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SUMMARY

During the first year of this effort, we focused on two related problems: (1) establishing
the validity of the thin flame model when used to compute flow-combustion interactions in a
turbulent shear layer; (2) developing an efficient methodology to compute the unsteady strained
flame structure when the flame thickness is much smaller than the flow scale. In the first effort,
the transport element method was applied to compute (a) a reacting flow in which combustion
proceeds according to a single-step, temperature dependent Arrhenius reaction, and (b) a mixing-
limited model in which Schvab-Zeldovich variables are used to obtain the infinite speed
chemistry results. The results of both computations showed that, at high Damkohler numbers,
while there is a small error in the prediction of the total burning rate using the second approach,
the second model accurately estimates the effect of combustion on the flow dynamics in terms of
volumetric expansion and vorticity generation. Thus, implementing a detailed flame sheet model
using a flowfie!d decomposition should yield an accurate simulation for the flowfield while
maintaining the overall computational requirements below what is needed in the original
analysis. Work on the second project has resulted in a more efficient model to compute the
flame structure under conditions of unsteady strain. The computational model is based on a
series of mathematical transformations which reduce the governing equa ons to time-dependent
reaction-diffusion equations. Model results have been used to determine the flame characteristic
response time and the effect of strain-Lewis number on the burning velocity. The model is
currently being extended to multistep chemistry.
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I. OBJECTIVES

The objectives of this work are: X,
S

(1) To develop, using methods of asymptotic expansion, a computational framework for
4,

the simulation of turbulent combustion phenomena by deriving equations which govern the flow

and combustion in different, physically-distinct regions in the domain. This will be independent

of the numerical method, or methods, used to integrate these equations and hence will have

applications beyond vortex simulations;

(2) To develop subscale fundamentally based models which can be used to obtain large

eddy simulations using vortex methods. Subscale models, in this case, will be obtained through

the application of the renormalization group theory to the equations governing vorticity

stretching and tilting on scales lower than numerically resolvable scales. The application of

RNG in physical vorticity space is motivated by our solutions which show that the properties of

vortex lines at the small scales follow closely the RNG predictions.

(3) To develop fundamentally based flame structure models using the equations obtained * .
in (1) where flow combustion interactions are represented by the effect of the time-dependent

stretch exerted by the outer flow on the flame structure. One important respect of these models

will be the incorporation of multistep chemical kinetics algorithms to accurately capture flow

combustion interactions when it is dominated by radical concentration and diffusion;

(4) To modify the transport element method; a Lagrangian scheme which we developed

to simulate reacting species transport, to act as a "coupling" algorithm between the solutions

obtained for the outer flow and the inner flow.

The developed methodology will be applied to study mixing and combustion in reacting

shear flow at high Reynolds numbers. Effect of strong density variations, high heat release rates

at elevated Damkohler numbers, and high Mach numbers will also be investigated.

2
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II. PERSONNEL
i

During the period of 1992-1993, funding was used to support the work of the following
students:

4'

(1) Marios Soteriou who completed his Ph.D. thesis in June 1993 and stayed on as a
postdoctor.

(2) Van Luu, a Ph.D. student working on distributed reaction zone combustion model.

(3) Constantin Petrov who completed his master's work in June 1993 and stayed on as a
Ph.D. student working on the thin flame combustion model.

III. WORK STATUS

111.1 Flow Combustion Interaction Modeling Using a Flame Sheet Representation.

A numerical methodology has been introduced to enable the study of a post-transitional

spacially developing exothermically reacting shear layer over a substantial range of the

governing parameters. The Transport Element Method, commonly used in the simulation of 0

non-reacting flows is further developed to accommodate an exothermically reacting flowfield.

The scheme is Lagrangian, grid-free and adaptive and solves the unaveraged, time dependent and

coupled scalar transport-reaction and Navier-Stokes equations respectively, in their scalar-

gradient and vorticity forms. It exploits the Shvab-Zeldovich formulation to provide solutions

for both moderately fast and infinitely fast reactions. For finite reaction speeds, Arrhenius

kinetics are used.

Numerical results were used in a preliminary study of the effects combustion

exothermicity on both the flow and scalar fields. We found that the externally forced flowfield is

substantially modified in the presence of combustion and a reduced growth is experienced

mainly due to an alteration of the mechanism by which the vortical structures, which characterize

the flow, interact. This, together with the decreased density within the mixing region leads to

decreased efficiency of combustion.

3 10
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The simpler, computationally less demanding infinite reaction speed model was found to

be an effective model of the detailed finite reaction problem as long as the reactions involved in 3

the latter are fast compared to the flow, the reaction zone is thin, and abrupt transient phenomena

such as quenching are avoided. Detail of this study are presented in Appendix I of this report.

I1.2 Model of an Unsteady Strained Flame

The transient response of a flame to an unsteady strain rate was analyzed using a series of

mathematical transformations. Initially, the flame waslocated in the stagnation plane. At time

t=O the unsteady strain rate was applied. Two basic patterns of the strain rate are considered: a

step function, and a sinusoidal wave. ,The flame response was characterized by two parameters:

(1) the burning velocity and, (2) the flame location. The influence of the Lewis number and the

strain rate on these two parameters and on the relaxation time was investigated. For unity

Lewis number, and within the range of compressive strains characteristic for a turbulent jet * *
flow (200 - 500 l/sec), the shapes of the temperature and mass fraction profiles remain almost

unchanged. This leads to a burning velocity which is only slightly dependent on the strain rate.

In the case of non-unity Lewis number the profiles are significantly altered even by relatively

weak strain rates. This happens due to the interaction of unbalanced heat and concentration

diffusion and convection. The changes in the profiles produce significant variation in the

burning velocity. Some analytical results are obtained for the relaxation time of flame as a

function of the strain rate and thermo-chemical parameters. The analytical derivations are based

on the application of the integral approach in the transformed domain. In order to investigate the

receptivity characteristics of flame, the periodic strain rate is applied. Over a wide range of

frequencies, flame demonstrates periodic response. The average value of the burning velocity is

very close to the burning velocity of a flame under the average strain; phase shift between the

burning velocity and strain rate fluctuations is approximately constant and equal to -1.3i7r. This

pattern is violated only when the period of the strain rate oscillations is much lower than the

4
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diffusion time scale. The analysis of the flame response suggests that the steady state

assumption can be used with a reasonable accuracy in a flamelet modeling, although the phase X,

shift should be taken into account. Extinction strain rate which we define as the strain rate when 4'
the steady state flame location crosses the stagnation plane for the first time, is an exponential

function of the heat release. This suggests that, in order to get adequate values of the extinction

strain using a simplified chemical kinetics mechanism, one should pay particular attention to the

chemical reactions which maintain the energetic balance of the system. Detail of this work is

presented in Appendix II.

111.3 Stability and Numerical Analysis of Wake Flows

The linear instability of a family of inviscid, two-dimensional, variable-density shear

layers and wakes is investigated. Vorticity profiles corresponding to a monotonically increasing

velocity profile are first examined. A larger family of initial vorticity distributions which model

the merger of two unequal vorticity layers of opposite sign is then considered. The latter is

obtained by superimposing on the former a wake component, characterized by a spread, 3, and a

velocity deficit, W. The initial density distribution resembles a temperature spike and is

described by a thickness, ar, and a temperature ratio, Tr. The stability properties of the layers are

interpreted in terms of a four-dimensional parameter space (W,3,Tj-,a). The non-linear evolution

of the flowfield is illustrated using the transport element method.

Flowfield stability exhibits strong sensitivity to the details of the density distribution. In

the absence of the wake component, the stability properties of the heated layer are divided into

three categories according to the thickness of the density profile, a, and the vorticity thickness,

8w. For a» >> 8w, instability of the Kelvin-Helmholtz mode in a uniform-density flow is

recovered. When a - ar,, the shear layer mode is inhibited; while this trend persists for ar < 8w,

the layer becomes characterized by the appearance of additional short-wavelength unstable

modes which become dominant as a decreases and Tr increases. Addition of a wake component

is shown to alter this behavior, and to oppose the stabilizing effects of heat release. In this case,

the shear layer mode always dominates the wake mode, and the presence of heated sublayer has a

5
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weak effect on the instability of the vorticity layer when 8 is large, but may influence the phase
NI,

speed of unstable waves whenever the zones of high vorticity and high density gradient coincide.

Detail of this work is presented in Appendix III.

* .
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APPENDIX 1
a

VO.TEX.TRANSPORT ELEMENT SIMULATION OF THE
EXOTHERMICALLY REACTING SPACIALLY DEVELOPING SHEAR

LAYER

Marios C. Soteriou and Ahmed F. Ghoniem

Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139

ABS.TBAC
A numerical methodology is introduced which enables the study of a post-transitional

spacially developing exothermically reacting shear layer over a substantial range of the

governing parameters. The Vortex-Transport Element Method, commonly used in the simulation

of non-reacting flows is further developed to accommodate an exothermically reacting flowfield.

The scheme is Lagrangian, grid-free and adaptive and solves the unaveraged, time dependent and *
coupled scalar transport-reaction and Navier-Stokes equations respectively, in their scalar-

gradient and vorticity forms. It exploits the Shvab-Zeldovich formulation to provide solutions

for both moderately fast and infinitely fast reactions. For finite reaction speeds. Arrhenius

kinetics are used.

Numerical results are used in a preliminary study of the effects combustion exothermicity

on both the flow and scalar fields. It is seen that the externally forced flowfield is substantially

modified in the presence of combustion and a reduced growth is experienced mainly due to an

alteration of the mechanism by which the vortical structures, which characterize the flow,

interact. This, together with the decreased density within the mixing region leads to decreased

efficiency of combustion.

The simpler, computationally less demanding infinite reaction speed model is found to be

an effective model of the detailed finite reaction problem as long as the reactions involved in the

latter are fast compared to the flow, the reaction zone is thin, and abrupt transient phenomena

such as quenching are avoided.

S
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L INTRODUCTION

Post-transitional exothermically reacting shear layers are commonly present in many
combustion systems. The flow, which is a manifestation of the growth of the instability of the

shear region between two reacting fluids at different velocities represents an important 4

mechanism by which reactants mix and burn, in such systems. Experimental [e.g. 11 studies
indicate that the vortical structures which dominate non-reacting shear layers persist in their

reacting counterparts despite the substantial effects of the combusting field on the flowfield. 5

These structures are found to coincide with the region where product exists, thus exemplifying

their fundamental importance to the combustion process. Combustion. in turn, strongly

influences their evolution and interactions via the release of chemical energy and the resulting

variable density field. 5

The effects of the combustion heat release and of the related variable density field on the

flowfield have been the subject of significant interest recently. Even in the absence of reaction

the presence of a variable density field substantially alters the properties of the flow, modifying

the growth of the mixing region the entrainment from the free streams and the unsteady evolution 5

of the eddies [2]. Experimental studies (3,4,11 have indicated that in the presence of an

exothermically combusting field the shear layer growth is reduced, resulting in diminished

efficiency of mixing and burning. This was initially a rather surprising finding since combustion

was anticipated to increase the size of the mixing region via volumetric expansion. Numerical S

studies mainly restricted to the simulation of temporally evolving reacting shear layers [5-7],

have, to some extend, been able to reproduce this behavior. In this work the applicability of the

idealized, temporally evolving flow model, in simulating reacting shear layers is fundamentally

questioned. The temporal model aims at approximating the shear layer flow via a Galilean

space-time transformation: a computational domain is selected which is moving with the mean

flow velocity and which describes a small section of the flowfield. This section is defined by the

flow time scale in such a way as to include one or two vortical structures. The small size of the

domain, as compared to that necessary in a spacial layer simulation, is the major source of the

savings mentioned earlier. The problem with the use of temporal layers lies in the fact that the

boundary conditions in the streamwise direction (i.e. at the inlet and exit) of the domain are not

explicitly known. For this reason, artificial periodic boundary conditions 2re imposed. As a

result the actual flow cannot be reproduced exactly from such a calculation. For example, the

asymmetry imposed by the velocity ratio, which results in the tendency of the uniform density

shear layer to intrude more into the slower of the two streams, cannot be captured. Additionally,

the streamwise asymmetry in the shape of the vortical structures is also lost. For the reacting

field, the limitations are more devastating. The periodic boundary conditions remove any spacial

evolution of the combustion-related properties of material which crosses the domain in the

2
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streamwise direction; only temporal evolution is permitted. On the other hand, the same material

experiences significant flow-related evolution. This is an uncommon situation since it requires a
the flow speed to be higher than the combustion speed, i.e. high Karlovitz number. For a real

fuel, characterized by a high Damkohler number, such a condition would utavoidably lead to
quenching (termination of the reaction due to excessive flow stretch). In the temporal

simulations noted above, this problem does not arise due to an additional, and apparently
independent, low Damkohler number assumption. What is evident from the above discussion
though, is that the applicability of temporal simulations is in fact restricted to low Damkohler
number combustion and unphysical solutions would result if higher values of this parameter were

to be used.
Spacially evolving shear layer numerical studies [8,91, which attempt a much more

physical description of the flow, have, on the other hand, for the most part been restricted to
cases where the effects of combustion on the flowfield are negligible (low combustion heat
release). Such studies have been used to discern the structure of the reaction zone arid the effects
of the reaction speed (Damkohler number) on the relative location of the reaction zone with
respect to the large structures. It was concluded that at small Damkohler number, the reaction is
most intense near the center of the large eddy, while as the Damkohler number increases, the
reaction zone moves outwards towards the outer edges of the eddies. It was also found that,

under conditions of unity stoichiometry, a strong similarity exists between the products
concentration field and the vorticity field.

In contrast, in this work a numerical methodology capable of dealing with significant
combustion exothermicity is prC 7pnted and implemented in the simulation of the forced, spacially

developing shear layer.

IU FORMULATION

A two-dimensional, post-transitional reacting shear layer is considered. Gravitational
effects are negligible. Compressibility effects are permitted under the low Mach number
assumption. According to this assumption, the flow speed is much smaller than the speed of
pressure wave propagation. Hence, spacial pressure variations reach equilibrium rapidly when
compared to the flow timescale and, thus, for thermodynamic considerations they appear
negligibly small. This can easily be seen by considering that the momentum equation for this
case, reduces to the statement that spacial gradients of the thermodynamic pressure are equal to
zero. But while pressure variations are small when compared to the thermodynamic pressure,

they are not negligible when compared to the other forces governing fluid motion. Thus by
rescaling them with the flow dynamic pressure one can ascertain their effect on the flowfield.
This is expressed in the more traditional momentum equation used herein. (This distinction

3



between the thermodynamic and dynamic pressure in a low Mach number combusting system

was initially proposed in ref.[5] where a detailed derivation of the approximate equations of X

motion is presented.) 0

While, under the low Mach number assumption, combustion has an insignificant effect

on the spacial thermodynamic pressure variation, it can substantially alter this pressure in time.

This is certainly true in a constant volume domain where the overall density is constant and

substantial pressure changes take place as combustion heat is released and the fluid temperature 0

is raised. In an open (infinite volume) domain, on the other hand. combustion primarily alters

the fluid temperature and density resulting to approximately constant pressure. In this work the

flow is partially confined (see Section IV). Nevertheless, constant pressure combustion is still

assumed since in the cross-stream direction the confining walls are substantially far from the 0

combusting region and in the streamwise direction the domain is relatively short. The validity of

this assumption is further assessed from the results by comparing the streamwise dynamic

pressure change of each fluid stream to the corresponding inlet dynamic pressure. Thus, in this

formulation the thermodynamic pressure is treated as a constant both in space and time and 0

hence it is absent from the non-dimensionalized equations. The pressure appearing in the

momentum equation is the flow dynamic pressure.

Combustion is assumed to take place according to a single step reaction which consumes

two reactants, one from each stream, to yield a single product. The chemical kinetics are of the

Arrhenius type. The transport properties are constant. All species are assumed to behave as

perfect gases with equal molecular weights, specific heats and mass diffusion coefficients. The

Lewis number is equal to unity. Diffusion effects are assumed small (high Reynolds and Peclet

number flow). This allows higher order diffusion mechanisms to be neglected. Hence, thermal

diffusion (Soret effect), second order diffusion terms in the scalar equations arising from

products of density and scalar gradients, and heat production due to fluid dynamical viscous

dissipation, are all neglected.

Non dimensionalization is carried out using a length scale, E-,, a velocity scale, Uo and

temperature, T., and density, Po, scales. (The tildes indicate dimensional variables. In what

follows, absence of the tilde denotes a non-dimensionalized variable). The actual values of these

scales are specified in Section IV. The simultaneous use of density and temperature scales

allows for the different scaling of the thermodynamic pressure as compared to that of the

dynamic pressure which is scaled via the density and the velocity scales.

Under the above assumptions the non-dimensionalized governing equations are:

Continuity dp (1)dt

4
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It

Temperature-Species Qj (5)

with sIT Y 2=Y

Qo~i 4 1 1 1 1+0

( +) Y 1 Y2 + YP=l) (6)

and where w Af p2 yY 2 exp(- T (7)

TiA)

u (u,v) is the velocity vector in a right-handed Cartesian coordinate system z = (x,y) and t is
a/

the time. V o is the gradient operator and A + u V the Lagangian-material

derivative. p is the dynamic pressure and p and T are the fluid mixture density and temperature

respectively. Tjj denotes species i, i=1,2 being the reacting species and i=p being the product.

= Lis the mass-faction for species i (p1 is the species' partial density) and v is the reaction

rate. Re is the Reynolds number, Re = with being the kinematic viscosity. Similarly, Pe

is the Peclet number Pe = POD & is the thermal diffusivity, which under the unity Lewis
FE

number assumption is equal to the mass diffusivity 5 which, in turn, is the same for all species.

A( is the frequency factor, A( = Afo and 0 are the molar and mass stoichiometry ratios
U0

respectively ( = * 1, Mi being the molar mass of species i). Q0 is the enthalpy of reaction,
M2  2

= Ahf where E is the mixture specific heat. Ty is the activation temperature T =E

rPO RTo

where E. is the activation energy and K the universal gas constant.

5 I
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For primarily numerical reasons the above equations are recast into non-primitive

variable form. For the equations governing fluid motion this is initiated via the use of the u.

Helmholtz decomposition [101,

Helmholtz Dec. U = UO + Up + ue (8)

which recognizes that the velocity can be split into a vorticity induced solenoidal component, uo,

(V x u. = V x u, V~uo = 0) and two irrotational components; one induced by volumetric

expansion, ue, and the other by the flow boundary conditions up ). The vortical component is

obtained from the definition of the vorticity 4 = Vxu ( is the unit vector normal to the plain of

motion) and by the use of the streamfunction (W) i.e.

Streamfunction V = -4O) U. = Vx(Nk) (9ab)

The irrotational components are obtained from the relevant continuity equation via the

introduction of the concept of the velocity potential (0):

Expansion V2Oe =- 1.dp ue= VO (10a,b)

p dt

"Potential" V2Op = 0 Up =VOp (1 la,b)

The evolution of the vorticity field required in the evaluation of the vortical velocity component

is described by the vorticity equation established by taking the curl of the momentum equation:

Vorticity Ck + (V-u) o Vp= x Vp V2(12)

dt p2  Re

Density related quantities in both equations (10a) and (12) are obtained from the temperature

field via the equation of state.

To simplify the scalar transport equations, Shvab-Zeldovich (S-Z) non-reacting variables

(X,• ~)are introduced:

S-Z Variables ,=YI - Y2  y=T- _. p (13a,b)
1+0

These variables are constructed from combinations of the primitive reacting scalars in such a way

that the equations governing their transport (obtained from algebraic manipulations of equations
(5)) are void of reaction terms, and are hence much simpler to deal with: i.e.

do= ILV2
1  (14)

dt Pe

6
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I

where •=.or y.

Depending on the application, the particular choice of these variables can also result in further X

simplifications. A good example of this is illustrated by the y variable used here. By combining

the temperature with the product mass-fraction into one variable, one can capitalize on the fact

that if the initial conditions :mply that these two properties are initially directly related (i.e.

y(x,O)= 1), then equation (14) above suggests that they will remain related at all later times. This,

in essence, reduces the equations to be solved by one, since the solution for y is trivially known

(i.e. Klx,t)=1 ).

The main disadvantage in the use of Shvab-Zeldovich variables is that they impose the

substantial limitations on the choice of the transport properties noted earlier. This is because in

order to reduce the equations, the mass-diffusion coefficients had to be assumed equal for all

species and the Lewis number had to be chosen equal to unity.

In analogy to the treatment of the flow equations, the Shvab-Zeldovich scaJar transport

equations are recast into gradient form:

S-Z Gradient d+
-- rdet q+g.Vu+gx( wk)=- 1 -V 2g (15)
dt Pe

where g=VP3

Evidently, integration of the solutions of the gradient equations provides the scalar field only * •
within a constant. This constant is defined by the boundary conditions (0p). Thus, in an

approach similar to the Helmholtz decomposition of the velocity field, the total Shvab-Zeldovich

scalar field solutions are obtained by adding these two components.

S-Z Scalar Dec. = + (16)

In the limiting case of infinite reaction rate combustion, where the reaction zone collapses

onto a line and reactant coexistence is prohibited, the Shvab-Zeldovich variable solutions

together with the equation of the conservation of the species mass-fractions (eq.6) are able to

provide a complete description of the reacting field. i.e.

Infinitereaction: X20 YI=X, Y2 =O, Yp=l-X (17a)

X50 Y= 0, Y2 =-, Y p=l+I - (17b)0 0

The temperature field is obtained using the definition of y. If the reaction speed is finite, on the

other hand, the Shvab-Zeldovich solutions and the mass-fraction conservation equation do not

contain all the information necessary to construct the reacting field. At least one reacting scalar

7
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must be explicitly obtained. In the formulation presented here, this scalar is chosen to be the

product mass fraction, i.e a

Product dyk =_V 2Yp + (1+*). (18)

dt Pe p

must be solved. Once the product mass-fraction solution is known, the reacting species solutions

can be constructed according to

Finite reaction: Y = Y2+ 0(lY) =2 + (l-Y) (19)

1+0 I+ý

and the temperature solution by using the definition of y, to completely describe the reacting

scalar field. It should finally be noted that the non-reacting flow case is easily included in the

finite reaction speed case by simply specifying Yp = 0.

HI NUMERICAL SCHEME

The numerical scheme by which the flow and scalar field equations of the previous

section are to be solved is the Vortex-Transport Element Method. A non-reacting version of this

scheme was presented in ref. [ 11 ].

The numerical integration of the governing equations is initiated by discretizing thedn *
vorticity, "material density derivative" (- _ do), Shvab-Zeldovich scalar gradients and product

pvdt

mass fraction via a generic discretization function. It distributes a property ý over a field of

elements which are characterized by a finite area, A1, and by a strength, ýi, locally distributed via

a radially symmetric core function, fa. The discretization function is also used to reconstruct the

discretized quantities at later times and is:

N
•(Xt) = ý ,(t) Ai(t) fs(Ix-XjI) (20a)

i=1 S

where Xi = Xi(x,t) is the element location. The core function which is characterized by the core

radius 8 within which the most significant contribution of each element is experienced, is a

second order Gaussian, i.e.

f8(r) = ---2exp(- _12) (20b) 5
g8

and it enables a second order accuracy of discretization under the condition that core overlap

between neighboring elements is maintained [ 12].

8
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The velocity induced by the discretized vorticity field is obtained via a discrete,

desingularized Biot-Savart law resulting from the solution of equation (9):

N

u((x,t) - J r,(t) KS(x-X-(t)) (21 a)
,i-i

where r,(t) = co(t)A,(t) is the element circulation and K8 is the desingularized kernel of the Biot

Savart law given by:

K6 x)= (y, I-) [ x L 2b

The expansion component of velocity is obtained in a similar fashion, i.e. via a discrete,
desingularized equivalent of the convolution resulting from the governing Poisson equation

(eq. 10):

N
U.(X,t) =-- ('- -- )i(t) A#(t) VG6(x-XI(t)) (22a)

P pdt I
where VG8 is the desingularized gradient of the Poisson equation and is given by

VGS(x x'Y) [1 - exp(- (L2)] (22b)

The component of the velocity field induced by the boundary conditions is obtained by *
solving the governing Laplace equation (eq. 11) under a Schwartz-Christoffel conformal

mapping transformation. The total velocity is hence obtained via the Helmholtz decomposition.

The Shvab-Zeldovich scalar solutions are obtained from the corresponding discrete

gradient fields in an analogous manner since the two quantities may also be related via a Poisson

equation, i.e.

V2 •-=V.g (23)

Hence the Shvab-Zeldovich scalar fields may be expressed as
N

O(x,t) = g(t) Ai(t) • VG8(x-L(t)) + O (24)
i=1

where Pp is the integration constant obtained from boundary conditions. The complete reacting

scalar field is obtained by using these solutions in conjunction with the product mass-fraction

solutions which are obtained from equation (20).

The time evolution of the flow and scalar fields is established by numerically integrating
the governing transport equations locally to each element. This is done in two fractional steps.

9
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The first step, the non-diffusive step, includes all processes other than diffusion. During this step
the element locationis are updated by numerically integrating

- u (25)
dt i

that is, the elements are advected with the local velocity vector. This defines element
trajectories, as well as material lines. The element vorticity is updated by locally integrating the
corresponding circulation equation, 3

di .V_.x dil Ad (26)

dt p dt
were the pressure gradient has beea substituted by the material acceleration using the relevant
momentum equation. Both equations (25) and (26) are integrated via Euler predictor-corrector

schemes and the material acceleration in equation (26) is established by a two-step iteration
forward-difference scheme.

The direct integration of the corresponding Shvab-Zeldovich scalar gTadient transport
equation,

-. + gVu+ g x ( k) =0, (27)

is avoided. Recognizing that under the physical requirements of the problem, isoscalar and
material lines may coincide and considering the kinematical evolution of the latter (relating the * *
change in length of a material line elemental segment (81) to the velocity difference at its ends,

i.e.
d(&) = 8.Vu ) (28)dt

equation (27) may be transformed into a simpler form [II], i.e.

dJ ifpI~ =0 with g = g ini 81i =1I1ilI (29a,b,c)

where _n is the unit vector normal to the material line. Equation (29) simply implies that along a

material-isoscalar line

gi= constant (30)
p 8li

The constant is specified by the initial conditions. 811 as well as _n are readily available due to S

the Lagrangian nature of the scheme which trivially provides the topology and evolution of
material lines.

For the product mass-fraction field evolution (finite reaction speed chemistry) an
alternative approach is followed. The concept of product particles is introduced. Such particles

10
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are positioned at the center of the computational elements and are convected with the latter by
the flow. Product particles directly experience the combustion process. This is accomplished by W
integrating (via an Euler predictor-corrector scheme) the relevant transport equation, i.e.

dYk +(31)
dt

for each particle. The corresponding element strengths are then established from the particle
values via the discretization function (eq.20). The effects of any error associated with such a S

discretization are minimized by correcting the product particle values at the end of the complete
numerical integration, i.e. after the diffusion step, via knowledge of their values at the end of the
first integration step, i.e. after the convection-reaction process.

In the second fractional integration step diffusion effects are accounted for. This is S

accomplished via the core expansion scheme [131. Diffusion is simulated by expanding the
element core size according to:

8: (t+At) = 8f(t) + 4At (32)C
where C=Re for ý=co and C=Pe for ý=g or YP. This expression is arrived at by using the element

field, defined by the discretization function (eq.(20)) to analytically solve the governing diffusion

equation,
* 0

d._•= 1 2•,(33)
dt C

under *hc assumptions that the strength and area of the element are constant and that the core
radius is only a function of time.

The presence of the baroclinic torque in the evolution of the vorticity field requires
knowledge of the density gradient field. This in turn necessitates knowledge of the product
mass-fraction gradient field. In the infinite reaction speed case this is trivially established from
the S-Z gradients. For the finite reaction speed on the other hand it is established by
differentiating the product mass-fractiol) field given by equation (20) and is

N
VYp(x,t) - Yp,(t) Ai(t) Vfs(x-Xi) (34)

i--I S

where

Vf6(x) - -2 -(Y) fs(x) (35)

I I
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The severe stretching of the Lagrangian mesh used in the discretization of the transported

quantities, which increases the distance between neighboring elements, may lead to the U

deterioration of the accuracy of the solution. To overcome this problem, a scheme of local mesh

refinement is adopted whereby elements are continuously introduced and deleted to ensure core

overlap. Strong overlap is enforced near the inlet of the domain by allowing a small maximum

separation between n,,ighboring elements. This condition is relaxed further downstream by

increasing this threshold value, thus allowing for efficient computations without compromising

the accuracy of the numerical scheme.

IV, FLOW GEOMETRY. AND BOUNDARY CONDITIONS

The geometry of the computational domain together with some of the boundary

conditions are shown in figure 1. The shear layer evolves in a two dimensional channel of height

H and length Xmax, between two parallel streams (1-top, 2-bottom) which mix downstream of a

thin splitter plate. The top and bottom walls are modeled as rigid, slip, impermeable and

adiabatic planes These conditions are satisfied by mapping the entire channel region on the 5

upper half of a complex plane, and using the appropriate image system of the vortex and

transport elements. At the downstream section, a condition of vanishing vorticity and scalar

gradient is used as outflow boundary condition, and is applied by removing the elements which

cross the x=Xmax plane. At the inlet section, the velocity-vorticity, Shvab-Zeldovich variables- •
gradients and product mass fraction (for finite reaction speed simulations) profiles are specified
as follows:

Velocity U(x=O,y,t) = U + U + U1-U2 erf 0 5  (36)
2 2 (

Vorticity w(x=O,y,t) = - exp(- (y-0.5) 2  (37)

-05

S-Z variables X(x=O,y,t) = + - ef(Y ) x=0,yt) I (38ab)
2 2 a

S-Z gradient VX.(O,y,t) = (0, !-(yyt)) V'(O,y,t)=(O,O) (39a,b)

exp( (y-0.5) 2)
with -- 4x---O,y,t) = exp( 2  (40)

12
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Product Yp(x--O,y,t) = Yp,, exp( (y-0.5) 2  (41)
0
2

In the above profiles, as well as in the numerical simulations, the channel height is used as the

space non-dimensionalizing scale. a is the standard deviation of the Gaussian profiles defining
the inlet vorticity, gradient of the X variable and the product mass-fraction. Its relation to the
scaling length (H) is obtained by requiring that two wavelengths of the most unstable mode of

the uniform density shear layer (obtained from linear stability analysis) fit within the channel
height. Finally, it is noted that in the numerical simulations the velocity field is scaled with the
top stream velocity (U 1) whereas the density and temperature fields by the common to both
streams (see next paragraph) values of these properties (po, To).

The profile for the X Shvab-Zeldovich variable is obtained by assuming that each of the
two fluid streams consists of a single reactant (i.e. X• = 1, X2=-O) which at the inlet experiences an

errorfunction type profile. Profiles of this type are not unlike the experimentally observed
profiles for the two reacting species. For the y Shvab-Zeldovich variable, the assumption is made

that the temperature and product mass-fraction profiles are directly related, yielding a constant
value profile. Under the behavior imposed by the governing equations such an assumption is

valid for flows which prior to combustion were of uniform temperature and in which no product
was present.

In order to avoid having to deal with ignition phenomena at the inlet for the finite 5 0

reaction speed case (note the temperature dependent nature of the reaction rate (eq.7)), a finite
amount of product is introduced there. This is described by the Gaussian profile given above
(eq.41) where YPmax is chosen as 0.4. The direct relation of the product mass-fraction and the

temperature implies that the temperature at the inlet is raised and hence combustion becomes

possible. In the infinite reaction speed case where reactants react on contact, ignition problems
do not exist and the inlet product mass-fraction profile is uniquely defined by the Shvab-
Zeldovich variables as explained in Section II (eq.17). Hence, the scalar field inlet profiles

specified above which are used in the numerical simulation of the flow, specify the inlet species
profiles shown in figure 2. The related temperature and density profiles can straightforwardly be

deduced from the product mass-fraction profile as earlier explained.
Initialization of the calculation is carried out by assuming that the inlet conditions persist

throughout the domain. Hence, the vorticity-S-Z gradient-product layer between the two fluids, B

defined by the above inlet profiles is discretized by distributing vortex-transport-product

elements over nine material layers (lines) lying within the support of vorticity. The elements are
of square area of side h=0.0195. The value of the core radius is 8=0.0234 (i.e.8>h).

Finally, external forcing is implemented at the inlet. The forcing signal, shown in figure 5

3, consists of in-phase components of the most unstable mode of the uniform density layer and
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its subharmonic, both at an amplitude Af=A,=0.025. The interaction of the two forcing

frequencies gives rise to two types of eddies. The eddy which forms during the part of the cycle

which the two components are in phase - the "fundamental" eddy - is larger than the one which

forms in the second part of the subcycle - the "subharmonic" eddy - during which the two

components are out of phase. The forcing is implemented by displacing elements at the inlet

according to the forcing signal.

Simulations at both finite and infinite reaction speed were carried out with the double aim

of a) establishing a preliminary assessment of the effects of the presence of combustion on both

the flow and scalar fields and b) of providing a comparison between the finite and infinite

reaction speed models.

The time step for all calculations was At=0. 1 and the length of the domain Xmu,=5. The

fluid dynamical parameters were kept constant for all runs. The inlet velocity ratio is r-U-= 0.5
U,

and the Reynolds number (and Peclet number since Pe=Re) based on the velocity difference

across the layer (AU=U,-U 2) and on the vorticity layer's original thickness (d=2o) is

Red - Al.d = 500. It should be noted that the Reynolds number could have also been defined
V

with respect to the channel height H, since, as was earlier explained, H is characteristic of the
largest cross-stream scale of the layer. The resulting Reynolds number is RCH - AULH 6400.

V
For the finite reaction speed cases the chemical parameters were specified as follows: the

Ea A Aactivation temperature is Ta= 10, the frequency factor Af d- 100 (A4,=Af H-1280),
RT, AU AU

the mass stoichiometry ratio 0=1 and the enthalpy of reaction (referred to in this text as "heat

release") Q-A-- AhL = 6. The corresponding Damkohler number (Da-----a where tdiffd is the
C PtO imhe s aT

diffusion time scale and Tche- xp(L) the chemical reaction time scale) and the Karlovitz

number (Ka-=--k where cf.--d is the flow time scale) are Dad= 1026 and Kad-= 0.49,
Th1W AU

respectively [DaH= 168110, KaH= 0.038]. The ranges of values of these non-dimensional

numbers, which for a given flow are controlled by the chemical time scale, are limited by the S

available computational resources. This is not only because increases in the reaction speed will,

evidently, necessitate increases in the temporal numerical resolution, but also because under

these conditions the reaction zone thickness is reduced, thus requiring higher spacial numerical

resolution as well. The values of the Damkohler and Karlovitz numbers used here are,

nevertheless, not far from physically realistic values, describing a reasonably fast reaction. It

14
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should be pointed out though that the same is not necessarily true of the parameters used to

create them. Specifically, the values of the activation temperature and the frequency factor,
while higher than those used in previous work [71 are still quite low. This is a consequence of 0

the fact that due to the nature of the reaction rate the activation temperature has an independent
effect on the reaction zone thickness. Even if the effect of increasing the activation temperature
on the reaction time scale, is counterbalanced by an appropriate frequency factor, the reaction
zone thickness is, nevertheless, reduced. Hence, spacial resolution limits the range of values of

the activation temperature and the limitations on the reaction time scale, in turn, limit the

frequency factor.
The infinite reaction speed model requires only one chemical parameter, the heat release.

This is specified to be the same as that used in the finite reaction speed simulations, i.e. Q%=6

To assess the effect of combustion on the flowfield, the reacting calculations were

repeated but this time the effects of the variable density field on the fluid dynamical field were

ignored. That is, while the density was allowed to vary due to combustion, the density used in

the evolution of the flowfield was kept constant and equal to its inlet value. Since, under the

earlier noted assumptions, the variation in the density field is the only means by which the

reacting field can influence the flowfield, then by keeping the flow density invariant the

flowfield remains ignorant of the presence of the reacting field. In what follows, the cases where
the flow and combusting fields are decoupled in this manner, will be termed as the "pno,, S

uniform" cases. Evidently, as far as the flow is concerned these cases are indistinguishable from

uniform density non-reacting calculations. Hence, in the analysis of the flowfield they will be

treated as such. For the scalar field on the other hand these cases differ from uniform density

calculations and hence they will be properly distinguished.

Figure 4 displays a flowfield comparison between the non-reacting layer (left) and layers

reacting at finite (middle) and infinite (right) reaction speeds. The shear layer is depicted using

the vortex elements and their local velocity vectors. The velocity is plotted with respect to the

inlet mean velocity to highlight the relative motion within the layer. To describe the evolution of

the flowfield in time, three sequential time frames are shown. In order to be able to provide a

clearer description of the flow, which is partly inhibited by the small size of the flow

visualizations of figure 4, the first time frame of each case shown in the figure is reproduced in

figure 5 at an enhanced scale.

It is seen that in all cases, and in agreement with experimental evidence, the flow is

dominated by large scale coherent vortical structures. The repetitiveness of the flowfield

evolution for each case, a manifestation of the external forcing, is also evident. But the flow

behavior varies between the different cases and comparison between them yields two major
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conclusions: a) Exothermic combustion significantly modifies the flowfield, resulting in reduced

layer growth, and b) the flowfield characteristics of the finite and infinite reaction speed cases,
while substantially different from those of the non-reacting flow, exhibit striking similarities. 1

Comparison betwee:. the non-reacting and reacting cases indicates that density variation

resulting from the combustion heat release modifies the flowfield by altering the shape, evolution

and interactions of the vortical stnrctures. During the initial rollup, the fundamental eddies

appear less rolled and larger in overall size (area) than their uniform density, non-reacting,

counterparts. This increase in size though, appears to be mainly in the streamwise direction

resulting in more elongated, more elliptical structures. Similar features are experienced by the

subharmonic eddies which, additionally, appear much less coherent. Further downstream, where

the eddies start to interact, major differences are experienced. In the non-reacting flow, each

subharmonic eddy interacts with its downstream fundamental eddy. The two, pair (by spiraling

towards each other in a clockwise direction) to form a larger, coherent and highly elliptical

structure which continues to rotate, exposing its major axis to the streamwise flow. This results
in significant growth of the shear layer. In the presence of reaction this process is fundamentally

altered. Eddy pairing is resisted and the subharmonic eddy appears to be torn between its two

neighboring fundamental eddies (with the downstream eddy absorbing its larger part) in a much

more continuous process than pairing. The resulting larger structures appear less elliptic and

coherent than before and they tend to keep their major axis more aligned with the streamwise I *
direction. This impairs the layer cross-stream growth significantly. Finally it is noted that the

convective speed of the vortical structures is also altered in the presence of reaction. Figure 5

displays this more clearly. Eddies formed during the same subcycle of the forcing function

(indicated by arrows) appear to move faster in the reacting flow. This feature is suspected to be
primarily a consequence of the volumetric expansion associated with the combustion heat release

which in semi-confined flow like the one considered here will cause a streamwise acceleration.

The similarity of the flowfield between the finite and infinite reaction speed cases on the

other hand is substantial. The eddy evolution particularly at the earlier parts of the domain is

strikingly similar. Eddy interactions are by tearing in both cases and some minor differences can

only be detected towards the end of the domain where for the infinite reaction speed case the

subharmonic eddy appears to be able to survive longer. The effect of reaction on the eddy speed

also appears to be similar for the two cases.

Figures 6 and 7 which describe features of the mean flow indicate that the above noted

instantaneous behavior is repetitive and thus biases the mean flow characteristics. Figure 6

presents comparisons of the mean velocity profiles (at a fixed downstream location (x=3))

between the non-reacting flow and the two reacting cases; finite (6a) and infinite (6b). The
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characteristics of the profiles shown, are qualitatively typical of most downstream locations

within the computational domain. The steepening of the profiles in the presence of reaction, a

which suggests smaller shear layer growth, is obvious. The similarity between the finite and

infinite reaction case profiles is also noted. The shifting of these profiles to higher speeds, which
was earlier suggested by the faster moving structures, is evident. It is interesting to note that for

the reacting cases the mean velocity profile loses its monotonic nature, typical of uniform density
shear layers. Instead, close to the fast free stream an overshoot, and close to the slow free stream

an undershoot of the respective neighboring free stream values are experienced. This type of

features of the mean velocity profile were also documented in ref.[6] for a reacting temporal
shear layer and were attributed to the presence of the baroclinic generation of vorticity. Evidence
supporting this argument was also established in our earlier work with non-reacting variable

density shear layers [ 14], where similar types of overshoots and undershoots were experienced.

In figure 7 the vorticity thickness defined with respect to the local free streams as

= Uj(x) - U2(x) (42)

[\ay Jx1max

(where the overbar indicates a time-averaged property) and is, hence, representative of the

spacial cross-stream thickness of the layer is plotted versus the streamwise coordinate. (It should 4

be pointed out that the definition of the vorticity thickness used here is not necessarily impaired

by the non-monotonical nature of the velocity profile since the overshoots-undershoots are small

(<2%AU). An alternative definition of 8w from the points of the mean velocity profiles where

the velocity varies by 5% of the free-stream value -i.e. the typical experimental approach- would

give rise to similar results since the overshoots-undershoots would not be detected.) As in figure

6 the comparison in each part of figure 7 is between the non-reacting and reacting flow. As

expected, a drop in the vorticity thickness growth for the reacting cases is clearly seen. This drop

is most significant towards the end of the domain where the effect of the inhibition of eddy 9

pairing is most pronounced. Thus, the alteration of the eddy interactions represents the most

important mechanism by which the combustion exothermicity reduces the forced shear layer

growth.

Figure 8 displays the instantaneous vorticity fields for the three cases of figure 5. It 0

should be noted that only the O<x<3 part of the computational domain is indicated. As expected,

the correlation with the vortical structures is evident. The same is also true for the similarity of

the finite and infinite reaction speed cases. But the figure makes clear another difference

between the non-reacting and reacting cases. The former is characterized by vorticity of a single

sign (negative) while the latter by vorticity of both signs; a field of mainly negative vorticity with
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islands of positive vorticity surrounding the vortical structures. The origin of the uniformly

negative vorticity of the non-reacting case and the overwhelmingly negative field of the reacting
cases should come as no surprise since the inlet vorticity is negative (top stream is fastest,

resulting in clockwise rotation). The positive vorticity of the reacting cases must be a
manifestation of the baroclinic generation since from the mechanisms of vorticity modification
present here, only this one may change the vorticity sign. The presence of the positive vorticity
around the vortical structures must have important effects on the flow and is suspect for a
significant number of the differences between the non-reacting and reacting flowfields. It
should, for example, with its anticlockwise rotation, be responsible for the overshoots and
undershoots of the average velocity profiles as earlier suggested. One could speculate that its
location close to the free streams may inhibit entrainment of irrotational fluid inside the vortical
structures. By creating a tendency towards counterclockwise rotation on the outskirts of the
eddies it may also be responsible for the inhibition of pairing, which as was earlier noted is
initiated by a clockwise spiraling of eddies around one another. To be able to clarify these
points, a closer scrutiny of all the mechanisms by which combustion and the resulting variable •

density field modify the vorticity field needs to be carried out. This is currently being

accomplished and the results will be presented in a future article (ref. [15] ).
The similarity of the vorticity fields of the two reacting cases, which like earlier findings

points to the effectiveness of the infinite reaction speed model to reproduce the effect of the

actual, finite reaction speed combustion on the flowfield, also provides an internal consistency

check of the numerical scheme. As noted in the previous paragraph, the dual sign of the vorticity

field of the reacting cases is a manifestation of the baroclinic generation of vorticity. This

mechanism of vorticity modification requires knowledge of the density gradient field. As was

earlier seen (Section III) due to the different numerical approaches in dealing with the product
mass-fraction field in the finite and infinite reaction speed cases, the density gradient is

established in quite different ways for the two cases. The qualitative agreement of the vorticity

fields of figure 8 points to the validity of both approaches.
As a final tool in the investigation of the effect of the combusting field on the flowfield,

statistically averaged quantities are considered. In a variable density field, such as the one

resulting from the combustion heat release this is usually done using Favre (density weighted)

averaging. The advantage of this type of averaging over the more traditional Reynolds averaging

is that it results in simpler averaged equations by avoiding terms involving density fluctuations.

Its major disadvantage lies in the fact that the resulting extra terms in the governing equations,

while fewer in number, are less physically intuitive. Furthermore, they do not incorporate all the

features of the fluctuating (in the Reynolds sense) field, since fluctuating quantities are part of
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the Favre averaged quantities, while at the same time they involve the effect of the average

density. -

In direct analogy to Reynolds averaging, the implementation of Favre averaging of the

equations of motion results in extra terms formed by the products of the fluctuating quantities. In

the two dimensional case considered in this work these quantities are:

puv (= pu.v), pu , pv (43)

As pointed out in ref.[161 the first term, the turbulent stress term, represents the rate of transfer of

momentum flux. The second and third terms are indicative of the flow's turbulent kinetic energy

per unit volume in the streamwise and cross stream directions respectively and are representative

of the turbulence intensity. The total flow turbulent kinetic energy can be defined as:

KE=PU +pv (44)
2

As noted earlier, due to the presence combustion heat release, the density decreases

significantly and this results in decreased Favre turbulent quantities (eqs.43 and 44). It should be

clear though that this does not necessarily imply that the oscillating nature of the flow is

diminished. It only indicates to the fact that the mean density is reduced. To clarify this point,

the Pnlow uniform case with the variable density of its reacting field used in the calculation of the *
turbulent quantities, will be provided for comparison. Since this latter case experiences the exact

same flowfield as the non-reacting case then the corresponding Reynold's turbulent quantities are

identical. Hence, any difference in the Favre turbulent quantities between the two cases can only

be a consequence of the variable density and will thus provide an indication of the effect of the

decreasing mean density.

Figure 9a presents a comparison of turbulent stress profiles between the finite reaction

speed case, its corresponding uniform flow-density case (as explained above) and the non-

reacting case. Figure 9b presents an analogous comparison for the infinite reaction speed case.

Profiles are displayed at a fixed downstream location (x=2.5) and are typical of the profiles

experienced in the whole field. It is clearly seen that the region of significant fluctuations is

related to the shear layer region. This implies that the shear layer represents the prime

mechanism of turbulent mixing of the two streams. The bell-Gaussian shape of the profiles, in

analogy to those of the Reynolds shear stress in a uniform density flow [17], clearly indicates

that turbulent momentum transfer from the free streams to the shear region represents the latter's

prime mechanism of growth. But the figure also clearly shows that this transfer is significantly

diminished in the presence of combustion heat release. Furthermore, it is seen, that the effect of p

the decreased mean density, while significant, cannot account for the whole drop in the turbulent

stress. This suggests that heat release acts to dampen the oscillating nature of the flowfield. In
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agreement with previous analysis the figure also points to the similarity in the characteristics of

the finite and infinite reaction speed cases. X

A similar picture is seen in the turbulent kinetic energy profiles (figure 10a,b). They are S

plotted at the same downstream location as those of the turbulent stress. Again, it is seen that the

presence of combustion, decreases the kinetic energy of the flow and that only part of this

decrease can be attributed to the decrease in the mean density; the fluctuating field is dampened

as well. It is interesting to note the change in the shape of the reacting case profile. The single

peak profile experienced by the non-reacting flow is transformed into a three peak profile. The

fact that the Pflow uniform case profile experiences a singe peak profile, suggests that the

transformation is not due to the mean density or its fluctuation. Rather it is a result of the altered

velocity field and it implies, as is the case, significant differences in the field's structure. The S

shift from a single to a three peak profile invites the speculation that this might be related to the

alteration of the vorticity field in the cross-stream direction from an all negative (for non-

reacting) to a positive-negative-positive (for reacting) field noted earlier. As was seen this

modifies the monotonic nature of the non-reacting flow mean velocity profile to one with a

gradient which experiences three peaks instead of one. Thus, it appears that the turbulent kinetic

energy could be related to the cross stream gradient of the mean velocity profile.

Finally, a brief assessment of the feedback of the modified flowfield on the reacting field 0

itself is to be attempted. Figure 11 displays two dimensional visualizations of product mass-

fraction fields. It should be remembered that under the assumptions imposed on the governing

equations these two-dimensional mass-fraction maps are equivalent to temperature maps or

inverse density maps. The comparison is between the Pflow uniform finite reaction case and the

corresponding finite and infinite reaction speed cases. The figure clearly shows that product

formation is strongly dependent on the evolution of the vortical structures which in turn are

dependent on the destabilization of the vorticity-material layer separating the two fluids at the

inlet. Because of this dependency figure 11 may also be used to deduce the earlier noted effects 0

of the combusting field on the flowfield. The similarities between the finite and infinite reaction

speed cases are evident here as well. This figure provides some of the reasons why the infinite

reaction speed model is able to provide such a good approximation of the finite reaction speed

simulations. It is noted that the finite reaction speed result clearly indicates features of thin 0

reaction zone combustion rather than of distributed reaction regions. Furthermore, it is seen that

even in the braids where the strain is highest the product concentrations are high. This implies

that quenching, i.e. the collapse of the reaction zone due to excessive strained and the associated

drop in temperature, does not take place. Both of these effects point to the fact that the 0

parameters chosen for the finite reaction speed simulation are such that they result in a fast
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reaction (compared to the flow). Thus, it can be concluded that the results presented herein
indicate that the infinite reaction speed model is effective at mimicking the behavior of the finite X,
reaction speed case when the latter experiences a fast reaction (i.e. approaches the infinite
reaction speed limit) and not necessarily for all other cases.

Figure 12 displays the quantitative effect of the combustion modified flowfield on
product formation. This is accomplished by presenting the streamwise evolution of the product
thickness defined as

80W ' 0(x,y) dy

0 (0,y) dy

where D is the product density pp=pYp. Hence the product thickness is representative of the

mass of prodict at a given channel cross-section. In each of the two parts of figure 12 the

product thickness of the reacting case is contrasted to two versions of the thickness of the

comparison, Pnfow uniform, case. It should be remembered that the comparison case is created by

simply decoupling the density of the flowfield from the density of the reacting field which is

allowed to vary. It should be recognized though, that using a variable density in the calculation * 0
of the mass of product, practically eliminates the effect of the change of volume from this latter

quantity. Thus the comparison between the reacting and the Pflow uniform cases does not

necessarily provide a measure of the relative difference in mass of product but rather it is more

indicative of the instantaneous relative size of the areas where product exists. For this reason the

calculation of the product thickness for the Pflow uniform case is repeated using the uniform inlet

density for the reacting field as well. This thickness is also shown in figure 12. Figure 12a

shows this arrangement of thicknesses for the finite reaction speed case and 12b for the infinite

reaction speed. -

The figure clearly shows that combustion exothermicity reduces product formation by

both reducing the area where product exists as well as by reducing the density over this area.

The second effect is by far the most dominant. The drop in the area where product is formed is

not as significant as that of the vorticity thickness seen earlier because the latter only accounts for

the cross-stream thickness of the layer, i.e the cross-stream size of the vortical structures but not

their streamwise size. As was sct-l earlier in the flow visualizations, for the reacting cases the

cross-stream size of the eddies is, -iuced substantially, but their overall size only marginally.

S
VL CONCLUSIONS
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A numerical scheme based on the Vortex-Transport Element Method has been presented

which is able to sim-ulate finite as well as infinite reaction speed combustion of significant a

exothermicity in a post-transitional spacial shear layer.

Numerical results indicate that the presence of combustion heat release strongly modifies 4

the flowfield and, in a forced layer, decreases the layer growth via an alteration of the interaction

of the vortical structures from pairing for tearing. The reduced growth in conjunction with the

reduced density within the mixing region leads to diminished mass of products formed.

Volumetric expansion resulting from the combustion heat release is seen to accelerate the

flow in the streamwise direction. Baroclinic vorticity generation modifies the vorticity field in

such a way that positive, counterclockwise vorticity appears at the outskirts of the vortical

structures. The presence of this positive vorticity is related to overshoots an undershoots

experienced by the the time averaged velocity profiles as well as to the triple peak nature of the

Favre-averaged turbulent kinetic energy profiles. It is suggested that a more detailed

understanding of the effects of combustion exothermicity on the flowfield can be obtained via a

closer scrutiny of the mechanisms by which the combustion related density field interacts with

the flow.

The infinite reaction speed model was found to represent an effective, computationally

cost efficient approach in analyzing the effects of the combustion heat release on the flowfield as

long as the reactions to be replaced by the model are fast compared to the flow. a *

I

I
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Figure 1. The geometry of the computational domain together with initial element
configuration and some of the boundary conditions
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(a) -_= Finite reaction speed inlet species profiles
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(b) Infinite reaction speed inlet species profiles
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Figure 2. The inlet mass-fraction profiles for (a) the finite,
and (b) the infinite speed of reaction cases.
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(a) x
Tune-averaged velocity profiles
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Figure 6. Comparison between the non-reacting and reacting time averaged velocity

profiles for (a) the finite and (b) the infinite reaction speed cases. Streamwise
location x=3
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Figure 8. Vorticity contours comparison between the non-reacting (top) and reacting at
finite (middle) and infinite (bottom) reaction speed shear layers. The time is
t=l10. (kx<3 part of domain displayed.
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(a)'
Vorticity thickness profiles
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Figure 7. Comparison between the non-reacting and reacting vorticity thickness profiles
for (a) the finite and (b) the infinite reaction speed cases.
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Favre turbulent suess profiles S
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Figure 9. Comparison of the Favre turbulent stress profiles between the non-reacting,
reacting, and reacting with uniform density imposed on the flow but not in the
calculation of the stress. (a) is the finite and (b) the infinite reaction speed case.
Streamwise location x=2.5 5
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(a) i
Favre turbulent kinetic energy profiles

x Non-reacting
a Reacting-finite

0.8 + Reacting-finitepn0 wuniform

0.6

y
0.4

0.2

0 5 10 15 20 25 30 35 40
KE x 10-3S

(b)

Favre turbulent kinetic energy profiles *
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Figure 10. Comparison of the Favre turbulent kinetic energy profiles between the non-
reacting, reacting, and reacting with uniform density imposed on the flow but
not in the calculation of the stress. (a) is the finite and (b) the infinite reaction
speed case. Streamwise location x=2.5 5
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6 Product thickness profiles
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Figure 12. Comparison of the product thickness profiles between the reacting, reacting
with uniform density imposed only on flow and reacting with uniform density
cases for (a) finite reaction and (b) infinite reaction speeds.
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APPENDL II

Dynamics of Unsteady Strained Flame

Abstract

Transient response of flame to an unsteady strain rate is analyzed using a
series of mathematical transformations. Initially, the flame is located in the
stagnation plane. At time t=O the unsteady strain rate is applied. Two basic
patterns of the strain rate are considered: a step function, and a sinus wave. Flame 5

response is characterized by two parameters: (1) burning velocity and, (2) flame
location. The influence of the Lewis number and the strain rate on these two
parameters and on the relaxation time is investigated. For unity Lewis number,
within the range of compressive strains characteristic for a turbulent jet flow (200 5

- 500 1/sec), the shapes of the temperature and mass fraction profiles remain
almost unchanged. This leads to the burning velocity that only slightly varies
with the strain rate. In the case of non-unity Lewis number the profiles are
significantly altered even by relatively weak strain rates. This happens due to the 3

interaction of unbalanced heat and concentration diffusion and convection. The
changes in the profiles produce significant variation in the burning velocity. Some
analytical results are obtained fcr the relaxation time of flame as a function of the

strain rate and thermo-chemical parameters. The analytical derivations are based on
the application of the integral approach in the transformed domain. In order to
investigate the receptivity characteristics of flame, the periodic strain rate is
applied. In the wide range of frequencies flame demonstrates periodic response.
The average value of the burning velocity is very close to the burning velocity of
flame under the average strain; phase shift between the burning velocity and strain
rate fluctuations is approximately constant and equal to -1.37r. This pattern is
violated only when the period of the strain rate oscillations is much lower than the
diffusion time scale. The analysis of the flame response suggests that the steady
state assumption can be used with a reasonable accuracy in a flamelet modeling,
although the phase shift should be taken into account. Extinction strain rate which
we define as the strain rate when the steady state flame location crosses the
stagnation plane for the first time, is an exponential function of the heat release.
This suggests that, in order to get adequate values of the extinction strain using a

0I

1D

0 0 0 0 0 0 0 0 0 0



simplified chemical kinetics mechanism, one should pay particular attention to the
chemical reactions which maintain the energetic balance of the system.

Nomenclature

k - pre-exponential factor
cp - specific heat of mixture at constant pressure in J/kg K
A - thermal conductivity of mixture in W/m K
p - mixture density kg/ m3

e - strain rate of the flow in 1/s
U - velocity of the imposed stagnation point flow in m/s
u' - velocity induced by the density drop at the reaction front
Yo0 , Y,, Yf - mass fractions of oxidizer, dilutant and fuel
Co.,, C, Cf - molar concentrations of oxidizer, dilutant and fuel in mole/ m3

T - thermodynamic temperature in K
x - physical coordinate normal to the flame front in m
Q - heat release per mole of fuel in J/ mole
W - reaction rate in mole/m 3 s *
R. - universal gas constant
Ed&R - activation temperature, in K
p - pressure in Pa
H.- enthalpy of mixture in J/ kg 9
W0., W,, Wr - molecular weights of oxidizer, dilutant and fuel in kg/ mole
W,, - molecular weight of mixture in kg/mole
m - laminar flame eigenvalue
/I - non-dimensional heat release 0
Ze - Zeldovich number
u,, - laminar steady flame velocity
O - non-dimensional temperature
17 - position coordinate in the transformed domain, non-dimensional
A4, An, A, - thicknesses of the temperature, mass fraction and reaction rate profiles,
respectively, in the transformed domain, non-dimensional
o - subscript denoting values in the cold mixture far ahead of the flame
b - subscript denoting values in the products region far behind the flame
* - subscript denoting characteristic values

Introduction

2
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A lot of attention in the last decade has been paid to the investigation of ,

flamne located in the stagnation point flow. It was due to the relative simplicity of
the configuration. an opportunity to study flame/ flow interaction and to compare
the numerical results with the experiment. This c, figuration is interesting not
only from the fundamental point of view, but also it might be used in the
modeling of a turbulent combustion flow. The idea is to split the flame front in a
turbulent flow into a collection of small planar flamelets. Each of these flamelets
propagates into the unburned mixture with the velocity dependent on the local
parameters (effective flow strain rate etc. ). Combustion affccts the flow field s
mainly through the change in density near the reaction front and through the heat
release. These characteristics depend on the amount of fuel consumed in the flame.
The effect of flow on the flame manifests itself primarily through the increase of
flame area which is characterized by a parameter called stretch (Law C. K. 1988). 0
This characteristic has two components: due to the strain rate and due to the flame
curvature. Study of flame in a stagnation point flow helps to understand the
influence of the strain rate on flame characteristics, while the effect of curvature is
accounted for on the global level considering the flame front as a collection of a 0
small planar flamelets.

Previous studies ( Law C.K. 1988) demonstrated that in a unity Lewis
number mixture and in the range of strain rates typical for turbulent flows ( <
1000 1/sec.) the flame structure and burning velocity are almost unaffected by the 0
strain rate and conserve the values corresponding to the unstrained flame. This
leads to the suggestion that only the evolution of the flame area should be tracked
in a turbulent combustion flow while the burning rate should be kept constant
and equal to the unstrained flame burning rate (Meneveau C. et. al. 1991). 0

In this paper we are studying a flame in non-unity Lewis number mixture.
Interaction of the unbalanced heat and concentration fluxes with the strain rate
could have a profound effect on the burning velocity. In many cases this
characteristic of flame can not be assumed to be equal to the unstrained value. We 0
utilize numerical calculations to study the response of flame to the different
patterns of the strain rate. We are interested in the range of strain rates typical for a
turbulent flow and not considering rates much higher than the partial extinction
strain (Darabiha et. al. 1986) when the steady state location of flame is crossing the 9
stagnation plane for the first time.

3
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Another important assumption that is usually made in turbulent combustion

flow simulations is the instantaneous response of flame to the strain rate 0
fluctuations. In many papers it has been pointed out that this assumption is ver&'

crude (Rutland 1990) and a transient model should be applied in a turbulent flow
simulation. In this paper we are investigating the receptivity of flame to the strain
rate fluctuations. The measure of receptivity is the ratio of the averaged burning

rate to the burning rate under the averaged strain. If this ratio is equal or close to

one in a realistic range of strains then the steady state assumption can be safely

used although the correction on the delay of the burning velocity fluctuations

should be made. We found that in a practically important range of strain rate 6
frequencies the flame demonstrates good receptivity. Thus, for engineering

purposes, the steady state assumption can be used.
In Chapter 1 steady and unsteady problems are formulated and the solution

procedures for both of them are described in detail. Solution of the steady

problem is used to initialize the unsteady problem. An approach by Zeldovich

(1985) is applied. Solution of the unsteady problem is based on the method

described by Rutland (1990). This approach is extended to include the non-unity

Lewis number case. In Chapter 2 an integral method is developed in order to a •

obtain the functional dependence of the flame response time on the thermo-

chemical and flow parameters. The idea of the method is to apply the regular

integral approach in the transformed domain where the governing equations have a

simple form and to use an assumption that the ratio of the heat zone thickness to
the mass fraction zone thickness is a weak function of time. In Chapter 3 a

numerical procedure used to solve the unsteady problem is described in detail. In

Chapter 4 we discuss the results of calculations obtained using a set of Lewis

numbers and typical thermo-chemical parameters . Chapter 5 contains 9

conclusions.

1. Formulation

In this paper a plane flame is located in the stagnation point flow produced

by two colliding jets of reactants and products ( Figure 1). X-axis is directed

4



perpendicular to the flame., y-axis - along the flame. We assume that the
externally imposed stagnation point flow is inviscid and irrotational. The 9
distribution of the x-velocity component in this flow is given by the follow ing
equation

U(x) = - -(t) x (1)
In this expression E is the diagonal component of the strain rate tensor.

flame

product- a

WS

streamlines reactants

Figurel Flame located in the stagnation point flow

Also, we assume that the strain rate E is a function of time. 6

Initialization

Initial temperature and deficient mass fraction profiles are obtained by
solving the problem of steady propagating premixed flame. The flame propagation
is governed by the following set of equations:
Continuity:

-d--(p u) o 0(2)dax

Enthalpy:

pu d = .d.. (•. d) + Q W(Y, H) (3)
dx dx Cpdx 0

Deficient mass fraction:

5
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pu dY = -4 (pD dY 1",. ti(Y. H)

Equation of state:

p = p R,, TAV,., (5 ),.

In this problem one-step chemical kinetics mechanism is assumed. Our numerical
simulations using full-scale chemical kinetics mechanism demonstrate that the
bulk details of the flame/ flow interactions can be described using a simple
chemistry mechanism.
Reaction rate:

W = k C0,, Cf exp(-EdRT) (6)
In this paper we assume that fuel is deficient. The concentration of the oxidizer is
almost constant and equal to the initial concentration:

Cox - Cox
Using the relationship between the mass fraction of fuel and its concentration, we
can rewrite reaction rate expression as follows:

W= kC0¶xp Y/exp(-EJRT) (7)
Wf

Boundary conditions for these equations are:
x=-oo H=Ho, x=+oo H=Hb, dHldx=O and
x=-oo Y=Yf 0, x=+o- Y=O (8)

Since two second order ODE have five boundary conditions, one of the parameters
of the problem, namely mass flux per unit area p u can not be specified
independently and is becoming an eigenvalue.

First, the continuity equation is solved. The result of integration is:
p (x) u(x) = Po u. = const

It means that the mass flux per unit area is constant along the axis perpendicular to
the flame front in a steady propagating flame. Introduction of the following new
variables (Zeldovich et. al. 1985) reduces the order of the system:

6= H-H y = -[Q (Hb-Ho)(WI, ]"'/2 dh (9)H 6-H o CPc, d r

m=pou4[ Q (W2) 1(10)IHb'H o (10)

Here 0 is reduced temperature, y is non-dimensional heat flux. m is non-
dimensional mass flux, an eigenvalue. Subscript * denotes characteristic values of
the parameters. We have used 0

. = A,,, c,,. = Cp.o =const k = 0 Po Y1
0 exp(-EJRTb)

Wf

6
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Enthalpy equation ,,'ntten in ternms of the new variables takes the form:
- oh ± 9~) 0 41

Here (,,10) is defined as:

0 a ) = ( W,/c4/( W/c 9). - A _ Y1 exp( Z, (O-l )/( l +Lu(I - l)))

and Z, = E (Tb-To) is Zeldovich number, TI -Tb TO is non-dimensional heat
RLb2  Tb

release, Yf = YI Yf 0 is non-dimensional mass fraction of the fuel. Another
equation can be obtained by multiplying original enthalpy equation by Wf, original
mass fraction equation - by Q, adding them together and integrating the resulting
equation. This operation results in equation

pu(Wf(H-Hb)+QY)= -IW/f d+pDQdY (12)
cp dx dx

which can be transformed into

Mr(6-I+ Y)=y±+ Yd__1, Le (13)
Le dO pcD

Here Le is Lewis number. Boundary conditions are
@6=O y=O Y=I; @6=l y=O Y=O (14)

Equations for reduced temperature (11) and mass fraction (13) are solved ' 0
numerically using damped Newton algorithm and a shooting procedure. Runge-
Kutta integration starts from the hot side of the flame. The initial values of the
derivatives at this point are obtained by approximating the functions y and Y using
the first terms in the corresponding Taylor expansions:

y = ki (1-0) Y = k2 (1-0)
and substituting these expressions into the governing equations to find the values
of k, and k2.:

dO 2 m2 L"
A& (o=l)=-k2 =-((k4)2 +.m k.)
dO

The Runge-Kutta integration proceeds up to the point where non-dimensional
reaction rate function (p (0) is equal to zero (reduced ignition temperature). At this
point the numerical value of the heat flux y is compared with the analytical
solution of equation (11) for y where (p (0) is put to zero and a correction to the
eigenvalue m is made. The integration continues up to the point where the
analytical and numerical solutions match. The equation for the mass fraction is
satisfied automatically (Zeldovich et. al. 1985). Once the solutions for y (0) and

7
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" 0') are obtained, the temperature profile in [he real domain is recalculated u~in:_,
the definition of the non-dimensional heat tlux N'

N= A, ,I(k C,, exp -EJRTf) c. p,,) (uOt/( I-P)+d I h/\( 9)( 15 '"

Solution of the unsteady problem

The reduced temperature and mass fraction profiles obtained from the
solution of the steady problem are used as initial profiles for the solution of the
unsteady problem. Transient dynamics of one-dimensional flame is governed by
the following set of unsteady equations:

Continuity ,
Lp + a(pu) = 0 (16)
at ax

Mass Fraction
JOat + Y ax ( aY ) . W(Y, T) Wf (17) • 0

Enthalpy

O aT + aT _ a( +Q W(Y,T) (18)at ax ax ax W
Also, the same equation of state (5) and reaction rate expression (7) are used.

Boundary conditions:

@x=-ooY=Yo,T=To, @x=+oo Y=O,T=Tb , (19)
Subscript 0 denotes the values of the mass fraction and enthalpy in the cold
mixture.

In this paper we adopted an approach of C. Rutland (1990). Stagnation point
flow U(x) is externally imposed on the flame. Due to combustion, a drop in
density occurs in the flame zone. This density change induces a velocity
component u'(x). This velocity perturbation vanishes far away from the flame
zone and is non-zero in its vicinity. The x-component of the total velocity can be
approximated as

u(x) = U(x) + u'(x).
Also, the following boundary layer approximations can be made:

8
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The dens it, drop in the flarne occurs mainly along the x-axis. Hence 0

"!"XJ >> > . ,

Here v' and vi' are perturbations of the velocity field in v and z directions,
respectively. Using these assumptions, we can rewrite equations (16), (17) and (18)
as follows:

+p au)P (2)0)p-+U(xUa) + a(pu'. -.. 0-(21)
atax ax

aY a Y a ay Y ) /(1
p at +P ( U+u') ax =ax p D ax W(,7 f(1

CaT aT a A - + Q W(Y, T) (22)
at a)xtx ax

These equations are. simplified and translated into a system of reaction-
diffusion equations using two transformations. The main ideas behind the
transformations are described in detail by Rutland (1990) for the premixed flames
and by A.Ghoniem and M. Soteriou (1992) for the diffusion flames.

First, the unsteady equations are non-dimensionalized. In the following 0
subscript 's' denotes some characteristic scale value, bar on the top of a variable
means that the variable is non-dimensional. The non-dimensional governing
equations are:

•+ 0, U(x) a(P-) + t_•afu') 0 o
at Ux, a£ x. aj

[}u, (U+u') 2 3 p) Y, w
r ate : -f

Ile first tranformation (t, x-) --> (t, X-')

xli

( 9 -

t= t, x= exp (e (t') dt' )0x (23)

; ~translates the c:on-dimensional equations into a domain moving the applied strain

rate:

+t ;A" B t) =

9,

• ~ ~~ 0



rj X Px d pY,
-- + i, m Bit) f - ---B(- -M D , W i. T)

at XIa -I x2` P, 5 a.- c a~i P, c T,
The part of the convective term related to the imposed velocity Ubx) is eliminated

in the (t, x') domain. The next (Howarth) transformation
is used to eliminate the part of the convective term which contains velocity u"

To apply the Howarth transformation, we integrate continuity equation with
respect to i from - -c to i and take into account that on the products side, far
away from the flame u'(- -c) = 0.
The result of the integration is

.dj + tu- B (t-) (ru' x0 . (24)

Second ( Howarth) transformation (t, x-) -- > (t, Y7) is defined as:

7 = p dx', t= t (25)

Application of the second transformation and equation (24) translates mass fraction
and temperature equations as follows:

Y--L'Ba(t) B -La('p Dafy t W(Y-, T) W (26)
X"2  A, a77 P T; 97i ,

a B W(Y, (27)
-a X-. -P, a? \C, a 77 P c..TWY )(7

We can make further simplification, assuming that A(x) p(x) = const a
Now we can rewrite equations (26-27) as:
aT _ 2 _ 'aT- t C_, W(Y,T), 2z.- - (28)

ai7 a17  Pc T T CP--

LY- t- a.B 2(t) 1  .. t__..W(y, 13WE, - a (29)

at a17 77) a i pY, D

The convective terms are absent in the ( t, 77) domain.
Chemical time scale is used as the time scale of the problem and heat diffusion
length scale is utilized as the length scale of the problem:

t= Cf' IW(Yf',Tb) x, = =l. oot CO = po IW l ll

10

S 5 0 0 0 0 0O



i
Initial mass fraction of fuel Y,' scales mass fraction; the difference between the
flame and 'cold' temperatures scales temperature T, = T, - T, Then equations
(128) and (29) are rewritten in terms of the following reduced variables:

Y= T=(_ T-T)Y,) T, -T)

and have the form

w(1, e)

_=Ka B '(t) po W (Y, e) (31)
at -i Le(l) a "7 P W(I, 1)

Here we introduced Karlovitz number to measure the strain rate and used energy
conservation equation Wf (Hb -Ho) = Q Yft which can be derived from equation
(12). Boundary conditions are:

@77n=0 Y-=0, O=I; @n7=+oo Y=1,O=0 (32) •
Expression for the non-dimensional reaction rate is:

Po W(, 1) = Y-exp(Ze(O-1)/(l +9(O-1))) (33)
P W(1, 1)

Parameters Z, and/.t have been introduced earlier for the steady propagating *
flame problem.

2. An integral solution in the transformed domain

Before solving numerically equations (30), (31) we will analyze them using
an integral approach and several assumptions. The purpose of this analysis is to
find the thickness of the preheat zone as a function of time. This result gives us S

the characteristic time scale of the flame response as a function of Lewis number
L,, Zeldovich number Z, , Karlovitz number K. and heat release parameter p.

We assume that the reduced temperature 0 and normalized mass fraction Y
profiles in the transformed domain can be approximated as:

007 =o I --1+I - 77 < AY (34)

0(77) = 0, r7/>,do k77) 1, r7/> AY

The profiles are plotted in Figure 2. We are considering the case when L, > 1 and
the thickness of the reduced temperature profile in the transformed domain Ao is

0S
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larger than that of the mass fraction profile. The analysis for the case of Le < I is
similar.

ay(t) aG(t) 17

Figure 2. Reduced temperature and mass fraction profiles as functions
of transformed coordinate 77, L, > 1

We assume that reaction rate expression (33) can be approximated as

Pa W(Y,, ) _ Yexp(Z, (&-1)) (35)
P W9(1,l)1

since the heat release parameter /u is of the order of 0.8 and the reaction rate has
maximum close to the point 0= 1. Integrating equations (30) and (31), we obtain:

(0
I _O dr a ~)• +OoW(Y, O)

at iKB ( d)/+J o- (36)

( dr = f 1(, a di" - P-I W(Y, 0) d (37)
o at L, Jo ad1 a7P w(1, 1)

Integration of the reaction term yields

IPo W(Y,0) d_ 77_ - d 1= Yexp(Z,(O- 1)) dr
f P W~l, 1) = P W(1, 1)

2. _Ak_0 A,( p IZ, A-__ (+3- "A•_ )) (38)

3 A yZz2  2 Ae0 2( A
Integration of the unsteady and diffusion terms in equations (36), (37) is
straightforward:

12
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j 0 a 3 Ao Y7 3? d2Ay

__ j dr i -- r = 3 39

Combining all terms together, we get two expressions from equations (36), (37):
3dI KOB(t)2 +'AO f (Z, A, AL) (40)

8 dt 2 Ae AY A`4

3 dAy4r_. 3 KB(t)2 + Ao f(Z, , AL) (41)
8 dt 2 L, Ay A' A9 (

Here we denote
f( Z,, A9, _O )- 2 A0L_(l (exp (Z, A-) (1+I `4tr)).

AY' 40 3 Ay Z,2  2 A 2A
Equations (41) and (40) are ordinary differential equations. In order to solve them
analytically we are making an assumption that AdAy = const. Actually, the ratio
of two thicknesses is a weak function of time. Now we can rewrite equation (40) P *
as follows:

4A82= 8 K, B(t2 + AL A 2f (42)
dt 3

The solution of this equation with initial condition t = 0, A9 (0) = A,, is
,42(t) = Ase 2Ka I + (2. - A,) e A4 : (43) •

Here

A5s 8Ka , A4 =16fl3
2 Ka - 16fl3

Now, using transformation (25), temperature distribution 0(77) (34) and equation 0

of state (5), we can obtain an expression for the thickness of the reduced
temperature profile in the real domain 32(t) as a function of time

= eKaidq/p(tl) = e-a4OW(1-u)+lýrl= 0 (1 . ) (44a) 0

For the mass fraction profile thickness we have

8 = e'Kadfl/p(rl))=Ae e-Kat z + A (z -3z214+z41/8) zAyIlAo (44b)

Now we can use an approximation

13 S
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(45) U

and assume that temperature and mass fraction profiles in the transformed domain
are not vert much different from each other, i.e.

: = !Y/ o = I + E, •1 << 1. (46)
Here we implicitly assumed that Lewis number is close to unity. Now we can
substitute expression (46) into equation (44b) and, retaining the first terms in the
Taylor expansion series, obtain:

Substitution of this expression and equation (44a) into equation (45) yields: a
A__o = I + i(L, -1) ( I+ I _----)" (47)

Here we also used Taylor expansion for Lewis number, assuming that it is close to

unity. 0

In a similar way the ratio of the reaction zone thickness to the preheat zone
thickness in the transformed domain, 4,/A&, can be evaluated. Denoting the
reaction zone thickness as 4,, we obtain:

31. =f e-Katdrt/ r) ) = Aoe -Kat Jz + A ( z - 3z2/4 + z418) , z =A,/A6 << 1

Here z can be used as small parameter. Taking this into account, we obtain:

,r - AoeKatz Il+ l-j.--, z =A'/ As << 1. (44c)

In this equation only linear in z terms Were retained. On the other hand,
reaction and preheat zone are related by the following equation (Law C.K. 1988):

6, __(49)
5,9 Ze

Using together equations (44a), (44c) and (49), we obtain
It+ 3 Ai

Ar. 8 1- p) u = g(j)Ai. (50)
AG I+ AL Ze Ze

1-pa

Taking into account equation (43), we rewrite equation (44a) as follows:2 22
,6' =2-2atz (1+1-•E-)2=e-2Ka,(A 5e 2Xo+(A4 -A5)e a4A) (1 41 4 ) or

2= ( A5 + ( -A5) e -"(2Ka'A4.) 9 (1+38-8 1--)8~~ 1- 2 81-

14
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In this equation the time scale of the thickness variation is located in the
exponential term and is equal to

r= 2K 1 2 Ka .1 2Ka- II--exp(-Ze (1± -lr) ,-3 - 9 1r Z2 2 _A8 2_0
- e31

Using equations (47) and (50) to substitute for A,./,Ao and Ao/ Ay we obtain the
time scale of the flame thickness variation

r= i2Ka- .- (1+ 1 (L,-1)( 1+3-.-H)) ( -exp(- g g (u)) (l+ 3-/g(p))) (51)
9 z 2 8 1-p 2 2

The right-hand side of this equation consists of two terms: Karlovitz number and a
combination of Lewis number, Zeldovich number and heat release parameter. It is
easy to demonstrate that for typical chemical and thermal parameters the second
term is usually smaller than the first. This suggests : 0

(1) Lewis number has minor influence on the flame thickness relaxation time
(2) Relaxation time is inversely proportional to the applied strain rate

(Karlovitz number).
This conclusions of the integral approach will be checked by the numerical *
solution.

3 . Numerical Procedure.

Equations (30), (31) with boundary conditions (32) are solved numerically
using Crank-Nicholson integration scheme. The source term is linearized in order
of to make the scheme implicit.

In the following discussion, the upper index denotes the time level, the
lower index is the grid point number in (t, 17) domain. The computational grid is
uniform. Discretization of equation (30) according to the Crank-Nicholson scheme
can be written as follows:

e"*-A. - I (RHS,' + RHSR), (52)
Ar 2

AZr is the time step, RHS is the notation for the right-hand-side of equation (30)

RHS__ KaB '(t 4)-(L (la+ W(Ww (IY" ) (53)

15
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The equation is written for n-th time ,-vel and i-th grid point. We introduce the
following notation for the non-dimensional reaction rate: 3j

S2 /)' (Y.A) 5**4)
P tV(1, 1)

and use an approximation of this term on the (n+1) time level:)n.-,-I n n n-,-I

,2i n+(dadr)•' d ~r .2 +(d'dO) d = i +(dld6)" (e9 -9O) (55)
Substituting equations (53) - (55) into equation (52), we obtain a finite difference
approximation of equation (30):

eiP e+1"÷ a0+ n (n1 n / +
19 I " IKa B 2(rn+1)-j + £Qn + (da-2dO)P n+l P .A 2 a71i (56)

Ka B 2(tn) a On + an)

Finite-difference approximation of mass fraction equation (31) can be obtained in a
similar manner.

Grid in the computational domain (t, t7) remains uniform. Every time step
the thickness of flame is compared with the distance from the flame to the
upstream and downstream boundaries of the computational domain. If either of
these distances is smaller than two flame thicknesses, the computational domain is *
regridded by doubling the Ai7. This procedure is similar to that used by Rutland
(1990). Physical coordinate xi corresponding to the computational coordinate r7i is
moving with time according to equations (23) and (25). Each time step a new
location of xi is recalculated in such a way that the origin of the stagnation point
flow, xi = 0 , remains motionless. For the second derivative of 0 in the
computational domain the following formula is used:

_ O OZ'- 2*"'O' + 01.17 (57)

We use equation (57) to rewrite equation (56) in the form suitable for the
application of Thomas tri-diagonal matrix inversion algorithm:

A4+ 071 + Ain" 0,":+ + A-, "' A.71 = Ci'. (58)
Expressions for the coefficients A,.,, , A•-.,', and C," are:

A,.T' = A =.7 1- = L Ka B 2(t "x+)

Ai~b" K. B 2(t -) +II(a"i-(9

077f ATr 2

Cia= 2KaB(t - a ( a(a. + " + Xd (59)
2 D77, Ar 2
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In this formulation we use boundary conditions (32), corresponding to the one-
flame configuration. The derivative WdN/d)," is evaluated analytically using NJ

equation '1 33).

4. Results and discussion a

Set of parameters
In the numerical simulation we used a set of parameters typical for one-step

methane/ air combustion:

Activation temperature Ta 2.0e+04 K
Pre-exponential factor k 5.0e+08
Heat release parameter u 0.83
Initial temperature To 300 K (60)
Mixture density Po 1.11 kg/rm3

Mixture specific heat c. 1.J12e+03 J/kg K
Mixture thermal conductivity A 0.04 W/m K
Mixture Lewis numbers Le 0.9, 1,1.1

These parameters were used also in the solution of the steady problem. 0

Response of flame to a stepwise variation of the strain rate

An important information about the flame transient characteristics is
obtained considering the response of flame to the stepwise variation in the'strain
rate. Initial profiles of temperature and concentration are provided by the code
which simulates steady propagating premixed flame. It is described in detail in the
previous chapters. Strain rate e (t) is changing at time t = 0 from zero to some
constant value. The response of flame is characterized by two parameters: (1)
burning velocity:

Sb (t)= W.,z, dx (61)

17
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and. (2) integral flame location
xv,

Wx dx (62) 4

Several remarks can be made about the burning velocity (61). In one
dimensional tube flow this integral is equal to the consumption and propagation
velocity of the premixed flame. In the stagnation point configuration the
interpretation of this integral is less clear. If we assume that after some time flame
has stabilized near some location xf, then we can write mass conservation
equation as follows

S.(x) A(x) = Sb43 (e) A(x/e)) (63)

In this equation A(x) is the area between two chosen streamlines at position x
where the density is equal to the initial density Po, 'ss 'denotes steady state value
of integral (58), S,(x) is consumption velocity with respect to the unburned
gases. Equation (63) can be rewritten as

S,(x) = Sb. ss (e) A(x/e))/ A(x) > Sb. , (e) (64)
for compressive strains. In the case of 2D plane stagnation point flow streamlines
are given by equation

y(x) = C(V)/ X (65)
The area A(x) is reduced to 2*y(x) and equation (64) can be written as

S.(x) = Sb,.s, (e) x/x1e.) ku6)
Thus, in the stagnation point configuration S. is not only a function of the strain
rate E but also of location x. In the hydrodynamic calculations the thickness of the
preheat zone of flame is of the order of 5 mm, which is on the verge of resolution
of a regular numerical scheme. In this case the flame front virtually collapses in
one infinitely thin surface. To calculate the evolution of this surface one should
find: (1) how much of the mixture is consumed per unit area and, (2) how'the area
of this surface is changing with time. In the following we are trying to address the
first question.

Response of flame to the step strain rate have been obtained for parameters
(60) and Lewis numbers Le = 0.9, 1.0, 1.1. In Figures 3a and 3b strained flame
burning velocity Sb and flame location xj are plotted as functions of dimensional
time for different values of stepwise strain rate and unity Lewis number. The range
of strain rates is from 700 to 1600 1/sec. When the strain rate is increasing, steady
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Figure 3 Burning velocity and flame location as functions of time, Le=1
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state flame location is approaching stagnation plane and, at some value of strain.
crosses it. This value is another characteristic of flame. Rather loosely, we A ill
call this % alue of the strain rate the "extinction strain". Actually, the real
extinction doesn't happen at this strain, but the negative burning velocities which
occur after the crossing of the stagnation plane are of little interest for us here since
they are absent in a typical turbulent flow. For unity Lewis number, when the
flame crosses the stagnation plane, burning velocity is lower than the unstrained
value only by 8 %. This happens when the strain rate is equal to 1, 100 1/sec.
Strahis higher than 1, 100 1/sec cause the flame to move further into the products
side until it reaches the location -0.2 mm (see Figure 3b). An additional increase
in the strain rate makes the profiles steeper while the flame itself starts to move
backward.

In Figures 4 and 5 the same data is plotted forLe = 1.1 and Le = 0.9,
respectively. Now the flame response is substantially different. When Le is lower
than unity ( see Figure 5), steady state burning velocity is actually higher than the
corresponding unstrained value although the flame itself is still moving into the
stagnation plane. The extinction strain for Le < I case is 1,400 I/sec., i.e. 21 %
higher than the value of the Le=1 case. The flame is "stronger" and more
resistant to external disturbances. From the profile point of view this is explained
by the particular structure of the preheat zone in the Le < I case. The flow is
modifying the preheat zone in such a way that the maximum of the reaction rate W
increases while the thickness of the W profile decreases only slightly. The
situation is reversed in all aspects when Le = 1.1 ( see Figure 4 ). Now the
extinction strain is approximately 900 1/sec. Burning velocity decreases due to
the drop in the maximum of the reaction rate W.

In a realistic turbulent jet the values of the instantaneous strain rates rarely
exceed several hundreds 1/sec. Thus, for example, for very high strain rate of 700
1/sec. steady state burning velocity in a Le = 1 mixture will change by - 2.4 %, in
Le =0.9 mixture it will increase by +15%, and, finally, in Le=].] mixture it will
drop by 18% from the respective unstrained flame values.

We can conclude that even for low values of strain in the case of non-unity
Lewis number burning velocity is significantly modified due to the convection/
preferential diffusion interaction. It is not safe to assume that the strained flame
burning velocity is approximately equal to the unstrained value, as it was in the
case of Le = 1. In a flamelet model, burning velocity has to be considered as a
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function of Le and c. In the next part of this chapter we , ill tr', to ansvker the 4
question of ,. hether this function ,hould depend on time.

The recepti, it\ Of flame can be characterized by a relaxation time. This time
can be introduced in ,e,. eral different ,.as but, of course, the functional
dependence of it on the thermal and chemical parameters shouldn't be influenced
by the way of introduction. Rutland (1990) interpolated burning velocity S, as the
following function of time:

Sb = Co + CI exp(-/ r) (67)
and used the time scale i as a characteristic of flame response. Figure 3 ( Le =1 )
demonstrates that this type of interpolation produces good result only when the
strain rate is higher than the partial extinction strain rate, i.e. e > 1100 s-1. These
high values of strain rate were mostly used in the Rutland's paper. For lower
values of strain ( see Figure 3) flame demonstrates fluctuating response pattern
typical for almost critically damped system. In this case we characterize the flame
response by the settling time, i.e. the time where the amplitude of the burning
velocity fluctuations around the steady state value is becoming less than 0.5 % of
the steady state value.

In Figure 6 the settling time is plotted as a function of strain rate in log-log
coordinates for several values of the Lewis number. The purpose here is compare
the results of numerical simulations with analytical expression (51) for the
relaxation time as a function of strain rate ( or Karlovitz number K,, ), Lewis
number L,, and other parameters obtained from the integral analysis performed in
the transformed domain (r, 77). It is clear from the Figure that unity Lewis number
( Figure 6b) is a special case as far as the relaxation time is concerned. Close to the
partial extinction the restructuring of the preheat zone is taken place and the slope
of To.5 % = tA.5 %(E) curve increases almost two times: from -2.4 before the
extinction strain to -0.8 after. The latter value is close to -0.724 reported by
Rutland et.al. (1990). In his case I he used mainly the strain rate values higher than
the partial extinction value. Hence, only one slope has been reported.

Equation (51) contains Zeldovich number Z, in the denominator. The
typical value of this number is 8. The second term in the sum on the right-hand
side of (51) is small compared to the used Karlovitz numbers. This manifests
itself in the weak dependence of the relaxation time - on the Lewis number. The
conclusion is supported by the data of Figures 6 (a), (c) and (d). In these Figures
the relaxation time is plotted as.a function of strain rate for Le = 1.2, 0.9, 0.8.
The slopes of the curves are almost identical, although the curves themselves are
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slihtl, shiftimg to the right w hen Lewkis number is dropping. A remark should be X,
made here that the relaxation time mentioned in this chapter is the time related to 0
the burning ,% elocitv % ariation while in Chapter II the time scale of the flame 4
thickness variation has been calculated. These time scales do not exactly
correspond to each other since not only the reaction zone thickness is changing
under the strain, but also the maximum of the reaction rate is usually varying. S

Response of flame to the periodic strain rate

Other aspects of the flame transient behavior can be investigated studying
flame response to the periodic strain rate. In the previous chapter we obtained that
if the strain rate is changing in a stepwise manner it takes some time for the flame
to adjust to the new strain. The higher is the strain the lower is the relaxation time.
For our set of parameters the relaxation time was of the order of 10.2 sec. (see
Figure 3). As far as the period of the strain rate fluctuations is concerned, one
could guess that in a turbulent flow the smallest period (the highest frequency) of
velocity fluctuation is associated with the diffusion time scale. Flow structures
with higher frequencies will dissipate due to the diffusion. The diffusion time 0

scale is also critical for the flame phenomena since it characterizes the process of
"feeding" the flame. We used a set of the periods of strain oscillations proportional
to the diffusion time scale. In the code periodic strain

e (t) = ea, + ea,. sin ( wo ( t- tss )) (68)

is applied after the burning velocity reaches its steady state. In this expression E,
is the average value of strain, e,, is the amplitude value of the oscillations, t,, is
the time it takes to reach the steady state. For the set of parameters (60) we choose
the average strain e,, to be equal to 700 s-, amplitude of strain oscillations - 0

0.5**e, and frequency corresponding to the periods of 5, 2, 1 and 0.3 diffusion
times. In Figure 7 burning velocity of flame is depicted as a function of time for
this set of parameters. In Figure 7a the period of strain oscillations is 0.3 diffusion
time. The diffusion time scale is approximately 10-3 sec. Thus the period of 6

oscillations is only slightly higher than the chemical time scale 105 sec. Flame
initially demonstrates periodic response which later becomes irregular. The
amplitude of fluctuations is very low since flame relaxation time 10-2 sec. is much
higher than the period of oscillations 0.3* 10-3 sec. and when the flame starts to
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respond to the flow fluctuation the fluctuation already his changed direction. From
Figure -b T T = I tr.- )to Figure 7 c ( T = 2 t, the amplitude of the burning a
velocity o(.'Illations is increasing and the oscillations themselves are becoming g
more and more periodic and regular. Fluctuations of the strain rate A ith the period
T = 5 tj, induce burning velocity oscillations with the extremum values
corresponding to the extremum values of the strain rate. For our set of parameters
the average strain is 700 I/sec. and the amplitude is 0.5. It means that the
extremum values of the strain rate are 1050 and 350 1/sec. The steady state
burning velocity, corresponding. for example, to the strain rate 1050 I/sec. is
approximately equal to 0.0118 m/s (see Figure 3). The minimum of the burning
velocity fluctuations in Figure 7d is also equal to this value. It means that now

flame has enough time to respond fully to the strain rate variations. For the peak
strain rate of 1050 1/sec. flame relaxation time is 0.002 sec. (see Figure 3) which is
now comparable with the period of oscillations 5*tdif = 5 * 10-3 sec. For the lower
frequencies flame demonstrates fairly good receptivity to the strain rate
oscillations. The phase shift between the burning velocity and strain rate
fluctuations is constant and close to - 1.3 ;r.

Another way to characterize the receptivity of a flamelet is to average the
instantaneous burning velocity over the significant amount of time T until it does
not change any more, and to compare it with the steady state value corresponding
to the average strain &,, i.e.

R(o,),.,Ee) f Sb (t, gt)) dt / Sb,. 4(4.) (69)

If the burning velocity oscillations have the average value equal to the
corresponding steady state value, then the ratio R is equal to one. In Figure 8 R is
plotted as a function of frequency for Ep = 0.5 e,. The value of R is very close

to 1.02 for a wide range of frequencies.
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Figure 8. Flame response to periodic strain rate. Ratio of averaged burning velocity
to the burning velocity at the averaged strain rate, Le=l. amplitude = 0.5

It demonstrates that if one is interested in the average burning velocity over a
time period, he can replace the averaging of the instantaneous burning velocity by
the averaging of the strain rate and using the burning velocity at this average strain.
The regular, periodic pattern of the flame response to the sinusoidal strain rate
oscillations demonstrates that the flame relaxation time is a function of the
magnitude of change of the strain rate, but not of the direction of this change,
i.e. flame behavior doesn't show significant hysteresis.

Influence of Heat Release on the Extinction Strain

In this paper a simple one-step chemistry mechanism is used. In reality
many chemical reactions are taken place at the same time and the importani
question is to establish which chemical reactions should be taken into account, or
where equilibrium or steady-state assumptions can be used. A step in this direction
is to determine how chemical (pre-exponential constant, activation energy),
thermo-chemical (heat release), transport (Lewis number) and flow (strain rate)
parameters influence flame transient characteristics. The influence of Lewis
number and strain rate was described in the previous chapters. In this chapter we
are considering the effect of the heat release on the extinction strain.
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Figure 9 Extinction strain and unstrained burning velocity as functions of heat release parameter,
Le = 1; interpolation of the extinction strain :
,-,.) = 3.8704e-025 * exp(76.18* ji) ; interpolation of the unstrained burning velocity:
Sb(,) = 2.973e-015 * exp(37.877* y1)

Extinction strain is by our deftnition the strain when the steady state flame

location crosses the stagnation plane for the first time. For a given value of the
heat release parameter M1 ( p = (Tb - To)/ Tb ), the value of the extinction strain
was determined numerically by trial and error approach, keeping all other

parameters (60) the same. The results of these calculations are depicted in Figure

9. In this figure we also plotted the unstrained flame burning velocity. Both

functions are strongly dependent on the heat release and are very well interpolated

by exponential functions. While the exponential dependence of the unstrained

flame burning velocity on the heat release is clear from, say, equation (15), the

exponential growth of the extinction strain is somewhat a less expected result.
In a regular flame, thickness of the reaction zone is about ten times smaller

then the thickness of the preheat zone. The flow "feels" the flame only through the
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heat release ,,hich takes place in the reaction zone and through the accompanied
temperature rie and densit* drop. The obtained exponential dependence of the
extinction ,train on the heat release demonstrates that while simplifying chemical
kinetics mechanism special attention should be paid to the chemical reactions
which determine the energetic balance of the system. For example, for
hydrocarbons this means that one shouldn't expect reliable dimensional results
from the flame model unless he will take into account energetically important CO
oxidation reactions.

.Conclusions

A series of mathematical transformations was used to simplify the equations
governing one-dimensional unsteady flame/stagnation point flow interaction. a

Influence of flow and thermodynamical parameters on the transient response of
flame was studied. It was found that:

(1) even for a low value of strain in the case of non-unity Lewis number
burning velocity is significantly modified by the convection/ preferential 0 0

diffusion interaction. Strained flame burning velocity is not even approximately
equal to the unstrained value, which was the case when Le = 1.

(2) under the periodic strain, in the range of frequencies and amplitudes,
corresponding to the typical turbulence flow, the ratio of the averaged 0

instantaneous burning velocity to the burning velocity under the averaged strain is
close to one. It proves that in this range of frequencies the flame possess a high
degree of receptivity to the strain rate fluctuations. The phase shift between the
strain rate and burning velocity fluctuations was approximately -1.3 7r. To
evaluate the instantaneous value of the burning velocity, steady state assumption
can be used if the characteristic time of the strain rate change is greater or equal to
the relaxation time of flame when it is affected by constant strain rate with the
amplitude equal to the strain rate variation (see Figure 6d). The correction should
be made on the phase shift. Flame relaxation time depends mainly on the
magnitude of the strain rate change, but not on the direction of this change.

(3) the fact that the extinction strain is an exponential function of the heat
release parameter dictates the simplifications of the chemical kinetics mechanism
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in such a wkay, that the most important reactions from the energetic point of view
should be preserved.

-h For non-unitv Lewis number 0.5 % settling time is inversely proportional

to the applied strain rate for all range of Lewis numbers. The graph of unity' Lewis
number settling time plotted versus strain rate has pre- and post-extinctional
branches with the slopes of -2.4 and -0.8 in log-log coordinates. In this sense, in
terms of the relaxation time, unity Lewis number comprises a special case.
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ABSTRACT. The linear instability of a family of invibcid, two-dimensional. variable-detmity shear
layers and wakes is investigated. Voriicity profiles corresponding to a monotonically increasing
velocity profile are first examined. A larger family of initial vorticity distributions whlch model *
the merger of two unequal vrticity layers of opposite sign is then considered. The later is obtained
by superimposing on the former a wake component, characterized by a spread. ý. and a velocity
deficit. IV. The initial density distribution resembles a temperature spike and is described by a

thickness, a. and a temperature ratio, T. The stability properties of the layers ate interpreted in
terms of a four-dimensional parameter space (IU,3, ,,.a). The tion-linear evohttion of the flowfield
is illustrated using the trantsport element method.
Flowfield stability exhibits strong sensitivity to the details of the den.ity disti ibittion. Iii thte
absence of the wake component, the stability properties of the heated layer are divided into tluhee

categories according to the thickness of the density profile,a, and the v,,rticity thickness. A.. For

a >> 6_, instability of the Kelvin- Helmaholtz mode in a uniform-density flow is recovered. When

a 6.., the shear layer mode is itthibited; while this trend persists for , < 6u, the layer becomes
characterized by the appearance of additiotnal short-wavelength unstable modes which beconte

dominant as a decreases and T, increases. Addition of a wake component is shown to alter this

behavior, and to oppose the stabilizing effects of heat release. In this case. the shear layer node

always dominates the wake mode, and the presence of heated sublaver has a weak effect on the

instability of the vorticity layer when , is large, but may influence the phase speed of unstable

waves whenever the zones of high vorti,-ity and high density gradient coiincide.

1. lItroduction

The evolution of high Reynolds number chemically-reacting free shear flows is gov-
erned by a large numnber of fundantental processes. These processes can he described
in tertns of the dynamic effects of combustion. which leads to the establishment of
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an expansion flowfield and zones of sharp density variation, and in terms of intrinsic
instabilities of the underling shear flow which shape the evolution of the vortic- X,
ity field. In most cases of practical interest, these effects are closely coupled, as the
vorticity-induced convective field governs the inolecular mixing proces.ses and hence

modulates local reaction rates, while the evolution of the chenical reaction affects
the vorticity field through flow divergence field and baroclinic vorticity.

The description of such flows is complicated, due to nonlinear flow-combustion
interactions and due to the large number of parameters which govern the relevant
molecular and cheimical processes. This complexity often necessitates the construc- 0
tion of siiiiplified fundamental models which facilitate the isolation of particular
interaction modes, and reduce in the number of governing parameters.

Linear stability theory has proven to be an important tool in theoretical studies
of reacting and heterogeneous shear flows [1-12]. In nmost of these studies, heat re-
lease mechanisms associated with the mixing of initially separated reacting species
are modelled by corresponding temperature and deni,,ty profiles which are iiiiposed 0
on an otherwise homogeneous shear flow. Thus, while dynamic effects associated
with the presence of an expansion field and the details of the chemical reaction pro-

cess are omitted, spatial density (and temperature) variation resulting from heat
release mechanisins is retained. Usiig this ap~proach, the essential stability proper-
ties of the flowfield have been predicted. In particular, linear stability studies have
shown that the presence of two or more zones of different density significantly af-
fects the devwlopment of the flow. For instance, it has long been observed that a
non-unity density ratio alters the growth of shear flows and influences the entrain-
inent induced by the vortical structures embedded therein [1-4], even when gravity
effects are weak (.3-6]. In chemically-reacting shear layers, the effects of density vari-
ation are equally pronounced; stability results indicate that flowfield stabilization
or destabilization may occur, depending on the details of the density aiid vorticity 0 1
distributions [7-9]. Furthermore, linear stability results show that the presence of
zones of large densit) variation may also affect the nature of flow inistabilities (e.g.,
by altering the boundaries separating absolute and convective instability iiiodes),

and may result in reshaping the global featur,• of the flow [10-12].
Unfortunately, the application of linear stability results to predict the behavior

or reacting flows has been complicated due to the large sensitivity of the results
to the initial vorticity and density profiles. In this work, this issue is tackled by
analyzing the stability of heterogeneous flows for a wide range of initial conditions.
Initial density (and temperature) profiles are assumed which model the development
of nonpremixed combustion. In addition, initial vorticity profiles correspondiiig to
symmetric and asymmetric shear layers and wakes are considered. A large number
of initial conditions is thus constructed, and flowfield stability is examined in a
four-dinienzional parameter space which models a large family of reacting layers
and wakes.

The stability problem is based on linearization of the inviscid heterogeneous
flow equations. The formulation of this fluid flow problem is described in Section 2,
and computed results are discussed in Section 3. Trends in the behavior of the flow-
fields are established and further examined by performing nion-linear simulation of
selected cases using the transport element method (e.g. (13-14]). Major conclusions

I
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are given in Section 4.

UI,

2. Formulation

2.1. THE STABILITY PROBLEM

In a right-handed coordinate system (,r. y), the initial flow field is given in teriis
of the steady flow velocity, L(y), and the imposed density profile. e(y). The flow is
assumed two-dimensional and inviscid. and both the perfect gas ajnd the low Mach
number approximations of the governing equations are employed [13-16] The nwan
density profile is assumed to be the result of heat deposition by the reaction, while
diffusion effects are neglected. Under these assumptions, the fluid flow is governed
by the monmentum and continuity equations, respectively written asý

DueO-- = VP (1)
Dt (

0 (2)

' -u U 0 (3)

where u (u, v) is the velocity, I is time, V (a/a9x, &/dy) is the gradient operator,
D/Dt is the material derivative, and p is pressure. The governiug equations may
be recast in vorticity form by replacing Eqs (1) and (3) by:

Dt _ x Vp (4)

where . is the vorticity. This formulation will be later used in th," siinmilation of the 0
notilinear evolution of the flow.

The stability properties of the variable-density shear flow are studied by de-
terniining the temporal behavior of small amplitude disturbances imposed on the
iniiia~l -Leady Plow. '1is. properties are aiiaiyzed in terms of the disturbance cross-
stream velocity component to which is first written in the form:

ro(y,t) = t,(y)exp (io(.r - ct)) ( .)

wherea is the normalized wavenumber, taken to he real. and c = c, + ic, is the
complex wave speed. The cross-stream component z(y) obeys the modified Rayleigh
equation:

V+- V/ -+ - +a V (6)

with boundary conditions, c(y - +oc) - exp(-oy) and r(y - -x-) -- exp(oy).
In Eq. (6) aid the following, primed quantities indicate differentiation with respect
to y.

We are interested in determining whether waves of the forui expressed by Eq.
(5) are unstable, i.e. whether their growth rate ec, > 0. To this eiud, the eigenvalue
problem is solved using a shooting technique, in which Eq. (6) is integrated from one
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side of the la., r to the other u~ing a fourth-order Runge-Kutta predictor-corrector

scheme [171 We keep iterating mn the complex eigen~alue space r using a secant

algorithm until the absolute change in c is reduced below 10-7 This procedure

yields dispersion relations which relate tile growth rate Oc, antI the phalse speed c,-

to the disturbance wa~eiurnher a.

2.2 INITIAL CONDITIONS

The foriiulation stability of the stability prublenm i, compl,.ttd lv spcif"ing S
tle steady, parallel shear flow ýelocity and density profiles, A family of liear la)ers

and density profiles is constructed to model the physical proccsbes ihoi n schemat

ically in Fig. 1. We consider chemicallv-reictiiig layers formed l,.i mergnig oxidizer

and fuel streamis downstream of a thin ,phitter plate or a bluff bod lImmediately

following the tip of tihe plate, the velocitv distribution ma, be modelled as the

superlosition of two Blasius pr,Ailes, starting from a .anind, ig streamiwize ,elocity @

and increasing to the free stream velocities Ul and U2 iFig 1b) Further down-

stream. tile velocity profile approaches that of a shear layer. in Alch tile ,elucity

increases monotonically from one side of the splitter plate to the olher (Fig la).

In the third flow configuration. the incoming streams are -,eparated b) a bluff body

(Fig. Ic) itn this, case. the velocity field is regarded as the superrposition of two

shear layers, each resembling that shown in Fig. a. In all cases, the heat deposited S

by tile initial developiuent of the chemical reaction is modellhd by a spike in tie

temperature profile

In order to model the various flow configuartioms aimicipated ii Fig. 1. we start

with thie expo ientally fitted velocity profile for large distaiices downstream of the

splitter plate.

U (Y) = U + -- U2 tanh( --- (7)
2

where U',, is tlie mean flow velocity and 6. is the local vortmicit, thickniess. The

local vorticity thickness is chosen as characteristic length scale., aiid lie v, lot ity is

nornialize, i :l h that tile reduced expression.

replaces C,: 7Th. As sitggested by Koch [18]. a coiitinuous fanldy of velocity profiles.

which approximates all of the distributions shown in Fig. 1. can be obtained by

nmdifying Eq. (9) by letting.

U( I) I + W) tanh(y - W)- "taiih(y + 6) (9)

where It' is the wake-deficit, and 6 as the displacement of the vorticOty layer. li Eq. 0

(I1). It' and ý aret restricted such that it' < 0. and 6 > 0. When It' = 0. Eq. (8) is

recovered for 6 = 0. and increasing the value of 6 > 0 results iii a pure translation

of the tanh profile. Ott the other hand, when Ii" < 0. near wake velocity profiles

are approximated for large 6, and the double Blsius profile is intimtated when 6 is

sinall.
The free stream density and temperature are chosen as a reference density and 0

temperature scales. Accordingly, time normalized initial density profile is taken as
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6 = 2 j W" = 0. 10299 it- = 0.24709 It' = 0 550,0 It 0

= 3 t = Iuo92"61 it' = 0...9858 W = 0 5ý.04 ,t U - '2119

TABLE I

a Gaussian profile with standard variation o, and is expressed II trnLs of the
temperature ratio T, as follows.

T,-I
o{I) = 1- exp -- ) (10)

In most shear flow applications, including shear layers. the vorticity thickness is
usually larger than the product thickness, so that a < I 1ttwever, wt do not
enforce this restriction in order to account for fluid flows ,liaracterized hb high
mass diffusisities. or bluff body flows. When ý _' a, the flowfield aplroxilnates tlie

merger of two layers of unequal density, a flow configuration that has already been
analyzed (see, e.g. [13,19]).

The temporal stability of the family of variable-density layers described above is

investigated in the four-dimensional parameter space ( W', 6, T,, a) We consider four
values of tile temperature ratio, T, = 1,2, 4, and 80, i.e. we start with a uniform-
density field and then vary the temperature ratio in a range that is representative
of most ch, li'ihally-reacting flows. For each of these cases, the effects of the wake
component deficit and thickness are investigated by varying Wt" and 6 in such a way
as to approxinmite all the flow configurations shown iii Fig, 1. In order to separate

the effects of the strength of the wake component, It, from those associated with its

thickness, 6, we alter the values of ,I' and 6 simultaneously so that velocity profiles
having ':aving the same maxima and minima are obtained for all values of 6. In
addition to the lanh profile having It = 6 = 0, we consider 12 (it, d) combinations
which are described in rable I. The corresponding velocity profiles are plotted in
Fig. 2 for all thirteen cases, the shear layer profile being included with the set of
profiles having 6 = 1.

Thus, W varies in a wide range of wake deficits, while increasing , from I to 3
represents a migration from ai asvmnimetric shear layer velocitN distribution to an
asymnietric wake profile, in which vorticity layers are well separated 'I lie stability
properties of variable-density layers are first deterimined assuming equal deiisity
and vorticity thicknesses. cr = I. The effect of the thickness of the denmsity profile is
then investigated by repeating the analysis at T, = 4.0 for four additionala, %alues.
s = 1 5.0 .75. 0 5. and 025

2 3 BRIEF THEORETI('AL REVIEW

The linear stability problem of inviscid incompressible parallel slhir Ilw has
been studied extensively (,e.g [10,20-21>). In this section, we summarize aspects of
the theory which directly affect our search for unstable eigtiifunctions. We first nete 0
that the classical stability results expressed by Ra)leigh s theorem [20-21].
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A necessary condition for instability is that the profile U(y) admits all inflection
point

and by Fjortoft s extension.

A necesary condition for instability is that U"( U - U,) < 0 somewhere the
flow, where U, is the velocity at the inflection point

have to be modified when considering a variable density flow. It ma) easiliy be
shown that the appropriate generalizations of the above results nia) he respec-

tively expressed as:

A necessary condition for instability is that U" + (p'ip)U' admits a sign change

and

A necessary condition for instability is that U" + (p'/p)U'(U - U,) < 0 some-
where in the flow.

Thus, in a variable-density field, the behavior of the quantity U"+(p'/p)U' replaces
that of U" in the determination of the stability of flow. As indicated in Refs. 1 and
8, this leads us to expect strong interactions between the density variation and Ihe
shear flow, whenever zones of high vorticity and density gradient coexist.

The behavior of the curves of U" + (p'/p)U' for the flow configurations of Table
I is plotted in Fig. 3 for 6 = 1,a, = 1, and T, = 1,2,4, and 8, and in Fig. 4
for 6 = 1,T, = 4.0 and a = 1.5,0.75,0.5, and 0.25. By the preceding, we are

led to expect unstable modes whenever tile curves intersect the zero axis. In the *
uniform-density case, a single intersection point is observed for the faith profile,
and two for the asynunetric layers. This is not surprising, since we expect to be

observe one unstable shear layer mode, and one unstable wake mode. However,
for large T,. several intersection points appear for the tanh profile, and may yield

additional instability modes. This unexpected result is further investigated in the

following section where the behavior of these modes, whose appearance depends on 0

the vorticity-density configuration. is computed.
We conclude this section by extending to variable-density flow the analysis of

Drazin and Howard [22] who studied the the long wave behavior of unstable modes,
i.e. the limiting behavior of unstable eigenvalues as o - 0 Our analysis is reduced

to a form similar to the incompressible case by rew-iting the modified Rayleigh

equation as:

(Z 2 F')' = a 2 Z 2 F (11)

where

Z2=e(U- c) 2 : F= 0- (12)

U1 - C

and € is the perturbation potential. Noting that Eq. (12) is identical to Eq (1.6) 0

of Drazin and Howard [22], we are able to carry out a similar analysis to the one

0S



Iit,

347

performed there. (Details v"11 be presented elsewhere). In the limit a - 0, Eq (14) 3.
implies that Z2 F' is constant and that this constant is zero in order to satisfy the
bouidary conditions. Hence F is constant in intervals where Z does not ýanish, but
may have jumps when Z = 0. Assuming F has no jumps, a siiular argument to
that presented in [22] shows that tile limiting eigenvalues satisfy:

40 + Z-o_• = 0 (13)

For equal free stream densities, Eq. (-14) yields the unstable eigenvalue c = i which
is recognized as the limiting eigenvalue of the shear layer mode Density variation
does not seem to affect the asymptotic behavior of these long waves.

A similar result is reached if F a'-lnits jumps. While the details of the, algebraic
manipulations are more involwed than in the uniform-density case, we are still able
to show that if F has a jump at Yo. then U'(yo) = 0. Thus, velocity maxima and
minima are expected to represent limiting values of unstable eigenfunttions. For
WV < 0, the profiles considered in this study admit a velocity milinum, which is
recognized as the limiting eigenvalue of the (unstable) wake mode.

The long wave approximation estimates are used in the following section to
initialize the search for unstable eigenfunctions and to characterize the additional
inflection points which appear for the Laih profile at high temperature ratio (Fig.
3). Should these additional inflection points correspond to unstable modes, then the •
above argument shows that the associated instability mode affects shorter wave-
length instability, since the asymptotic behavior of long waves is solely dependent
on the details of the velocity profile.

3. Results

3.1. STABILIrY OF VARIABLE-DENSITY LAYERS AND WAKES 8

Stability analysis of the variable-density parallel asymmetric shear flow is first con-
ducted for the velocity profiles of Table I, and density profiles having 0' = 1, and
T, = 1 2.4, and 8. Since a sharp estimate of an upper bound on unstable wavenum-
bers was not sought. a complete search for the unstable eigenfunctions over a
bounded wa6enruniber-eigenvalue region cannot be easily conducted. Instead, the 0
search for unstable waves is initiated by concentrating on the behavior of long
waves, and extrapolating the asymptotic behavior of unstable shear layer and wake
modes, as determined by the theoretical predictions. To this end, the wavenum-
ber is increased incrementally with small step size Ao = 0.01, until the iterations
stop to converge. In all cases, the miodified Rayleigh -quation is integrated over a
mesh of 4000 grid points, ecqually distributed over the interval - I - <_ y <, 4 + 6. 0
Thus, the expected short wave behavior of the additional instability modes is only
determined in cases where their instability band extends that of the other modes.

Figures 5-8 show the growth rate and phase speed of unstable imodes. computed
for T, = , 2,4, and 8, respectively. For brevity, results obtained for the intermediate
value 6 = 2 are not illustrat,,d. In all casep, the thickness of the h,.ated layer
coincides with that of the vori'ity iayer, a = 1. We start with the uniform-density
flow (Fig. 5), which is later used as reference to quantify the effects induced by the
density variation. Cold flow calculations are summarized as follows:

• • • •• Q •



348 i(1) The growth rate of the shear layer mode increases with increasing wake
deficit. This result is expected since higher wake deficits correspond to higher W
vorticity values. 0
(2) The highest increase is achieved for the smallest separation distance, 6 =
1. This is not surprising and is due to the construction of the famnily of velocity
profiles and the selection of (It, 6) pairs so that the samie velocity extrenia are
obtained for different separation distances. Hence, smaller 6 values correspond
to higher vorticity concentrations.
(J1) The wavenumber of the most unstable shear layer mode exhibits a small
increase with increasing wake deficits at 6 = 1, but is almost independent
of it' at higher separation distances. Thus, the wake deficit does not affect
the frequency selection of unstable shear layer mode, which is closely approx-
imated by estimates based on the fanh profile.
(4) While the growth rate of the most amplified wake mode increases by
increasing W, its wavenumber of is almost independent of it*. The growth
rate maxima for both the shear layer and wake modes are reached for o - 0.6.
(.5) The phase speed of most unstable mode vanishes for the Wtilt hyperbolic
velocity profile but increases in the direction of wake deficit with increasing
W.
(6) The maximum growth rate of wake mode increases by increasing the sepa-
ration between the positive and negative vorticity layers. However, in all cases
considered, the shear layer mode always dominates the wake mode. This result
is best interpreted by focusing on the positive and negative vorticity layers
separately, which may be used to distinguish between the syinnietric shear
layer and asymmetric wake-like profiles. For the latter, the negative vorticity
layer, whose inflection point is associated with the unstable shear layer mode,
has considerably higher strength and thus dominates wake component

The impact of heat release on flowfield stability is examined iii Figs. 6-8, which
show dispersion relations for T, = 2,4, and 8. The analysis is divided into two sec-
tions; results for the symmetric tanh profile are discussed first, and then contrasted
with corresponding results for the asymmetric layer and wake profiles. As before,
dispersion relations for the symmetric tanh profile are lumped with those of the
asymmetric shear layer mode with 6 = 1, and identified by a wake deficit, Wt' = 0.
Examination of the dispersion relations reveals:

(1) By increasing Tf, stabilization of the Kelvin-Hehnholtz mode ib gradu-
ally achieved. As noted by McMurtry et al. [91. who studied the stability of
a heated layer idealized by broken-line vorticity and density profiles, heat re-
lease inhibits the growth of the most unstable mode, whose amplification rate
decreases to a small fraction of the uniform-density maximum as temperat ure
ratio becomes high. The results also indicate that the wavenunilers of the
most amplified mode and neutrally stable modes decrease as T, increases.
Thus, the density variation alters the features of the instability in such a way
as to stabilize short wavelength disturbances and collapse the instability to a
thin band affecting long wave perturbations. On the other hand, the vanishing
phase speed property of shear layer mode persists.
(2) The stability properties of the layer are significantly altered for T, > 4.
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As predicted in the previous section, the computed results show that the flow W

field now admits three unbtable modes. The additional pair of unstable modes •
are associated with the outer zeros of (r_")' and are thus called outer modes
[81- Dispersion relations of these modes appear as extensions of that of the
Kelvin-Helinholtz mode.
(3) The outer modes have identical growth rates and equal but opposite
pha-A speeds. The phase speeds of the neutrally stable solutions coincide
with the flow velocity at the outer inflection points. Meaiwhile, at high T, 6
the outer mode dominates the shear layer mode which is almost stabilized
by the density variation. The wavenumber of the most amplified outer modes
increases with increasing temperature ratio; thus, tile associated mechanism
promotes short-wavelength instability.

The stability properties of asymmetric shear layers and wake profiles differ sig-
nificantly from those of the synunetric tanh profile, as the heat release has a less
significant impact than in the former case. The stability results for these profiles are
divided into two groups, according to the separation distance between the layers of
opposite vorticity. For a large separation distance (6 = 3), the amplification curves
for the shear layer mode are weakly affected by the presence of a heated region
within the vorticity layer. In particular, all of the stability properties of the unsta-
ble modes are unaffected, as neither the instability bandwidth nor the wave speed
of unstable modes are affected by the temperature ratio. This result is expected,
since the density is constant and equal to unity except in the region separating the
distinct vorticity layers. In this region, the velocity profile is almost constant, so
that (p')' is closely approximated by the vorticity derivative U" in the entire flow.
Thus, the vorticity maxima do not lie with regions of high density gradient, and
results for uniform-density flow are recovered. O

For small separation distances, the presence of a heated fluid layer results in
appreciable changes in the stability of the flow, and has a different influence on the
behavior of the wake and shear layer modes. By increasing the temperature ratio,
instability of the wake mode is promoted, as the corresponding amplification curves
admit higher maxima. While the phase speeds of the unstable wake modes is weakly
affected, the corresponding instability bandwidth is increased, and the wavenumber I
of the most unstable wake mode favors shorter wavekagth instability. This result
should be favorably contrasted with the results of Koochesfahani and Frieler who
showed that the spatially-developing wake mode may become dominant when the
asymmetric vorticity layer is subjected to a severe monotonic density difference [1].
However, in all cases considered in our study, the highest amplification rate of the
shear layer mode is always considerably higher than for the corr,,ponding wake
mode. Therefore, the effect of heat release is not expected to lead to a qualitative
change in the behavior of the perturbed reacting layer, which remains dominated
by the growth of unstable shear layer waves.

Shear layer modes exhibit a different response to the imposed density variation.
This response resembles the behavior of shear layer modes in heterogeneous layers
for which the density increases monotonically from one side of the layer to the other.
In both instances, density variation has minimal influence on either the growth rate
of unstable Kelvin- Helmholtz modes, or on their stability bandwidth. However, it
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significantly affects the phase velocity of the waves. In the heterogeneous shear
layer [19], unstable shear layer modes acquire an additional convective velocity
component of the same direction as the high density stream The analogy between
the two cases can be established by inspecting the behavior of the density field in the
neighborhood of the inflection point of the velocity profile. Here, the "unstable shear
layer mode" is associated with the "upper" inflection point of the velocity profile
The density profile has positive derivative in the neighborhood of this inflection
point, so that the density increases as we move towards the top free stream. Thus, .
we are led to expect an increase in the phase velocity of unstable shear layer mode,
since the top stream velocity is positive. This expectation is reflected in the stability
calculations, which show that the phase velocity of the most unstable shear layer
mode increases with increasing temperature ratios and becomes poaitite for small
wake deficits.

0
3.2. EFFECT OF DENSITY PROFILE THICKNESS

The stability results of the previous section are reexamined for different thick-
nesses of the density profile. For laminar nonpremixed flames, the thickness of the
low-density zone depends on both the thermal and nmass diffusivities. Thus, accurate
estimates of this thickness relative to the vorticity thickness require the solution
of the boundary layer equations for reacting flow, and the results will depend on
the Prandtl and Lewis numbers, and on the details of the chemical reaction. In
general, the product zone will be embedded within the vorticity layer, since near
unity Praumdtl and Lewis numibers generally prevail, and initial conditions describe
a finite thickness vorticity layer and a sharp interface separating the oxidizer and
fuel streams. 0

In this study, however, such a detailed study is replaced by the simplified ap-
proach of considering different values for the density thickness, which are selected
in a wide parameter range in order to cover most situations of interest. To this
end, the stability of all the velocity profiles of Table I is investigated for a variable
density field specified by a fixed temperature ratio T,. = 4, which is characteristic
of a large number of combustion applications. Meanwhile, the density thickness is
gradually varied; the values a = 1.5, 0.75,0.5, and 0.25 are considered. The results
of the computations are shown in Figs. 9-12, in terms of the growth rate and phase
speed of unstable modes. As before, results for the symmetric tanh velocity profile
are lumped with those of shear layer modes having 6 = 1.

The discussion of the results distinguishes between the stability properties of
the shear layer and wake modes, and those obtained for the symmetric tanh profile.
The latter case is discussed first and is summarized as follows. The behavior of the
tanh shear layer mode is non-monotonic with respect to variation of the density
thickness. The results are best interpreted by first considering the limiting case of
very large density thickness. For this density configuration, the vorticity field lies
in a zone of almost constant density, so that the uniform-density results are recov-
ered. As a is decreased and becomes close to the vorticity thickness, stabilization
of the shear layer mode is observed. The maximum growth rate, the most ampli-
fied wavenumber and the stability bandwidth are all reduced. On the other hand,
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the nature of the instability is not altered, as all unstable modes have zero phase
velocity. As a is further decreased, stabilization of the shear layer mode contin-
ues but the flow field acquires an additional pair of unstable modes. Due to the
symmetry of the density and velocity profile, these additional "outer modes" have
identical instability bandwidths and amplification curves, with equal magnitude
but opposite-sign phase velocities. In the range of density thicknesses considered,
the instability of the additional modes is promoted by decreasing a. as the corre-
sponding most-amplified modes admit higher growth rates and wavenumbers. This
is accompanied by an increase in the stability bandwidth and the phase velocity
magnitude. Thus, tanh shear layers which accommodate high heat release slow re-
actions are more susceptible to such short wavelength instabilities However, we do
iiot expect this mechanism to persist continuously as a is further decreased, since
in the limit a 1 0 the deposited energy vanishes so that results for uniformin-density
flow should be approached.

The effect of the density density thickness is greatly attenuated in the presence
of a wake deficit. In all cases, weak variations of the stability properties of the flow
are recorded as the value a is altered. The response of the wake mode to changes in
the density thickness a is extremely weak, as the results exhibit almost insignificant
changes in the stability bandwidth, amplification curves, and phase relationships.
These changes are of little importance since the shear layer mode dominates the
initial evolution of the flow. The latter is weakly affected by changes in the density
thickness, which result in small modulation of the phase speed of unstable modes.
As previously mentioned, this result is expected, based on the similarity between
the behavior of the vorticity and density profiles around the unstable inflection
point and that described in monotonic variable-density shear layers [191.
3.3. VISUALIZATION OF UNSTABLE EIGENFUNCTIONS

Finally, the evolution of asymmetric shear layers is numerically computed At-

tention is focused omi the late stages of flowfield evolution, which witness the for-
mation of vortical structures due to the non-linear breaking of unstable waves. The
results are used to examine the validity of extending the trends established in the
linear stability analysis. This exercise is limited to a visualization of the effect of
these structures on the deformation of the flow and the evolution of the vorticity.
A detailed investigation of the dynamics of the flow is not attempted in this work,
as detailed reacting flow computations will be discussed in a subsequent study.

Numerical simulation of the variable-density flowfield is performed using the
two-dimensional transport element method. The numerical scheme, which belongs
to an adaptive class of Lagrangian field methods, is based on the discretization
of the vorticity and density gradient fields into a number of transport elements of 6
finite overlapping circular cores Accordingly, the velocity field is given by a discrete,
desingularized convolution over the induced vorticity field of the transport element.
A similar convolution yields the density field. Once the velocity field is computed at
the element. centers, a second-order predictor corrector integration scheme is used
to track their motion and to advance the numerical solution. Discrete vorticity
and density values evolve according to Eqs. (4) and (2), respectively. Meanwhile,
discrete density gradients are updated by relating their evolution to the material

It

• • • •• • •

0 0 0mmmmivmalmlt•Imam 0 0 0 0 0 0n *-



352

TR W 6 N R Core size Wavenumber Wavelength (rowih rate U

1 0 0 11 0.72 0.45 119 0.19

1 1.2 1 17 070 0.57 11 0.40
1 - .8215 J 25 0.70 0.45 13.9 0 35
4 1 0 0 17 0.35 0.41 15.3 0.06

4 1 1.2 1 23 0.35 0.66 9.52 0.42
4 1 .8215 3 33 0.35 0.47 1.1.4 0.37
4 0.5 0 0 33 0175 0.7 8.98 0.13
4 0.5 1.2 1 45 0.175 0.68 9 24 10.44
4 15 1.2 1 1 25 0.35 0.59 10.65 037

TABLE 11

deformation of the Lagrangian mesh. Details of the formulation and construction
of this numerical scheme, which has been extensively employed in the simulation of
variable-density and reacting flows, can be found elsewhere [13-14,19]. Thus, only
a brief account of the computational parameters used in tL calculations is given.

The visualization of unstable modes is performed using the temporal model of
the vorticity layers. In this model, the velocity and density fields are spatially peri-
odic in the streamwise direction. The periodicity length, A, is close to the wavelength
of the most unstable mode, as determined above. The region of finite vorticity and
density gradient is initially discretized on a square mesh, having NiR and NS grid
points in the cross-stream and streamwise directions, respectively. The core size of
the transport elements, b, and the discrete values of vorticity and density gradient
are found by minimizing the error between the numerical and initial fields [131. • *

Nine cases of differenitally-heated layers and wakes are numerically investigated.
The layers are identified by values of the temperature ratio, the thickness of the
density layer, the wake deficit and the displacement of the wake profile, which are
listed in TFable II alongside the wavenumber, wavelength, and growth rate of the
corresponding most unstable mode. Table II also shows the number of computa-
tional grids in the cross-stream direction, NR, and the core radius of the transport
elements. In all calculations, the time step At = 0.02.

The first three cases correspond to uniform-density flow, and are selected in
order to examine the effects of the wake deficit and the displacement of the wake
profile. The nunmerical experiments are repeated by keeping the same (initial) vor-
ticity field parameters and altering the initial density field by letting T, = 4, and
6 = 1. Thus, for these initial flow configurations (cases 4-6), the initial vorticity p
and density thicknesses coincide. Finally, the dependency of the evolution of the
flow field on the thickness of the initial density profile is examined in cases 7-9.
These cases correspond to vorticity field configurations for which the linear stabil-
ity analysis predicts a strong (case 7) or weak (cases 8 and 9) response to changes
in 6.

The computations are initialized by introducing a perturbation in the flow field p
using sinewaves having the same periodicity wavelength as the computational do-
main, A, and amplitude 0.01A. The perturbation is applied by displacing the location
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of the transport elements in the croas-stream direction according to the sinewaves.
The calculations are extended in order to observe the linear amplification of the X,
unstable modes, and the early non-linear stages of their evolution. For cases 1, 4. 6
and 7, this objective is achieved by carrying out the computations until t = 12 In
the remaining cases, calculations are stopped at t = 9. Results of the simulation of
the flowfield starting from the flow configurations of cases 1-9 are shown in Figs.
13-21, respectively. The figures are generated by plotting the location and instan-
taneous position and velocity vector of the transport elements The development of
the vorticity fi-ld thus illustrated is discussed below. 0

Figure 13 shows that the evolution uniform-density shear layer initially de-
scribed by the symmetric ianh velocity profile does not destroy the symmetry of
the vorticity field. The vanishing phase speed of the instability wave, predicted by
the linear theory for the linear Kelvin-Hehinholtz wave, persists as the waves un-
dergo a non-linear growth regime, and roll to form a concentrated core of vortlcitt
Detailed computations of similar flow fields have beetn performed previously [13]. 0
and have shown that, when pairing is disabled. the late stages are characterized by
a maturation of the vortex cores and the continuous entrainment of the vorticity
from the braids into the cores.

The superposition of wake deficit on the synimetric, monotonic layer profile
results in a significant departure from the previously discussed behavior. 'Flie evo-
lution of the asymmetric layers of Figs. 14 and 15 is characterized by the finite wave •
speed of the linear instability modes, and by the convective motion of the vortical
structures which form following their nonlinear evolution. As previously discussed,
the direction of motion of the linear instability waves can be determined from the
the linear stability anal)sis and by inspection of the initial velocity profile. The
computations are in agreement with the results of the linear theory, which predicts
almost equal phase speeds for the mitust utntabie modes, and a slightly larger growth *
rate for the layer with the smaller separation distance. Alternatively, this behavior
can be qualitatively predicted by considering the contribution of the "weaker" vor-
ticity layer, whose induced flow field leads to the motion of the linear waves and of
the vortices.

The consideration of the effects of opposite regions of vorticity is easier for the
larger displacement parameter (6 = 3, Fig. 15). since the corresponding vortic- 0
ity profiles are formed of well-separated strips of opposite sign of vorlicity. The
computed results indicate that the evolution of the flowfield is dominated by the
stronger (negative) vorticity layer. The latter appears to develop independently of
the weaker vorticity layer, which does not exhibit significant deformation during the
period of the simulation. This assessment no longer holds in the case 6 = 1, which
shows that both regions of vorticity deform simultaneously (FPg. 14). This results 0
in a greater deformation of the vorticity field and the formation of a substantially
larger vortex core.

The impact of the density variation on the development of the flow is illustrated
in Figs. 16-18, which show the evolution of shear layers characterized by the same
initial vorticity distributions previously considered, and a density profile having
T, = 4, and a = 1. When starting with the symmetric tanh velocity profile, the
growth of Kelvin-Helmholtz waves is significantly suppressed. Moreover, the non-
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linear wavebreaking of these modes results in tile formation of weak vortex cores
which are less coherent than in the uniform-flow case (Fig. 6) These results are in 0

agreement with the predictions of the linear stability theory and with the compu-
tations of McMurtry et al. [91 who considered the evolution of syninetric reacting
shear layers.

Density variation effects are considerably less pronounced in the preseiice of a
wake component For large separation distance, 6 = 3. comparison of the uniform-
and variable-density results (Figs. 15 and 18, respectively) shows that the presence
of a heated layer has almost no influence on the development of the flow. These
results extend those of the linear stability theory. which predicts little changes
in the wavelength, growth rate, and phase speed of the most unstable Kelvin-
Helmholtz waves with the variation of the density profile for this initial vorticity
configuration. On the other hand, the interactions of the density and vorticity field
cannot be neglected for small separation distance. 6 = 1 As indicated in Table 11,
the wavelength of the most-unstable mode is decreased as the temperature ratio is
increased to T, = 4. Moreover, while the growth rate of this mode is not significantly
altered by the presence of the heated layer, its phase speed is noticeably reduced.
This observation also holds when considering the convectie motion of the vortices
which form following the nonlinear evolution of the unstable waves (Figs. 14 and

17). However, in both cases, the vorticity-density interactions (1o not suppress linear
growth and do not inhibit the formation of large coheretnt vortex cores
The sensitivity of the flow-field to the details of the in it ial density profile is examined
in Figs. 19-21. In particular, the stabilization of the symmetric layer by heat release
and the weak dependence of the asymmetric layer on the presence of the heated layer
is investigated. As previously mentioned, when the regions of high vorticity and
density gradient are well separated, the initial development flow is approximated S 0
by the uniform-density equations, so that layers characterized by a large separation
distance will not be further considered. For the symmetric case, Fig. 19 indicates
that by decreasing the thickness of the density profile to a = 0.5, the behavior of
the shear layer undergoes an additional transition. The results reflect the prediction
of the stability theory which indicates that in this regime the most unstable niode
consists of a pair of travelling waves of equal growth rates, and equal but opposite 9

phase speeds. These waves amplify as they move away from the middle of the
computational domain. The rollup of the waves occurs as the two trains of periodic
waves meet at the boundaries of the computational domain, and is followed by the
formation of vortices whose cores are smaller and less coherent than their uniform-
density counterparts. This mechanism differs significantly from the rollnp of the
linear Kelvin-Heltidoltz waves in uniform-density flow, which, as indicated by the 0

theory, have appreciably larger growth rates. Thus, the stabilizing effects of heat

release are expected to persist for this profile. though the details of the density

distribution may lead to radical changes in the development of the flow and in the
structure of the associated vorticity field.
On tile other hand, the addition of a wake deficit greatly diniinishes the "stabilizing'
impact of the density variation. As predicted by the linear theory and observed

in the computations, the early evolution of the asyrmnetric layer having a large
wake deficit is almost insensitive to the presence of the heated layer. For such
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initial vorticity configurations, tile effects of dnsity variation are limited to a small X,
modulation of the wavelength, growth rate, and phase speed of the most unstable 0
mode. Moreover, as illustrated in Figs. 14. 17, 20 and 21. similar vortical structures
are obtained as a result of the non-linear wavebreaking of the unstable modes. This
observation holds for all the asymmetric layers considered, despite tile fact that the
details of the vorticity distribution within the ýortex cores and in the braids joining
neighboring vortices and the convective motion of the eddies are strongly affected
by baroclinic vorticity generation in the later stages of evolution of tdi, flow [13.191

4. Conclusions

In this work, stability of heterogeneous shear flows is ilivestigated using linear stabil-
ity analysis and numerical simulations. A large number of initial flow configurat ions
which model the development of nonpremixed reacting shear flow are analyzed' The

initial conditions are used to exainne the effects of heat release a.ssociated with the
development of a nonpremixed flame on the stability of asymmnnetric shear layers
and wakes. The latter belong to a continuous family of velocity profiles which is
constructed by deforming the symmetric tanh shear layer profile using a wake comi-
ponent characterized by characterized by a spread, ý. and a velocity deficit. W.
Density variation is used to model the effects of heat release. The initial density
distribution corresponds to a temperature spike and is described by a thickness, 0,

and a temperature ratio, T, Stability curves are obtained in this four-dimensional
parameter space and numerically visualized using the transport element method.
'The numerical simulations are extended into the nonlinear stages of flowfield evo-
lution in order to examine the validity of extrapolating the linear stability results

Stability of the tanlh reacting shear layer exhibits strong sensitivity to the details
of the density distribution. When the density andi vorticity thicknesses are close. *
stabilization of the shear layer occurs as the temperature ratio increass This effect
is manifested by a sharp decrease in the instability growth rate. the nonlinear evo-
lution of unstable eigenfunctions yields weaker less-coherent vortex structures than
those observed in uniform-density flow By decreasing the thickiefs of the density
profile, additional inflection points and instability modes are obser'.ed These insta-
bility modes dominate the shear layer mode which is almost stabilized by the heat

release. However, while the associated growth rates increase with decreasing density

thickness and appear to approach the maximum growth-rate values obtained for
uniform-density flow, the nonlinear evolution of these instability modes does not
result in the format ion of concentrated vortices or in substaitial deformataion of the
flow. Thus, for the tanh profile. heat release tends to stabilize of the flow.

Addition of a wake deficit significaitly alters the stability of the flow. In the

parameter range considered, two flow configurations are distingumished When the

zones of high density gradients and vorticity magnitude are well separated. heat
release and density variation have almost no impact on flowfield stability. In this

case, the growth rate and phase speed of unstable waves are weakly affected, and
their non-linear evolution results in the formation of large concentrated asymnmetric
vortices. On the other hand, when regions of high vorticity and density gradients
are close or coincide, heat release has a weak effect on the development of the flow.

While the growth rates of unstable waves are almost unaffected, their phase speeds
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depend on the details of the density variation. This mechanism is also observed in
the later stages of evolution of the flow, which indicate that the convective motion 3

of the large vortices is modulated in the same manner as the phase velocity of the *
corresponding linear waves Thus, heat release is not expected to inhibit the growth
of unstable modes in asymmetric layers and wakes, but may hovtr influence the 1

global features of the flow.
The correspondence between computed stability results and initial flow config-

urations indicates that the effects of heat release may be intuitively predicted by
simple examination of the behavior of the density profile in the neighborhood of the •
inflection point of the velocity profile If the density profile reaches a niiumuin in
the neighborhood of the inflection point of the velocity profile, stabilization of the
corresponding unstable mode i_ expected. If the delnsity gradient does not vanlish in
this neighborhood, we expect a minor variation in the growth rate of the unstable
mode. and a modulation of its phase speed which depends on the sign of the density
gradient. In this case. the results exhibit analogous trends to those established for •
symmetric shear layers separating streams of unequal density, where unstable waxes
are observed to acquire a streamwise convection coinponent in the direction of the
high-density stream [13].

The large predicted differences in the stability properties for suniwietric and
asymmetric reacting layers lead us to expect significant sensitivity of developing
reacting shear layers to initial disturbances. In particular, if unstable modes are 0
excited at short distaiices downstream of the splitter plate, i.e. before viscous dif-
fusion leads to ilie destruction of the wake deficit associated with the merger of the
Blasius profiles, significant stabilization by heat release is not expected. Otherwise,
a sharp decrease in shear layer growth, mixing and burning efficiency is anticipated

We finally note that, in the parameter range considered, shear layer modes were
always found to dominate the wake modes. Thus, heat release and density variation 0 *
are not expected to produce a significant change in the shape of instability [6]. Our
results should be contrasted with those of Koochesfahani and Frieler [I1 who showed
that for large wake deficits and density differences, the initial development of the
layer can be dominated by the amplification of unstable wake modes. A stability
analysis in this flow regime was ontitted, since the corresponding flow configuratioiis
are not representative of typical reacting shear flow applications. Extension of the P
parameter range to include these initial conditions is postponed to a subsequent
study which will focus on direct simulation of the developing reacting flow.
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Figure 1. Schematic sketch of a shear la)er (left) and a bluff-body wake flow (right)
The self-similar monotonic shear layer profile is shown in curve (a), while curves
(b) and (c) respectively illustrate asymmetric shear la)er and wake profiles rhe
top (bottom) row corresponds to b 1 (b = 3).
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I ' .
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Figure 2. Velocity profiles for the family of shear layers gil%,,n by Eq (10), with
(1 d) combinations of Table 1. The plots are respectively arranged frm top for
increasing wake increasing thickness, 6 = 1,2. and 3. The faih profile is shown with
the 6 = 1 subcollection. The top (bottom) row corresponds to 6 = 1 (b = 3).
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Figure 3. Profiles of U"+p'U'/p For layers described by a = 1,6 = 1 and (a) T, = 1
(uniform-density flow); (b) T, = 2; (c) T,. = 4; and (d) T, = 8. Similar behavior is
obtained for the larger separation disctances, 6 = 2 and 3. The top (bottom) row
corresponds to 6 = 1 (6 = 3).

SC - I1S S'G - 0 75

SC - 05 S.C - 025

a3 *1 -1 4

Figure 4. Behavior of U" + p'U'/p for the velocity profiles of Fig. 2, with density
distribution given by: Tr = 4, and (a) a = 1.5; (b) a = 0.75; (c) a- = 0.5; and (d)
a- = 0.25. The top (bottom) row corresponds to 6 = 1 (6 = 3).
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Figure 5a. Growth rate vs. wavenumber of the shear layer (left) and wake (right) S
modes for the velocity profiles of Fig. 2 and uniform-density profile 7T, 1. The
top (bottom) row corresponds to 6 = (6b 3).
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Figure 5b. Phase speed vs. wavenumber for the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and uniform-density profile T7,- 1. The
top (bottom) row corresponds to 6 = 1 (t = 3).
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Figure 6a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 2 and
a= 1. The top (bottom) row corresponds to 6 =1 (b 3).
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Figure 6b. Phase speed vs. wavenumber of the shear layer (left) and wake (right)

modes for the velocity profiles of Fig. 2 and density profile given by T, = 2 and
S= 1. The top (bottom) row corresponds to 6 = 1 (6 = 3).
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Figure 7a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)

modes for the velocity profiles of Fig. 2 and density profile given by T, 4 and
o = 1. The top (bottom) row corresponds to 6 =1 (b - 3).
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Figure 7b. Phase speed vs. wavenumber of the shear layer (left) and wake (right) 9
modes for the velocity profiles of Fig. 2 and density profile given by T, 4 and
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Figure 8a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 8 and

= 1. The top (bottom) row corresponds to 6 = 1 (6 = 3).
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Figure 9a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 4 and

S= 1.5. The top (bottom) row corresponds to 6 = I (b = 3).
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Figure 10a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, 4 and

-0.75.

072-
050

0IS 
0I 0

-200

.0 0.2 o.4 o0 i 0 .4 'A 12 o 4 "6 _. 2.!0 . 2 ' Is 0Woven~umbw1 WaO.nubs41

-050

-0.75
- g 0 .0 0.2 0.0 00 0.0 O . 04't 0 02 0.0 0. 0. .0A 1 00 0 10 00

Wovenujmber Wowvenumfbst

o, 0.75.



46

366 _

o, i 0:

• ool4

O02

o2 2 00
0 Is

W •

"0• 0 0.0 0 24 0.4 0 '0 05 00 4 00 .09 0 " 00a 00, 0 ', 05 06 00 06 o' 00I 0

Fgr aGr wthraevs.waeume o tesha layer (left n a rgt

602.5.'

+0. -02- -.- Sl

0.05

00 -0.

. -0o a - , ,I

-0-.
-=0.5.

02.25

-00
0 CA 0.3 3 .4 0. , 05 0. 0 i off .6 0.8 0,50 a 00 0. 3 06 0 08 00 0 8 00 1 0. 11

0.5.-.0

0.75 -,_Cc

-0.50
W. 0000-0

-015

C C 25

-- 0. a 104 a A 10 1 1. 16 i .0 0 . ' 4 10 1 4 I '

0. 1

-0.0

-2.30

-of
-o J -2 1

00 0.1 0.2 0.3 0.4 05 08 07 08 0 . . 0 0 . . 5 06 0 6 0 0 0

Waonuomber W~oveloooobe

Figure I Ib. Phase speed vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by Tr = 4 and

=0.5.



367

'00'

t 0.. oro20

0.060

0025wo"me °o,.+ 4

oolys

alo
03

C, 20,00

o •

a

0.0 al 0.2 03 04 as 0.° 0•7 of0 as1 1.. 005i 06 07 CA d ° °6 0 91 O 10 1 1

wQ.O,.umblw WQO-eoqql

Figure 12a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
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Figure 13. Evolution of the uniform-density shear layer with velocity profile given by
W = 6 = 0, illustrated in terms of the vortex elements. The plots are generated by
drawing the location and instantaneous velocity vector of the elements at 1 4. 8,
and 12.
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Figure 14. Vortex element representation of the uniform-density shear layer with S 0
velocity profile given by IV = 1.2 and b 1, at t 3, 6, and 9. The plots are
generated as in Fig. 13
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Figure 15. Vortex element representation of the uniforiin-d&nsity shear layer with
velocity profile given by 14' 0.82149 and b 3, at t =3,6, and 9. The plots are
generated as in Fig. 13.

Figure 16. Vortex element v-presentationi of the shear layer with velocity profileS *
given by 14W 6 = 0 and density profile having T,2. 4 and a = 1. The plots are
genterated as ini Fig. 13.
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Figure 17 Vortex element represenitation of the shear layer with v'locit profile
given by W = 1.2 and 6 = I and density profile having T, -4 and or I The
plots are generated as in Fig. 13.
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Figure 18. Vortex element representation of the shear layer with velocity profile •
given by VV = 0.82141 and 6 = 3 and density profile having T, = 4 and a = 1. The
plots are generated as in Fig. 13.
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Figure 19. Vortex element representation of the shear layer with velocity profile
given by t' = 6 = 0 and density profile having T, 4 and a =0.5 The plots are

generated as in Fig. 13.

Figure 20. Vortex element representation of the shear layer with velocity profile
given by W = 1.2 and 6i = I and density profile having Tr = 4 and o = 0.5. The
plots are generated as in Fig. 13.
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Figure 21. Vortex element representation of the shear layer with velocity profile
given by W = 1.2 and 6 = 1 and density profile having T, 4 and a 1 5.. The
plots are generated as in Fig. 13.
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