroid variable with the help of an appropriate centroid density formulation8

of the Gibbs-Bogoliubov variational principle. In subsequent work, several authors 9 -11

have improved upon the Feynman's original approach by using a more physically accurate

variational harmonic reference system to describe the imaginary time path fluctuations

around the centroid variable. The effective harmonic frequency and effective potential

are again determined at each value of the centroid variable, resulting in an approximate

expression for the centroid density in Eq. (1.7). An approximate variational partition

function9-11 can then determined in such a theory by virtue of Eq. (1.8).

One conclusion that can be reached from the aforementioned work of Feynman7 and

others,9-11 as well as from the apparent utility of the centroid density-based formulation

of quantum transition state theory,"2 is that the centroid density is a particularly useful

quantity about which to develop approximate, but highly accurate, quantum mechanical
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expressions and to probe the quantum-classical correspondence principle in statistical me-

chanics. It is in this spirit that a general centroid density-based formulation of quantum

Boltzmainn statistical mechanics is presented in the present paper. This formulation is

based on a single important notion: In any such theory the centroid density should occupy

the same role as the Boltzmann density in classical statistical mechanics. That is. the

rules for calculating operator averages and imaginary time correlation functions should be

reformulated so that the final result of such a calculation is obtained by an integration

over the centruid denbity (i.e., by a statistical weighting with the centroid density). It will

be shown that such a formulation is not completely trivial due to the mathematical differ-

ences between the centroid approach and the usual rules of quantum statistical mechanics.

Nevertheless. the resulting expressions are quite interesting both in terms of the classical-

quantum correspondence principle and from the analytical point of view. One result from

this approach is that the centroid formulation seems to actually simplify the calculation of

some quantum mechanical quantities since the imaginary time path fluctuations have been

"pre-averaged" in the centroid density expression. This statement is particularly true in

the case of quantum dynamics (i.e., time correlation functions) which are discussed in the

companion paper13 and in Ref. 14.

Another significant feature of the centroid density-based formulation of statistical

mechanics is that by concentrating on the centroid density as the central statistical dis-

tribution, a formal diagrammatic theory for the centroid density can be employed which

turns out to be simplified from the point of view of the relevant diagram topologies. The

diagrammatic expansion is therefore particularly amenable to powerful renormalization

techniques. The diagrammatic theory also draws the formal connection between various

variational expressions for the centroid density which have been derived by others9-11 and

specific diagram renormalization strategies. A systematic approach to improve upon the

result of the variational centroid density theory can then be developed. A considerable

amount of time will be devoted to the diagrammatic methods in the present article due to

the central practical and formal importance of the centroid density in the theory.

The sections of this paper are organized as follows: In Sec. II, the basic equations

are derived for operator averages and imaginary time correlation functions in the centroid
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density-based formulation of quantum statistical mechanics. The diagrammatic methods

for the centroid density and related quantities are then discussed in Sec. III, while appli-

cations are presented in Sec. IV. Concluding remarks are given in Sec. V.

II. General Formalism

In this section, the general formulation of quantum Boltzmann statistical mechanics

in terms of the centroid density is discussed. The term "general formulation"" means that

the rules are presented here with which to calculate operator averages and imaginary time

correlation functions in the centroid density perspective. The emphasis will not be on

new numerical procedures which might or might not have advantages over the already well

established and successful numerical path integral techniques (see, e.g., Ref. 3). Rather,

the theoretical development is more of a conceptual one which is intended to explore the

quantum-classical correspondence in statistical mechanics. Moreover, the rules outlined

below for calculating averages and correlation functions are formulated on the assumption

that a good analytic expression for the centroid density can be obtained (cf. Sec. III),

thereby bypassing the need for a fully numerical approach. Future research will be devoted

to an exploration of any numerical advantages inherent in the centroid-based imaginary

time path integral formulation. In the companion paper. 13 it will indeed be shown that

the centroid-based approach provides a quite promising computational approach for the

determination of quantum real time correlation functions.14

A. Imaginary Time Position Correlation Functions

At this point, it is advantageous to introduce the notion of a centroid-constrained

imaginary time propagator, i.e., the correlation function of quantum path fluctuations

with respect to the position of the centroid variable q0 = q,. This correlation function is

defined as

Cc( ,q) = ( -" f Dqr)(q-qo)(qr)-qo)(q(O)-qo)exp{-S[q(r)]/h} (2.1)

f ... f 'Dq(r)6(qe -qo)exp{-S[q(-r)]/h}

As the centroids of the paths q(T-) in this correlation function are constrained to be at qc,

the paths can be rewritten as q(r) = q, +4(r), where 4(r) is the quantum path fluctuation
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with respect to the centroid. A Fourier decomposition of the paths q(r) can now be

introduced such that

4 (r) = e (2.2)
n$O

where the summation is over all positive and negative integers except for n = 0, and QTn is

Euclidean frequency defined by Qn = 27rn/lh•3.

The correlation function in Eq. (2.1) differs from the usual Euclidean position cor-

relation function C(r) because only the paths with centroids at q, contribute to the

centroid-constrained propagator C,(r, q,). However, one can obtain C(7) by averaging

the centroid-constrained propagator over the normalized centroid density p,(q,)/Z, i.e..

C(r) = (q(r)q(0)) = (C,(r, q,) + q )p , (2.3)

or, equivalently,

-f(q(r) - q(O)i 2 ) - (O) - C(r) = (Cc(O, qc))p, - (Cc(r, q))p, (2.4)
2

It should be noted that the imaginary time function in Eq. (2.4) provides a measure of

the localization of quantum particles in condensed media. 3,4 ,6 From this point onward,

the notation (-"-)p, denotes an averaging by integrating some centroid-dependent function

over the centroid position q, weighted by the normalized centroid density p,(qc)/Z.

A general method to obtain the correlation function Cc(r, q,) is through functional

differentiation of a generating functional. In order to formulate such a functional, an

imaginary time-dependent force f(r) is introduced into the action functional of the centroid

density [Eq. (1.7)] such that the potential V[q(r)] is replaced by V[q(r)] + f(r)4(r). The

centroid-constrained propagator is then given by

Cc(r, qc) = lim 1 (p.[f(r)5)

f-0o Pc 5f(r)bf(O)

Here, the centroid density Pc is understood to be a functional of the extra time-dependent

force f(r) and is therefore the generating functional15 for the centroid-constrained corre-

lation function.
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B. Operator Averages

In the normal path integral perspective. 2,3 the canonical average of an operator A is

given by the expression

(A) = Z1J...JDq(7)A[q(O)] exp {-S[q(r)]/h} . (2.6)

Due to the cyclic invariance of the trace, the operator can be evaluated at any point along

the cyclic imaginary time path q(r). This situation is depicted in Fig. 2 where the centroid

variable, which is off the ring, is also shown. The challenge therefore is to reformulate the

rules for calculating the operator average so that the centroid density can be used in the

statistical averaging.1 1 In order to do this, the average in Eq. (2.6) is first re-expressed as

ýA) =/ dq [f ... f Dq(r-) 6 (qý - qo) A[q(-r)]e-(2.7)
(A Jfq f. qr dq~p,(q,) Sqr)/] .(27

The operator A is then represented in Fourier space. i.e..

A(q) = J dA(k)ezk, , (2.8)

where A(k) is the Fourier transform of the operator. Equation (2.6) can then be written

as

(A) J dqP )(q) J[ A(k) [ -... f Dq(T-) ,-Stq.+4(-)1/ J (2.9)

where the notation for the action function "S[qc + 4(r)]" is understood to denote path

fluctuations around a fixed centroid at q,. At this point, a cumulant average of the term

exp[ikq(r)] in the brackets in Eq. (2.9) can be performed over the path fluctuation variable

4(7). This average, for the present purposes, is truncated at second-order. (The variable

4(7r) is also assumed to have symmetric fluctuations about the centroid.) After performing

the inverse Fourier transformation by integrating over k in Eq. (2.7), one arrives at the

final result of the analysis which is given by

-8-



(A) = (A,(q,')pc (2.10)

where the effective centroid-dependent quasiclassical function A, is given by

A.,(qC) = (A(q, + q))c,(O,qc)

-27rCc(Oq=) Jd4A(qc +-' ) exp [-,I-/2C,(O. q, (2.11)

Here. the variable 4 is obviously a Gaussian .variable with a width factor C0(0. q,). The

effective classical function A,(q,) depends on the centroid variable q, and. in order to

calculate the canonical average (A), is averaged in a classical-like fashion in Eq. (2.10) with

the normalized centroid density p,(q,)/Z. Th'e above result has been obtained previously

bv one of us"l from the somewhat m, re specialized perspective of the Fevnman-Hibbs

theory.7 If one has an analytic or numerical representation of the centroid density pc(qc), a

numerical quadrature strategy can be employed for evaluating Eq. (2.10) for cases in which

the integral in Eq. (2.11) cannot be solved analytically. For multidimensional systems, a

numerical strategy would be to use a Monte Carlo procedure in which Eqs. (2.10) and

(2.11) are combined in a single MC calculation based on the importance sampling function

W(q, qc) = pc(qc)exp [-_ 2/2C,(0. qc)].

It should be noted that the effective centroid-based representation of the operator

A in Eq. (2.11), while useful in the context of the equilibrium averages, also occupies a

central role in a semiclassical algorithm to calculate quantum time correlation functions in

the centroid perspective.13

C. General Imaginary Time Correlation Functions

A general imaginary time correlation function for coordinate-dependent operators is

defined as 3

CAB(T) = (A[q(r)]B[q(O)])

SZ-t J... fDq(r) A[q(,r)] B[q(O)] exp{-S[q(r)]/h}, (2.12)

-9-



where the operators A[q(r)] and Bfq(O)] can be evaluated anywhere along the path such

that 0 < r < h3. This situation is depicted in Fig. 3 and. again, the challenge is to

reformulate these rules so that the centroid density, which is off the ring, can be utilized.

In order to do this. one can use the fact that the correlation function CAB r' can always

be expressed in terms of centroid-constrained propagator C(-r. q,) in Eq. (2.1) at the level

of a second-order cumulant approxinmation. To proceed. one first rewrites Eq. (2.12) as

CA B(7) J dqc.......q(r) 6(qc qO) A~(- B[q(O)] e'q( (2.13)Sdqc pc (qc) (.8

The operators A and B are next written in Fourier space as in Eq. (2.8). Then. Eq. (2.12)

becomes

CAB(() = Z- J dqcpc(qc) f Tif f dk2 A(k,)B(k 2 ) e'(kl+k2)qc

X f ... f D4(-r) e 1+k2 °) e (2.14)x J'...j 7)#l~r~-Stqc~q(-)Il/n,(.4

The centroid-constrained average in the bracket can be performed as a cumulant expansion

which. for the present purpose, is truncated at second order. The result for the bracketed

term is then given by

(exp[ikiq(r) +ik 2d(O)I)} -

ex+{- [k 2Cc(0, q,) + 2kik2 Cý(7.q~ 2kCc (0 qc)1} (2.15)2x - - , ,c + k2

In order to perform the integrals over k, and k2 in Eq. (2.14), a coordinate rotation

is first performed such that

q+(r) = [q(r)± q(0)]/v'

q_()= [q(r) - q(O)]/v ' (2.16)

- 10-



and new centroid-constrained position correlation functions are defined as

C'-(r. q,) = C,(O, q2) +C (-, qc)

C7 (7. q,) = CQ(0, q,) - C,(r. q,) (2.17)

After performing the integrals in Fourier space. one arrives at the final result for the

imaginary time correlation function in the centroid density picture

CAB(-r) = (PAB(r,q,))p, , (2.18)

where the centroid-dependent imaginary time-correlated operator product PAB (r, q,) is

defined in the centroid density picture by the double-Gaussian average

9AB(r, q,) = (A[qc + 2-" 2 (q+ + q-) B[q + 2- 11 2 (q+ - q-)]) C+,C (2.19)

Here. q+ and q- are Gaussian variables with width factors C+(r, q,) and C- (r, q.), re-

spectively.

The double Gaussian average form for the centroid-constrained operator product in

Eq. (2.19) is somewhat complicated to implement, particularly if the operators A or B.

are not polynomials or exponentials in the variable q. It should also be noted that if

the cumulant expansion is carried out beyond quadratic order in Eq. (2.15), an even more

complicated analytical form of Eq. (2.19) would be obtained. However, it is also important

to remember that in an analytical calculation of the imaginary time correlation function

CAB(r) in the conventional path integral formalism, both the diagonal and off-diagonal

elements of the thermal density matrix are required. The formalism embodied in Eq. (2.18)

requires only an accurate value of the centroid density pc(qc) and the centroid-constrained

representation of the correlated operator product in Eq. (2.19), albeit the latter expression

is somewhat complicated. As in the case of operator averages (Sec. IIB), a numerical

quadrature procedure can be employed if Eq. (2.19) cannot be evaluated analytically. In

the case of multidimensional systems, a combined Monte Carlo procedure for evaluating

-l11-



Eq. (2.18) simultaneously with (2.19) can be developed using importance sampling based

on the centroid density and the double-Gaussian distribution in Eqs. t2.18) and (2.19),

respectively.

III. Diagrammatic Theory

.4. Diagrammatic Representation of the Centroid Density

Because of its central importance in the centroid-based theory, a systematic study

is presented in this section of the perturbation expansion, or equivalently, the cumulant

expansion of the centroid density. This expansion has a one-to-one correspondence with

a diagrammatic representation. It will be shown that diagramxntic classifications and

topological reductions result in the renormalization of the vertices and lines, and thus lead

to a set of self-consistent equations. Previous results based on an optimized harmonic

reference potential9 -1 1 can be readily derived and thus systematically improved.

In general. it will be assumed that the Euclidean action of the reference system takes

a quadratic form in the variable 4(r) such that

ho
Srei[ Wr0 jO d7r {m"(-)2 + Vef [4(7-)]}

=1412 (3.1)

where an defines the reference centroid-constrained propagator [cf. Eq. (2.1)] such that

a(r) = - , (3.2)
n•O

and an = 0 due to the centroid constraint. Two well-known quadratic models are the free-

particle reference system, where an 1 = m , and the linear harmonic oscillator (LHO)

reference system, where an 1 = mn3(f22 + wf), with w being the intrinsic LHO frequency.

With a solvable reference system in hand, one can express the centroid density as

Pc(qc) = Pc,ref,(qc) (exp (-O3AM)c,'ef (3.3)

- 12 -



where AV is the imaginary time average

V= drAV[q, + 4(r)] . (3.4)

and AV = V-Vref is the deviation of the real potential V from the reference potential Vef.

The symbol .-. )c,ref in Eq. (3.3) denotes a centroid-constrained path integral average in

the reference system. As the centroid-constrained propagator of the reference potential

a(ir) uniquely defines an infinite set of Gaussian averages over the Fourier modes {4r},

one can equivalently denote the centroid-constrained average in the reference system with

the symbol (... ).

The first step in the development of a diagrammatic theory for the centroid density

is to Taylor expand the average in Eq. (3.3), i.e.,

<ep(= -. -J dr-rV(q, + 4(r))
0 n!

00 f " -__ dr AV(k, q,) eik4()]n) , (3.5)

where AV(k, q,) is the spatial Fourier transformation of difference potential AV(q, + 4)

with respect to the variable 4. It should be noted that the subscript n in Eq. (3.5) differs

from that used in the Fourier expansion in Eq. (3.2). Since 4(ri) in the reference system

is a Gaussian variable with zero mean at any imaginary time --•, the cumulant expansion

of a linear combination of those variables truncates at second order, giving

Seik,4(W,) = exp{- [ nZk•a(0) + • Zkzkc(n -) } , (3.6)
i= i i= i i~j

in which a(r-) is defined by Eq. (3.2). There is no linear term in Eq. (3.6) because (4) = 0

according to the definition of the variable 4(r) being the path fluctuation with respect to

the centroid. This property greatly simplifies the cumulant expansion and diagrammatic

analysis. By substituting the Taylor expansion of Eq. (3.6) into Eq. (3.5), and transforming

back into coordinate space, one arrives at the result

- 13 -



( ex p (0 o 00 ( __i)n

n=O m=O

xd 1 Y f(O)O2 + E 2 a(r, - Ar,)0aj V , (3.7a)
i'=1 i=1 i:j

where

AV 17 AV[q. + q(r7)] 14=o (3.7b)
1=1

and the partial derivative symbol is defined to be ai =- /1aq(-r,) applied at timeslice r1 .

The imaginary time integrals in Eq. (3.7a) are understood to be integrations over any and

all imaginary time slices which appear in the expansion. After the derivatives are taken,

the potential difference terms are evaluated at the position of the centroid qc.

In principle, the above perturbation series gives a complete description of the quantum

mechanical centoid density, and the expansion can be carried out to any order according to

the accuracy required for a specific problem. However, it is conceivable that in higher orders

the expansion terms become increasingly complicated and a low-order calculation will not

provide a reasonable physical picture of a quantum system. Therefore, a diagrammatic

representation of Eq. (3.7) is introduced here which provides a powerful way to analyze

the perturbation expression and to visualize the analytical expressions.

A careful examination of the series in Eq. (3.7) reveals the basic composition of the

expansion terms. That is, all diagrams consist of two basic elements, vertices and lines.

Each vertex is designated by a Euclidean time ri to be integrated from ri = 0 to ri = ho,

and the potential, or its derivatives, are evaluated at the position of the centroid. Each line

connecting two vertices at times ri and rj is designated as a reference centroid-constrained

propagator a(r, -r,). Whenever a line connects to a vertex, a spatial derivative is applied to

the potential so that the order of the derivative is equal to the number of lines that connect

to the vertex. A negative sign is assigned to each vertex. The value of a diagram is the

product of all the composing elements which multiply a symmetry coefficient determined

by the topological structure of the diagram.
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With above definitions in hand. one can establish a one-to-one correspondence between

each distinct perturbation terin and each diagram. The expansion series of Eq. (3.7) is

then the collection of all topologically different diagrams and all possible combinations.

The following diagrams are some examples:

0 0C ( 0 <N\
1 + 0 + 0 + 0+ 00 + +''" +

(exp(-3zAV))t = 0 0 Q Q (3.8)

A well-known graph theorem16 states that an infinite series of all possible topologi-

cally different diagrams and their combinations is equal to the exponential of all possible

topologically different connected diagrams. For a connected diagram. any two vertices are

linked to each other by at least one line or one path of lines. Therefore, one can to express

the centroid density as

pr(q.) = pc,,.ef(qc) exp(.F) (3.9)

where F is given by

" = 0++(3.10)

The underlying diagrammatic techniques employed here are not new, having appeared

many times in the literature such as in the Meyer cluster expansion 17 and the Feynman

diagrams. 18 However, in order to apply these techniques to a specific problem one must

search for the proper diagrammatic representation. In the case of the centroid density, the

present approach is not restricted by the functional form of the potential and proves to be

particularly advantageous in analytical studies. It should also be noted that the topological

reduction performed in the present case is equivalent to a diagrammatic representation of

the cumulant expansion. The cumulant expansion itself becomes tedious in high orders

and there are a large number of cancellations in the present approach not explicilty given

in the cumulant relations. It therefore proves to be much easier to keep track of higher

order terms in the diagrammic representation.
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As pointed out earlier, all the diagrams of F are closed due to the fact that a = 0

(i.e.. the centroid constraint). For example. there exists no class of diagrams D with single

lines hanging outside of the main diagram, such as

D - 0 + + +(3.11

These kinds of diagrams contribute, e.g., to the expansion for the usual quantum den-

sity (qjexp(-/3H)jq). This feature of Eq. (3.10) simplifies the analysis enormously and

makes the centroid density perspective a prefereable choice for the analytical calculation

of equilibrium averages and imaginary time correlation functions in quantum statistical

mechanics. It remains to be seen, however, whether the centroid perspective can offer

any numerical advantage over standard numerical path integral approaches for calculating

equilibrium properties. 3 This issue will be explored in future research.

B. Renormalization of the Vertices

The diagrammatic representation of the centroid density enhances our intuition and

capability in an approximate evaluation of the full perturbation series. Instead of a tedious

term-by-term calculation, one can focus on a class of diagrams with the same topological

characteristics. The sum of such a class often results in a compact analytical expression

which includes infinite terms in the summation. A very useful technique in such cases

is the renormalization of diagrams.' 9 This procedure is first applied here to the vertices

to obtain an effective potential and thereby an accurate approximation to the centroid

density.

The first set of diagrams to be studied contain only one vertex, i.e.,

0=0 + Q ++..

I3OAV - 1 3V(2a(O) _ 1 O3AV( 4 )ae2 (0) ±..(3.12)

where the superscripts "(i)" denote the order of the spatial derivative an' all terms AV

and AV(M) are evaluated at the centroid - sition q,. The different terms in Eq. (3.12)

correspond to the corrections due to local quantum path fluctuations 4(-r). Summing up
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the series, one obtains a closed form expression for Eq. (3.12) in the form of a Gaussian

average over a single variable with a Gaussian width factor a(O) such that

(AV)a = : f dq AV(q, + 4) exp [-_2/2a(0)] (3.13)

This form of the effective potential incorporates to a certain degree quantum effects and

the anharmonicity of the potential. In the case of the free particle reference system, the

centroid-constrained propagator is given by

a (r) = A [3( - 2u) 2 
- 1] (3.14)

where u = r/hO3 and A2 = h2 3/12m. Substitution of this expression for a(O) in Eq. (3.13),

and using fact that for the free particle reference system Vref (q) = 0, one recovers the

well-known Feynman-Hibbs quasiclassical theory7 for centroid-dependent effective classi-

cal potential from Eq. (3.13). Of course, any general quadratic reference system for the

propagator a(-r) can be used in the present theory and will lead to greater accuracy (see

below).

The next order diagram to be considered is a ring diagram with two vertices and two

lines, i.e.,

= 1 (AV(2) drI d72a2( - r 2 ) (3.15)

As an example, substituting Eq. (3.14) into Eq. (3.15) yields the first correction term to

the Feynman-Hibbs approximation

4h2 fo drJ a fo d72 - r) - (V(2 )) 2  (3.16)

which is exactly what one would expect from the cumulant expansion [see, e.g., Eq. (2.28)

in Ref. 10J. Again, any quadratic reference propagator a(-r) could be used here instead of

the free particle one.

A further correction is to add local quantum fluctuations to the diagrams with two

vertices, the latter diagrams being given by
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<~ID = + + ID(3.17)

This procedure is equivalent to replacing the potential AV in Eq. (3.15) with the effective

potential (!V)}Q of Eq. (3.13). This correction can be introduced in the same fashion for

all higher-order diagrams. However, before doing this it is advantageous to include more

diagrams in the vertex corrections. The set of local fluctuation diagrams, Eq. (3.12), is only

the simplest correction. One can extend the analysis to incorporate all ring corrections,

given by

QQ+Q + V7+.
A j 2)h d-ri a(ri)2 h fo"

+ AV(2) drip dr2 a()ri

+ . (3.18)

By expressing the convolution integrals in the powers of a, one can obtain a simple closed

form for the ring diagrams, given by

1e a 2 AV = -/3OAV (3.19)

where D should be understood as an operator. Furthermore, one can include diagrams

with multiple rings hanging on the same vertex which symbolically leads to

o = 0+ k Q + +

--0,(1+D+ 1D+ D 2 +...)AV (3.20)
2 + 222!

Equation (3.20) now defines an effective potential which has the same form as Eq. (3.13),

except the Gaussian width factor is now given by
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I+ 3(AV( 2 ) (3.21)n 541 0
n•0

This is a particularly useful form of the equation for the effective potential because it

involves only the second derivative of the potential averaged about the centroid using the

unoptimized reference propagator width factor a.

As has already been suggested. AV in Eq. (3.21) can be replaced by an effective po-

tential difference AV. The procedure here is called the renormalization. Analytically, the

renormalized element appears as an unknown variable to be solved from self-consistent

equations which relate the given unrenormalized quantities to the renormalized ones. Usu-

ally, it is straightforward to discover such relationship by observing the topology of dia-

grams. As a result of the renormalization of the vertices, one arrives at the expression

for the renormalized potential difference AŽV by replacing the Gaussian width factor a in

the averaging in the right-hand-side of Eq. (3.21) by the effective width factor a. Note

that this equation must now be solved self-consistently. The resulting expression for AV'

is given by

A = (AV(q. +q))& , (3.22)

with

AV (3.23)

and (.-")a denotes a Gaussian average with a width factor

= 1 n (3.24)

nO0

The notation "AI?(2)" means that the second derivative of AV(q,-+ -) is taken with respect

to 4. Renormalized quantities will be denoted hereafter with an overbar. Diagrammati-

cally, a black vertex stands for a renormalized potential [cf. Eq. (3.23)] while a bold line

stands for a renormalized centroid-constrained propagator. Again, the underlying logic of

renormalization is not new and has been used many times in. e.g., Green's function theory,
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mean field theory, etc. To our knowledge, it has not been applied in a general way to treat

the centroid density. A multidimensional generalization is discussed in the Appendix.

The seemingly complicated equations given above actually have a relatively simple

interpretation. By substituting the centroid-constrained propagator for the LHO into

Eq. (3.24), and using a general LHO frequency w such that AV = V - 1 ,MW2 42 and

= MB(Q2+.,-), the renormalized LHO frequency &D can be specified from the definition

D - (q, + )) a (3.25)

The value of the renormalized LHO frequency is determined from the solution to the above

transcendental equation, where the renormalized Gaussian width factor in Eqs. (3.24) and

(3.25) is now given by

1& .(3.26)

It should be noted that these equations are to be solved for each position of the cen-

troid q,. The frequency in Eq. (3.25) is exactly the effective frequency obtained for the

optimized LHO reference system using the path integral centroid density version of the

Gibbs-Bogoliubov variational method.8 Originally suggested by Feynman.8,'9 this varia-

tional theory has also been employed in the evaluation of quantum rate constants 12a and

to improve the convergence of path integral Monte Carlo simulations. 10 The present deriva-

tion, however, does not depend on a specific reference system as long as it is quadratic. In

addition, Eqs. (3.25) and (3.26) are not derived from any variational principle, but are in-

stead the result of diagram renormalization. More importantly, the diagrammatic analysis

provides a way to systematically improve upon the variational theory.

In order to improve upon the optimized LHO theory for the effective centroid potential,

one need to consider the contribution from higher order diagrams. One way to accomplish

this is to diagrammatically impose the condition (AV(2))a = 0 [cf. Eqs. (3.25) and (3.26)].

This condition specifies that all vertices linked to two lines will vanish, i.e.,

S = 0 (3.27)
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Consequently, all diagrams containing this element will vanish, giving the result a = A.

The leading corrections in the centroid density expansion in Eq. (3.10) are then given by

-- 3(AV)o jVd-r a 3 (Tr) (3.28)

and

2W a h d- a 4 (i) (3.29)

where the centroid-constrained propagator for the LHO is given by

'sn1 b/2 cosh(1 - 2u)b/2- 1-
a~) = TOý2 Lsinh(b/2)I1 / ](3.30)

in which b = hfOC and u =-'/ho3. These two terms provide an improvement on the

optimized harmonic reference centroid density approximation. giving

Pc = Pc,refexp -1[(AV)a- f3  ( (t 3

2f4 (b) • AV(4)a +--. . (3.31)

Here, fn(b) is a dimensionless coefficient, defined by

= ( n-1 1du [ b/2 cosh(1 - 2u)b/2 - 1] (3.32)
f,•(b)- dusinh(b/2)

which becomes a constant in the limit of large b. More corrections can be included by

adding more diagrams. This procedure will be discussed in the next subsection in the

context of renormalization of the centroid-constrained propagator (i.e., the lines).

C. Renormalization of the Lines

The other essential element of the diagrams is the line which represents the centroid-

constrained propagator. The renormalization of vertices leads to the evaluation of centroid
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density while the renormalization of lines leads to the evaluation of Euclidean centroid-

constrained propagator defined in Eq. (2.1). This propagator can be obtained formaflv

from Eq. (2.5) combined with Eq. (3.9).

Following the diagrammatic analysis of Sec. 2. all the leading diagrams for C(7-, q,)

are obtained from Eq. (3.10), i.e.,

Cc(r, qc) - + - -- <- + - +"

+ + - D >

+ + + ... . (3.33)

Obviously, the above collection of diagrams represents all possible contributions to

the centroid-constrained correlation function. In fact, all the decorations attached to the

intermediate vertices can be removed if the vertex is renormalized. This operation can be

achieved by replacing all the AV's by AV's, giving

AV = (AV(q, + q£))Cc(O,q.) (3.34)

where the Gaussian width factor is now Co(O, q,) instead of a(0). In the case of fully renor-

malized vertices, C,(0, q,) is equivalent to the renormalized reference centroid-constrained

propagator a of Eq. (3.24). These two notations will not be distinguished hereafter.

The simplest set of lines is the chain collection, given by

= - +-- -+ 0 - +"" ' (3.35)

where the bold line stands for a renormalized line. This diagram can also be expressed in

the compact form

-+ (3.36)

which leads to the following self-consistent equation,

,= a,• -- (3.37)
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By noting that -' = o . it is seen that Eq. (3.34) and Eq. (3.37) are the same as the

optimized LHO reference equations in Eqs. (3.22) and (3.24) derived in the last section. In

fact. differentiating a ring collection of the generating functional always produces a chain

collection in the correlation diagrams.' 6 The multidimensional generalization of the above

equation is described in the Appendix.

The next stage in the analysis is to include al' the two-liiie-luop corrections in the

renormalization. given by

+ -AZC - +
-I -O 2n -( •(3))2-- 1 ~(-;ýn )I2(4AjV13))2 /\V(4) ÷' (.S

901na'ei~~ (-3A .Cna 3(3.38)

Because of the imaginary time convolutions in the expression. the analytical expressions

for the above diagrams are written in Fourier space, where 7~n is the contribution from

the two-line-loop, given by

2- -n-m•m (3.39)

m•O

Since a2 is a convolution expression. the self-consistent equation for a is not local in Fourier

space. and therefore we can no longer seek a single effective frequency solution as in Eq.

(2.15). As a matter of fact, this analysis shows that the optimized LHO reference system

reaches the maximum capacity for a quadratic potential to approximate an anharmonic

potential and any further corrections are beyond an effective frequency description.

The infinite summation in Eq. (4.10) can be carried out to yield a closed equation.

given by

d, = Cn - Cnd, Af/(2) + (3.40)

which can be solved numerically. It is important to incorporate infinite terms corresponding

to the same class of diagrams so that at low temperature and high aharmonicity the self-

consistent equation will not diverge.

- 23 -



Further corrections to the propagator diagrams will consist of multi-line-loops and

their combinations. However. the expressions become increasingly complicated and we

have not been able to reach a general result for the infinite summation of all the multi-

line-loops. Apart from the simple multi-line-loops, there also exist a large number of

irreducible diagrams that are not included in the above renormalization scheme. It may

be possible that information from some of the lower-order diagrams could help in the

construction of an accurate renormalization equation by means of a Pade apprcximant or

a continued fraction scheme.

As shown in Sec. II. the centroid-constrained Euclidean correlation function is of

central importance in studying equilibrium properties via the centroid density perspective.

Even more importantly, its real-time counterpart is essential in describing the quantum

dynamics of a system (cf. the companion paper' 3 and Ref. 14). The real time and imaginary

time correlation functions are of course related by the analytical continuation r -- it. so

the detailed study of the Euclidean centroid-constrained correlation function presented in

this section may eventually help us to understand the real time behaviour of quantum

systems.

IV. Applications

In this section. the results of calculations which probe the accuracy of the four main

topics discussed in this paper are presented. These topics are: (1) the centroid-based

formulation for calculating equilibrium averages (Sec. IIB); (2) the centroid-based for-

mulation for calculating imaginary time correlation functions (Sec. IIC): (3) the analytic

diagrammatic approach for the calculation of the centroid density (Sec. IIIB); and (4) the

analytic diagrammatic approach for calculating the imaginary time propagator (Secs. IIA

and IIIC).

For all of the above, the numerical calculations are based on a completely non-

quadratic potenLial, given by

V(q) = q3 + q4 /2 (4.1)

where the mass m and h are taken to be unity. All of the analytical results are also
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compared with PIMC simulation results. To achieve good convergence, the path integral

simulations empoloyed P = 100 discretizations (or -,polymer" quasiparticles) and MC 106

pa.sses. The number of beads moved on each trial was adjusted to yield an acceptance rate

of 50%7c.

In Table I. the values for the equilibrium average (q2) are tabulated for the poten-

tial in Eq. (4.1) as calculated by PIMC and by the centroid formulation in Eq. (2.10)

with the optimized LHO approximation to the centroid density [cf. Eqs. (3.22)-(3.26)].

Also tabulated are the analytic results obtained using the optimized LHO theory with

the higher-order corrections in Eqs. (3.28) and (3.29). The results are shown for various

temperatures. Clearly. the centroid approach is an accurate one. It should also be noted

that these calculations represent a stringent test of the centroid formulation because the

potential in Eq. (4.1) contains no intrinsic quadratic term.

In Fig. 4. the imaginary time correlation function (q2 (r)q2 (0)) is plotted for a temper-

ature of 3 = 5 and as a function of the dimensionless variable u = 7r/iU3. The solid circles

depict the exact PIMC result while the solid line is for the optimized LHO result along with

the centroid-based formulation of the correlation function in Eq. (2.18). In Fig. 5. simi-

lar results are shown for the correlation function (qa(7)q3(0)). Again, the centroid-based

formalism is in very good agreement with the numerically exact result.

Although the calculations described above provide an indirect test of the analytic

expressions derived for the centroid density, it is desireable to provide a direct test. There-

fore, the quantum correction factor for a Eckart barrier has been calculated and tabulated

in Table II within the context of path integral quantum transition state theory."2 In the

context of that theory, the quantum correction factor r to the classical rate constant is

given by

F = pý(q*)/pe1(q*) . (4.2)

where p, and Pd are the centroid density and the classical density at the barrier top (q =

q*), respectively. Since the centroid density is larger than the classical density at the barrier

top, the quantum rate is enhanced by the correction factor F. In their paper. Voth et al. 12a
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evaluated this factor for an Eckart barrier at different temperatures and found the difference

between the numerical path integral results and the optimized LHO approximation for

the centroid density increases as the temperature is lowered. Therefore. the higher-order

analytic corrections in Eq. (3.31) become important in the extreme quantum limit. As the

Eckart barrier is an even potential, the cubic term in Eq. (3.31) vanishes at the barrier

top and the leading correction is quartic. In Table II, the results are listed from the

optimized LHO reference approximation. from the optimized LHO approximation including

the higher order corrections, and from the PIMC results. For the last two entries, the

quartic correction seems to slightly overestimate the PIMC result. although in either case

the analytic theory is essentially exact to within the MC error (,-. 5%) of the numerical

results.

A final set of calculations was designed to test the accuracy of the analytic expressions

for the centroid-constrained correlation function C,(r, qc) [Eq. (2.1)], as well well as the

imaginary time position correlation function C(r) obtained by averaging the centroid-

constrained propagator over the coordinate space weighted by the centroid density. To

demonstrate the effect of the higher-order correction terms in Eq. (3.40), the centroid-

constrained propagator was first evaluated using the optimized LHO approximation in Eq.

(3.37) as shown by the dashed line in Fig. 6 for fi = 10 and q, = 0. The result obtained

by including the two-line-loop correction in Eq. (3.40) is shown by the solid line, while the

PIMC results are given by the solid circles. The results are again calculated as a function

of u = 7/ho3. Though the effective LHO approximation provides a good approximation to

the exact centroid-constrained correlation function, the correction from the two-line-loop

diagram renormalization clearly improves the agreement with the numerical data. In fact,

the latter theoretical prediction virtually coincides with the exact PIMC result.

Figure 7 shows the imaginary time position correlation function C(7) for '3 = 5.

The effective frequency & was solved self-consistently from Eqs. (3.25) and (3.26) at each

centroid position q, and then the centroid-contrained optimized LHO correlation function

was averaged with the numerical centroid density. As seen from Fig. 7, good agreement

was obtained with the numerical result. Even better agreement was obtained from Eq.

(3.40) using the two-line-loop correction (solid curve). Again, the deviation from the exact
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result in either case is quite small.

V. Concluding Remarks

In the present paper, the basic computational procedures of equilibrium statistical

mechanics have been reformulated in order to cast the path integral centroid density into

role of the underlying statistical distribution in quantum statistical mechanics. The usual

expressions for equilibrium averages and imaginary time correlation functions have been

modified so that the final answer is obtained by averaging an effective centroid-dependent

function over the centroid distribution. These effective functions involve, in the case of

an operator average, a quasiclassical centroid-dependent function or. in the case of an

imaginary time correlation function, a quasiclassical operator product. In each case, the

quasiclassical centroid-dependent quantity is formulated as a Gaussian averaged function

"broadened" by the intrinsic quantum thermal width of the particle.

In addition to the computational formalism for averages and correlation function, a

diagrammatic perturbation theory for the centroid density and related quantities has been

formulated and analyzed in some detail. The connection between different levels of dia-

grammatic summation and renormalization in the perturbation theory and the Feynman-

Hibbs7 or variational theories 9- 11 for the centroid density have been identified, leading

to a systematic methodology for improving upon the latter two approaches. Correspond-

ingly, specific correction factors have been derived and excellent agreement with numerical

calculations obtained.

The primary motivation for the development of the present formalism arises from the

numerous appealing properties of the centroid density such as its compelling analogy7 with

the classical Boltzmann density and the topological simplicity of its underlying diagram-

matic representation. Another motivation is the apparently central role occupied by the

centroid density in the path integral quantum transition state theory12 for activated rate

constants. These facts have lead us to develop the more general perspective presented

in the present paper. The companion paper 13 explores the intriguing role played by the

centroid variable and centroid density in dynamical quantum time correlation functions. 14

Applications of the centroid-based formalism described in the present and companion pa-
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pers will be the subject of future research.
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Appendix: The Renormalized Centroid-Constrained Propagator in Multidi-

mensional Space

It is first assumed that the reference centroid-constrained propagator [cf. Eq. (3.2)]

for a multidimensional system is a diagonal matrix. that is. A(r) = ( where the

uppercase letters here stand for matrices or vectors. Because there are mixed-index partial

derivatives at the vertices, the multidimensional centroid-constrained propagator C,(r, q,)

matrix [cf. Eq. (2.1)] is not necessarily diagonal. (Note here that q, is now the multidimen-

sional cnritroid variable.) rie first correcnon to consider i6 the chain summation in Eq.

(3.36) which gives rise to the optimized centroid-constrained correlation function matrix

C.(-r, q.) = A - 3((AD) : (DCc)AV)cc , (A.1)

where D is the partial derivative vector D•, = O, and AV is the scalar multidimensional po-

tential difference. The notation (... ")c here denotes a multidimensional Gaussian average

with width factors taken from the matrix of optimized C,(O, q,) values. Upon substituting

the explicit form of A in Eq. (A.1), one obtains the multidimensional matrix analog of Eq.

(3.37) as

1,, (A.2)
CCOl= + 0((D D)AV)c (

which leads to the definition of the optimized frequency tensor,

-2 = 0091 ,V) c. (A.3)

This is the same self-consistent equation obtained previously [see, e.g., Eq. (2.48) of Ref.

10]. The two-line-loop correction ii. II.. (3.38) is more complicated, but as long as one uses

the tensor prescription it is always pzsible to generalize the one-dimensional equations to

multidimensional space.
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Table I: The average value (q2 ) for the potential in Eq. (4.1) evaluated with the centroid-

based formalism in Eq. (2.18) and with various levels of approximation for the centroid

density.') The exact results were obtained by path integral Monte Carlo.

3 (q2 )exact ýq2), (q2)2 61 6)

5 1.378 1.361 1.371 1.3 0.5

7 1.382 1.352 1.372 2.2 0.7

9 1.384 1.344 1.372 2.9 0.9

')The results (q2 ), are based on the optimized LHO reference potential approximation for

the centroid density in Eqs. (3.22)-(3.26), while (q2 )2 are the results including the higher-

order corrections, Eqs. (3.28) and (3.29). The quantities 61 and 62 are the percentage

errors of (q2 ) 1 and (q2)2, respectively, compared with the numerically exact result.
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Table II: Quantum Correction Factors') from Eq. (4.2) for the Eckart barrier. b

u [' r2 Ftc

6 4.4 4.4 4.4
8 15.0 17.0 17.0
10 73.0 110.6 105.0
12 514.0 1278.0 1240.0

")The quantum corrections F, are based on the optimized LHO reference potential approx-
imation for the centroid density in Eqs. (3.22)-(3.26), while F2 are the results including
the higher-order terms in Eqs. (3.31). The quantum correction FAIC is the path integral
Monte Carlo result reported in Ref. 12a.

b)The Eckart barrier potential is given by V(q) = Vosech2 (q/ao), with the parameter values

2-,rVo/hWb = 12.0 and u = 3hWb in the present calculations, and wb is the magnitude of the

classical barrier frequency.

- 33 -



Figure Captions

Fig. 1: A schematic diagram depicting a discretized Feynman path q(7) within the imaginary

time interval 0 < r < hO. The isomorphic classical quasiparticles are shown by the

dark circles which form a "ring polymer". Each quasiparticle "interacts" with its two

nearest-neighbors through effective harmonic forces and feels the external potential

through the term V(qi)/P [cf. Eq. (1.2)]. The centroid variable q0 lIefined in Eqs.

(1.5) and (1.6) is also shown.

Fig. 2: A schematic diagram depicting the calculation of an operator average (A) in the

discrretized Feynman path integral picture. The operator A[q(r)] can be evaluated

anywhere on the path integral ring 0 < 7- < M13 due to the cyclic invariance of the

trace operation. The centroid variable, which is off the ring, is also shown.

Fig. 3: A schematic diagram depicting the calculation of the imaginary time correlation func-

tion (A(-r)B(O)) in the discretized Feynman path integral picture. The operators

A[q(r')] and B[q(r")] can be evaluated at any two points on the path integral ring

subject to the constraint 0 < r = -' - 7` < h/3. The centroid variable, which is off

the ring, is also shown.

Fig. 4: A plot of the imaginary time correlation function (q2 (-r)q 2 (0)) for the non-quadratic

potential described in Sec. IV [Eq. (4.1)]. The correlation function is plotted as a

function of the dimensionless variable u = r/hO3 with 03 = 5. The solid circles show

the numerically exact results while the solid line is for the optimized LHO theory in

Eqs. (3.22) - (3.26) with the centroid-based formulation of the correlation function in

Eq (2.18).

Fig. 5: A plot of the imaginary time correlation function (q3 (r)q 3 (0)) for the non-quadratic

potential described in Sec. IV [Eq. (4.1)]. The correlation function is plotted as a

function of the dimensionless variable u = 7-/hO3 with 03 = 5. The solid circles show

the numerically exact results while the solid line is for the optimized LHO theory in
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Eqs. (3.22) - (3.26) with the centroid-based formulation of the correlation function in

Eq (2.18).

Fig. 6: A plot of the centroid-constrained correlation function C,(7, q,) defined in Eq. (2.1)

for the non-quadratic potential described in Sec. IV [Eq. (4.1)] The numerically ex-

act results are shown by the solid circles.The correlation function obtained from the

optimized LHO approximation in Eq. (3.37) is shown by the dashed line, while the

solid line shows the results obtained by including the two-line-loop correction from

Eq. (3.40). The correlation functions are plotted as a function of u = 7/ho and for

0 = 10 and q, = 0.0.

Fig. 7: A plot of the imaginary time position correlation function C(r) in Eq. (2.3) for the

non-quadratic potential described in Sec. IV [Eq. (4. 1)]. The numerically exact results

are shown by the solid circles. The correlation function obtained using the centroid-

constrained optimized LHO approximation in Eq. (3.37) is shown by the dashed line,

while the solid line shows the results obtained by including the two-line-loop correction

from Eq. (3.40). In the two latter cases, the correlation function C(-) was obtained

by averaging the appropriate analytical centroid-constrained correlation function over

the numerically determined centroid density. The results are plotted as a function of

u = r/h/ and for /3 = 5.
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