DTIC

ELECTE

s -

AD—A272 792

g ;
‘i:‘z; A
! l B

DIANA REFERENCE MANUAL

Draft Revision 4
5 May 1986

NOV161993

A

31 Kathryn L. McKinley
-7 Carl F. Schaefer

intermetrics, Inc.
IR-MD-078

Prepared For:
Naval Research Laboratory
Washington, D.C. 20375

Contract NO0OO14-84~-C-2445

Prepared By: gm
Intermetrics, Inc. gw
4733 Bethesda Ave. = |
Bethesda, MD 20814 ggl&?
=
=%
\.% q
AO
e
’
AP Po Ty
FOR pyn
DIs. Ty
SN bidi_?JP§LEAsr
0 "f
15 ¢

Best _
Available

Copy

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . « e e e e 1-1
1.1 THE DESIGN OF DIANA . . v v v v v v v e e v o n ce. 122
1.2 THE DEFINITION OF THE DIANA OPERATIONS 1-4
1.3 THE DEFINITION OF A DIANA USER . v « v v v v v v v 0 u o 1-5
1.4 THE STRUCTURE OF THIS DOCUMENT « v« « 2 o v o . . 1-7
1.4.1 NOTATION v« v v v .. e e e e S Y.

CHAPTER 2 IDL SPECIFICATION & v v v v v v v e e v e e e e e e uu 2-1

CHAPTER 3 SEMANTIC SPECIFICATION . . v v v v v v v v e v v e e e o 3-1
3.1 ALLDECL v v v v v e e e e e e e e e e e e e 3-3
3.1.1 ITEM v e e e e e e e e e e e e e e e e e 3-3
3.1.1.1 OSCRMT PARAM DECL & & v v v e e e v e e e e e e . 3-4
3.1.1.1.1 PARAM . e e e e e e e e e e e e e 3-4
3.1.1.2 SUBUNIT BODY « v v v v v e e e e e e e e e e 3-4
3.1.1.3 DECL - v v e e e e e e e e e e e e e e 3-5
3.1.1.3.1 USE PRAGMA « v v v vt o e e e e e e e e e e e e a s 3-5
3.1.1.3.2 REP™ . . i it et e e, e e e e e e 3-5
3.1.1.3.2.1 NAMEDREP e e e e e e 3-5
3.1.1.3.3 IDOECL v v v v o n .. e e e e e e 3-6
3.1.1.3.3.1 SIMPLE RENAME DECL . + & v 2 v v v v v . . O 3-7
3.1.1.3.302 0 UNITDECL &+ % v v e e e e e e e e e e e e e e 3-8
3.1.1.3.3.2.1 NON GENERIC DECL + + 2 v 4 v v e e e e e v e e . 3-8
3.1.1.3.4 IDSDECL - . v v v .. e e 3-9
3.1.1.3.8.0 0 EXPOECL o v v v v e e e e e e e e e e 3-9
3.1.1.3.8. 1.1 OBJECT DECL v v v v v v e e e e e e e e e e 3-10
3.2 DEF NAME & v v v e e e e e e e e e e e e e e e e 3-13
3.2.1 PREDEE NAME o v v e e e e e e e e e e e e e e e 3-14
3.2.2 SOURCE NAME . . o v v v e e e e e e e e 3-14
3.2.2.1 LABEL NAME & v v v e v e e e e et e e e e e e 3-14
3.2.2.2 TYPE NAME e e e e e e e 3-15
3.2.2.3 OBJECT NAME & v v o e v e e e e e e e et e e e e 3-16
3.2.2.3.1 ENUM LTTERAL © v v v v v e e e e e e e e e e e e o 3-16
3.2.2.3.2 INITIOBJECT NAME & & v v v e e e e e e e e e e e o 3-17
3.2.2.3.2.1 VCNEME . 7 v v e e e e e e e e e e e e 3-17
3.2.2.3.2.2 COMP NAME e e e e e 3-18
3.2.2.3.2.3 PARAMLNAME . . L L v it e 3-18
3.2.2.4 UNIT NAME o o v e e e e e e e e e e e e e e 3-19
3,2.2.4.1 NON TASK NAME & o v v v o e e e e e e e e e e 3-19
3.2.2.4.1.1 SUBPROG_PACK NAME e e e e e e 3-20
3.2.2.4.1.1.1 SUBPROG_NAME e e e e e e e 3-20
3.3 TYPESPEC & v v v e v e e e e e e e e e e e 3-25
3.3.1 DERIVABLE SPEC o & v v v v v e e e v e e e e e 3-25
3.3.1.1 PRIVATE SPEC + 2 v v v v e v e e e e e e e e e e 3-26

3.3.1.2 FULL_TYPE SPEC e e e e e e e e 3-27
3.3.1.2.1 NON TASK e e e e e e e e e 3-27
3.3.1.2.1.1 SCALAR & v v v it i e e e e e e e e e e e e 3-28
3.3.1.2.1.1LLREAL e e e e e e e e e e e e e 3-28
3.3.1.2.1.2 UNCONSTRAINED e e e e e e e e e e 3-29
3.3.1.2.1.2.1 UNCONSTRAINED COMPOSITE . . &« v & v v v v v v o . 4 3-29
3.3.1.2.1.3 CONSTRAINED v v v v v v v v v v v e e v e 3-30
3.4 TYPE DEF . v v v v v v v e v v s e e e e e e e e 3-33
3.4.1 CONSTRAINED DEF e e e e e e e e e e 3-33
3.4.2 ARR_ACC DERDEF . . & . v v v v v v v v e e e e o 3-34
3.5 CONSTRAINT e e e e e e e e e e e e 3-36
3.5.1 DISCRETE RANGE . & & v v v v v v v v v v v v e e e s 3-36
3.5.1.1 RANGE . . v v v v e e e e e e e e e e e e e e e e 3-36
3.5.2 REAL CONSTRAINT . . v v v v v v v v v e e e e e e n s 3-37
3.6 UNIT DESC & v v v v v v v e e o w s e e e e e e 3-39
3.6.1 UNIT KIND . v v e e et e e e e e e e e e e e e 3-39
3.6.1.1 RENAME INSTANT e e e e e e e e 3-40
3.6.1.2 GENERIT PARAM . . v v v v v v i vt e e e e e e 3-42
3.6.2 BODY & & e 3-42
3.7 HEADER v v v v v v v e v e o e e e e e e e e e e e e e 3-44
3.7. SUBP_ENTRY HEADER . v v vt v v v v v v e v v e o s 3-44
3.8- GENERAL ASSOC & v v v v v v e v v e o e e e e e e e e 3-46
3.8.1 NAMED ASSOC & & & v v v v v e e v e e e e e e e e 3-46
3.8.2 B . e 3-47
3.8.2.1 NAME & L v e 3-47
3.8.2.1.1 DESIGNATOR . v v v v v v v e v e e e e e e e e e e 3-47
3.8.2.1.1.1 USED_OBJECT e e e e e e e e e 3-47
3.8.2.1.1.2 USEDTNAME L . v v v vttt e e e e e e e e e 3-48
3.8.2.1.2 NAME EXP & 0 v v o e v e e e e e e e e e e e e . 3-49
3.8.2.1.2.1 NAME VAL & L v v v v vt e e e e e e e e e e 3-49
3.8.2.2 EXP EXP v v v v s e e e e e e e e e e e e e 3-50
3.8.2.2.1 AGG EXP v v v v v e e e e e e e e e e e e e e e 3-51
3.8.2.2.2 EXPTVAL & v v v v et e e e e e e e e e e e e e e 3-52
3.8.2.2.2.1 EXP VAL EXP & v v v v it e e e e e e e e e e e e 3-53
3.8.2.2.2. 1. MEMBERSHIP &« v v v v v i e e e e e e e e e e 3-53
3.8.2.2.2. 1.2 QUAL CONV v v v v v v e e e e e e e e e e e 3-83
3.9 STM ELEM & 4 i v i et e et e e e e e e e e e e e e 3-56
3.9.1 STM vt e e e e e e e e e e e e e e e e e 3-56
3.9.1.1 BLOCK LOOP &« v v v v v v v v 0 v v s e e e e e e 3-57
3.9.1.2 ENTRYSTM & v v e et v et e et e e e e e 3-57
3.9.1.3 CLAUSES STM . v v v v vt vt it e e v e e e e e e 3-57
3.9.1.4 STMWITH EXP & v v v v v vt et e et e e e e e e 3-58
3.9.1.4.1 STM WITH EXP NAME . . v v v v v v v v e v v e v w s 3-58
3.9.1.5 STM WITH NAME e e e e e 3-58
3.9.1.5.1 o 3-59
3.10 MISCELLANEQUS NODES AND CLASSES ¢ ¢« o v . .. 3-61
3.10.1 CHOICE & v v v et e et e e e e e e e e e e e e e 3-61
3.10.2 ITERATION . v v v v e v e v e e e e e e e e e 3-61

- —

3.10.2.1 FORREV e e e e e e e e e 3-62
3.10.3 MEMBERSHIP OP v v o v v o v v v o 3-62
3.10.4 SHORT CIRCUIT OP v v v v v v v v v e e 3-62
3.10.5 ALIGNMENT CLAUSE ¢ ¢ v v v v v v v v v & 3-62
3.10.6 VARIANT PART . . ., . ., e e e e e e e e 3-62
3.10.7 TEST CLAUSE ELEM v v v v v v v v e v e e v e 3-63
3.10.7.1 TEST CLAUSE & & v v v vt e vt e e e e e e e o e 3-63
3.10.8 ALTERNATIVE ELEM v v v v v v v v v v o v s 3-63
3.10.9 COMP REP ELEM e e e e e e e e e 3-64
3.10.10 CONTEXT ELEM e e e e e e e e 3-64
3.10.11 VARIANT ELEM e e e e e e e 3-64
3.10.12 compilation4 e e e e e e e e e e 3-64
3.10.13 compilation_unit e e et e e e e e e e 3-65
3.10.14 comp_1isSt . . v L L e e e e e e e e e e e e e e 3-65
3.10.15 L4 - 3-65
CHAPTER 4 RATIONALE . . o v 0 o v vt e et e v e e e e e e e e e 4-1
4.1 DESIGN DECISIONS o it v v e e e v e 4-2
4.1.1 INDEPENDENCE QOF REPRESENTATION 4-2
4.1.1.1 SEPARATE COMPILATIONo v v v v v v v o v W 4-3
4.1.2 EFFICIENT IMPLEMENTATION AND SUITABLITY FOR
VARIOUS KINDS OF PROCESSING 4-3
4.1.2.1 STATIC SEMANTIC INFORMATION« « o v o . 4-4
4.1.2.2 WHAT IS 'EASY TO RECOMPUTE'? 4-5
4.1.3 REGULARITY OF DESCRIPTION+ o o o v .. 4-5
4.2 DECLARATIONS v . v v v v v et i e e e e e e e e e e s . 4-7
4.2;1 MULTIPLE ENTITY OGECLARATION ¢ . v v v« v .. 4-7
4.2.1.1 0BJECT DECLARATIONS AND COMPONENT DECLARATIONS .. 4.7
4.2.2 SINGLE ENTITY DECLARATIONS. o o v o v o 4-8
4.2.2.1 PROGRAM UNIT DECLARATIONS AND ENTRY DECLARATIONS . . 4-9
4.2.3 REPRESENTATION CLAUSES, USE CLAUSES, AND PRAGMAS . . 4-11
4.2.4 GENERIC FORMAL PARAMETER DECLARATIONS 4-11
4.2.5 IMPLICIT DECLARATIONS v v v v v v v v v 4-12
4.3 SIMPLE NAMES . . . v v L v it i e e i e e e e e e e e e 4-13
4.3.1 CEFINING OCCUPRENCES OF PREDEFINED ENTITIES 4-1°
4.3.2 MULTIPLE DEFINING OCCURRENCES 4-15
4.3.2.1 MULTIPLE DEFINING OCCURRENCES OF TYPE NAMES 4-16
4.3.2.2 MULTIPLE DEFINING OCCURRENCES OF TASK NAMES 4-17
4.3.3 USED OCCURRENCES v v v v v v v v v v v v v 4-17
4.4 TYPES AND SUBTYPES v i v v v v v v o v v e v 4-19
4.4.1 CONSTRAINED AND UNCONSTRAINED TYPES AND SUBTYPES . . 4-22
4.4,2 UNIVERSAL TYPES o e e e e e e e e 4-23
4.4.3 DERIVED TYPES . . ¢ v v v v v v v v v v v v e v v s 4-23
4.4.4 PRIVATE, LIMITED PRIVATE, AND LIMITED TYPES 4-24_
4.4.5 INCOMPLETE TYPES v . v v v o v v v v v v v 4-27
4.4.6 GENERIC FORMAL TYPES v v v v v v v v v v v ™ 4-28
4.4.7 REPRESENTATION INFORMATION 4-29
4.5 CONSTRAINTS & v v v i e i e e e et e s e e e e v e o 4-31

4.6 EXPRESSIONS o . i i i it t e e e e e e e . 4-35
4.6.1 EXPRESSIONS WHICH INTRODUCE ANONYMOUS SUBTYPES . . . 4-36
4.6.2 FUNCTION CALLS AND OPERATORS « « .+ 4-37
4.6.3 IMPLICIT CONVERSIONS e e e e e e e 4-37
4.6.4 PARENTHESIZED EXPRESSIONS « 4-39
4.6.5 ALLOCATORS v v v v v v e e e e e e e e e 4-40
4.6.6 AGGREGATES AND STRING LITERALS 4-41
4.7 PROGRAM UNITS ¢ v v v v v v v v e v o v v v v 4-43
4.7.1 RENAMED UNITS o v v v v v v o v ot v 4-43
4.7.2 GENERIC INSTANTIATIONS ¢ ¢« o ¢« o v o .. 4-45
4.7.3 TASKS o i v i i e e e e e e e e e e e e e e e 4-48
4.7.4 USER-DEFINED OPERATORS v ¢ v ¢ o ¢« o o o v 4-49
4.7.5 DERIVED SUBPROGRAMS . . « . « & v ¢« v v ¢« o v v o . 4-50
4.8 PRAGMAS & . . v v v it ot e el e e e e e e e e e e e e 4-52
CHAPTER 5 EXAMPLES e e e e e e e e e e e e 5-1
CHAPTER 6 EXTERNAL REPRESENTATION OF DIANA 6-1
CHAPTER 7 THE DIANA PACKAGE IN ADA v ¢« v v v v v v o 7-1
APPENDIX A DIANA CROSS-REFERENCE GUIDE o o o . o A-1

APPENDIX B REFERENCES © & v v v v v v e oo e e e e e ... Bl

(WY | ——

4

Page v

Acknowledgements for the First Edition

DIANA is based on two earlier proposals for intermediate forms for Ada
programs: TCOL and AIDA. It could not have been designed without the efforts
of the two groups that designed these previous schemes. Thus we are deeply
grateful to:

- AIDA: Manfred Dausmann, Guido Persch, Sophia Drossopoulou, Gerhard
Goos, and Georg Winterstein -- all from the University of Karlisruhe.

- TCOL: Benjamin Brosgol (Intermetrics), Joseph Newcomer
(Carnegie-Mellon University), David Lamb (CMU), David Levine
(Intermetrics), Mary Van Deusen (Prime), and Wm. Wulf (CMU).

The actual design of ODIANA was conducted by teams from Karlsruhe,
Carnegie-Mellon, Intermetrics and Softech. Those involved were Benjamin
Brosgol, Manfred Dausmann, Gerhard Goos, David Lamb, John Nestor, Richard
Simpson, Michael Tighe, Larry Weissman, Georg Winterstein, and Wm. Wulf.
Assistance in creation of the document was provided by Jeff Baird, Oan Johnston,
Paul Knueven, Glenn Marcy, and Aaron Wohl -- all from CMU.

We are grateful for the encouragement and support provided for this effort
by Horst <{lausen (IABG), Larry Druffel (DARPA), and Marty Wolfe (CENTACS) as
well as our various funding agencies.

Finally, the design of DIANA was conducted at Eglin Air Force Base with
substantial support from Lt. Col. W. Whitaker. We could not have done it
without his aid. : ‘

DIANA's original design was funded by Defense Advanced Research Projects
Agency (DARPA), the Air Force Avionics Laboratory, the Department of the Army,
Communication Research and Development Command, and the Bundesamt fuer
Wehrtechnik und Beschaffung,

Gerhard Goos
Wm. A. Wulf
Editors, First Edition

Page vi

Acknowledgements For The Second Edition

Subsequent to DIANA's original design, the Ada Joint Program Office of the
United States Department of Defense has supported at Tartan Laboratories,
Incorporated a continuing effort at revision. This revision has been perfcrmed
by Arthur Evans, Jr., and Kenneth J. Butler, with considerable assistance from
John R. Nestor and Wm. A. Wulf, all of Tartan.

We are grateful to the following for their many useful comments and
suggestions,

0 Georg Winterstein, Manfred Dausmann, Sophia Droussopoulou, Guido
Persch, and Jergen Uhl, all of the Karisruhe Ada Implementation Group;

0 Julie Sussman and Rich Shapiro of Bolt Beranek and Newman, Inc.; and to
o Charles Wetherell and Peggy Quinn of Bell Telephone Laboratories.

Additional comments and suggestions have been offered by Grady Booch, Benjamin
Brosgol, Gil Hanson, Jeremy Holden, Bernd Krieg-Brueckner, David Lamb, H.-H,
Nageli, Teri Payton, and Richard Simpson.

We thank the Ada Joint Program Office (AJPO) for supporting DIANA's
revision, and 1in particular Lt. Colonel Larry Druffel, the director of AJPO.
Valuable assistance as Contracting Officer's Technical Representative was
provided first by Lt. Commander Jack Kramer and later by Lt. Commander Brian
Schaar; we are pleased to acknowledge them.

DIANA is being maintained and revised by Tartan Laboratories Inc. for tne
Ada Joirt Program O0Office of the Department of Defense under contract number
MDA903-82-C-0148 (expiration date: 28 February 1983). The Project Director of
DIANA Maintenance for Tartan is Arthur Evans, Jr.

Page vii

Acknowledgements For This Edition

The United States Department of Defense has continued to support OIANA
through a DIANA maintenance program and revision effort at Intermetrics, Inc.
This draft revision of the Diana Reference Manual has been prepared by Carl
Schaefer and Kathryn McKinley.

The authors are grateful to David Lamb (Queen's University) for his
excellent recommendations on restructuring the classes of DIANA, to Rudy Krutar
(Naval Research Laboratory) for his valuable assistance as Contracting Officer's
Technical Representative, and to Ben Hyde and Gary Bray (Intermetrics) for their
valuable suggestions. Kellye Sheehan (MCC) contributed to the early stages of
the maintenance effort.

DIANA is being maintained and revised by Intermetrics, Inc. for the Ada
Joint Program Office of the Oepartment of Defense under contract number
NOOC14-84-C-2455, administered by the Naval Research Laboratory. Tre contract
expires 30 Septemper 1986. The Project Director of DIANA Maintenance for
Intermetrics is Carl Schaefer.

<1 QUALITY INSPECTED 6
i

Page viii

Preface to the First Edition

This document defines DIANA, an intermediate form of Ada (7] programs that
s especially suitable for communication between the Front and Back Ends of Ada
compilers. It is based on the Formal Definition of Ada (6] and resulted from
the merger of the best aspects of two previous proposals: AIDA [4, 10] and TCOL
[2]. Although DIANA is primarily intended as an interface between the parts of
a compiler, it 1is also suitable for other programming support tools and
carefully retains the structure of the original scurce program.

The definition of DIANA given here is expressed in another notation, IDL,
that is formally defined in a separate document [9]. The present document is,
however, complietely self-contained; those aspects of [DL that are needed for the
DIANA definition are informally described before they are used. Interested
readers should consult the IDL formal description either if they are concerned
with either a more precise definition of the notation or if they need to define
other data structures in an Ada support enviromment. In particular, implemen-
tors may need to extend DIANA in various ways for use with the tools in a
specific environment and the IDL document provides information on how this may
be done.

This version of DIANA has been "frozen" to meet the needs of several groups
who require a stable definition in a very short timeframe. We invite comments
and criticisms for a longer-term review. We expect to re-evaluate DIANA after
some practical experience with using it has been accumulated.

s ——aniea — SENESS. .. SRS Stess A S

Page ix

Preface To The Second Edition

Since first publication of the DIANA Reference Manual 1in March, 1981,
further developments in connection with Ada and DIANA have required revision of
DIANA. These developments include the following:

o The original DIANA design was based on Ada as defined in the July 1980
Ada Language Reference Manual [7], referred to hereafter as Ada-80; the
present revision is based on Ada as defined in the July 1982 Ada LRM
(8], referred to hereafter as Ada-82.

o Experience with use of DIANA has revealed errors and flaws in the
original design; these have been corrected.

This publication reflects our best efforts to cope with the conflictirg
pressures on us both to impact minimally on existing implementations and to
create a logically defensible design.

Tartan Laboratories Inc. invites any further comments and criticisms c¢-
DIANA in gereral, and this version of the reference manuat 1n particular. Ar,
correspondence may be sent via ARPANet mail to Diana-Query@USC-ECLB. Paper mail
may be sent to

DIANA Manual

Tartan Laboratories Inc.
477 Melwood Avenue
Pittsburgh PA 15213

We believe the changes macde to DIANA make no undue constraint on any O[ANA
users or potential DIANA ysers, and we wish to hear from those who perceive any
of these changes to be a problem.

Page x

Preface To This Edition

This is a draft r<vision of the DIANA Reference Manual.

Experience ..th DIANA has revealed weaknesses both in the definition of
DIANA and in the DIANA Reference Manual. This draft revision incorporates
changes in both areas.

Changes to the definition of DIANA include:

o Overhauling the representation of types and subtypes to acccrd better
with the definition of subtypes in Ada.

o "Partitioning” the OIANA so that any node or class (except the noge
void) is directly a member of no more than one class.

o "Hoisting" attributes to the highest appropriate class.

o Otherwise regularizing the nomenclature of classes, ncces, and
attributes.

Changes to the DIANA Reference Manual inciude:

o Separation of semantic specification from rationale.

o Systematic coverage of static semantics of DIANA,

o Inclusion of hierarchical diagrams providing a pictorial representation
of class-membership relations.

o Incluysion of several substantial examples.

o Inclusion of a cross-reference index of nodes and attributes.

Chapter 7, External Representation of DIANA, and Chapter 8, The OCIaN:
Package in Ada, are incomplete in this draft.

Intermetrics, Inc. 1invites any further comments and criticisms on DIANA in
general, and this draft version of the refarence manual in particular. Any
correspondence may be sent via ARPANet mail to DIANA-QUERYEUSC-ISIF. Paper mail
may be sent to

DIANA Maintenance
Intermetrics, Inc.
4733 Bethesda Ave.
Bethesda, MD 20814

e e D e S e N e SRS o S e R o S

CHAPTER 1
INTRODUCTION

The purpose of standardization is
to aid the creative craftsman, not =0
enforce the common mediocrity [11].

DIANA Reference Manual Draft Revision 4 Page 1-2
INTRODUCTION

1.1 THE DESIGN OF DIANA

In a programming envircnmer such as that envisioned for Ada(l), there will
be a number of tools -- formatters (pretty printers), language-oriented editors,
cross-reference generators, test-case generators, etc. In general, the input
and output of these tools is NOT the source text of the program being developed;
instead it is some intermediate form that has been produced by another tool in
the environment. This document defines ODIANA, Descriptive Intermediate
Attributed Notation for Ada. DIANA is an intermediate form of Ada programs
which has been desigred to be especially suitable for communication between two
essential tools -- the Front and Back Ends of a compiler -- but also to be
suitable for use by other tools in an Ada support environment. OIANA encodes
the results of lexical, syntactic and STATIC semantic anmalysis, but it does NOT
include the resulits of DYNAMIC semantic analysis, of optimization, or of code
generation.

DIANA is an abstract data type. The DIANA representation of a particular
Ada program is an instance of this abstract type. As with all abstract types,
NIANA defines a set of operations that provide the only way in which instances
of the type can be examined or modified. The actual data or file structures
used to represent the type are hidden by these operations, in tne sense that the
implementation of a private type in Ada is hidden.

References may be made to a DIANA "tree", "abstract syntax tree", or
"attributed parse tree"; similarly, references may be made to "nodes" in these
trees. In the context of DIANA as an abstract data type, it is important to
appreciate the implications of such terms. This terminology does NOT imply that
the data structure used to implement DIANA is necessarily a tree using pointers,
etc. Rather, the notion of attributed trees serves as the abstract model for
the definition of OIANA.

The fallowing princ-iles governed the original design of DIANA:

o DIANA should be representatior-independent. An effort was mace tc
avoid implying any particular implementation for the DIANA abstract
type. Implementation-specific information (such as a value on the
target machine) is represented in DIANA by other abstract types which
must be supplied by each implementation. In addition, OIANA may be
extended or contracted to cater to implementation-specific purposes.

o DIANA should be suitable for various kinds of processing. Although the
primary purpose c¢f ODIANA is communication between the Front and Back
Ends of compilers, other environment tools should be able to use it as
well. The needs of such programs were considered carefully.

o DIANA should be efficiently implementable. OIANA is intended to be
used; hence it was necessary to consider dissues such as size and
processing speed.

o The DIANA description and notation should be regular. Consistency in
these areas is essential to both understanding and processing.

(1) Ada is a registered trademark of the U.S. Department of Defense.

e WSS R SRR e

N

DIANA Reference Manual Draft Revision 4 Page 1-3
INTRODUCTION

Although DIANA is representation-independent, there must be at least one
form of the OIANA representation that can be communicated between computing
systems. Chapter 6 defines an externally visible ASCII form of the DIANA
representation of an Ada program. In this form, the DIANA representation can be
communicated between arbitrary environment tools and even between arbitrary
computing systems. The form may alsc be useful during the development of the
tools themselves.

DIANA Reference Manual Draft Revision 4 Page 1-4
INTRODUCTION
1.2 THE DEFINITION OF THE DIANA OPERATIONS

Every object of type DIANA is the representation of some specific Ada
program (or portion of an Ada program). A minimum set of operations on the
DIANA type must provide the ability to:

0 determine the type of a given object (in DIANA terms, the object's node
type).

0 obtain the value of a specific attribute of a node.

0 build a node from its constituent parts.

o determine whether or not a given pair of instances of a DIANA type are
in fact the same 1instance, as opposed to equivalent ones. for the
scalar types (Integer and Boolean), no distinction is drawn between
equality and egquivalence.

o0 assign a specific node to a variable, or a specific scalar value to a
scalar variable.

0 set the value of an attribute of a given node.

The sequence type Seq Of can be considered as a built-in type that has &
few special operators. The operators defined for a sequence type allow an
implementation to:

o] créate a sequence of a given type

o determine whether or not a sequence is empty

0 select an element of a sequence

0 add an element to a sequence

0 remove an element from a sequence

0 compare two sequences to see if they are the same seguence

0 assign a segquence to a variable of a sequence type

DIANA Reference Manual Draft Revision 4 Page 1-5
INTRODUCTION

1.3 THE DEFINITION OF A DIANA USER

Inasmuch as DIANA is an abstract data type, there is no need that it be
implemented in any particular way. Additionally, because DIANA is extendable, a
particular implementation may choose to use a superset of the DIANA defined in
this reference manual. In the face of innumerable variations on the same theme,
it is appropriate to offer a definition of what it means to "use" DIANA, Since
it makes sense to consider DIANA onliy at the interfaces, two types of DIANA
users are considered: those which "produce" DIANA, and those that “consume" it.
These aspects are considered in turn:

0 producer

In order for a program to be considered a DIANA producer, it must
produce as output a structure that includes all of the information
contained in DIANA as defined in this document. Every attribute
defined herein must be prasent, and each attribute must have the value
defined for correct DIANA and may not have any other value. This
requirement means, for example, that additiomnal values, such as the
evaluation of nocn-static expressions, may not be represented using the
DIANA-defined attributes. An implementation 1is not prevented from
defining additional attributes, and in fact it is expected that most
DIANA producers will also produce additional attributes.

There is an additional requirement on a DIANA producer: The DIANA
structure must have the property that it could have been produced from
a legal Ada program. This requirement 1is 1likely to impinge most
strongly on a tool other than a compiler Front End that produces DIANA.
As an example of this requirement, im an arithmetic expression, an
offspring of a mutiplication could not be an addition but would instead
have to be a parenthesized node whose offspring was the addition, since
Ada's parsing rules require the parentheses. The motivation for this
requirement is to ease the construction of a DIANA consumer, since the
task of designing a consumer is completely open-ended unless it can
make some reasonable assumptions about its input.

O consumer

In order for a program to be considered a DIANA consumer, it must
depend on no more than DIANA as defined herein for the representation
of an Ada program. This definition does not prevent a consumer from
requiring other kinds of input (such as information about the library,
which is not represented in DIANA); however, the DIANA structure must
be the only form of representation for an Ada program. This
restriction does not prevent a consumer from being able to take
advantage of additional attributes that may be defined in an
implementation; however, the consumer must also be able to accept input
that does not have these additional attributes. It is also incorrect
for a program to expect attributes defined herein to have values that
are not here specified. For example, it is wrong for a program to
expect the attribute sm value to contain values of expressions that are
not static. -

DIANA Reference Manual Draft Revision 4 Page 1-6
INTRODUCTION

There are twc attributes that are defined herein that are NOT required to
be supported by a DIANA user: 1x comments and Ix srcpos. These attributes are
too implementation-specific to be required for all DIANA users.

It should be noted that the definition of a producer and that of a consumer
are not mutually exclusive; for example, a compiler Front End that produces
DIANA may also read DIANA for separate compilation purposes.

Having defined a DIANA producer and a DIANA consumer, it is now possible to
specify the requirements for a DIANA user. [t is not proper to claim that a
given implementation uses DIANA unless EITHER it meets the following two
criteria: ‘

o It must be able to read and/or write (as appropriate) the external form
of DIANA defined in Chapter 6 of this document.

o The DIANA that is read/written must be either the output of a OIANA
producer or suitable input for a DIANA consumer, as specified in this
section.

OR it meets this criterion:

o0 The implementation provides a package equivalent to that described in
Chapter 7.

DIANA Reference Manual Draft Revision 4 Page 1-7
INTRODUCTION

1.4 THE STRUCTURE OF THIS DOCUMENT

As previously stated, DIANA is an abstract data type that can be modeled as
an attributed tree. This document defines both the domain and the operations of
this abstract type. The domain of the OIANA type 1is a subset of the
(mathematical) domain known as attributed trees. In order to specify this
subset precisely a subset of a notation called IDL [9] is used. A knowledge of
IDL is necessary to read or understand this document. Chapter 2 consists of the
IDL description of the DIANA domain, organized in the same manner as the Ada
Reference Manual. The DIANA operations are described in section l.2.

Though the IDL description of DIANA may suffice to describe the structure
of DIANA, it does not convey the full semantics of that structure. For example,
in certain cases the set of allowed values of an attribute may be a subset of
the values belonging to the type of the attribute (although the IDL language
would permit the definition of a subclass 1in such cases, to do so would
undoubtedly disrupt the hierarchy and cause such a proliferation of subclasses
that DIANA would be aimost impossible to understand). In addition, the IDL does
not specify the instances in which two attributes must denote the same noce.
Restrictions such as those described above are given in the semantic
specification of DIANA, the third chapter of this document.

Chapter 4 is a rationale for the design of DIANA. While the semantic
specification is organized according to the c¢lass structure of DIANA, the
rationale is composed of sections dealing with different semantic concepts which
are not necessarily applicable to any one DIANA class.

Chapter 5 contains examples of various kinds of DIANA structures. Each
example contains a segment of Ada code and an illustration of the resulting
OIANA structure. . :)

Chapter 6 describes the external form of DIANA, an ASCII representation
suitable for communication between different computing systems.

Chapter 7 consists of a package specification for the CIANA interface,
written in Ada,

Appendix A is a cross-reference guide for the nodes, classes and attributes
of DIANA.

Appendix B is a list of references.

1.4.1 NOTATION

To assist the reader in understanding this material, certain typographic
and notational conventions are followed consistently throughout this document,
as illustrated in Figure 1-1.

DIANA Reference Manual Draft Revision 4 Page 1-8

INTROQDUCTION
DECL IDL class name
constant_id IOL.node name
sm_exp type IDL attribute
ype IDL reserved word
"is" ~ Ada reserved word

Figure 1-1. Typographic and Notational Conventions Used in this Document.

These conventions include:

o The appearance of class names, node names, and attribute names IN THE

0

TEXT are distinguished by the following typographic conventions: class
and node names are bold-faced, and attribute names are underlined.
These conventions are not followed in the I[DL specification, the
diagrams, or the cross-reference guide.

Ada reserved words appear in quotes.

IDL reserved words appear in lower-case letters, except for the first
letter, which is capitalized.

Class names appear in all upper-case letters.
node names appear in all lower-case letters.

attribute names appear in all lower case Jletters, with one of the
prefixes defined below.

There are four kinds of attributes defined in DIANA: structural,
lexical, semantic, and code. The names of these attributes are
lexically distinguished in the definition by the following prefixes:

+

as
Structural attributes define the abstract syntax tree of an Ada
program.

+ Ix
Lexical attributes provide information about the source form of the
program, such as the speiling of identifiers, or position in the
source file.

+ sm
Semantic attributes encode the results of semantic analysis -- type
and overload resolution, for example.

+ cd
Code attributes provide information from representation
specifications that must be observed by the Back End.

A class name or node name ending in '_s' is always a sequence of what
comes before the '_' (if the prefix is extremely long it may be
slightly shortened in the sequence name). Thus the reader can be sure
on seeing exp_s that the definition

DIANA Reference Manual Draft Revision 4 Page 1-9
INTRODUCTION

exp_s => as_list: Seq Of EXP;
appears somewhere.

o A class name ending in ' _ELEM' contains both the node or class denoted
by the prefix of the class name and a node representing a pragma. The
name of the node representing the pragma consists of the prefix of the
class name and the suffix ' pragma'. Hence the reader knows that for
the class name STM_ELEM the following definition exists

STM_ELEM ::= STM | stm_pragma;

Throughout the remainder of this document all references to the Ada
Reference Manual (ANSI/MIL-STD-1815A-1983) will have the following form: [ARM,
section number].

CHAPTER 2
IDL SPECIFICATION

DIANA Reference Manual Draft Revision 4 Page 2-2
[OL SPECIFICATION

This chapter contains the IDL description of DIANA. It is organized in a
manner that parallels the Ada Reference Manual -- each section contains the
corresponding seament of Ada syntax along with the related IDL definitions. In
some cases a »ection does not contain any IDL definitions because that
particular construct is represented by a node or class which also represents
another construct, and the |[DL definitions were included in the section
pertaining to the other construct. For example, the section covering operators
(section 4.5) does not contain IDL definitions because operators in DIANA are
represented as function calls, and the related IDL definitions are included in
the section on subprogram calls (section 6.4).

— W CN— T VRN —_— e e—— s

DIANA Reference Manual Draft Revision 4 Page 2-3
IDL SPECIFICATION

Structure Diana
Root compilation Is

-

Private Type Definitions

Type source_position;
Type comments;

Type symbol_rep;

Type value;

Type operator;

Type number_rep;

-- 2. Lexical Elements

_—— TSI ESIEIIIETIR====

-- Syntax 2.0
-- has no equivalent in concrete syntax

vaid => 3

-- 2.3 Identifiers, 2.4 Numeric Literals, 2.6 String Literals

-- Syntax 2.3
-~ not of interest for Diana

DEF_NAME ::= SOURCE_NAME | PREDEF_NAME;

DEF_NAME => : Ix_symrep : symbol_rep;

SOURCE_NAME ::= OBJECT_NAME | TYPE_NAME | UNIT_NAME | LABEL_NAML;
OBJECT_NAME => sm_obj_type : TYPE_SPEC;

UNIT_NAME => sm_first : DEF_NAME;

-- 2.8 Pragmas

-- Syntax 2.8.A
-- pragma ::=
-- pragma identifier [(argument_association {, argument_association})l;

pragma => as_used_name_id : used_name_id,
as_general_assoc_s : general_assoc_s;
-- seq of EXP and/or assoc

general_assoc_s => as_list : Seq Of GENERAL_ASSOC;
-- Syntax 2.8.B

-- argument_association ::=
-- [argument_identifier =>] name

DIANA Reference Manual Draft Revision 4

IDL SPECIFICATION

.- | [argument_identifier =>] expression

-- 3. Declarations and Types

- EEEXITSEESEISSE=SSIs=EZ===z===

-- 3.1 Declarations

-- Syntax 3.1

-- declaration ::=

-- object_declaration
type_declaration
subprogram_declaration
task_declaration
exception_declaration
renaming_declaration

DECL ::= .
ID_DECL ::=

number_declaration
subtype_declaration
package_declaration
generic_declaration
generic_instantiation
deferred_constant_declaration

ID_S_DECL | ID_DECL;

type_decl

| subtype_dec)
| task_decl
| UNIT_DECL;

ID_DECL =>
ID_S_DECL ::=

as_source_name :

EXP_DECL

SOURCE_NAME ;

| exception_dec)
| deferred_constant_decl;

ID_S_DECL =>
EXP_DECL ::=

as_source_name_s :

source_name_s;

0BJECT_DECL

| number_decl;

EXP_DECL =>

-- 3.2 O0Objects and Named Numbers

-- Syntax 3.2.A
-- object declaration ::=

-- identifier_list : [constant] subtype_indication [:=
(constant] constrained_array_definition (:

-- | identifier_list :

EXP ::=
CONSTRAINED_DEF ::=

0B8JECT_DECL ::=
OBJECT_DECL =>

constant_decl =>
variable_decl =

i
v
we we

void;

as_exp :

EXP;

subtype_indication;

constant_decl | variable_decl;
as_type_def :

TYPE_DEF;

expression];
expression

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

OBJECT NAME ::= INIT_OBJECT NAME;

INIT_OBJECT_NAME ::= VC_NAME;
INIT_OBJECT_NAME => sm_init_exp : EXP;

VC_NAME ::= variable_id | constant_id;
VC_NAME => sm_renames ObJ : Boolean,

sm_address : EXP; -- EXP or void
variable_id => sm_is_shared : Boolean;
constant_id => sm_first : DEF_NAME;

-~ Syntax 3.2.8
-- number_declaration ::=

-- identifier_list : constant := universal_static_expression;

number decl => ;
INIT_OBJECT _NAME ::= number_id;
number_id => 3
-- Syntax 3.2.C
-- identifier_list ::= identifier {, identifier}
source_name_s => as_list : Seg Of SOURCE_NAME;
-- 3.3 Types and Subtypes
-- 3.3.1 Type Declarations
-- Syntax 3.3.1.A
-- type_declaration ::= full_type_declaration

- f 1ncomp1ete type_ declaration | private_type_declaration

-- full_type_declaration ::=
-- type identifier [discriminant_part] is type_definition;

type_decl => as_dscrmt_decl_s : dscrmt_decl s,
as type def : TYPE _DEF;

TYPE_NAME ::= type_id;

TYPE_NAME => sm_type_spec : TYPE_SPEC;

type_id => sm_first : DEF_NAME;

-- Syntax 3.3.1.B
-- type_definition ::=

Page

2-5

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

enumeration_type definition
| real_type_definition
| record_type_definition

| integer_type_definition
| array_type_gefinition
| access_type_definition

| derived_type_definition

TYPE_DEF ::

CONSTRAINED DEF ::

ARR_ACC_DER_DEF ::

ARR_ACC_DER_DEF =>

TYPE_SPEC ::=

DERIVABLE_SPEC ::
DERIVABLE_SPEC =>

FULL_TYPE_SPEC ::

NON_TASK ::=
NON_TASK =>

SCALAR ::=
SCALAR =>
SCALAR =>

REAL ::=
REAL =>

UNCONSTRAINED ::
UNCONSTRAINED =>

UNCONSTRAINED_COMPOSITE
UNCONSTRAINED COMPOSITE => sm_is_limited

CONSTRAINED ::=

CONSTRAINED =>

enumeration_def
CONSTRAINED DEF
ARR_ACC_DER_DEF
record_def;

integer_def
float_def
fixed_def;

constrained_array_def
unconstrained_array_def
access_def

derived_def;

as_subtype indication : subtype_indication;
DERIVABLE SPEC;

FULL_TYPE _SPEC | PRIVATE_SPEC;
sm_derived : TYPE_SPEC,
sm_is_anonymous : Boolean;

task_spec | NON_TASK;

- SCALAR | UNCONSTRAINED | CONSTRAINED;

sm_base_type : TYPE_SPEC;
enumeration | integer | REAL;
sm_range : RANGE;
cd_impl_size : Integer;

float | fixed;
sm_accuracy : value;
UNCONSTRAINED _COMPOSITE | access:
sm_size : EXP; -- EXP or void

:i= array | record;

: Boolean,
sm_is_packed : Boolean;
constrained_array
constrained_record
constrained_access;
sm_depends_on_dscrmt : Boolean;

-- 3.3.2 Subtype Declarations

Page

2-6

e

R

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

]
1

Syntax 3.3.2.A
subtype_declaration ::= subtype identifier is subtype_indication;

subtype_decl => as_subtype_indication : subtype_indication;
TYPE_NAME ::= subtype_id;

subtype_id => ;

Syntax 3.3.2.8
subtype_indication ::= type_mark (constraint]

type_mark ::= type_name | subtype_name

CONSTRAINT ::= void;
CONSTRAINED_OEF => as_constraint : CONSTRAINT;

subtype_indication => as_name : NAME ;

Syntax 3.3.2.C

constraint ::=

range_constraint | floating_point_constraint | fixed_point_constraint

| index_constraint | discriminant_constraint
CONSTRAINT ::= DISCRETE _RANGE
| REAL_CONSTRAINT
| index_constraint
| dscrmt_constraint;

3.4 Derived Type Definitions

Syntax 3.4
derived_type_definition ::= new subtype_indication

derived_def => ;

3.5 Scalar Types

Syntax 3.5
range_constraint ::= range range

range ::= range_attribute
| simple_expression .. simple_expression

DISCRETE _RANGE ::= RANGE

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

| discrete_subtype;

RANGE ::= range | range_attribute | void;
RANGE => sm_type_spec : TYPE_SPEC;
range => as_expl : EXP,

as_exp2 : EXP;

range_attribute => as_name : NAME,
as_used_name_id : used_name_id,
as_exp : EXP; -- EXP or void

-- 3.5.1 Enumeration Types

-- Syntax 3.5.1.A
-- enumeration_type_definition ::=

Page 2-8

-- (enumeration_literal_specification {, enumeration_literal specification}

enumeration_def => as_enum_literal_s : enum_literal_s
enum_literal_s => as_list : Seq Of ENUM_LITERAL;
enumeration => sm_literal s : enum_literal_s;

-- Syntax 3.5.1.8 :
-- enumeration_literal_specification ::= enumeration_literal

-- enumeration_literal ::= identifier | character_literal

OBJECT_NAME ::= ENUM_LITERAL;
ENUM_LITERAL ::= enumeration_id | character_id;
ENUM_LITERAL => sm_pos : Integer,

sm_rep : Integer;
enumeration_id => ;
character_id => ;
-- 3.5.4 Integer Types

-- Syntax 3.5.4
-- integer_type_definition ::= range_constraint

integer_def => ;
integer => ;

-~ 3.5.6 Real Types

*

T T T T R

el

od

DIANA Reference Manual Draft Revision 4
I0L SPECIFICATION

Syntax 3.5.6
real_type_definition ::=
-- floating_point_constraint | fixed _point_constraint

REAL_CONSTRAINT ::= float_constraint
| fixed_constraint;

REAL_CONSTRAINT => sm_type_spec : TYPE_SPEC;

-- 3.5.7 Floating Point Types

-- Syntax 3.5.7

-- floating_point_constraint ::=

-- float1ng accuracy_definition [range_constraint]

-- floating_accuracy_definition ::= digits static_simple_expression

float_def => ;

REAL_CONSTRAINT => as_exp : EXP,
as_range : RANGE;

float constraint => ;

float

>

-- 3.5.9 Fixed Point Types

-- Syntax 3.5.9

-- fixed_point_constraint ::=

-- fixed _accuracy_definition [range_ constraint]

-- fixed_accuracy definition ::= delta static_simple_expression
fixed_def => ;

fixed_constraint => ;

fixed => cd_impl_small : value;

-- 3.6 Array Types

-- Syntax 3.6.A
-- array_type_definition ::=
-- unconstrained _array_definition | constrained_array_ definition

-- unconstrained_array_definition ::=
-- array(1ndex subtype_definition {, index_subtype_definitior}) of
-- component_subtype_1nd1cation

Page 2-9

DIANA Reference Manual Draft Revision 4

IDL SPECIFICATION

-- constrained_array_definition ::=

-- array index_constraint of component_subtype_indication
constrained_array_def => as_constraint : CONSTRAINT;
index_constraint => as_discrete_range_s : discrete_range_s;
discrete_range_s => as_list : Seq Of DISCRETE_RANGE;
unconstrained_array_def => as_index_s : index_s;
scalar_s => as_list : Seq Of SCALAR;
array => sm_index_s : index_s,

sm_comp_type : TYPE_SPEC;

constrained_array => sm_index_subtype_s : scalar_s;

-~ Syntax 3.6.8

-- index_subtype_definition ::= type_mark range <>
index => as_name : NAME,

sm_type_spec : TYPE_SPEC;

index_s => as_list : Seg Of index;

-~ Syntax 3.6.C

-- index_constraint ::= (discrete_range {, discrete_range})

-~ discrete_range ::= discrete_subtype_indication | range
discrete_subtype => as_subtype_indication : subtype_indication

3.7 Record Types

Syntax 3.7.A
record_type_definition ::=

record
component _1ist
end record
REP ::= void;
record_def => as_comp_list : comp_list;
record => sm_discriminant_s : dscrmt_decl_s,

sm_comp_list : comp_list,

Page 2-10

.
k]

- .—l

.

DIANA Reference Manual Draft Revision 4
10L SPECIFICATION
sm_representation : REP; -- REP or void
constrained_record => sm_normalized_dscrmt_s : exp_s;
-- Syntax 3.7.8
-- component_list ::=
-~ component_declaration {component_declaration}
-~ | {component_declaration} variant_part

-~ | null;

-- component_declaration ::=
-- identifier_list : component_subtype_definition [:= expression];

-- component_subtype_definition ::= subtype_indication
DECL ::= null_comp_decl;
INIT_OBJECT _NAME ::= COMP_NAME;
COMP_NAME ::= component_id | discriminant_id;
COMP_NAME => sm_comp_rep : COMP_REP_ELEM;

component _id => ;

~- 3.7.1 Discriminants
~-- Syntax 3.7.1
-- discriminant_part ::=
-- (discriminant_specification {; discriminant_specification})
-- discriminant_specification ::=
-- identifier_list : type mark [:= expression]
ITEM ::= OSCRMT_PARAM_JECL;
DSCRMT_PARAM DECL ::= dscrmt_decl;
DSCRMT_PARAM DECL => as_source_name_s : source_name_s,
as_name : NAME,
as_exp : EXP;
dscrmt_decl_s => as_list : Seq Of dscrmt_dec);
dscrmt_decl => ;

discriminant_id => sm_first : DEF_NAME;

-- 3.7.2 Discriminant Constraints

Page 2-11

DIANA Reference Manual Draft Revision 4 Page
IOL SPECIFICATION

~-- Syntax 3.7.2

~- discriminant_constraint ::=

-- (discriminant_association {, discriminant_assaciation})

~- discriminant_association ::=

-- (discriminant_simple_name {|discriminant_simple_name} =>] expression

dscrmt_constraint => as_general_assoc_s : general_assoc_s;

~-- 3.7.3 Variant Parts

~-- Syntax 3.7.3.A

-- variant_part ::=

-- case discriminant_simple_name is
-—- variant

-- {variant}

-—- end case;

-- variant ::=
-- when choice {| choice} =>
-- component _list

VARIANT_PART ::= variant_part | void;

variant_part => as_name : NAME,
as_variant_s : variant_s;

variant_s => as_list : Seq Of VARIANT ELEM;
VARIANT ELEM

variant | variant_pragma;

variant => as_choice_s : choice_s,
as_comp_list : comp_list;

choice_s => as_list : Seq Of CHOICE;

comp_list => as_decl s : decl_s,

as_variant_part : VARIANT_PART,
as_pragma_s : pragma_s;

variant_pragma => as_pragma : pragma;
-- Syntax 3.7.3.B
-- choice ::= simple_expression
-- | discrete_range | others | component_simple_name
CHOICE ::= choice_exp | choice_range | choice_others;

choice_exp => as_exp : EXP;

: DIANA Reference Manual Draft Revision 4 Page 2-13
b IDL SPECIFICATION
' choice_range => as_discrete_range : DISCRETE_RANGE;
‘ choice_others => ;
= -- 3.8 Access Types
’ -- Syntax 3.8
- -- access_type_definition ::= access subtype_indication
access_def => ;
access => sm_storage_size : EXP, -- EXP or void
| sm_is_controlled : Boolean,
sm_desig_type : TYPE_SPEC,
.- sm_master : ALL_DECL;
. constrained_access => sm_desig_type : TYPE_SPEC;

‘ -- 3.8.1 Incomplete Type Declarations

-- Syntax 3.8.1 }
' -- fincomplete_type_declaration ::= type identifier (discriminant_part];

TYPE_DEF ::= void;
‘ ‘ TYPE_SPﬁC t:= incomplete;
) incomplete => - sm_discriminant_s : dscrmt_déc1_s;
TYPE_SPEC ::= void;

-- 3.9 Declarative Parts

-- Syntax 3.9.A
-- declarative_part ::=
-- {basic_declarative_item} {later declarative_item!

-- basic_declarative_item ::= basic_declaration
-- | representation_clause | use_clause

L DECL ::= REP;
DECL ::= USE_PRAGMA;
. USE_PRAGMA ::= use | pragma;

- -- Syntax 3.9.B
-- later_declarative_item ::= body
-- | subprogram_declaration | package_declaration

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

-- | task_declaration | generic_declaration
-- | use_clause | generic_instantiation
-- body ::= proper_body | stub

-- proper_body ::= subprogram_body | package_body | task_body

ITEM ::= DECL | SUBUNIT_BODY;
item_s => as_list : Seq Of ITEM;
UNIT_DECL ::= generic_dec!

| NON_GENERIC_DECL;
UNIT_DECL => as_header : HEADER;

NON_GENERIC DECL ::= subprog_entry_dec]
| package_decl;

NON_GENERIC_DECL => as_unit_kind : UNIT_KIND;

-- 4, Names and Expressions

-- 4.1 Names

-- Syntax 4.1.A
_-- name ::= simple_name

-- | character_literal [operator_symbol
-- | indexed_component | slice
-- | selected_component | attribute

-- simple_name ::= identifier

NAME ::= DESIGNATOR

| NAME_EXP;
NAME _EXP ::= NAME VAL

| indexed

I slice

| all;
NAME_EXP => as_name : NAME;
NAME_EXP => sm_exp_type : TYPE_SPEC;
NAME VAL ::= attribute

| selected;
NAME_VAL => sm_value : value;
DESIGMATOR ::= USED_OBJECT | USED_NAME;
DESIGNATOR => sm_defn : DEF_NAME,

1x_symrep : symbol_rep;

USED_NAME ::= used_op | used_name_id;

Page 2-14

S e SRR o SN oo MR e S eSS s SEERE e R ettt

i OIANA Reference Manual Draft Revision 4 Page 2-15
IDL SPECIFICATION

used_op => ;
used_name_id => ;

i USED_OBJECT ::= used_char | used_object_id;
USED_OBJECT => sm_exp_type : TYPE_SPEC,
- sm_value : value;
- used_char => ;

used_object_id =>;

-- Syntax 4.1.8
-- prefix ::= name | function_call

NAME VAL ::= function_call;
» -- 4.1.1 Indexed Compcnents
. -- Syntax 4.1.1
-- indexed_component ::= prefix(expression {, expression})
exp_s => as_list : Seq Of EXP;
indexed => as_exp_s : exp_s;

-- 4.1.2 Slices

-- Syntax 4.1.2 ‘
-- slice ::= prefix(discrete_range)

slice => as_discrete_range : DISCRETE_RANGE;

-- 4.1.3 Selected Components

-- Syntax 4.1.3
-- selected_component ::= prefix.selector

-- selector ::= simple_name
-- | character_literal | operator_symbol | all

selected => as_designator : DESIGNATOR;

all =>

-- 4,1.4 Attributes

-- Syntax 4.1.4
-- attribute ::= prefix'attribute_designator

-- attribute_designator ::= simple_name [(universal_static_expression)]

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

attribute => as_used_name_id : used_name_id,
as_exp : EXP;

-- 4.2 Literals

-- 4.3 Aggregates

-- Syntax 4.3.A
-- aggregate ::=
-- (component_association {, component_association})

aggregate => as_general _assoc_s : general_assoc_S;
aggregate => sm_normalized_comp_s : general_assoc_s;

-- Syntax 4.3.B
-- component_association ::=
-- (choice {I| choice} =>] expression

GENERAL_ASSOC ::= NAMED_ASSOC | EXP;
NAMED_ASSQC ::= named;

NAMED_ASSQOC => as_exp : EXP;

named => as_choice_s : choice_s;

-- 4.4 Expressions

-- Syntax 4.4.A

-- expression ::=

-- relation {and relation} | relation {and then relation}
-- | relation {or relation} | relation {or else relation}
-- | relation {xor relation}

EXP_VAL ::= short_circuit;

short_circuit => as_expl : EXP,
as_short _circuit_op : SHORT_CIRCUIT_OP,
as_exp2 : EXP;

SHORT_CIRCUIT_OP ::= and_then | or_else;

>
>

and_then
or_else

ws we

-- Syntax 4.4.8
-- relation ::=
-- simple_expression [relational_operator simple_expression]

Page 2-16

DIANA Reference Manual Draft Revision 4
[OL SPECIFICATION

-- | simple_expression [not] in range
-- | simple_expression [not] in type mark

EXP_VAL_EXP ::= MEMBERSHIP;
MEMBERSHIP ::= range_membership | type_membership;
MEMBERSHIP => as_membership_op : MEMBERSHIP_OP;

range_membership => as_range : RANGE;

type_membership => as_name : NAME;
MEMBERSHIP OP ::= in_op | not_in;
in_op => ;

not_in => ;

-- Syntax 4.4.C

-- simple_expression i:=

-- [unary_operator] term {binary_adding_operator term}

-- term ::= factor {multiplying operator factor}

-- factor ::= primary [primary] | abs primary | not primary

-- Syntax 4.4.D
-- primary ::=

Page 2-17

-~ numeric_literal | null | aggregate | string_literal | name | allocator
-- | function_call | type_conversion | qualified_expression | (expression)

EXP ::= NAME
| EXP_EXP;
EXP_EXP ::= EXP_VAL
| AGG EXP

| qualified allocator
| subtype_allocator;

EXP_EXP => sm_exp_type : TYPE_SPEC;
EXP_VAL ::= numeric_literal

[null_access

| EXP_VAL_EXP;
EXP_VAL => sm_value : value;
EXP_VAL_EXP ::= QUAL_CONV

| parenthesized;
EXP_VAL_EXP => as_exp : EXP;
AGG_EXP ::= aggregate

| string_ literal;

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

AGG_EXP => sm_discrete_range : DISCRETE_RANGE;

parenthesized => ;
numeric_literal => Ix_numrep : number_rep;
string_literal => 1x_symrep : symbol_rep;

null_access => ;

-- 4.5 Operators and Expression Evaluation

-~ Syntax 4.5
logical_operator ::= and | or | xor
relational_operator ::= =1{ /= | < | <= | > | >=
adding_operator ::= + | - | &

unary operator :i= + | -
multiplying_operato- ::= * | / | mod | rem

highest_precedence_operator ::= ** | abs | not

-- 4,6 Type Conversions

- Syntax 4.6

type_conversion ::= type_mark(expression)
QUAL_CONV ::= conversion

| qualified;
QUAL_CONV => as_name : NAME;

conversion =>;

-- 4.7 Qualified Expressions

-- Syntax 4.7

qualified_expression ::=
type_mark'(expression) | type_mark'aggregate

qualified => ;

-- 4.8 Allocators

-- Syntax 4.8

allocator ::=

new subtype_indication | new qualified_expression

qualified_allocator => as_gualified : qualified;

Page 2-18

DIANA Reference Marwal Draft Revision 4
IDOL SPECIFICATION

subtype_allocator => as_subtype_indication : subtype_indication,
sm_desig_type : TYPE_SPEC;

-- 5, Statements

- SERTSITESESEE====S

-- 5.1 Simple and Compound Statements - Sequences of Statements

-- Syntax 5.1.A
-- sequence_of_statements ::= statement {statement}

STM_ELEM ::= STM | stm_pragma;
stm_s => as_list : Seq Of STM_ELEM;
stm_pragma => as_pragma : pragma;

-- Syntax 5.1.B
-- statement ::-=
-- {1abel} simple_statement | {label} compound_statement

ST™M ::= labeled;

labeled => as_source_name_s : source_name_s,
‘ as_pragma_s : pragma_s, :
as_stm : STM;

-- Syntax 5.1.C
-- simple_statement ::= null_statement
-- | assignment_statement | procedure_call_statement

-- | exit_statement | return_statement
-- | goto_statement | entry call_statement
-- | delay_statement | abort_statement

| i

raise_statement coge_statement

STM ::= null_stm
| abort;
STM ::= STM_WITH_EXP;
STM_WITH_EXP ::= return
| delay;
STM WITH EXP ::= STM_WITH_EXP_NAME;

STM_WITH_EXP

> as_exp ¢ EXP;

STM_WITH_EXP_NAME ::= assign

Page 2-19

e

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

| exit
[code;

STM_WITH_EXP_NAME => as_name : NAME;

ST™M ::= STM_WITH_NAME;
STM_WITH_NAME ::= goto

| raise;
STM_WITH_NAME ::= CALL_STM;
CALL_STM ::= entry call

| procedure_call;

STM_WITH_NAME => as_name : NAME;

-- Syntax 5.1.D
-- compound_statement ::

-- if_statement | case_statement
- | loop_statement | block_statement
-~ | accept_statement | select_statement
STM ::= accept
| BLOCK_LOOP
| ENTRY_STM;
STM_WITH_EXP ::= case;
STM ::= CLAUSES_STM;
CLAUSES_STM ::= if

| selective_wait;
CLAUSES_STM => as_test_clause_elem_s :
as_stm_s : stm_s;
-- Syntax 5.1.E

-- lapel ::= <<label_simple_name>>

LABEL_NAME ::= label_id;
LABEL_NAME => sm_stm : STM;

label_id => 3
-- Syntax 5.1.F
-- null_statement ::= null ;

null_stm => ;

-- 5.2 Assignment Statement

test_clause_elem_s,

Page 2-20

P — e - SR et S o o R - e WS S—

DIANA Reference Manual Draft Revision 4 Page 2-21
IDL SPECIFICATION

-- Syntax 5.2 .
-- assignment_statement :I:i=
-- variable_name := expression;

assign => 3§

~-- 5.3 If Statements

~- Syntax 5.3.A

-- if_statement ::=

-- if condition then

-- sequence_of _statements
-- {elsif condition then

-- sequence_of _statements}

-- [else

-- sequence_of _statements]

~-= end if;
if => 3
TEST_CLAUSE ::= cond_clause;
TEST_CLAUSE => as_exp : EXP,

as_stm_s : stm_s;

H
v

cond_clause

Syntax 5.3.B
-- condition ::= boolean_expression

-- 5.4 Case Statements

-- Syntax 5.4

-- case_statement ::=

-- case expression is

-- case_statement_alternative
-- {case_statement_alternative]
-- end case;

-- case_statement_aiternative :i:=
-- when choice {| choice } =>
-- sequence_of_statements}

ALTERNATIVE_ELEM ::

alternative | alternative_pragma;

case => as_alternative_s : alternative_s;
alternative_s => as_list : Seq Of ALTERNATIVE ELEM; ‘
alternative => as_choice_s : choice_s, |

as_stm_s : stm_s;

DIANA Reference Manual Draft Revision 4
I0L SPECIFICATION

alternative_pragma => as_pragma : pragma;

-- 5.5 Loop Statements

-- Syntax 5.5.A

-- loop_statement ::=

- [Toop_simple_name:]

-- [iteration_scheme] loop

-- sequence_of _statements
-- end loop [loop_simple_name];

BLOCK_LOQP ::= loop;

BLOCK_LOGP => as_source_name : SOURCE_NAME;
SOURCE_NAME ::= void;

LABEL_NAME ::= block_loop_id;

block_loop_id => ;
ITERATION ::= void;

Toop => as_iteration : ITERATION,
' as_stm_s : stm_s;

-- Syntax 5.5.8 :

-- iteration_scheme ::= while condition

- | for loop_parameter_specification

-- loop_parameter_specification ::=

-- identifier in [reverse] discrete_range

ITERATION ::= FOR_REV;
FOR_REV ::= for | reverse;
FOR_REV => as_source_name : SOURCE_NAME,

as_discrete_range : DISCRETE_RANGE;

for => ;
reverse => ;

OBJECT_NAME ::= iteration_id;
iteration_id => ;

ITERATION ::= while;

while => as_exp : EXP;

-- 5.6 Block Statements

Page 2-22

AR

DIANA Reference Manual Draft Revision 4
IOL SPECIFICATION

-- Syntax 5.6

-- block_statement ::=

-- (bTock_simple_name:]

-- (declare

-- declarative_part]

-- begin

-- sequence_of _statements
-- (exception

-- exception_handler
-- {exception_handier}]
-- end [block_simple_name];

BLOCK_LOOP ::= block;
block => as_block_body : block_body;
block_body => as_item_s : item_s,

as_stm_s : stm_s,
as_alternative_s : alternative_s;

-- §.7 Exit Statements

Syntax 5.7
-- exit_statement ::=
-- exit [loop_name] [when condition];

NAME ::= voids.

exit => sm_stm : STM;

-- 5.8 Return Statements

Syntax 5.8
-- return_statement ::= return [expression];

return => ;

-- 5.9 Goto Statements

Syntax 5.9
-- goto_statement ::= goto label_name;

goto => ;

-- 6.1 Subprogram Declarations

Page 2-23

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION

-- Syntax 6.1.A
-- subprogram_declaration ::= subprogram_specification;

subprog_entry_dec! =>

UNIT_NAME ::= NON_TASK_NAME ;
NON_TASK_NAME ::= SUBPROG_PACK_NAME ;
NON_TASK NAME => sm_spec : HEADER;

SUBPROG_PACK_NAME ::= SUBPROG_NAME ;
SUBPROG _PACK_NAME => sm_unit_desc : UNIT_DESC,
sm_address : EXP;

SUBPROG_NAME ::= procedure_id | function_id | operator_id;
SUBPROG_NAME => sm_is_inline : Boolean,
sm_interface : PREDEF_NAME;

UNIT_DESC ::= UNIT_KIND | BODY
| implicit_not_eq | derived_subprog;

UNIT_KIND ::= voids

"
v

derived_subprog sm_derivable : SOURCE_NAME;

"
v

implicit_not_eq sm_equal : SOURCE_NAME;

procedure_id => ;

function_id => ;
operator_id => ;

-- Syntax 6.1.8

-- subprogram_specification ::=

-- procedure identifier [formal_part]

-- | function designator [formal_part] return type mark
-- designator ::= identifier | operator_symbol

-- operator_symbol ::= string_literal

HEADER ::= SUBP_ENTRY_HEADER;

SUBP_ENTRY_HEADER ::= procedure_spec | function_spec;

SUBP_ENTRY_HEADER

H
v

as_param_s : param_s;
procedure_spec => ;

function_spec => as_name : NAME;

Page

2-24

e R e SR e M SR e N i S e SRR st S s S et S s

!
[-

e J

.

DIANA Reference Manual Draft Revision 4

[OL SPECIFICATION

-- Syntax 6.1.C
-- formal_part ::=

-- (parameter_specification {; parameter_specification})

-- parameter_specification ::=

-- identifier_list : mode type_mark [:= expression]

-- mode ::= [in] | in out | out

param_s => as_list : Seq Of PARAM;
DSCRMT_PARAM DECL ::= PARAM;

PARAM ::= in | out | in_out;

in = 1x_default : Boolean;
in_out => ;

out => o

INIT_OBJECT_NAME ::= PARAM_NAME;

PARAM NAME ::=

in_id | in_out_id | out_id;

PARAM_NAME => sm_first : DEF_NAME;
in_id => 3
in_out_id => ;
out_id => ;

-- 6.3 Subprogram Bodies

-- Syntax 6.3

-- subprogram body ::=

-- subprogram_specification is

-- (declarative_part]

-- begin

-- sequence_of statements

-- [exception

-- exception_handler

-- {exception_handler})

-- end [designator];
80DY ::= block_bedy | stub | void;
subprogram_body => as_header : HEADER;

-~ 6.4 Subprogram Calls

-~ Syntax 6.4
-~ procedure_call_statement ::=

Page 2-2%5

DIANA Reference Manual Dr-rt Revision 4 Page 2-26
IOL SPECIFICATION
-- procedure_name [actual_parameter_part];

-- function_call ::=
-- function_name (actual_parameter_part]

-~ actual_parameter_part ::=
-- (parameter_association {, parameter_association})

-- parameter_association ::=
-- (formal_parameter =>] actual_parameter

-~ formal_parameter ::

parameter_simple_name

-- actual_parameter ::=
-- expression | variable_name | type_mark(variable_name)

CALL_ST™

_ > as_general_assoc_s : general_assoc_S;
CALL_STM

> sm_normalized_param_s :exp_S;

Hon

procedure_call => ;

function_call
function_call

#
v

as_general_assoc_s : general_assoc_s;
sm_normalized_param_s @ exp_s;

[}
v

function_call => 1x_prefix : Boolean;
NAMED_ASSOC ::= assoc;
assoc => as_used_name : USED_NAME;

-- 7. Packages

-- Syntax 7.1.A
-- package_declaration ::= package_specification;

package_decl => ;
SUBPROG_PACK_NAME ::= package_id;

package_id => ;

-- Syntax 7.1.8

-- package_specification ::=

-- package identifier is

-- {basic_declarative_item}
-~ [private

-- {basic_declarative_item}]
-- end {package_simple_name]

o

-

rt

DIANA Reference Manual Oraft Revision 4
I0L SPECIFICATION

package_spec => as_decl_sl : decl_s,
as_decl_s2 : decl_s;

decl_s => as_list : Seq Of DECL;

Syntax 7.1.C
package_body ::=
package body package_simple_name is
(declarative_part]
(begin
sequence_of _statements
(exception
exception_handler
{exception_handler}])
end [package_simple_name];

package_body => :

7.4 Private Type and Deferred Constant Declarations
Syntax 7.4.A .
private_type_declaration ::=
type identifier [discriminant_part] is [limited] private;
TYPE_DEF ::= - private_def | 1_private_def;

private _def => ;
1_private_def => ;

TYPE_NAME ::= private_type id | 1_private_type_id;

private_type_id => ;
1_private_type_id => ;

PRIVATE SPEC ::= private | 1_private;
PRIVATE _SPEC => sm_discriminant_s : dscrmt_decl_s,
sm_type_spec : TYPE_SPEC;

private => ;

1_private => ;
Syntax 7.4.8

deferred_constant_declaration ::=

identifier_list : constant type mark;

deferred_constant_decl => as_name : NAME;

Page 2-27

DIANA Reference Manual Oraft Revision 4
I0L SPECIFICATION

- -

8. Visibility Rules

BTEZITTXTZTSSISTTIT=ES=

8.4 \Use Clauses

Syntax 8.4

use_clause ::= use package_name {, package_name};

use =>

as_name_s : name_s;

-- 8.5 Renaming Declaraticns

Syntax 8.5

renaming_declaration ::=
identifier : type_mark renames object name;
| identifier : exception renames exception_name;

| package identifier

renames package_name;

| subprogram_specification renames subprogram_or_entry_name;

ID_DECL ::=

SIMPLE _RENAME_DECL;

SIMPLE_RENAME DECL ::= renames_obj_dec]

SIMPLE_RENAME_DECL =>

renames_obj_decl =>

>3

renames_exc_dec]
UNIT_KIND ::=

RENAME_INSTANT ::=
RENAME INSTANT =>

renames _unit => ;

=SSI===s==

| renames_exc_decl;

as_name : NAME;

as_type_mark_name : NAME;

RENAME_INSTANT;

renames_unit;
as_name : NAME;

9.1 Task Specifications and Task Bodies

Syntax 9.1.A

task_declaration ::= task_specification;

task_specification ::

task [type] identifier [is
{entry_declaration}
{representation_clause}
end {task_simple_name]]

Page

2-28

M e R o SR o D s A oo ctttess SR s SRR e SRR cete N AR

D B S

’

DIANA Reference Manual Draft Revision 4
I0L SPECIFICATION

task_decl =>

task_spec =>

Syntax 9.1.8
task _body ::=

as_decl_s : decl_s;

sm_decl_s : decl_s,
sm_body : BODY,
sm_address : EXP,
sm_size : EXP,
sm_storage_size : EXP;

task body task_simple_name is
{declarative_part]

begin

sequence_of_statements

{exception

exception_handler
{exception_handler})
end [task_simple_name];

task_body =>
UNIT_NAME ::=

task_body_id =>

task_body_id;

sm_type_spec : TYPE_SPEC,
sm_body : BODY;

9.4 Task Dependence - -Termination of Tasks

ALL_DECL ::=

block_master =>

block_master;

sm_stm : STM;

9.5 Entries, Entry Calls and Accept Statements

Syntax 9.5.A
entry_declaration ::=

entry identifier [(discrete_range)] [formal _part];

SUBP_ENTRY_HEADER ::=
entry =>
SOURCE_NAME ::=

entry_id =>

Syntax 9.5.B

entry;

as_discrete_range : DISCRETE_RANGE;

entry_id;

sm_spec : HEADER,
sm_address : EXP;

Page 2-29

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION
-- entry_cal)_statement ::= entry name [actual_parameter_part];
entry call => ;
-- Syntax 9.5.C
-- accept_statement ::=
-- accept entry_simple_name [(entry_index)] [formal_part] [do
-- sequence_of _statements
-- end [entry_simple_name]l;
-- entry_index ::= expression
accept => as_name : NAME,
as_param_s : param_s,
as_stm_s : stm_s;
~- 9.6 Delay Statements, Duration and Time

-- Syntax 9.6
-- delay_statement ::= delay simple_expression;

delay => ;

-- 9.7 Select Statements

Syntax 9.7
-- select_statement ::= selective wait
-- | conditional_entry_call | timed_entry_call

-- 9.7.1 Selective Waits

-- Syntax 9.7.1.A

-- selective_wait ::=

-- select

-- select_alternative

-- {or

-- select_alternative}

-- [else

-- sequence_of_statements]
-- end select;

selective_wait => ;

-- Syntax 9.7.1.8

-- selective_alternative ::=

-- {when condition =>]

-- selective_wait_alternative

Page 2-30

DIANA Reference Manual Draft Revision 4 Page 2-31
IDL SPECIFICATION

-- selective_wait_alternative ::= accept_alternative
-- | delay_alternative | terminate_alternative

-- accept_alternative ::= accept_statement [sequence_of_statements]
-- delay_alternative ::= delay_statement [(sequence_of_statements]

-- terminate_alternative ::= terminate;

TEST_CLAUSE_ELEM ::= TEST_CLAUSE | select_alt_pragma;
TEST_CLAUSE ::= select_alternative;
test_clause_elem_s => as_list : Seq Of TEST_CLAUSE_ELEM;
select_alternative => ;

select_alt_pragma => as_pragma : pragma;

STM ::= terminate;

terminate => ;

-- 9.7.2 Conditional Entry Calls

-- Syntax 9.7.2

. == conditional_entry_call ::=

-- select

-- entry call_statement

-- [sequence_of _statements]
-- else

-- sequence_of statements
-- end select;

ENTRY_STM ::= cond_entry | timed_entry;
ENTRY_STM => as_stm_sl : stm_s,
as_stm_s2 : stm_s;

cond_entry => ;

-- 9.7.3 Timed Entry Calls

-- Syntax 9.7.3

-- timed_entry_call ::=

-- select

-- entry_call_statement

-- [sequence_of s*-tements]
-- or

-- delay_alternative

DIANA Reference Manual Draft Revision 4
I0L SPECIFICATION

- end select;
timed_entry => ;

-- 9.10 Abort Statements

-- Syntax 9.10

-- abort_statement ::= abort task_name {, task_name};
name_s => as_list : Seg Of NAME;

abort => as_name_s : name_s;

-- 10. Program Structure and Compilation Issues

-- 10.1 Compilation Units - Library Units
-- Syntax 10.1.A
-- compilation ::= {compilation_unit}
compilation => as_compltn_unit_s : compltn_unit_s;
compltn_unit_s => as_list : Seq Of compilation_unit;
-- Syntax 10.1.8
-- compilation_unit ::=
-- context _clause library unit | context_ciause secondary_unit
-- library_unit ::=
-- subprogram_declaration| package_declaration
-- ! generic_declaration | generic_instantiation

-- | subprogram_body

-- secondary_unit ::= library_unit_body | subunit

-- library_unit_body ::= subprogram_body | package_body

ALL_DECL ::= void;
pragma_s => as_list : Seq Of pragma;
compilation_unit => as_context_elem_s : context_elem_s,
as_all_deci : ALL_DECL,
as_pragma_s : pragma_s;

CONTEXT_ELEM ::= context_pragma;

Page

2-32

DIANA Reference Manual Draft Revision 4
IDL SPECIFICATION
context_pragma => -~ as_pragma . pragma;
-- Context Clauses - With Clauses
-- Syntax 10.1.1.A
-- context_clause ::= {with_clause {use_clausel}
context_elem_s => as_list : Seq Of CONTEXT_ELEM;
-- Syntax 10.1.1.8
-- with_clause ::= with unit_simple_name {, unit_simple_name};
CONTEXT_ELEM ::= with;
with => as_name_s : name_s,
as_use_pragma_s : use_pragma_s;
use_pragma_s => as_list : Seqg Of USE_PRAGMA;
-- 10.2 Subunits of Compilation Units
-- Syntax 10.2.A
-- subunit ::=
.- separate (parent_unit_name) proper_body
subunit => as_name : NAME,
as_subunit_body : SUBUNIT_BQDY;
SUBUNIT BODY ::= subprogram_body | package_body | task_body:

SUBUNIT_BODY => as_source_name : SOURCE_NAME,
as_body : BODY;

-- Syntax 10.2.8B

-- body_stub ::=

-- subprogram_specification is separate;

-- | package body package_simple_name is separate;
-- | task body task_simple_name is separate;

stub

>

-- 11. Exceptions

-- 11.1 Exception Declarations

-- Syntax 11.1
-- exception_declaration ::= identifier_list : exception;

Page

2-33

DIANA Reference Manual Draft Revision 4

IDL SPECIFICATION

exception_decl => ;
SOQURCE_NAME ::=

exception_id =>

-- 11.2 Exception Handlers

-- Syntax 11.2

-~ exception_handler ::

exception_id;

sm_renames_exc : NAME;

-- when exception choice {| exception_choice} =>
-- sequence_of _statements

-- exception_choice ::=

-- 11.3 Raise Statements

-- Syntax 11.3
-- raise_statement ::=

raise =>

exception_name | others

raise [exception_namel;

-- 12. Generic Program Units

- EEZSSSSSITTSSITITTI==Z

-- 12.1 Generic Declarations

-- Syntax 12.1.A
-- generic_declaration

1:= generic_specification;

-- generic_specification ::=
-- generic_formal_part subprogram_specification
-- | generic_formal_part package_specification

HEADER ::=
generic_decl =>
NON_TASK_NAME ::=

generic_id =>

-- Syntax 12.1.8
-- generic_formal_part

package_spec;

as_item_s : item_s;
generic_id;
sm_generic_param_s : item_s,

sm_body : BODY,
sm_is_inline : Boolean;

::= generic {generic_parameter_declaration}

Page

2-34

DIANA Reference Manual Draft Revision 4 Page 2-35
I0L SPECIFICATION

-- Syntax 12.1.C

-- generic_parameter_declaration ::=

-- identifier_17st : [in [out]] type_mark [:= expression];
| type identifier is generic_type_definition;

-- | private_type_declaration
| with subprogram_specification [is namel;
| with subprogram_specification [is <>];

UNIT_KIND ::= GENERIC_PARAM;
GENERIC_PARAM ::= name_default
| box_default
| no_default;
name_default => as_name : NAME;
box_default => ;
no_default => ;
-~ Syntax 12.1.D
-~ generic_type_definition ::=

-- (<>) | range <> | digits <> | delta <>
-- | array_type_definition | access_type_definition

TYPE_DEF :: formal_dscrt_def
| formal_integer_def
| formal fixed_def

| formal_float_def;

formal_dscrt_def => ;
formal_fixed_def => ;
formal_float_def => ;
formal_integer_def => ;

-- 12.3 Generic Instantiation

-- Syntax 12.3.A

-- generic_instantiation ::=

-~ package identifier is

-- new generic_package_name [generic_actual_part];
-- | procedure identifier is

-- new generic_procedure_name {generic_actual_part];
-- | function identifier is

-- new generic_function_name [generic_actual_part];

-- generic_actual_part ::=
-- (generic_association {, generic_association})

DIANA Reference Manual Draft Revision 4 Page 2-36
IDL SPECIFICATION

RENAME _INSTANT ::= instantiation;
instantiation => as_general_assoc_s : general_assoc_s;
instantiation => sm_decl_s : decl_s;

-- Syntax 12.3.8
-- generic_association ::=
-- (generic_formal parameter =>] generic_actual_parameter

-- generic_formal_parameter ::= parameter_simple_name | operator_symbol

-~ Syntax 12.3.C
-- generic_actual_parameter ::= expression | variable_name
-- | subprogram name | entry name | type _mark

-- 13. Representation Clauses and

-~ =SS CSESSESSIRSSSSTISSSSETISIR=TTI=T

-- Implementation Dependent Features

-—- EEEESSESSRSIS=SIRSSIITSIISE=TT==2s

-~ 13.1 Representation Clauses

-- Syntax 13.1
-- representation_clause ::=
-- type_ representat1on clause | address_clause ’

-- type_representation_clause ::= length_ clause
-- ["enumeration_representation_clausé { record_representation_clause

REP ::= NAMED_REP | record_rep;
REP => as_name : NAME;
NAMED _REP => as_exp : EXP;

-- 13.2 Length Clause
-- 13.3 Enumeration Representation Clauses

-~ Syntax 13.2
-- length_clause ::= for attribute use simple _expression;

-- Syntax 13.3
-- enumeration_representation_clause ::=
-- for type_simple_name use aggregate;

NAMED_REP ::= length_enum_rep;
length_enum_rep => ;

-- 13.4 Record Representation Clauses

DIANA Reference Manual Draft Revision 4 Page 2-37

IOL SPECIFICATION

-- Syntax 13.4.A

-- record_representation_clause ::=
- for type_simple_name use

-- record [alignment_clause]
-- {component_clause}
-- end record;

~- alignment_clause ::= at mod static_simple_expression;

ALIGNMENT _CLAUSE ::= alignment | void;

alignment => as_pragma_s : pragma_s,
as_exp : EXP;

record_rep => as_alignment_clause : ALIGNMENT_CLAUSE,
as_comp_rep_s : comp_rep_s;

-- Syntax 13.4.8
-- component clause ::=
-- component_simple_name at static_simple_expression range static_range;

COMP REP ELEM :: comp_rep | void;

COMP_REP_ELEM :: comp_rep_pragma;
comp_rep_s => as_list : Seq Of QOMP_REP_ELEM;
comp_rep => as_name : NAME,

as_exp : EXp,
as_range : RANGE;

comp_rep_pragma => as_pragma : pragma;

~-- 13.5 Address Clauses

-- Syntax 13.5
-- address_clause ::= for simple_name use at simple_expression;

NAMED REP ::= address;
address => ;
-- 13.8 Machine Code Insertions

-- Syntax 13.8
-- code_statement ::= type_mark'record_aggregate;

code => ;

DIANA Reference Manual Draft Revision 4 Page 2-38
IDL SPECIFICATION

-- 14.0 Input-Output
-- 1/0 procedure calls are not specially handled. They are
-- represented by procedure or function calls (see 6.4).

-- Predefined Diana Environment

- IR ESRETEIESEXEIZSTE==SSE==Ts=

PREDEF_NAME ::= attribute_id
pragma_id
argument_id
bitn_operator_id
void;

attribute_id => ;

TYPE_SPEC ::= universal_integer | universal_fixed | universal_real;
universal_integer => ;

universal _fixed => ;

universal_real => ;

argument_id => ;

bitn_operator_id => sm_operator : operator;

pragma_id => sm_argument_id_s : argument_id_s;
argument_id_s => as_list : Seq Of argument_id;
ALL_SOURCE ::= OEF_NAME | ALL_DECL | TYP"_DEF | SEQUENCES

STM_ELEM | GENERAL_ASSOC | CONSTRAINT | CHOICE
HEADER | UNIT_DESC | TEST_CLAUSE_ELEM
MEMBERSHIP OP™| SHORT_CIRCUIT OP”| ITERATION
ALTERNATIVE ELEM | COMP_REP_ELEM | CONTEX™ ELEM
VARIANT_ELEM | ALIGNMENT CLAUSE | VARIANT PART
comp_list | compilation T compilation_unit | index;

SEQUENCES ::= alternative_s | argument_id_s | choice_s
comp_rep_s | complitn_unit_s | context_elem_s
decl_s | dscrmt_decl_s | general_assoc_s
discrete_range_s | enum_literal_s | exp_s | item_s
index_s T name_s | param_s | pragma_s | scalar_s
source_name_s | stm_s | test_clause elem_s
use_pragma_s | variant_s;

ALL_SOURCE => 1x_srcpos : source_position,
1x_comments : comments;

ALL_DECL ::= ITEM | subunit;
End

CHAPTER 3
SEMANTIC SPECIFICATION

DIANA Reference Manual Draft Revision 4 Page 3-2
SEMANTIC SPECIFICATION

This chapter describes the semantics of O0OIANA., The structure of this
chapter parallels the DIANA c¢lass hierarchy. Each section corresponds to a
class in the DIANA class hierarchy, and each subsection corresponds to a
subclass of that class in the hierarchy. Each node is discussed in the section
corresponding to the class which directly contains it.

Since the class structure of DIANA is a hierarchy, it was possible to
construct hierarchy diagrams to illustrate pictorially the relationships between
the various nodes and classes. At the end of each major section is a hierarchy
diagram which depicts the nodes and classes discussed in that section, along
with the attributes which are defined for those nodes and classes. Beneath each
class or node name is a list of attribute names corresponding to the attributes
which are defined at that level. Hence an attribute appearing immediately below
a class name is defined for all classes and nodes which are below that class in
the diagram.

It should be noted that the classes ALL_SOURCE and SEQUENCES have been
omitted from this chapter due to the simple nature of their structure and the
fact that they represent optional features of DIANA. A1l nodes which may
represent source text have the attributes 1x srcpos and lx comments; however,
DIANA does not require that these attributes be represented in a DIANA
structure. The sole purpose of class ALL_SOURCE is to define these two
attributes for its constituents; the only nodes which do not inherit these
attributes are those belonging to class TYPE_SPEC. In order to be consistent,
the IDL specification of DIANA defines a sequence node (or header) for each
sequence; however, an implementation is not required to represent the sequence
node itself. C(lass SEQUENCES is a set of sequence nodes, all of. which have a
single attribute (other than 1x srcpos and 1x_comments) called as_list which
.denotes the actual sequence.

The follewing conventions are observed throughout this chapter:

(a) A1} attributes which are inherited by the node void are undefined. In
addition, no operations are defined for the attributes inherited by the
node void.

(b) Although a class may contain the node void, an attribute which has that
¢lass as its type cannot be void unless the semantic specification
explicitly states that the attribute may be void.

{(c) The attributes I1x srcpos and 1x comments are undefined for any nodes
which do not represent source code. For certain nodes, such as those
in class PREDEF_NAME, these attributes will never be defined.

(d) Unless otherwise specified, all nodes represent source code.

(e) A sequence cannot be empty unless the semantic specification explicitly
allows it.

(f) If the manual specifies that the copying of a node is optional, and an
implementation chooses to copy that node, then the copying of any nodes
denoted by structural attributes of the copied node is also optional.

Section 3.1

ALL_DECL

3.1 ALL_DECL

The four immediate offspring of class ALL_DECL are void, subunit,
block_master, and ITEM.

The subunit node represents a subunit, and has two non-lexical attributes
-- as _name and as_subunit body. The attribute as name denotes the name of the
parent unft (a “seTected, used_name_id, or used_op node); as subunit body
designates the node corresponding to the proper body.

The block_master node represents a block statement that may be a master
because it contains immediately within its declarative part the definition of an
access type which designates a task. Its only non-lexical attribute, sm stm,
denotes a block_body node. The block_master node can only be referenced by the
sm master attribute of the access node, thereby serving as an intermediate node
between the access type definition and the block statement. The block_master
node does not represent source code.

3.1.1 ITEM

In general, the nodes in class ITEM correspond to explicit declarations;
i.e. declarative items that can be found in formal parts, declarative parts,
component lists, and program unit specifications. Certain declarative nodes
(subtype_decl, constant_decl, renames_obj_decl, and subprog_entry_decl) may also
appear in another context -- as a part of & sequence of declarations constructed
for the instantiation of a generic unit. When used in this special context
these declarative nodes are not accessible through structural attributes, and do
not correspond to source code.

Certain implicit declarations described in the Ada manua! are not
represented in DIANA: the predefined operations associated with type
definitions; label, loop, and block names; anonymous base types created by a
constrained array or scalar type definition; anonymous task types; derived
subprograms. Although the entities themselves have explicit representations
(1.e. defining occurrences), their declarations do not.

With the exception of the node null_comp_decl and the nodes in classes REP
and USE_PRAGMA, all of the nodes in class ITEM have a child representing the
identifier(s) or symbol(s) used to name the newly defined entity (or entities).
These nodes, members of class SOURCE_NAME, are termed the "defining occurrence"
of their respective identifiers; they carry all of the information that

“

DIANA Reference Manual Draft Revision 4 Page 3-4
SEMANTIC SPECIFICATION
describes the associated entity.

The classes DSCRMT_PARAM_DECL, SUBUNIT_BODY, and DECL comprise ITEM.

3.1.1.1 DSCRMT_PARAM_DECL

The DSCRMT_PARAM DECL class is composed of nodes representing either a
discriminant specification or a formal parameter specification. The as name
attribute defined on this class denotes a selected or used_name_ id node
corresponding to the type mark given in the specification,

The dscrmt_dec node represents a discriminant specification. The
as source name s attribute denotes a sequence of dscrmt_id nodes, and the as exp
attribute references a node correspond:ng to the default initia) value; if there
is no initial value given, as exp is void.

3.1.1.1.1 PARAM

A node in class PARAM may represent either a formal parameter specification
contained in a formal part, or a generic formal object declaration. The
as source name s attribute denotes a sequence of in id, in_out_id, and out_id
nodes, uniess the PARAM node corresponds to a generic forma1 obJect declaration,
in wh"h case only in_id and in_out_id nodes are permitted.

The in node represents a formal parameter declaration of mode in. Its
as exp attribute denotes the default value of the parameter, and is void if none
Ts given. The in node also has an 1x default attribute which indicates whether
or not the mode is specified explicitly.

The in_out and out nodes represent formal parameter declarations of mode in
out and out, respectively. The as exp attribute of these nodes is always void.

3.1.1.2 SUBUNIT_BODY

The class SUBUNIT_BODY is composed of nodes representing declarations of
subunit bodies. The as body attribute defined on this class may denote either a
block_body or a stub node, depending on whether the declaration corresponds to a
proper body or a body stub.

The subprogram_body node represents the declaration of a subprogram body.
The as source name attribute denotes a node in class SUBPROG_NAME, and the
as_header attribute references a procedure_spec or a function_spec “node.

The package_body node represents the declaration of a package body; its
as source name attribute refers to a package_id node. If the package body is
empty (i.e. 1t contains no declarative part, no sequence of statements, and no
exception hand1ers) then as body still denotes a block_body node; however, all
of the sequences in the bloc E body node are empty.

OIANA Reference Manual Draft Revision 4 Page 3-5
SEMANTIC SPECIFICATION

The task_body node represents the declaration of a task body; its
as_source name Tattribute denotes a task _body_id.

3.1.1.3 DeCL

The class DECL contains the nodes associated with basic declarative items,
record component declarations, and entry declarations.

The node null_comp_decl represents a record component 1ist defined by the
word “null". It has no attributes other than lexical ones, and appears only as
the first member of a sequence denoted by the as_decl_s attribute of a comp_list
node; the only kind of node which can succeed it in the seguence is a pragma
node.

3.1.1.3.1 USE_PRAGMA
The class USE_PRAGMA contains the nodes pragma and use.

The pragma node represents a pragma. The as_used_name_id attribute denotes
the name of the pragma, and the as genera) assoc s attribute references a
possibly empty sequence of argument associations (the sequence may contain a
mixture of assoc and EXP nodes).

The use node represents a use clause. The as name s attribute represents
the 1ist of package names given in the use clause. If the use clause appears as
a basic declarative item, the sequence can contain both used_name_id and
selected nodes; if it is a part of a context clause, it will contain
used_name_id nodes only.

3.1.1.3.2 REP

The nodes in class REP correspond to representation clauses which may
appear as declarative items (i.e. address clauses, length clauses, record
representation clauses, and enumeration representation clauses).

The node record_rep represents a record representation clause. The
attribute as name references a used_name_id corresponding to the record type
name; as alignment clause and as com? rep s denote the alignment clause and
component clauses, respectively. he attribute as alignment clause is void if
the representation c¢lause does not contain an alignment clause, and
as _comp rep s may be empty if no component clauses or pragmas are present.

3.1.1.3.2.1 NAMED_REP

The nodes length_enum_rep and address comprise the class NAMED_REP, a group
of representation clauses which consist of a name and an expression.

DIANA Reterence Manual Draft Revision 4 Page 3-6
SEMANTIC SPECIFICATION

The length_enum_rep node may represent either a length clause or an
enumeration representation clause. In the former case the as name attribute
denotes an attribute node and the as exp attribute corresponds to the simple
expression, In the case of an enumeration representation clause the as name
attribute denotes a used_name_id corresponding to the enumeration type, and
as_exp references an aggregate node.

The address node represents an address clause. Its as name attribute
references a node from the class USED_SOURCE_NAME corresponding to the name of
the entity for which the address is being specified. The as exp attribute
records the address expression.

3.1.1.3.3 [ID_DECL

The ID_DECL class represents those declarations which define a single
entity rather than a sequence of entities (i.e. declarations defining an
identifier, not an identifier list). Included in this class are the type decl,
subtype decl, and task_decl nodes, as well as the UNIT_DECL and
SIMPLE_RENAME_DECL classeS, representing unit declarations and ~ renaming
declarations, respectively.

The type_decl node represents a type declaration -- incomplete, private,
generic, derived, or full. The only type declaration that is not represented by
this node is that of a task type, which is denoted by a task_decl node instead.
The type decl node has three non-iexical attributes: as source name,
as_dscrmt decl s, and as type def.

The as source name attribute of a type_decl node denotes a node
representing a new defining occurrence of the type name, the kind of node
depending on the kind of type declaration. Certain type names will hdave more
than one declaration point -- those corresponding to incomplete types or
(1imited) private types. The as source name attribute of the type_decl node
associated with a (limited) private type declaration references a
private_type_id or 1 private_type_id node; for all other type declarations
as_source name will designate a type_id node. The subsequent full type
declaration for an incomplete or (limited) private type is treated as an
ordinary full type declaration; hence the as source name attribute of the full
type declaration corresponding to a (limited) private type will denote a type_id
rather than a private_type_id or 1_private_type_id.

The as_dscrmt decl s attribute of a type_decl node is a possibly empty
sequence containing the discriminant declarations which appear in the type
declaration; for declarations of derived types and generic formal types which
are not private this sequence is always empty.

The as_type def attribute associated with a type_decl node designates a
node representing the portion of source code following the reserved word "is";
hence the as type def attribute for an incomplete type definition is wvoid, anc
may not be v015 for any other kind of type declaration. The permitted values of
the as_type def attribute for the remainder of the type declarations are as
follows: for a (limited) private type declaration -- a private_def or
1_private_def node; for a generic type declaration -- a TYPE_DEF node having the

DIANA Reference Manual Draft Revision 4 Page 3-7
SEMANTIC SPECIFICATION

prefix “formal_", an unconstrained_array_def node, a constrained_array_def node,

or an access_ def ‘node; for a derived type declaration -- a derived node; and
firally, for a full type declaration -- an enumeration_def, integer_def,
float def, fixed_def, unconstrained_array_def, constra1ned_array_def,

record_def, or access def node.

The subtype_decl node represents a subtype declaration; it defines two
attributes: as source name and as subtype indication. The former denotes a
subtype_id node, and the Tatter a subtype_indication node. The subtype_id
represents the defining occurrence of the subtype name, and the
subtype_indication node records the type mark and constraint appearing in the
subtype declaration.

The second context in which a subtype_decl node may appear is as a part of
a normalized parameter 1list for a generic instantiation, in which case the
subtype_decl node does not represent actual source code. This case is discussed
in more detail in section 3.6.1.1.

The task_decl node represents the declaration of either a task type or a
single task object with an anonymous type, depending on whether or not the
reserved word “type" is 1included in the specification. The difference is
indicated by the value of the as source name attribute -- a type_id noce in the
former case, a variable_id node in the latter. The as_decl_s attribute is a
possibly empty sequence of nodes representing the entry declarations and
representation clauses given in the task specification (subprog_entry decl and
REP nodes). The declaration of a task object (or objects) of a named type is
represented by a variable_dec) node rather than a task_decl node.

3.1.1.3.3.1 SIMPLE_RENAME_DECL

The class SIMPLE RENAME DECL contains nodes representing the renaming of an
object or an exception. The renaming of an entity as a subprogram or a package
is represented by a subprog_entry decl node or a package_decl node,
respectively.

A renaming declaration for an object is represented by a renames_obj_decl
node. The as source name attribute denotes a variable_id or a constant id,
depending on the kind of object renamed. A constant object is -epresented by a
constant_id; constant objects include constants, discriminants, parameters of
mode in, loop parameters, and components of constant objects. An object that
does not belong to any of the previous categories is represented by a
variable_id (this includes objects of a limited type). The as_name attribute of
a renames_obj_decl node denotes a node of type NAME which represents the object
being renamed. The as type mark name attribute references a selected or
used_name_id node corresponding to the type mark appearing in the renaming
declaration.

The renames_obj_decl node may also appear in a normalized parameter list
for a gener1c instantiation. This case does not correspond to source code, and
is discussed in detail in section 3.6.1.1.

DIANA Reference Manual Draft Revision 4 Page 3-8
SEMANTIC SPECIFICATION

The renaming of an exception is represented by a renames _exc_decl node, for
which the as source name attribute always designates an exception id. The
as name attribute can be either a selected node or a used_name_id node
corresponding to the exception being renamed.

3.1.1.3.3.2 UNIT_DECL

The class UNIT_DECL represents the declaration of a subprogram, package,
generic unit, or entry. The as header attribute which is defined on the class
references a HEADER node, the type of which is determined by the reserved word
appearing 1in the declaration (i.e. "procedure", “function", "package", or
“entry").

The generic_decl node corresponds to the declaration of a generic unit.
The as source name attribute references a generic_id representing the name of
the generic unit. The as header attribute may denote a procedure_spec, a
function_spec, or a package_spec. The attribute as item s is a possibly empty
sequence of generic formal parameter declarations -- a 1ist of nodes of type in,
in_out, type_decl, or subprog_entry_decl.

3.1.1.3.3.2.1 NON_GENERIC_DECL

The class NON GENERIC DECL encompasses subprogram, package, and entry
declarations. The as unit kind attribute that is defined on the class
determines the kind of declaration the subprog_entry_decl or package_decl node
represents: a renaming . declaration, an 1nstantwatuon a generic formal
parameter declaration, or an "ordinary" declaration.

An entry (family) declaration is represented by a subprog_entry_decl node
for which the as source name attribute is an entry_id, the as “header attribute
is an entry node, and the as unit kind attribute is void. The renaming of an
entry as a procedure is treated as a procedure declaration (i.e. the
as_source name attribute is a procedure_id, not an entry_id).

The as source name attribute of a package_dec) node will always designate a
package_id, and the sm header attribute -- a package_spec. However, the
as unit” k1nd attribute may have one of three values: renames unit (representwng
the name of the unit being renamed), instantiation (represent1ng the name of the
generic unit and the generic actual part), or void (if the declaration is an
"ordinary" one).

The declaration of a procedure, a function, or an operator is represented
by a subprog_entry_decl node, for which the as header attribute can be either a
procedure spec or a funct1on _spec. In addition to the three values of
as unit kInd described in the previous paragraph, the as unit kind attribute of
a suEprog entry_ decl node may designate a node from class EENERIC_PARAM if the
subprogram in the declaration is a generic formal parameter.

DIANA Reference Manual Draft Revision 4 Page 3-9
SEMANTIC SPECIFICATION

The as _source name attribute for a subprogram declaration is a node from
class SUBPROG_NAME, with one exception. A declaration renaming an enumeration
literal as a function will have an ENUM LITERAL node as its as source name
attribute (the function_spec node denoted by the as header attribute wil|
contain an empty parameter list). For all other declarations the type of node
designated by the as source name attribute 1is determined by the kind of
declaration introducing the new name (i.e. a declaration renaming an attribute
as a function will have a function_id as its as_source name attribute).

A subprog_entry_decl node may also appear in @ normalized parameter 1ist
for a generic instantiation. In this case the declaration will always be a
renaming declaration which does not correspond to source code (see section
3.6.1.1 for details).

3.1.1.3.4 ID_S_DECL

The ID_S_DECL class contains nodes corresponding to declarations which may
define more than one entity -- variable declarations, (deferred) constant
declarations, record component declarations, number declarations, and exception
declarations. Although any of these declarations may introduce a sing’e
identifier, a node from class ID_S _DECL will always be used to represent the
declaration, never a node from class ID_DECL.

An exception_decl node represents an exception declaration; the
as_source name s attribute designates a sequence of exception_id nodes.

A deferred_constant_decl node denotes a deferred constant declaration. The
as_source name s attribute refers to a sequence of constant_id nodes; each
constant_1d node represents the first defining occurrence of the associated
identifier. The as name attribute of the deferred_constant_dec] node is a
used_name_id or selected node representing the type mark given in the
declaration. The subsequent full declaration of the deferred constant(s) will
be represented by a constant_decl node.

3.1.1.3.4.1 EXP_DECL

The EXP_DECL class represents multiple object declarations that can include
an initial value -- number declarations, variable declarations, and constant
declarations.

A number declaration is denoted by a number_decl node for which the
as_source name s attribute 1is a sequence of number_id nodes, and the as exp
attribute references a node corresponding to the static expression given in the
declaration.

DIANA Reference Manual Draft Revision 4 Page 3-10
SEMANTIC SPECIFICATION

3.1.1.3.4.1.1 O0BJECT_DECL

Class OBJECT_DECL represents variable, constant, and component
declarations.

A variable_decl node represents either a variable declaration in a
declarative part or a component declaration in a record type definition;
as_source name_s is a sequence of variable_id nodes or component id nodes,
respectively. The as_exp attribute denotes the (default) initial vaTue, and is
void if none is given. For a variable declaration, as type def may denote
either a subtype indication node or a constrained array def node; for a
component declaration as type def refers to a subtype_ indication node.

A constant_decl node represents a full constant declaration. The attribute
as source name s s a sequence of constant_id nodes; as exp represents the
initial value. The as type def attribute may denote either a suBtype indication
node or a constrained _array_ def node.

A constant_decl node may also appear in a special normalized parameter
sequence for a generic instantiation, in which case it does not represent source
code (see section 3.6.1.1 for detaiis).

Unlike other object declarations, which contain named types only, the
declarations 1in class OBJECT_DECL may introduce anonymous subtypes via a
constrained array definition or the inclusion of a constraint in the subtype
indication. If the object(s) being declared are of a named type, then the

sm obj type attribute of each defining occurrence node in the as_source_name_S
sequence denotes the same entity -- the TYPE_SPEC node referenced in the
defining occurrence node corresponding to the type mark.

[f the object declaration contains an anonymous subtype (i.e. as type def
denotes a constrained_array def node or a subtype indication node with a
non-void as_constraint attribute) then a different TYPE_SPEC node will be
created for the sm obj type attribute of each defining occurrence node in the
as_source_name_s sequence. he sm is anonymous attribute of each will have the
vaTue TRUE. TIf the constraint s non-static, then each TYPE_SPEC node
references its own copy of the CONSTRAINT node corresponding to the new
constraint; if the constraint is static then each TYPE_SPEC may or may not
reference its own copy. ODIANA does not require that the node referenced by the
TYPE_DEF attribute of the OBJECT_DECL node have a unigue node representing the
constraint, even if the constraint is non-static; the OBJECT_DECL node is
allowed to share the CONSTRAINT node with one of the TYPE_SPEC nodes.

— .S aaln. SN S e SRS e S e S e e S,

Page 3-11

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

ssaasppe das wnna) Buay
| |
s 20sse |eseued se | s do) dwo) se
Pt eweu pasn se s awewn se dxa se | asne s juswuby P SE@
wwbe.d dun d38 UINYN pron dous 1002094
| I | { |
| =
(o0ed 3xau 298) | (96ed jxau @as) B sweu se |
1730 s of YRIVHY ISN 1030 ai 129p dwe>” § (nu 43y
l | l (i
. 1inegap x|
Ino wy no uy
| 1 l
N Jjapeay se |
Apoq wsey Apog ateydud ApoQq we,Boisdqns 108p” JwiIsp nYyvd
| | | | |
i |
| o
| dxa se |
Apoq se | aweu se |
sweu @dunos” se_| s aweu 3dunos se |
AQ0Q 1INNGNS 12330 1030 WYHVYd 1WYISO
| | |
Apogq jiungns se
sweu s® w3s ws
Jrungns w311 19152W ywoo|qQ pLoA
[| | |
1
1230 1y
3 : r] ~ .
A ' S\ . s 4 J.

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

128p @ Qe IeA 129p jue)suod

jap adAy se |
12ap saqunu 1230 103r€0

_
dra’se | aweu se
{28p uoy 1dedrs 1230 dx3 jc8p juesuod pasidzep

s aweu @dunos se |

1030 s a1
1329p abewded 139p Aajue 6Goisdqns
| |
_ _ _ - _ _ . |
_ sweu wiew a2dA) se S wdjL se puLy jitun se |
1790 On9 soweusd 120p QO saweuad. 128p Dy a23Ua6 1230 DI1HINID NON
{ | | |
| | - -~
— | _ { _ 49p adAy se
owey s® | H _ucvlmm Jsapeay se | uoyiedtpuy adhigns’ se S |J9Pp JWIISp s®
133G INVYNIY I dINIS t28p xyse, 330 LINN {2ap adAiagns 109p 8dA}

sweu @dunos se |
1230 a1

)

b J

Section 3.2
DEF_NAME

3.2 DEF_NAME

The appearances of identifiers, operators, and enumeration characters in a
DIANA tree are divided into defining and used occurrences; the class DEF_NAME
contains all of the nodes representing defining occurrences. Each entity of an
Ada program has a defining occurrence; uses of the name or symbol denoting the
entity always refer to this definition. The defining occurrence contains the
semantic information pertaining to the associated entity; none of the nodes in
class DEF_NAME have any structural attributes.

The names represented by this class fall into two principal categories:
predefined names and user-defined names. Defining occurrences corresponding to
user-defined entities are introduced by the as _source name or as source name s
attribute of nodes in class ITEM, BLOCK_ LOOP, LABELED, and FOR_ﬁEV. Defining
occurrences associated with predef1ned “entities are not accessable via

structural attributes since they do not have a declaration point.

Each node in class DEF_NAME has an 1x_symrep attribute to retain the source
representation of the identifier or character literal associated with the
defining occurrence. Those nodes in class SOURCE_NAME generally have 1x srcpos
and 1x comments attributes for which the values are defined; the values of these
attributes are undefined for nodes in class PREDEF _NAME. Certa1n nodes in class
SOURCE_NAME may be used to represent both predefined and user-defined names
(nodes” such as exception_id); however, 1x _srcpos and 1x _comments for these nodes
are undefined when represent1ng a predefined name.

The names associated with certain entities may have more than one point of
definition; in particular, those corresponding to:

(a) deferred constants

(b) incomplete types

(c) non-generic (limited) private types
(d) discriminants

(e) non-generic formal parameters

(f) program units

DIANA Reference Manual Draft Revision 4 Page 3-14
SEMANTIC SPECIFICATION

For these names, the first defining occurrence (which is indicated by the
sm first attribute) is treated as THE definition. In general, all references to
the entity refer to the first defining occurrence, and the multiple defining
occurrences of an entity all have the same attribute values. Types and deferred
constants present special cases which are discussed in subsequent sections.

3.2.1 PREDEF_NAME

The nodes in class PREDEF_NAME correspond to the names of entities for
which the Ada language does not provide a means of declaration; consequently a
node from class PREDEF_NAME will NEVER be designated by a structural attribute.

The nodes attribute_id, argument_id, pragma_id, bltn_operator_id, and void
comprise this class. The nodes argument id (the name of a pragma argument or
argument value) and attribute_id (the name of an Ada attribute) have no
attributes other than 1x_symrep. The pragma_id represents the name of a pragma.
The sm argument id s attribute denotes a sequence of argument identifiers
associated with the pragma (i.e. the sequence for pragma LIST contains nodes
denoting the argument identifiers ON and OFF); if a particular pragma bhas no
argument identifiers the sequence is empty. The node bItn_operator_id
corresponds to a predefined operator; the different operators are distinguished

by the sm_operator attribute.

3.2.2 SOURCE_NAME

The SOURCE_NAME class is composed of those nodes corresponding to defining
occurrences of entities which may be declared by the user.

The exception_id node represents an exception name. If the exception_id is
a renaming then the sm renames attribute is a used_name_id or a selected node
denoting the original exception name (the node which iS designated by the
as name attribute of the renames exc decl node). If the exception name is not
P ——— . g g 2 :
introduced by a renaming declaration then sm renames is void.

An entry (family) name is denoted by an entry_id node which has twc
non-lexical attributes : sm spec and sm address. The sm spec attribute
references the entry node (which contains the discrete range and formal part)
designated by the as_header attribute of the subprog_entry_decl node. The
sm address attribute denotes the expression ngen in an address clause; if no

address clause is applicable this attribute is void.

3.2.2.1 LABEL_NAME

The class LABEL_NAME represents those identifiers associated with
statements; the sm stm attribute defined on this class denotes the statement to
which the name corresponds. A label_id node represents the name of a statement
label and is introduced by a labeled node; sm stm can reference any node in
class STM. A block_loop_id represents the name of a block or a 1loop; sm stm

Seeste ___ssmtete.. SmSSEn . SERNEN - Ae. W W S e

DIANA Reference Manual Draft Revision 4 Page 3-15
SEMANTIC SPECIFICATION

denotes the block or Toop node which introduces the block_loop_id.

3.2.2.2 TYPE_NAME

The class TYPE_NAME contains nodes associated with the names of types or
subtypes; it has Tan sm type spec attribute attribute defined on it. Certain
type names may have more than one HeF1n1ng occurrence; in particular, those
corresponding to private and limited private types which are not generic formal
types, and those associated with incompliete types.

A private_type_id or 1_private_type_id node represents the defining
occurrence of a type name introduced by a (limited) private type declaration;
the type may or may not be a generic formal type. A private_type_id or
1_private_type_id node has an sm first attribute that references itself, and an

sm_type spec attribute denoting a private or 1 _private node.

If the (1imited) private type is not a generic formal type then its name
has a second defining occurrence corresponding to the subsequent full type
declaration. The second defining occurrence is represented by a type_id node;
the sm first attribute references the private_type_id or 1_private_ type id node
of the corresponding (limited) private type declaration, and the ~sm type spec
attribute denotes the full type specification, a node belonging to class
FULL_TYPE_SPEC.

Used occurrences of a (limited) private type name will reference the
private_type_id or 1_private_type_id as the definition.

tach defining occurrence of the name of an incomplete type 1is represented
by a type_id node, the sm first attribute of which denotes the type_id node
corresponding to the incomplete type declaration. Ordinarily, the sm type spec
attribute of the type_id nodes for both the incomplete and the full type
declaration refer to the full type specification -- a node from class
FULL_TYPE SPEC. The single exception occurs when the incomplete type is
declared Timmediately within the private part of a package" [ARM, section 3.8.1]
and the package body containing the full type declaration is a separate
compilation unit, in which case the sm type spec attribute of the type_id
corresponding to the incomplete type dectlaration denotes an incomplete node.

The defining occurrences of all other kinds of type names are represented
by type_id nodes. The sm _first attribute references the node which contains it,
and the sm type spec attribute denotes a node belonging to the class
FULL_TYPE_

A new TYPE_SPEC node is created for the sm_type sgec attribute of a type_id
node unless the type id corresponds to an incomplete type declaration and the
full type declaration is in the same compilation unit. A new private or
1_private node is always created for the sm type spec attribute of a
private type_id or 1_private_type_id node.

A subtype_id node represents the defining occurrence of a subtype name; its
only non-lexical attribute is sm type spec, which references the appropriate
subtype specification. If the subtype_1d is introduced by a subtype declaration

DIANA Reference Manual Draft Revision 4 Page 3-16
SEMANTIC SPECIFICATION

in which the subtype indication contains a constraint then a new TYPE_SPEC node
is created to represent the subtype specification. If the subtype declaration
does not impose a new constraint then the sm type spec attribute references the
TYPE_SPEC node associated with the type mark appearing in the declaration.

A subtype_id may also be introduced by a declarative node in a normalized
parameter list for a generic instantiation, in which case the subtype id does
not correspond to source code. The correct values for its attributes In this
instance are defined in section 3.6.1.1.

3.2.2.3 OBJECT_NAME

The class OBJECT_NAME contains nodes representing defining occurrences of
entities having a value and a type; it 1is composed of iteration id,
ENUM_LITERAL, and INIT_OBJECT_NAME. The sm obj t!ge attribute which is defined
on the class denotes the subtype of the object or iiteral.

An iteration_id represents the defining occurrence of a loop parameter, and
is introduced by an iteration node. The sm obj type attribute references tne
enumeration or integer node dencted by the sm base type attribute of tne
DISCRETE_RANGE node associated with the iteration scheme.

3.2.2.3.1 ENUM_LITERAL

The class ENUM_LITERAL is composed of nodes representing the defining
occurrences of literals associated with an enumeration type. The nodes
enumeration_id and character_id comprise this class -- enumeration_id
corresponds to an identifier, character_id to a character literal.

ENUM_LITERAL defines the attributes sm pos and sm rep, both of which are of
type Integer. The attribute sm pos contains the value of the predefined Ada
attribute POS, i.e. the universal integer corresponding to the actual position
number of the enumeration literal. The sm rep attribute contains the value of
the predefined Ada attribute VAL; the user may set this value with an
enumeration representation clause. If no such clause is in effect, the value of
sm rep will be the same as that of sm pos. The sm obj type atiribute references
the enumeration node corresponding to the enumeration type to which the literal
belongs.

An ENUM_LITERAL node may be introduced by either an enumeration_def ncde or
a subprog_entry dec]l node. The Jlatter corresponds to the renaming of an
enumeration literal as a function, in which case the semantic attributes of the
ENUM_LITERAL node will have the same values as those of the node corresponding
to the original literal.

An ENUM_LITERAL node may be introduced by a declarative node in a special
normalized parameter 1list for a generic instantiation; in this instance the
ENUM LITERAL node does not correspond to source code. This case is discussed in
detail in section 3.6.1.1.

DIANA Reference Manual Draft Revision 4 Page 3-17
SEMANTIC SPECIFICATION

3.2.2.3.2 INIT_OBJECT_NAME

The class INIT_OBJECT NAME contains nodes corresponding to defining
occurrences of objects which may have an initial value; it defines an attribute
sm init exp to record this value. This attribute represents those (default)
initial values which are explicitly given; i.e. the default value NULL for an
access object is not represented by sm init exp unless it is explicitly
specified in the source code. The objects denoted by the nodes of this class
include named numbers, variables, constants, record components, and formal
parameters.

The node number_id represents the definition of a named number. The
sm_obj type attribute denotes a universal _integer or universal_real node, and
the sm init exp attribute references the node denoted by the as exp attribute of
the corresponding number_decl node.

3.2.2.3.2.1 VC_NAME

The class VC_NAME is composed of the nodes variable_id and constant_id,
denoting the names of variables and constants, respectively. The attributes
sm renames obj and sm address are defined for the nodes in this class.

The sm renames obj attribute is of type Boolean, and indicates whether or
not the name of the object is a renaming; the value of this attribute determines
the meaning of the sm init exp attribute for nodes in this class. If the name
is introduced by a renaming declaration then sm init exp denotes the NAME node
referenced by the as name attribute of the renames_obj_decl node. Otherwise,
sm init exp is the EXP node designated by the as_exp attrwbute of the associated
GEJECT_EECL node, and consequently may be void.

The sm address attribute denotes the expression for the address of the
object as given in an address clause; if no such clause is applicable sm address
is void. In the case of a renaming, the value of the sm address attribute is
determined by the original object; if the original object cannct be named in an
address clause then sm address is void.

For a VC_NAMEL node corresponding to an ordinary object ceclaraticn the
sm obj type attribute denotes either the TYPE SPEC node corresponding to the
type mark in the declaration, or an anonymous TYPE _SPEC node if the declaration
contains a constrained array definition or a constraint in the subtype
indication. If the variable_id or constant_id is introduced by a
renames_obj decl node, then sm obj type is the TYPE SPEC node corresponding to
the subtype of the original” object (hence this ~TYPE SPEC node does not
necessarily correspond to the type mark in the renaming declaration, although it
will have the same base type).

A constant_id represents the name of a constant object. A constant object
may be either a (deferred) constant or the renaming of one of the following: a
(deferred) constant, a discriminant, a loop parameter, a (generic) formal
parameter of mode in, or a component of a constant object. The sm first
attribute references the constant_id node corresponding to the first defining
occurrence of the associated name. For a constant_id node associated with the

DIANA Reference Manual Oraft Revision 4 Page 3-18
SEMANTIC SPECIFICATION

full declaration of a deferred constant this attribute will reference the
constant_id corresponding to the deferred declaration; for all other constant_id
nodes the sm first attribute will contain a self-reference.

The attributes of the constant_id nodes representing the defining
occurrences of a deferred constant have the same values. The sm obj type
attribute designates a private or 1 private node, and sm init exp denotes the
initialization expression given ~in the full constant declaration. Used
occurrences of a deferred constant name reference the constant_id of the
deferred declaration.

The variable_id node represents the name of an object which is declared in
an object declaration or a renaming declaration but is not a constant object.
The sm is shared attribute has a Boolean value indicating whether or not a
SHARED pragma has been applied to the variable. If the variable id represents a
renaming then sm is shared indicates whether or not the oringal object s
shared.

Both the constant_id and the varwable id nodes may be introduced by
declarative nodes in a normalized parameter 17st for a generic instantiation, in
which case they do not represent source code. The appropriate values for the
attributes of each are discussed in section 3.6.1.1.

3.2.2.3.2.2 COMP_NAME

The nodes component_id and discriminant_id comprise the class COMP_NAME,
which represents the defining occurrences of identifiers associated with record
components and record discriminants. The attribute sm comp rep is defined for
the nodes in this class; it references the node corresponding to the applicable
component representation clause, and is void if no such clause exists. The
attribute sm_comp_rep can never denote a comp_rep_pragma node.

The sm init exp attribute represents the default initial value, referencing
the EXP node designated by the as exp attribute of tne variable_decl or
dscrmt_decl node (hence sm_init exp can be void).

Unlike compaonent names, discriminant names may have multiple defining
occurrences, therefore an sm first attribute is defined for the discriminant_id
node (the instance of a componert name 1n a component representation clause is
considered to be a used occurrence rather than a defining occurrence). I[f an
incomplete or non-generic (limited) private declaration contains a discriminant
part, the discriminants will have a second definition point at the full type
declaration; the sm first attribute of both discriminant_id nodes will reference
the discriminant_id node corresponding to the earlier incomplete or (limited)
private declaration.

3.2.2.3.2.3 PARAM_NAME

The class PARAM_NAME contains nodes corresponding to the names of formal
parameters declared in the formal parts of subprograms, entries, accept

DIANA Reference Manual Draft Revision 4 Page 3-19
SEMANTIC SPECIFICATION

statements, and generic units. The nodes in id, in out_id, and out_id comprise
PARAM_NAME, representing parameters of mode in, Tn out, and out, respectively
(an out id node can never be used to represent a generic forma1 obJect)

The attribute sm init exp records the initial value; it denotes the EXP
node referenced by the as exp attribute of the corresponding in, in_out, or out
node. The attribute sm init exp is void for in_out_id and out_id nodes.

Formal parameters associated with subprogram declarations, entry
declarations, and accept statements may have more than one defining occurrence.
The sm first attribute for a PARAM NAME node belonging to an entry declaration
or an accept statement will always reference the PARAM_NAME node of the entry
declaration. The sm first attribute of a PARAM_NAME node corresponding to a
subprogram name denotes the PARAM_NAME node of “the subprogram declaration, body
declaration, or stub declaration which first introduces the identifier.

3.2.2.4 UNIT_NAME

The class UNIT_NAME represents the defining occyrrences of those
identifiers and symbols associated with program units; it contains the noges
task_body_id, generic_id, and package_id, as well as the class SUBPROG_NAME.

The task _body_id node denotes a task unit name introduced by the
declaration of a body or a stub. The sm first attribute references the type_ 1d
or variable_id node (depending on whether or not the task type is anonymous)
the task specification. The sm type spec attribute denotes the task_spec node
denoted by either the sm-type spec attribute of the type_id node or the
sm_obj type attribute of the variable_id node. .

If the body of the task is in the same compilation unit then ‘he sm body
attribute of the task body id references the bodv (2 block_body node). "If the
body is in another compilation unit, but the stub is not, then sm body denctes
the stub (a stub node). Otherwise sm body is void.

3.2.2.4.1 NON_TASK_NAME

The nodes in class NON_TASK_NAME correspond to the names of program units
which are not tasks. The node generic_id and the class SUBPROG_PACK_NAME
comprise this class.

The generic_id node corresponds to the def1n1ng occurrence of the name of a
generic unit (the name of an instantiated unit is represented by a member cf
class SUBPROG PACK NAME) The sm first attribute of a generic_id always
references the generic_id of the generic specification. The sm_spec attribute
denotes the procedure_spec, function_spec, or package_spec associated with the
subprogram or package specification. The attribute sm generic param s
represents the formal part of the generic specification, and references the same
sequence as the as_item s attribute of the corresponding generic_dec) node. The
sm_is 1n11ne attribute indicates whether or not an INLINE pragma has been given
for the generic unit. The value of the sm body attribute is determined in the

I I R R R R EEEETEETEE——————————————

DIANA Reference Manual Draft Revision 4 Page 3-20
SEMANTIC SPECIFICATION

same manner as the sm body attribute of the task_body_id node (discussed in the
_previous section).

3.2.2.4.1.1 SUBPROG_PACK_NAME

Defining occurrences of packages and subprograms are represented by members
of class SUBPROG_PACK_NAME. The attributes sm address and sm unit desc are
defined on this class. The sm address attribute records the expression given in
an address clause for the unit, if such a clause does not exist then sm address
is void. The sm unit desc attr1bute is a multi-purpose attribute; in some cases
it is used to Jndicate that a particular unit is a special case (such as a
renaming), in others it is used as a "shortcut" to another node (such as the
unit body).

The node package_id represents the defining occurrence of a package; its
sm_spec attribute denotes a package_spec node. If the package_id does not
correspond to @ renaming or an instantiation then sm_spec references the
package_spec designated by the as header attribute of the package_decl node,
sm first references the package_la of the package specification, and
sm unit desc denotes a node from class BODY (the value of this attribute is
determined in the same manner as the value of the sm body attribute of the
task_body_id, which is discussed in section 3.2.2.4).

If the package_id corresponds to a renaming then the sm unit desc attribute
references a renames_unit node which provides access to the original unit. The
sm_first attribute of the package_id contains a self-reference, while the

sm_spec spec and sm_address attributes have the same values as those of the original
package. : .

If the package_id is introduced by an instantiation then sm unit desc
designates an instantiation node containing the generic actual part as well as a
normalized parameter list. The sm first attribute of the package_id contains a
self-reference; the value of ~sm address is determined by the existence of an
address clause for the instantiated package, consequently it may be void. The
sm_spec attribute references a new package_spec node that is created by copying
the specification of the generic unit and replacing every occurrence of a formal
parameter by a reference to a an entity in the normalized parameter lis*, The
construction of the new specification is discussed in further detail in section
3.6.1.1.

3.2.2.4.1.1.1 SUBPROG_NAME

The class SUBPROG_NAME represents defining occurrences of Ssubprograms; it
comprises the nodes procedure id, function_id, and operator_id. The attributes
sm is inline and sm interface are defined for the nodes in this class. The
sm i1s inline attribute has a boolean value which indicates whether or not an
INCINE pragma has been given for the subprogram. If an [INTERFACE pragma is
given for the subprogram then sm_interface denotes the pragma, otherwise it is
void.

DIANA Reference Manual Draft Revision 4 Page 3-21
SEMANTIC SPECIFICATION

The procedure_id node corresponds to a defining occurrence of a procedure
or an entry renamed as a procedure; its sm_spec attribute references a
procedure_spec node. In addition to representing a function, a function_id may
represent an attribute or operatcr renamed as & function. An operator_id may
denote an operator or a function renamed as as operator. The sm spec attribute
of a function_id or ar operator_id designates a function_spec node.

If the SUBPROG_NAME node is introduced by an ‘“ordinary" declaration then
sm unit desc denotes a member of class BODY, and sm spec references the HEADER
node denoted by the as header attribute of the associated subprog_entry_dec!
node. The appropriate BODY node is selected in the manner described for the
sm_body attribute of the task_body_id node in section 3.2.2.4.

Like a package_id, a SUBPROG_NAME node may be introduced by a renaming
declaration, in which case sm unit desc denotes a renames_unit node and sm first
contains a seif-reference. However, the sm spec attribute of the SUBPRGC_NAHE
node does not denote the specification of the original unit, but that of the
renaming declaration. The values of the attributes sm address, sm is inline,
and sm interface are the same as those of the original unit.

The instantiation of a subprogram is treated in the same manner as the
instantiation of a package. The sm unit desc attribute denctes an instantiation
node, sm first contains a self-reference, and a new procedure_spec or
function spec 1is constructed in the manner described in section 3.6.1.1. The
values of sm address and sm interface are determined by the presence of an
associated address clause or [INTERFACE pragma; either may be void. The
sm is inline attribute is true if an INLINE pragma is given for the generic unit

0R the instantiated unit.

A SUBPROG_NAME node may also represent a generic formal parameter, ir which
case sm unit desc denotes a node belonging to class GENERIC_PARAM, the sm first
at*ribute contains a self-reference, and sm spec denotes the HEADER node
introduced by the generic parameter declaration. The attributes sm address and
sm interface are void, and sm is inline is false.

The sm unit desc attribute of an operator_id may reference an
implicit_not_eq node, which indicates that the inequality operator has been
declared impiicitly by the user through the declaration of an eguality operator.
The inequality operator is not the predefined operator, but because it cannot be
explicitly declared it has no corresponding body, hence that of the
corresponding equality operator must be utilized. Access to the equality
operator is provided by the implicit_not_eq node. An operator_id which contains
a reference to an implicit_not_eq node can be denoted only by semantic
attributes.

The sm_spec attribute of an operator_id representing an implicitly declared
inequality operator may reference either the function_spec of the corresponding
equality operator or a copy of it. The attribute sm address is void,
sm interface has the same value as the sm interface attribute of the
corresponding equality operator, and the value of sm is iniine is determined by
whether or not an INLINE pragma is given for the impTicitTy declared ineguality
operator.

DIANA Reference Manual Draft Revision 4 Page 3-22
SEMANTIC SPECIFICATION

The sm unit desc attribute of a SUBPROG_NAME node may reference a
derived_subprog node, 1in which case the procedure or function is a derived
subprogram. The specification of the derived subprogram is obtained by copying
that of the corresponding subprogram of the parent type, and making the
following substitutions:

(a) each reference to the parent type is replaced by a reference to the
derived type

(b) each reference to a subtype of the parent type is replaced by a
reference to the derived type

(c) each expression of the parent type is replaced by a type conversion
which has the expression as the operand and the derived type as the
target type.

The remaining attributes have the following values: sm address is void,
sm interface has the same value as the sm interface attribute of the
corresponding derivable subprogram, and the value of sm is inline is determined
by the existence of an [NLINE pragma for the derived subprogram.

The nodes in class SUBPROG_NAME may be introduced by declarative nodes in a
normalized parameter list constructed for a generic instantiation, in which case
they do not correspond to source code. A more detailed discussion may be found
in section 3.6.1.1.

SN ey WS WY E_—y N SRR AR A— AN

Page 3-23

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

18I}) ws B B] _ _
Py esdAjqns Py ediy Pt ®dA) ajeayad py @dAy ajeaysd Py 18qE| py dooy wdo0|qQ
| | | 1 | |
| |
|] -

_ |) | SsSIsppe WS
SIWPUSs we (e0ed 31xsu ses) J9ds adA) ws | (abed jxau aas) wis ws | uu&mx!n
Py uoyydedxe INYN LINN INYN IdAL pyo IWYN 21037480 JNYN 3GV Py Aajue

| | | I | | |
“
J0y249d0 WS s py juawnbae ws N _
pLoA Py “sojywsado uliq p1 ewbesd pi1 juswnBue Py 83INQLII}E
“ (| | 1 |
i 2
INYN IIHN0S INVN 43038d

doswAs ¥ 1
INYN 330

ﬂllllllllllllllIlllllI-IllllllIlll‘IIIIllllllIllllllIIIIllIIlllJ--IIlllIlIIII-IIIlIIlIIlIIllllIIIllllI1|lJllll11 ——

Page 3-24

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

Py J0)es8d0 Py UoLIdUN,

BIWIDIUY) WS

|

Iy ws |

suy (U} B§ WS h
INVYN D0U4ENS

sseuppe ws |
unoﬁ;«.caulu I
INYN NIVd J0dudaNS

P asnpadosd

py abewded

AUy Uy Sy WS

Apoq ws

s weuwd Dy .28008 ws
Py 24s0uaB

sads’ v.mn (.
INYN ANSVYL NON

enu—s:lnr_
INYN NVHYL

Py jusuodwod

Isayy ws |
INYN LINO

1801) ws

da s dwod ws
INYN dNOD

o e e

paseys sy ws
Py JuRUIWY IS, P

Apoq ws
J9ds @dA) ws
Py ApoqQ wsel

¥SIY) ws
Py BQeyea Py jue}isUOD

ssauppe ws |
(Qo saweuas ws |

INYN JA

dea yruy ws |

TR TRY NT FYY

INVN 1D3r80 LINI

[<JRNT: 3 S 1-N] -1V)

da. ws |
sod ws |
TVYHILED WNNI

_]
adAy fqo ws |
INVYN LI3r80

P U0 IEIBWNUD

-

-

Section 3.3
TYPE_SPEC
3.3 TYPE_SPEC
The classes TYPE_SPEC and TYPE_DEF are complementary -- the former

represents the semantic concept of an Ada type or subtype, the latter represents
the syntax of the declaration of an Ada type or subtype. A TYPE_SPEC node does
not represent source code; it has no lexical or structural attributes, only
semantic attributes and code attributes. A TYPE_DEF node has no other purpose
than to record source rode, containing only lexical and structural attributes.
A node from class TYPE SPt(C w111 NEVER be designated by a structural attribute,
a node from class TYPE DEF node will NEVER be designated by a semantic
attribute.

tach distinct type or subtype is represented by a distinct node from class
TYPE_SPEC; furthermore, there are never two TYPE_SPEC nodes for the same entity.
Although anonymous type and subtype declarations are not represented in DIANA,
the anonymous types and subtypes are themselves represented by nodes from class
TYPE_SPEC.

The nodes universal_integer, universal_real, and universal f]oat represent
the universal types; they have no attributes.

The incomplete node represents a special kind of dincomplete tvpe.
Ordinarily incomplete types are not represented by TYPE_SPEC nodes, alli
references are to the full type specification. The sole exception occurs when
an incomplete type declaration is given in the private part of the package, and
the subsequent full type declaration appears in the package body, which is in a
separate compilation wunit. In this case the incomplete type is represented by
an incomplete node, and all references denote this node rather than the full
type specification. The incomplete node defines an sm discriminant s attribute
wnich genotes the sequence of discriminant declarations desigrated by the
as_dscrmt decl s attribute of the type_decl node introducing the incompiete
type. This sequence may be empty.

3.3.1 DERIVABLE_SPEC

The class DERIVABLE_SPEC consists of nodes representing types which may be
derived. The attribute sm derived which is defined on this class refers to the
parent type if the type is derived; otherwise it 1is void. The sm derived
attribute is void for a subtype of a derived type. The nodes in this class also
have a boolean attribute, sm is anonymous, which indicates whether or not the
type or subtype has a name.

DIANA Reference Manual Draft Revision 4 Page 3-26
SEMANTIC SPECIFICATION

A derived type is always represented by a new node corresponding to a new
base type (the node 1is the same kind as that of the parent type). If the
constraints on the parent type are not identical to those on the parent subtype
then the base type is anonymous, and a new node corresponding to a subtype of
that type is also created. The node associated with the subtype records the
additional constraint (the constraint may be given explicitly in the derived
type definition or implicitly by the type mark).

{n addition to being created by a derived type definition, a derived type
may be introduced by a numeric type definition. The base type of a user-defined
numeric type is an anonymous derived type represented by the anpropriate
integer, float, or fixed node. The sm derived attribute of the node for the
anonymous base type refers to the node corresponding to the appropriate

predefined type.

If a derived type is an enumeration type then a sequence of new enumeration
literals 1is created for the derived type, unless the parent type is a generic
formal type. The value of sm _pos in each new ENUM_LITERAL node is the same as
that in the corresponding node from the parent type; however, the sm obj type
attribute denotes the enumeration node for the derived type. The value of
sm rep depends on whether or not a representation clause is given for the
derived type; if not, the value is taken from the corresponding node from the
parent type.

If a derived type is a record type and a representation clause is given for
that derived type, then a sequence of new discriminants and a seguence of new
record components are created for the derived type. If a representation clause
is not given for the derived record type then construction of the new sequences
is optional. Excluding sm comp rep, the values of all of the attributes in each
new COMP_NAME node will be the same as those in the corresponding node from the
parent type; sm comp rep will be the same only if no representation clause is
given for the derived type.

Certain members of class DERIVABLE_SPEC may represent generic formal types.
The attributes of these nodes reflect the properties of the generic formal
types, not those of the corresponding actual subtypes. For instance, the
sm size attribute of an array node corresponding to a generic formal array type
7s always void, reflecting the fact that a representation clause cannot be given
for a generic type. The value of this attribute implies nothing about the vaiue
of this attribute in the array node of a corresponding actual subtype. The
values of attributes having a uniform value when corresponding to gjeneric formal
types are discussed in the appropriate sections.

The sm derived attribute of a DERIVABLE_SPEC node representing a generic
formal type i1s always void, and sm is anonymous is always false.

3.3.1.1 PRIVATE_SPEC

The nodes in class PRIVATE_SPEC -- private and 1 private -- represent
private and limited private types, respectively. The attributes
sm discriminant s and sm type spec are defined for these nodes. The

sm discriminant s attribute references the sequence of discriminant declarations

DIANA Reference Manual Draft Revision 4 Page 3-27
SEMANTIC SPECIFICATION

introduced by the (limited) private type declaration; hence it may be empty.
The sm type spec attribute designates the full type specification (a node from
class FU[[_17FE_SPEC) unless the node corresponds to a generic formal private
type, in which case the value of sm _type spec is undefined.

A subtype or derived type declaration which imposes a new constraint on a
(limited) private type results in the creation of a constrained_record node if
the declaration occurs in the visible part or outside of the package; if the
declaration occurs in the private part or the package body then a node from
ciass CONSTRAINED or class SCALAR is created. The sm base type attribute of the
new node references the private or 1_private node associated with the type mark.

An attribute of type TYPE_SPEC that denotes a (limited) private type always
references the private or 1 _private node. Access to the associated full type
specification is provided by the sm type spec attribute of the PRIVATE_SPEC
node.

3.3.1.2 FULL_TYPE_SPEC

The class FULL_TYPE_SPEC represents types which are fully specified. The
node task_spec and the class NON_TASK comprise FULL_TYPE_SPEC.

The task_spec node represents a task type. A task type may be anonymous if
the reserved word "type" is omitted from the task specification, in which case
the task_spec node will be introduced by the sm obj type attribute of a
variable_id rather than the sm type spec attribute of a type_id.

The task_spec node defines five additional semantic attributes: sm decl s,
sm body, sm address, sm size, and sm storage size. The sm decl s attripute
denotes the sequence of entry declarations and representation clauses designated
by the as decl s attribute of the associated task_decl noge. The attrioute
sm body denotes the block_body node corresponding to the task becdy *f it is in
the same compilation unit; if not, sm body refers to the stub node if the stub
is in the seme compilation unit; if neither the body nor the stub is in the same
compilation unit, then sm body 1is void. Each of the remaining semantic
attributes (sm address, sm size, and sm storage size) denotes the EXP node of
the corresponding representation clause, if one exists; otherwise it is void.

3.3.1.2.1 NON_TASK

Class NON_TASK represents fully specified types which are not tasks. The
nodes in this class are used to denote both types and subtypes. The attribute
sm base type which is defined on this class references the base type -- a node
containing all of the representation information. The sm base type attribute of
a2 NON_TASK node representing a generic formal type always contains a
self-reference. The classes SCALAR, UNCONSTRAINED, and CONSTRAINED comprise
NON TASK.

DiANA Reference Manual Draft Revision 4 Page 3-28
SEMANTIC SPECIFICATION

3.3.1.2.1.1 SCALAR

The nodes in class SCALAR represent scalar types and subtypes. A scalar
subtype is denoted by the same kind of node as the type from which it is
constructed (unless it is constructed from a private type); however, a type may
always be distinquished from a subtype by the fact that the sm base type
attribute of a node corresponding to a type references itself,

The SCALAR class has an sm range attribute which references a node
corresponding to the applicable range constraint. In most cases this noce
already exists (the source code has supplied a constraint, or the range from the
appropriate predefined type is applicable); however, in certain instances a new
range node must be constructed.

A new range node is created for an enumeration node introduced by either an
enumeration type definition or a derived type definition which does not impose a
constraint. The as expl and as exp2 attributes of the range node denote
USED_OBJECT nodes corresponding to the first and last values of the enumeration
type. A new RANGE node is also created when more than one object is declared in
an object declaration containing an anonymous subtype with a non-static range
constraint. The subtypes of the objects do not share the same RANGE node in
this case; a new copy of the RANGE node is made for the new subtype of eazn
additional object in the declaration (if the constraint is static, the copy is
optional).

The attribute cd impl size which is defined on this class contains the
universal integer “value of the Ada attribute SIZE; it may be less than a
user-defined size.

The nodes in class SCALAR may also represent gereric formal scalar types.
The enumeration node represents a formal discrete type; the integer node a
formal integer type; the float node a formal floating point type; and the fixed
node a formal fixed point type. The sm range attribute for a generic formal
scalar type is undefined.

The node enumeration represents an enumeration type. If the type is not a
generic formal type then the sm literal s attribute references the sequence of
enumeration literals -- either the sequence denoted by the as enum Titeral s
attribute of the enumeration_def node or a new sequence of literals createa for
& derived type. If the enumeration node represents a generic forma! type then
sm literal s denotes an empty Sequence.

The integer node represents an integer type; it defines no attributes of
its own,

3.3.1.2.1.1.1 REAL

The nodes in class REAL -- float and fixed -- represent floating point
types and fixed point types, respectively. If the type is ot a generic formal
type the sm_accuracy attribute contains the value of the accuracy definition:
digits for the float node, and delta for the fixed node. The value of
sm_accuracy for a generic formal type is undefined. The fixed node defines an

)

”e

—t

VT

DIANA Reference Manual Draft Revision 4 Page 3-29
SEMANTIC SPECIFICATION

additional attribute, cd impl small, which has the value of the Ada attribute
SMALL.

3.3.1.2.1.2 UNCONSTRAINED

An unconstrained array, record, or access type is represented by a node
from class UNCONSTRAINED. The sm base type attribute of an array, record, or
access node always contains a self-reference. The sm size attribute which is
defined for this class references the EXP node given in a length clause for that
type; if no such clause is given then sm size is void.

The access node represents an unconstrained access type. An access type is
unconstrained if 1its designated type is an unconstrained array type, an
unconstrained record type, a discriminated private type, or an access type
having a designated type which 1is one of the above; otherwise, it is
constrained. A derived access type is unconstrained if its parent subtype is
unconstrained and the derived type definition does not contain an explicit
constraint.

The sm_desig type attribute denotes the TYPE_SPEC node corresponding to the
designated type -- an incomplete node, or a node from class UNCONSTRAINED or
class PRIVATE_SPEC (if sm desig type denotes an access node, then the
sm desig type attribute of that access node cannot refer to another access
node). The |YPE_SPEC node referenced by the sm desig type attribute of an
access node is never anonymous.

The access node also defines the attributes sm _storage size,
sm is controlled, and sm master. The sm storage size attribute denotes the EXP
node given in a length clause if one is applicable, otherwise it is void. The
attribute sm is controlled 1is of type Boolean, and indicates whether or not a
CONTROLLED pragma 1s in effect for that type.

The attribute sm maste- is defined only for those access types having a
task as a designated subtype. In those cases it references the master which
contains the corresponding access type definition. If the master is a proyram
unit then sm master denotes the declaration of the unit -- a task_decl,
subprog_entry_decl, or package_decl node. [f the master 1is a block then
sm master denotes a block_ master node, which contains a reference to the block
statement containing the access type def1n1t10n.

The array and access nodes may represent generic formal types, in which
case the sm size size attribute is void, sm storage size is void, sm is controlled is

false, and sm is packed is false.

3.3.1.2.1.2.1 UNCONSTRAINED_COMPOSITE

The class UNCONSTRAINED_COMPOSITE represents unconstrained composite types;
it is composed of the nodes array and record. Two Boolean attributes are
defined on this class: sm_is limited and sm_is packed. The attribute
sm is limited indicates whether or not the type has any subcomponents which are

DIANA Reference Manual Draft Revision 4 Page 3-30
SEMANTIC SPECIFICATION

of a limited type; sm_is packed records the presence or absence of a PACK pragma
for that type.

The array node defines two attributes of its own: sm index s and
sm comp type. The sm index s sequence represents the index subtypes (undefined
ranges; o¥ the array. The attribute sm comp type references a TYPE_SPEC node
corresponding to the component subtype; 1f the subtype indication representing
the component subtype imposes a new constraint then this TYPE_SPEC node is an
anonymous subtype.

The node record defines the attributes sm discriminant s, sm comp list, and
sm representation. The sm discriminant s attribute denotes the sequence of
discriminant declarations referenced by the as dscrmt dec) s attribute of the
type_decl node introducing the record type; this sequence may be empty. The
sm comp list attribute represents the component 1list, and the attribute
sm representation designates the representation clause for that record type; if
none 1s appiicable then sm representation is void.

3.3.1.2.1.3 CONSTRAINED

A constrained array, record, or access type is represented by a node from
class CONSTRAINED. The class CONSTRAINED defines the boolean attribute
sm depends on dscrmt, which is true for a record component subtype which depends
on @ discriminant, and false in all other cases. The sm derived attribute for a
constrained_array or constrained_record node is always void.

The constrained_array node defines an sm_index subtype s attribute which
denotes a sequence that does not correspond to source code. This sequence is a
semantic representation of the index constraint, and is derived from the
as _discrete range s sequence of the index_constraint node. The
sm_index subtype s sequence consists of integer and/or enumeration nodes, some
of which may be <created solely for this sequence. If a particular discrete
range is given by a type mark then a new node is not created to represent that
discrete range, the enumeration or integer node associated with the type mark 1s
used. Otherwise, a new enumeration or integer node is created to represent the
new anonymous index subtype.

The sm base type attribute of a constrained_array node always denctes an
array node. If the type is introduced by a constrained array definition then an
anoymous base type is created; i.e. the sm type spec attribute of the type_id
node or the smobj type attribute of the VC_NAME node denotes a
constrained_array ncle which has an anonymous array node as its base type. If
the constrained array definition 1is part of an object declaration then the
constrained_array node will be anonymous as well., The array node representing
the base type does not correspond to source code; its sm index s attribute is a
sequence of undefined ranges which also are not derived from source code. The
array node incorporates the information in the constrained array type definition
pertaining to the component subtype, and the constrained_array node retains the
constraint information.

[

-
[SNy

DIANA Reference Manual Draft Revision 4 Page 3-31
SEMANTIC SPECIFICATION

A constrained_record node has an sm _normalized dscrmt s attribute which is
a normalized sequence of the expressions given 1n the discriminant constraint.
No new nodes must be created in order to construct this sequence. The
sm_base type attribute of a constrained_record node may denote a node of type
record, pr%vate, of 1_private.

The constrained_access node represents a constrained access type or
subtype. Its sm desig type attribute denotes the designated subtype. If the
constrained_access node is introduced by either a type declaration in which the
subtype indication contains an explicit constraint, or a subtype declaration
that imposes a new constraint, then the designated subtype is a new anonymous
subtype. The sm base type attribute of a constrained_access node references an
access, private, or 1_private node.

The constrained_array and constrained_access nodes may represent generic
formal types, in which case the sm depends on dscrmt attribute is false.

o === S U W S—

uoy e yuasa s) ws
a’l\.. 1St tdwo) ws adA) dwo)d ws
' s JuBULWY ISP WS s xapuy ws
™ Ni023 Ae e
® [|
O e B F—
Y I
Q. -
| 43)50W WS
o) 3dA) Bysep ws
pawoed sy _ws | Py 03U0d BY WS
pPRywy | s} ws | UZyis @6RI03E WS
ILISOAN0) OINIVHISNOINN sse3Je
| |
Liows (dwy pd 8dA} 61Sep WS § JWIISP PAZ||ewiou WS 8 3DAQNS xIPpUL WS
Voo) poxy S39J08® pau|e.}SU0D PJOI®s pauyevIISUO)D Aesie pauRIISUOD
{ |) | I
- | - - |
Adeundde ws | S @9}y | ws |
TvIY uo | TNV Fr1.1 BT} |
| | | |
........................... |
- _ 1]
ozys” |dwy pd | o . | —
sbuw. ws | Jwad8p U0 spuedep ws | ezis ws
¥yvIvos QINTVHLISNOD QINIVHISNOINN
| | |
L g 0 —————
c |
=] | - _
...\|. | azys ofivio)s ws
— | 3zys ws
> | SSasppe ws
] A
o _ ~ | _Apoq ws
8dA) aseq ws [_ S (J9p ws
ﬂ WSVL NON 29ds ysey ojenrsd)| @3eAyad
o | | I |
m ||
| - _
— | . Jads adAy} _ws |
.110; | _ sTjveu wlIISLIP WS)
m — J33d4S IdJAL Ny J3dS ILVAIYd
m S | |
4 e e e e e m— e
©u _ |
ma snowAuoue sy ws | _
o w _ panysap ws | sTjuBuIWLIOBLD WS
ﬂ W 12947 {ESJBALUN pexy) (EsIaALUN 186a3U) |BSJBALU 334S” 31GVALY3O 930 |0wodu} pLOA
.- t i | : | | |
Y sy U IS U U S USSP S
ag = 1
[-
™ J3d5 3dA1L
23
x
—t Lo
owm

Naef

T T W ST ST

Section 3.4
TYPE_DEF

3.4 TYPE_DEF

The nodes in class TYPE_DEF represent the following constructs in the
source code:

(3a) a subtype indication
(b) the portion of a type declaration following the reserved word “is"

(c) the subtype indication or constrained array definition in an object
declaration

With the except1on of the nodes constrained_array def and subtype_indication,
the nodes in this class may be designated only by the as type def attribute of
the type_decl node.

This class contains numerous nodes which do not define attributes of their
own, their purpose being to differentiate the various kinds of type definitions.
The nodes private_def and 1_private_def correspond to private and limited
private type definitions,” respectively. The nodes formal_dscrt_def,
formal_integer_def, formal_float_def, and formal_fixed_def correspond to generic
formal scalar type definitions.

The node enumeration_def corresponds to an enumeration type definition; the
attribute as enum literal s denotes a sequence corresponding to the enumeration
literals given in the definition.

The node record_def corresponds to a record type definition; as comp list
is the component list given in the definition.

3.4.1 CONSTRAINED_DEF

The class CONSTRAINED DEF consists of nodes representing source code
containing a constraint, hence the attribute as constraint is defined on this
class.

The nodes integer_def, float_def. and fixed_def correspond to numeric type
definitions; the as constraint —attribute references a node represent1ng the
range constraint, floating point constraint, or fixed point constraint given in
the definition.

DIANA Reference Manual Draft Revision 4 Page 3-34
SEMANTIC SPECIFICATION

The subtype_indication node records the occurrence of a subtype indication
in the source code. [t is never designated by the as type def attribute of a
type_dec)l node; however, it may be referenced by the the as type def attribute
of an OBJECT DECL node; or by the as subtype indication attribute of a
subtype_decl, discrete_subtype, subtype_aTTocator, or ARR_ACC_DER_DEF node. The
as constraint attribute denotes the constraint given in “the subtype indication

there 1s no constraint then this attribute is void), and as name represents
the type mark.

3.4.2 ARR_ACC_DER_DEF

The class ARR_ACC _DER _DEF is composed of those nodes associated with type
definitions conta1n1ng “a subtype indication; in particular, array type
definitions, access type definitions, and derived type definitions. For an
array definition the as subtype indication attribute denotes a node
corresponding to the component subtype; for an access type definition
as subtype indication 1is the designated subtype; for a derived type definition

it 1s the parent subtype.

The nodes corresponding to array definitions each have an additiona)
attribute. The unconstrained_array_def node has an as_index s attribute which
denotes a sequence representing the undefined ranges given in the unconstrained
array definition. A constrained array definition is represented by the
constrained_array_def node, which has an as_constraint attribute corresponding
to the sequence of dlscrete ranges given in the definition (an index_constraint
node).

e R W WO wmm— - — e SR e S, PR

Page 3-35

DIANA Reference Manual Oraft Revision 4

SEMANTIC SPECIFICATION

_ s xepuy se JUIEISUOD SE
9D sS8dIe 40D AR.LI8 PR} BIISUOIUN $9p Agsa® pPBUY|BIISUOD J8p paa) sep

B B ~ aweu su
9P paxy))Bp w01} ap sebajyuy uoyjedpu adAigns

:o.«.o.ﬂc.loa>an:mla.|_ _ 1S4} dwod se jJujeasSUEd se | s 1mI9})| wWNuad se
430 ¥34G DIV HYvy $49p pJod9I pPLoA 430 OINIVHISNO) JOD UO | JesBWNUD

430 3IdAL

J8p poOX (ews0 AP 1BO| 4 (eWU0) JOp J8BDJU| |BWID) JBP JIDSP |ewIO4 B8P BieAjsd) jJop ajyeayud

_
430 3dAL

e

Section 3.5

CONSTRAINT

3.5 CONSTRAINT

The members of class CONSTRAINT represent discrete ranges and the various
kinds of constraints defined by the Ada programming language (this class is the
union of the Ada syntactic categories "discrete_range" and "constraint"). This
class consists of the nodes index_constraint and dscrmt_constraint, as well as
the classes DISCRETE_RANGE and REAL_CONSTRAINT.

The node 1index_constraint represents an array index constrdaint. The
attribute as discrete range s denotes a sequence of nodes representing the
discrete ranges.

A discriminant constraint is represented by a dscrmt_constraint node. The
as general assoc s attribute corresponds to the sequence of discriminant
associations (a sequence of nodes of type named and/or EXP).

3.5.1 DISCRETE_RANGE

The class DISCRETE_RANGE contains the node discrete_subtype and the class
RANGE .

A discrete subtype indication is represented by a discrete_subtype node.
The as subtype indication attribute references a node representing the subiype
indication itself.

[S9]
.
w

.1.1 RANGE

The nodes which comprise class RANGE -- range, range_attribute, and void --
represent ranges and range constraints. The context determines whether a node
belonging to class RANGE represents a range or a range constraint. I[f the node
is introduced by an as constraint attribute then it represents a range
constraint; otherwise it is simply a range.

The context also determines the vaiue of the sm type spec atiribute. Ffor a
RANGE node introduced by a subtype indication sm type spec refers to the SCALAR
node associated with the type mark. If the RANGE node is introduced by a type
definition or a derived type definition creating a new scalar type then
sm_type spec denotes the specification «f the new base type. Otherwise
sm_type spec designates the node correspcnding to the appropriate base t,pe, as

DIANA Reference Manual Draft Revision 4 Page 3-37
SEMANTIC SPECIFICATION

specified by the Ada Reference Manual. For instance, sm base type of a RANGE
node corresponding to a slice denotes the specification of the ;ndex type.

The range node corresponds to a range given by two simple expressions,
which are denoted by the attributes as_expl (the lower bound) and as exp2 (the
upper bound).

The range_attribute node represents a range attribute. The as name
attribute references the NAME node carresponding to the prefix, the attribute
as _used name id designates the attribute id node for RANGE, anc as exp denotes
the argument specifying the desired ~dimension (if no argu-=nt is given then
as_exp is void).

3.5.2 REAL_CONSTRAINT

The class REAL_CONSTRAINT contains the nodes float_constraint and
fixed_constraint, representing floating point constraints and fixed point
constraints, respectively. This class defines two sSstructural attributes:
as_exp and as_range. The as exp attribute references the node representing the
simple static expression for digits or delta. The attribute as range denotes
the range given in the constraint; it may be void for floating point constraints
and for fixed point constraints which do not correspond to fixed point type
definitions.

The nodes belonging to REAL_CONSTRAINT also have an sm type spec attribute.
If the REAL_CONSTRAINT node corresponds . to 3 subtype indication then
sm_type spec of the REAL_CONSTRAINT node and the corresponding RANGE node (if
there 1is one) denotes the type specification associated with the type mark, . If
the constraint is introduced by a real type definition or a derived type
definition then sm_type spec of the REAL_CONSTRAINT node anc tke RANGE ncce (¢
there is one) references the type specification of the new base type.

— SR SRS SRR ... S SRS SRS SN e SR SRS e S e S,

Page 3-38

DIANA Reference Marnual Draft Revision 4

SEMANTIC SPECIFICATION

A Pl

dxa e
pi1 aweu pasn se
awen” se

@3ngi a3 e sbue

) uoy eI puLl 3dAjyns se
IVIRIISUOD pany) JULEIISUOD B0) adAyqns aj)aisdsi1p

seds” adAy_ws “ “

sBues se | |
dws se |

INIVHLISNOD V3N

s Josse (paauab se |
JULEIISUO) JWIISP pPLoAa

AINIVYLISNOD

r= SR) oo] . s .

s afue. 8318.4)1%yp Se
JULRIISU0D XBPUY

DIANA Reference Manual Draft Revision 4 Page 3-40
SEMANTIC SPECIFICATION

3.6.1.1 RENAME_INSTANT

The nodes in class RENAME_INSTANT indicate that a subprogram or a package
has been renamed or instantiated. The meaning of the as name attribute which is
defined on this class depends on whether the node is a renames_unit node or an
instantiation node.

The node renames_unit represents the renaming of an entity as a subprogram
or a package. The attribute as name denotes the name of the original entity as
given in the renaming declaration. The valig values of as name are determinec
by the kind of entity being renamed; they are as follows:

(a) package selected or used_name_id

(b) procedure - selected or used_name_id

(c) function - selected or used_name_id

(d) operator - selected or used_op

(e) entry - selected or used_name_id or indexed

(f) enumeration literal selected or used_char or used_object_id

(g) attribute - attribute

The instantiation node signifies the instantiation of a generic subprogram
or package. The as name attribute designates a used_name_id or selected node
corresponding to the name of the generic unit, and the as general dassoc s
attribute denotes a possibly empty sequence of parameter associations (noges cf
type EXP and assoc). The sm dec)l s attribute of the instantiation nrcce ‘s 3
normalized 1list of the generic parameters, including entries for all gefault
parameters.

Declarative nodes are used to represent the actual parameters in the
sm decl s seguence. Each parameter has its own declarative node, and eacn
declarative node introduces a new SOURCE_NAME node. The lx symrep attribute of
eacn SOURCE_NAME node contains the symbcl representation of the gereric formg’
parameter; however, the values of the semantic attributes are determirec b, the
actual parameter. None of the new nodes created during the prccess of
constructing the sm decl s sequence represent source code.

The declarations are constructed as follows:

(a) For every generic forma® in parameter, a constant declaraticn is
created. The as_source name s sequence of the constant_decl noce
contains a single constant_id node. The as type def attribute is
undefined, and the as exp attribute designates either the actual
expression or the default expression of the generic parameter
declaration.

DIANA Reference Manual Draft Revision 4 Page 3-41
SEMANTIC SPECIFICATION

The sm first attribute of the constant_id node contains a
self-reference (it does not refer to the in_id of the generic formal
object declaration), sm renames obj is false, and sm obj type denotes
the TYPE SPEC node of the actual parameter (or default expression).
The attribute sm_init exp designates the same node as the as_exp
attribute of the constant_decl node.

(b) For every generic formal in out parameter, a renaming declaration is
created. The as source name attribute of the renames_obj_decl node
denotes a new variable_1d node, and the as_type mark name attribute is
undefined. The as name attribute designates the name of the actual
parameter as given in the generic actual part.

The attribute values of the variable_id are determined exactly as
if the declaration were a genuine renaming of the actual parameter as
the formal parameter (see section 3.2.2.3.2.1).

(c) For every generic formal type a subtype declaration 1is created. The
as source name attribute of the subtype_decl node designates a new
subtype_1d node which has an sm type spec attribute denoting the
TYPE_SPEC node associated ~with the actual subtype. The
subtype_indication node designated by the as subtype indicatior
attribute has a void as constraint attribute and an as name attribute
which represents the type mark of the actual subtype.

(d) For every generic formal subprogram, a new subnrogram declaration is
Created. The subprog_entry decl node is a renaming declaration,
therefore the as unit kind attribute denotes a renames_unit node which
references either the actual parameter or the appropriate default. The
as _header attribute denotes the HEADER node of the generic actual
parameter.

The as_source name attribute designates a new SUBPROG_NAME or
ENUM_LITERAL node, depending on the actual (or derault) parameter. The
kind of node and the values of its attributes (except for sm spec) are
determined precisely as if the declaration were an explicit renaming of
the actual entity as the formal subprogram (see sections 3.1.1.3.3.2.1
and 3.2.2.4.1.1.1). The sm spec attribute denotes the header of the
actual parameter rather than that of the generic forma®' grparamster
declaration.

Once the normalized declaration list is constructed the specification part
of the generic unit is copied; however, every reference to a formal parameter in
the original generic specification is changed to a reference to the
corresponding newly created declaration. In addition, 211 references to the
discriminants of a formal type are changed to denote the corresponding
discriminants of the newly created subtype (i.e. the discriminants of the
actual type). A1l references to the formal parameters of a formal subprogram
are changed to denote the corresponding parameters of the newly created
subprogram (i.e. the formal parameters of the actual subprogram). The value of
the as name attribute of a DSCRMT_PARAM DECL node is undefined in this copy of
the specification, as 1is the value of the as type def attribute of an
O0BJECT_DECL node.

DIANA Reference Manual Draft Revision 4 Page 3-42
SEMANTIC SPECIFICATION

The sm spec attribute of the procedure_id, function_id, or package_id
corresponding to the instantiated unit designates this new specification.

3.6.1.2 GENERIC_PARAM

The nodes in class GENERIC_PARAM are used to indicate that a subprogram is
a generic formal parameter. The nodes name_default, box_default, and no_default
comprise GENERIC_PARAM.

The name_default node signifies that a generic formal subprogram has an
explicitly gTven default. The as name attribute represents the name of the
default as given -- a node from class DESIGNATOR or an indexed node.

The node box_default indicates that a box rather than a name is given for
the default; it defines no attributes of its own.

The no_default node records the fact that no default is specified; it
defines no attributes of its own.

3.6.2 BODY

The class BODY represent unit bodies; it contains the nodes stub,
block_body, and void.

The stub node corresponds to a body stub; it defines no attributes of its
own, .

The block_body node represents the contents of either a proper body or a
block statement. It has three structural attributes -- as_item s, as_stm_ s, and
as alternative s -- corresponding to the declarative part, the sequence oOf
statements, and the exception handlers, respectively.

SIS SERERE SRR r AN AR

Page 3-43

DIANA Reference Manual Oraft Revision 4

SEMANTIC SPECIFICATION

sweu se
1inejep ou 1inejap xoq 1ine ap aweu

| _
8 9ALRUIB} | SE |
s w8 se |

s we)| se |

s sosse’

e e

AGNIX LINN

s |Jup ws
{e13uab se

uol e U ISUYL Jrun_ saweual

aweu se
PLOA
ANVISNI 3NVYNiY

jenba ws
ba jou” 3yt 1dwy

Apoq w2019 anis Wydvd I 1MINID
i | | 1
{ _
| QAL IIP WS
AQQ8 60.UQNS” Pany 13p
| [
1
75307 LINN
. —| - ’ -) N . .

Section 3.7

HEADER

3.7 HEADER

The nodes in class HEADER contain all of the information given in the
specification of a subprogram, entry, or package except for the name of the
entity. HEADER contains the noce package_spec and the class SUBP_ENTRY_HEADER.

A HEADER node corresponding to either the renaming of a package or an
instantiation will contain no information; i.e. any sequence attributes will
denote empty sequences and any class-valued attributes will be void.

The node package_spec represents the declarative parts of a package
specification. [t bhas two semantic attributes -- as decl sl and as decl s2 --
corresponding to the visible and private parts of the specification,
respectively. Either or both of these sequences may be empty.

3.7.1 SUBP_ENTRY_HEADER

The nodes in class SUBP_ENTRY_HEADER record the information given in the
formal part of a subprogram or entry declaration. This class defines an
attribute as param s which denotes a possibly empty sequence of parameter
specifications. The nodes procedure spec, function spec, and entry comprise
SUBP_ENTRY_HEADER. - ‘ -

The node function_spec has an additional attribute, as name, representing
the type mark given in the function specification. [f the function_spec
corresponds to the instantiation of a generic function then as name is void;
otherwise it designatas a used_name_id or a selected rcde.

The entry node has the attribute as discrete range, denoting the discrete
range given in the entry declaration. I[f the declaration introduces a single
entry rather than an entry family then as discrete range is void.

Page 3-45

DIANA Reference Manual Oraft Revision 4

SEMANTIC SPECIFICATION

T T T L e -—

e6ues 932425 p sE€ sweu se
Aa2yue J8ds U0 IIUN} 29ds asnpasroud
l d I

zs_|129p se . i
-nl.uuu se w|Es;an|zm | _
Jeds eGeywaed ¥3av3IH AHINI dGnS

t |

|
HIAVIH

-

Section 3.8
GENERAL_ASSOC

3.8 GENERAL_ASSOC
The class GENERAL_ASSOC represents the following kinds of associations:
(a) parameter
(b) argument
(c) generic
(d) component

(e) discriminant

The classes NAMED_ASSOC and EXP comprise GENERAL_ASSOC. If the association
is given in named form then it is represented by a node from class NAMED_ASSOC;
otherwise it is denoted by a node from class EXP. :

3.8.1 NAMED_ASSOC

The NAMED_ASSOC class contains two nodes -- named and assoc. It defines an
attribute as exp which records the expression given in the association.

The assoc node corresponds to associations which contain a single name;
i.e. parameter, argument, and generic associations. The as used name attribute
represents the argument identifier or (generic) formal parameter given in the
association.

The node named represents associations that may contain more than one
choice -- component associations (of an aggregate) and discriminant associations
(of a discriminant constraint). It defines an as choice s attribute which
references a sequence of nodes representing the choices or discriminant names
given in the association. The simple names of components or discriminants that
occur within associations are represented by used_name_id nodes rather than
used_object_id nodes.

DIANA Reference Manual Draft Revision 4 ' Page 3-47
SEMANTIC SPECIFICATION

3.8.2 EXP

The EXP class represents names and expressions; its three components are
NAME, EXP, and void.

Certain names and expressions may introduce anonymous subtypes; i.e.
slices, aggregates, string literals, and allocators. The anonymous subtype is
represented by a constrained_array or a constrained_record node, and s
designated by the sm exp type attribute of the expression introducing it.
Anonymous index subtypes (for an anonymous array subtype) are introduced by
discrete ranges which are .ot given by type marks. Subsequent sections will
discuss in further detail the circumstances which produce an anonymous Ssubtype,
as well as the representation of the subtype.

3.8.2.1 NAME

The class NAME represents used occurrences of names; it contains thre
classes DESIGNATOR and NAME_EXP, and the node void.

3.8.2.1.1 DESIGNATOR

The nodes in class DESIGNATOR correspond to wused occurrences of simple
names, character 1literals, and operator symbols. DIANA does not require that
each ysed occurrence of an identifier or symbol be represented by a distinct
node (although it does allow such a representation); hence it is possible for a
single instance of a node corresponding to a used occurrence to represent all of
the logical occurrences of the associated identifier. Used occurrences ¢f nams:
numbers which occur in certain contexts are an exception to the previcaes
statement; see section 3.8.2.1.1.1,

DESIGNATOR consists of the classes USED OBJECT and USED_NAME, and defir:s
the attributes sm defn and 1x_symrep. The sm defn attribute references the
DEF_NAME node corresponding to the defining occurrence of the entity (if tne
entity is predefined the OEF NAME node is not accessable through structural
attributes). The 1x symren attrThute i< the string representatinn A the nar:
of the entity.

3.8.2.1.1.1 USED_OBJECT

The class USED_OBJECT represents appearances of enumeration Tliterals,
objects, and named numbers. The sm defn attribute of a node from this class
denotes a node from class OBJECT_NAME.

USED_OBJECT defines the attributes sm exp type and sm value. The
sm exp type attribute denotes the subtype of the entity; 1i.e. “the node
designated by the sm obj type attribute of the defining occurrence of the
entity. The sm value attribute records the static value of a constars sczalar
object; if the entity does not satisfy these conditions then sm value has a

DIANA Reference Manual Draft Revision 4 Page 3-48
SEMANTIC SPECIFICATION

distinguished value indicating that it is not evaluated.

The nodes used char and used _object_id constitute this class; together they
represent the used occurrences of all the entities having defining occurrences
belonging to class OBJECT_NAME. The used_char node represents a used occurrence
of a character literal; a used _object_ id node represents the use of an object,
an enumeration literal denoted by an identifier, or a named number. The sm defn
attribute of a used_char node references a character_id, the sm defn attribute
of a used_object_id may designate any node from class UBJECT NAME except for a
character_id.

Although the names of objects most often occur in expressions, the names of
certain objects -- those of record components (including discriminants) and
parameters -- may also occur on the left-hand side of named associations: these
instances are represented by used_name_id nodes rather than used_object_id
nodes.

The use of the new name of an enumeration literal renamed as a function is
represented by a used_char or used_object_id node rather than a function_call
node.

[f a used_object_id correspcnds to a named number, and the use representecd
by the used obJect id occurs in a context requiring an implicit type ccnversion
of the named number, then the sm exp type attribute of the wused_object_id
denotes the target type rather than a universal type. This means that it is not
always possible for a single used occurrence of a named number to represent all
used occurrences of that named number; however, a single used occurrence having
a particular target type CAN represent all used occurrences of that named number
requiring that particular target type.

3.8.2.1.1.2 USED_NAME

The class USED_NAME represents used occurrences of identifiers or s,mud’s
corresponding to entities which do not have a value and a type. [t contains the
node used_op and used_name_id.

The rcce used_op -eoresents the use of an operator symbcl, he-ie its
sm_defn attribute denctes either an operator_id o~ a bltn_operator_id.

A used_name_id node represents a use of the name of any of the remaining
kinds of entities. [t may also record the occurrence of the simple name of a
discriminant, a component, or a parameter on the Jleft-hand side of a named
association (however, it does not denote a used occurrence of such an object in
any other context). Excluding this special case, sm defrn may reference ary
member of class DEF_NAME except for an operator_id, a bltn_operator_id, or a
member of class OBJECT NAME .

DIANA Reference Manual Oraft Revision 4 Page 3-49
SEMANTIC SPECIFICATION

3.8.2.1.2 NAME_EXP

The nodes 1in class NAME_EXP represent names which are not simple
identifiers or character symbols; i.e. function calls and names having a
prefix. The attributes as name and sm exp type are defined for the nodes in
this class. The as_name attribute represents either the name of the functior or
the prefix.

If the NAME EXP node corresponds to an expression then sm exp type
corresponds to the subtype of the entity, otherwise it is void. The o~y
NAME_EXP nodes which can possibly have a void sm exp type attribute are thre
indexed, attribute, and selected nodes.

The node all represents a dereferencing; i.e. a selected component formeg
with the selector "all". The as name attribute corresponds to the access
object, and sm exp type is the designated subtype.

The indexed node represents either an indexed component or a reference tc a
member of an entry family. For an indexed component the as exp s attribute
denotes a sequence of index expressions, as name 1is the array prefix, and
sm exp type is the component subtype. The as exp s attribute of an entry family
member 1S a one-element sequence containing the entry index; as name s tre
entry name, and sm_exp type is void.

A slice is represented by a slice node. The as name attribute denotes the
array prefix and the as discrete range attribute is the discrete range.

The sm exp type attribute denotes the subtype of the slice. The subtype of
a slice 1s anonymous unless it can be determined statically that the bounds of
the slice are identical to the bounds of the array prefix, in which -case the
sm_exp type attribute of the slice node 1is permitted to reference tre
constrained_array node associatec with the array prefix. Otnerwise, ar
anonymous subtype is <created for the slice node. The anonymous subtype is
represented by a constrained_array node having the same base type as that of tre
array prefix; however, the constraint is taken from the discrete range giver in
the slice.

3.8.2.1.2.1 NAME_VAL

The class NAME_VAL contains NAME_EXP nodes which may have a static value,
consequent1y the sm value attribute s defined for the nodes in this class. If
the value is not static, sm value has a d1st1ngu1shed value indicating that the
expression is not evaluated. NAME _VAL comprises the nodes attribute, selected.
and function_call.

The node attribute corresponds to an Ada attribute other than a RANGE
attribute (which is represented by a range_attribute node). The DIANA attribute
as name denotes the prefix, as used name references the attribute id
corresponding to the given attribute name, and as as_exp is the universal static
expression. If no universal expression is present then as exp is void.

T

DIANA Reference Manual Draft Revision 4 Page 3-50
SEMANTIC SPECIFICATION

The value of the sm_exp type attribute of an attribute node depends on the

kind of Ada attribute 1t represents, as well as the context in which it occurs.

o~ [f the attribute node represents the BASE attribute then sm exp type 1is void.

If the Ada attribute returns a value of a universal type, and that value is the

object of an implicit type conversion (determined by the context), then

sm exp type references the target type. Otherwise sm exp type denotes the

T TVFI’%F?C—ﬁode corresponding to the type of the attribute as specified in the
Ada Reference Manual.

other than the reserved word "all" (this includes an expanded name). The
as name attribute denotes the prefix, and as designator corresponds to the
selector. [f the selected node represents an object (1.e. an entity having a
value and a type, for instance a record component) then sm exp type 1is the
subtype of the object; otherwise it is void.

l. . The node selected represents a selected component formed with any selector

A1l function calls and operators are represented by function_call nodes,
with the exception of the short circuit operators and the membersh1p operators.

The as name attribute denotes the name of the function or operater -- a
used_name_id, used_op, or selected node. The 1x prefix attripute records
whether the function call is given using infix ~or profix notation. The

as general assoc S attribute is a possibly empty seguence of parameter
associations (nodes of type EXP and assoc); sm normalized param s is a
normalized 1list of actual parameters, 1including any expressions for default
parameters. The sm exp type attribute denotes the return type. If the function
call corresponds to a predefir.d operator then sm exp type references the
appropriate base type, as specified in section 4.5 of the Ada Reference Manual.

Although the use of an enumeration literal is considered to be eguivalent
to a parameteriess function call, it 1is represented by a used_char or
used_object_id node rather tnan a functlon call node (this includes the use of
an enumeration litera’) reramed as a funct1on) However, the use of an atir‘bute
renamed as a function is represented by a function_call node, not an attribute
node.

3.8.2.2 EXP_EXP
The class EXP EXP reprogents evpressions which 3are nnt ngrec, The
.y attribute sm exp type which is defined on this cidss denotes tne TYPE SPEC noce
corresponding to the subtype of the expression. EXP_EXP contains the noaues
qualified_allocator and subtype_allocator as well as the classes AGG EXP and
EXP VAL. -

The nodes qualified_allocator and subtype_allocator represent the twc forms
of allocators. Each. node has the appropriate structural attribute --
- as _qualified or as_subtype indication -- to retain the information given in the

allocator. The sm exp type attribute denotes the TYPE_SPEC node corresponding
to the subtype of the access value to be returned, as determined from “he
context. The subtype_allocator defines an add1t1ona1 attribute, sm desig type,
e which denotes a TYPE_SPEC node corresponding to the subtype of the object
created by the allocator. [f the subtype indication Zortams ar evp i ¢it
constraint then sm desig type denotes a new TYPE_SPEC node corresponding to the

DIANA Reference Manual Draft Revision 4 Page 3-51
SEMANTIC LPECIFICATION

anonymous subtype of the object created by the allocator.

3.8.2.2.1 AGG_EXP

The AGG_EXP class represents aggregates and string literals; it is composed
of the nodes aggregate and string_literal. The aggregate node may represent an
aggregate or a subaggregate. The string_literal node represents a string
literal (which may also be a subaggregate if it corresponds to the last
dimension of an daggregate corresponding to a multidimensional array of
characters).

The class AGG_EXP defines an sm discrete range attribute to represent the
bounds of a subaggregzete; sm discrete range is void for a node representing an
aggregate. The sm_exp type attribute of a node corresponding 10 an aggregate
denotes the subtype of the aggregate; it is void for a subaggregate. 7JThis
implies that in an aggregate or string_literal node exactly one of these two
attributes is void.

I[f sm exp type is not void, 1t designates a constrained_array or
constrained_record node corresponding to tre subtype. An aggregate or a String
riteral has an anonymous subtype unless it can be determined statically that tne
constraints on the aggregate are identical to those of the subtype obtained from
the context, in which case sm _exp _type may (but does not have to) reference the
node associated with that subtype.

If the aggregate has an anonymous Subtype it is constructed from the base
type of the context type and the bounds as determined by the ruies in the Ada
Reference Manual. If the bounds on the subaggregates for a particular dimension
of a multidimensional aggregate are not the same (a situation which »ill result
in @ CONSTRAINT ERRCR during execution) DIANA does not specify the .utaggregaste
from which the bounds for the index constraint are taken.

The string_literal node defines only one additional attribute, 'x symrepn,
which contains the string itself.

The aggregate node has two different representations of the seguence of
component associations; both may contain nodes of type named arc EXP. Tne
as generadl assoc_s attribute dernotes the sequence Jf cComocnent isscciatiens 1S
given; sm normalized comp s s a sequence of normalized comporent associations
which are not necessarily in the same form as given, for the followirg reasons:

(a) Each named association having multiple choices is decomposed intc
separate associations for the sm_normalized comp_s seguence, one for
each choice in the given associaticn; hence the as choice s seguencze c*
a named node in the normalized 1ist contains only one element. The
manner in which this decomposition is done is not specified, the orl:
requirements being that the resulting associations be equivalent, and
that each association be either the component expressicon itself or a
named association with only one choice. Consider the array aggregate

(11213=>10)

B —_

J DIANA Reference Manual Draft Revision 4 Page 3-52
SEMANTIC SPECIFICATION
-
The named association could be broken down in such a way that the
sm normalized comp s sequence appeared as if it came from any of the

tfollowing aggregates:

(1=>10,2=>10, 3=>10)
-, (1..3=>10)
’ (10, 10, 10)

r~

In the process of normalizing the component associations new named
nodes may be created, and duplication of the component expressions is
optional. For the remainder of this section all named componrent
associations will be treated as if they had only one choice.

(b) For a record aggregate, if a choice is given by a component name then

the component expression rather than the named node is inserted in the

v - proper place in the sequence, hence the normalized sequence for a
record aggregate is actually a sequence of EXP nodes.

(c) In an array aggregate an association containing a choice which s a
simple expression may be replaced by the component expression if it can
be determined statically that the choice belongs to the appropriate
index subtype (this substitution is optional).

(d) A named association with an "others" choice is not allowed in the
sm normalized comp § sequence. For each component or range of
components denoted by the "others" either a component expression is
inserted in the proper spot in the sequence, Or a new named node is
created containing the appropriate range.

Oue to some of the changes mentioned above it s possible for the
sm normalized comp s sequence of an array aggregate to contain a mixture of EXP
and named nodes.

3.8.2.2.2 EXP_VAL

The EXP_VAL cliass contains nodes representing expressions which may have
static values, hence the sm value attribute is defined for the nodes in this
class. If the value is not static then sm value has & distinguished value which
indicates that the expression is not evaluated.

s

A numeric literal is represented by a numeric_literal node. It has an
attribute 1x numrep containing the numeric representation of the literal. If
the literal is the object of an implicit conversion then sm exp type denotes the

- target type rather than a universal type.
The null access node corresponds to the access value NULL; it defines no
| — attributes of its own. Although a distinct null access node may be created for
each occurrence of the access value NULL, DIANA also permits a single

null?access node to represent aii occurrences of the literal NULL for tngt
particular access type.

YT

DIANA Reference Manual Draft Revision 4 Page 3-53
SEMANTIC SPECIFICATION

The node short_circuit represents the use of a short circuit operator. The
as _short circuit op attribute denotes the operator (and_then or or_else);
as expl and as_expl represent the expressions to the left and right of the
operator, respectively.

3.8.2.2.2.1 EXP_VAL_EXP

The class EXP_VAL_EXP defines an as_exp attribute; it comprises the node
parenthesized and the classes MEMBERSHIP and QUAL_CONV.

The parenthesized node represents a pair of parentheses enclosing an
expression. The as exp attribute denotes the enclosed expression, sm value i$
the value of the expression if it is static, and sm exp type is the subtype of
the expression. A parenthesized node can NEVER be denoted by a semantic
attribute, nor can it be included directly in a sequence that 1is constructed
exclusively for a semantic attribute (such as a normalized sequence); the node
representing the actual expression is referenced instead.

3.8.2.2.2.1.1 MEMBERSHIP

The class MEMBERSHIP represents the use of a membership operator. The
attribute as exg records the simple expression, and the as membership attribute
denotes the applicable membership operator (in_op or not_in). MEMBERSHIP
contains two nodes: range_membership and type_membership. Each contains the
appropriate structural attribute to retain the type or range given in the
expression. .

3.8.2.2.2.1.2 QUAL_CONV

The nodes in class QUAL_CONV -- qualified and conversion -- correspond to
gualified expressions and explicit conversions, respectively. The as exp
attribute denotes the given expression or aggregate, and as name references the
node associated with the type mark. The sm exp type attribute denotes tre
TYPE_SPEC node corresponding to the type mark.

Page 3-54

4

:

1sion

DIANA Reference Manual Draft Rev

SEMANTIC SPECIFICATION

[TFL FL T
s wesud pez)|Wwiou WS
s 20889 | ¥I0UE6 sE J0jRuBysap s
1199 woy 3ouny pPajyIa|as

o6ue. 9318133 1p SE anjea ws |
ey s IVA INVYN

s dxo se

_ |

adA3} duo ws |

sweu se |
dX3 3INVYN

aweu pesn se s ajyoyd se
J0sse paweu

J0SSV Q3NVN

py ¥dafqo pasn eyl pasn do’ pasn Py ewwu pasn
| i | |
B} | |
dwve se | J
Py swwu pasn se] |
ainyL a2y e i]
| | |
........... _ |
.. | |
v:.ﬂ>-Em | _
“8dAy dxa ws | 1
pPaxspuy tie 123re0 a3isn ANVYN g3IsN
. | [|
’ _ |
daswAs x| |
ujap ws |
pPLOA BO1YND1S30

abed jvau ads mo | a 39S
{ bl (moy
K3 dx3 proa INVYN

!

JOSSY IvHINID

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

W ST 2T 2 e aaaa—w

abue.” se
diyssaquaw ebues

|
dIHSHYIANIN

— T T
u
un
[
™
Y]
o
~
Q.
aweu se
pPajrLiend U0 | SJ3AUOD diysiaquaw adA)
I | |
| . -
sweu se .- do diyssaquaw se |
pazseyjussed ANOD YNO
t |

- |

zdre se |

do 3ynduy3 jaoys se |

{dxa” se dxa se | daswnu x|

ssaj’de | nu IENISY I JI0YyS

|

| .

| QogEum LX)
_ _ugweo_m:_s.m
_
_
_

adA) 6i1sap ws
uoy @3y puy adAgns” se
1031930 e adAjqns

snjenws | patjiendb se

VA dx3

adA) due ws 1
d%x3 d4d%3

J03830| (e Pajsyiendb

tesayty Dt 43wy

s dwoD PBzy | PWIOU WS
s J0sse® jeI1audb se
a2 ebasb6e

aBue.s a12.0syp ws |

dx3 99v

Section 3.9
STM_ELEM

3.9 STM_ELEM

The class STM_ELEM contains nodes representing items which may appear in a
sequence of statements; i.e. nodes corresponding to statements or pragmas.

The node stm_pragma represents a pragma which appears in a sequence of
statements. [ts only non-lexical attribute, as pragma, designates a pragma
node.

3.9.1 STM

A node from class STM represents an Ada statement. Some of the STM nodes
are grouped together because they are similar in their structure to other nodes
in the class; the manner in which these nodes are classified does not imply any
semantic similarity.

The node null_stm represents a NULL statement; it defines no attributes of
its own. o :

The node labeled represents a labeled statement. The as source name S
attribute denotes a sequence of label names (label_id nodes). These label names
are defining occurrences, hence the labeled node serves as a “declaration” for
the associated labels. The as pragma s attribute represents the pragmas
occurring between the 1label(s) and the statement itself; it designates a
possibly empty seguence of pragma nodes. The as stm attribute denotes the
actual statement, it may reference any type of STM node other than another
labeled node.

The accept node represents an accept statement. The as name attribute
records the entry simple name; it may denote either a used_name_id or an indexed
node, depending on whether or not the entry is a member of an entry family. The
attr’ .:te as param $ denotes a possibly empty sequence of nodes from class PARAM
corresponding to the formal part. The as_stm s attribute is a possibly empty
sequence representing the statements to be executed during a rendezvous.

The abort node represents an abort statement. The as name S attribute is a
sequence of nodes corresponding to the task names given in the abort statement.

The node terminate corresponds to a terminate statement; it defines no
attributes of its own.

DIANA Reference Manual Draft Revision 4 Page 3-59
SEMANTIC SPECIFICATION

The node goto represents a goto statement. The as name attribute
corresponds to the label name given in the statement.

The raise node represents a raise statement. The attribute as _name denotes
the exception name, if specified; otherwise it is void.

3.9.1.5.1 CALL_STM

The class CALL_STM represents procedure calls and entry calls; it comprises
the nodes procedure_call and entry_call. CALL_STM defines two attributes:
as general assoc s and sm normalized param s. The attribute as_general assoc s
denotes a possibly empty sequence containing a mixture of assoc and EXP nodes
representing the parameter associations. The sm normalized param s attribute
designates a possibly empty sequence corresponding to a normalized list of
actual parameters.

A call to an entry that has been renamed as a procedure is represented by &
procedure_call node rather than an entry_call node.

hems ssssn 2 sfess

Page 3-60

4

1sion

DIANA Reference } znual Draft Rev

SEMANTIC SPECIFICATION

BTN

wis ws
yr1ud apod ub sse
| | |
- , - |
_ $ IALjvIIId) R SE sweu se |
11e3 Aujua 11e2 sanpadoad Aeyap ased INYN IX] HLIM WAS BRLIY- ¥
| | i | | |
| |
- _ - |
8 wesed pazy|ewsou ws |
s J0sse (PIaUab se |
LI Ty N NiS 1VD o306 Asyua pawt) Ai1yua puoud

s m}s se
uotjesdyy se Apoq w204 se

Y j1en BAag)d0 188 . Jdooy wooq
| | l |
S - |
_ _ S W)s se _ Zs_wyis_se |
aweu s@ s we|d asne |2)sd) se | dva”se _ 1s wys” se_ awru g3unos se |
AWYN HLIM WS WiS SISV dX3 Hilm WAS NLS AULING d001 %3018
| | | | |
l
nNiS
s ws se w)s se
s wesed se s ewbivid se
s aweu se aweu s€ s “sweu alzunons se
PjeLIWID) ysoqe Waioe pa e} wiys nu
i [| | [
|
WisS
ewbeud se o (mojaq ass)
ewbead wys nis
| |
1
N33 WiS
D 4 “ ' : ’ \ Y

Section 3.10

MISCELLANEOUS NODES AND CLASSES

3.10 MISCEZLLANEQUS NODES AND CLASSES
3.10.1 CHOICE
A node from class CHOICE represents either the use of a discriminant simple

name in a discriminant association, or a choice contained in one of the
following: :

(a) a record variant

(b) a component association of an aggregate
(c) a case statement alternative

(d) an exception handler

Nodes in this class may appear only as a part of a sequence of choice nodes.
CHOICE comprises the nodes choice_exp, choice_range, and choice_others.

The node chaoice_exp represents a choice that is a simple name or an
expression; it has a single structural attribute -- as exp. If the choice_exp
node corresponds to a simple name (that of a discriminant, & component, or an
exception) then as exp references a used_name_id node. Otherwise, choice_exp
must represent a choice consisting of a simple expression, which is represented
by a node from class EXP.

A choice which is a discrete range is represented by @ choice_range node.
The as discrete range-attribute references the discrete range. :

A choice_others node corresponds to the choice “others"; it defines no
attributes of its own.

3.10.2 [ITERATION

The members of class ITERATION -- while, FOR_REV, and void -- represent the
jteration schemes of a Jloop (void corresponds to the absence of an iteration
scheme). These nodes are introduced by the as iteration attribute of a 1loop
node.

DIANA Reference Manual Draft Revision 4 Page 3-62
SEMANTIC SPECIFICATION

The while node represents a “while" iteration scheme. The as exp attribute
denotes a node representing the given condition.

3.10.2.1 FOR_REV

The FOR_REV class represents a "for" iteration scheme. If the reserved
word "reverse" appears in the loop parameter specification then the iteration is
represented by a reverse node: otherwise it is denoted by a for node. The
as_source name attribute designates an iteration_id corresponding to the
defining occurrence of the loop parameter. The as discrete range attribute
represents the discrete range.

3.10.3 MEMBERSHIP_OP

The class MEMBERSHIP_OP consists of the nodes in_op and not in. These
nodes are introduced by the as membership op attribute of a MEMBERSHIP node,
their function being to indicate which operator is applicable.

3.10.4 SHORT_CIRCUIT_OP

The nodes in class SHORT_ CIRCUIT OP -- and_then and or_else -- serve to
distinguish the two types of short- circuit expressions. They are introduced by
the as_short circuit op attribute of the short_circuit node.

3.10.5 ALIGNMENT_CLAUSE

The class ALIGNMENT_CLAUSE represents the alignment clause portion of a
record representation Cclause. It is composed of the nodes alignment and void
(void corresponds to the absence of an alignment clause).

The alignment node contains the attributes as pragma s arc &s exp. The
former is a possibly empty sequence Of pragma nodes corresponding to the pragmas
occurring between the reserved word "record” and the alignment clause. The
as exp attribute refers to the node associated with the static simpie
expression.

3.10.6 VARIANT_PART

The VARIANT_PART c1ass represents the variant part of a record type
definition; it contains the nodes variant _part and void (void corresponds to tne
absence of a variant part).

H
L) DIANA Reference Marnual Draft Revision 4 Page 3-63
SEMANTIC SPECIFICATION
i The variant_part node defines the attributes as name and as variant s. The
as name attribute references a used _object_id corresponding to the discriminant
- simpTe name; as variant s is a sequence containing at least one variant node and
‘ possibly variant_pragma nodes.
Lo]
3.10.7 TEST_CLAUSE_ELEM
- The class TEST_CLAUSE_ELEM represents alternatives for an if statement or a
B selective wait statement.” It contains the node select_alt_pragma and the class
a TEST_CLAUSE. These nodes may appear only in a test_clause_elem_s seguence.
B The node select_alt_pragma represents a pragma which occurs at a place
‘ where a select alternative is allowed. It may appear only in a
test_clause_elem_s sequence of a selective_wait node. The as pragma attribute
denotes the pragma itself.
3.10.7.1 TEST_CLAUSE
A TEST_CLAUSE node (cond_clause or select_alternative) represents a
condition and sequence of statements occurring in an if statement or a selective
wait statement. The as exp attribute corresponds to the condition, and the
as stm s attribute to the sequence of statements. The cond_clause node may
appear only in a test_clause_elem s sequence of an if node, and the
select alternative node “may occur only in a test_clause_elem_s sequence of a
selectwve wait node.
3.10.8 ALTERNATIVE_ELEM
The class ALTERNATIVE ELEM represents case statement alternatives,
exception handlers, and pragmas which occur at a place where either of the
previous items are allowed. The nodes alternative and alternative_pragma
constitute ALTERNATIVE_ELEM; they may occur only as members of alternative_s
sequences.
l" The alternative_pragma node has a single structural attribute, as pragma,

which denotes the pragma.

[) The alternative node contains two non-lexical attributes: as choice s and
as stm s. For a case statement alternative the as choice s sequence may contain
any of the nodes belonging to class CHOICE: however, for an exception handler
the sequence 1is restricted to containing choice_exp and choice_others nodes.

P The as stm s attribute represents the seguence of statements given in the
alternative or handler.

|

DIANA Reference Manual Draft Revision 4 Page 3-64
SEMANTIC SPECIFICATION

3.10.9 COMP_REP_ELEM

The class COMP_REP_ELEM consists of the nodes comp_rep and comp_rep_pragma,
which may appear only in the as comp rep s sequence of a record_rep node.

The comp rep node represents a component representation clause. The
as name attribute references a used_object_id corresponding to the component
simple name, as exp represents the static simple expression, and as range
denotes the static range.

A pragma that occurs at the place of a component clause is represented by a
comp_rep_pragma node; as pragma denotes the pragma.

3.10.10 CONTEXT_ELEM

The nodes in class CONTEXT_ELEM represent items which may appear at a place
where a context clause 1is allowed. They may occur only as members cf the
context_elem_s sequence of a compilation_unit node.

The with node represents a with clause and any subsequent use clauses and
pragmas. The as_name s attribute is a sequence of wused_name_id noages
corresponding to the 1ibrary unit names given in the with clause. The
as use pragma s attribute is a possibly empty sequence which can contain nodes
of type use and pragma.

The context_pragma node has a single non-lexical attribute, as pragma,
which denotes the pragma.

3.10.11 VARIANT_ELEM

The nodes in class VARIANT ELEM correspond to items which may apcear at a
spot where a variant is allowed. These nodes are contained in the seguence
denoted by the as variant s attribute of the variant_part node.

The variant node has two structural attributes: as chcize g arc
as_comp list. The as choice s attribute is a sequence representing The choices
applicable to that particular variant; as comp list corresponas 0 ine Comparent

1ist.

The sole non-lexical attribute of the variant_pragma node is as pragma,
denoting the pragma.

3.10.12 compilation

The node compilation corresponds to a compilation; it defines the attribute
as compltn unit s, a possibly empty sequence of compilation_unit nodes.

4*

DIANA Reference Manual Draft Revision 4 Page 3-65
SEMANTIC SPECIFICATION

3.10.13 compilation_unit

A compilation_unit node represents an item or items which may appear at a
place where a compilation unit is allowed; i.e. it may represent a compilatior
or a sequence of pragmas.

A compilation_unit node represents a sequence of pragmas only when a
compilation consists of pragmas alone. In this case the as context elem s
sequence is empty, the as all dec] attribute is void, and as_pragma s denotes
the sequence of pragmas which constitute the compilation.

For a coubilation unit node correspondir; to a compilation unit the
‘,“ as_context elem s attribute is a possibly empty sequence representing the

context clause and any pragmas preceding the compilation unit. The as all dec!
. attribute denotes the library unit or the secondary unit, which may be
1 represented by one of the following: a node belonging to class UNIT_DECL, a
: subunit, a subprogram_body, or a package_body. The as_pragma s attribute
denotes the pragmas which follow the compilation unit and do not belong to a
i subseqguent compilation unit. The pragmas allowed to appear in this seguence
include INLINE, INTERFACE, LIST, and PAGE. LIST ang PAGE pragmas which occur
between compilation units but after any INLINE or INTERFACE pragmas may appear
in either the as pragma s sequence of the preceding compilation unit or the

as_context elem s sequence of the succeeding compilation unit.

3.10.14 comp_list

A record component 1list is represented by a comp_list node, which contains
three structural attributes: as decl! s, as_variant part, and as_pragma s. The
as_decl s attribute designates a sequence corresponding to either a series of
component declarations ¢r the reserved word “null", The attribute

. as variant part denotes the variant part of the record, if one exists. The
as _pragma s attribute records the occurrence of pragmas between the variant part
and the end of the record declaration (i.e. pragmas appearing between “end
case” and "end record").

If the record is a null record then as variant part 1is void, anc the
sequence denoted by as oragma s s empty. The as _dec! s attribute is a sequence
having a null_comp_decl noge as its first element, and any number of pragma
nodes after it.

If the record is not a null record then as decl s is a possibly empty
sequence which can contain nodes of type variabie_decl and pragma. If the
record type does not have a variant part then as variant part 1is void and
as pragma s is empty. It is not possible for as decl s to be empty anc
as_variant part to be void in the same « np_list node.

—

- 3.10.15 1index

The index node represents an undefined range, and appears only in seguences
associated with unconstrained array types and unconstrained array definitions

DIANA Reference Manual Draft Revision 4 Page 3-66
SEMANTIC SPECIFICATION

(such sequences are denoted by the as index s attribute of the the array and the
unconstrained_array_def nodes). The as name attribute refers to the
used_name_id or selected node corresponding to the type mark given in the index
subtype definition. The sm type spec attribute references the TYPE_SPEC node
associated with the type mark.

e S e e SR . S BEN. SN SSsSe SN S . e ofies s e . oseesate. aSesse

Page 3-67

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

Nt

s juey ICA SE
oweu se
fLoAa yaed juesdea

18Yd INVIHVA

dua se
s ewbe iU se
ptoa yuawuby e
t (
|
ASAVIS ANIWND TV

asi@ 40 vayy pue
) i
- i
dO 110J¥1)D 1Y0MS
uy jou " do uy
| |
- .

d0 dIHSYIaN IN

SSUBADI 403
| |
. _ |
abue.s 3j)a3.s0s1p_se |
aweu ajanos se | dxa use
pioa A3Y¥ ¥O4 ajprym
| | |
]
NOLLYYiIL]
a6uri” 93943 1P S€ dva ue
s43Y30 8di10yd wo:uulwu.c:u dxo ajrioyd
| | |
I
3210H)
- 4 . . - .

CIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

1S Jwo se
ewbe 1 se s 8@32104yd se
ewbe.ad jueiaeA jue L 1eA

|)
w313 INVIYHVA

s ewbead asn se
ewBe . d se s aweu se
ewbead yxajuod Yyiym

|
W33 1XILINOD

dva se

abues se

ewbeid se aweu se
swbesd dos Owod daa dwod

b
w313 438 dmN0dD

s wys se
ewbe 1) se & B0y SP
ewBesd aagjeuid) @ aA) jruIB} |

|
%373 IALLYNHILIY

@Ay jRUID) | R 3D0 IS asne|d> puod

s wis se |
Qmm-stmn dra se |
swbBeusd 3 e 3da(9s ISNYID 1S31

N33 ISNVID 1S3L

Page 3-69

DIANA Reference Manual Draft Revision 4

SEMANTIC SPECIFICATION

seds 8dA) ws
sweu” se
x@put

s ewbeud” se
jysed” jueiIBA SE
s | Dap se

384 dwod

s “ewbesd se

t28p e se
s wa1@ xajuon Sse
jtun uoi e tdwod
s jjun U}l |dwod se
uoyje) ydwod
- ey .
ORI S 4 {

CHAPTER 4
RATIONALE

sl

Section 4.1

DESIGN DECISIONS

4.1 DESIGN DECISIONS

Ouring the course of designing DIANA many design decisions were affected by
the need to adhere to the design principles set forth in the first chapter of
this document. This section discusses some of these decisions and the reasons
that they were made. Each subsection explains the design decisions pertaining
to a particular design principle.

4.1.1 [INDEPENDENCE OF REPRESENTATION

One of the major design principles of DIANA requires that the definition of
DIANA be representation independent. Unfortunately, some of the information
which should be included in a DTANA structure is implementation-dependent. For
example, DIANA defines a source position attribute for each node which
represents source code. This attribute is useful for reconstructing the source
program, for reporting errors, for source-level debuggers, and so on. It is
not, however, a type that should be defined as part of this standard since each
computer system bhas idiosyncratic notions of how a position in the source
program is encoded. Ffor that matter, the concept of source position may not be
meaningful if the DIANA arises from a syntax editor. for these reasons,
attributes such as source position are merely defined to be private types.

A private type names an implementation-specific data structure that is
inappropriate to specify at the abstract structure level. DIANA .defines six
private types. Each of these corresponds to one of the kinds of informaticn
which may be installation or target machine specific. They include types for
the source position of a node, the representation of identifiers, tre
representation of various values on the target system, and the representation of
comments from the source program. The DIANA user must supply an implementation
for each of these types.

As is explained in the Ada reference manual, a program is assumed to be
compiled in a 'standard environment'. An Ada program may explicitly or
jmplicitly reference entities defined in this environment, and the DIANA
representation of the progqram must reflect this. The entities that may be
referenced include the predefined attributes and types. The DIANA definition of
these entities is not given in this document but is assumed to be available.

DIANA Reference Manual Draft Revision 4 Page 4-3
RATIONALE

4.1.1.1 SEPARATE COMPILATION

It would not be appropriate for DIANA to provide the 1library management
upon which separate compilation of Ada program units is based. Nonetheless, the
possibility of separate compilation affects the design of DIANA, The
intermediate representation of a previously compiled unit may need to be usecd
again. Furthermore, all of the information about a program unit may not be
known when it is first compiled.

The design of DIANA carefully avoids constraints on a separate compilation
system, aside from those implied directly by the Ada language. The design car
be extended to cover the full APSE requirements([3]. Special care has been taken
that several versions of a unit body can exist corresponding to a single
specification, that simultaneous compilation within the same project is
possible, and that units of other libraries can be used effectively [S]. The
basic decision which makes these facilities implementable is to forbid forwarc
references.

Cartain entities may have more than one definition point in Ada. In such
cases, OIANA restricts the attribute values of all of the defining occurrences
to be identical. In the presence of separate compilation the requirement that
the values of the attributes at all defining occurrences are the same cannct
always be met. The forward references assumed by DIANA are void in these cases.
The reasons for this approach are:

0 A unit can be used even when the corresponding body is not yet
compiled. In this case, the forward reference must have the value void
since the entity does not exist.

o Updating a DIANA representation would reguire write access to a file’

which may cause synchronization problems (see [5]).

0 A library system may allow for several versions of bodies for the same
specification. If an attribute were updated its previous value would
be overwritten. Moreover, the maintenance of differeni versions shoulc
be part of the library sSystem and should not influence the intermeciate
representation. .

4.1.2 EFFICIENT IMPLEMENTATION AND SUITABLITY FOR VARIOUS KINDS OF PROCESSING

The design goals of efficient realization and suitability for many kinds of
processing are interrelated. It was necessary to define a structure containing
the information needed to perform different kinds of processing withou:
overburdening any one kind of processing with the task of computing and
retaining a great deal of extranegus information,

Since many tools will be manipulating the source text in some way, it was
decided that DIANA should retain the structure of the original source program.
In order to do this, structural attributes were defined. These attributes
define a tree representing the original source. It is always pcssible tc
regenerate the source text from its DIANA form (except for purely Jlexical

e P Ta—— . T W O N O T O —— e PR —————

DIANA Reference Manual Draft Revision 4 Page 4-4
RATIONALE

issues, such as the placement of comments) by merely traversing the nodes
denoted by structural attributes.

Unfortunately, the structure of the original source program is not always
suitable for semantic processing. Hence, semantic attributes were added to
augment the structural ones. These attributes transform the DIANA structure
from a tree to a network. In some cases these attributes are merely "shortcuts"
to nodes which are already in the DIANA structure, but in other cases semantic
attributes denote nodes which do not correspond to source text at all.

In the process of adding semantic attributes to the definition of DIANA, it
was necessary to decide which information should be represented explicitly and
which should be recomputed from stored information. Obviously, storing as
little information as possibie makes the DIANA representation smaller; however,
such an approach also increases the time required for semantic processing.
Storing all of the information required would improve processing speed at the
expense of storage requirements. The attribution principles of OFANA are a
compromise between these extremes.

In order to decide whether or not to include a particular attribute the
following criteria were considered:

o DIANA should contain only such information as would be typically
discovered via static (as opposed to dynamic) semantic analysis of the
original program.

o If information can be easily recomputed, it should be omitted.

These two points are discussed at length in the following two subsections.

4.1.2.1 STATIC SEMANTIC INFORMATION

DIANA includes only the information that is determined from STATIC semant-:c
analysis, and excludes information whose determination requires DYNAMIC semantic
analysis.

This decision affects the evaluation of non-static exporessicrs and
evaluation of exceptions. For example, the attribute sm value should not be
used to hold the value of an expression that 1s not static, ever. if an
implementation’'s semantic analyzer is capable of evaluating some sucn
expressions. Similarly, exceptions are part of the execution (i.e. dynamic)
semantics of Ada and should not be represented in DIANA. Thus the attribute
sm value is not used to represent an exception to be raised.

Of course, an implementation that does compute these additional values may
record the information by defining additional attributes. However, anmy DILN&
consumer that relies on these attributes cannot be considered a correct ODIANA
"user", as defined in this document.

T

DIANA Reference Manual Draft Revision 4 Page 4-5
RATIONALE

4.1.2.2 WHAT IS 'EASY TO RECOMPUTE'?

Part of the criteria for including an attribute in DIANA is that it should
be omitted if it is easy to recompute from the stored information. It is
important to avoid such redundant encodings if DIANA is to remain an
implementable internal representation. Of course, this guideline requires a
definition of this phrase.

An attribute is easily computed if:
0 it requires visits to no more than three to four nodes; or

o it can be computed in one pass through the DIANA tree, and all nodes
with this attribute can be computed in the same pass.

The first criterion is clear; the second requires discussion.

Consider first an attribute that is needed to perform semantic analysis.
As an implementation is building a DIANA structure, it is free to create extra
(non-DIANA) attributes for its purposes. Thus the desired attributes can be
Created by those implementations that need them. To regquire these attributes to
be represented by all DIANA users is an imposition on implementations which use
algorithms that do not require these particular attributes.

Consider now an attribute needed to perform code generation. As long as
the attribute can be determined in a single pass, the routine that reads in the
DIANA can readily add it as it reads in the DIANA. Again, some implementors may
not need the attribute, and it is inappropriate to burden all users with it.

It is for these reasons that suggestions for pointers to the enciosing
compilation unit, pointers to the enclosing namescope, and back pointers in
general have been rejected. These are attributes that are easily computed in
one pass through the DIANA tree and indeed may not be neecded by atl
implementations.

Of course, @ DIANA producer can create a structure with extra attributes
beyond those specified for DIANA., Nevertheless, any DIANA consumer that relies
on these additional attributes is not a DIANA ‘user", as defined in :rig
document.

4.1.3 REGULARITY OF DESCRIPTION

In order to increase the clarity of the DIANA description, it was decided
that the class structure of DIANA should be a hierarchy. Unfortunately, some
nodes should belong in more than one class. To circumvent this problem, several
intermediate nodes were defined, nodes for which the only non-lexical attribute
denotes a node that already belongs to another class. These intermediate nodes
do not convey any structural or semantic information beyond the value of the
non-lexjcal attribute. DIANA contains the following intermediate nodes:

block_master

DIANA Reference Manual Draft Revision 4 Page 4-6
RATIONALE

discrete subtype
integer_def
float_def
fixed_def
choice_exp
choice_range
stm_pragma
select_alt_pragma
alternative_pragma
comp_rep_pragma
context_pragma
variant_pragma

It should be noted that not all nodes containing a single non-lexical
attribute are intermediate nodes. For instance, the renames_unit node has a
single non-lexical attribute as name; however, the renames_unit node is not an
intermediate node because it 1is used to convey the fact that a unit has been
renamed, in addition to recording the name of the original unit via the as name
attribute. On the other hand, the choice_exp node was introduced merely because
the class EXP could not be included in both ASSOC and CHOICE. [t contains no
more information than the EXP node denoted by its as_exp attribute.

It is not the intention of DIANA to require that intermediate nodes be
represented as such; they are included in the definition of DIANA only to
maintain a hierarchy. This is a natural place for an implementation to optimize
its internal representation by excluding the intermediate nodes, and directly
referencing pach node denoted by the non-lexical attribute of an intermediate
node.

In the DIANA description, attributes are defined at the highest possible
lTevel; i.e. if all of the nodes of a class have the same attribute then the
attribute is defined on the class rather than on the individual nodes. In this
wdy a node may "inherit" attributes from the class to whicnh it belongs, and from
the class to which that class belongs, etc.

The node void receives a slightly different treatment than the other DIANA

nodes. [t is the only node which violates the DIANA hierarchy, and it is the
only node which inherits attributes which cannot be wused. The node void
represents '"nothing". It may De thought of as a null pcinter, althcush it does

not have to be represented as such. Instead of requiring a different kind of
void node for each class to which void belongs, void was allowed to belong to
more than one class (thus constituting the only exception to the hierarchy).
Because void is a member of many classes, it inherits numerous attributes.
Rather than move the attribute definitions from the classes and put them on all
of the constituent nodes except for void, it was decided to allow void to
inherit attributes. Since it is meaningless for "nothing” to have attributes, a
restriction was added to the semantic specification of DIANA., The attributes of
void may not be manipulated in any way; they cannot be set or examined, hence
they are in effect not represented in a DIANA structure.

ey

Section 4.2
OECLARATIONS

4.2 DECLARATIONS

Explicit declarations are represented in a DIANA structure by declarative
nodes. These nodes preserve the source text for source reconstruction and
conformance checking purposes. They do not record the results of semantic
analysis; that information is contained in the corresponding defining occurrence
nodes. A1l declarative nodes have a child that is a node or sequence 0of nodes
(of type SOURCE_NAME) representing the identifier(s) used to name the newly
defined entity or entities. ‘

Declarative nodes are members of class ITEM. The nodes in class ITEM are
grouped according to similarities in the syntax of the code that tnhey represent
and similarities in the context in which they can appear.

4.2.1 MULTIPLE ENTITY DECLARATIONS

Certain kinds of declarations -- object declarations, number declarations,
discriminant declarations, compenent declarations, parameter declarations, and
exception declarations -- can introduce more than one entity. The nodes
corresponding to these declarations belonj to two different classes,
DSCRMT_PARAM_DECL and ID_S_DECL, both of which define an as source name s
attribute. These classes are distinguished from eacn other because they appear
in different contexts. Discriminant declarations can appear only in
discriminant parts, and parameter declarations can appear only in formal parts.
The remaining multiple entity declarations are basic declarative items, and can
appear 1in declarative parts. In addition, the basic declarative items can
appear in sequences containing pragmas, which cannot be given in discriminart
parts or formal parts.

ID_S DECL is further subdivided into classes according to the syntactic
similarities of the declarations it represents. For instance, object
declarations and number declarations may have (default) initial values, hence
constant_decl, variable_decl, and number_decl belong to class EXP_DECL, which
defines an as exp attribute to record that value.

4.2.1.1 OBJECT DECLARATIONS AND COMPONENT DECLARATIONS

The type portion of object declarations may be given in two different ways:
either by a subtype indication or a constrained array definition. The node

DIANA Reference Manual Draft Revision 4 Page 4-8
RATIONALE

constrained_array def is already a member of class TYPE DEF, which represents
the syntax of type definitions. Rather than include constrained _array_def in
another class and disrupt the heirarchy, the node subtype indication was adaed
to class TYPE DEF. Thus the class 08JECT_DECL, which comprises the nodes
constant_dec! and variable decl, defines the attribute as type def to represent
the type specification given in the object declaration. Obviously as type def
cannot denote any kind of TYPE_DEF node other than subtype_indication and
constrained_array_def in this particular context.

The only other kind of declaration which introduces objects and does not
require the type specification to be a type mark is a component declaration, the
type portion of which is given by a subtype indication. Rather than define a
node exclusively for component declarations, they are represented by the same
kind of node as variable declarations, since the variable_decl node allows
subtype indications for the as type def attribute. This is also conveniert
because component declarations may be interspersed with pragma<., and both pragma
and variable_decl belong to class DECL (a sequence of compcnent declarations is
represented by a decl s sequence). Component declarations and variable
declarations may be d1st1ngu1shed by the fact that they appear in different
contexts, and by the type of nodes in the as source name s sequence. The former
contains component_id nodes and the latter contains variable_id nodes.

A record component list may contain the reserved word “NULL" rather thar
component declarations or a variant part. This is indicated by the insertion of
a null_comp_decl node instead of variable_decl nodes in the sequence of
component declarations. Hence it was necessary to include the null _comp_dec]
node in class DECL. [t is convenient for the null_comp_decl node to be part of
a sequence because it may be followed by pragmas (a pragma can appear after a
semicolon delimiter). Although null_comp_decl belongs to DECL, the ONLY place
that it can appear in a DIANA structure is as the first node in the as decl s
sequence of the comp_list node (this restriction 1is given in the semantic
specification of DIANA).

4.2.2 SINGLE ENTITY DECLARATIONS

The remaining kinds of declarations introduce single entities. They are
represented by the <classes SUBUNIT BODY and ID_DECL. L'ke t*the zlasses
DSCRMT_PARAM DECL and ID_S DECL. SUBUNIT BODY ard 1ID DECL are distinquishec
because they represent declarative items wnich occur in different contexts.
SUBUNIT_BODY represents body declarations, both proper body and stub
declarations. These declarations are separated from the declarations in ID_DECL
because body declarations are exclusively later declarative items (the few
members of ID DECL that are Tater declarative items are basic declarative items
as well). ID_UECL contains basic declarative items and items that can appear ir
task specifications.

Body declarations include subprogram body declarations, package body
declarations, task body declarations, and stub declarations. These declaraticrs
are represented by the nodes subprogram_body, package body, and task_body. The
difference between a proper body and a stub is indicated by the value of the
as _body attribute, a block_body in the former case, and a stub in the latter.

ol e e S e S e e S D .. NN sBNben . SRS Goulh S oUSNR SERGS Gaen e Gihees cmee

N

™

DIANA Reference Manual Draft Revision 4 Page 4-9
RATIONALE

4.2.2.1 PROGRAM UNIT DECLARATIONS AND ENTRY DECLARATIONS

Due to syntactic similarities, declarations of entries and program units
other than tasks are represented by nodes from class UNIT_DECL, which contains
only three members: generic_decl, subprog_entry_decl, and~ package_decl. The
combination of the kind of node representing the declarat1on and the values of
the as header and as unit kind attributes uniquely determine the exact form of
the declaration. The different kinds of declarations are listed with their
appropriate attribute values in Table 4.1.

The HEADER and UNIT KIND nodes also record information peculiar to that
sort of declaration. For example, the renames _unit node not only indicates that
a declaration is a renaming declaration, but retains the name of the original
unit as well,

A task declaration can introduce either a task type, or a single task
object with an anonymous type, depending on whether or not the declaration
contains the reserved word “type". The syntax of a task declaration differs
from that of an ordinary type or object declaration, hence the type decl and
variable_decl nodes are not suitable for representing a task declaration.
Because the same information is given in the task declaration regardless of the
xind of entity it introduces, a task_decl node represents both kinds of task
declarations. [f the defining occurrence associated with the declaration is a
variable_id then the declaration creates both an object and a type; if the
defining occurrence is a type_id then the declaration creates a type.

Since a task declaration always defines a new task type, a new task type
specification (a task node) 1is created for each declaration. If the type is
anonymous it is introduced by the sm obj type attribute of the variable_id:
otherwise the task node is introduced by the sm type spec attribute of the
type_id.

It should be noted that a task object may also be declared with an ordinary
object declaration. Since declarative nodes record the syntax cf the
declaration, a variable_decl node rather than a task_decl node de~ctes the
declaration 1in this case. This kind of declaration does not introduce a new
task type, thus a new task type specification is not created for the task
object(s).

DIANA Reference Manual Draft Revision 4 Page 4-12
RATIONALE

declaration, at which point the context indicates whether or not the declaration
and its defining occurrence(s) are generic.

4.2.5 IMPLICIT DECLARATIONS

The Ada programming language defines different kinds of implicit
declarations. Certain operations are implicitly declared after a type
definition (including derived subprograms following a derived type definition).
Labels, loop names, and block names are implicitly declared at the end of the
corresponding declarative part. These declarations are not explicitly
represented in DIANA; to do so would interfere with source reconstruction.

Since a label, loop name, or block name can be associated with only one
statement, and the label or name precedes that statement in the source text, it
is natural for the defining occurrence of a label (a 1label_id) to be its
appearance in a labeled statement, and the defining occurrence of a blnck or
loop name (a block_loop_id) to be its appearance in a block or loop statement.

Implicitly declared operations and derived subprograms are associated with
a single type definition. Unfortunately, the names of these operations and
derived subprograms are not used in that type definition. As a result, there is
no appropriate structural attribute to introduce the defining occurrences of the
operations associated with a type. A1l appearances of the names of these
operations and derived subprograms are represented in the DIANA structure as
used occurrences. A defining occurrence still exists for each such operation or
derived subprogram; however, it can only be referenced by semantic attributes.

——

Section 4.3
SIMPLE NAMES

4.3 SIMPLE NAMES

Simple names comprise identifiers, character 1literals. and operator
symbols.

The attributes 1x srcpos and I1x comments are defined for all ODIANA nodes
that represent source code. An implementation has the option of including these
attributes or not; however, if an implementation does choose to include them
then it 1is necessary to have a distinct node for every occurrence of a simple
name in the source code. Since it is not desirable to have to copy all of the
semantic attributes associated with the name of an entity every time the name is
used, the appearances of simple names in a DIANA tree are divided into defining
and wused occurrences. The former are represented by class DEF_NAME and the
latter by class DESIGNATOR.

In order to avoid constraining an implementation, DIANA does not REQUIRE

" that a distinct used occurrence node be created for every use of a simple name.

A single used occurrence node may be-created for a particular name, and all
references to that entity in the source code may be represented by references to
that single used occurrence node in the DIANA structure.

The defining nodes for entities together with their attributes play the
same role as a dictionary or symbol table in conventional compiler strategy.
Unless there is interference from separate compilation, it is possible for all
information about an entity to be specified by attributes on its defining noce.
The node for a used occurrence of an entity always refers back to this defining
occurrence via the sm defn attribute.

Defining occurrences are represented by different kinds of nodes rather
than a single construct, thereby allowing the appropriate semantic atiributes to
be attached to each. For instance, the defining occurrence of a discriminant is
represented by a discriminant_id, which has an attribute to record tne
app]icab]e component clause (if there is one); the definiig occurrence of a
constant is represented by a constant_id, which has an attribute that references
the applicable address clause (if there is one).

DIANA also distinguishes the kinds of usage depending on the properties of
the entity that is referenced. For example, a used occurrence of an object name
is represented by a used_object_id, while that of an operator is represented by
a used op.

DIANA Reference Manual Draft Revision 4 Page 4-14
RATIONALE

DIANA has the following set of defining occurrences.

attribute_id
argument_1d
block_loop_id
bitn_operator_id
character_id
component id
constant_1id
discriminant_id
entry_id
enumeration_id
exception id
function_1d
generic_id
iteration_id
in_id

in_out_id
label_Td
1_private_type_id
number_id
operator_id
out_id

package id
pragma_id
private_type_id
procedure_id
subtype id
task_body_id
type_id
variable_id

and the following set of used occurrences:

used_char
used_name_id
used_object_id
used_op

4.3.1 DEFINING OCCURRENCES OF PREDEFINED ENTITIES

The consistency of this scheme requires the provision of a definition point
for predefined identifiers as well. Although these nodes will never be
introduced by a structural attribute because they do not have an explicit
declaration, they can be referenced by the sm defn attribute of a node
corresponding to a used occurrence.

Certain kinds of entities, such as exceptions, may be either predefined or
user-defined. Such an entity is represented by the same kind of node in either
case -- a node from class SOURCE_NAME, which represents the defining occurrences
of all entities which can by declared by the user. If, however, a SOURCE_NAME
node corresponds to a predefined entity then the 1Ix ircpos and 1x comments

[S B W O W T W SENS SIS SEEh Saan GERE AN memes ssess

DIANA Reference Manual Draft Revision 4 Page 4-15
RATIONALE

attributes will be undefined since it does not correspond to source text.

Other entities can never be declared by the user; i.e. pragmas, pragma
argument fidentifiers, and attributes. These entities are represented by nodes
from class PREDEF NAME; the 1Ix srcpos and 1Ix comments attributes of nodes
belonging to this class are never defined. PREDEF_NAME also contains nodes
corresponding to defining occurrences of the predefined operators (these
operators cannot be declared by the user, although they may be overloaded). A
user-defined operator is represented by a node from class SOURCE_NAME.

4.3.2 MULTIPLE DEFINING OCCURRENCES

In general, every entity has a single defining occurrence. In the
instances where rmultiple defining occurrences can occur, each defining
occurrence is represented by a DEF_NAME node.

The entities which may have multiple defining occurrences are:
(a) deferred constants

(b) 1incomplete types

(c) non-generic (limited) private types

(d) discriminants of incomplete or (limited) private types

(e) non-generic formal parameters

(f) program units

With the exception of tasks and (limited) private types, the (gifferent
defining occurrences of one of these entities are represented by the same kind
of node. In addition, the different defining occurrences nave the same
attribute values (certain incomplete types and program units may have attributes
which cannot be set in the first defining occurrence due *o interference b5y
separate compilatior: however, this is an exception rather than a rule). These
defining occurrences have an attribute, sm first, that refers to the node for
the first defining occurrence of the identifier, similar to the sm gefn
attribute of used occurrences. The node that is the first defining occurrence
has an sm first attribute that references itself.

A11 used occurrences must reference the same defining occurrence, the one
that occurs first. Nevertheless, the attributes for all defining occurrences of
an entity must still be set with the appropriate values,

An entry declaration and its corresponding accept statement are rot treated
as different definition points of the same entity. Thus the entry_id is the
unigue defining occurrence; a used_name_id appears in an accept statement, the
sm defn attribute of which refers to the associated entry id. However, the
formal parts of the entry declaration and the accept statement” multiply define
the entry formal parameters.

DIANA Reference Manual Draft Revision 4 Page 4-16
RATIONALE

Any names appearing in a record representation clause or an enumeration
representation clause are considered used occurrences; this includes the names
of record types, record components, and enumeration literals.

4.3.2.1 MULTIPLE DEFINING OCCURRENCES OF TYPE NAMES

There are two forms of type declaration in which information about the type
is given at two different places: incomplete and private. In addition to the
multiple defining occurrences of the type names there are multiple defining
occurrences of the discriminant names if the types include discriminant parts.

The notion of an incomplete type permits the definition of mutually
dependent types. Only the new name is introduced at the point of the incomplete
type declaration -- the structure of the type 1is given in a second type
declaration which generally must appear in the same declarative part. The
defining occurrences of both types are described by type_id nodes which have the
semantic attribute sm type spec. With one exception (which is discussed in the
following paragraph) the full type declaration must occur in the same
declarative part, hence the sm type spec attribute of both defining occurrences
can denote the full type specification.

A special case may be introduced when an incomplete type declaration occurs
within the private part of a package specification. The full type declaration
is not required to appear in the same declarative part; it may be given in the
declarative part of the package body, which is not necessarily in the same
compilation unit. Since forward references are not allowed in OIANA, if the
full type declaration 1is in a separate compilation unit then the sm type spec
attribute of the type_id corresponding to the incomplete type declaration
denotes a special incomplete node (which is discussed in detail in the section
on types). The sm type spec attribute of the node for the full type declaration
references the full type specification.

Private types are used to hide information from the user of a package; a
private type declaration appears in the visible part of a package without any
structural information. The full declaration is given in the private part of
the package specification (this restriction ensures that there is no
interference from separate compilation). Unfortunately, the soluticn usec¢ fcor
incomplete types cannct be applied to private types -- 3f Hoth defining
occurrences had the same node type and attributes, it could not be determined
whether the type 1is a private one or not. This information is important when
the type is used outside of the package.

DIANA views the declarations as though they were declarations of different
entities -- one is a private type and the other a normal one. Both denote the
same type structure in their sm type spec attribute, however. The distinction
is achieved by introducing a new kind of a defining occurrence, namely the
private_ type_ id. It has the attribute sm tyge spec which provides access to the
structural Tnformation given in the full type declaration. Limited private
types are treated in the same manner, except that their defining occurrence is a
1_private_type_id. In the case of (limited) private types the sm first
attribute” of the type id node refers to the private_type_ id
1_private_type_id. The pr1vate type_id and 1_private_type_id nodes do not have

DIANA Reference Manual Draft Revision 4 Page 4-17
RATIONALE

an sm first attribute because they always represent the first defining
occurrence of the type name.

4.3.2.2 MULTIPLE DEFINING OCCURRENCES OF TASK NAMES

The only other entity to have its different defining occurrences
represented by different kinds of nodes is the task. Although a task is a
program unit, its defining occurrences cannot be treated 1like those of other
program units, The declaration of a task introduces either a task type or a
task object having an anonymous type, hence the first defining occurrence of a
task name is represented by a type_id or a variable_id. Any subsequent defining
occurrences of the task name must correspond to either a stub declaration or a
proper body declaration; these defining occurrences are represented by
task_body_id nodes.

A1l of the information concerning the task is stored in the type
specification of the task. Even though used occurrences of the task name do not
reference the type specification (they denote the type_id or variablie_id), the
type specification may be reached from any of the def1n1ng occurrences.

4.3.3 USED OCCURRENCES

The nodes representing used occurrences are included in the class
representing expressions because certain names may appear in expressions.
Restrictions have been added to the semantic specification to differentiate the
used occurrences which can appear in expressions from those which cannot.

The nodes used_object_id and wused_char represent used occurrences of
entities having a vaiue and a type; these nodes can appear in the context of an
expression. The former denotes objects and enumeration literals, the latter
denotes character 1literals (in this way identifiers consisting of a single
character are distinguished from character 1literals). To allow the nodes
representing expressions to be treated in a consistent manner, the attributes
sm _value and sm exp type were added to the used_object_id and used_char nodes.

The remaining kinds of used accurrences are represented by the used _op and
used_name_id nodes. The occurrence of an operator is represented by a used _op,
and that of any other entity by a used_name_id.

The names of objects and 1literals may appear in contexts other than
expressions; 1in particular, in places where the Ada syntax requires a name.
Should those wused occurrences be represerted by wused_object_id nodes or
used_name_id nodes? In some instances it might be useful to have ready access
to more information than just the name (for example, the subtype of the objec:
denoted by the name might be helpful). Some names (such as the “object_name" in
a renaming declaration) must be evaluated just as an expression is evaluated.
On the other hand, a name appearing in the left-hand part of a named association
is not evaluated, and since the association 1is not designed for semantic
processing (a normalized 1ist of expressions is created for that purpose), it
would be wasteful to record additional semantic attributes.

DIANA Reference Manual Draft Revision 4 Page 4-18
RATIONALE

[t was decided that the name of an object or literal appearing in the
left-hand part of a named association should be represented by a used_name_id
because the attributes peculiar to a used_object_id would not be needed for
semantic processing in that context. ~Since the situation is not as clear in
other contexts, all other uses of the name of an object or 1literal are
represented by used_object_id nodes.

e Y Y B W EEE B T T

~d

DIANA Reference Manual Draft Revision 4 Page 4-21
RATIONALE

(b) anonymous base types created by constrained array definitions [ARM,
3.6)

(c) anonymous index subtypes created by constrained array definitions [ARM,
3.6]

(d) anonymous task types introduced by task declarations creating single
task objects [ARM, 9.1]

The declarations of these anonymous types are not represented (to do so would
interfere with source reconstruction), hence their type specifications are
introduced by the appropriate semantic attributes. For instance, the node for
an anonymous task type is introduced by the sm obj type attribute of a
variable_id node. At some point it will be necessary to know that such types
are anonymous (i.e. that they have not yet been elaborated), consequently the
sm_is _anonymous attribute was added to all nodes except for those representing
universal types (which are always anonymous).

In order to maintain the consistency of this type representation scheme it
was necessary to include some anonymous types and subtypes which are not
discussed in the reference manual.

Type definitions containing subtype indications with explicit constraints
introduce anonymous subtypes. Hence the component subtype of an array or the
designated subtype of an access type may be anonymous. I[f the constraints on
the parent type and the parent subtype of a derived type are not the same then
the new base type is anonymous.

Every object and expression in DIANA has an attribute denoting its subtype
(sm obj type for objects and sm exp type for expressions). The subtype
specification contains the applicable constraint (necessary for -operations such
as constraint checking) as well as a path to the base type (which is required
for processing such as type resolution). If a new constraint is imposed by an
object declaration or an expression then an anonymous type specification must be
created in order to record the new constraint. Object or component declarations
containing either a constrained array definition or a subtype indication with an
explicit constraint introduce anonymous subtypes for each entity in the
identifier 1list. Slices. aggregates, and string literals introduce anonymous
subtypes if it cannot by determined statically that the constraints on the
expression and those on the array prefix or context subtype are the same.

Unlike class TYPE DEF, which 1is subdivided according to syntactic
similarities, class TYﬁE_SPEC is decomposed into subclasses by the semantic
characteristics (i.e. attributes) various members have in common. When placing
the nodes in the hierarchy, certain compromises were made that cause a few nodes
to inherit an attribute that is not really needed. For instance, the
constrained_array and constrained_record nodes inherit the attribute sm derived,
even though they can never represent a derived type (they may, however,
represent a subtype of a derived type). It was deemed better to have an
occasional unneeded attribute than to cause confusion by defining common
attributes 1in several different places (i.e. moving the constrained_array and
constrained_record nodes outside of class DERIVABLE_SPEC and duplicating the
attributes sm_is anonymous, sm base type, and sm depends on dscrmt for them).

DIANA Reference Manual Draft Revision 4 Page 4-22
RATIONALE

4.4,1 CONSTRAINED AND UNCONSTRAINED TYPES AND SUBTYPES

A TYPE_SPEC node provides no indication as to whether the entity it
represents is a type or a subtype. In the Ada language, the name of a type
denotes not only the type, but the corresponding unconstrained subtype as well.
An attempt at differentiating types and subtypes would only cause confusion and
inconsistencies. A distinction is made, however, between base types and
subtypes of base types. The attribpute sm base type denotes the base type, a
type specification where all representation and structural information can be
found. Obviously the sm base type attribute of a node corresponding to a base
type will contain a self-reference.

Certain nodes always represent base types; these are the task_spec node,
and those in classes PRIVATE_SPEC and UNCONSTRAINED COMPOSITE. The task_spec
and PRIVATE_SPEC nodes do not have an sm base type attribute at all. As a
result of their inclusion in class NON_TASK the UNCONSTRAINED_COMPOSITE nodes
have inherited this attribute; however, it always contains a self-reference.

DIANA also distinguishes between constrained and unconstrained (sub)types
for the following classes of types: array, record, and access. The nodes in
class UNCONSTRAINED represent unconstrained types; those in class CONSTRAINED
represent constrained types.

This distinction proves to be very useful when performing certain semantic
checks 1involving array, record, or access types. For instance, the types in
these classes may have index or discriminant constraints imposed upon them;
however, an index or discriminant constraint cannot be imposed on the type if it
is alredady constrained.

The fact that an object 1is of an unconstrained type rather than a
constrained type may also affect certain implementation decisions. For example,
in @ complete assignment to a record object of an unconstrained type that has
default values for 1its discriminants, the constraints on the object may be
changed during execution. Hence an implementation may wish to handle objects of
an unconstrained record type in a manner that is different from the way in which
objects of a constrained type are treated.

A1l scalar types are constrained, and may be further constrained any number
of times. Hence there is only one kind of node for each kind of scalar type,
and each SCALAR node has an sm range attribute which denotes the appiicab =
range constraint. The nodes for real types have an additional sm accuracy
attribute to record the value of the digits or delta expression. For some types
(such as the predefined types and enumeration types) the constraints are
implicit, therefore a range node which does not correspond to source code must
be created. The range node that 15 constructed for an enumeration type will
denote the first enumeration literal as the lower bound and the last enumeration
literal as the upper bound. The range node for a predefined numeric type will
have for its bounds expressions (determined by the implementation) which do no*
correspond to source code.

Constraints cannot be applied to a task type, therefore the question of
whether or not it is constrained is irrelevent.

Section 4.4
TYPES AND SUBTYPES

4.4 TYPES AND SUBTYPES

In the Ada language certain types and subtypes may be declared in more than
one way. For instance, the following sets of declarations produce equivalent
subtypes:

type CONSTRAINED_AR is array (INTEGER range 1 .. 10) of BOOLEAN;

type INDEX is INTEGER range 1 .. 10;
type UNCONSTRAINED AR is array (INDEX range <>) of BOOLEAN;
subtype CONSTRAINED AR is UNCONSTRAINED AR (INDEX);

the only difference being that the base type and index subtype corresponding to
the first declaration are anonymous. In order to reconstruct the source text it
is necessary that the syntax of the declarations be recorded; however, semantic
processing would be facilitated if the same representation were used for
CONSTRAINED AR regardless of which set of declarations produced it. In order to
satisfy both needs DIANA has two classes associated with types and subtypes.

The class TYPE_DEF records syntax. The nodes belonging to this class are
not intended to be used for semantic process1ng, hence they have no semantic
attributes, and are never designated by any kind of attribute other than a
structural attribute. A TYPE_DEF node may correspond to:

(a) a subtype indication
(b) the portion of a type declaration following the reserved word "is'

(c) the type of an object as given in an object declaration

TYPE_DEF is subdivided into classes according to syntactic similarities of
the source text which the nodes represent. The class structure of TYPE_DEF has
no semantic meaning.

TYPE_DEF contains three nodes which are really intermediate nodes:
integer_ def, float _def, and fixed_def. The syntax of a numeric type definition
consists sole1y of a range, fToatlng point, or fixed point constraint.
Unfortunately, the nodes representing these constraints are already members of
class CONSTRAINT -- to include them in TYPE_DEF as well would have introduced
multiple class memberships. Instead, three new nodes were introduced into

DIANA Reference Manual Draft Revision 4 Page 4-20
RATIONALE

TYPE_DEF; each has a single structural attribute denoting the actual constraint.

Class TYPE_SPEC is the complement of TYPE_DEF; it represents the Ada
concept of types and subtypes. The nodes comprising TYPE_SPEC are compact
representations of types and subtypes, suitable for semantic processing., It s
not necessary to traverse a lengthy chain of nodes in order to obtain all of the
pertinent information concerning the type/subtype, nor are special cases (i.e.
different structures) introduced by irrelevant syntactic differences. The nodes
comprising class TYPE_SPEC do not record source text; they contain semantic
attributes only, and are not accessible through structural attributes.

Because the TYPE_SPEC nodes are not designed to record source code, but are
intended to represent the corcept of types and subtypes, there 1is not
necessarily a one-to-one correspondence between the types and subtypes declared
in the source and the TYPE_SPEC nodes included in the DIANA tree. Ar
implementation must represent each of the universal types (which cannot be
explicitly declared in an Ada program), and additional nodes may be created to
represent various anonymous types (to be described later). Consequently, it is
not possibly to store the type specification information within the nodes
denoting defining occurrences of types and subtypes. Thus the type_id and
subtype_id nodes of class DEF_NAME represent the NAMES of types and subtypes,
not the types and subtypes themselves. Access to the corresponding type
specification is provided by means of the sm type spec attribute.

The construction of new TYPE_SPEC nodes for a DIANA tree is governed by two
basic principles:

1. Each distinct type or subtype is represented by a distinct node from
class TYPE_SPEC.

2. There are never two TYPE_SPEC nodes for the same type or subtype

These principles ensure that the only action needed to determine whether or
not two entities have the same subtype or the same base type is the comparison
of the associated TYPE_SPEC nodes. If both denote the same node (not equivalent
nodes, but the SAME node) then the types are the same; if they reference
different nodes then the types are not the same.

Since a type definition always creates a new type, a new TYPE_SPEC noce ‘<
created for every type definition. This is not necessarily true for subtype
declarations. [If a subtype declaration does not include a constraint then it
does not introduce & new subtype (it in effect renames the subtype denoted by
the type mark), therefore a new TYPE_SPEC node is not introduced. In this case
the sm type spec attribute of the subtype_id denotes the TYPE_SPEC node
associated with the type mark.

A1l anonymous types described in the Ada Reference Manual are represented
in DIANA; i.e.

(a) anonymous derived types created by numeric type definitions [ARM,
sections 3.5.4, 3.5.7, and 3.5.9]

ra

DIANA Reference Manual Draft Revision 4 Page 4-23
RATIONALE

The nodes representing constrained types have an additional attribute,
sm_depends on dscrmt, which indicates whether or not the component subtype
depends on a discriminant. A subtype of a record component depends on a
discriminant if it has a constraint which contains a reference to a discriminant
of the enclosing record type. Within a record type definition, the only forms
of constraints which can contain a reference to a discriminant are index and
discriminant constraints. Since the only nodes for which this attribute could
ever be true are the constrained_array, constrained_record, and
constrained access nodes, it was not necessary to define an sm depends on dscrmt
attribute for any other TYPE _SPEC nodes (although a component subtype may be a
private type with a discriminant constraint, such a subtype is represented by a
constrained_record node rather than a PRIVATE_SPEC node, as discussed in section
4.4.4).

The sm _depends on dscrmt attribute was defined because otherwise it would
not be easy to determine whether or not a component subtype depended on a
discriminant if the constraint were sufficiently complicated. This information
is essential because at certain times a component subtype that depends on a
discriminant is treated differently from one that does not. For instance, the
elaboration time of a component subtype is determined by whether or not it
depends on a discriminant. If the component subtype does not depend on a
discriminant then it is elaborated when the enclosing record type is elaborated:
otherwise the component subtype is not fully elaborated until a discriminant
constraint is imposed on the enclosing record type (the expressions in the
component subtype indication which are not discriminants are evaluated during
the elaboration of the enclosing record type).

4.4.2 UNIVERSAL TYPES

The Ada programming language defines three wuniversal types -- universa!l
integer, universal real, and universal fixed. The TYPE_SPEC nodes for tne
universal types have no attributes of their own since their properties are fixed
-- they are not implementation dependent, nor can they be declared by a user.
For example, there is no need for the sm is anonymous attribute because
universal types are always anonymous. The universal types are used as the types
of named numbers and certain static expressions.

4.4.3 DERIVED TYPES

A1l types other than the universal types may be derived, although
restrictions may be placed on the location of certain kinds of derived type
definitions. For instance, a derived type definition involving a private type
is not allowed within the package specification declaring that private type
[ARM, 7.4.1]; however, that private type may be derived outside of the package
specification. Hence the attribute sm derived 1is defined for class
DERIVABLE_SPEC. If a type is derived then sm derived references the TYPE _SPEC
node of the parent type (not the parent subtype); otherwise the attribute is
void.

DIANA Reference Manual Draft Revision 4 | Page 4-24
RATIONALE

A derived type definition creates a new base type whose properties are
derived from the parent type. In addition, it defines a subtype of the derived
type. A derived type definition in DIANA always results in the creation of a
new TYPE_SPEC node for the new base type. Since its characteristics are derived
from the parent type it will need the same kinds of attributes in order to
represent the appropriate values, thus the base type is represented by the same
kind of node as the parent type.

If the parent type and the parent subtype of a derived type do not have the
same constraints, then a new TYPE_SPEC node is created for the subtype of the
derived type. This node will record the new constraint, and its base type will
be the newly created base type. The name of the derived type will denote this
subtype, hence all references to the derived type will denote the type
specification of the subtype. As & result, the base type is anonymous.

If the base type is a record or enumeration type then a representation
clause may be given for the derived type if a representation clause was not
given for the parent type BEFORE the derived type definition. Hence it is
possible for the derived type to have a different representation from that of
the parent type. The information given in an enumeration representation clause
is recorded in the nodes for the 1literals of the enumeration type; the
information from the component clauses 1is encoded in the nodes for the
components (including discriminants) of the record type. Oue to the possibility
of different representations, it is not always feasible for the derived type to
share the enumeration literals or record components of the parent type.

DIANA requires that copies be made of the defining occurrences of the
enumeration literals, unless the parent type is a generic formal discrete type,
which does not have any literals. The new literals reference the derived type
as the type to which they belong, but have the same position number as the
corresponding original literals. [f a representation clause is not given for
the derived type then the sm rep attribute will also have the same value. The
node for the derived type denotes these new defining occurrences as its
literals. Duplication has an additional advantage for enumeration ii‘erals --
since the literal of the derived type overloads the corresponding literal of the
parent type, it is convenient to have two different defining occurrences when
processing used occurrences of the literals.

DIANA also requires the duplication of the discrimina~t opar* ang *he
component list for a derived record type if a representation clause is given for
that type. If an impiementation determines that no such clause s given, 1t can
choose whether to copy the defining occurrences or reference the structure of
the parent type. Because the defining occurrences do not reference the record
type to which they belong, no inconsistencies are introduced if the structure is
not copied when the representation does not change.

4.4.4 PRIVATE, LIMITED PRIVATE, AND LIMITED TYPES

A private type declaration separates the properties of the type that may be
used outside of the package from those which are hidden from the user. A
private type has two points of declaration -- the first declaration 1is the
private one, occurring in the visible part of the package specification; the

AR AR r Vamw 00 O WS 020 W 0 TWIE 0 TN T T W —_— ama— ————

DIANA Reference Manrual Draft Revision 4 Page 4-25
RATIONALE

second is a full type declaration that appears 1in the private part of the
package. Private and limited private types are represented by nodes from
PRIVATE SPEC, and complete type specifications by those belonging to
FULL_TYFE_SPEC.

A (limited) private declaration introduces a private or 1_private node, and
the subsegquent full type declaration introduces the appropriate node from class
FULL_TYPE_SPEC. The (limited) private specification rather than the full type
specification is referenced as the type of an object, expression, etc. In
addition, all used occurrences of the type name will denote the type_id of the
private declaration. The PRIVATE_SPEC nodes have an sm type spec attribute that
provides access to the full type specification. In this way the distinction
between private and full types is preserved for the kinds of semantic processing
which require knowledge of whether or not a type is private, but the information
recorded in the full type specification is available for the processing which
needs it.

The specification of a (1imited) private type may be viewed as being
distributed over two nodes, rather than being represented by two different
nodes. The full type specification can never be referenced as the type of an
object, expression, etc., hence the principle that there are never two TYPE_SPEC
nodes for the same type or subtype is not violated by this representation of
(1imited) private types.

An alternate solution was considered. It was proposed that all references
to the (limited) private type occurring either outside of the package or within
the visible part of the package denote the PRIVATE_SPEC node, and those
references occurring within either the private part of the package or the
package body denote the FULL_TYPE_SPEC node. Although there would be two
TYPE_SPEC nodes for one type, within a given area (the two areas being the one
in which the type structure is hidden and the one in which the type structure is
visible) it would appear as if there were only one node. With this approach the
uses of the type would reflect whether or not the structure of the type was
visible at that point in the source code. Unfortunately, upon closer
examination the previous assumptions proved to be untrue.

Consider the case of a subprogram declared in the visible part of a
package. Suppose the subprogram has a parameter of a private type that is
declared in the visible part of the same package. Although it is possible for
the parameter in the subprogram declaration to denote the private specificationr
as its type, and the parameter in the subprogram body declaration to denote the
full type specification as its type, ALL references to both the subprogram and
its parameters denote the first defining occurrences -- those in the package
specification, which reference the private specification. Suppose an object of
the private type were declared inside the subprogram body; it would refer to the
full type specification as its type. The subprogram body would then contain a
mixture of references to the private type -- some to the full type
specification, others to the private specification. It would no longer be
possible to simply compare TYPE_SPEC nodes to determine it two entities have the
same type. As a consequence, this solution was rejected.

The private and 1_private nodes always represent base types. Although a
subtype of a (limited) private type may be introduced, it will be represented by
a node from class FULL_TYPE_SPEC rather than one from PRIVATE_SPEC. ODue to the

DIANA Reference Manual Draft Revision 4 Page 4-26
RATIONALE

restrictions placed on the creation of new TYPE SPEC nodes, a new node may be
created for such a subtype only -if a new constraint is imposed upon it (in other
words, the subtype is not a renaming of another type or subtype).

The kinds of constraints which may be imposed upon a (limited) private type
are restricted in those regions where the full structure of the type is hidden.
The structure (and therefore the class) of a private or limited private type
without discriminants 1is not visible outside of the package or in the visible
part of the package, therefore no new constraints may be imposed on such types
in these regions. I[f a private type has discriminants then its full type must
be a record type, and a discriminant constraint is permitted even in the
locations where the structure of the rest of the record is unknown. That
subtype is represented by a constrained_record node. If the declaration occurs
within the private part of the package or the package body then the structure of
the private type is visible, and the subtype is represented by the appropriate
node from class FULL_TYPE_SPEC.

The 1_private node represents types which are limited private, not types
which are limited. Types which are limited include task types, composite types
having a subcomponent which is limited, and types derived from a limited type.
Because these types are not explicitly declared to be limited, they are not
represented by a distinct node kind as the limited private types are (toc do s¢
would require semantic analysis to determine when the distinct node kind was
appropriate). Instead, an additional attribute is defined where necessary.

Task types are always limited, hence there 1is no need to record that
information in the form of an additional attribute. This is not true for arrays
and records. Determining whether or not an array or record has any limited
subcomponents could be a very time-consuming process if the structure of the
composite type 1is very complicated. As a conseguence, the sm is limited
attribute was defined for the class UNCONSTRAINED_COMPOSITE. [t has a boolean
value indicating whether or not the type is limited. Since derived types are
represented by the same kind of nodes as their parent types, the fact that a
derived type is limited can be recorded in same way that it was recorded for the
parent type.

On the surface it may seem that a problem similar to that discussed for
composite types having limited components exists for composite types having
private components. A composite type that has private subcomporents and ‘s
declared outside of the package containing the private type definition nas
certain restrictions placed on the operations aillowed for the composite type.
The only operations permitted are those which are dependent on tne
characteristics of the private declaration alone (see section 7.4.2 of the Ada
Reference Manual).

A closer examination reveals that at most it is necessary to check a
~ component type (as opposed to component types and subcomponent types) to
determine if an operation is legal or not. The operations allowed for types
which are composites of composites are also allowed for composite types with
private components (assignment, aggregates, catenation, etc.). COperations
involving the private component rather than the composite type as a whole may be
restricted; for instance, a selected component involving a component of the
private component is not allowed. Since the type of the private comgonent is
determined during type resolution of the sub-expression, no lengthy searches are

R R R R E———————————————

DIANA Reference Manual Draft Revision 4 Page 4-27
‘ RATIONALE

==

required to determine that the component is private. Certain operations that
are 2 lowed for arrays of non-composite objects, such as the relational

- operators for arrays of scalar components and tne jogical operators for arrays
of boolean components, would not be allowed under the circumstances described
above because it would not be possible to determine if the component type were
indeed a scalar type or a boolean type. However, such a check involves only a
single component type.

A need could not be found for an attribute indicating that an array or
record has private subcomponents; hence none was defined.

~ 4.4.5 [INCOMPLETE TYPES

An incomplete type definition allows the definition of "mutually dependent
and recursive access types" [ARM, 3.8.1]. Like a private type, it has two
points of definition: one for the incomplete type, and a second for the full
: type specification.

Although the uses of the name of an incomplete type are restricted when
they occur before the end of the subsequent full type declaration (the name may
appear only in the subtype indication of an access type definition), the
incomplete type becomes an ordinary full type once its structure has been given.
Since there is no need to distinguish the incomplete type from a full type once
the structure of the full type is known, the solution adopted for private types
is not appropriate for incomplete types. In general, incomplete types are not
represented as such in DIANA; their full type specifications are represented by
nodes from class FULL_TYPE SPEC, and attributes denoting the incomplete type
5 actually reference the full type specification. .

Only one sort of incomplete type is represented by a distinct node in the
DIANA tree. Included in the class TYPE_SPEC is the node incomplete, which was
introduced to handle an anomoly in the Ada programming language. The language
places the following restrictions on the placement of the full type declaration:

"If the incomplete type declaration occurs immediately within either a
declarative part or the visible part of a package specification, then the full
type declaration must occur later and immediately within the same declarative
part or visible part. I[f the incomplete type declaraton occurs immediately

- within the private part of a package, then the full type geciaration must occur
later and immediately within either the private part itself, or the declarative
part of the corresponding package body." [ARM, 3.8.1)

Because a package body may be in a separate compilation unit, it is
possible for the full type specification of an incomplete type declared in the
private part of a package to be in a separate compilation unit. In this case it

. is not possible for refe-ences to the incomplete type which occur in the packa-e
specification to denote the full type specification; DIANA forbids forward
references of that sort. It was necessary to define a node to represent the

incomplete type in this special case, hence the incomplete node was introduced.
It has a single attribute, sm discriminant s, to represent any discriminants

belonging to the incomplete type. If the full type specification is not in a
different compilation unit the incomplete node is not used to represent the

DIANA Reference Manual Draft Revision 4 Page 4-28
RATIONALE

incomplete type.

This problem does not arise for private types. The Ada language requires
that the full type specification of a private type be given in the private part
of the package specification, thus it may never occur in a sepurate compilation
unit,

OIAMA does not specify the manner in which the full type specification may
be accessed from the incomplete type specification in this special case -- to do
so woLld impose restrictions on an implementation. All references tu the
specification of this incomplete type will reference the incomplete node, even
those occurring after the full type declaration. Since an implementation must
provide some solution to the problem of reaching the full type specification for
references to the incomplete type occurring within the package specification,
there seemed to be no reason to deviate from the DIANA regquirement that all
references to a part'cular entity denote the same node.

It should be noted that it is possible to reach the incomplete type
specification from the subsequent full type declaration. The sm first attribute
of the type id introduced by the full type declaration denotes the type_id of
the incomplete type declaration. Both type_id nodes have an sm type spec
attribute denoting their respective type specifications.

4.4.6 GENERIC FORMAL TYPES

Although "a generic formal type denotes the subtype supplied as the
corresponding actual parameter in a generic instantiation" [ARM, 12.1.2], a
gereric formal type is viewed as being unigue within the generic unit. Hence a
new TYPE_SPEC node is introduced by each generic type declaration, and the
attributes of the node are set as if the generic type were a new type.

A generic formai type is represented by the DERIVABLE_SPEC node that s
appropriate for its kind. The values of the attributes are set in a manrner
which reflects the properties of the generic type within the generic unit. For
instance, sm base type contains a self-reference, sm derived is void, and
sm_is anonymous is false, regardless of the whether or not any of the actua’
subtypes have the same attribute values. A representation specification cannot
be given for a gereric formal type; this restriction is reflected in tne vaiues
of all attributes which record representation information (sm size is void,
sm_1is_packed is false, etc.).

Some of the attributes of a node representing a generic formal type may be
undef ined because they require knowledge of the actual subtype. Since there may
be numerous instantiations it is not possible to set these attributes ir the
node representing the generic type. For example, a generic formal discrete type
is represented by an enumeration node; the attributes sm literal s and sm range
are not defined because they depend on the actual subtype. The informat-on
recorded by such attributes is not necessary for the semantic processing of the
generic type within the generic unit.

-~

DIANA Reference Manual Draft Revision 4 Page 4-29
RATIONALE)

The TYPE_SPEC nodes corresponding to generic formal types conrtain no
indication that they are indeed generic formal types. This information can be
deduced from the context of the declarations and recorded by an 1implementation
in whatever manner it finds to be must convenient.

4.4.7 REPRESENTATION INFORMATION

Representation specifications can be given for certain types and first
named subtypes through pragmas and representation clauses. Although occurrences
of these pragmas and representation clauses remain in the DIANA tree to enable
the source to be reconstructed, they are additionally recorded with the
TYPE_SPEC nodes corresponding to the type structures that they affect.

The occurrences of the language pragmas PACK and CONTROLLED are recorded

with the attributes sm is packed (for array and record types) and
sm is controlled (for access types).

A representation clause may be given for a record type, giving storage
information for the record itself and/or its components; a reference to this
specification is recorded in the semantic attributes of the TYPE_SPEC node
representing the record type as well as the defining occurrences of the
discriminants and components. Similarly for enumeration types, information from
representation specifications for the enumeration literals is recorded with the
defining occurrences of the enumeration literals.

Length clauses may be applied to various types. The presence of a length
clause specifying the storage size for a task or access type is recorded with
the sm storage size attribute. A length clause may also be used to place a
limit on the number of bits allocated for objects of a particular type or first
named subtype. A size specification 1is indicated by one of two different
attributes, depending on the kind of type a particular node represents. The
TYPE_SPEC nodes representing non-scalar types have an sm size attribute which is
of type EXP; it references the actual expression given in the length clause, and
is void if no length clause is given.

TYPE_SPEC nodes for scalar types have a cd imp] size attribute, which is of
the private type value. Unlike the attributes corresponding to other kinds cf
representation clauses, cd impl size does not necessarily contain the value
given in a Jength clause. It was introduced to facilitate the evaluation of
static expressions. DIANA always records the value of static expressions;
however, the static values of certain Ada attributes are implementation
dependent. Since these attributes are related to static types, it is convenient
to store this information with the node representing the type.

One such attribute is SIZE, which returns the actual number of bits
required to store any object of that type. The value of this attribute is
recorded with the cd imptl size attribute, which has a value even if no length
clause 1is given for the type. A length clause merely specifies the upper bound
for the size of objects of that type, hence it is possible for the value of
cd_impl size o be smaller than that given in a length clause. Because the Ada
programming language restricts static types to the scalar types, this
implementation dependent attribute is not necessary for the nodes representing

DIANA Reference Manual Draft Revision 4 Page 4-30
RATIONALE

non-scalar types.

The other implementation dependent attribute defined in DIANA is the
cd impl small attribute for nodes representing fixed point types. It contains
the value to be returned for the Ada attribute SMALL. The user may specify in a
length clause a value for "small" (the smallest positive model number for the
type or first named subtype); this value is used in representing values of that
fixed point type, and may affect storage regquirements for objects of that type.
If no length clause is given, then cd impl small will contain the value for
“small" selected by the implementation; in this case "small" for the base type
may differ from "small" for subtypes of that base type [ARM, 3.5.9].

2 -

Section 4.5

CONSTRAINTS

4.5 CONSTRAINTS

The Ada programming language defines five kinds of constraints: range,
floating point, fixed point, index, and discriminant. Because constraints are
generally imposed on types or subtypes, DIANA handles constraints in a manner
that is similar to the way in which types and subtypes are treated.

There are both syntactic and semantic representations of certain
constraints in DIANA. However, the differences between the two are not as
rigidly observed for constraints as for types and subtypes. This is due to an
effort to reduce the number of nodes in the DIANA tree, and to the fact that in
many cases the syntactic representation of a constraint is also suitable for
semantic processing.

As a result, there are not two distinct classes for representing
constraints. In general, the class CONSTRAINT represents the syntax of the
various constraints; there is no class defined to represent a semantic version
of a constraint. Although certain TYPE_SPEC nodes (which represent the semantic

" concept of .a type or subtype) define an attribute to denote a constraint, if a

node from class CONSTRAINT is- appropriate then it is referenced rather than
requiring a new "semantic" structure to be built.

To facilitate the process of constraint checking, an effort was made to
represent the constraints in DIANA in as consistent a manner as possible. The
CONSTRAINT node is not always suitable for the following kinds of constraints:
discriminant, floating point, fixed point, and index.

A discriminant constraint is a series of discriminant associations. The
sequence of associations may contain a mixture of EXP and assoc nodes (i.e.
expressions and named associations); if named associations are wused then the
associations do not even have to appear in the order in which the discriminants
are declared. Thus an additional seguence, designated by the
sm normalized dscrmt s attribute of the constrained_record node, is created for
a discriminant constraint. This sequence is a normalized version of the
syntactic sequence -- all named associations are replaced by the associated
expressions, in the order in which the corresponding discriminants are declared.
In the interest of economy, if the discriminant constraint appears in the source
text in the normalized form, then the record subtype specification may reference
the same sequence of expressions that the discriminant constraint denotes.

A different problem arises for fixed or floating point constraints in
TYPE_SPEC nodes. A type specification in DIANA records the applicable
constraint. Because a fixed or floating point constraint contains twc parts,

DIANA Reference Manual Draft Revision 4 Page 4-32
RATIONALE

either of which 1is optional in a subtype declaration, it is possible for the
accuracy definition and the range constraint to be given in two different
constraints. Thus it is not sufficient for a REAL node to reference a
REAL_CONSTRAINT node. Instead, the accuracy definition and the range constraint
are recorded by separate attributes (sm accuracy and sm range) in the REAL node.
Though the type specification does not reference a RE RAINT node, it may
possibly reference one or both of the constituents of a REAL CONSTRAINT node.

The final kind of constraint to have an additional semantic representation
is the index constraint. DIANA adheres to the semantics of the Ada language in
its representation of arrays created by constrained array definitions. An index
constraint for a constrained_array node introduced by a constrained array
definition is a sequence of discrete type specifications; if an index subtype is
given by a type mark then the type specification corresponding to the type mark
appears at that index position. Otherwise, an anonymous subtype is created for
that particular index position. To allow array subtypes to be treated in a
uniform manner, the same approach is taken for the index constraints of all
constrained array subtypes -- those introduced by subtype declarations, slices,
aggregates, etc. (some of these may be anonymous). The new sequence is denoted
by the sm_index_ subiype s attribute of the constrained_array node.

It may be necessary to make copies of some constraints. The Ada
programming language allows multiple object declarations, which are equivalent
to a series of single object declarations. I[f the multiple object declaration
contains a constrained array definition then the type of each object is unique;
if the declaration contains a subtype indication with a constraint, then the
subtype of each object is unique. [n either case, a new TYPE_SPEC node is
created for each object in the identifier list. If the constraint is non-static
then each type specification has a unique constraint. Because the constv: 'nt
- designated by the as type def attribute of the object declaration is not
designed to be used for semantic processing, that constraint may be “shareg"
with one of the TYPE_SPEC nodes.

Due to structural similarities, the class RANGE represents both an Ada
range and an Ada range constraint. The difference can always be determined from
the context. If the RANGE ncde is introduced by an as constraint attribute, as
in the case of a numeric type definition or a subtype indication, then it

represents a range constraint. Otherwise, it is a simple range (i.e. it s
introduced by a loop iteration scheme, a membership operato~, an entry
declaration, a choice, or a slice). A RANGE node appearing DIRECTLY in 3

sequence of DISCRETE_RANGE nodes (corresponding to an index constraint) is also
a simple range.

In order to avoid a multiple class membership for the class RANGE, which
when representing a range constraint should belong to class CONSTRAINT, and when
denoting a simple range should be a member of class DISCRETE RANGE, the classes
CONSTRAINT and DISCRETE_RANGE were merged. Conseguent 1y, CONSTRAINT is a
combination of the Ada syntactic categories "constraint" and "discrete_range".
By including DISCRETE_RANGE in class CONSTRAINT, the discrete_subtype node was
introduced into the class representing constraints. It was therefore necessar,
to add a restriction in the semantic specification of DIANA prohibiting an
attribute having the type CONSTRAINT from referencing a discrete_subtype node.

F U W W y SN W) @

.~

DIANA Reference Manual Draft Revision 4 Page 4-33
RATIONALE

Discrete subtype indications are represented by the node discrete_subtype.
Although discrete subtype indications are syntactically identical to any other
kind of subtype indication, the subtype_indication node could not be included in
class DISCRETE_RANGE because it is already a member of class TYPE_DEF; to do so
would have introduced multiple membership for node subtype_indication. Hence
the discrete_subtype node was introduced. It has an as Subtype indication
attribute which denotes the actual subtype indication, thus discrete_subtype
serves as an intermediate node.

When a range constraint, a floating point constraint, or a fixed point
constraint 1is imposed on a type or subtype, it 1is necessary to perform
constraint checks to insure that the constraint is compatible with the subtype
given by the type mark. Unfortunately, the information required to do this is
not incorporated in the corresponding type specification. Although a SCALAR
node does have an sm base type attribute, it does not necessarily dencte the
type specification corresponding to the type mark in the subtype indication (a
scalar subtype is constructed from the BASE TYPE of the type mark, not the type
mark itself).

To make the type specification corresponding to the type mark accessible
from the type specification of the new subtype, the sm type spec attribute was
defined for the classes RANGE and REAL_CONSTRAINT. Although a range constraint
may be part of a floating point or fixed point constraint, it was not sufficient
to add sm type spec to the RANGE node alone; the accuracy defirition must be
availabTe as well. The definition of this attribute for both classes results in
redundancy for the range constraints which are part of fixed or floating point
constraints. The sm type spec attributes of the REAL_CONSTRAINT node and the
corresponding RANGE node (if there is one) always denote the same type
specification.

If the constraints are associated with a subtype indication then
sm type spec denotes the type specification of the type mark; however, RANGE and
REAL_CGNSTRAINT nodes can appear in other contexts. For instance, both may
appear in type definitions. The expressions for the bounds of a range
constraint associated with a type definition are not required to belong to the
same type, therefore it dis not feasible for sm type spec to reference a
previously defined type. In this case sm type spec designates the type
specification of the new base type.

RANGE nodes representing {discrete) ranges rather than range constraints
can appear as a part of slices, entry family declarations, loop iteration
schemes, membership operators, index constraints, and choices. In each of these
cases the bounds must be of the same type, hence sm type spec denotes the
appropriate base type, as specified in the Ada Reference Manual. For example,
the Ada Reference Manual states that "for a membership test with a range, the
simple expression and the bounds of the range must be of the same scalar type"
[ARM, 4.5.2]; therefore sm type spec for a RANGE node associated with a
membership operator denotes the type specification of that scala~ type.

A RANGE attribute is represented by a different kind of node from the other
Ada attributes. Unlike the others (except for BASE, which is another special
case), the RANGE attribute does not return an expression; thus the attributes
sm value and sm exp type (defined for the other kinds of Ada attributes) do not
apply. In addition, the RANGE attribute does not appear in the same contexts as

DIANA Reference Manual Draft Revision 4 Page 4-34
RATIONALE

other Ada attributes. Consequently it is represented by a special
range_attribute node.

Section 4.6
EXPRESSIONS

4.6 EXPRESSIONS

Expressions in a DIANA structure are represented by nodes from class EXP.
EXP also contains the cliass NAME because certain names can appear in
expressions.

The nodes representing expressions record both the syntax and the semantics
of expressions; therefore nodes in this class contain both structural and
semantic attributes, and may be denoted by both structural and semantic
attributes.

There are two kinds of expressions which have a syntactic component that
may vary: the membership operator may contain either a type mark or a range,
and the allocator may contain either a qualified expression or a subtype
indication. Unfortunately, in each case the variants do not belong to the same
DIANA class, therefore a single attribute could not be defined to represent the
syntactic component. The DIANA solution was to define two variants for each of
these expressions, each variant having the appropriate structural attribute to
record the syntax of that particular variant. The membership operator is
represented by the range_membership and type_membership nodes, and the allocator
is represented by the qualified_allocator and subtype_allocator nodes.

A11 DIANA nodes representing expressions have an sm exp type attribute; it
denotes the subtype of the expression. The subtype is referenced rather than
the base type because the type specification of the subtype contains both the
applicable constraint AND a direct path to the specification of the base type.
In this way, all nodes representing expressions contain the information
necessary for semantic checking, constraint checking, etc. It should be noted
that this does not imply that sm evop type can never denote a base type -- in the
Ada programming language a type is not only a type, but an unconstrained subtype
as well,

Some expressions can have static values (see section 4.9 of the Ada
Reference Manual). The sm value attribute was defined for nodes which can
represent static expressions to permit the static value to be obtained without
traversing any corresponding subtrees. If the value of an expression
represented by a node having an sm value attribute is not static, then sm value
must have a distinguished value indicating that it is not evaluated.

Due to syntactic similarities, various nodes in class EXP can represent
entities other than expressions. The selected node not only represents selected
components of records, it represents expanded names as well. The indexed node
represents an indexed component; however, it may also denote a member of an

DIANA Reference Manual Draft Revision 4 Pane 4-36
RATIONALE

entry family. These nodes have the attributes sm value and sm exp type because
they can represent expressions; however, since these attributes are meaningless
for anything other than an expression, they are undefined if the node does not
represent an expression (an expanded name denoting an object or a literal is
considered an expression).

4.6.1 EXPRESSIONS WHICH INTRODUCE ANONYMOUS SUBTYPES

Certain expressions (such as slices) impose a new constraint on a type. To
enable the subtypes of expressions to be treated in a consistent manner, DIANA
requires that anonymous subtypes be created for these expressions. The
expressions which may introduce anonymous subtypes are slices, aggregates,
string literals, and allocators.

Although a constraint for one of these expressions may be explicit, it is
not necessarily different from an existing constraint. In the interest of
efficiency, DIANA allows an existing type specification to be referenced as the
subtype of the expression if can be STATICALLY determined that the constraints
are identical; however, an implementation is free to create an anonymous subtype
for each such expression if it finds that approach to be more convenient. For
example, if it can be determined statically that a slice has the same bounds as
the array prefix, then the slice node is allowed (but not required) to denote
the type specification of the array prefix as its subtype. If it can be
determined statically that an aggregate or string literal has the same
constraints as the context type (which is required to be determinable from the
context alone) then the type specification of the context type may be referenced
as the subtype of the expression.)

The anonymous subtype is constructed from the appropriate base type and the
new constraint. The base type for a slice is obtained from the array prefix,
and the constraint is the discrete range. The base type for an aggregate or a
string 1literal is taken from the context; determining the constraint for these
expressions is more complicated (the constraint is not necessarily explicit).
Sections 4.2 and 4.3 of the Ada Reference Manual discuss this procedure in
detail.

An allocator containing a subtype ingication with an explicit constraint
introduces an anonymous subtype. This subtype is not necessarily that of the
object created by the allocator (for further details, see section 4.6.5);
however, a new type specification is created for it because constraint checks
must be performed to ensure that the constraint is compatible with the type
mark.

Unlike the other expressions which Create anonymous subtypes, the allocator
does not introduce the anonymous subtype via the sm exp type attribute. Though
an allocator creates a new object, it RETURNS an access vaéue. The anonymous
subtype 1is not the subtype of the access value returned by the allocator, hence
it cannot be denoted by sm exp type. The sm desig type attribute was defined
for allocators containing subtype indications; 1t denotes the type specification
corresponding to the subtype indication (if an explicit constraint is not given
then sm desig type references the type specification of the type mark).

L SR SNk aaas Saaas R $SNE 2SN Sk O JEEE O SN Saass 0O oSS

DIANA Reference Manual Draft Revision 4 Page 4-37
RATIONALE

4.6.2 FUNCTION CALLS AND OPERATORS

The Ada programming language allows operators (both predefined and
user-defined) to be given in either prefix or infix form. In addition, a
function can be renmamed as an operator, and an operator renamed as a function.
Consequently, the form of use of a function or operator implies nothing about
whether the function or operator is predefined or user-defined. Since it serves
no semantic purpose to distinguish function calls from operators, all function
calls and operators are represented as function calls in a DIANA structure.

There are two exceptions to this method of representation: the
short-circuit operators and the membership operators. These operators cannot be
represented as functions, therefore they cannot be overiloaded. Unlike the
parameters of a function call, all of which are evaluated before the call takes
place, the evaluation of the second relation of a short-circuit operator is
dependent upon the result of the evaluation of the first relation. The second
relation is not evaluated when the first relation of an "and then" operator is
"true' or when the first relation of an "or else" operator is "false". A
membership operator requires either a type mark or a range, neither of which is
an expression, hence neither can be represented as a parameter. These operators
are represented by the short_circuit and MEMBERSHIP nodes rather than
function_call nodes.

The name of the function (a used occurrence) provides access to the
defining occurrence of the function or operator, making it possible to determine
the kind of function or operator represented by the function_call. The
1x_prefix attribute records whether the call is given in prefix or infix form;
this information is required for subprogram specification conformance rules (the
default values of a parameter of wmode "in" might be a function call or
operator).)

The subtype of a function call is considered to be the return type. If the
function call is a predefined operator then the return type is the appropriate
base type, as specified .in section 4.5 of the Ada Reference Manual. This means
that the subtypes of certain function calls may be unconstrained; for example,
the result of a catenation is always of an unconstrained array subtype. Since
it is not always possible to determine statically the constraints on a value
returned by a function call, it is not feasible to require an anonymous subtype
to be created for a call to a function with an unconstrained return type.

4.6.3 IMPLICIT CONVERSIONS

The Ada programming language defines various kinds of implicit type
conversions, some of which are recorded in a DIANA structure, while others are
not. -

An implicit conversion of an operand of a universal type to a numeric type
may be required for an operand that is a numeric literal, a named number, or an
attribute. Although this implicit conversion 1is not recorded by the
introduction of a distinct node, it is in a sense recorded by the value of the
sm_exp type attribute. If the context requires an implicit conversion of an
operand of a universal type, then the sm exp type attribute of the

DIANA Reference Manual Draft Revision 4 Page 4-38
RATIONALE

numeric_literal, used_object_id, or attribute node denotes the target type
rather than the universal type.

By allowing the sm exp t¥ge attribute to reflect the result of the implicit
conversion, all of the 1information necessary to perform the conversion is
recorded in the node representing the literal, named number, or attribute; no
additional context information is required. In addition, the fact that an
expression is the operand of an implicit conversion can now be determined easily
by a DIANA user. For instance, a numeric literal is the operand of an implicit
conversion if sm exp type does not denote a universal type. If sm exp type did
not reflect the conversion, then in any context in which an operand of a
universal type would not be appropriate it would be necessary to check for the
existence of a convertible universal operand. Since scalar operands can appear
in numerous contexts that require non-universal types, a substantial amount of
checking would be involved. The DIANA approach localizes the checking for an
implicit conversion to the nodes which may represent convertible universal
operands.

The semantics of the Ada language force the determination of the existence
of an implicit type conversion during the semantic checking phase (an implicit
conversion is applied only if the innermost complete context reguires the
conversion for a legal interpretation); recording information that is already
available should not impose a hardship on an implementation. The
numeric_literal, wused_object_id, and attribute node all represent used
occurrences; hence no conflicts should arise as a result of this representation
of implicit conversions (i.e. the sm obj type attribute of the number_id stil)
denotes a universal type).

As a result of the DIANA representation of implicit conversions, the used
occurrences of a named number cannot always be represented by a single node,
since the sm_exp type attribute of the used_object_id may reflect an implicit
conversion. However, a single used occurrence having a particular target type
may represent all used occurrences of that named number requiring that
particular type.

If the variable to the right of the assignment operator in an assignment
statement 1is an array, then the expression to the right of the assignment
operator is implicitly converted to the subtype of the array variable. This
implicit subtype conversion may also be performed cn the initial value ir an
array variable declaration. Many kinds of expressions produce anonymous array
subtypes, which have a 0[ANA representation. Since this representation is
introduced by the sm e:p type attribute of the corresponding expression, the
solution adopted for scaiar operands is not suitable for arrays. OQue to the
fact that the implicit subtype conversion can occur only in two well-defined
contexts, it was decided that it was not necessary to record the need for an
implicit conversion.

Certain type conversions take place during a call to a derived suborogram,
For formal parameters of the parent type the following conversions are
performed: the actual parameters cturresponding to parameters of mode "in" and
"in out" are converted to the parent type before the call takes place;
parameters of mode "in out” and "out" are converted to the derived type after
the call takes place. If the result of a derived function is of the parent type
then the result is converted to the derived type.

[N 0O B O O T 0O TN 0 T 0 T W TN T ——

DIANA Reference Manual Draft Revision 4 Page 4-39
RATIONALE

The conversion of parameters described above cannot be represented in the
sequence of actual parameter associations corresponding to the source code
without interfering with source reconstruction; however, these conversions could
be incorporated into the normalized actual parameter list. It was decided not
to record these conversions because the need for such a conversion is easily
detected by comparing the base types of the formal and actual parameters. Since
an implementation is already required to compare the (sub)types of formal and
actual parameters to determine which constraint checks are needed, checking for
the need for implicit conversions should impose no hardship. Requiring these
conversions to be represented would force calls to derived subprograms to be
treated as special cases when constructing a DIANA structure. The conversion of
a return value of the parent type is not represented for the same reasons.

4.6.4 PARENTHESIZED EXPRESSIONS

Under some circumstances parentheses have a semantic effect in the Ada
programming language. Consider the following procedure call:

P ((A))3

The parentheses around the actual parameter "“A" make it an expression rather
than a variable, hence the corresponding formal parameter must be of mode "in",
or the program containing this statement is in error, In addition, certain
parentheses (such as those contained in default expressions for formal
parameters of mode "in") must be preserved in order to perform conformance
checks. Hence ODIANA defines a parenthesized node. Not only does it contain a
reference to the expression that it encloses, it records the value (if the value
is static) and the subtype of that expression. .

Certain kinds of processing are not affected by the presence or abserce of
parentheses. To allow the parenthesized node to be easily discarded as the
DIANA is read in, a restriction was added to the semantic specification of
DIANA: a semantic attribute which denotes an expression can never reference a
parenthesized node; it must designate the node representing the actual
expression instead. This principle also applies to sequences which are created
expressly for semantic attributes and may contain expressions, such as the
various normalized sequences. As a consequence of this restricticn, a
parenthesized node <an be referenced by only one attribute -- a structural onre.
Since many of the semantic attributes were introduced as "shortcuts", it would
be inappropriate for them to denote a parenthesized node anyway.

4.6.5 ALLOCATORS

The subtype of an object created by anm allocator is determined in one of
two ways, depending on the class of the object. The subtype of an array or a
discriminated object 1is determined by the qualified expression, subtype
indication, or default discriminant values. The subtype of any other kind of
object is "the subtype defined by the subtype indication of the access type
definition" [ARM, 4.8]; i.e. it is the subtype determined by the context (the
Ada language requires this type to be determinable from the context alone).

ODIANA Reference Manual Oraft Revision 4 Page 4-40
RATIONALE

As a result of these requirements, the sm exp type attribute of an
allocator creating an object that i{s not an array or a discriminated object
denotes the type specification of the context subtype. Unfortunately, the value
of sm exp type 1is not as easily determined in the other case -- an appropriate
subtype 1s not always available for the sm exp type attribute of an allocator
creating an array or a discriminated object. §§nce an allocator can create an
object with a unique constraint, a collection that is compatible with that
object may not exist., Consider the following declarations:

type AC is access STRING(1..10);
FIVE : POSITIVE := 5;
08J : AC := new STRING(1..FIVE);

Although the initialization of 08J will result in a constraint error, the
declaration of O0BJ is 1legal, and hence must be represented in the DIANA
structure.

It may seem that it would be simple to make an anonymous subtype for this
sort of allocator, just as anonymous subtypes are created for other kinds of
expressions. But due to the way in which access types are constrained, the
construction of an anonymous subtype cannot always be performed as it would be
for other classes of types.

The anonymous subtypes for other expressions are constructed from the base
type of the context type and the new constraint. The base type of an array or
record type cannot have a constraint already imposed upon it (constrained array
type definitions create anonymous unconstrained base types, and the syntax of a
record type definition does not allow a constraint); therefore the imposition of
a constraint on the base type does not cause an inconsistency.

The base type of an access type is not always unconstrained, nor does the
Ada language define an anonymous unconstrained base type for a constrained
access type. Associated with an access base type is a collection containing the
objects which are referenced by access values of that type. If that base type
is constrained (i.e. the designated subtype is constrained), then all of the
objects 1in its collection must have the same constraints. It would be
inappropriate to introduce an anonymous base type having an unccrstrained
designated subtype.

Unfortunately, this means that there is no existing type that would be an
appropriate base for the anonymous subtype of the allocator in the previous
example. The objects which may be referenced by OBJ and the object created by
the evaluation of the allocator do not belong to the same collection, therefore
they should not have the same base type. One solution would be to create an
anonymous BASE type for the allocator; however, it cannot always be determined
statically whether or not the object created by an allocator belongs to the
collection of the context type. For instance, if the variable FIVE had the
value 10 rather than 5, then it would be inconsistent to construct an anonymous
base type for the allocator, since the object it creates belongs to the
collection associated with AR.

DIANA Reference Manual Draft Revision 4 Page 4-41
RATIONALE

[t was decided that in the case of an allocator creating an array or a
discriminated object the sm exp type attribute would denote the context subtype,
just as it does for other kinds of allocators. Within the context of the
allocator it can easily be determined what constraint checks need to be
performed by comparing the subtype of the qualified expression or the subtype
introduced by the allocator with the designated subtype of the context type.

4.6.6 AGGREGATES AND STRING LITERALS

The Ada programming language allows the component associations of an
aggregate to be given in two forms: named and positional. If named
associations are used then the associations do not necessarily appear in the
same order as the associated components. To simplify subsequent processing of
the aggregate, the aggregate node contains a normalized 1list of component
associations.

Since records have a static number of components (the expression for a
discriminant governing a variant part must be static in an aggregate), it is
possible for the component associations to be replaced by a sequence of
expressions in the order of the components to which they correspond.

Unfortunately, the associations of array aggregates are not necessarily
static. In addition, it is not always desirable to replace a static range by
the corresponding number of component expressions, particularly if the range is
large. Hence the normalized 1list of component associations for an array
aggregate does not necessarily consist of expressions alone (obviously all
positional associations will remain as expressions in the normalized sequence).

A single component association may contain several choices. Since the
component associations in the normalized sequence must he in the proper order,
and since the original choices do not necessarily correspond to components whicn
are contiguous (much less in the proper order), each component association
containing more than one choice is decomposed into two or more asscciations.
The normalized sequence does not correspond to source code, hence the only
requirements imposed on the decomposition process are that the resulting
associations be semantically equivalent to the original ones, and that eacnh
association be either the component expression itself or a named association
having a single choice.

An "others" choice does not necessarily denote consecutive components,
therefore it is treated as if it were an association with multiple choices.
tach component or range of components represented by the "others" choice is
represented by a component expression or a named association in the normalized
sequence.

If a choice in an array aggregate is given by a simple expression, and it
can be determined statically that the expression belongs to the corresponding
index subtype then that association may be replaced by the component expression.

A subaggregate is syntactically identical to an aggregate, therefore it is
represented in a OIANA structure by the same kind of node. The only problem
arising from this representation is caused by the sm exp type attribute. A

DIANA Reference Manual Oraft Revisioun 4 Page 4-42
RATIONALE

subaggregate is an aggregate corresponding to a sub-dimension of a
multidimensional array aggregate. An aggregate corresponding to an array
component or a record component is NOT a subaggregate. Since a subaggregate
corresponds to a dimension rather than a component, it does not have a subtype.
A subaggregate does, however, have bounds (although the bounds may be implicit,
as specified in section 4.3.2 of the Ada Reference Mcnual). In order to
correctly represent the subaggregate, the sm discrete range attribute was
defined for the aggregate node; it denotes the bounds of the subaggregate, and
is void for an aggregate that is not a subaggregate. The sm exp type attribute
of a subaggregate is void.

A string literal is not syntactically like an aggregate, therefore ii is
represented by a string_literal node. However, a string literal may be a
subaggregate if it occurs "in a multidimensional aggregate at the place of a
one-dimensional array of a character type" [ARM, 4.3.2]}. To accomodate this
case, the string_literal and aggregate nodes were placed in the class AGG_EXP,
and the sm discrete range attribute was defined for both nodes.

As previously stated, an aggregate may have an anonymous subtype. In most
cases the constraints for the subtype are obtained from the aggregate itself
with no conflict as to which constraints to use. However, in the case of an
aggregate which contains more than one subaggregate for a particular dimension
the choice 1is not clear. To add to the confusion, the bounds of the
subaggregates for a particular dimension are not necessarily the same. Though
the Ada language requires a check to be made that all of the (n-1)-dimensional
subaggregates of an n-dimensional myitidimensional array aggregate “ .ve the same
bounds, a program containing a violation of this condition is not in error;
instead, a constraint error is raised when the aggregate is evaluated during
execution.

DIANA does not specify which subaggregate the constraint for a particular
dimension 1is taken from. If all of the subaggregates have the <ame bounds tnen
it does not matter which is chosen. If the bounds are not the same then it
still does not matter, since the constraint error will be detected regardliess of
which bounds are selected for the anonymous subtype.

Section 4.7

PROGRAM UNITS

4.7 PROGRAM UNITS

Numerous kinds of declarations exist for package and subprograms --
renaming declarations, generic instantiations, etc. The information peculiar to
each kind of declaration must be accessible from the defining occurrence of that
entity. Rather than have a different kind of defining occurrence with different
attributes for each kind of declaration, DIANA has only one for a package and
one for each kind of subprogram. Each such defining occurrence has an
sm unit desc attribute which denotes a UNIT_DESC node that not only indicates
the form of declaration, but records pertinent information related to the entity
as well. The UNIT_DESC nodes for special kinds of package and subprogram
declarations are discussed in detail in the following sections.

The defining occurrence of a package or subprogram that is introduced by an
ordinary declaration does not denote a UNIT_DESC node defined exclusively for a
particular kind of declaration. Instead, it denotes the body of the subprogram
or package, if it is in the same compilation unit. Although this information is
not vital for a defining occurrence that does not correspond to a body

declaration, this "shortcut" may be used for optimization purposes.

4.7.1 RENAMED UNITS

The Ada programming language allows renaming declarations for packages,
subprograms, and entries. These declarations introduce new names for the
original entities. In a few special cases an entity may even be renamed as
another kind of entity. A package or subprogram renaming declaration has the
same DIANA structure as an ordinary package or subprogram declaration; the fact
that it is a renaming is indicated by the as unit kind attribute, which denotes
a renames_unit node. T

If the entity is being renamed as the same kind of entity (i.e. a package
is being renamed as a package, a procedure as a procedure, etc.) then uses of
the new name will have the same syntactic structure as uses of the old name, and
can appear in the same kinds of context. For instance, a used occurrence of the
name of a function which is renamed as a function will appear as a function call
within the context of an expression. The function call must be given in prefix
form, just as a function call containing the old name must. A function_id can
represent the new name without conveying any incorrect semantic information, and
used occurrences of this name can refer to the function_id without introducing
any inconsistencies in the DIANA tree.

DIANA Reference Manual Draft Revision 4 Page 4-44
RATIONALE

In such cases the new name is represented by the same kind of DEF NAME node
as the original entity, the sm unit kind attribute of which denotes a
renames_unit node. Because the defining occurrence represents a new name rather
than a new entity, the remainder of the semantic attributes, except for sm spec
for a subprogram name, have the same values as those of the original entity.
Since a new formal part is given in the renaming of a subprogram, the sm spec
attribute must denote the formal part correspond1ng to the new name. Access 1o
the defining occurrence of the original unit is provided through the as name
attribute of the renames_unit node.

Entities which are renamed as other kinds of entities present special
cases. Consider a function renamed as an operator. Although a used occurrence
of the new name will still appear as a function call within the context of an
expression, a function call using the new name may be given in either infix or
prefix form. [f a function_id were used to represent the new name rather thar
an operator_id then the information conveyed by the type of the defining
occurrence node woL Id not be correct. Though the entity is the same function,
its new name must be viewed as the name of an operator. The same is true for an
attribute renamed as a function -- though a used occurrence returns the value of
the attribute, it will look like a function call, not an attribute.

An entry renamed as a procedure presents a different problem. The syntax
for procedure calls and entry calls 1is identical; however, from a semantic
perspective, call statements using the new name are procedure calls, not entry
calls. A call statement containing the new name cannot be used for the entry
call statement in a conditional or timed entry call, nor can it be the prefix
for a COUNT attribute.

With the exception of an enumeration literal remamed as a function, all
entities which are renamed as other kinds of entities are represented by the
DEF_NAME node which is appropriate for the new name. Applicable attributes in
the defining occurrence for the new name have the same values as the
corresponding attributes in the original entity. For instance, the operator_id
and function_id nodes have the same attributes, so that all semantic attributes
except for sm unit kind and sm spec may be copied. 0On the other hand, none of
the semantic attributes in a function_id are applicable for an Ada attribute,
hence they should have the appropriate values; i.e. sm_is_inline is false,
sm_address is void, etc.

The only entity which can be renamed as another kind of entity without
changing either the syntactic or the semantic properties associated witn tne use
of the name is an enumeration literal that 1is renamed as a functicn. Ar
enumeration literal and a parameterless function call have the same appearance,
and there are no semantic restrictions placed on the use of the new name. The
new name can be represented by an enumeration_id, and used occurrences can be
denoted by used_object_id nodes which reference that enumeration_id (rather thar
a function 1d) as the defining occurrence. The values of the semantic
attributes of the new enumeration_id are copies of those of the origiral
enumeration_id.

— I B e DESE O BESS O EEER SRS O BEEE S e O SEEEE Seems Seees oesees

DIANA Reference Manual Draft Revision 4 Page 4-45
RATIONALE

4.7.2 GENERIC INSTANTIATIONS

The Ada language defines a set of rules for an instantiation, specifying
which entity 1is denoted by each kind of generic formal parameter within the
generic unit. For example, the name of a generic formal parameter of mode “in
out" actually denotes the variable given as the corresponding generic actual
parameter. An obvious implementation of generic instantiations would copy the
generic unit and substitute the generic actual parameters for all uses of the
generic formal parameters in the body of the unit; however, this substitution
cannot be done if the body of the genmeric unit is compiled separately. In
addition, a more sophisticated implementation may try to optimize instantiations
by sharing code between several instantiations. Therefore the body of a generic
unit is not copied in DIANA in order to avoid constraining an implementation and
to avoid introducing an inconsistency in the event of a separately compiled
body.

Generic formal parameters may appear in the specification portion of the
generic unit; for instance, a formal parameter of a generic subprogram may be
declared to be of a generic formal type. The specification portion of the
instantiated unit will necessarily be involved in certain kinds of semantic
processing whenever the instantiated unit or a part of its specification is
referenced. For example, when that instantiated subprogram is called it is
necessary to know the types of its parameters. Semantic processing would be
facilitated if the entities given in the specification could be treated in a
“normal” fashion; i.e. it is desirable that the appropriate semantic
information be obtainable without a search for the generic actual parameter
every time semantic information is needed. Because there may be numercus
instantiations of a particular generic unit, it is not possible to simply add an
additional attribute to the defining occurrences of the generic formal
parameters in order to denote the corresponding actual parameters.

DIANA provides a solution in two steps, the first of which is the additior
of a normalized 1list of the generic parameters, including entries for all
default parameters. Within this seguence (sm decl s of the instantiation node)
each parameter entry 1is represented by a declarative node which does not
correspond to source code. Etach declarative node introduces a new defining
occurrence node; the name (Ix symrep) corresponds to the formal parameter,
however, the values of the semantic attributes are determined by the actual
parameter as well as the kind of declarative noage introducing the defining
occurrence.,

After the normalized declaration list has been <created the specification
part of the generic unit 1is copied. Every reference to a generic formal
parameter in the original generic specification 1is changed to reference the
corresponding newly created defining occurrence. Since each DEF_NAME node
contains the appropriate semantic information, specifications of instantiatec
units do not have to be treated as special cases.

A DEF_NAME node introduced by one of these special decliarative nodes is not
consivered to be an additional defining occurrence of the generic formal
parameter; should a defining occurrence that is introduced by such a declarative
node have an sm first attribute, it will reference itself, not the node for the
formal parameter.

DIANA Reference Manual Draft Revision 4 Page 4-46
RATIONALE

Since this list of declarative nodes is a normalized 1list, all of the
object declarations which appear in it are SINGLE declarations, even though the
generic formal parameter may have been declared originally in a multiple object
declaration. The kind of declarative node created for a generic formal
parameter is determined by the kind of parameter as well as by the entity
denoted by the parameter.

The name of a formal object of mode "in" denotes "a constant whose value is
a copy of the value of the associated generic actual parameter" [ARM, 12.3].
Thus a formal object of mode "in" is represented by a constant declaration in
the normalized parameter 1list. The initial value is either either the actual
parameter or the default value, and the subtype of the constant is that of the
actual parameter.

The name of a formal object of mode "in out" denotes "the variable named by
the associated actual parameter" [ARM, 12.3]. Hence a formal object of mode "in
out" appears in the normalized parameter list as a renaming declaration in which
the renamed object is the actual parameter. The values of the attributes of the
new variable_id are determined just as they would be for an ordinary renaming.

The declarative nodes for both constant and variable declarations have an
attribute for the type of the object being declared. Unfortunately, as type def
is normally used to record syntax, but because the declarative node does not
correspond to source code, there is no syntax to record. A possible solution
would be for as type def to reference the TYPE_DEF structure belonging to the
declaration of the actual parameter; however, this structure is not always
appropriate. If the context of the declaration of the actual parameter and that
of the instantiation is not the same, then an expanded name rather than a simple
name might be required in the TYPE_DEF structure for the special declarative
node. Rather than force an implementation to construct & new TYPE _DEF structure
in order to adhere to the Ada visibility rules, DIANA allows the value of
as _type def in an OBJECT DECL node generated by an instantiation to be
undefined. »5ince these declarative nodes are introduced to facilitate semantic
processing, not to record syntax, this solution should not cause any problems.
Declarative nodes for objects in the copy of the specification are treated in
the same manner.

The name of a formal type denotes “"the subtype named by the associated
generic actual parameter (the actuai subtype)" [ARM, 12.3]. A zeneric fcrma’
type is represented in the normalized list by a subtvpe declaration. The name
in the subtype indication corresponds to the generic actual parameter, and the
subtype indication does not have a constraint, hence the declaraticn effectively
renames the actual subtype as the formal type. The sm type spec attribute of
the subtype_id references the TYPE_SPEC node associated with the actual
parameter.

The name of a formal subprogram denotes "the subprogram, enumeration
literal, or entry named by the associated genmeric actual parameter (the actual
subprogram)" [ARM, 12.3]. A generic formal subprogram appears in the normalized
1ist as a renaming declaration in which the newly created subprogram renames
either the subprogram given in the association 1ist or that chosen by the
analysis as the default. The values of the attributes of the new DEF_NAME node
are determined just as they would be for an ordinary renaming, with the
exception of the HEADER node, which is discussed in one of the subsequent

Iy s e

DIANA Reference Manual Draft Revision 4 ' Page 4-47
RATIONALE

paragraphs.

References to generic formal parameters are not the only kind of references
that are replaced in the copy of the generic specification. Substitutions must
also be made for references to the discriminants of a generic formal private
type, and for references to the formal parameters of a generic formal
subprogram.

The name of a discriminant of a generic formal type denotes "the
corresponding discriminant (there must be one) of the actual type associated
with the generic formal type" [(ARM, 12.3]. I[f a formal type has discriminants,
references to them are changed to designate the corresponding discriminants of
the base type of the newly created subtype (i.e. the base type of the actual
type). Since the new subtype id references the type specification of the actual
subtype, any direct manipulation of the subtype_id will automatically access the
correct discriminants.

The name of a formal parameter of a generic formal subprogram denotes “the
corresponding formal parameter of the actual subprogram associated with the
formal subprogram" [ARM, 12.3]. [f a formal subprogram has a formal part, the
declarative node and defining occurrence node for the newly created subprogram
reference the HEADER node of the the actual subprogram. Any references to a
formal parameter are changed in the copy of the generic unit specification to
denote the corresponding formal parameter of the actual subprogram.

Consider the following example:

procedure EXAMPLE is

OBJECT : INTEGER := 10;

function FUNC (DUMMY : INTEGER) return BOOLEAN is
begin
return TRUE;
end FUNC;

generic

FORMAL 0BJ : INTEGER:

with function FORMAL FUNC(X : INTEGER) return BOOLEAN;
package GENERIC_PACK 1s

PACK_OBJECT : BOOLEAN := FORMAL FUNC (X => FORMAL_0BJ);
end GENERIC_PACK;
package body GENERIC PACK is separate;

package NEW_PACK is new GENERIC PACK (FORMAL_0BJ => OBJECT,
FORMAL_FUNC => FUNC);

begin
null;
end EXAMPLE;

DIANA Reference Manual Draft Revision 4 Page 4-48
RATIONALE

If a DIANA structure were created for package EXAMPLE, then the normalized
parameter 1list for package NEW PACK would contain two decTarat1ve nodes. The
first would be a constant declaration for a new FORMAL 0BJ, which would be
initialized with the INTEGER value 10. The second would be a renaming
declaration for a new FORMAL_FUNC; the original entity would be FUNC, and the
header of the new FORMAL FUNC would actually be that of FUNC. The specification
for package NEW_PACK would be a copy of that of GENERIC_PACK; however, the
references to FORMAL_FUNC and FORMAL_0BJ would be changed “to references to the
newly declared entities, and the reference to X would be changed to a reference
to DUMMY,

4.7.3 TASKS

The definition of the Ada programming language specifies that ‘"each task
depends on at least one master" [ARM, 9.4]. Two kinds of direct dependence are
described in the following excerpt (section 9.4) from the Ada Reference Manual:

(a) The task designated by a task object that 1is the object, or a
subcomponent of the object created by the evaluation of an allocator
depends on the master that elaborates the corresponding access type
definition.

(b) The task designated by any other task object depends on the master
whose execution creates the task object.

Because of the dynamic nature of the second kind of dependency, DIANA does
not attempt to record any information about the masters of such task objects.
The first kind of dependency, however, requires some sort of information about
the static nesting level of the corresponding access type definition; hence the
sm master attribute was added to the type specification of access types. Its
value 1is defined only for those access types which have designated types that
are task types. This attribute provides access to the construct that would be
the master of a task created by the evaluation of an allocator returning a value
of that particular access type.

A master may be one of the following:

(a) a task

(b) a currently executing block statement

(c) a currently executing subprogram

(d) a library package

A problem arose over the type of sm master -- there 1is no one class in
DIANA that includes all of these constructs. The class ALL_DECL contains
declarative nodes for tasks, subprograms, and packages; therefore it seemed

appropriate to add a "dummy" node representing a block statemert to this class.
The block_master node, which contains a reference to the actual block statement,

»-'-\

e |

DIANA Reference Manual Draft Revision 4 Page 4-49
RATIONALE

was added to ALL_DECL at the highest possible level, so that it would not be
possibie to have block master nodes appearing in declarative parts, etc. Only
one attribute (as all decl) other than sm master has the class ALL DECL as its
type; restrictions on the value of this attribute were added to the semantic
specification.

4.7.4 USER-DEFINED OPERATORS

The Ada programming language allows the user to overload certain operators
by declaring a function with an operator symbol as the designator. Because
these user-declared operators have user-declared bodies, etc., they are
represented by a different kind of node from the predefined operators. The
predef ined operators are represented by bitn_operator_id nodes, which do not
have the facility to record all of the information needed for user-defined
operators. A user-defined operator is represented by an operator_id node; it
has the same set of attributes as the function_id.

A special case arises for the inequality operator. The user is not allowed
to explicitly overload the inequality operator; however, by overloading the
equality operator, the user IMPLICITLY overloads the corresponding ineguality
operator. The result returned by the overloaded ineguality operator is the
complement of that returned by the overloaded equality operator.

Since the declaration of the overloaded inequality operator 1is implicit,
the declaration is not represented in the DIANA tree (to do so would interfere
with source reconstruction). At first glance it may seem that a simple
implementation of the implicitly declared inequality operator would be to
replace all uses of the operator by a combinatioh of the "not" operator and the
equality operator (i.e. "X /= Y" would be replaced by "not { X = Y)"). While
this approach may be feasible for occurrences of the inequality operator within
expressions, it will not work for occurrences in other contexts. For instance,
this representation would not b2 appropriate for a renaming of the implicitly
declared inequality operator, or for an implicitly declared operator that is
used as a generic actual parameter.

In order for used occurrences (used_name_id nodes) to have a defining
occurrence to reference, the implicitly declared ineguality operator s
represented by an operator_id. Unfortunately, this operator does not bhave a
header or a body to be referenced by the attributes of the operator_id; some
indication that this operator is a special case 1is needed. Thus the
implicit_not_eq node was defined. Instead of referencing a body, the
as unit desc attribute of an operator id corresponding to an implicitly declared
jnequality operator denotes an impTicit_not_eq node, which provides access to
the body of the corresponding equality operator. The as header attribute of the
operator_id designates either the header of the corresponding equality operator,

“or a copy of it.

DIANA Reference Manual Draft Revision 4 Page 4-50
RATIONALE

4.7.5 DERIVED SUBPROGRAMS

A derived type definition introduces a derived subprogram for each
subprogram that is an operation of the parent type (i.e. each subprogram having
either a parameter or a result of the parent type) and is derivable. A
subprogram that is an operation of a parent type is derivable if both the parent
type and the subprogram itself are declared immediately within the visible part
of the same package (the subprogram must be explicitly declared, and becomes
derivable at the end of the visible part). If the parent type is also a derived
type, and it has derived subprograms, then those derived subprograms are alsc
derivable.

The derived subprogram has the same designator as the corresponding
derivable subprogram; however, it does not have the same parameter and result
type profile. It should be noted that it would be possibie to perform semantic
checking without an explicit representation of the derived subprogram. All used
occurrences of the designator could reference the defining occurrence of the
corresponding derivable subprogram. When processing a subprogram call with that
designator, the parameter and result type profile of the derivable subprogram
could be checked. If the profile of the derivable subprogram was not
appropriate, and a derived type was involved, then a check could be made to see
if the subprogram was derivable for that particular type (i.e. that a derived
subprogram does exist).

Unfortunately, the circumstances under which a derived subprogram is
created are complex; it would be very difficult and inefficient to repeatedly
calculate whether or not a derived subprogram existed. Hence derived
subprograms are explicitly represented in DIANA. The appropriate defining
occurrence node 1is created, and the sm unit desc attribute denotes a
derived_subprog node, thereby distinguishing the derived subprogram from other
kinds of subprograms. Once the new specification has been created, the derived
subprogram can be treated as any other subprogram is treated; it is no longer a
special case.

The specification of the derived subprogram is a copy of that of the
derivable subprogram, with substitutions made to compensate for the type
changes. As outlined in section 3.4 of the Ada Reference Manual, all references
to the parent type are changed to references to the derived type, and any
expression of the parent type becomes the operand of a type conversior that has
the derived type as the target type. The specification 0of the derived
subprogram deviates from the specification described in the Aga Reference Manuai
in one respect. The manual states that “any subtype of the parent type is
likewise replaced by a subtype of the derived type with a similar constraint"
[ARM, 3.4]. If this suggestion were followed, both an anonymous subtype and a
new constraint would have to be created. Fortunately, both the requirements for
semantic checking and the semantics of calls to the derived subprogram allow a
representation which does not require the construction of new nodes (or
subtypes).

A1l references to subtypes of the parent type are changed to references to
the derived type in the specification of the derived subprogram. Because
semantic checking requires only the base type, this representation provides all
of the information needed to perform the checks. A call to a derived subprogram
is equivalent to a call to the corresponding derivable subprogram, with

DIANA Reference Manual Draft Revision 4 Page 4-51
RATIONALE

appropriate conversions to the parent type for actual parameters and return
values of the derived type. Though the derived subprogram has its own
specification, it does not have its own body, thus the the type conversions
described in section 3.4 of the Ada Reference Manual are necessary. In addition
to performing the required type conversions to the parent type, an
implementation could easily perform conversions to subtypes of the parent type
when appropriate, thereby eliminating the need tc create an anonymous subtype of
the derived type. The derived_subprog node provides access to the defining
occurrence of the corresponding derivable subprogram (and hence to the types and
subtypes of its formal parameters).

Although the defining occurrence of a derived subprogram is represented in
DIANA, its declaration is not, even though the Ada Reference Manual states that
the implicit declaration of the derived subprogram follows the declarations of
the operations of the derived type (which follow the derived type declaration
itself). Consequently the defining occurrence of a derived subprogram can be
referenced by semantic attributes alone.

Section 4.8
PRAGMAS

4.8 PRAGMAS

The Ada programming language allows pragmas to occur in numerous places,
most of which may be in sequences (sequences of statements, declarations,
variants, etc.). To take advantage of this fact, several DIANA classes have
been expanded to allow pragmas -- in particular, those classes which are used as
sequence element types and which denote syntactic constructs marking places at
which a pragma may appear. For instance, the class STM_ELEM contains the node
stm_pragma and the class STM. A1l constructs which are defined as sequences of
statements in the Ada syntax are represented in DIANA by a sequence containing
nodes of type STM_ELEM.

The approach taken for the representation of comments could have been
applied to pragmas; i.e. adding an attribute by which pragmas could be attached
to each node denoting a construct that could be adjacent to a pragma. This
approach has two disadvantages: there is a need to decide if a pragma should be
associated with the construct preceding it or the one following it; and the
attribute 1is "wasted" when a pragma is not adjacent to the node (which will be
the most common case). Since the set of classes needing expansion is a small
subset of the DIANA -classes, it was decided to allow the nedes representing
pragmas to appear directly in the associated sequences, exactly as given in the
source.

The pragma node could not be added directly to each class neecing it
without introducing multiple membership for the pragma node. Since the DIANA
classes are arranged in a hierarchy (if one excludes class the node void) such a
situation would be highly undesirable. Instead, the pragma node is included in
class USE_PRAGMA, which is contained in class DECL, and an intermediate node is
included in the other classes. This intermediate node has an as _pragma
attribute denoting the actual pragma node. The stm pragma node menticnec at ine
beginning of this section is an intermediate node. —

Sequences of .the following constructs may contain pragmas:
(a) declarations (decl_s and item_s)

(b) statements (stm_s)

(c) variants (variant_s)

(d) select alternatives (test_clause_elem_s)

DIANA Reference Manual Draft Revision 4 Page 4-53
RATIONALE

(e) case statement alternatives (alternative_s)
(f) component clauses (comp_rep_s)
(g) context clauses (context_elem_s)

(h) use clauses (use_pragma_s)

Unfortunately pragmas do not ALWAYS appear in sequences. In a few cases it
was necessary to add an as pragma s attribute to nodes representing portions of
source code which can contain pragmas. These cases are discussed in the
following paragraphs.

The comp_list node (which corresponds to a component list in a record type
definition) has an as pragma s attribute to represent the pragmas occurring
between the variant part and the end of the record type definition (i.e.
between the "end case" and the "end record").

The labeled node, which represents a labeled statement, has an as pragma s
attribute to denote the pragmas appearing between the label or labels and the
statement itself,

Pragmas may occur before an alignment clause in a record representation
clause (i.e. between the "use record" and the "at mod"), hence the
alignment_clause node also has an as pragma s attribute. If a record
representation clause does not have an alignment clause then a pragma occurring
after the reserved words "use record" 1is vrepresented by an intermediate
comp_rep_pragma node in the comp_rep_. sequence (in this case the comp_rep_s
sequence will have to be constructed whether any component clauses exist or
not).

Finally, the compilation_unit node defines an as pragma s attribute which
denotes a non-empty sequence in one of two cases. A compilation may consist of
pragmas alone, in which case the as pragma s denotes the pragmas given for the
compilation, and the other attributes are empty sequences or void.

[f the compilation contains a compilation unit then as pragma s recresents
the pragmas which follow the compilation unit and are not associated with the
following compilation unit (if there is a compiiation unit following it at aii).
INLINE and INTERFACE pragmas occurring between compilation wunits must be
associated with the preceding compilation unit according to the rules of the Ada
programming language. LIST and PAGE pragmas may be associated with either unit
unless they precede or follow a pragma which forces an association (i.e. a LIST
pragma preceding an INLINE pragma must be associated with the previous
compilation unit, since pragmas in DIANA must appear in the order given, and the
INLINE pragma belongs with the previous unit). These four pragmas are the only
ones which may follow a compilation unit.

Certain pragmas may be applied to specific entities. Although the presence
of these pragmas must be recorded as they occur in the source (to enable the
source to be constructed), it would be convenient if the information that they
conveyed were readily available during semantic processing of the associated
entity. Hence DIANA defines additional attributes to record pertinent pragra

DIANA Reference Manual Draft Revision 4 Page 4-54
RATIONALE

information in the nodes representing defining occurrences of certain entities
to which pragmas may be applied. The following pragmas have corresponding
semantic attributes:

(a) CONTROLLED
sm is controlled in the access node

(b) INLINE
sm_is inline in the generic_id and SUBPROG_NAME nodes

(c) [INTERFACE
sm_interface in the SUBPROG_NAME nodes

(d) PACK
sm_is packed in the UNCONSTRAINED_COMPOSITE nodes
(e) SHARED

sm_is shared in the variable_id node

Although it may seem that the pragmas OPTIMIZE, PRIORITY, and SUPPRESS
should also have associated attributes, they do not. Each of these pragmas
applies to the enclosing block or unit. The information conveyed by the
OPTIMIZE and PRIORITY pragmas could easily be incorporated into the DIANA as it
is read in. The SUPPRESS pragma is more compliicated -- not only is a particular
constraint check specified, but the name of a particular entity may be given as
well, SUPPRESS is too dependent upon the constraint checking mechanism of an
implementation to be completely specified by DIANA; in fact, the omission of the
constraint checks is optional.

CHAPTER §
EXAMPLES

‘—

DIANA Reference Manual Draft Revision 4 Page 6-2
EXAMPLES

This chapter consists of exampies of OJIANA structures. ©£ach example
contains a segment of Ada source code and an illustration of the resulting DIANA
structure. Each node is represented by a box, with its type appearing in the
upper left-hand corner. Structural attributes are represented as labeled arcs
which connect the nodes. A1l other kinds of attributes appear inside the noge
jtself; code and semantic attributes are represented by a name and a value,
while lexical attributes representing names or numbers appear as strings (inside
of gquotes). A1l sequences are depicted as having a header node, even if the
sequence is empty. I[f the copying of a node is optionmal, it is NOT copied in
these examples.

These illustrations DO NOT imply that all DIANA representations of these
particular Ada code segments must consist of the same combination of nodes and
arcs. For instance, an implementation is not required to have a heade node for
a sequence. The format for these examples was selected because it seemed to be
the most straightforward and easy to understand.

In certain instances an arc may poinct to a short text sequence describing
the node that s raferenced rather than pointing to the node itself. This is
done for any of the following reasons:

o the node is pictured in an exampic on anotner page

2 the node is not gictured in any or the examples

0 the node represents a predefined cntity which cannot be depicted
because it is implementation-dependent

0 the node is on the same page, but pointing to it would cause arcs to
cross and result in a picture that would be difficult to understand

LIST OF EXAMPLES

y—
]

Enumeration Type Jefinition

2 - integer Type Definition

3a - Subtype Declaration

3b - Multiple Object Declaration

3c - Multiple Object Declaration with Anonymous Subtype
4a - Private Type Declaration

4b - Full Record Type Declaration

4c - Declarations of Subtype of Private Type

5a - Generic Procedure Declaration

5b - Genmeric Instantiation

6a - Array Type Definition

6b - Object Declaration with Anonymous Array Subtype
6c - Assignment of an Array Aggregate

UOLIIOE B dUAL VO IR W]
WNNN]Y 10 3 -
BPOU U0 B SIWNUS
) NIIH9 10
| Pl UOy pRIBWNLS
| A
| - . .
| | V)P ws
| | & < 9nea ws
I R adA) dro ws
P4 <- dai ws | “ +NIINTD., P dafqo pasn
z A-\mcG\Ea | R _
@dAy Qo ws - ________

~NIIYD. Dy UOLILIIWNUD

1 <- dai1 ws |
1 <- sod ws |
adAy QO ws .
.MOIVIA,. Pt voyIPsdwnua |
o <- dasr ws |
1] ¢- sod ws }
adA) Qo ws
|
.039. 01 uoyjesawnua |
—e i cee—- | ST1@s33y | wnua |
Syt S® e oo

S |R4DY| WNUI

| 13p woyyerawnua

A

13p 8dAy se
|

[

*(

A
|
1
Zdwa
|
|
S _ -
[|
] B
{
|
] -- ERUE -
e e memea—e- -
- - - - >
i
|
|
]
. PLOA
A
|
IS se

| s 109p qwmisp |

A

_ |
S (18 yWINgr se

|
uuuuu | 108p avAy |
NIFYD ‘MO I1TITIA 03I) S

djdwer y

I
| q3iy 40y
| Nt V0§ JRHIIWNHUD
| A
- e I
] |] S -se- MyAp ws |
| | | 0 <- 8njea ws |
) | - adAy) dva ws |
R T et |
| | .g . Py y38f{qo pasn |
A
|
]
se jdva se
i
sads TadAy we . L _ ...
R | |
abue _ _
....... SRR |
" |
| v
R — e
|] azys (dwy P2 |
| - abue.s ws i
P $ |e2d)t| ws J
| a4y aseq ws -
| @s1ej « . =nowAuoue st ws |)
| Pproa « PBIALIDD WS | |
- - o - Lo
§ woy 3P IFWIUG < - -
N
_ |||||||||||||||
| | ISUL) ws
rads 8dAy ws | |
[= emmmmmmeeo e P
fo.ownN3., Py AdAy - -
n

t NNNG adAy

aweu 3 inns se

—

1SV} 10y
apou py 3inayIiie
A
- L
| ce- - UjIP WS

|
|- TR
| ~1SV1. Py sweu pasn |

A
1

pLoA Py eweu pasn se
A |
e
et |
dee se |- . __-—---
|
A
{
I
{ |
| |
l.
z0%o s __———-

| sads adAy ws - . - .-

uniyeur gag adh) 1a6ajug ¢ djduex

HIOIIND P japa i 1oy
apou 136ajyun

| Ll - ujop ws
| e

| +83D3INI. P sweu pasn

| ——

...... - H4IDIINT <
pauy japaad
L - e 403 SIPOU <
I <- anjea ws |
adAy dxad WS - -
||||||||||||| e | e -
wlo 1eJaji It 43wnu _ _
||||||||||||||||||||||| |
A |
| |
||||| - |
1{dx3 se]
. | |
- e mmmm e S |
|
....... > pProa
b
ySt)| se

t1SY1 . ¥HIO9IINL " | 86ues sy | adA

J
R el et
) azys (dwy po |}
| adA) eseq ws - -~

S .-.- abues ws | |
| @y < snowAuoue sy ws | |

- ... peaysep ws | |
[

I<--

> | 2860 3u)
gy g
A
]
...... BTy
| | azys (dus pI |
[S adA) aseq ws |
e i iaeme———— aBuea ws |
| asi®y <- snowAuoue sy ws |
| proa <- paaysap ws |
e |
] Jatayu |
A
I memmmmmmm s et
| | ISaty ws oo
- - -- 2ads adAy ws | |
f-mmmm-m--- s [
| wle Pt @dAY fc--
A

3}

——

voyjyesesaq adAygng ey ajdwexy

HID1IN]
pout japaad
A A
| |
| |
atn_llllulnllonllu |||||| - e e
_] 01 <- anjea ws] | I I < ®N|ea ws {
| - 8dA} Jdxo ws] | ---- 8dA) dxa ws i
fomm oo s |----- I
| «0t. (23 dtiewnu | | wia 1838311 tadwnu | MIDILIN]
|||||||||||||||||||||| [P e — pauy japaad
A : A A
| | |
.................. | T T it
_I _ _ f azys 1rhuy PO i
zdx9” se 1dxa se | --- 8dAy} aseq ws |
| abug. ws |
yIo|UWNT | - bttt | | @s1e) <- snowAuoue s: ws |
||||| > PAULIIPRID <--—-—-—-—-- D308 B3dA} ws | | | wproa <~ POALIID WS |
[R ol [R ---- |
||||||||||| _n-.|1|»|||||||1 - abues | <---- | Jaotajur |
| ———— UJBPp WS [i T I et T
|=--mmmmmmm e e | A A
| .¥I93iINI. P} Sweu pasn | | |
........................... i |
A | |
I [I e S e
awen se eI S0 Sse mreme e v == J8ds B8dA) ws |
|||||||||| } voriedipur 8dAIgNS |- oo | .IN1 8BNS. P edAjans |
A A
_l - . _ | -
uoyjedpul BdAjgns se Jweu 2J4N0S SO
s oo e 1
|||||||||||||||||| | t2ap edAjans |- - e

to1-*1 aBues HIDIINI St INI 8BNS 8dhyans

.
uoLvardag oafqo aiduying qg agdwes)
| asi1vy < pareys sy ws |
\ prtaa <. SSs3aqppe ws |
| 9siey o soweudds ws |
] proa . Oxd Jpuy ws |
. . R oAy fQO WS |
forsmrrze s mezemeeenes _
| L2 11000, Py d1qeyaea |
v aidwerx 3 uy Cm e oo e f e — e -
INT ans < -
10) apou saliajyuy PR
- i - T - T TTTITEITT T
ANT 8NS | | asiey < pHIeys Sy ws)
105 apou py edAjqns | pPLOA .. SSAIppR ws |
A | #s1ey (o saweuds ws |
......... J-mmm oo)} Pproa < Uxd yypuyws |
| e~ ujop ws | . . . - adAy Qo ws |
f----- T oooTemm H||||H|||t|_ _,‘l..Ux oo TTmImEem T
| .LNI @ns. Pi aweu pasn |] LU 173000, Py @igeiea jo--
|||||||||||||||||||||||| - pLoa e e - e
A A -
. _ . 184 se
dweys sSe juLes)}syod se _
| _ ez en emmee s
uuuuuuu | wvoryedtpuy adAians |- - .- - PILOA | s eweu adunos |
||||||||||||||||||||| . A T
A { A
| dro se _
jop adAy se J . s aweu 9.)4N0S S8
T - _
............. e I -l L T T L L T B - e e o
tIN1TENS * Z 123780 L 103r€0

Y

— - — w——— —— —— ——— -
AUA QNG SHOWALIOHIY () 1a VoL eI A 10alg) dgd) vy (R RS TTILE |
(®@a0ge) L. vy
1®28)14 | Y r1awWNU (daoqe) ., 10y
A Y (IR 1 g
L}
i_ I
Zdwe se (Uxd se HIDIINL pdu japad
| } e i 10 apou 136a3ul
S - - | A .
| deds @dA) ws - - ... R J------ - - - e e - - e m ———-
| | 1 azis_ jdwy o i | oasiey < poreys sy ws |
{ sbue.s |] L.-- adAj @seq ws]) prua «- Ssosppe ws |
.................... €mmmmm e o ----. . Bbues ws | | @siey .. (a0 saweuss ws]
| ®niy <. snowAuoue st ws | | proa <. Un® jpuy ws {
| mona < PaAgsap ws | <= —eo = - - adA) (Qo ws |
f--oo e o] |- ommrm s ermmem—eeoee |
1 J96ayuy | | LZ 1)3r00. Py 81Qe I eA |<---
........................ > CRLETUT Commme e B s e
| pavy japaad | | D2y (dwy PO |
) A - L .. adh) eseq ws |
e e e e e —- . abues ws |
| | 01 < WnjeA ws | [I < 9njea ws | | 8Ny ¢- snowAunue sy ws |
S 2dAy dxa ws | | - ---- 8adAy dxa ws | | pLoA < PoAysap ws |
J-=cme e zmemeeooe| TR Tt BN B EESEEE R et |
] «0t. 1|34 | Itrdwn | | 1. 181338 | Iy J8WwnU | s8603uy |
||||||||||||||||||||||||| e e e m e m— e e — _ e - U
A A | A
| { i
||||||||||||| .- _ | ———m e et e e R
| } .] | asiey < $IIBYS S| wSs i
¥IDILIN] pouyapead - - - - 2dxa se 1dxa se |] PLOA <- Ssa.ppe ws |
A] | | | | @asi1es <- Tqo saweuas ws |
nnnnnnnn [T e Bt | | proa <. d¥d jruy ws]
| e ujep ws | .. - Dads adAy ws | i Ll li- Zoe - . adA) Qo0 ws |
[-o--e- ooz oioe-- | . e D | --o - SRR
| -¥3931N1. Py B8weu pasn | | abur s |<-- | wb 1237480, PY 31QeyIRA <o -
A A
I_ | _ i8Sy se
sweu se IVIeIISUOD SEe [}
| emeoeeemeoenoeos --- P emmmememeeem
|||||||||| | uvoyiedypuy 3dAygns |- proa | s eweu adunos |
||||||||| e ——————— A e —————
A i A
{ . dra se |
j0p adAy se] s eweu @IUNOS sE
b e Seeoeeoe _
||||||||||||||||||||||| | 179P 210@ IPA |- e e

tgL - | e6ues WIPILINI : Z 1IIrE0 ‘1 123r€0

uoieaedag 9dA| BleEALIg - P d(duwer)y

| ISt WS o .
| proa <~ dai dwod ws | {
¥3A93.iNL peuy joped | proa < dxa jiup ws | |
403 Apou L .. 8dAy (QOo ws | |
e e e e U P
A “ LIS10. Pt JUBUIWLIDSLP “A,.-
] [- - - [| Qy 3 |dwex] UL
] ISt se 3PoUV PIVIDL
| | A
|||||||| | bttt e o |
\ L aea-. ulep ws | pLoa { s aweu aznos | - | e e m o - -
f-mmmmm e o o e | A e e e -] ... Dads adA) ws
| .83931N1. Pt eweu posn | \ A e ansseres
nnnnnnnnnnnnnnnnnnnnnnnnnn dxa se ~ { | | @siey « snowAuoue st ws
A } S AWV dIMNGY SP _ { proa <- PBALIIN WS
M|||.|4-u,a | 10ap waIsSp |- - _ “ “ areayad
awen se [P I T eI
| | A
181 e _ _ B it -
e | | | sads adAy) ws
seoooso oo | s 1oap qwidse | - | |ooe e ez -
| sop 9rentad | Bk T | .ATHd. Py 8dAy ajreayad
||||||||||||||| : A - - i mm e m——— - -
A - _ |) A
I _ S 1 D2P IWIISP Sse)
jop edA) se | Awerr 374N0S SE
| it |
|||||||||||||||||||| sem—=- | 129p @dAy | -- dee e e mee o =

tayrarad sy (¥IDIINT C ISIA) AlNd BdAy

uonLyvae e adA] prosey (1) - uyp dprheen)
ey ajdwernj uy
PL JUBULWYL ISP
A
|||||||
| - S-Sy WS |
| Pyoa <- d8s dwod ws | anoqe painydyd
HIDIINI | proa <- du3d Uy ws | > apuu sy dwod
paujapadId < - --—-—-—~—- 8dAy Qo ws | |
304 8pou [R EE T s e --1 ey d|dwexly u
A | .2510. Pt weviwaodsip | | 8pou s |J8p IWIISP < -
A P | e e - s |
| 130p dwos 11Ny | _ A I
e mcm e ———— T e I e R e DL S ———mm
A U U ujap ws | “ “ | asivey <- pawded sy ws | “
| f----- e e mmmmm— e I) | | | asiey <- pajiwy) s} ws |]
1Sy se | ~43D3INI. Dy dweu pasn | 1St se_-. 3Sy| dwod ws |]
| R T R e m e - - i | S JUBUIWYIDISIP WS -
LT T A L - - | pron ~ ::_.l.:tmc;;wulﬁa |
pioAa | s 199p Je-monn o | | s swen arvinoes | | vroa <- 8z15 ws |
A e _ N | e oo e | 8dA) aseq ws - -
_. 8 (J9p Sse | pLoa ¢- - A _ S|V} < snowAuoue sy _ws _
ISy Sse | | t_ _ ~ | } | proa <~ POALIID WS !
] PLOA | | dxa se s dweru drin0Ss se | ..o R |
s - A { { [} } [} PIOIdS < -~
| s ewBed | _] _ |] I O PR [
|||||||||| - yred jueyaen se | cemme s em= | 129D JWAOSH fc-- - - A
A | | aweu se ____ .. . __ - | | © mmmmmeeieoee - s
] B 1St se [ISIL P WS o
memcem cm=-- o= | 1S}{ CwoD | Smmmemn - | .. - dads adAy ws
s ewfesd se e = s | s 12ap jwadsp | - | = -
A m———————— . - | ~ATHd. Dt @dA)
llllllllllllll — A e e e e ——— -
| s9p paoses _||‘|||w lllllll | A
nnnnnnnnnnnnnn 1Sy two>d se S |J9p jwiIspP Sse |
A | ampry 9 INO0S Sse
| R R |
e em e m e - S -- § tJ8p adA)y | - S
jap adAky se . L.
ey 9|duweneg
uy py 8dAy areayid c-- -
pua
BN ALY

’ PIOIBL S§

(4393iNI

ISI1Q) Aldd 3dAy

A BeA g v 20AQNg JO SN0 IR IR DA Iy @ jdwry)
PLOA | VB WS - .- T e meaas e -
A I-- - S e |
i | «Alnd UNS. py sweu pasn |
ULl SU0d se e oo e emmmm— e e e e e e emmmmm s -
| A | sods adAy ws
ST - (_ o s | !
| voyiedipuy adhjans | . N | .Aldd ans Ssviv., Py adhyans | |
T . . e
A A
_ : . | }
uoyledpuy edAjgns se awnu 2r)Nos Se
b P IOT _
|||||||||||||||||||||||| | 128p 8dAQNS |- oo oo
4I93INL P8y japasd
> 40§ Apou
| e e e ee o
| oo s-oee- _
[| € < angea ws | . |
e o .. BUAY TUNDB TS | Q- cm- e emme o — e el]
booe e e | SRS b
| «€. 12233y 2)Iawnu J< - - | s dxo | me e o s |
nnnnnnnnnnnnnnnnnnnnnnn | e 1S4 se | ey ajdwex3 uy
................... | .y | apou ajzyeatad <---
§f sTJ0sse (es8ueB f_- .- . i v 1
................... ¥syy se) e Tkl |
A Cemem——ees.. S JWJISP P3ZL|EWIOU WS [
i | | ®@siey < ywidsSp uo spuadap ws | |
s J0%sSe jpiIuab se ey ajdwery uy | adA) aseq ws - ——-
) p1 adAr ajzeayad | asiey «. sSnowAuoue S$i WS
U A - | proa <- POALIID WS
| WUBIISU0D JWadSp | S jom s I T T
..................... \ Cee- . ugop ws | i prolas pauresyisuod
A f- B e T | - - B ey
|- | .Atdd., p! sweu pasn | A
VLRI ISVHOD KRR - e e _ llllllllllllllll
| A | sads @dA) ws
............. TP I PR
| ueyiedspuy adhans |--.. - | ~Atde 6ns. py 8dhigns je----
|||||||||||||||||||||| aweu se - e
A A
- » _ | _
voy1¥d1puy edAgns se } sweu alsnos se
I oo _
........ e e e— o] 438D BOANANS |- e R —

ATHY 8BNS St Al¥d GNS SyYIty adAjans
t(£) ATdd St ATHd NS AdA3ans

WO e I3} D INPBI0.Id

AR ELIVELILS

v o pdwrey

AtHd NI9 IS ws
403 apon ageay i o adhy (o ws _ |
| Proa ¢ dua gruy ws | |
| - - fee-
Alldd N3O 10} | WCHO NI, DY s Jce o - AlHd N1 17y
TadAy ayeay s < | apon ajen ol
A] | n
| _ 151 s | | .
_ R - NjEpP WS — pLuA _ | | ...w.\...u ws - R
e B | A - - R | :.;w Qo ws | }
| -Alldd N3ID. Py oweu pasn | | | s sweu @dunos | | dx@ jrul ws |)
|||||||||||||||||||||||||||| dya ue e m e e — o - i [S il R T
A | A | | | mvivd., 0y U _,---m
i U B | [SRt
nnnnnnnnnnn . anay <- Jneyap x| - s Jweu 83snos se _ v _
sweu S® oo - J | fme e e aem—— |
[L I e it | | »tyess jou < angea “ws | |
R e ujep ws | §
.............................. adAy duo ws |)
.............................. [o cmm e o e | i
| pauysapun <. Nads adA) ws Je o or e - | .reo0 N19. Mt ..u.ao pasn | I
] STJUBUIWY IISIP WS - - > @aoge 8pou oo f e e e mee e 18y se
_ as(®) <«- snowAuoue S ws | S D3P ywIOSP A _
| pyoa <- poagsep ws | oo B ettt | R e
e e R J o e e ujep ws | | | s aweu adunos |
| L LR | e e e oo
............................ - | | «Aldd N3I9D. Py sweu pasn | 4x3 se _ _ A
A ¥V mmmm e e e — e | $ Jweu 8 INOS S
.......... | bttt A mmmmme e e emmme—e—— - |
] ---- Jads adAy ws | | | @s1®e) < vinejap wn) | |
R R T T | e R | --mmees
| ~Aldd “NID.. P oa>¢ ‘@jyeay ad _An.M sweu se | uy |
— e e oo | A
PIOA - ——- -~ -~ i s (dap JwadsSp | | em e e - | anoqv
nnnnnnnnnnnnnnn ISYl S - - | | s wered |-- 2P0 S WA} - -
| s8p ®1enyud | A | mmeeeem-- 1St se |
||||||||||||||| s 178p ywidsp se | A B Tt L |
A | sweu @Junos se | | @s1e3 <- aupuy sy ws | |
] jop on>c 8® - oo | | | _ PYoA <o Apog ws | |
et mmme e oo | 109D @AY | - s weed se | s wejed 23I2U9B8 ws .
.............................. >- - | | ISIy ws - -
e R S e e Jads ws _ _
nnnnnnnnnn | uuam Teunpasoud | | -- R it | |
............. j sTweyr | e | :ucza N3D. Pt J148uU38 |-
syt se . _______ T Do e e mmm e mem
A I | _ -]
I J9pEdYy Se | '(rE0 N3ID =1 AlHd N3ID U} : RAVHVd)
s woyy se | aweu adinos se J0u8d TEL) 8.npado.ud
[I | *AT¥d N39 : G0 N3ID

tayratad Sy Aldd N3I9D 8dAy
J2ys0u0B

uot e Juesu|

vy dicwer] UL ATN¥d i 1S ws -
Ce~» 20) Py 9dAY BjEAI0 - - o oo eemoo o - dxad Jrur ws | |
| - - e Jr1ut ws [
- e e boo- e e ees s
| MOA ¢ SSaippe ws fe- P&y jopun | .mvivd. Py ooy j< - —--f & aweu <aanos }
| esi®j <- Q0 Saweud.l ws | A C— I VSl SB o em e e -
| 1S9 ws . - aweuy Se A
xxxxxxxxxxxxxxxx adAy fqo ws | | | - e - e e |
||||||||||||||| dxa Jruy WS Jc-- - =) TApUN . e ap))o-- SRR T
I I TR P e o - - .| s oweu 3)rnos se
] ~£f80 N19,. Ot jueysuod | dea se ' | uy | —— mm e =
e e e = e e P - e feimeee | S weswd |
A : IS Se - oo -
! T IT T o IToC A
|||||||| -----} s oweu ajnos | Ry e e ese - -—==> PBULJIPUN
¥ISy) S .- . . - - s aweu 3dunos se | | d2n adky se
e e E e mm) 128P JURISUNY o e
Aldg 0dA} 30 3dalfqe ue | dxd se [
‘rao +045 Py ydefaqo | e mm e e — e —mm e
A v sei --- ~ D3ds 8dA) ws |
........ R I R sty setd
...... >| e wap ws | ey ajdwexy ui1 Al¥d < -- | «Alyd. py edAjans |
] adAy Und ws - - . > 403 Pt adAy ajearasd e m mmemmmmmenoo
} 2ties Jou <o anjea ws | A
bome e B { uopEdIpUY BBA YIS TEE - .o - - . Bwew @3anos’ se |
o >| .rE0. Pt 1d3afqo pasn | J . | 1hap adAyqns | —— e .-
“ “ eq o|dwer j uy
] ey 3jdwer) uy Alddy - J0¥d N3ID 103 Py 2118086
| 403 py adA) ajreayd | A e
) A [[e T T >} S 128p |-—o-mmme e
I [et djep ws | | e eme—— ISt se
el usep @s | fo-ocoemoccmm-oooooooo o]
I _ | R ittt] | .J0ud N3I9D. P aweu pasn | |
ISt s | .Alyd. Pt aweu pasn | T [ittt
| e A . [908 WS . ——
| | aweu se- - - | | proa <- ¥IVJIaIUY wS |
—mmm e memmmmeme- mememmes | s | D8P ws - | @siey <- 3uyuy st ws |
. g Josse |esauab _A‘\-un-‘M1.|.. L “;ln_,.-;. .- - _ | proa <- sSsasppe_ws _
||||||||||||||||||| s J0sse (esauab se | uoijetjueysuy | | }SIy) WS - -
I e € e - -~ Js8p jtunws | {
seozoooooes A oo e oo B
—m—we--->] S wesed [-..--..-. -> PIOA | | «00¥d MIN. Pt sunpadzod |<--
| e 1S11 se puyn J1un’ se JE O e L ——
s wesud se | A
mnluu_ Jeds @uNPed0Id <o oo mooommm 128p Asjua Goadans fo - . -~ -n‘nnllvlm
||||||||||| —————— sopeay” se e oweu IIINOS SW

umoys 10U S§ PO 40 voLiEIE(IP —- '(FBO ‘Alldd) JOHJd N3ID #au sy

TG IVHIY

g #dwex)y

J0Ud M3IN 2anNpPad0Id

LYty ja adA) Ae iy rg ajthwer)y

HIDIFINI 00=¢WOUOsa
10 dpou py adA)

A
“““““““ B R R = HIDTINTL DauL apaad
| —e - UjBN WS i | 28ds @dA) WS ... > J0O) POU IBHI ey
fommee oo RS DRl EEET TR A
] ~3i91iN1. P} sweu pasn | sweu se | wapuy | f - - ce e smeme ---
.......... e e e - |) sy - pawIed sy ws
A A] | asi1vy < Pojywy| S} _ws
] |) | noa <. B2yS W
proa |)Stt se - adA) dwod ws
A | } e e o e m.u&ﬁ.;ll.e.n
| | [4) | adA) eseq ws - .
Y RIISHUOD SE sweu S ____. >| 8 wepur |- - | asivy - snowAuoue sy we |
| | [. | proa <- PIALIID W |
| vwoyiedgpuy odAygns | “ PLOA “ Aes1e | 1_
D e e e m— = | A - - - ey
A |] A
i _] ISty se | . mm e R it
uoyIrd puy adAgns se s wapuy se § | f ASILy Wy .
) | [. -. . DJads adA) ws |
e e tatatat | | s 128p ywadsp | [- |
| jep Aruse paujesisuodun | .hv. P BdAY - -~
||||||||||||||||||||||||||| A B ettt !
A . | A
. S 12ap Jwirsp <e) |
jop adAy se | At 1 3.N08 Se
[R [
———— - - - ‘-_ 1Yap nth), | - -

SHIDIINTG 40 (<> BBues HINTJINT) Aerse sy Ny adhy

adAqng Ae gy “nNOWALOUY YR QO PR))

|
|
T .
| --- adAy dxa ws | |
| € <- anjea ws | | [
RN B
| “€. 1€I833) Drsawnu | | ot
A N
| l
cUne se jdno se
| I
B L T L
................. 38ds adAy ws |
[=-emm oo e i
|||||||||| > | abues |
|||||||||||| | s abues a313.1dsp |
ISH| S® . e aooo

A
|

s abue s 8ya3srsyp se

} wreasuoed xapuy |

A
UL eI)ISUOD Se

yvoafag
........... > HINAINT
e pouL japod a0
||||| [N Apou gatiayu « -
e e m e _
- @dA) dxo ws | i
<- dNjEA WS | |
co e] |
1R3a@3y) Ipa0wnu | |
et emmee |
|
|
|
|
: |
eg 3jduwery ul {
HY 403 2pou Aeaae .- .-
|
|
| -
1
eg ajdwery
uy ¥y 1oy py AdAy
fa]
R R SR
||||| uap ws |
ez o
p1 eweu pasn | .
|||||||||||||||||||| |
A |
| . {
pioAa -
A
1
dra se
!

€ "t) uv

rg0 ¥y

a9 dtherx g
| @zyu (dw p3 |
. —--- 2dA) 3s¢q ws |
- - e abue + ws {
| Ay < - snowAuoue st ws |
| Pioa <- PaALIDp WS _
R it |
| aa633uy |
A
e e T _
| = adAyans rapuy . .= Ao -
- e meem - ISty se
A
- e BT
- - 5 ua»onmm xapuyL_ws |
Loy < ywi3sp o spuadup ws |
Ceee oo - -—-- 3dA) BSP() WS |
anuy ‘- m:°l>co:ula_w!n |
pLoa <- POALIBP WS |
Aesse pauyiessSuod “
A
T oo ze-- -
| | asyvy <- PBIEYS St WS |
| | praa <-_SS3appe_ws 1
] | 8v1¥) <- Qo Saweuvas) ws [}
] | Mmona <- a-w.w_:,wﬁn)
- e —- BUAY QO ws _
! R i
->1 LCHO HY. ©U ajqeiaea |
- = | s eweu adunos |
ISE| S® e -
A
_ _
< Jweu 3aIINoOs se
|

ayehatiby Aeiiy ue o Juswuatit sy g ajdwex)
(osnoqe) p, 10y (eroqe) ¢, 10y . -
(LN JYNEERIWE. 1Y) PN DY 13w HAD3IN] paut japasd . - A0Ay v ws |e-=-=-- R
A A 103 apou ..wm.w.:_ | £ <- anjra ws | 1S4y se |
i _ A oo ome e el ISttty
srdxd se jdxa se | | «€. 1®d33e 3 2ownu | | s adyoyd |
|] {ancqe) 0. 103 | e e e F T T g
- e P [Pyt Ipadwnu | A
| reds QWA ws ... A] e . P _ | B
|] | HIDIINIE i adAy ..-;:En | € 3I10y" se
| a6ue . | - > Pt popa s] | [< anjean ws { |
- - - - .- 10 apou 1363 j3uy | |] i _— - -
A A |- 3] WG (RADFLY DQaBdWNU | ‘-u||||_ I0SSe |- --
- -}- e e e e o | | . [dvd se . __]
| 1 8zys” (dwy P2 | | I |
| e ebues ws | | | FRS— L
| adAy oseq ws .. - [---. 3dA) dxd ws
] 9nsy <- snowAuouw St ws | | { | ® <- anjean ws Commm e o
| proa <«- PaAyiap ws | | | T Ty |
|----- o { | { | wb. 1243311 D2padwnuy |
| 29623uy < - --- I | IR |
............................ N | mm s oo |
1Sy se | | .. 3adAy dxd ws |
| | [I A / <- BN{eA ws € cmmm————— 1
egQ a|dwer) Uy yy o e -- | [. ISy se
- .» 404 8pou Aeisse | s adAjans sapuy |] bl wg. 1Prageg rpaawnu]
| R il L ez
boo-oe- RSN AL v | s7eatous | |
11 s edAjqns ¥apuy ws . . . | HA93INI pRuULjapdad 40y BPOoU 1ABAJUY ..
| | @s1®) <- Iwisdsp uo spuadap ws | I ' A
.................... adA) eseq ws | i T |
| onisy <- w:ol»:o:l|u_mia | | { adAy dro ws | 8 92104y> s@
| proa <- PIALIBP wS | i | o - anjea ws | | |
“ Aesse paueRIISUDD “ “ v“ W 1EADJL(ILIDWN “ﬁ.,‘.nulunn_ Josse f<—--
B, e e oo | R o . fxa s -
A : | _ |
| cemmem o 1St se | B ¥sy| se |
| | 8 Josse |@s8uU86 |--. - ----. - _———____.>]| S DOsse (eidudb | = ___________-_ e ——
“ A s dosse y.u,.o:om.—wm
| e R - i a9 aduwry) ur apou e io oo
]] .- - 8 theo> ..m:_ﬂi.::.si - Aejse pauieIsuwod < oo —-— o adAy ..-ou!m |
[} | PtoA <- eBue.s 93.3s1p ws | | raris.uou < anjen ws |
................... adA) dre ws | _ a9 ajydwexy ut <- - - e nmm—e—e- UjeD wE |
| et T T R | a0 yv 2103 py 338iqo |- - - =-----= —————— [}
] 2)1e63.66e | | .reo yv. Py 3d8(qo pasn |
A) A
T I
e i o - - - t. uBisse .. - - - - - - -
dxa se = .. ___ aweu se

CHAPTER 6
EXTERNAL REPRESENTATION OF DIANA

The contents of this chapter will be included at a later date.

S —— _—_ Y L aaammn aaams o

LYo

CHAPTER 7
THE DIANA PACKAGE IN ADA

The contents of this chapter will be included at a later date.

-

APPENDIX A
DIANA CROSS-REFERENCE GUIDE

o

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

PARTITIONS : 2

STRICT CLASSES : 94

STRICT CLASSES NOT DEFINING ATTRIBUTES : 35
STRICT CLASSES THAT DO NOT SERVE AS TYPES : 55

STRICT CLASSES THAT DO NOT SERVE AS TYPES
AND DO NOT DEFINE ATTRIBUTES : 3

LEAF NODES : 207
LEAF NODES NOT DEFINING ATTRIBUTES : 92
ATTRIBUTZS @ 135

Page A-2

e —

DIANA Reference Manual Draft Revision 4 Page A-3
DIANA CROSS-REFERENCE GUIDE

PARTITIONS (UNINCLUDED CLASSES)

ALL_SOURCE
TYPE_SPEC

STRICT CLASSES THAT DO NOT SERVE AS TYPES AND DO NOT DEFINE ATTRIBUTES

FULL_TYPE_SPEC
GENERIC_PARAM
SEQUENCES

C—

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

STRICT CLASSES THAT DO NOT DEFINE ATTRIBUTES

ALIGNMENT _CLAUSE
ALL_DECL
ALTERNATIVE ELEM
BODY

CHOICE
COMP_REP_ELEM
CONSTRAINT
CONTEXT_ELEM
DECL
DISCRETE_RANGE
EXP

FULL_TYPE SPEC
GENERAL_ASSOC
GENERIC_PARAM
HEADER

ITEM

[TERATION
MEMBERSHIP OP
NAME -
PARAM
PREDEF_NAME
SEQUENCES
SHORT_CIRCUIT_OP
SOURCE_NAME

ST™

STM_ELEM
TEST_CLAUSE _ELEM
TYPE_DEF -
TYPE_SPEC
UNIT_DESC
UNIT_KIND
USE_PRAGMA

USED NAME
VARIANT _ELEM
VARIANT PART

Page A-4

DIANA Reference Manual Oraft Revision 4 Page A-5
DIANA CROSS-REFERENCE GUIDE

STRICT CLASSES THAT DO NOT SERVE AS TYPES

AGG_EXP UNCONSTRAINED
ALL_SOURCE UNCONSTRAINED_COMPOSITE
ARR_ACC_DER_DEF UNIT_DECL

BLOCk_LOoP UNIT_NAME

CALL_STM USED_OBJECT
CLAUSES_STM VC_NAME

COMP_NAME

CONSTRAINED

CONSTRAINED DEF
DERIVABLE_SPEC
OSCRMT_PARAM_DECL
ENTRY_3TM
EXP_DECL

EXP_EXP

EXP_VAL
EXP_VAL_EXP
FOR_REV
FULL_TYPE_SPEC
GENERIC_PARAM
ID_DECL

10_S_DECL
INTT_OBJECT _NAME
LABEL_NAME
MEMBERSHIP
NAME_EXP

NAME VAL
NAMED_ASSOC
NAMED_REP
NON_GENERIC_DECL
NON_TASK

NON_TASK NAME
0BJECT_DECL
OBJECT_NAME
PARAM_NAME
PRIVATE SPEC
QUAL_CORV

REAL
REAL_CONSTRAINT
RENAME_INSTANT
SEQUENTES
SIMPLE_RENAME DECL
STM WITH_EXP
STM_WITH_EXP_NAME
STM WITH NAME
SUBP_ENTRY_HEADER
SUBPROG_NAME
SUBPROG_PACK_NAME
TEST_CLAUSE
TYPE_NAME

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

LEAF NODES (CLASSES WITHOUT MEMBERS)

abort

accept

access
access_def
address
aggregate
alignment

all

alternative
alternative_pragma
alternative_s
and_then
argument_id
argument_id_s
array

assign

assoc

attribute
attripute_id
block

block_body

block _loop_id
block_master
bitn_operator_id
box_default

case
character_id
choice_exp
choice_others
choice_range
choice_s

code

comp_Tlist
comp_rep
comp_rep _Dragma
comp_rep_s
comprlation
compilation_unit
compltn_unit_s
component_id
cond_clause
cond_entry
constant_decl
constant_id
constrained_access
constrained_array
constrained_array_def
constrained_record
context_elem_s
context_pragma
conversion

decl_s
deferred_constant_dec)
delay
derived_def
derived_subprog
discrete_range_s
discrete_subtype
discriminant_id
dascrmt_constraint
dscrmt_dec]
dscrmt_decl_s
entry

entry call
entry_id
enum_literal_s
enumeration
enumeration_def
enumeration_id
exception_dec]
exception_id
exit

exp_s

fixed
fixed_constraint
fixed_def

float
float_constraint -
float_def

for
formal_dscrt_def
formal_fixed_def
formal_float_def
formal_integer_def
function_call
function_id
function_spec
general _assoc_s
generic_decl
generic_id

goto

if
implicit_not_eq
in

in_id

in_op

in_out

in_out_id
incomplete

index
index_constraint
index_s

Page A-6

OIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

indexed
instantiation
integer
integer_def
item_s
iteration_id
1_private
1_private_def

1 private_type_id

label_id
labeled
length_enum_rep
loop
name_default
name_s

named
no_default
not_in
null_access
null_comp_dec]
null_stm
numper_dec]
number _id
numeric_literal
operator_id
or_else

out

out_id
package_body
package_dec!
package_id
package_spec
param_s
parenthesized
pragma
pragma_id
pragma_s
private
private _der
private_type_id
procedure _call
procedure_id
procedure_spec
qualified

qualified_allocator

raise
range
range_attribute

range_membership

record
record_def
record_rep
renames_exc_dec]
renames_obj_dec)

renames_unit
return

reverse

scalar_s
select_alt_pragma
select_alternative
selected
selective_wait
short circuit
slice
source_name_s
stm_pragma

stm_s
string_literal
stub
subprog_entry_decl
subprogram_body
subtype_allocator
subtype_decl
subtype_id
subtype_indication
subunit

task_body
task_body_id
task_decl
task_spec
terminate
test_clause_elem_s
timed_entry
type_decl

type_id
type_membership
unconstrained_array_def
universal_fixed
universal_integer
universal_real

use
use_pragma_s
used_char

used_name_id
used_object_id
used_op
variable_decl
variable_id
variant
variant_part
variant_pragma
variant_s

void

while

with

Page A-7

DIANA Reference Manual Draft Revision 4 Page A-8

DIANA CROSS-REFERENCE GUIDE

LEAF NODES THAT DO NOT DEFINE ATTRIBUTES

access_def
address

all

and_then
argument_id
assign
attribute_id
block_loop_id
box_default
character_id
choice_others
code
component _id
cond _clause
cond_entry
constant_decl
conversion

delay
gerived_gef
dscrmt_dec]
entry call
enumeration_id
exception_decl
fixed_constraint
fixed_def

float
float_constraint
float_def

for
formal_dscrt_def
formal_fixed_def
formal_float_def
formal_integer_def
function_id

goto

iF

in_id

in:op

in_out

in_out_id
integer
integer_def
iteration_id

1 _private
1_private_def

1 private_type_id
label_id
length_enum_rep
no_default
not_in
null_access

null_comp_decl
null_stm
number_dec]
number_id
operator_id
or_else

out

out_id
package_body
package_dec]
package_id
parenthesized
private
private_def
private_type_id
procedure_call
procedure_id
procedure_spec
guaiified

raise
renames_exc_dec)
renames_unit
return

reverse
select_alternative
selective_wait
stub
subprog_entry dec!
subtype_id
task_body
terminate
timed_entry
universal_fixed
universal_integer
unfversal real
used char
Jsed_name_id
usea_object_id
used_op
variable_dec]
void

OIANA Reference Manual Oraft Revision 4 Page A-9
DIANA CROSS-REFERENCE GUIDE

PREDEF INED AND USER-DEFINED TYPES

source_position [S THE DECLARED TYPE OF:

ALL_SOURCE.1x_srcpos

comments IS THE DECLARED TYPE OF:

ALL_SOURCE. 1x_comments

symbol _rep IS THE DECLARED TYPE Of:
DEF_NAME. 1x_symrep
DESIGNATOR. 1x_symrep

string_literal.lx_symrep

value IS THE DECLARED TYPE OF:
fixed.cd_imp)_smal)
REAL.sm_accuracy
EXP_VAL.sm_value
NAME VAL.sm_value

USED_QBJECT.sm_value

operator IS THE DECLARED TYPEt OF:

bitn_operator_id.sm_operator

number_rep [S THE DECLARED TYPE OF:

numeric_literal.lx_numrep

DIANA Reference Manual Oraft Revision 4 Page A-10
DIANA CROSS-REFERENCE GUIDE
Boolean IS THE DECLARED TYPE OF:

in.Ix_default
function_call.lx_prefix
ConSTRAINED.sSm_depends_on_dscrmt
DERIVABLE_SPEC.sm_is_anonymous
access.sm_is_controlled
generic_id.sm_is_inline
SUBPROG _NAME.sm_is_inline
UNCONSTRAINED_COMPOSITE.sm_is_limited
UNCONSTRAINED_COMPOSITE.sm_is_packed
variable_id.sm_is_shared

VC_NAME.sm_renames_obj

Integer IS THE DECLARED TYPE OF:
SCALAR.cd_imp1_size
ENUM_LITERAL.sm_pos

ENUM_LITERAL.SM_rep

OIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ATTRIBUTES
as_alignment_clause : ALIGNMENT_CLAUSE
<= record_rep
as_all_dec) : ALL_DECL
<= compilation_unit
as_alternative s : alternative_s
<= block_body
<= case
as_block_body ¢ block_body
<= block
as_body : BODY
<= SUBUNIT_BQCY
as_choice_s : choice_s
<= 3lternative
<= named
<= variant
as_comp_list : comp_list
<= record_def
<= variant
as_comp_r2p_s P omp_rep s
<= record_rep
as_compltn_unit s : comcltn _ynit_s
<= compilation
as_constraint : CONSTRAINT
<= constrained_array_def
<= CONSTRAINED_DEF
as_context elem s Tocontext _=iem s
<= fomgiiatign_umt
as_decl_s 1 decl s
<= comp_list
<= task_dec]
as_decl_sl : decl_s
<= package_spec
as_decl_s2 : decl_s
<= package_spec
as_designator : DESIGNATOR

<= selected

Page A-1l

=N\

-

bred

DiANA Reference Manual Draft Revision 4 Page A-12
DIANA CROSS-REFERENCE GUIDE

as_discrete_range :

as_discrete_range_s

as_dscrmt_decl_s

<=
<=
<
[4

<=

<=

choice_range
entry
FOR_REV
slice

index_constraint

type_decl

as_enum_literal_s :

<=

as_exp

a

w

<=

ANNANANNANNANANNAN
[T T T | O N T I B (O N | N { I I |

ASERAY

</

D

»

AT
"o

as_exp2

as_exp_s

<=
<=

{=

enumeration_def

DISCRETE_RANGE

: discrete_range_s

: dscrmt_decl_s

enum_literal_s

: EXP

alignment

= attribute

choice_exp
comp_rep

DSCRMT _PARAM DECL
EXP_DECL
EXP_VAL_EXP
NAMED_ASSQOC
NAMED_REP
range_attribute
REAL_CONSTRAINT
STM_WITH_EXP
TEST_ _AUSE
while

range
short_circuit

: EXP

: EXP

range
short circuit

T exp_s

indexed

as_general_assoc_s :

as_header

<=
<=

ANANNA
now ool

A

&L=
<=

aggregate
CALL STM

= dscrmt_constraint

function_call
jnstantiation
pragma

subprogram_body
UNIT_DECL

general_assoc_s

: HEADER

DIANA Reference Manual Draft Revision 4 Page A-13
DIANA CROSS-REFERENCE GUIOE

as_index_s ¢ index_s
<= ynconstrained_array_def

as_item_s : item_s
<= block_body
<= generic_decl

as_iteration ¢ ITERATION
<= loop
as_list : Seq Of GENERAL_ASSOC

<= general_assoc_$

as_list : Seq Of SQURCE_NAME
<= source_name_s

as_list : Seq Of ENUM_LITERAL
<= enum_literal_s

as_list : Seq Of DISCRETE_RANGE
<= discrete_range_s

as_list : Seq Of SCALAR
<= scalar_s

as_list : Seg Of index
<= index_s

as_tist : Seq Of dscrmt_dec]

<= gscrmt_decl_s

as_list : Seq Of VARIANT_ELEM
<= variant_s
as_list ' : Seq Of CHOICE
<= choice_s
as_list : Seq Of ITEM
<= item_s
as_list : Seq Of EXP
<= exp_$
as_list : Seq Of STM_ELEM
<= stm_s
as_list : Seq Of ALTERNATIVE ELEM
<= alternative_s
as_list : Seg Of PARAM
<= param_s
as_list : Seq Of DECL

<= decl_s

DIANA Reference Manual Draft Revision
ODIANA CROSS-REFERENCE GUIDE

as_list
<=

as_list

TN <=

as_list
<=

as_list
<=

as_list
<=

as_list
<=

as_list
<=

as_list
<=
<=
as_name

<=
<=

AAAAAANAAAANAANAANANANANANAN
[T T I T T T R | Y I O TR | A [T T TR 1}

<=
<
<

[1]

as_membership_op

as_name_

: Seq
test_clause_elem_s

: Seq
name_s

: Seq
compltn_unit_s

: Seq
pragma_s

: Seq
context elem_s

: Seq
use_pragma_s

: Seq
comp_rep_s

: Seq

argument_id_s

MEMBERSHIP

of

of

of

of

of

of

of

of

: NAME

accept
comp_rep

deferred _constant_dec]

DSCRMT_PARAM_DECL
function_spec
index

name_default

NAME _EXP

QUAL _CONV
range_attribute
RENAME _INSTANT

REP
SIMPLE_RENAME DECL
STM_WITH_EXP_NAME
STM_WITH_NAME
subtype_indication
subunit
type_membership
variant_part

] : name_s

abort
use
with

TEST_CLAUSE _ELEM
NAME
compilation_unit
pragma
CONTEXT_ELEM
USE_PRAGMA
COMP_REP_ELEM

argument_id

: MEMBERSHIP_OP

Page A-14

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

as_param_s < param_s
<= accept
<= SUBP_ENTRY_HEADER

as_pragma ! pragma
<= alternative_pragma
<= comp_rep_pragma
<= context_pragma
<= select_alt_pragma
<= stm_pragma
<= variant_pragma

as_pragma_s : pragma_s
<= alignment
<= comp_list
<= compilation_unit
<= labeled

as_qualified : qualified
<= qualified_allocator

as_range ¢ RANGE
<= comp_rep
<= range_membership
<= REAL_CONSTRAINT

as_short_circuit_op : SHORT_CIRCUIT_OP
<= short_circuit

as_source_name : SQURCE _NAME -
<= BLOCK_LOOP
<= FOR_REV
<= 1D_DECL
<= SUBUNIT_BODY

as_source_name_s : source_name_s
<= DSCRMT_PARAM_DECL
<= 1D S DECL
<= labeled

as_stm : STM™
<= Jabeled

as_stm_s : stm_s
<= accept

alternative

block_body

CLAUSES_STM

loop

TEST_CLAUSE

A AAANA
W oo«

as_stm_sl tostm_s
<= ENTRY_STM

Page A-15

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

as_stm_s2
<= ENTRY_STM

as_subtype_indication

<= ARR _ACC_DER_DEF
= discrete subtype
subtype_ allocator
subtype_ “dec)

A A
Ha n

A

as_subunit_body
<= subunit

as_test_clause_elem_s
<= CLAUSES_STM~

: stm_s

: subtype_indication

: SUBUNIT_BODY

: test_clause_elem_s

as_type_def ¢ TYPE_DEF
<= 0BJECT _DECL
<= type_decl
as_type_mark_name : NAME
<= renames _obj_decl
as_unit_kind : UNIT_KIND
<= NON_GENERIC_ DECL
as_use_pragma_s : use_pragma_s

<= with

as_used_name
<= 3sso€

as_used_name_id
<= attribute
<= pragma
<= range_attribute

as_variant_part
<= comp_list

: USED_NAME

: used_name_id

: VARIANT_PART

as_variant_s 1 ovariant s
<= variant_part

cd_impl_size : Integer
<= SCALAR

cd_impl_smail : value
<= fixed

1x_comments : comments
<= ALL_SOURCE

1x_default : Boolean

<= in

Page A-16

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE
Tx_numrep :
<s numeric_literal

Ix_prefix :
<= function_call

number rep

Boolean

1x_srcpos ¢ source_position
<= ALL_SOURCE
Ix_symrep : symbol_rep
<= DEF_NAME
<= DESIGNATOR
<= string_literal
sm_accuracy : value
<= REAL
sm_address : EXP
<= entry id

<= SUBPROG_PACK_NAME
<= task_spec
<= VC_NAME

sm_argument_id_s
<= pragma_id

sm_base_type
<= NON_TASK

sm_body
<= generic_id
<= task_body_id
<= task_spec

sm_comp_list
<= record

sm_comp_rep
<="COMP_NAME

sm_comp_t,pe
<= array
sm_decl_s
<= instantiation
<= task_spec

sm_defn
<= DESIGNATOR

sm_depends_on_dscrmt :
<= CONSTRAINED

sm_derivable

: argument_id_s
¢ TYPE_SPEC

: BODY

s comp_list
: COMP REP ELEM
: TYPE_SPEC

¢ decl_s

: DEF_NAME

Boolean

: SOURCE_NAME

Page A-17

vt

OIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

<= derived_subprog

sm_ dervved ¢ TYPE_SPEC
= DERIVABLE_SPEC
sm_desig_type : TYPE_SPeC
<= aCCess

= constrained_access
= subtype_allocator

sm_discrete_range : DISCRETE_RANGE
<= AGG_EXP :
sm_discriminant_s : dscrmt_decl_s

<= incomplete
<= PRIVATE_SPEC

<= record

sm_equal : SOURCE_NAME
<= implicit_not_eq

sm_exp_type : TYPE_SPEC
<= EXP_EXP
<= NAME_EXP

<

USED_OBJECT

sm_first : DEF_NAME
<= constant_id
<= discriminant_id
<= PARAM_NAME
<= type_ id
<= UNIT_NAME

sm_generic_param_s T item_s
<= generic_id

sm_index_s : index_s
<= array
sm_index_subtype_s : scalar_s

<= constrained array

sm_init_exp : EXP
<="INIT_OBJECT_ NAME
sm_interface : PREDEF _NAME
<= SUBPROG_NAME
sm_is_anonymous : Boolean
<= DERIVABLE_SPEC
sm_is_controlled : Boolean
<= access

Page A-18

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

sm_is_inline : Boolean
generic_id
SUBPROG_NAME

Al
[}

A

sm_is_limited : Boolean
<= UNCONSTRAINED_COMPOSITE

sm_is_packed : Boolean
<= UNCONSTRAINED_COMPOSITE

sm_is_shared : Boolean
<= variable_id

sm_literal_s : enum_literal_s
<= enumeration

sm_master ¢ ALL_DECL
<= access
sm_normalized_comp_s : general_assoc_s

<= aggregate

sm_normalized_dscrmt_s : exp_s'.
<= constrained_record RN

sm_normalized_param_s @ exp_s
<= CALL_STM
<= function_call

sm_obj_type : TYPE_SPEC
<= 0BJECT_NAME

sm_operator : operator
<= bltn_operator_id

Sm_pos ¢ Integer
<= ENUM_LITERAL

sm_range . : RANGE
<= SCALAR

sm_renames_exc : NAME
<= exception_id

sm_renames_obj : Boolean
<= VC_NAME

sm_rep : Integer
<= ENUM_LITERAL

sm_representation ¢ REP
<= record

sm_size : EXP

Page A-19

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

<= task_spec
<= UNCONSTRAINED

sm_spec : HEADER
<= entry_id
<= NON_TASK_NAME

sm_stm : STM
<= block_master
<= exit
<= LABEL_NAME

sm_storage_size : EXP
<= access
<= task_spec

sm_type_spec + TYPE_SPEC
<= index

PRIVATE_SPEC

RANGE

REAL_CONSTRAINT

task_body_id

A
1}

A
[T I T O I |

A

N

<= TYPE_NAME
sm_unit_desc : UNIT_DESC
<= SUBPROG_PACK_NAME
sm_value’ : value
<= EXP_VAL
. <= NAME_VAL

<= USEDTOBJECT

Page A-20

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

NODES AND CLASSES

** abort
IS INCLUDED IN:
STM™
STM_ELEM
ALL SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name_s : name_s
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** accept

IS INCLUDED IN:
STM
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_name : NAME

as_stm_s :ostm_s

as_param_s : param_s
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments ! comments
** o access

IS INCLUDED IN:
UNCONSTRAINED
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_storage_size : EXP

sm_master : ALL_DECL

sm_desig_type + TYPE_SPEC

sm_is_controlled : Boolean
(INHERITED FROM UNCONSTRAINED):

sm_size : EXP
(INHERITED FROM NON_TASK):

sm_base_type ¢ TYPE_SPEC
(INHERITED FROM DERIVABLE_SPEC):

sm_derived : TYPE_SPEC

sm_is_anonymous : Boolean

** access_def

Page A-21

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
ARR_ACC_DER_DEF
TYPE_DEF
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ARR_ACC_DER_DEF):

as_subtype_indication
(INRERITED FROM ALL_SOURCE):

1x_srcpos

1x_comments

** address

IS INCLUDED IN:
NAMED REP
REP
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM NAMED REP):
as_exp
(INHERITED FROM REP):
as_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** AGG_EXP

CLASS MEMBERS:
aggregate
string_literal
[S INCLUDED IN:
EXP_EXP
EXP
GENERAL 4SSOC
ALL_SOURCE
NOBE ATTRIBUTES:
(NODE SPECIFIC):
sm_discrete_range
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SQURCE):
1x_Srcpos
1x_comments

** aggregate

IS INCLUDED IN:
AGG_EXP
EXP_EXP
EXP

: subtype_indication

: source_position
: comments

: EXP
: NAME

: source_position
. comments

: DISCRETE_RANGE
: TYPE_SPEC

: source_position
: comments

Page A-22

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

GENERAL ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_general_assocC_s 1 general_assoc_s

sm_normalized_comp_s : general_assoc_s
(INHERITED FROM AGG_EXP):

sm_discrete_range : DISCRETE_RANGE
(INHERITED FROM EXP_EXP):

sm_exp_type : TYPE_SPEC
(INHERITED FROM ALL_SQURCE):

1x_srcpos : source_position

1x_comments : comments

** alignment

IS INCLUDED IN:
ALIGNMENT CLAUSE
ALL_SOURCE

NODE ATTRIBUTES:

INODE SPECIFIC):

as_pragma_s : oragma_s
as_exp : EXP
(INHERITED FROM ALL_SOURCE):
1x_Srcpos : source_position
1x_comments : comments

** ALIGNMENT_CLAUSE

CLASS MEMBERS:
alignment
void
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments
[S THE OJECLARED TYPE OF:
recorg_rep.as_alignment_:'ause

** 3l

IS INCLUDED IN:
NAME _EXP
NAME
ExP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM NAME_EXP):
as_name ¢ NAME
sm_exp_type ¢ TYPE_SPEC
(INHERITED FROM ALL_SOURCE):

Page A-23

DIANA Reference Manual Draft Revision 4 Page A-24
DIANA CROSS-REFERENCE GUIDE

Ix_srcpos : source_position
1x_comments : comments

» ALL_DECL

CLASS MEMBERS:
block_master
void
ITEM
subunit
DSCRMT_PARAM DECL
DECL
SUBUNIT_BODY
dscrmt_dec!
PARAM
ID_S_DECL
ID_DECL
null_comp_dec
REP
USE_PRAGMA
subprogram_body
task_nody
package_body
in
in_out
out
ExP_DECL
deferred_constant _dec]
exception_dec!
type_dec]
UNIT_DECL
task decl
subtype_deci
SIMPLE_RENAME _DECL
NAMED _REP
record_rep
use
oraama
OBJECT _DECL
numoer_dec |
generic_deci
NON_GENERIC_DECL
renames_obj_dec]
renames_exc_dec)
length_enum_rep
address
constant_dec!
variable_decl
subprog_entry_decl
package_decl

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):

DIANA Reference Manual Draft Revision 4 Page A-25
DIANA CROSS-REFERENCE GUIDE

1x_srcpos : source_position
Ix_comments : comments
IS THE DECLARED TYPE QF:
compilation_unit.as_all_decl
access.sm_master

*+ ALL_SOURCE

CLASS MEMBERS:
DEF _NAME
index
compilation_unit
compilation
comp_list
VARIANT_PART
ALIGNMENT _CLAUSE
VARIANT_ELEM
CONTEXT_ELEM
COMP_REP_ELEM
ALTERNATIVE ELEM
[TERATION
SHORT _CIRCUIT QP
MEMBERSHIP QP
TEST_CLAUSE_ELEM
UNIT_DESC
HEADER
CHOICE
CONSTRAINT
GENERAL_ASSQC
STM_ELEM
SEQUENCES
TYPE DEF
ALL DECL
SCURCE _NAME
PREDEF NAME
variant_part
void
alignmenrt
variant
variant_pragma
context _pragma
with
comp_rep
comp_rep_pragma
alternative
alternative_pragma
FOR_REV
while
and_then
or_else
in_op
not_in
TEST_CLAUSE
select_alt_pragma

DIANA Reference Manual Draft Revision 4 Page A-26
DIANA CROSS-REFERENCE GUIDE

UNIT_KIND
derived_subprog
implicit_not_eq
BODY
SUBP_ENTRY_HEADER
package_spec
choice_exp
choice_others
choice_range
DISCRETE_RANGE
dscrmt_constraint
index_constraint
REAL_CONSTRAINT
NAMED_ASSOC

Exp

STM™

stm_pragma
alternative_s
variant s
use_pragma_s
test_clause_elem_s
stm_s
source_name_s
scalar_s
pragma_s

param_s

name_s

index_s

item_s

exp_s
enum_literal_s
discrete_range_s
general_assoc_s
dscrmt_decl_s
decl_s
context_elem_s
compltn_unit_s
como_rep_s
chaice s
argument_id_s
enureration_def
record_def
ARR_ACC_DER_DEF
CONSTRAINED_DEF
private_def
1_private_def
formal _dscrt_def
formal_float_def
formal fixed_def
formal_integer_def
block_master
[TEM

subunit
OBJECT_NAME

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

LABEL_NAME
UNIT_NAME
TYPE_NAME
entry_id
exception_id
attribute_id
bitn_operator_id
argument_id
pragma_id

for

reverse
cond_clause
select_alternative
RENAME INSTANT
GENERIC_PARAM
block_body

stub
procedure_spec
function_spec
entry

RANGE
discrete_subtype
fioat_constraint
fixed_constraint
named

assoc

NAME

EXP_EXP

Tabeled

null_stm

abort
STM_WITH_EXP
STM_WITH_NAME
accept

ENTRY_STM
BLOCK_LOOP
CLAUSES_STM
terminate
constrained_array def
gerived def
access_def
unconstrained_array_def
subtype_indication
integer_def
fixed_def

float _def
DSCRMT_PARAM_DECL
DECL
SUBUNIT_BODY
INIT_OBJECT _NAME
ENUM_LITERAL
iteration_id
label_id
block_loop_id

Page A-27

Jﬁ‘s
4

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

NON_TASK _NAME
task_pody_id
type_id
subtype_id
private_type_id
1_private_type_id
renames_unit
instantiation
name_default
no_default
box_default

range
range_attribute
DESIGNATGR
NAME_EXP

EXP_VAL
subtype_allocator
qualified_allocator
AGG_EXP

return

delay
STM_WITH_EXP_NAME
case

goto

raise

CALL_ST™M
cond_entry
timed_entry

_loop
“block

if
selective_wait
dscrmt_dec]
PARAM
ID_S_DeCL
ID_DECL
null_comp_dec]
REP

USE _PRAGMA
subpragram_body
task_body
package_body
VC_NAME
number_id
COMP_NAME
PARAM_NAME
enumeration_id
character_id
SUBPROG_PACK_NAME
generic_id
USED_OBJECT
USED_NAME

NAME VAL

arn -

Page A-28

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

siice

indexed
short_circuit
numeric_literal
EXP_VAL_EXP
null_access
aggregate
string_literal
assign

code

exit

entry _call
procedure_call
in

in_out

out

EXP_DECL
deferred_constant_dec]
exceptjon_decl
type_dec)
UNIT_DECL
task_decl
subtype_dec]
SIMPLE_RENAME DECL
NAMED _REP
record_rep

use

pragma
variable_id
constant_id
companent _id
discriminant_id
in_id

out_id
in_out_id
SUBPROG_NAME
package_id
used_char
used_object_id
used_op
used_name_id
attribute
selected
function_call
MEMBERSHIP
QUAL_CONV
parenthesized
0BJECT_DECL
number_decl
generic_decl
NON_GENERIC _DECL
renames_obj_decl
renames_exc_dec!
length_enum_rep

Page A-29

OIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

*ir

*%

ik

alternative

address
procedure_id
operator_id
function_id
range_membership
type_membership
conversion
qualified
constant_dec]
variable_dec!
subprog_entry_decl
package_dec!

NODE ATTRIBUTES:
(NODE SPECIFIC):

1x_srcpos
1x_comments

IS INCLUDED IN:

ALTERNATIVE ELEM
ALL_SQURCE

NODE ATTRIBUTES:
- (NODE SPECIFIC):

as_choice_s
as_stm_s

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

ALTERNATIVE ELEM
CLASS MEMBERS:

alternative -
alternative_pragma

IS INCLUDED IN:

ALL_SOURCE

NODE ATTRIBUTES: :
(INHERITED FROM ALL_SOURCE):

Ix_srcpos
1x comments

IS THE DECLARED TYPE OF:
alternative_s.as_list [Seq

alternativ:_pragma

IS INCLUDED IN:

ALTERNATIVE ELEM
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as_pragma

(INHERITED FROM ALL_SOURCE):

1x_srcpos

: source_position
comments

e

: choice_s
: stm_s

: source_position
: comments

¢ source_position
: comments

0f]

: pragma

: source_position

Page A-30

DIANA Reference Manual Draft Revision 4 Page A-31
DIANA CROSS-REFERENCE GUIDE

1x_comments : comments
** alternative_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of ALTERNATIVE ELEM
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position

1x_comments : comments
IS THE DECLARED TYPE OF:
block_body.as_alternative_s
case.as_alternative_s

** and_then

IS INCLUDED IN:
SHORT CIRCUIT_QP
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SQURCE):
1x_srcpos : source_position
1x_comments ¢ comments

** argument_id

IS INCLUDED IN:
PREDEF _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM DEF_NAME):

1x_symrep ¢ symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source position

Ix comments . comments

IS THE JECLARED TYPE QF:
argument _id_s.as_list [Seq Of]

** argument_id_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list ¢ Seq Of argument_id
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x comments : comments

IS THE DECLARED TYPE OF:

-~

-t

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

pragma_id.sm_argument_id_s
*+ ARR_ACC_DER_DEF

CLASS MEMBERS:
constrained_array_def
derived_def
access_ def
unconstrained _array_def

IS INCLUDED IN:

TYPE OEF
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as_subtype_ indication : subtype_indication
(INHERITED “FROM ALL _SOURCE) s

1x_srcpos : source_position

]x_comments : comments

** array

IS INCLUDED IN:
UNCONSTRAINED_COMPOSITE
UNCONSTRAINED
NON_TASK
FULT_TYPE_SPEC
DERIVABLE _SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_index_s : index s

sm_comp ty] : TYPE SPEC
(INHERITED FROM UNCONSTRAINED COMPOSITE)

sm_is_ limited : Boolean

sm is packed : Boolean
(INHERITED "FROM UNCONSTRAINED)

sm_size . EXP
{INHERITED FROM NON TASK):

sm_base type : TYPE_SPeC
(INHERITED TFROM DERIVABLE SPEC):

sm_derived : TYPE_SPEC

sm is_anonymous : Booiean

** assign

IS INCLUDED IN:
STM_WITH_EXP_NAME
STM_WITH_EXP™
STM
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM STM_WITH_EXP_NAME):
as_name ¢ NAME

Page A-32

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

as_exp

(INHERITED FROM ALL_SOURCE):
1x_srcpos
Tx_comments

** 3550C

[S INCLUDED IN:
NAMED ASSOC
GENERAL _ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as used name

as_exp

(INKHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** jttribute

[S INCLUDED IN:

NAME VAL

NAME _EXP

NAME

Exp .
GENERAL_ASSOC

ALL_SQURCE
NODE ATTRIBUTES:

(NCCE SPECIFIC):
as_used_name_id
as_exp

(INHERITED FROM NAME VAL):
sm_value

(INHERITED FROM NAME EXP):
as_name
sm_exp _type

(INHERITED rROM ALL_SOURCE):
1x_srcpos
1x_comments

** attribute_id

IS INCLUDED IN:
PREDEF _NAME
DEF_NAME
ALL_SOURCE
NOOE ATTRIBUTES:
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos

(INHERITED FROM STM_WITH_EXP):

(INHERITED FROM NAMED_ASSOC):

: EXP

¢ source_position
: comments

: USED_NAME
s EXP

! source_position
: comments

: used_name_id
: EXP

: value

+ NAME
: TYPE $7EC

: source_positior
: comments

: symbol_rep

: source_position

Page A-33

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

1x_comments
** block
IS INCLUDED IN:
BLOCK_LOQOP
STM
STM_ELEM
ALL SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):
as block body

(INHERITED FROM BLOCK_LOOP):

4s_source name

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** block_body

IS INCLUDED IN:
BOOY
UNIT_OESC
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
as_item_s
as_alternative_s
as_stm_s

(INHERITED FROM ALL_SOURCE}:

1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
block.as_block_body

*+ BLOCK_LOOP

CLASS MEMBERS:
iQop
block
IS INCLUDED IN:
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
{NODE SPECIFIC):
as source name

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** block_loop_id

IS INCLUDED IN:

: comments

¢ block_body
: SOURCE_NAME

: source_position
¢ comments

item_s
: alternative_s
¢ ostm_s

¢ source_position
: comments

: SOURCE_NAME

: source_position
: comments

Page A-34

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

LABEL NAME
SOURCE_NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:

(INHERITED FROM LABEL NAME):

sm_stm
(INHERITED FROM DEF _NAME):
Ix symrep

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** block_master

IS INCLUDED IN:
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(NQDE SPECIFIC):
sm stm

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** bitn_operator_id

IS INCLUDED IN:
PREDEF NAME
DEF_NAME
ALL_SOURCE
NCDE ATTRIBUTES:
(NODE SPECIFIC):
sm_operator
(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):

1x_srcpos
Ix_comments

** BODY

CLASS MEMBERS:
block_body
void
stub

IS INCLUDED IN:
UNIT DESC
ALL_SOURCE

NODE ATTRIBUTES:

(INHER[TED FROM ALL_SOURCE):

1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

: STM
¢ symbol_rep

: source_position
: comments

: STM

¢ source_position
: comments

: operator
: symbol_rep

: source_position
: comments

: source_position
¢ comments

Page A-35

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

generic_id.sm_body
SUBUNIT_BOOY.as_body
task_body_id.sm_body
task_spec.sm_body

** pox_default

IS INCLUDED IN:
GENERIC_PARAM
UNIT_KIND
UNIT_DESC
ALL _SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_Srcpos
1x_comments

+* CALL_STM

CLASS MEMBERS:
entry_call
procedure call

IS [NCLUDBED IN:
STM_WITH_NAME
ST™
STM_ELEM
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
as_general_assoc_s

sm_normalized_param_s
(INHERITED FROM STM_WITH_NAME):

as_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** case

:S INCLUDED IN:
STM_WITH_EXP
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_alternative_s

(INHERITED FROM STM_WITH_EXP):

as_exp
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** character_id

: source_position
: comments

: generdl_dssac_s

: exp_s

+ NAME

: source_position -

: comments

: alternative_s

EXP

: source_position
: comments

Page A-36

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
ENUM_LITERAL
0BJECT_NAME
SOURCE_NAME
DEF_NAME
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FRCM ENUM_LITERAL):

sm_pos : Integer

sm_rep : Integer
(INHERITED FROM OBJECT _NAME;:

sm_obj_type ¢ TYPE_SPEC
(INHERITED FROM DEF_NAME):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments
** CHOICE

CLASS MEMBERS:
choice_exp
choice_others
choice_range
IS INCLUDED IN:
ALL_SOURCE
NOOE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
’ 1x_srcpos
1x_comments :
IS THE DECLARED TYPE OF:
choice_s.as_list (Seg Of]

** choice_exp

IS INCLUDED IN:
CHOICE
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_exp
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** choice_others

IS INCLUDED IN:
CHOICE
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
Ix_srcpos

: comments

: source_position

comments

: EXP

source_position
comments

: source_position

Page A-37

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

1x_comments
** choice_range

IS INCLUDED IN:
CHOICE
ALL_SOURCE
NODE ATTRIBUTES:
(NQDE SPECIFIC):
as_discrete_range
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** choice_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE
NODE ATTRIBUTES:
(NCOE SPECIFIC):
as_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
alternative.as_choice_s
named.as_choice_s
variant.as_choice_s

+* CLAUSES STM

CLASS MEMBERS:

if

selective wait
IS INCLUDED IN:

ST™

ST™M ELEM

ALL_SOURCE
NODE ATTRIBUTES:

(NODE SPECIFIC):
as_test_clause_elem_s
as_stm_s

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** code

IS INCLUDED IN:
STM_WITH_EXP_NAME
STM WITH_EXP
STM
STM_ELEM

Page A-38

: comments

: DISCRETE_RANGE

: source_position
: comments

+ Seq Jf CHGICE

: source_position
: comments

. test_clause_elem_s
Tostm_s

: source_position
: comments

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFERENCE GUIDE

ALL_SOURCE
NODE ATTRIBUTES:

Page A-39

(INHERITED FROM STM_WITH EXP_NAME):

as_name

(INHERITED FROM STM_WITH_EXP):

as_exp

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** comp_list

IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_deci_s
as_pragma_s
as_variant_part
(INHERITED FROM ALL_SOURCE):
Tx_srcpos
ix_comments
IS THE DECLARED TYPE OF:
variant.as_comp_list
record.sm_comp_list
record_def.as_comp_list

**+ COMP_NAME

CLASS MEMBERS:
component id
discriminant_id

IS INCLUDED IN:
INIT_OBJECT _NAME
OBJECT NAME™
SOURCE_NAME
DEF _NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NOCE SPECIFIC):
sm_comp _rep

(INHERITED FROM INIT_OBJECT NAME)

sm_init_exp
(INHERITED FROM OBJECT _NAME):
sm_obj_type
(INHERITED™ FROM DEF _NAME):
1x_symrep
(INRERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** comp_rep

IS INCLUDED IN:

: NAME
: EXP

: source_position
: comments

: decl_s
: pragma_s
: VARIANT PART

: source_positicn
. comments

: COMP_REP ELEM

EXP

: TYPE_SPEC

: symbol_rep

: source_position
¢ comments

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

COMP_REP_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name
as_range
as_exp
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** COMP_REP_ELEM

CLASS MEMBERS:
comp_rep
void
comp_rep_pragma
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:

(INHERITED FROM ALL_SQURCE):
Ix_srcpos
1x_comments

IS THE DECLARED TYPE OF:
comp_rep_s.as_list (Seq Of]
COMP_NAME . sm_comp_rep

** comp_rep_pragma

IS INCLUDED IN:
COMP_REP ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_pragma
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** Zomp_rep_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
record_rep.as_comp_rep_s

** compilation

+ NAME
: RANGE
: EXP

: source_position
¢ comments

: source_position
: comments

: pragma

: source_position
¢ comments

: Seq Of COMP_REP_ELEM

: source_position
: comments

Page A-40

.

DIANA Reference Manual Draft Revision 4 Page A-41
DIANA CROSS-REFERENCE GUIDE

1S INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_compltn_unit s : compitn_unit_s
(INHERITED FROM ALL_SOURCE):

Ix_srcpos : source_position

1x_comments : comments

** compilation_unit

IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_context_elem_s : context_elem_s

as_pragma_s ¢ pragma_s

as_all_decl ¢ ALL_DECL
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE QF:
compltn_unit_s.as_list [Seq Of]

** compltn_unit_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of compilation_unit
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
compilation.as_compltn_unit_s

** component_id

IS INCLUDED IN:
COMP_NAME
INIT OBJECT _NAME
0BJECT_NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM COMP_NAME):

sm_comp_rep : COMP_REP_ELEM
(INHERITED FROM INIT_OBJECT_NAME):
sm_init_exp : EXP

(INHERITED FROM OBJECT_NAME):

OIANA Reference Manual Draft Revision &
DIANA CROSS-REFERENCE GUIDE

sm_obj_type

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos

— 1x_comments

** cond_clause

" IS INCLUDED IN:
TEST_CLAUSE
TEST_CLAUSE_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM TEST_CLAUSE):
as_exp
, as_stm_s
(INHERITED FROM ALL_SOURCE):
1x_srcpos
I1x_comments

** cond_entry

IS INCLUDED IN:
ENTRY_STM
STM™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES: _
(INHERITED FROM ENTRY_STM):
as_stm_sl
as_stm_s2
(INHERITED FROM ALL_SOURCE):
I1x_srcpos
1x_comments

** constant_decl

IS INCLUDED IN:
0BJECT DECL
ExXP_QECL
ID_S_DECL
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM OBJECT_DECL):
as_type_def
(INHERITED FROM EXP_DECL):
as_exp
(INHERITED FROM ID_S_DECL):
as_source_name_s
(INHERITED FROM ALL_SOURCE):

TYPE SPEC
symbol_rep

source_position
comments

EXP
stm_s

source_position
comments

:ostm_s
:ostm_s

: source_position
: comments

TYPE_DEF
EXP

: source_name_s

Page A-42

s

DIANA Reference Manual Draft Revision 4 Page A-43
DIANA CROSS-REFERENCE GUIDE

1x_srcpos : source_position
1x_comments : comments

** constant_id

IS INCLUDED IN:
VC_NAME
INTT_OBJECT_NAME
0BJECT_NAME™
SOURCE “NAME
OEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_first + DEF_NAME
(INHERITED FROM VC_NAME):

sm_renames_obj : Boolean

sm address : EXP
(INHERITED FROM INIT_OBJECT NAME)

sm_init_exp : EXP
(INHERITED FROM O0BJECT _NAME) :

sm_obj type : TyPe_SPEC
(INHERITED™ FROM DEF_NAME):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SQURCE):

1x_srcpos : source_position

1x_comments 1 comments
** CONSTRAINED

CLASS MEMBERS:
constrained_array
constrained_access
constrained_record

IS INCLUDED IN:

NON_TASK
FULL_TYPE_SPEC
DERIVABLE SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_depends_on_dscrmt : Boolean
(INHERITED “FROM NON TASK)

sm_base_type : TYPE_SPEC
(INHERITED “FROM DERIVABLE SPEC):

sm_derived ¢ TYPE_SPEC

sm_is_anonymous : Boolean

** constrained_access

IS INCLUDED IN:
CONSTRAINED
NON_TASK
FULT_TYPE_SPEC

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

DERIVABLE _SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_desig_type :
(INHERITED “FROM CONSTRAINED)
sm_depends_on_dscrmt
(INHERITED FROM NON TASK)
sm_base_type
(INHERITED “FROM DERIVABLE _SPEC):
sm_derived
Sm is_anonymous :

** constrained_array

IS INCLUDED IN:
CONSTRAINED
NON_TASK
FULL_TYPE_SPEC
DERIVABLE _SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_index_subtype_s
(INHERITED “FROM CONSTRAINED):
sm_depends_on_dscrmt :
(INHERITED FROM NON_TASK):
sm_base_type
(INHERITED FROM DERIVABLE_SPEC):
sm_derived
sm_is_anonymous

** constrained_array_def

IS INCLUDED IN:
ARR _ACC _DER_DEF
TYPE DEF
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as constraint
(INHERITED “"FROM ARR _ACC_OER DEF)
as_subtype_ Tndication
(INHERITED “FROM ALL _SOURCE):
1x_srcpos
1x_comments

** CONSTRAINED_DEF

CLASS MEMBERS:
subtype_indication
integer_def
fixed_def
float_def

TYPE_SPEC

: Boolean
: TYPE_SPEC
: TYPE_SPEC

Boolean

: scalar_s

Boolean

: TYPE_SPEC

: TYPE_SPEC
: Boolean

: CONSTRAINT

: subtype_indication

: source_position
: comments

Page A-44

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
TYPE _DEF
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_constraint : CONSTRAINT
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** constrained_record

IS INCLUDED IN:
CONSTRAINED
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_normalized dscrmt_s : exp_s
(INHERITED FROM CONSTRAINED):

sm_depends_on_dscrmt : Boolean
(INHERITED FROM NON TASK)

sm_base_type : TYPE_SPEC
(INHERITED FROM DERIVABLE _SPEC):

sm_derived : TYPE_SPEC

sm_is_anonymous : Boolean

** CONSTRAINT

CLASS MEMBERS:
void
DISCRETE_RANGE
dscrmt_constraint
index_constraint
REAL_CONSTRAINT
RANGE
discrete_subtype
float_constraint
fixed constraint
range
range_attribute
IS INCLUDED IN:
ALL SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL _SOURCE):
1x_srcpos ¢ source_position
1x_comments : comments
IS THE DECLARED TYPE OF:
constrained_array_def.as_constraint
CONSTRAINED DEF.as _constraint

*+ CONTEXT ELEM

Page A-45

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

CLASS MEMBERS:
context_pragma
with
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments
IS THE DECLARZD TYPE OF:
context_elem_s.as_list (Seq Of]

** context_elem_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seqg Of CONTEXT_ELEM
(INHERITED FROM ALL_SQOURCE): :

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
compilation_unit.as_context_elem_s

** context_pragn:

IS INCLUDED IN:
CONTEXT_ELEM
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_pragma ¢ pragma
(INHERITED FROM ALL_SOURCE):

1x_srcpos ¢ source_position

1x_comments : comments

** conversion

IS INCLUDED IN:
QUAL_CONV
EXP_VAL_EXP
EXP_VAL
EXP_EXP
Exp
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM QUAL_CONV):
as_name : NAME
(INHERITED FROM EXP_VAL_EXP):
as_exp : EXP

Page A-46

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM EXP_VAL):
sm_value

(INHERITED FROM EXP_EXP):
sm_exp_type

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** DECL

CLASS MEMBERS:
I0_S_DECL
ID_DECL
null_comp_decl
REP
USE_PRAGMA
EXP_DECL
deferred_constant_dec!
exception_dec)
type_decl
UNIT _DECL
task_dec]
subtype_decl
SIMPLE_RENAME DECL
void
NAMED_REP
record_rep
use
pragma
0BJECT_OECL
number _dec]
generic_dec)
NON_GENERIC_DECL
renames_obj_dec!
renames_exc_decl
length_enum_rep
address
constant dec)
variable_dec]
subprog_entry_decl
package_dec!

IS INCLUDED IN:
[TEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL SOURCE):

1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
decl_s.as_list [Seq Of]

** decl_s

: value
: TYPE_SPEC

: source_position
T comments

: source_position
: comments

Page A-47

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

*¥

[S INCLUDED IN:

SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as list

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x comments

IS THE DECLARED TYPE OF:

DEF_NAME

instantiatien.sm_dec) s
task_spec.sm_decl_s
task_decl.as_decl_s
package_spec.as_decl sl
.as_decl _s2
comp_list.as_decl_s

CLASS MEMBERS:

SOURCE _NAME
PREDEF NAME
OBJECT_NAME
LABEL_NAME
UNIT_NAME

TYPE _NAME

void

entry_id
exception_id
attribute_id
bltn_operator_id
arqument_id
pragma_id
INIT_OBJECT_NAME
ENUM_LITERAL
iteration_id
label_id

block loop id
NON_TASK_NAME
task_body_id
type_id
subtype_id
private_type_id
1 _private_type_id
VC_NAME
number_id
COMP_NAME
PARAM_NAME
enumeration_id
Character_id
SUBPRQOG_PACK_NAME
generic_id
variable_id
constant_id

: Seq Of OECL

: source_position
: comments

Page A-48

DIANA Reference Manual Draft Revision 4 Page A-49
OIANA CROSS-REFERENCE GUIDE

component _id
discriminant _id
in_id
out_id
in_out_id
SUBPROG_NAME
package_id
procedure_id
operator_id
function_id
IS INCLUDED IN:
ALL_SOURCE
NCDE ATTRIBUTES:
(NODE SPECIFIC):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
PARAM_NAME.sm_first
DESIGNATOR.sm_defn
discriminant_id.sm_first
type_id.sm_first
constant_id.sm_first
UNIT_NAME.sm_first

** deferred_constant_decl

IS INCLUDED IN:
ID_S_DECL
DECL
ITEM
ALL_DECL
ALL”SQURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_name ¢ NAME
(INHERITED FROM ID_S_DECL):
as_source_name S ¢ source_name_s
(INHERITEC FROM ALL_SOURCE):
Tx_srcpos : source_position
1x_comments ¢ comments

** delay

IS INCLUDED IN:
STM_WITH_EXP
STM
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM STM_WITH_EXP):
as_exp : EXP
(INHERITED FROM ALL_SOURCE):

L

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFERENCE GUIDE

1x_srcpos : source_position
1x_comments : comments

** DERIVABLE_SPEC

CLASS MEMBERS:
FULL_TYPE_SPEC
PRIVATE_SPEC
task_spec
NON_TASK
private
! private
SCALAR
CONSTRAINED
UNCINSTRAINED
enumeration
REAL
integer
constrained_array
constrained_access
constrained_record
UNCONSTRAINED _COMPOSITE
access
float
fixed
array
record
[S TNCLUDED IN:
TYPE_SPEC
NODE ATTRIBUTES:
(NGDE SPECIFIC):
sm_carived : TYPE_SPEC
sm_is_anonymous : Boolean

** derived_def

IS INCLUDED IN:
ARP ACC DER DEF
TYPE DEF
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM ARR_ACC_DER_DEF):
as_subtype_indication : subtype_indication
(INHERITED FROM ALL_SOURCE):
1x_srcpos ! source_position
1x_comments ¢ comments

** derived_subprog

IS INCLUDED IN:
UNTT_DESC
ALI_SOURCE

NODE ATTR ~JTES:

(NODE SPECIFIC):

Page A-50

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

sm derivable

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** DESIGNATOR

CLASS MEMBERS:
USED_OBJECT
USED NAME
used _char
used_object_id
used op
used_name_id
IS INCLUDED TN:
NAME
Exp
GENERAL _ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_defn
1x_symrep

i

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
selected.as_designator

** DISCRETE_RANGE

CLASS MEMBERS:
RANGE
discrete_subtype
range
void
range_attribute

[S TNCLUDED IN:
CONSTRAINT
ALL_SQURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

entry.as_discrete_range
FOR_REV.as d1surete range
AGG EXP.sm_discrete_range
slice.as_discrete_range

Page A-S1

: SOURCE_NAME

: source_position
: comments

: DEF_NAME
¢ symbol_rep

T source_position
: comments

: source_position
: comments

choice range as_discrete_range
discrete_range_s.as_list [Seq Of]

¥ discrete_range_s

DIANA Reference Manual Oraft Revision 4
DIANA CROSS~REFERENCE GUIDE

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of DISCRETE_RANGE
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments 1 comments

IS THE DECLARED TYPE OF:
index_constraint.as_discrete_range_s

** discrete_subtype

IS INCLUDED IN:
DISCRETE_RANGE
CONSTRAINT
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_subtype_indication : subtype_indication
(INHER{TED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** discriminant_id

IS INCLUDED IN:
COMP_NAME
INIT OBJECT _NAME
0BJECT_NAME
SOUPCE “NAME
DEF _NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_first : DEF_NAME
{INHERITED FROM COMP NAME):

sm_comp_rep : COMP _REP ELEM
{INHERITED FROM [NIT_GBJECT_NAME):

sm_init_exp : EXP
(INHERITED FROM OBJECT_NAME):

sm_obj_type : TYPE_SPEC
(INHERITED FROM DEF _NAME):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** dscrmt_constraint

IS INCLUDED IN:
CONSTRAINT
ALL_SOURCE

Page A-52

DIANA Reference Manual Oraft Revision 4 Page A-83
DIANA CROSS-REFERENCE GUIUE

NODE ATTRIBUTES:
(NGOE SPECIFIC):

as_general_assoc_s : general_assoc_s
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** dscrmt_dec)

IS INCLUDED IN:
DSCRMT_PARAM_DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM DSCRMT_PARAM DECL)

as_source_name_s source_name_s
as exp : Exp
as_name t NAME

(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x comments : comments

IS THE DECLARED TYPE OF:
dscrmt_decl_s.as_list [Seq Of]

** dscrmt_dec)_s

IS INCLUDED. IN:
SEQUENCES
ALL SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_list : Seq Of gscrmt_dec]
(INHERITED FROM ALL_SOURCE):

1x_srcpos 1 source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
PRIVATE SPEC.sm _discriminant s
incomplete.sm_giscriminant_s
record.sm_discriminant s
type_decl.as_dscrmt _decl s

** [DSCRMT_PARAM_DECL

CLASS MEMBERS:
dscrmt_dec]
PARAM
in
in_out
out

IS INCLUDED IN:
ITEM
ALL_DECL
ALL_SOURCE

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

*k

N

sk

NODE ATTRIBUTES:

(NODE SPECIFIC):
as_source_name_s
as_exp
as_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

entry

IS INCLUDED IN:
SUBP_ENTRY_HEADER
HEADER
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_discrete_range

source_name_s
EXP
NAME

source_position
comments

: DISCRETE_RANGE

(INHERITED FROM SUBﬁ_ENTRY_HEADER):
: param_s

as_param_s -
(INHERITED FROM ALL_SQURCE):
1x_srcpos

1x_comments
entry _call

IS INCLUDED IN:
CALL_STM
STM_WITH_NAME
ST™ -
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM CALL_STM):
as_general_assoc_s
sm normalized param_ s

(INHERITED FROM STM_WITH_NAME):

as_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

entry_id

IS INCLUDED IN:
SOURCE _NAME
DEF_NAME
ALL_SOURCE
NOOE ATTRIBUTES:
(NODE SPECIFIC):
sm_spec
sm_address
(INHERITED FROM DEF_NAME):
1x_symrep

: source_position
: comments

general_assoc_s
exp_s

: NAME

: source_position
: comments

HEADER
EXP

symbol_rep

Page A-54

“

DIANA Reference Manual Draft Revision 4 Page A-55
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM ALL_SOURCE):
1x_Srcpos : source_position
1x_comments : comments

** ENTRY_STM

CLASS MEMBERS:
cond_entry
timed_entry
IS INCLUDED IN:
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_stm_sl stm_s
as_stm_s2 ¢ ostm_s
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

ea

** ENUM_LITERAL

CLASS MEMBERS:
enumeration_id
character_id
[S INCLUDED IN:
OBJECT _NAME
SOURCE _NAME
- DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
Sm_pos : Integer
sm_rep : Integer
(INHERITED FROM OBJECT_NAME):
sm_obj_type : TYPE_SPEC
(INHERITED FROM DEF _NAME):
Ix_symrep : symbol_rep
(INHERITED FROM ALL _SOURCE):
1x_srcpos : source_position
1x_comments : comments
IS THE DECLARED TYPE OF:
enum_literal_s.as_list [Seq Of)

** enum_literal_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_list : Seq Of ENUM_LITERAL
(INHERITED FROM ALL_SOURCE):

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

*k

Y

* %

1x_srcpos
1x comments

IS THE DECLARED TYPE OF:

enumeration.sm_literal_s

source_position

: comments

enumeration_def.as_enum_literal_s

enumeration

IS INCLUDED

IN:

SCALAR
NON_TASK
FULT_TYPE_SPEC
DERIVABLE _SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

(INHERITED FROM SCALAR):

(INHERITED FROM NON_TASK):
(INHERITED FROM DERIVABLE _SPEC):

enumeration_def

IS INCLUDED

sm_literal_s

sm_range
cd_impl_size

sm_base_type

sm_derived
sm_is_anonymous

IN:

TYPE_DEF

ALL

SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

enumeration_id

as_enum_literal s
(INHERITED FROM ALL_SOURCE):

1x_srcpos

. 1x_comments

IS INCLUDED IN:
ENUM_LITERAL
OBJECT_NAME
SOURCE _NAME

DEF

ALL™

NAME
SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ENUM_LITERAL):

(INHERITED™ FROM OBJECT_NAME):
(INHERITED FROM DEF_NAME):

sm_pos
sm rep

sm obj type

1x_symrep

: enum_literal_s

: RANGE
: Integer

: TYPE_SPEC

: TYPE_SPEC
: Boolean

: enum_literal_s

: source_position
: comments

¢ Integer
: Integer

: TYPE_SPEC

¢ symbol_rep

Page A-56

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** exception_decl

IS INCLUDED IN:
1I0_S_DECL
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ID_S DECL):
as_source_name_s
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** exception_id

IS INCLUDED IN:
SOURCE_NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
Sm_renames_exc
(INHERITED FROM DEF_NAME):
Ix_symrep .
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** exit

.IS INCLUDED IN:
STM WITH_EXP NAME
STM_WITH_EXP
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm stm

(INHERITED FROM STM_WITH_EXP_NAME):
as_name

(INHERITED FROM STM_WITH_EXP):
as_exp

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

¥

: source_position
: comments

: source_name_s

¢ source_position
¢ comments

: NAME
: symbol_rep

¢ source_position
: comments

: STM
¢ NAME
s EXP

: source_position
: comments

Page A-57

m

DIANA Reference Manual Draft Revision 4 Page A-58
DIANA CROSS-REFERENCE GUIDE

CLASS MEMBERS:
void
NAME
EXP_EXP
DESIGNATOR
NAME_EXP
EXP_VAL
subtype_allocator
- qualified_allocator
' AGG_EXP
e USED_OBJECT
USED_NAME
NAME VAL
all
slice
indexed
short_circuit
numeric_literal
EXP_VAL_EXP
null_access
aggregate
string_literal
used_char
used_object_id
. used_op
used_name_id
attribute
selected
function_call
MEMBERSHIP
QUAL_CONV
parenthesized
range_membership
type_membership
conversion
qualtified
IS INCLUDED IN:
GENERAL _ASSQC
ALL_SOURCE

o NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x comments : comments

IS THE DECLARED TYPE OF:
comp_rep.as_exp
alignment.as_exp

- NAMED_REP.as_exp
entry_id.sm_address
task_spec.sm_storage_size

.sm_size

.Sm_address
SUBPROG_PACK_NAME .sm_address
while.as_exp

DIANA Reference Manual Oraft Revision 4 Page A-59
DIANA CROSS-REFERENCE GUIDE

TEST_CLAUSE.as_exp
STM_WITH _EXP.as_exp
EXP_VAL_EXP.as_exp
short_ circuit.as_expl
.as_exp2

NAMED _ASSOC.as_exp
attribute.as _exp
exp_s.as_list [Seq Of]
access.sm_storage_size
choice_exp.as_exp
DSCRMT PARAM DECL.as _exp
REAL_CONSTRAINT.as_exp
range_attribute.as_exp
range.as_expl

.as exp2
UNCONSTRAINED.sm_size
VC_NAME.sm_address
INTT_OBJECT_NAME.sm_init_exp
EXP_ DECL.as _exp

** EXP_DECL

CLASS MEMBERS:
0BJECT_DECL
number_dec]
constant_decl
variable_dec]

IS INCLUDED IN:

ID_S _DECL
DECL™
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_exp : EXP
(INHERITED™, FROM ID_S_DECL):
as_source_name S t source_name_s
(INHERITED FROM ALL_SOURCE):
Ix_srcpos ! source_pasition
Ix_comments : comments

** EXP_EXP

CLASS MEMBERS:
EXP_VAL
subtype_allocator
qualified_allocator
AGG_EXP
short_circuit
numeric_literal
EXP_VAL_EXP
null_access
aggregate

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

ik

*k

string literal
MEMBERSHIP
QUAL_CONV
parenthesized
range_membership
type_membership
conversion
qualified

IS INCLUDED IN:

EXP
GENERAL_ASSOC
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

sm_exp_type

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

IS INCLUDED IN:

SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as list

(INHERITED FROM ALL_SOURCE):

1x _srcpos
Ix comrents

IS THE DECLARED TYPE OF:

: TYPE_SPEC

: source_position
: comments

: Seq Of EXP

: source_position
+ comments

function _call.sm normalized param_s
CALL_ STM. sm_ normalized _param_s

indexed.as exp S

onstra1ned record. sm_narmalized_dscrmt_s

CLASS MEMBERS:

sport_circuit
nume~ic_literal
EXP_VAL_EXP
null_access
MEMBERSHIP
QUAL_CONV
parenthesized
range_membership
type_membership
conversion
qualified

IS INCLUDED IN:

EXP_EXP
EXP
GENERAL_ASSOC

Page A-60

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ALL_SOURCE
NODE ATTRIBUTES:

(NODE SPECIFIC):
sm_value

(INHERITED FROM EXP_EXP):
sm_exp_type

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

*+ EXP_VAL_EXP

CLASS MEMBERS:
MEMBERSHIP
QUAL_CONV
parenthesized
range_membership
type_membership
conversion
gualified
IS INCLUDED IN:
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_exp
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

** fixed

IS INCLUDED IN:
REAL
SCALAR
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
cd_impl_small
(INHERITED FROM REAL):
sm_accuracy
(INHERITED FROM SCALAR):
sm_range
cd_impl_size

: value
: TYPE_SPEC

: source_position
: comments

: EXP
:.value
: TYPE_SPEC

: source_position
: comments

: value
: value

: RANGE
: Integer

Page A-61

DIANA Reference Manual Draft Revision 4 Page A-62
DIANA CROSS-REFERENCE GUIDE

' (INHERITED FROM NON_TASK):
sm_base_type : TYPE_SPEC
(INHERITED FROM DERIVABLE_SPEC):
sm_derived : TYPE_SPEC
sm_is_anonymous : Boolean

** fixed_constraint

IS INCLUDED IN:
REAL CONSTRAINT
CONSTRAINT
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM REAL CONSTRAINT)
sm_type_spec : TYPE_SPEC
as_exp : EXp
as_range : RANGE

(INHERITED FROM ALL_SQURCE):
1x_srcpos : source_position
1x_comments T comments

** fixed gef

IS INCLUDED IN:
CONSTRAINED_DEF
TYPE _DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM CONSTRAINED_DEF):)
as_constraint : CONSTRAINT
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** float

IS INCLUDED IN:
REAL
SCALAR
NON_TASK
FULL_TvPE_SPEC
DERIVABLE _SPEC
. TYPE_SPEC
NODE ATTRIBUTES:
(INHERITED FROM REAL):
sm_accuracy : value
(INHERITED FROM SCALAR):
sm_range ¢ RANGE
cd_impl_size : Integer
(INHERITED FROM NON_TASK):
sm_base_type
(INHERITED FROM DERIVABLE _SPEC):
sm_derived : TYPE_SPEC
sm_is_anonymous : Boolean

TYPE_SPEC

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

** float_constraint

IS INCLUDED IN:
REAL CONSTRAINT
CONSTRAINT
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM REAL_CONSTRAINT):
sm_type_spec
as_exp
as_range
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** float_def

IS INCLUDED IN:
CONSTRAINED_DEF
TYPE_DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM CONSTRAINED_OEF):
as_constraint
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

* for

IS INCLUDED IN:
FOR_REV
ITERATICN
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM FOR_REV):
as_source_name
as d1screfe _range
(INHERITED FROM ALL_SOURCE):
ix_srcpos
1x_comments

*%. FOR_REV

CLASS MEMBERS:
for

reverse
IS INCLUDED IN:
ITERATION
AL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_source_name

Page A-63

: TYPE_SPEC
: EXP
: RANGE

: source_position
: comments

: CONSTRAINT

: source_position
: comments

: SOURCE_NAME
: DISCRETE_RANGE

: source_position
: comments

: SOURCE_NAME

et

¥

ik

- DIANA Reference Manual Draft Revision 4
: DIANA CROSS-REFERENCE GUIDE

as_discrete_range
(INHERITED FROM ALL_SOURCE):

1x_srcpos

1x_comments

formal_dscrt_def

IS INCLUDED IN:
" TYPE DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

formal_fixed_def

IS INCLUDED IN:
TYPE DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

formal_float_def

IS INCLUDED IN:
TYPE_DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

formal_integer_def

IS INCLUDED IN:
TYPE DEF
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

FULL_TYPE_SPEC

CLASS MEMBERS:
task_spec
NON_TASK
SCALAR
CONSTRAINED
UNCONSTRAINED
enumeration

Rttt A

: DISCRETE_RANGE

: source_position
: comments

: source_position
: comments

: source_position
: comments

: source position
. comments

: source_position
: comments

Page A-64

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

REAL
integer
constrained_array
constrained_access
constrained_record
UNCONSTRAINED _COMPOSITE
access
float
fixed
array
record

IS INCLUDED IN:
DERIVABLE SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(INHERITED FROM DERIVABLE_SPEC):

sm_derived
sm_is_anonymous

** fynction_call

IS INCLUDED IN:
NAME VAL
NAME_EXP
NAME
EXp
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:

(NOOE SPECIFIC):
as_general_assoc_s
sm_normalized_param_s
1x_prefix

(INHERITED FROM NAME_VAL):
sm_value

(INHERITED FROM NAME EXP):
as_name
sm_exp_type

(INHERITED FROM ALL_SQURCE):
Ix_srcpos
1x_comments

** function_id

IS INCLUDED IN:
SUBPROG_NAME
SUBPROG_PACK_NAME
NON_TASK_NAME
UNIT NAME
SOURCE_NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM SUBPROG_NAME):

Page A-65

TYPE_SPEC
Boolean

: general_assoc_s
: exp_s
: Boolean

: value

: NAME
: TYPE_SPEC

! source_position
: comments

DIANA Reference Manual Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

&

i

v

sm_is_inline
sm interface

sm_unit_desc
sm_address

(INHERITEDFROM NON_TASK_NAME):

Sm_spec

(INHERITED FROM UNIT_NAME):

sm first

(INHERITED FROM DEF_NAME):

1x_symrep

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

function_spec

IS INCLUDED IN:

SUBP_ENTRY_HEADER
HEADER
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as_ndme

as param s

(INHERITEO FROM ALL_SOURCE):

Ix_srcpos
1x_comments

GENERAL_ASSOC
CLASS MFEMBERS:

NAMED_ASSQOC

ExP

named

assoc

void

NAME

EXP_EXP
DESIGNATOR

NAME _EXP
EXP_VAL
subtype_allocator
qualified_allocator
AGG_EXP
USED_OBJECT
USED_NAME

MAME VAL

aill

slice

indexed
short_circuit
numeric_literal

»
.

.
.
»

.e

Boolean

X : PREDEF_NAME
(INHERITED FROM SUBPROG_PACK_NAME):

UNIT_DESC
EXP

HEADER
DEF_NAME

: symbol_rep

.

source_position

: comments

NAME

(TNHERITED FROM SURP_ENTRY_HEADER):

param_s

: -source_position
: comments

Page A-66

DIANA Reference Manual Draft Revision 4 Page A-67
DIANA CROSS-REFERENCE GUIDE

EXP_VAL_EXP
null_access
aggregate
string_literal
used_char
used_object_id
used_op
used_name_id
attribute
selected
function call
MEMBERSHIP
QUAL_CONV
parenthesized
range_membership
type_membership
conversion
qualified

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL SOURCE):
1x_srcpos : source_position
1x_comments : comments

IS THE DECLARED TYPE OQF:
general_assoc_s.as_list [Seq Of]

** general_assoc_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of GENERAL_ASSQOC
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
instantiation.as_general_assoc_s
function_call.as_general_assoc_s
CALL_STM.as_general_assoc_s
aggregate.as_general_assoc_s

.Sm_normaiized_comp_s
dscrmt_constraint.as_general_assoc_s
pragma.as_general_assoc_s

** generic_decl

IS INCLUDED IN:
UNIT DECL
10_DECL
DECL
ITEM

OIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_item_s
(INHERITED FROM UNIT_DECL):
as_header
(INHERITED FROM D _DECL):
as_source_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** generic_id

IS INCLUDED IN:
NON_TASK_NAME
UNIT_NAME
SOURCE_NAME
DEF_NAME
ALL_SOURCE

NOOE ATTRIBUTES:

(NODE SPECIFIC):
sm_generic_param_s
sm_is_inline
sm_body

(INHERITED FROM NON_TASK_NAME):

" sm_specC

{INHERITED FROM UNIT _NAME):
sm_first

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** GENERIC_PARAM

CLASS MEMBERS:
name_derauit
no_default
box_default

IS INCLUDED IN:
UNIT_KIND
UNIT_DESC
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** goto

IS INCLUDED IN:

: item_s
: HEADER
: SOURCE_NAME

: source_position
: comments

: item_s

: Boolean

: BODY

: HEADER

: DEF_NAME

: symbol_rep

: source_position
: comments

: source_position
: comments

Page A-68

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

STM_WITH_NAME
ST™
STM_ELEM
ALL_SGURCE
NODE ATTRIBUTES:
(INHERITED FROM STM_WITH_NAME):
as_name
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments
¥

HEADER

CLASS MEMBERS:
SUBP_ENTRY_HEADER
package_spec
procedure_spec
function_spec
entry

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

[S THE OECLARED TYPE OF:
entry id.sm_spec
subprogram_body.as_header
NON_TASK_NAME.sm_spec
UNIT_DECL.as_header

** [D_DECL
CLASS MEMBERS:
type_decl
UNIT_DECL
task decl

subtype decl
SIMPLE _RENAME _DECL
generic_dec!
NON_GENERIC_DECL
renames_obj_decl
renames_exc_dec]
subprog_entry_decl
package_dec]
IS INCLUDED IN:
DECL
[TEM
ALL_DECL
ALL_SOURCE
NOOE ATTRIBUTES:
(NGOE SPECIFIC):
as_source_name
(INHERITED FROM ALL_SOURCE):

Page A-69

: NAME

: source_position
: comments

: source_position
: comments

: SOURCE_NAME

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFERENCE GUIDE

Ix_srcpos
1x_comments

*+ D S DECL

CLASS MEMBERS:
EXP_DECL
deferred_constant_dec]
exception decl
0BJECT_DECL
number_decl
constant_dec!
variable_decl
IS INCLUDED IN:
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_source_name_s
(INHERITED FROM ALL SOURCE):
1x_srcpos
1x_comments

** if

IS INCLUDED IN:
CLAUSES_STM
ST™
STM_ELEM
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM CLAUSES STM):
as_test_clause_elem_s
as_stm_s

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** implicit_not_eq

IS INCLUDED IN:
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_equal
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

i in

: source_position
: comments

: source_name_s

: source_position
¢ comments

: test_clause_elem_s
: stm_s

¢ source_position
. comments

: SOURCE_NAME

: source_position
s comments

Page A-70

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
PARAM
DSCRMT_PARAM_DECL
ITEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
1x_default

(INHERITED FROM OSCRMT_PARAM DECL)
: source_name_s

as_source_name_s
as_exp :
as_name

(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

** in_id

IS INCLUDED IN:
PARAM_NAME
INIT_OBJECT _NAME
0BJECT _NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM PARAM NAME):
sm_first
(INHERITED “FROM INIT_QBJECT NAME)
sm_init_exp
(INHERITED FROM - 0BJECT_NAME):
sm_obj_type
(INHERITED FROM DEF _NAME):
Ix_symrep
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** in_op

IS INCLUDED IN:
MEMBERSHIP_OP
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):

1x_srcpos :
: comments

1x_comments

** in_out

IS INCLUDED IN:
PARAM
DSCRMT PARAM_DECL

: Boolean

EXP

: NAME

: source_position
: comments

: DEF_NAME

: EXP.
¢ TYPE_SPEC
: symbol_rep

¢ source_position
: comments

source_position

Page A-71

DIANA Reference Marwal Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ITEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM DSCRMT_PARAM_DECL):

as_source_name_s :
as_exp :
as_name :
(INHERITED FROM ALL_SOURCE):

. Ix_srcpos
1x_comments :

** in_out_id

IS INCLUDED IN:
PARAM_NAME
INIT_OBJECT_NAME
OBJEET_NAME
SOURCE _NAME
DEF _NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM PARAM_NAME):
sm_first
(INHERITED FROM INIT_OBJECT NAME)
sm_init_exp
(INHERITED FROM ™ OBJECT _NAME):
sm_obj_type :
(INHERITED™ FROM DEF NAME)
_ 1x_symrep
(INHERITED FROM ALL SOURCE):
1x_srcpos
1x_comments

** incomplete

IS INCLUDED IN:
TYPE _SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
. sm_discriminant_s

** index

IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
- (NODE SPECIFIC):
as_name
sm_type_spec
(INHERITED™ FROM ALL_SOURCE):
- Ix_srcpos
1x_comments
1S THE DECLARED TYPE OF:

source_name_s
EXP
NAME

: source_position

comments

: DEF_NAME
: EXP
TYPE_SPEC

: symbol_rep

: source_position
: comments

: dscrmt_decl_s

NAME

: TYPE_SPEC

: source_position
: comments

Page A-72

DIANA Reference Manual Oraft Revision 4 Page A-73
DIANA CROSS-REFERENCE GUIDE

index_s.as_list [Seq Of]
** 1index_constraint

IS INCLUDED IN:
CONSTRAINT
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_discrete_range_s : discrete_range_s
(INHERITED FROM ALL SOURCE)
1x_srcpos : source_position
1x_comments ¢ comments
** index_s
IS INCLUDED IN:
SEQUENCES
ALL_SQURCE
NODE ATTRIBUTES:
(NOOE SPECIFIC):
as list : Seqg Of index
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

IS THE DECLARED TYPE OF:
array.sm_index_s
unconstrained array def.as_index_s

** indexed

IS INCLUDED IN:
NAME_EXP
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_exp_s Toexp_s
(INHERITED FROM NAME_EXP):
as_name ¢ NAME
sm_ _exp_type : TYPE_SPEC
(INHERITED FROM ALL _SOURCE) :
1x_srcpos : source_position
1x_comments : comments

** [NIT_OBJECT_NAME

CLASS MEMBERS:
VC_NAME
number_id
COMP_NAME
PARAM_NAME

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFERENCE GUIDE

-

variable_id
constant_id
v component_id
discriminant_id
in_id
out_id
in_out_id
IS INCLUDED IN:
0BJECT_NAME
- SOURCE _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm init exp

(INHERITED FROM OBJECT_NAME):

sm_obj_type
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** nstantiation

IS INCLUDED IN:
RENAME _INSTANT
UNIT_KIND
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_general_assoc_s
sm decl s

(INHERITED FROM RENAME [NSTANT):

as_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** integer

IS INCLUDED IN:
- SCALAR
' NON_TASK
FULL_TYPE_SPEC
DERIVABLE _SPEC
W TYPE_SPEC
NODE ATTRIBUTES:

(INHERITED FROM SCALAR):
sm_range
cd_impl_size

(INHERITED FROM NON_TASK):
sm_base_type

Page A-74

: EXP
: TYPE_SPEC
: symbol_rep

: source_position
: comments

: general_assoc_s
: decl_s

NAME

: source_position
: comments

+ RANGE
: Integer

TYPE_SPEC

0ttt

DIANA Reference Manual Draft Revision 4 Page A-75
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM DERIVABLE_SPEC):
sm_derived : TYPE_SPEC
sm_is_anonymous : Boolean

** jnteger_def

IS INCLUDED IN:
CONSTRAINED_DEF
TYPE_DEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM CONSTRAINED_DEF):

as_constraint : CONSTRAINT
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

¥ ITEM

CLASS MEMBERS:
DSCRMT_PARAM DECL
DECL
SUBUNIT_BODY
dscrmt_dec]
PARAM
ID_S_DECL
ID_DECL
null_comp_dec]
REP)
USE_PRAGMA
subprogram_body
task_body
package_body
m
in_out
out
ExP_DECL
deferred_constant_dec)
exception_decl
type_deci
UNIT_DECL
task_dec!
subtype_dec]
SIMPLE_RENAME_DECL
void
NAMED_REP
record_rep
use
pragma
08JECT_DECL
number_dec]
generic_decl
NON_GENERIC_DECL
renames_obj_decl

DIANA Reference Manual Draft Revision 4 Page A-76
DIANA CROSS-REFERENCE GUIDE

A

renames_exc_dec]
length_enum_rep
address
constant_dec]
variable_dec!
- subprog_entry decl
package_dect
e IS INCLUDED IN:
ALL_DECL
ALL_SOURCE
, NODE ATTRIBUTES:
' (INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments ¢ comments
IS THE DECLARED TYPE OF:
item_s.as_list (Seq Of]

** jtem_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of ITEM
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position

1x_comments : comments

[S THE OECLARED TYPE OF: :
generic_id.sm_generic_param_s
generic_decl.as_item_s
block_body.as_item_s

** ITERATION

CLASS MEMBERS:
void
FOR_REV
while
for
reverse
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position
1x_comments : comments
i IS THE DECLARED TYPE OF:

loop.as_iteration
** jteration_id

~ IS INCLUDED IN:
OBJECT_NAME

DIANA Reference Manual Draft. Revision 4
DIANA CROSS-REFERENCE GUIDE

SOURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM OBJECT_NAME):

sm_obj_type
(INHERITED FROM OEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

**] _private

IS INCLUDED IN:
PRIVATE_SPEC
DERIVABLE_SPEC
TYPE SPEC

NODE ATTRIBUTES:

(INHERITED FROM PRIVATE_SPEC):

sm_discriminant _s
sm_type_spec

(INHERITED FROM DERIVABLE_SPEC)

sm_derived
sm_is_anonymous

**] private_def

IS INCLUDED IN:
TYPE_DEF
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** 1 private_type_id

IS INCLUDED IN:
TYPE_NAME
SOURCE _NAME
DEF_NAME
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM TYPE_NAME):
sm_type_spec
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** label_id

Page A-77

: TYPE_SPEC
: symbol_rep

: source_position
: comments

: dscrmt_decl s
: TypPe_SPEC

: TYPE_SPEC
: Boclean

1 source_position
: comments

: TYPE_SPEC
: symbol_rep

: source_position
: comments

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
LABEL NAME
SOURCE_NAME
DEF _NAME
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM LABEL_NAME):
sm_stm
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** LABEL_NAME

CLASS MEMBERS:
label_id
block_loop_id
IS INCLUDED IN:
SOURCE _NAME
DEF _NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_stm
(INHERITED FROM DEF_NAME):
1x_symrep)
(INHERITED FROM ALL_SQURCE):
N 1x_srcpos
1x_comments

** labeled
IS INCLUDED IN:
ST™
STM_ELEM
ALL SOURCE

NODE ATTRIBUTES:

{NODE SPECIFIC):
as_source_name_s
as_stm
as_pragma_s

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** length_enum_rep

IS INCLUDED IN:
NAMED_REP
REP
DECL
ITEM

STM

: symbol_rep

: source_position
: comments

STM™

: symbol_rep

¢ sgurce_pagsition
: comments

¢ source_name_s

X

ST™
pragma_s

source_position

: comments

Page A-78

| DIANA Reference Manua) Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ALL_DECL
ALL”SOURCE
NODE ATTRIBUTES:
(INHERITED FROM NAMED REP):
as_exp
(INHERITED FROM REP):
as name

Ix_srcpos
1x_comments

** Joop

IS INCLUOED IN:
BLOCK_LOOP
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_iteration
as_stm_s

(INHERITED FROM BLOCK_LOOP):

as_source_name
(INHERITED FROM ALL_SOURCE):

1x_srcpos

1x_comments

** MEMBERSHIP

CLASS MEMBERS:
range_membership
type_membership

IS INCLUDED IN:
EXP_VAL_EXP
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
as membership op

(INHERITED FROM EXP_VAL_EXP):

as_exp

(INHERITED FROM EXP_VAL):
sm_value

(INHERITED FROM EXP_EXP):
sm_exp_type

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** MEMBERSHIP_OP

(INHERITED FROM ALL_SOURCE):

ExP
NAME

source_position
comments

: ITERATION
:ostm_s

e

SOURCE_NAME

source_position
comments

¢ MEMBERSHIP_OP

EXP

value

: TYPE_SPEC

source_position
comments

Page A-79

DIANA Reference Manual Draft Revision 4 Page A-80
DIANA CROSS-REFERENCE GUIDE

CLASS MEMBERS:
in_op
not_in
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments
IS THE DECLARED TYPE OF:
MEMBERSHIP.as_membership_op

** NAME

CLASS MEMBERS:
DESIGNATOR
NAME _EXP
void
USED_OBJECT
USED_NAME
NAME VAL
alhl
slice
indexed
used_char
used_object_id
used_op
used _name_id
attribute
selected
function_call
IS INCLUDED IN:
ExP
GENERAL ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
Ix_srcpos : source_position
Ix-comments 1 comments
IS THE DECLARED TYPE OF:
comp_rep.as_name
REP.as_name
name_default.as_name
exception_id.sm_renames_exc
subunit.as_name
name_s.as_list (Seq Of]
accept.as_name
RENAME_INSTANT.as_name
renames _obj_decl. as _type_mark_name
SIMPLE_RENAME_DECL.as_name
deferred_constant_decT.as_name
function_ _spec.as name
STM_WITH_NAME.as_name

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

STM_WITH_EXP_NAME.as_name
QUAL_CONV.as_name
type_membership.as_name
NAME EXP.as_name
variant_part.as_name
DSCRMT_PARAM_DECL.as_name
index.as_name
range_attribute.as_name
subtype_indication.as_name

** name_default

IS INCLUDED IN:
GENERIC_PARAM
UNIT_KINO
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name 1 NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos ! source_position
1x_comments : comments

*+ NAME_EXP

CLASS MEMBERS:
NAME VAL
all
slice
indexed
attribute
sclected
function_call
IS INCLUDED IN:
NAME
EXP
GENERAL _ASSOC
ALL_SQURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_name : NAME

sm_exp_type ¢ TYPE_SPEC
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** name_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NOGE SPECIFIC):

Page A-81

L

*k

* ¥

‘ DIANA Reference Manual Draft Revision 4
' DIANA CROSS-REFERENCE GUIDE

as_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

with.as_name_s

abort.as_name_s

use.as_name_s

NAME VAL
CLASS MEMBERS:
attribute
selected

function_call
IS INCLUDED IN:
NAME_EXP
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES: -
(NGDE SPECIFIC):
sm value
(INHERITED FROM NAME EXP):
as_name
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

named

IS INCLUDED IN:
NAMED ASSOC
GENERAL_ASSOC
ALL_SQURCE
NODE ATTRIBUTES:
{NODE SPECIFIC):
as choice s

(INHERITED FROM NAMED_ASSOC):

as_exp

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

NAMED_ASSOC

CLASS MEMBERS:
named
ass0¢

IS INCLUDED IN:
GENERAL_ASSOC
ALL_SOURCE

: Seq Of NAME

: source_position
: cumments

s value

: NAME
: TYPE_SPEC

: source_position
T comments

1 choice_s
: EXP

¢ source_position
¢ comments

Page A-82

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

NODE ATTRIBUTES:
(NODE SPECIFIC):
as_exp
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** NAMED_REP

CLASS MEMBERS:
length_enum_rep
address

IS INCLUDED IN:

REP
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_exp
(INHERITED FROM REP):
as_name
(INHERITED FROM ALL SOURCE):
1x_srcpos
1x_comments

** no_default

IS INCLUDBED [N:
GENERIC_PARAM
UNIT_KIND
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUL:tS:
(INHERITED FROM ALL_SGOURCE):
1x_srcpos
1x_comments

** NON_GENERIC_DECL

CLASS MEMBERS:
subprog_entry_dec]
package_decl

IS INCLUDED IN:
UNIT_DECL
ID_DECL
OECL
ITEM
ALL_DECL
ALL_SOURCE

NOCE ATTRIBUTES:

(NODE SPECIFIC):
as_unit_kind

_—-——

: EXP

: source_position
{ comments

: EXP
: NAME

: source_position
¢ comments

: source_position
: comments

: UNIT KIND

Page A-83

DIANA Reference Manua) Draft Revision 4

DIANA CROSS-REFERENCE GUIDE

-2

i

-

Tk

(INHERITED FROM UNIT_DECL):
as_header

(INHERITED FROM ID_DECL):
as_source_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

NON_TASK

CLASS MEMBERS:
SCALAR
CONSTRAINED
UNCONSTRAINED
enumeration
REAL
integer
constrained_array
constrained_access
constrained_record
UNCONSTRAINED _COMPOSITE
access
float
fixed
array
record

IS INCLUDED IN:
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):
sm base type

(INHERITED FROM DERIVABLE SPEC):

sm_derived
sm_is_anonymous

NON_TASK_NAME

CLASS MEMBERS:
SUBPROG_PACK_NAME
generic_id
SUBPROG_NAME
package_id
procedure_id
operator_id
function_id

IS INCLUDED IN:
UNIT_NAME
SOURCE _NAME
DEF _NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

: HEADER
: SOURCE_NAME

: source_position
: comments

: TYPE_SPEC

: TYPE_SPEC
: Boolean

Page A-84

DIANA Reference Manual! Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

sm_spec

(INHERITED FROM UNIT_NAME):
sm_first

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** not_in

[S INCLUDED IN:
MEMBERSHIP_QOP
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** null_access

[S INCLUDED IN:
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** null_comp_dec]

IS INCLUDED IN:
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBOTES:

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** null_stm

IS INCLUDED IN:
STM
STM_ELEM
ALL”SOURCE

: MEADER

..

DEF_NAME

: symbol_rep

source_position
comments

source_position

: comments

: value

: TYPE_SPEC

source_position
comments

: source_position
: comments

Page A-8%

-~/

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

i

*k

i

NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

number_dec!

IS INCLUDED IN:
EXP_DECL
I0_S_DECL
DETL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM EXP_DECL):

as_exp ¢ EXP
(INHERITED FROM ID_S_DECL):
as_source_name_s : source_name_s
(INHERITED FROM ATL_SOURCE):
Ix_sSrcpos : source_position
1x_comments : comments

number_id

IS INCLUDED IN:

INIT_OBJECT NAME

OBJECT NAME

SOURCE _NAME

- DEF_NAWE

ALL_SOURCE

NODE ATTRIBUTES:
(INRERITED FROM INIT_OBJECT NAME):

sm_init_exp : EXP
{INHERITED FROM OBJECT_NAME)

sm_obj_type ¢ TYPE_SPEC
(INHERITED FROM DEF_NAME):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SQOURCE):

1x_srcpos 1 source_position

1x_comments : comments

numeric_literal

IS INCLUDED IN:
EXP_VAL
EXP_EXP
EXP
GENERAL _ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
1x_numrep ¢ number_rep
(INHERITED FROM EXP_VAL):

Page A-86

FllIlllIIlIlIIIlIIlIlllIlIlIlllIlllllIl-.I..l..IIllIIIIlIIIIIIl-IIIII----r

DIANA Reference Manual Draft Revision 4 Page A-87
DIANA CROSS-REFERENCE GUIDE

sm_value ¢ value
(INHERITED FROM EXP_EXP):

sm_exp_type : TYPE_SPEC
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

Ix_comments ¢ comments

** 0BJECT_DECL

CLASS MEMBERS:
constant_dec!
variable_decl

IS INCLUDED IN:
EXP_DECL
ID_S_DECL
DECL
ITEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_type_def : TYPE_DEF
(INHERITED FROM EXP_DECL):

as_exp : EXP
(INHERITED FROM ID_S DECL):

as_source_name_s : source_name_s
(INHERITED FROM ALL_SQURCE):

1x_srcpos : source_position

1x_comments : comments

** OBJECT NAME

CLASS MEMBERS:
INIT_OBJECT_NAME
ENUM_LITERAL
iteration_id
VC_NAME
number _id
COMP_NAME
PARAM_NAME
enumeration_id
character_id
variable_id
constant_id
component_id
discriminant_id
in_id
out_id
in_out_id

IS INCLUDED IN:

SOURCE _NAME

DEF _NAME

ALL_SOURCE
NODE ATTRIBUTES:

DIANA Reference Manual Drafﬁ Revision 4
DIANA CROSS-REFERENCE GUIDE

(NODE SPECIFIC):
sm_obj_type
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
- 1x_comments

** operator_id

IS INCLUDED IN:
SUBPROG_NAME
SUBPROG_PACK_NAME
NON_TASK_NAME
UNIT_NAME
SCURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM SUBPROG_NAME):
sm_is_inline
sm interface

: TYPE_SPEC
: symbol_rep

: source_position
: comments

: Boolean
: PREDEF NAME

(INHERITED FROM SUBPROG_PACK NAME)

sm_unit_desc
sm_address

(INHERITED FROM NON_TASK_NAME):
sm_spec

(INHERITED™ FROM UNIT_NAME):

' sm_first

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** or _else

IS INCLUDED IN:
SHORT _CIRCUIT_OP
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** gut

IS INCLUDED IN:
hd PARAM
DSCRMT_PARAM_DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:

i

¢ UNIT_DESC
¢ EXP

: HEADER
: DEF_NAME
: symbol_rep

: source_position
: comments

¢ source_position
: comments

Page A-88

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

Page A-89

(INHERITED FROM DSCRMT_PARAM_OECL)

as_source_name_s
as_exp
as_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comment s

** out_id

IS INCLUDED IN:
PARAM_NAME
INIT_OBJECT _NAME
0BJECT _NAME
SOURCE _NAME
DEF _NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM PARAM_NAME):
sm_first

: source_name_s
: EXP
¢ NAME

: source_position
: comments

: DEF_NAME

(INHERITED FROM INIT_OBJECT NAME)

sm_init_exp
(INHERITED “FROM 0BJECT _NAME):
sm_obj_type
(INHERITED FROM DEF _NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** package_body

IS INCLUDED IN:
SUBUNIT BODY
ITEM
ALL_DECL
ALL_SQURCE

NODE ATTRIBUTES:

(INHERITED FROM SUBUNIT _BQDY):

as_source_name
as bod

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** package_decl

IS INCLUDED IN:
NON_GENERIC_DECL
UNIT_DECL
10_DECL
DECL
ITEM
ALL_DECL

EXp
+ TYPE_SPEC
: symbol_rep

: source_position
¢ comments

: SOURCE_NAME
: BODY

: source_position

: comments

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM NON_GENERIC DECL)
as_unit_ kind
(INHERITED FROM UNIT_DECL)
as_header
(INHERITED FROM ID_DECL):
as_source_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
** package_id
IS INCLUDED IN:
SUBPROG_PACK_NAME
NON_TASK_NAME
UNIT_NAME
SOURCE_NAME
DEF _NAME
ALL_SOURCE
NQDE ATTRIBUTES:
(INHERITED FROM SUBPROG_PACK NAME)
sm_unit_desc
sm address
(INHERITED “FROM NON _TASK_NAME) :
sm_spec
(INHERITED FROM UNIT_NAME):
sm_first
(INHERITED FRCM OEF NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
Ix_comments

** package_spec

IS INCLUDED IN:
HEADER
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_decl_sl
as decl “s2
(INHERITED “FROM ALL_SOURCE):
1x_srcpos
1x_comments
*k

PARAM
CLASS MEMBERS:
in

in_out
out

Page A-90

: UNIT_KIND

: HEADER
: SOURCE_NAME

: source_position
¢ comments

: UNIT_DESC

: EXP

: HEADER

: DEF_NAME

: symbo]_rép

: source_position
: comments

: decl_s
: decl_s

: source_position
1 comments

r-..-....-..............-.......-..................'.-.IIIIIIIII-I-.----Af

DIANA Reference Manual Oraft Revision 4 Page A-91
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
DSCRMT_PARAM_DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM DSCRMT PARAM_DECL):

as_source_name_s 1 soyrce_name_s
as_exp : EXP
as_name : NAME

(INHERITED FROM ALL_SQURCE):
1x_srcpos : source_position
1x_comments : comments

IS THE DECLARED TYPE OF:
param_s.as_list [Seq Of]

*+ PARAM_NAME

CLASS MEMBERS:
in_id
out_id
in_out_id

[S INCLUOED IN:
INIT_OBJECT_NAME
0BJECT _NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

~ (NODE SPECIFIC):

sm_first : DEF_NAME
(INHERITED FROM INIT_OBJECT NAME)

sm_init_exp EXp
(INHERITED FROM OBJECT N..at):

sm_obj_type : Type_SPeC
(INHERITED FROM DEF _NAME):

1x_symrep : symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** param_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of PARAM
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position

1x_comments : comments
1S THE DECLARED TYPE OF:
accept.as_param_s

DIANA Reference Manual Draft Revision 4 Page A-92
DIANA CROSS-REFERENCE GUIDE

SUBP_ENTRY_HEADER.as_param_s
** parenthesized

IS INCLUDED IN:
. EXP_VAL_EXP
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOQC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM EXP_VAL_EXP):
as_exp : EXP
(INHERITED FROM EXP_VAL):
sm_value s value
(INHERITED FROM EXP_EXP):
sm_exp_type : TYPE_SPEC
4 (INHERITED FROM ALL_SOURCE):
1x_Srcpos 1 source_position
1x_comments : comments

** pragma

IS INCLUDED IN:
USE_PRAGMA
DECT
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_used_name_id : used_name_id

as_general_assoc_s ¢ general_assoc_s
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE QF:

como rep pragma as pragma
context pragma das_pragmad
pragma_s.as_list [Seq Of]
select_alt_pragma.as_pragma
a]ternative_pragma.as_pragma
stm_pragma.as_pragma
variant_pragma.as_pragma

, ** pragma_id
IS INCLUDED IN:
PREDEF _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

DIANA Reference Manual Draft Revision 4 Page A-93
DIANA CROSS-REFERENCE GUIDE

sm_argument_id_s : arqument_id s
(INHERITED FROM DEF_NAME):

1x_symrep : symbol _rep
(INHERITED FROM ALL_SOURCE):

Ix_srcpos : source_position

1x_comments ! comments

** pragma_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_list : Seq Of pragma
(INHERITED FROM ALL_SOURCE):

I1x_srcpos : source_position

1x comments : comments

IS THE DECLARED TYPE OF:
aligrment.as_pragma_s
compilation_unit.as_pragma_s
tabeled.as_pragma_s
comp_list.as_pragma_s

*+ PREDEF_NAME

CLASS MEMBERS:
attribute_id
void
bitn_operator_id
argument_id
pragmd_id

IS INCLUDED IN:

DEF _NAME
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM DEF_NAME):

Ix_symrep *: symbol_rep
(INHERITED FROM ALL_SOURCE):

1x_srcpos ! source_positinnm

1x comments : comments

IS THE DECLARED TYPE OF:
SUBPROG_NAME .sm_interface

** private

IS INCLUDED IN:
PRIVATE_SPEC
DERIVABLE_SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(INHERITED FROM PRIVATE_SPEC):
sm_discriminant_s : dscrmt_decl_s
sm_type_spec ¢ TYPE_SPEC

OIANA Reference Manual Draft Revision 4 Page A-94
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM DERIVABLE_SPEC):
sm_der ived : TYPE_SPEC
sm_is_anonymous : Boolean

** private_def

IS INCLUDED IN:
TYPE _OEF
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos ¢ source_p.sition
1x_comments : comments

*+ PRIVATE_SPEC

CLASS MEMBERS:
private
1 _private
IS INCLUDED IN:
DERIVABLE SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):

sm_discriminant_s : dscrmt_decl_s

sm_type_spec : TYPE_SPEC
(INHERITED FROM DERIVABLE_SPEC):

sm_derived : TYPE_SPEC

sm_is_anonymous : Boolean

** private_type_id

IS INCLUDED IN:
TYPE _NAML
SOURCE _NAME
DEF_NAME
ALL SOURCE
NODE ATTRIBUTES:
(INHERITED FROM TYPE NAME):
sm_type_spec : TYPE_SPEC
(INHERITED FROM DEF _NAME):
Ix_symrep : symbol_rep
(INHERITED FROM ALL_SOURCE):
1x_srcpos ¢ source_position
1x_comments . comments

** procedure_call

IS INCLUDED IN:
CALL_STM
STM_WITH_NAME
STM
STM_ELEM
ALL_SOURCE

- =

DIANA Reference Manual Draft Revision 4 Page A-9%
DIANA CROSS-REFERENCE GUIDE

NODE ATTRIBUTES:
(INHERITEQ FROM CALL_STM):

as_general_assoc_s : general_assoc_s
sm_normalized param s : exp_s
(INHERITED FROM STM_WITH_NAME):
as_name ¢ NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
Ix_comments ¢ comments

** procedure_id

IS INCLUDED IN:
SUBPROG_NAME
SUBPROG_PACK NAME
NON_TASK_NAME
UNIT NAME
SOURTE _NAME
DEF_NAME
ALL”SOURCE
NODE ATTRIBUTES:
(INHERITED FROM SUBPRQG_NAME):

sm_is_inline : Boolean

sm_interface 1 PREDEF_NAME
(INHERITED FROM SUBPROG_PACK NAME)

sm_unit_desc : UNIT_DESC

sm_ ~address : ExP
(INHERITED FROM NON_TASK NAME):

sm_spec : : HEADER
(INHERITED FROM UNIT_NAME):

sm_first : DEF_NAME
(INHERITED FROM OEF_NAME):

Ix_symrep 1 symbol_rep
(INHERITED FROM ALL _SOURCE):

1x_srcpos : source_position

1x_comments : comments

** procedure spec

IS INCLUDED IN:
SUBP_ENTRY HEADER
HEADER
ALL_SOURCE
NODE ATTRIBUTES:
(INKERITED FROM SUBP_ENTRY HEADER):

as_param_s ¢ param_s
(INHERITED FROM ALL_SOURCE):

1x_srcpos 1 source_position

1x_comments ¢ comments

** QUAL_CONV

CLASS MEMBERS:
conversion

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

qualified
IS INCLUDED IN:
EXP_VAL_EXP
EXP_VAL
EXP_EXP
EXP
GENERAL _ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name
(INHERITED FROM EXP_VAL_EXP):
as_exp
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** qualified

IS INCLUDED IN:
QUAL_CONV
EXP_VAL_EXP
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM QUAL_CONV):
as_name
(INHERITED FROM EXP_VAL EXP):
as_exp
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM =ZXP _EXP):
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

: NAME

: EXP

: value

: TYPE_SPEC

: source_position
: comments

2 NAME

¢ EXP

: value

: TYPE_SPEC

: source_position
: comments

qualified_allocator.as_qualified

** gqualified_allocator

IS INCLUDED IN:
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:

Page A-96

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

(NODE SPECIFIC):

as_qualified : qualified
(INHERITED FROM EXP_EXP):

sm_exp_type : TYPE_SPEC
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

Ix_comments : comments

** raise’

IS INCLUDED IN:
STM_WITH_NAME
STM
STM_ELEM
ALL_SOURCE
NODE ATTRIBDTES:
(INHERITED FROM STM_WITH_NAME):

as_name : NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments
** RANGE
CLASS MEMBERS:
range
void

range_attribute
IS INCLUDED IN:

' DISCRETE_RANGE
CONSTRAINT
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

sm_type_spec : TYPE_SPEC
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

[S THE DECLARED TYPE OF:
comp_rep.as_range
range_mempership.as_range
REAL_CONSTRAINT.as_range
SCALAR.sm_range

** range
IS INCLUDED IN:
RANGE
DISCRETE_RANGE
CONSTRAINT
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):
as_expl : EXP

Page A-97

seenus suteed summe wlbae shets JhnS 0 ssesme 0 s ossmen

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

as_exp2
(INHERITED FROM RANGE):
sm_type_spec
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** range_attribute

IS INCLUDED IN:
RANGE
DISCRETE_RANGE
CONSTRAINT
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name
as_exp
as_used_name_id
(INHERITED FROM RANGE):
sm_type_spec
(INHER[TED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** range_membership

IS INCLUDED IN:
MEMBERSHIP
EXP_VAL_EXP
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_range
(INHERITED FROM MEMBERSHIP):
as membership op

(INHERITED FROM EXP_VAL_EXP):

as_exp

(INHERITED FROM EXP_VAL):
sm_value

(INHERITED FROM EXP_EXP):
sm_exp_type

(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** REAL

CLASS MEMBERS:
float

EXP
TYPE_SPEC

: source_position

comments

NAME
Exp
used_name_id

: TYPE_SPEC

source_position
comments

¢ RANGE

: MEMBERSHIP_QP

EXP
value
TYPE_SPEC

source_position
comments

Page A-98

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

fixed
IS INCLUDED IN:
SCALAR
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_accuracy
(INHERITED FROM SCALAR):
sm_range
cd_impl_size
(INHERITED FROM NON TASK).
sm_base_typ

(INHERITED FROM DERIVABLE _SPEC):

sm_derived
sm_is_anonymous

** REAL_CONSTRAINT

CLASS MEMBERS:
float_constraint
fixed_constraint

IS INCLUDED IN:
CONSTRAINT
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
. sm_type_spec
as_exp
as_range

(INHERITED FROM ALL_SOQURCE):

1x_srcpos
Tx_comments

** record

IS INCLUDED IN:
UNCONSTRAINED_COMPOSTTE
UNCONSTRAINED
NON_TASK
FULT_TYPE_SPEC
DERIVABLE SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

: value

: RANGE
: Integer

: TYPE_SPEC

¢ TYPE_SPEC
: Boolean

: TYPE_SPEC
: EXP
: RANGE

! source_position
¢ comments

sm_discriminant_s ¢ dscrmt_decl_s

sm_representation : REP

sm_comp_list : comp_list
(INHERITED FROM UNCONSTRAINED COMPOSITE)

sm_is_limited : Boolean

sm_is_packed : Boolean
(INHERITED FROM UNCONSTRAINED):

Page A-99

I mm——=,

DIANA Reference Manual Draft Revision 4 Page A-100
DIANA CROSS-REFERENCE GUIDE

sm_size : EXP
(INHERITED FROM NON_TASK):

sm_base_type : TYPE_SPEC
(INHERITED FROM DERIVABLE_SPEC):

sm_derived : TYPE_SPEC

sm_is_anonymous : Boolean

** record_def

IS INCLUDED IN:
TYPE_DEF
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_comp_list : comp_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
N 1x_comments : comments

** record_rep

IS INCLUDED IN:
REP
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_alignment_clause ¢ ALIGNMENT _CLAUSE
as_comp_rep_s : comp_rep_s
(INHERITED FROM REP):
as_name : NAME
(INHERITED FROM ALL_SQURCE):
1x_srcpos : source_position
1x_comments : comments

** RENAME_INSTANT

CLASS MEMBERS:
.- renames_unit
instantiation
IS INCLUDED IN:
UNIT_KIND
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
.. (NODE SPECIFIC):

as_name ¢ NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
- 1x_comments : comments

** renames_exc_dec]

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
SIMPLE_RENAME_DECL
10_DECT
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM SIMPLE_RENAME_DECL):

as_name : NAME
(INHERITED FROM ID DECL):
as_source_name ¢ SOURCE _NAME
(INHERITED FROM ALL_SQOURCE):
1x_srcpos : source_position
Ix_comments ¢ comments

** renames_obj_dec]

IS INCLUDED IN:
SIMPLE RENAME DECL
ID_DECT
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):

as_type_mark _name : NAME
(INHERITED FROM SIMPLE_RENAME DECL):
as_name ¢ NAME
(INHERITED FROM ID_DECL):
as_source_name ¢ SOURCE_NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** renames_unit

IS INCLUDED IN:
RENAME _INSTANT
UNIT_KTND
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM RENAME_INSTANT):

as_name : NAME

(INHERITED FROM ALL_SOURCE):
1x_srcpos ¢ source_position
1x_comments : comments

** REP
CLASS MEMBERS:

Page A-101

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

void
NAMED_REP
record_rep
length_enum_rep
address
IS INCLUDED IN:
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
record.sm_representation

** return

IS INCLUDED IN:
STM_WITH_EXP
STM
STM_ELEM
ALL_SOURCE
NODE ATTRIBGTES:

(INHERITED FROM STM_WITH_EXP):

as_exp

(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

** reverse

IS INCLUBED IN:
FOR_REV
ITERATION
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM FOR REV):
as_source_name
as_discrete_range

(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** SCALAR
CLASS MEMBERS:
enumeration
REAL
integer

float

: NAME

: source_position
: comments

: EXP

: source_position
: comments

: SOURCE_NAME
: DISCRETE_RANGE

: source_position
: comments

Page A-102

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

fixed

IS INCLUDED IN:
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE_SPEC

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_range : RANGE

cd_impl_size : Integer
(INHERITED FROM NON_TASK):

sm_base_type : TYPE_SPEC
(INHERITED FROM DERIVABLE _SPEC):

sm_derived : TYPE_SPEC

sm_is_anonymous : Boolean

IS THE DECLARED TYPE OF:
scalar_s.as_list [Seq Of]

** scalar_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as list : Seq Of SCALAR
(INHERITED FROM ALL_SOURCE):

1x_srcpos ¢ source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
constrained_array.sm_index_subtype_s

** select_alt_pragma

IS INCLUDED IN:
TEST_CLAUSE _ELEM
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_pragma ! pragma
(TNHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** select_alternative

IS INCLUDED IN:
TEST_CLAUSE
TEST_CLAUSE_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM TEST_CLAUSE):
as_exp : EXP
as_stm_s : stm_s

Page A-103

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** gelected

IS INCLUDED IN:
NAME_VAL
NAME_EXP
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_designator
(INHERITED FROM NAME_VAL):
sm_value
(INHERITED FROM NAME _EXP):
as_name
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** selective_wait

IS INCLUDED IN:
CLAUSES_STM
ST™
STM_ELEM
ALL_SOURCE

NODE ATTRIBOTES:

(INHERITED FROM CLAUSES_STM):
as_test_clause_elem_s

as_stm_s

(INHERITED FROM ALL_SOURCE):
1x_srcpos
Ix_comments

** SEQUENCES

CLASS MEMBERS:
alternative_s
variant s
use_pragma_s
test_clause_elem_s
stm_s
source_name_s
scalar_s
pragma_s
param_s
name_s
index_s

: source_position
: comments

: DESIGNATOR
: value

¢ NAME
: TYPE_SPEC

: source_position
: comments

: test_clause_elem_s
:ostm_s

: source position
: comments

Page A-104

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

item_s
exp_s
enum_literal_s
discrete_range_s
general_assoc_s
dscrmt_decl_s
decl_s
context_elem_s
compltn_unit_s
comp_rep_s
choice_s
argument _id_s
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** short_circuit

IS INCLUDED IN:
EXP_VAL
EXP_EXP
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_expl
as_exp?
as_short_circuit_op
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
ix_comments

** SHORT_CIRCUIT_OP

CLASS MEMBERS:
and_then
or_else

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

IS THE DECLARED TYPE OF:

Page A-105

source_position
comments

EXP
EXP
SHORT_CIRCUIT OP

¢ value

TYPE_SPEC

: source_position
: comments

-
-
.
.

source_position
comments

short_circuit.as_short_circuit_op

A A e PN P W SR AN == ARRE— PN P N .

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

*k

LA 1

*k

SOURCE _NAME

SIMPLE_RENAME _DECL
CLASS MEMBERS:

renames_obj_decl
renames_exc_decl

IS INCLUDED IN:

ID_DECL
DECL

ITEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as_name

(INHERITED FROM ID DECL):

as$_source _name

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

IS INCLUDED IN:

NAME EXP
NAME ™

EXP
GENERAL_ASSOC
ALL SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as_discrete range

(INHERITED FROM NAME _EXP):

as_name
sm exp type

(INHERITED FROM ALL_SCURCE):

1x_srcpos
1x_comments

CLASS MEMBERS:

OBJECT_NAME
LABEL_NAME
UNIT_NAME
TYPE_NAME
void

entry id
exception_id
INIT_0BJECT_NAME
ENUM_LTTERAL
iteration_id
label_id
block_loop_id
NON_TASK_NAME

: NAME
: SOURCE_NAME

: source_position
: comments

: DISCRETE_RANGE

: NAME
: TYPE_SPEC

¢ source_position
¢ comments

Page A-106

DIANA Reference Manual Draft Revision 4
DIANA (rOSS-REFERENCE GUIDE

*k

task_body_id
type_id
subtype_id
private_type_id
1 _private_type_id
VC_NAME
number_id
COMP_NAME
PARAM_NAME
enumeration_id
character_id
SUBPROG_PACK_NAME
generic_id
variable_id
constant _id
component _id
discriminant_id
in_id

out_id
in_out_id
SUBPROG _NAME
package _id
procecure_id
operator_id
function_id

IS INCLUDED IN: ~

DEF_NAME
ALL”SOURCE

NODE ATTRIBUTES:
(INHERITED FROM DEF_NAME):

1x symrep

(INHERITED FROM ALL SOURCE):

1x_srcpos
1x comments

IS THE DECLARED TYPE OF:
SUBUNIT_BODY.as_source_name
implicit_not_eq.sm_equal

derived_subprog.sm_derivable

FOR REV.as source name

BLOCK _LOOP-as_source_name

: symbol_rep

> source_position
: comments

source_name_s.as_list [Seq Of]

ID_DECL.as_source_name

source_name_s

IS INCLUDED IN:

SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):

as list

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

: Seq Of SOURCE_NAME

: source_position
: comments

Page A-107

ST W R TR W W 0 W 0 .- Y SN = — Y P N S —_ .

DIANA Reference Manual Draft Revision 4 Page A-108
DIANA CROSS-REFERENCE GUIDE

IS THE DECLARED TYPE OF:
labeled.as_source_name_s
DSCRMT _PARAM _DECL.as_source_name_s
ID_S_DECL.as_source_name_s

** STM

CLASS MEMBERS:
labeled
null_stm
abort
STM_WITH_EXP
STM_WITH_NAME
accept
ENTRY_STM
BLOCK_LOOP
CLAUSES_STM
terminate
return
delay
STM_WITH_EXP_NAME
case
goto
raise
CALL_STM
cond_entry
timed_entry
loop
block
if
selective wait
assign
code
exit
entry call
procedure_call
IS INCLUDED IN:
STM _ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments ¢ comments
IS THE DECLARED TYPE OF:
block_master.sm_stm
exit.sm_stm
LABEL_NAME .sm_stm
labeled.as_stm

+* STM_ELEM
CLASS MEMBERS:

ST™M
stm_pragma

DIANA Reference Manual Draft Revision 4 Page A-109
DIANA CROSS-REFERENCE GUIDE

labeled
nyll_stm.
abort
STM_WITH_EXP
STM_WITH_NAME
accept
ENTRY_STM
BLOCK_LOOP
CLAUSES_STM
terminate
return
delay
STM_WITH_EXP_NAME
case
goto
raise
CALL_STM
cond_entry
timed_entry
loop
block
if
selective_wait
assign
code
exit
entry_call
procedure_call
IS INCLUDED IN:
ALL_SQURCE
NODE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):
1x_srconos ¢ source_position
1x_comments : comments

IS THE DECLARED TYPE OF:
stm_s.as_list (Seq Of]

** stm_pragma

IS INCLUDED IN:
STM_ELEM
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_pragma ! pragma
(INHERITED FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

** stm_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

- ** STM_WITH_EXP

CLASS MEMBERS:
return
- delay
STM_WITH_EXP_NAME
case
assign
code
exit

: DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE
NODE ATTRIBUTES:
’ (NODE SPECIFIC):
. as_list
(INHERITED FROM ALL_SOYRCE):
1x_srcpos
. 1x_comments
IS THE DECLARED TYPE OF:
ENTRY_STM.as_stm_sl
.as_stm_s2
- accept.as_stm_s
block_body.as_stm_s
loop.as_stm_s
[S INCLUDED IN:
ST™

alternative.as_stm_s
TEST_CLAUSE.as_stm_s
CLAUSES_STM.as_stm_s
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_exp
(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** STM WITH_EXP_NAME

CLASS MEMBERS:
assign
code
exit
— IS INCLUDED IN:
STM_WITH_EXP
ST™
STM_ELEM
- ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name

(INHERITED FROM STM WITH_EXP):

as_exp
(INHERITED FROM ALL_SOURCE):

: Seq Of STM_ELEM

: source_position
: comments

: EXP

! source_position
: comments

NAME

EXP

Page A-110

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

I1x_srcpos
1x_comments

*+ STM_WITH_NAME

CLASS MEMBERS:
goto
raise
CALL_STM
entry call
procedure_call
IS INCLUDED IN:
ST™
STM_ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** string_literal

IS INCLUDED IN:
AGG_EXP
EXP_EXP
EXP
GENERAL_ASSOC
. ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
1x_symrep
(INHERITED FROM AGG_EXP):
sm_discrete_range
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL _SOURCE):
Ix_srcpos
1x_comments

** stub

IS INCLUDED IN:
BODY
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** SUBP_ENTRY_HEADER

: source_position
1 comments

: NAME

! source_position
: comments

: symbol_rep
: DISCRETE_RANGE
: TYPE_SPEC

: source_position
: comments

: source_position
¢ comments

Page A-111

mmiinih _ ssmsstee F o W W Y Mleesns sSSSeses

DIANA Reference Manual Draft Revision 4 Page A-112
DIANA CROSS-REFERENCE GUIDE

CLASS MEMBERS:
procedure_spec
- function_spec
entry
IS INCLUDED IN:
HEADER
ALL_SOUKCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
r as_param_s : param_s
(INHERITED FROM ALL_SOURCE):
Ix_srcpos : source_position
1x_comments : comments

** subprog_entry_dec]

IS INCLUDED IN:
NON_GENERIC_DECL
UNIT_DECL
ID_DECL
DECL
[TEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM NON_GENERIC DECL):
as_unit_kind : UNIT_KIND
(INHERITED FROM UNIT_DECL): ’
as_header ‘ : HEADER
(INHERITED FROM ID_DECL): ,
as_source_name : SOURCE_NAME
(INHERITED FROM ALL_SOURCE):
1x_srcpos source_position
1x_comments : comments

** SUBPROG_NAME

CLASS MEMBERS:
procedure_id
operator_id
function_id

[S INCLUDED IN:

’ SUBPROG_PACK_NAME

. NON_TASK_NAME

UNIT_NAME

SOURCE_NAME
DEF_NAME

e ALL_SOURCE
NODE ATTRIBUTES:

' (NODE SPECIFIC)

sm_is_inline : Boolean

sm_ ~interface : PREDEF_NAME
(INHERITED FROM SUBPROG _PACK NAME)

sm_unit_desc ¢ UNIT_DESC

DIANA Reference Manual Oraft Revision 4
DIANA CROSS-REFERENCE GUIDE

sm_address

(INHERITED FROM NON_TASK_NAME):

sm_spec

(INHERITED FROM UNIT_NAME):
sm_first

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

*+ SUBPROG_PACK_NAME

CLASS MEMBERS:
SUBPROG_NAME
package_id
procedure_id
operator_id
function_id

IS INCLUDED IN:
NON_TASK_NAME
UNIT_NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
sm_unit_desc¢
sm_address

(INHERITED FROM NON_TASK_NAME):

sm_spec

(INHERITED FROM UNIT_NAME):
sm_first

(INHERITED FROM DEF_NAME):
1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** subprogram_body

IS INCLUDED IN:
SUBUANIT BODY
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_header
(INHERITED FROM SUBUNIT_BODY):
as_source_name
as_body
(INHERITED FROM ALL_SOURCE):
Tx_srcpos

: EXP

: HEADER

: DEF_NAME

: symbol_rep

: source_position
: comments

: UNIT_DESC
. EXP

: HEADER
: DEF_NAME
: symbol_rep

: source_position
: comments

: HEADER

: SOURCE_NAME
: BODY

¢ source_position

Page A-113

r SRR W W W W W e 0 T .y r SRREER.. . SR SRS S

DIANA Reference Manual Draft Revision 4
OIANA CROSS-REFEFENCE GUIDE

Ix_comments
** subtype_allocator

IS INCLUDED IN:
EXP_EXP
EXP
GENERAL _ASSOC
ALL_SOURCE
NODE ATTRIBUTES:

(NODE SPECIFIC):
as_subtype_indication
sm_desig_type

(INHERITED FROM EXP_EXP):
sm_exp_type

(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments

** subtype_dec]

[S INCLUDED IN:
ID_DECL
DECL
ITEM
ALL_DECL
. ALL_SOURCE
" NODE ATTRIBUTES:
(NQDE SPECIFIC):
. as_subtype_indication
(INHERITED FROM ID_DECL):
as_source_name
(INHERITED FROM ALL_SOQURCE):
' 1x_srcpos
1x_comments

** subtype_id

[S INCLUDED IN:
TYPE _NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM TYPE_NAME):
sm_type_spec
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** subtype_indication

: comments

: subtype indication
: TYPE_SPEC

: TYPE_SPEC

source_position

: comments

: subtype_indication

: SOURCE_NAME

: source_position
: comments

: TYPE_SPEC

symbol_rep

: source_position

comments

Page A-114

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
CONSTRAINED_DEF
TYPE_DEF
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_name : NAME
(INHERITED FROM CONSTRAINED DEF)
as_constraint : CONSTRAINT
(INHERITED FROM ALL_SQURCE):
1x_srcpos : source_position
1x_comments : comments

IS THE DECLARED TYPE OF:
subtype_allocator.as_subtype_ indication
discrete _subtype.as subtype indication
subtype_decl.as _subtype_ indication
ARR_ACC_DER_| DEF.as _subtype_indication

** subunit

IS INCLUDED IN:
ALL_DECL
ALL_SOURCE

NODE ATTRIBGTES:

(NODE SPECIFIC):

as_name : NAME
as_subunit_body : SUBUNIT_BODY
(INHERITED FROM ALL _SOURCE)-:
1x_srcpos : source_position
" 1x_comments ¢ comments

** SUBUNIT_BODY

CLASS MEMBERS:
subprogram_body
task_body
package_body

IS INCLUDED IN:

[TEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

as_source_name : SOURCE_NAME

as_body : BODY
(INHERITED™ FROM ALL_SOURCE):

1x_srcpos : source_position

1x_comments : comments

IS THE DECLARED TYPE OF:
subunit.as_subunit_body

** task_body

IS INCLUDED IN:

Page A-115

-

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

SUBUNIT_BODY
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:

(INHERITED FROM SUBUNIT_BODY):
as_source_name :
as_body :

(INHERITED FROM ALL_SOURCE):
1x_srcpos :
1x_comments

** task_body_id

IS INCLUDED IN:
UNIT_NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
sm_type_spec
sm_body

(INHERITED FROM UNIT_NAME):
sm_first :

(INHERITED FROM DEF_NAME):
Ix_symrep :

(INHERITED FROM ALL_SOURCE):

. Ix_srcpos
1x_Comments :

** task_decl

IS INCLUDED IN:
ID_DECL
DECL
ITEM
ALL_DECL
ALL_SQURCE
NODE ATTRIBUTES:
(NQDE SPECIFIC):
as_decl_s
(INHERITED FROM ID_DECL):
as_source_name
(INHERITED FROM ALL_SOURCE):
Ix_srcpos
1x_comments :

** task_spec

IS INCLUDED IN:
FULL_TYPE_SPEC
DERIVABLE SPEC
TYPE_SPEC

SOURCE_NAME
BODY

source_position

: comments

: TYPE_SPEC
: BODY

DEF_NAME

symbol_rep

: source_position

comments

: decl_s

SOURCE_NAME

: source_position

comments

""""""""----I-lI-IlIIlIIIllIIlIIIIIlllllllllllllllllllllllIIIIIT

Page A-116

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

NODE ATTRIBUTES:

(NODE SPECIFIC):
sm_decl_s
sm_storage_size
sm_size
sm_address
sm_body

(INHERITED FROM DERIVABLE SPEC):

sm_derived
sm_is_anonymous

** terminate

IS INCLUDED IN:
STM
STM_ELEM
ALL_SOURCE

NOOE ATTRIBUTES:

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** TEST_CLAUSE

CLASS MEMBERS:
cond_clause
select_aiternative
IS INCLUDED IN:
TEST_CLAUSE_ELEM
- ALL_SQURCE
NODE ATTRIBUTES:

(NODE SPECIFIC):
as_exp
as_stm_s

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

+* TEST_CLAUSE_CLEM

CLASS MEMBERS:
TEST_CLAUSE
select_alt_pragma
cond_clause
select_alternative
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SQURCE):
1x_srcpos
Ix_comments
IS THE DECLARED TYPE OF:

Page A-117

decl_s
EXp
EXp
EXp
BODY

: TYPE_SPEC
Boolean

: source_position
¢ comments

: EXP
:ostm_s

¢ source_position
¢ comments

¢ source_position
: comments

test_clause_elem_s.as_list [Seq Of]

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

*+ test_clause_elem_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

: Seq Of TEST CLAUSE_ELEM

source_position
comments

CLAUSES_STM.as_test_clause_elem_s

** timed_entry

IS INCLUDED IN:
ENTRY_STM
STM™
STM_ELEM
ALL_SOURCE
" NODE ATTRIBUTES:

(INHERITED FROM ENTRY_STM):
as_stm_sl
as_stm_s2

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** type dec)

IS INCLUDED IN:
10_DECL
OECL
[TEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:

(NODE SPECIFIC):
as_dscrmt_decl_s
as_type_def

(INHERITED FROM ID_DECL):
as_source_name

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** TYPE_DEF

CLASS MEMBERS:
enumeration_def
record_def
ARR_ACC_DER_DEF
CONSTRAINED_DEF

P ostm_s
Dostm_s

: source_position
: comments

: dscrmt_decl s
: TYPE_DEF

: SOURCE_NAME

source_position

: comments

Page A-118

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

void
private_def
1_private_def
formal_dscrt_def
formal_float_def
formal_fixed_def
formal_integer_def
constrained_array_def
derived_def
access_def
unconstrained_array_def
subtype_indication
integer_def
fixed_def
float_def

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SQURCE):

1x_srcpos
1x_comments
IS THE DECLAREC TYPE OF:
type_decl.as_type_def
OBJECT_DECL.as_type_def

** type_id
IS INCLUDED IN:
TYPE _NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_first
(INHERITED FROM TYPE_NAME):
sm_type_spec
(INHERITED FROM OEF _NAME):
1x symrep

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** type_membership

IS INCLUDED IN:
MEMBERSHIP
EXP_VAL_EXP
EXP_VAL
EXPEXP
EXP
GENERAL_ASSOC
ALL_SOURCE

NODE ATTRIBUTES:

: source_position
: comments

: DEF_NAME
: TYPE_SPEC
: symbol_rep

: source_position
: comments

Page A-119

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

-

*ir

T

(NORE SPECIFIC):
as_name
(INHERITED FROM MEMBERSHIP):
as_membership_op
(INHERITED FROM EXP_VAL _EXP):

as_exp
(INHERITED FROM EXP_VAL):
sm_value
(INHERITED FROM EXP_EXP):
sm_exp_type
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
TYPE _NAME
CLASS MEMBERS:
type_id
subtype_id

private_type_id
1 private_type_id
IS INCLUDED IN:
SOURCE _NAME
DEF_NAME
ALL_SOURCE
“NODE ATTRIBUTES:
(NODE SPECIFIC):
: sm_type_spec
(INHERITED FROM DEF _NAME):
1x_symrep .
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

TYPE_SPEC

CLASS MEMBERS:
DERIVABLE _SPEC
incompiete
void
universal_integer
universal_real
universal_fixed
FULL_TYPE_SPEC
PRIVATE_SPEC
task_spec
NON_TASK
private
1_private
SCALAR
CONSTRAINED
UNCONSTRAINED
enumeration
REAL

: NAME

: MEMBERSHIP_OP
: EXP

¢ value

: TYPE_SPEC

: source_position
: comments

: TYPE_SPEC
: symbol_rep

: source_position
: comments

Page A-120

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

%

&

integer
constrained_array
constrained_access
constrained_record
UNCONSTRAINED_COMPGSITE
access
float
fixed
array
record

IS THE DECLARED TYPE OF:
task_body_id.sm_type spec
PRIVATE SPEC sm type _spec

subtype “allocator.sm deS1g type

EXP EXP.sm _exp_type
USED OBJECT.sm _exp_type
NAME EXP sm_exp_ type

constrained access. sm_desig_type

access.sm_desig_type
index.sm_type_spec
array.sm_comp_type

REAL CONSTRAINT.sm _type_spec

RANGE.sm _type_spec

NON TASK sm base _type
DERTVABLE SPEC sm_derived
TYPE NAME.sm type spec
OBJECT NAME . sm ObJ _type

UNCONSTRAINED

CLASS MEMBERS
UNCONSTRAINED COMPOSITE
access
array
record
IS INCLUDED IN:
NON_TASK
FULL_TYPE SPEC
DERIVABLE SPEC
TYPE SPEC
NCDE ATTRIBUTES:
(NODE SPECIFIC):
sm_size
(INHERITED FROM NON_TASK):
sm_base_type

(INHERITED FROM DERIVABLE _SPEC):

sm_derived
sm_is_anonymous

unconstrained_array_def
IS INCLUDED IN:

ARR_ACC_DER_DEF
TYPE_DEF

s EXP
: TYPE_SPEC

: TYPE_SPEC
: Boolean

Page A-121

r - —— . . S AR - T O W e w——mw N

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_index_s

(INHERITED FROM ARR_ACC_DER DEF)

as_subtype_ indication
(INHERITED FROM ALL_SOURCE):

1x_srcpos

1x_comments

** (JNCONSTRAINED_COMPOSITE

CLASS MEMBERS:
array
record
IS INCLUDED IN:
UNCONSTRAINED
NON_TASK
FULL_TYPE_SPEC
DERIVABLE_SPEC
TYPE_SPEC
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_is_limited
sm_is _packed

(INHERITED'FRGM UNCONSTRAINED):

sm_size
(INHERITED “FROM NON _TASK):
sm_base_type

(INKERITED FROM DERIVABLE _SPEC):

sm_derived
sm_is_anonymous

*+ UNIT DECL

CLASS MEMBERS:
generic_decl
NON_GENERIC DECL
subprog entry dec)
package_dec!
IS INCLUDED IN:
ID_DECL
DECL
[TEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_header
(INHERITED FROM ID_DECL):
as_source_name
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

: index_s

: subtype_indication

: source_position
: comments

: Boolean
: Boolean

: EXP
: TYPE_SPEC

¢ TYPE SPEC
: Boolean

: HEADER
: SOURCE_NAME

: source_position
: comments

Page A-122

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

** UNIT_DESC

CLASS MEMBERS:
UNIT_KIND
derived_subprog
implicit_not_eq
BOOY
void
RENAME INSTANT
GENERIC_PARAM
block_body
stub
renames_unit
instantiation
name_default
no_defauit
box_default

IS INCLUDED IN:
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM ALL_SQURCE):
1x_srcpos
1x_comments

IS THE DECLARED TYPE OF:

SUBPROG_PACK_NAME,sm_unit_desc

** UNIT_KIND

CLASS MEMBERS:
void
RENAME _INSTANT
GENERIC_PARAM
renames_unit
instantiation
name_default
no_default
box _default
[S INCLUDED IN:
UNIT_DESC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:

NON_GENERIC_DECL.as_unit_kind

*+ UNIT_NAME

CLASS MEMBERS:
NON_TASK_NAME
task_body_id
SUBPROG_PACK_NAME

Page A-123

: source_position
¢ comments

source_position i

comments

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

generic_id
SUBPROG_NAME
package_id
procedure_id
operator_id
function_id
IS INCLUDED IN:
SOURCE _NAME
DEF _NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_first
(INHERITED FROM DEF_NAME):
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** yniversal_fixed

IS INCLUDED IN:
TYPE_SPEC
NODE ATTRIBUTES:

** universal_integer

IS INCLUDED IN:
TYPE_SPEC
NODE ATTRIBUTES:

** yniversal_real

IS INCLUDED IN:
TYPE_SPEC
NODE ATTRIBUTES:

** yse

[S INCLUDED IN:
USE_PRAGMA
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name_s
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** USE_PRAGMA

e

DEF _NAME
: symbol_rep

: source_position
: comments

: name_s

: source_position
¢ comments

e

Page A-124

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

CLASS MEMBERS:
use
pragma
IS INCLUDED IN:
DECL
ITEM
ALL_DECL
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
[S THE OECLARED TYPE OF:

: source_position

use_pragma_s.as_list [Seq Of]

** use_pragma_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comment s
IS THE DECLARED TvPE OF:
with.as_use_pragma_s

** ysed char

IS INCLUDED IN:
USED_OBJECT
DESIGNATOR
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM USED_O0BJECT):
sm_exp_type
sm_value

(INHERITED FROM DESIGNATOR):
sm_defn
1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

*+ USED_NAME
CLASS MEMBERS:

Jsed_op
used_name_id

: comments

: Seq Of USE_PRAGMA

source_position
comments

TYPE_SPEC
value

DEF_NAME
symbol_rep

source_position
comments

Page A-125

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

IS INCLUDED IN:
DESIGNATOR
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM DESIGNATOR):
sm_defn
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
IS THE DECLARED TYPE OF:
4ssoc.as_used_name

** used_name_id

IS INCLUDED IN:
USED_NAME
DESIGNATOR
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM DESIGNATOR):
sm_defn
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments
[S THE DECLARED TYPE OF:
attribute.as_used_name_id

Page A-126

DEF_NAME

: symbol_rep

source_position
comments

DEF_NAME

t. symbol_rep

¢ source_position
: comments

range_attribute.as_used_name_id

pragma.as_used_name_id
** USED _OBJECT

CLASS MEMBERS:
used_char
used_object_id

IS INCLUDED IN:
DESIGNATOR
NAME
EXP
GENERAL _AS30C
ALL_SOURC™

NODE ATTRIBUTES:

(NODE SPECIFIC):
sm_exp_type
sm_value

(INHERITED FROM DESIGNATOR):
sm_defn

TYPE_SPEC
value

: DEF_NAME

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

1x_symrep

(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** ysed_object_id

IS INCLUDED IN:
USED_OBJECT
DESIGNATOR
NAME
EXP
GENERAL_ASSOC
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM USED_OBJECT):

sm_exp_type
sm_value
(INHERITED FROM DESIGNATOR):
sm_defn
1x_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
1x_comments

** used_op

IS INCLUDED IN:
USED_NAME
DESIGNATOR
NAME
EXP
GENERAL_ASSOC
ALL_SQURCE
NODE ATTRIBUTES:
(INHERITED FROM DESIGNATOR):
sm_defn
Yx_symrep
(INHERITED FROM ALL_SOURCE):
1x_srcpos
Ix_comments

** variable_dec]

IS INCLUDED IN:
OBJECT_DECL
EXP_DECL
ID_S_DECL
DECL
ITEM
ALL_DECL
ALL_SOURCE

NODE ATTRIBUTES:

(INHERITED FROM OBJECT DECL):

symbol_rep

source_position
comments

TYPE_SPEC

: value

: DEF_NAME
: symbol_rep

source_position
comments

DEF_NAME
symbol_rep

¢ source_position
¢ comments

Page A-127

DIANA Reference Manual Oraft Revision 4 Page A-128
DIANA CROSS-REFERENCE GUIDE

as_type_def : TYPE_DEF
(INHERITED™ FROM EXP_DECL):

as_exp : EXP
(INHERITED FROM ID_S_DECL):

as_source_name_s ¢ source_name_s
(INHERITED FROM ALL_SOURCE):

I1x_srcpos

I1x_comments

source_position
comments

** variable_id

[S INCLUDED IN:
VC_NAME
INIT_OBJECT_NAME
0BJECT_NAME
SOURCE _NAME
DEF_NAME
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
sm_is_shared : Boolean
(INHERITED FROM VC_NAME):
sm_renames_obj : Boolean
sm_address : EXP
(INHERITED FROM INIT_OBJECT NAME):
sm_init_exp s EXP
(INHERITED FROM™ OBJECT _NAME) :
sm_obj_type : TYPE_SPEC
(INHERITED FROM DEF_NAME):
1x_symrep ¢ symbol_rep-
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments ¢ comments

*+ vyariant

IS INCLUDED IN:
VARIANT ELEM
ALL_SOURCE
NODE ATTRIBUTES:
s (NODE SPECIFIC):
as_choice_s ¢ choice_s
as_comp_list : comp_list
(INHERITED FROM ALL_SOURCE):
1x_srcpos ¢ source_position
1x_comments : comments

** VARIANT_ELEM

CLASS MEMBERS:
variant
— ‘ variant_pragma
IS INCLUDED IN:
ALL_SOURCE

OIANA Reference Manual Oraft Revision 4 Page A-129
DIANA CROSS-REFERENCE GUIDE

NCDE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
Ix_srcpos : source_position
1x_comments : comments
IS THE DECLARED TYPE OF:
variant_s.as_list [Seq Of]

*+ VARIANT_PART

CLASS MEMBERS:
variant_part
void
IS INCLUDED IN:
ALL_SOURCE
NODE ATTRIBUTES:
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments
1S THE DECLARED TYPE OF:
comp_list.as_variant_part

** variant_part

IS INCLUDED IN:
VARIANT_PART
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
- as_name : NAME

. as_varijant_s : variant_s
(INHERITED FROM ALL_SOURCE):
1x_srcpos ¢ source_position
1x_comments : comments
** variant_pragma
IS INCLUDED IN:
VARIANT ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_pragma ¢ pragma
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** variant_s

IS INCLUDED IN:
SEQUENCES
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
as_list

Seq Of VARIANT_ELEM

ﬁ

DIANA Reference Manual Draft Revision 4 Page A-130
DIANA CROSS-REFERENCE GUIDE

(INHERITED FROM ALL_SOURCE):
I1x_srcpos : source_position
— 1x_comments : comments
[S THE DECLARED TYPE OF:
: variant_part.as_variant s

** VC_NAME

CLASS MEMBERS:
variable_id
constant_id

[S INCLUDED IN:
INIT_OBJECT _NAME
0BJECT_NAME
SOURCE_NAME
DEF_NAME
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):

sm_renames _obj : Boolean
sm_address EXP
(INHERITED FROM INIT_OBJECT NAME)
sm_init_exp : EXP
(INHERITED FROM OBJECT _NAME):
sm_obj_type ¢ TYPE_SPEC
(INHERITED™ FROM DEF_NAME):
B 1x_symrep ¢ symbol_rep
(INHERITED FROM ALL_SOURCE):
1x_srcpos : source_position
1x_comments : comments

** yvoid

IS INCLUDED IN:

PREDEF_NAME
COMP_REP ELEM
ALIGNMENT CLAUSE
ALL _DECL
BODY
UNIT_KIND

- NAME
ITERATION
SOURCE_NAME

' TYPE_SPEC

- TYPE_DEF
VARIANT PART
REP

— RANGE
CONSTRAINT
EXP

‘ DEF_NAME

- ALL_SOURCE
UNIT_DESC
DECL

DIANA Reference Manual Draft Revision 4
DIANA CROSS-REFERENCE GUIDE

DISCRETE _RANGE
GENERAL_ASSOC
ITEM
NODE ATTRIBUTES:
(INHERITED FROM REP):
as_name
(INHERITED FROM RANGE):
sm_type_spec
(INHERITED FROM DEF_NAME):
Ix symrep

(INHERITED FROM ALL_SOURCE):

Ix_srcpos
1x_comments

** while

IS INCLUDED IN:
ITERATION
ALL_SOURCE

NODE ATTRIBUTES:

(NODE SPECIFIC):
as exp

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

** with

IS INCLUDED IN:
CONTEXT _ELEM
ALL_SOURCE
NODE ATTRIBUTES:
(NODE SPECIFIC):
as_name_s
as use pragma_s

(INHERITED FROM ALL_SOURCE):

1x_srcpos
1x_comments

: NAME

: TYPE_SPEC

: symbol_rep

source_position
comments

: EXP

source_position

: comments

: name_s
: use_pragma_s

.
-
.

: source_position

comments

lllllllllllllllllllllllllllllIllllllllllIIlIIlllIIlIllllIllIIlllIIIlllllIllIllIlIlIllIIlIIIIIIIIIIIIIIIIIIIIIIIIT

Page A-131

APPENDIX B
REFERENCES

DIANA Reference Manual Draft Revision 4 Page B-2
REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

P.F. Albrecht, P.E. Garrison, S.L. Graham, R.H. Hyerle, P. Ip, and
B. Krieg-Bruckner. "Source-to-Source Translation: Ada to Pascal and

Pascal to Ada." In Symposium on the Ada Programming Language, pages
183-193. ACM- SIGP[%E, Boston, December, [§E8.

B. M. Brosgol, J.M. Newcomer, D.A. Lamb, D. Levine, M. S. Van
Deusen, and W.A. Wulf. TCOLada : Revised Report on An Intermediate
Representation for the PreTiminary Ada Language. Technical Report

-C3-80-10%, Carnegie-MeTTon University, Computer Science Department,
februarv, 1980.

J.N. Buxton. Stoneman: Requirements for Ada Programming Support
Environments. Technical Report, DARPA, February, 1380.
M. Dausmann, S. Drossopoulou, G. Goos, G. Persch, G. Winterstein.

AIDA Introduction and User Manual. Technical Report Nr. 38/80,
Tnstitut fuer Informatik IT, Universitaet Karlsruhe, 1980.

M. Dausmann, S. Orossopoulou, G. Persch, G. MWinterstein. On
Reusing Units of Other Program Libraries. Technical Report Nr. 31/80,
Institut fuer Informatik [I, Universitaet Karlsruhe, 1980.

Formal Definition of the Ada Programming Language November 1980
edition, Honeywell, Tﬁc.f‘fii'ﬁaneyweil BulT, INPI%, ?980.
J.D. Ichbiah, B. Krieg-Brueckner, B.A. Wichmann, H.F. Ledgard, J.C.

Heliard, J.R. Abrial, J.G.P. Barnes, M. Woodger, 0. Roubine, P.N.

Hilfinger, R. Firth. Reference Manual for the Ada Programmin
Lanquage The revised reference manual, July 1980 edition, HoneywelT,
Inc., and Cii-Honeywell Bull, 1980.

J.D. Ichbiah, B. Krieg-Brueckner, B.A. Wichmann, H.F. Ledgard, J.C.
Heliard, J.R. Abrial, J.G.P. Barnes, M. Woodger, 0. Roubine, P.N.
Hilfinger, R. Firth. Reference Manual for the Ada Programmin
Language Draft revised MIL-STD 1815, July 1982 edition, Honeywell,
Inc., and Cii-Honeywell Bull, 1982.

J.R. Nestor, W.A. Wulf, D.A. Lamt. IDL - Interface Description
Language: Formal Description. Technical Report CMU-CS-81-139,
Carnegie-Mellon University, Computer Science Department, August, 1981.

G. Persch, G. Winterstein, M. Dausmann, S. ODrossopoulou, G. Goos.
AIDA Reference Manual. Technical Report Nr. 39/80, Institut fuer
Informatik II, Universitaet Karlsruhe, November, 1980.

Author unknown. Found on a blackboard at Eglin Air Force Base.

