
AD-A272 724 J/1

Applications of Sheaf Theory S

in Algorithm Design

Yellamraju V. Sriulvas
Kestrel Institute. 3260 Hillview Avenue.

Palo Alto. CA 94304 (srinivasdkestrel.edu)

Final Report
ONR Contract N00014-92-C-0124

1 Oct 1992 to 30 Sep 93

DTIC
ELECTE
NOV 17 1993

A - *

1 $t-j -rile- i t..... 93-28149•uWt-lLution is uný,L taade , II I I I I

93 11 16 090 _

000 0 0 0 0 0

Best
Available

Copy

1

PI Name: Yeilamraju V. Srinivas
PI Institution: Kestrel Institute

3260 Itillview Avenue, Palo Alto, CA 94304
PI Phone Number: (41.5) 493-6871
PI E-mail Address: srinivasgkestrel.edu
Grant or Contract Title: Applications of Sheaf Theory in Algorithm Design
Grant or Contract Number: N00014-92-C-0124
Reporting Period: 1 Oct 1992 to 30 Sep 93 S

1 Productivity Measures

Refereed papers published: 3
Unrefereed reports and articles: 1 I
Contributed presentations: I

DTIC QUALM U'SPECTED 5

Acceý-c C
NTIS -,
DTIC

A va lx

S

L
DI-4

0 0 "0 l. ', 0

S

P1 Name: Yellamraju V. Srinivas
PI Institution: Kestrel Institute S

3260 Hillview Avenue, Palo Alto, CA 94304
PI Phone Number: (415) 493-6871
PI E-mail Address: srinivaskestrel.edu
Grant or Contract Title: Applications of Sheaf Theory in Algorithm Design
Grant or Contract Number: N00014-92-C-0124
Reporting Period: 1 Oct 1992 to 30 Sep 93

2 Summary of Technical Results

The general goal of this project is the application of concepts from topology
and sheaf theory to better explain and systematize some of the intricate as-
pects of algorithms. The basic technique is the adoption of a topological view
of data structures, in contrast to the normal algebraic view. This approach
was successfully applied to the derivation of pattern matching algorithms in
[Srinivas 93. Srinivas 92]. In this project, this approach was extended to parsing
algorithms for context-free grammars. This extension also yielded more insight
into what a topological view of data structures entails, e.g., a connection to the
object-oriented view of datatypes.

2.1 A topological view of data structures * C
We will briefly describe the characteristics of such a view. Consider the example
of strings. Normally. they are described algebraically, as a monoid on some
alphabet. That is, strings are constructed inductively using the operations of
empty strings, singleton string, and concatenation. Functions on strings are
defined using recursion on t'nese constructors. S

In the topological view. we concentrate on the internal structure of strings
(e.g., a string is a total order) and maps between strings (e.g., adjacency-
preserving map). The role of induction using constructors is played by the
covering relationship: a string can be covered by a set of (possibly overlapping)
substrings. Now, functions are defined using sheaves, which assign a value to
a string by gluing together the values on elements of a cover (the analogue of
recursive definitions).

This approach is usually more abstract than the algebraic approach, and
allows us to concentrate on the essential aspects of an algorithm.

2.2 Application to parsing

The topology of data structures can be exploited in a similar manner in the
derivation of parsing algorithms [Srinivas b]. Consider a context-free grammar

2

0 0 0090000

for strings. Such a gramnmar specifies a set of strings (the language generated 3'

by the grammar) using both recursion and juxtaposition of strings. The two
basic operations in a context-free grammar are

* rewriting via a production, i.e., replacing a non-terminal by a sentential
form (e.g., S -, aSa applied to bSb yields baSab), and

* alternation, which associates several sentential forms with a non-terminal
(e.g., S -, aSa I bSb a I b).

Corresponding to these two operations we can associate two topologies with
a grammar. Replacing a non-terminal involves decomposing a sentential form
and depends on the topology of the underlying data structure (strings, trees,
etc.) of the language being generated. This topology is specific to the data
structure and independent of the grammar.

Alternation in the right-hand side production translates to a union of lan-
guages, and generates a topology on languages [Walter 75]. Using this topol-
ogy, thp language genera ted by a grmrma- rarn be described az a fixed point
[Manes and Arbib 86]. This topology is specific to the grammar and (almost)
independent of the data structure.

By separating these two topologies and precisely characterizing their rela-
tionship, we can abstractly describe parsing algorithms and provide an intuitive 0
explanation of such techniques as LR parsing. The collection of parses of a
given terminal string has the structure of a sequence of sheaves, each sheaf rep-
resenting the collection of (partial) derivation trees of depth up to n (for n = 1.
2, 3.). Different parsing algorithms (top-down, bottom-up, etc.) correspond
to different design decisions and optimizations used in generating this sequence 0
and extracting parses.

A sheaf-theoretic characterization of parsing nicely exposes the interplay
between the algebraic and topological structure of a grammar. The sequence
of parse sheaves above becomes a simplicial complex if composite productions
are included (e.g., if S -- AB and A --+ aA, we get a composite production a
S --+ aAB).

2.3 Connecting algebraic and topological descriptions of datatypes

There is a similar interplay in equationally described data types. Consider
an abstract data type which is characterized by a set of operations satisfying
some axioms (see, e.g., [Wirsing 90]). The collection of terms generated by the
signature of the data type can be cast as a sequence of sheaves. Using this
connection, the topological structure of an algebraically specified data type can

3

• • • •• • •

0 0..0 0..

be exposed. This, in turn, can provide some of the facilities of object-oriented

programming style in the framework of algebraic specification 'Sriniiaz aLl. For 0
example, we can syster.iatically convert between the description of a tree using
the operations empty and join (an algebraic description) and one using a set
of nodes with a parent-child relationship satisfying some conditions (an object-
oriented description).

2.4 Homomorphisms between datatypes

A topological description of dataypes, although conceptually simple, needs a
lot of mathematical machinery. On the other hand, the algebraic style is sim-
ple and has been successfully used in the automated support of the program 0
synthesis [Smith 90]. One result of this project is the insight that some of the
benefits of the topological view can be obtained by adding a facility for defining
homomorphisms to algebraic specifications. Homormorphisms relate the inter-
nal structure of two datatypes. For example, if a tree is described as a set
of nodes together with a parent relationship, then it can be homomorphically 0
mapped into a set of nested regions on a display; this technique is used in the
specification of a graphical user interface in [Srinivas and Jiillig 931. Note that
the notion of homomorphism used here is somewhat different from that used in
[Bird 873; the latter operates at the level of constructors.

2.5 Sheaves and constraint satisfaction

The connection between sheaves and constraint satisfaction was noticed in
[Srinivas 93] using Waltz's filtering algorithm for scene labeling. I explored
this connection further in the context of type inference algorithms.

A constraint satisfaction problem consists of a hypergraph in which the nodes
represent are variables and the (hyper) arcs represent constraints [Montanani and Rossi 911.
Each node/variable is labeled by a set of admissible values, and each arc by a
relation which specifies a constraint. A solution to such a problem is an assign-
ment of values to variables which satisfies all the constraints.

Consider the site of all subgraphs of a hypergraph with inclusions as arrows

and surjective families as covers. Then the solutions to a constraint satisfac-
tion problem form a sheaf: any consistent assignment must be assembled from
consistent parts. Constraint satisfaction algorithms search for consistent as-
signments of values to variables, a process which can be succinctly described as
sheafification starting from a functor which only labels each variable with a set
of admissible values and each arc with a relation.

For the case of type inference, we treat an expression tree as a hypergraph:
each node in the tree corresponds to a hypergraph node, and each function

4

0

i
corresponds to a hyperarc connecting the arguments and the result. Each node U
is labeled by its possible types, and each hyperaic by the possible types of 0
the function. Type inference consists of finding compatible families of type
assignments. If polymorphism is included, the set of possible types for a tiode
may be infinite: thus it has to be represented intensionally as an expression.
In this case, finding a compatible family corresponds to finding a limit, which
in turn requires equalizers. Equalizers in this context are nothing but most 0
general unifiers [Rydeheard and Burstall 38]. This example illustrates the nice
interplay betweeL the topology of the expression tree and the algebra of the
type expressions, a situation ideal for sheaves.

References

[Bird 87] BIRD, R. S. An introduction to the theory of lists. In Logic of Pro-
gramming and Calculi of Discrete Design, M. Broy, Ed., NATO ASI Series,
Vol. -'36. Springer-Verlag, Berlin, 1987, pp. 3-42.

[Manes and Arbib 86) MANES, E. G., AND ARBIB, M. A. Algebraic Ap-
proaches to Program Semantics. Springer-Verlag, New York, 1986.

[Montanari and Rossi 91] MONTANAR.I U., AND Rossi, F. Constraint relax-
ation may be perfect. Artifical Intelligence 48 (1991), 143-170. * 0

[Rydeheard and Burstall 38] RYDEHEARD, D., AND BuRSTALL, R. M.
Computational Category Theo. -y. Prentice-Hall, 1988.

[Smith 90] SMITH. D. R. KIDS: A semiautomatic program development sys-
tem. IEEE Trans. Softw. Eng. 16, 9 (Sept. 1990), 1024-1043.

[Srinivas a] SRINIVAS, Y. V. Augmenting algebraic specifications with struc-
tured sorts and structural subsorting. In Preparation.

[Srinivas b] SRINIVAS, Y. V. Deriving parsing algorithms using sheaves. In 0
Preparation.

[Srinivas 92] SRINIVAS, Y. V. Derivation of a parallel matching algorithm.
In Second International Conference on Mathematics of Program Construc-
tion (O-ford, UK, July 1992), Lecture Notes in Computer Science, Vol. 669,
Springer-Verlag, pp. 323-343.

[Srinivas 93] SRINIVAS, Y. V. A sheaf-theoretic approach to pattern matching
and related problems. Theoretical Comput. Sci. 112 (1993), 53-97.

5S

0000 0 0 0 0 0 0

[Srinivas and Jijilig 93] SRINIVAS, Y. V.. AND JULLIG, R. Formal specifica-

tion of a graphical user interface. Tech. Rep. KES.U.93.4, Kestrel Institute.

May 1993. ,

[Walter 75] WALTER, H. Topologies on formal languages. Mathematical Sys-
tems Theory 9, 2 (1975), 142-158.

[Wirsing 90] WIRSING, %I. Algebraic specification. In Formal Models and

Semantics, J. van Leeuwen, Ed.. Handbook of Theoretical Computer Science,

Vol. B. MIT Press/Elsevier, 1990, pp. 675-788.

6B

* .

• • • •• • •

Xt,
PI Name: Yellamraju V. Srinivas

P1 Institution: Kestrel institute
3260 Hillview Avenue, Palo Alto, CA 94304

PI Phone Number: (415) 493-6871
P1 E-mail Address: srinivasA~kestrel.edu
Grant or Contract Title: Applications of Sheaf Theory in Algorithm Design
Grant or Contract Number: N00014-92-C-0124
Reporting Period: 1 Oct 1992 to 30 Sep 93

3 Publications, Presentations, Reports

Publications:

1. SRINIVAS, Y. V. Derivation of a parallel matching algorithm. In Sec-

ond International Conference on Mathcmatics of Program Construction
(Oxford, UK, July 1992), Lecture Notes in Computer Science. Vol. 669,
Springer-Verlag, 1993, pp. 323-343.

Abstract: We present a derivation of a parallel version of the Knuth-Morris-
Pratt algorithm for finding occurrences of a pattern string in a target string.

We show that the failure function, the source of efficiency of the sequential

algorithm, is a form of search in an ordered domain. This view enables the gen-

eralization of the algorithm both beyond sequential execution and the string 0 *
data structure. Our derivation systematically uses a divide-and-conquer strat-

egy. The computation tree so generated can be mapped onto time, yielding a

naive sequential algorithm. onto a processor tree, yielding a parallel algorithm,
or onto a data structure, yielding the failure function.

2. SRINIVAS, Y. V. A sheaf-theoretic approach to pattern matching and

related problems. Theoretical Comput. Sci. 112 (1993), 53-97.

Abstract: We present a general theory o- pattern matching by adopting an ex-

tensional, geometric view of patterns. Representing the geometry of the pattern
via a Grothendieck topology, the extension of the matching relation for a con- 0

stant target and varying pattern forms a sheaf. We derive a generalized version

of the Knuth-Morris-Pratt string matching algorithm by gradually converting

this extensional description into an intensional description, i.e., an algorithm.
The generality of this approach is illustrated by briefly considering other ap-

plications: Earley's algorithm for parsing, Waltz filtering for scene analysis,

matching modulo eommutativity, and the n-queens problem.

3. Jiillig, R., and Srinivas, Y. V. Diagrams for software synthesis. In Pro-

ceedings of the 8th Knowledge-Based Software Engineering Conference

7•

'1

(Chicago, IL, September 20-23, 1993), IEEE Computer Society Press.

1993, pp. 10-19.
0

Abstract: We describe the formal environment at Kestrel for synthesizing

programs. We show that straightforward formalization, persistently applied

at all levels of system description and system derivation, produces a scalable

architecture for a synthesis environment. The primitive building blocks of our 0

framework are specifications, which encapsulate types and operations. and spec-

ification arrows, which axe relations between specifications. The design of a sys-

tem is represented as a diagram of specifications and arrows. Synthesis steps

manipulate such diagrams, for example, by adding design detail to some specifi-

cation, or by building new diagrams. A design history is a diagram of diagrams. 0

Thus, we have a formal, knowledge-based. and machine-supported counterpart

to such software engineering methodologies as CASE and OOP.

Presentations:
0

1. Hornomorphisms Between Algebraic Specifications. Presentation given at

the IFIP WG2.1 Meeting, Winnipeg, Canada, May 1993.

Abstract: We introduce the specification-level counterparts to homomorphisms

between algebras. These take the form of homomorphism specifications (horn-
specs), which specify a class of homomorphisms. Homspecs augment the al-

gebraic specification framework by providing a way of encapsulating families

of related functions. We briefly indicate several applicatins where homotnor-

phisms are useful: (1) inductive function definitions, e.g.. size of a sequence:
(2) specification of divide-and-conquer algorithms, e.g., mergesort: (3) relat-

ing structured objects, e.g., subtrees; (4) abstraction/representation functions

which implement one specification in terms of another, e.g., set-as-fist: (5) spec-

ifying constraints in a graphical display.

Reports: 0

1. SRiNIVAS, Y. "Y., AND JiftLIC, R. Formal Sn,'cifcation of i Graphical

User Interface, Technical Report KES.U.93.4, Kestrel Institute. Palo Alto,
May 1993.

Abstract: Formal development technology has advanced over the past two 0

decades from the derivation of small, functional programs to the stage where

it can be applied to realistic problems. We specify an interactive user interface

for displaying internally stored data structures. We show how the code for

0

0 0 0 0 0 0 0 0 0 *

propagating the changes to the internal representation or tihe display can be U

formally derived.

0

9

0 0 0 0 0 0 S

PI Name: Yellanraju V. Srinivas
P1 institution: Kestrel Institute

:3260 Hillview Avenue, Palo Alto, (CA 94304

PI Phone Number: (01)) 493-6871
PI E-mail Address: srini',as kestrel.edu
Grant ur Contract Title: Applications of Sheaf Theory in A.gorithm Design
Grant or Contract Number N00O14-92-C-0124
Reporting Period: I Oct 1992 to 30 Sep 93 S

4 Transitions and DoD interactions

NONE.

10

0S

O

PI Nme Yellamraju V. Srinivas
PI Institution: Kestrel institute

3260 Hillview Avenue. Palo Alto, ('A 9-1304

PI Phone Number: t1.5) 493-687 1

PI E-mail Address: srinivac(tkestrel.edu

(-,rant or Contract ritle: Applications of Sheaf Fheory in Algorithm Design

G rant or Contract Number: NOOO 14-9"-2-I12,4

Reporting Period: 1 Oct 1992 to 30 Sep 93 S

5 Software and Hardware Prototypes

NONE.

• .

llS

• • • •• • •S

S... | m •im | 'S

