
AD-A272 672I III~lllll ltlil lll1ll liiillll11~I II

NAVAL POSTGRADUATE SCHOOL
Monterey, California

S ELECTE
S No 15 "1993 I

THESIS ti...._ 9.B.
A CONCEPTUAL DATABASE DESIGN AND

PERFORMANCE ANALYSIS OF THE
MILSATCOM REQUIREMENTS DATABASE

by

Ronald G. Kearns

June, 1993

Thesis Co-Advisor: Daniel R. Dolk
Thesis Co-Advisor: Magdi N. Kamel

Approved for public release; distribution is unlimited.

93-27966I IIlii I I1 II IIII III11 III IIIIII 11U

1 'nclassified
Ses.uritv Cltsstication ot this page

REPORT DOCUMENTATION PAGE
In Report Securytv Classification: Unclassified lb Restrictive Markings

2a S,-,ýuritv ('l.ssfiacation Authority 3 Distribution/Availability ot Report

2h IL,.'la..iticat.,niwigradtng dule Approved for public release; distribution is unlimited.

4 Pertormmig Organization Report Nuiiher(s 5 Monitoring Organization Report Number(s)

6a Name it Pertorminng Organization Oh Otfic• Symhbol 7a Name ut Monitoring Organization

Naval Postgraduate School (if applicdh.) 39 Naval Postgraduate School

& Address cigv, state. and ZIP code) 7b Address (ctiv. %aite, and ZIP code,)

Monterey CA 93943-5000 Monterey CA 93943-5000

8a Name of FundingiSponsoring Organization 6b Office Symbol 9 Procurement Instrument Identification Number

U.S. Space Command (ifapplicadle) J6 N6227IRLNTB

Address (ciry. trate. atnd ZIP code) 10 Source of Funding Numbers MJPR NS-93-76

Peterson AFB. CO 80914 Program Element No Project No Task No Work Unit Accesi, No

I I Title linh,,hd' ,,',urtv ,hasaiih,'.,, A CONCEPTUAL DATABASE DESIGN AND PERFORMANCE ANALYSIS OF THE

MILSATCOM REQUIREMENTS DATABASE

12 Pers,,nal Author(s Kearns. Ronald Gene

1 3a Type ot Report 1 3h Tine Covered 14 Date oit Report (v',.it. ,tnmgah. hiv) 15I Page Countt 87
Master's Thesis IFrom To 1993, June 1

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block numnber)

Field [Group Subgroup MILSATCOM, MRDB. database design, normalization, database performance

19 Abstract (continue on reverse if necessarv ainu identif by block ,aumber)

The Military Satellite Communications Decision Support System (MDSS) project for U.S. Space Command
(USSPACECOM) is intended to provide decision makers an integrated inforn Jon tool to effectively manage military satellite
communication (MILSATCOM) resources while satisfying communications requirements. An important aspect of MDSS is the
information provided by the MILSATCOM Requirements Database (MRDB). The objective of this thesis is twofold. First, it
develops a new conceptual schema for the MRDB using the Entity Relationship Model and transforms it into a relational schema
for implementation. Second. it conducts a comparative performance analysis to examine the tradeoffs between normalization and
performance.

This thesis concludes that a structured approach to designing the MRDB results in a normalized structure that is simple,
easy to implement, and provides acceptable performance. A fully normalized database structure does not seem to have a
significant impact on overall MRDB retrieval performance.

20 Distribution/Availability of Abstract 21 Abstract Security Classification

unclassified/unlimited same as report DTIC users Unclassified

22a Name of Responsible Individual 22b Telephone (include Area Code) 22c Office Symbol

Daniel R. Dolk, Magdi N. Kamel (408)656-2260, (408)656-2494 AS/Dk, AS/Ka

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

i.

Approved for public release, distribution is unlimited.

A Conceptual Database Design and

Performance Analysis of the

MILSATCOM Requirements Database

by

Ronald G. Kearns

Captain, United States Air Force

B.G.S., University of Nebraska at Omaha

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
1

June 1993

Author: __ _ _ __ _ _ _ _ _

Ronald G. rs

Approved by: _ _ _ _ _ __ _ _ _ _ _ _

Daniel R. Dolk, Thesis Co-Advisor

Magdi N. NImel, Thesis Co-Advisor

~?-ý&Paul H. Moose, Chairanl
Command, Control and Communications Academic Group

ii

ABSTRACT

The Military Satellite Communications Decifion Support System (MDSS) project

for U.S. Space Command (USSPACECOM) is intended to provide decision makers an

integrated information tool to effectively manage military satellite communication

(MILSATCOM) resources while satisfying communications requirements. An important

aspect of MDSS is the information provided by the MILSATCOM Requirements

Database (MRDB). The objective of this thesis is twofold. First, it develops a new

conceptual schema for the MRDB using the Entity Relationship Model and transforms

it into a relational schema for implementation. Second, it conducts a comparative

performance analysis to examine the tradeoffs between normalization and performance.

This thesis concludes that a structured approach to designing the MRDB results in

a normalized structure that is simple, easy to implement, and provides acceptable

performance. A fully normalized database structure does not seem to have a significant

impact on overall MRDB retrieval performance. Accesion For

NTIS CRA&I

DTIC TAB
Unannounced []
Justification

DTIC QUALITY INSPECTED a By_. ------............----------...............

Distribution I

Availability Codes

Avail and I or
Dist Special

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND I

B. PU RPO SE I

C. METHODOLOGY 2

D. SCOPE OF THESIS 3

E. THESIS ORGANIZATION 3

fi. RELATIONAL DATABASES AND NORMALIZATION 4

A. DATABASE DESIGN OVERVIEW 4

1. The Database Design Process 4

2. Conceptual Design Approach 6

B. ENTITY-RELATIONSHIP MODEL 8

I. E ntity . 9

a. Regular Entity 9

b. W eak Entity 10

2. A ttribute 10

3. Relationship 12

C. RELATIONAL MODEL 13

iv

1. T ables . 13

2. Key Attributes in a Table 13

a. Primary Key 13

b. Foreign Key 13

D. GUIDELINES FOR CLASSIFYING ENTITIES AND

ATTRIBUTES 14

1. Entities with only a identifier 14

2. M ultivalued Attributes 15

E. TRANSFORMING THE ER MODEL TO A RELATIONAL

M O D EL 16

1. Regular Entities 16

2. W eak Entities 16

3. Binary One-to-one Relationships 17

4. Binary One-to-many Relationships 18

5. Binary Many-to-many Relationships 18

6. M ultivalued Attributes 18

7. N-ary Relationships 19

F. NORMALIZATION 19

1. First Normal Form 20

2. Second Normal Form 20

3. Third Normal Form 21

4. Boyce-Codd Normal Form 21

V

III. MILSATCOM REQUIREMENTS DATABASE 23

A. BACKGROUND 23

1. Database O rigin 23

2. User Community 24

3. M RDB Data 25

B. Current Design 25

1. Tables and Attributes 26

2. Normal Form s 26

a. First Normal Form 26

b. Second Normal Form 26

c. Third Normal Form 27

C. CONCEPTUAL MRDB DESIGN 28

D. DATA MODEL MAPPING 31

I. Regular Entities 31

2. W eak Entity 32

3. One-to-many Relationship 33

4. Many-to-many Relationship 34

E. NORMALIZATION 36

IV. DATABASE COMPARATIVE PERFORMANCE ANALYSIS 38

A. OPERATING ENVIRONMENT 39

1. Hardware and Software 39

vi

2. Databases Used 40

a. Original MRDB Structure 40

b. Normalized MRDB Structure 40

3. Queries Used 41

a. Query #1 41

b. Query #2 42

c. Query #3 43

d. Q uery #4 44

e. Query #5 46

4. Indexing Strategy 46

5. Implementation Issues 48

B. RESPONSE TIME MEASUREMENTS 49

1. Results of Query #1 50

2. Results of Query #2 51

3. Results of Query #3 51

4. Results of Query #4 52

5. Results of Query #5 52

C. DISCUSSION OF RESULTS 52

V. CONCLUSIONS AND RECOMMENDATIONS 55

A. CONCLUSIONS 55

B. RECOMMENDATIONS 56

vii

APPENDIX A RELATIONAL MODEL FOR THE MRDB 59

APPENDIX B TABLES AND AlTRIBUTES FOR THE MRDB 61

APPENDIX C 4GL TO TRANSFER DATA 66

LIST OF REFERENCES 74

INITIAL DISTRIBUTION LIST 75

viii

LIST OF FIGURES

Figure 1. Database design process [Ref. 6:p. 31 5

Figure 2. Relationship between two entities 9

Figure 3. Entity becomes an attribute 14

Figure 4. AUXILIARY MISSION is separate entity from NETWORK15

Figure 5. Transforming relationship between NETWORK and STATS into

tables .. 1 7

Figure 6 ER model for the MRDB 29

Figure 7 Relational database schema after mapping regular entities31

Figure 8 Relational database schema after mapping the weak entity 32

Figure 9 Relational database schema after mapping l:M relationships33

Figure 10 Relational database schema after mapping M:M relationships 35

Figure 11 Joins and records retrieved for the five queries 41

Figure 12 Query #1 on the original database 42

Figure 13 Query #1 on the normalized database 42

Figure 14 Query #2 on the original database 43

Figure 15 Query #2 on the normalized database 43

Figure 16 Query #3 on the original database 44

Figure 17 Query #3 on the normalized database 44

Figure 18 Query #4 on the original database 45

ix

Figure 19 Query #4 on the normalized database 45

Figure 20 Query #5 on the original database 46

Figure 21 Query #5 for normalized database 47

Figure 22 Summary of total response times for the five queries 50

Figure 23 Average response time (in seconds) per record retrieved 51

Figure 24 MRDB Relational Model 60

x

I. INTRODUCTION

A. BACKGROUND

The Military Satellite Communications Decision Support System (MDSS) project

for U.S. Space Command (USSPACECOM) at Peterson Air Force Base. Colorado is

intended to provide decision makers an integrated information tool to effectively manage

military satellite communications (MILSATCOM) resources while satisfying

communications requirements. One important aspect of the MDSS is the integration of

multiple databases, including the MILSATCOM Requirements Database (MRDB). The

MRDB is a relational database used by USSPACECOM to track MILSATCOM

requirements. It was initially developed as a "proof-of-concept" and has evolved into an

operational system without undergoing a formal design process. The current MRDB

structure lends itself to the problem of update anomalies.

B. PURPOSE

The objectives of this study are to:

"* Develop a new conceptual database design for the MRDB using a stnictured
database design process

"* Examine the tradeoffs between database normalization and performance.

Normal forms in relational database design refer to guidelines or rules for record

design. These rules are devised to prevent update anomalies and data inconsistencies.

Database normalization, however, tends to penalize retrieval time since data may have

to be retrieved from multiple tables. Conversely, performance requirements may

preclude a database from having all records fully normalized, which may result in

increased problems maintaining data integrity.

Currently, the MRDB is less than fully normalized and contains data redundancies

which allow queries to be executed more efficiently. This situation leads to updated

anomalies. It is desired that the MRDB be more normalized in order to reduce these

anomalies.

The main benefit of this thesis will be an improved database structure for the

MRDB. This results in the elimination of update anomalies insuring data integrity and

ensures that future modifications of the MRDB are smooth and easy.

C. METIIODOLOGY

The following steps will be undertaken to accomplish the thesis objectives:

"* An overview of user's data requilements will be gathered and the current MRDB
structure is examined.

"* A high-level conceptual model of the MRDB will be developed using the Entity
Relationship Model (ERM).

"* A set of relations or tables will be created from the conceptual model. These
tables will be implemented using a database management system.

"* The performance of the new database structure will be compared to the
performance of the original MRDB to examine the tradeoffs between a highly
normalized database structure and one that is less than normalized.

2

D. SCOPE OF THESIS

The Scope of this thesis is the design of the MRDB and the normalization of its

structure. A thesis by Bill Maior [Ref. I] implements a prototype version of the new

normalized MRDB structure using Microsoft Access, a PC-based DBMS with user-

friendly graphical interfaces.

Another thesis by Hugh Henry [Ref. 2] defines the functional requirements of the

MDSS, proposes a functional architecture, and designs a user interface for the MDSS.

E. THESIS OR(;GANIZATION

Information for this thesis was collected from the MRDB source code, user's guide,

interviews with the contractors who developed the MRDB, and users of the MRDB.

Chapter II of the thesis reviews a structured approach to thr database design

process that uses the Entity Relationship (ER) Diagram to model user's data

requirements. Chapter II also describes an algorithm that translates an ER diagram into

a relational model that is used to implement the physical database. Chapter III executes

the approach presented in Chapter II to develop a normalized relational schema for the

MRDB. Chapter IV is a comparative performance analysis of the original MRDB and

the new normalized MRDB. Finally, Chapter V concludes the thesis and makes

recommendations concerning improvements and future study.

3

II. RELATIONAL DATABASES AND NORMALIZATION

This chapter provides background information on the database design process, the

Entity Relationship Model, the relational model, and the process of normalization. First,

an overview of a well known database design process is presented. Second, a technique

known as the Entity-Relationship (ER) model that represents the logical structure of a

database is described. Third, some general guidelines are offered for classifying entities

and attributes within the ER diagram. Fourth, steps for transforming an ER diagram

(logical model) into a relational model are given. Finally, the process of normalization,

with all its associated normal forms, is defined.

A. DATABASE DESIGN OVERVIEW

This section will summarize the database design process focusing on the conceptual

design phase to represent the user's data requirements. In a nutshell, database design is

accomplished in two separate activities: logical and physical. The logical portion is

involved with the structure of the data independent of any particular Database

Management System (DBMS) whereas the physical is DBMS-specific. This chapter deals

mainly with the logical activity of database design.

1. The Database Design Process

Designing a database is a process that involves, most of all, creativity. To

aid the creative process, it is helpful to have a knowledge of a design process. The

process/methodology presented here is data-driven. A data-driven approach means that

4

the data that will populate the database is the focus rather than the applications which

eventually use the data. Unfortunately, design methodologies are not popular with those

who develop databases. Often the DBMS is used as a means to developing a database

without going through a logical process. A database implemented in a specific DBMS

should be the end product of a complete design process. Hence, many databases

developed are inadequate or inefficient in meeting the demands of users and their

applications.

A well known design process is shown in Figure 1. In the first phase,

database designers interview users to understand and document data requirements. The

MiniWorld

REQUIREMENTS 1
COLLECTION

AND ANALYSIS

Database Rdquirements

CONCEPTUAL DESIGN

(InConceptual Schema
(in a high-le 1 data model) DBMS Chosen

DBMS-independent
-................ ...-.... .. . i'DATA MODEL MAPPING i

DBMS-specific

Conceptia, Schema
; I (In the data modeIfoI a specific DBMS)IL

PHYSICAL DESIGN

I JL}
Internal Schema Database Implemented

(For the same DBMS)

Figure 1. Database design process [Ref. 6:p. 38].

5

result of tmifs phase is a set of concise database requirements.

The second phase is the conceptual database design. The conceptual design

attempts to identify the structure of data in the form of data objects and relationships

among those objects. A conceptual schema of the database is produced by using a high-

level data model. This model should be an accurate description of the data requirements

of the users. The conceptual schema used for this thesis will be presented using the

Entity-Relation (ER) model which is a tool for database modeling and design A brief

overview of using the ER diagram to model data appears in section B of this chapter.

The next step in the design process is data model mapping wherein the

conceptual data model is transformed into a data model of a specific DBMS. It can be

regarded as the logical design of the database. Logical models used to describe the

logical schema of the database are classified as relational, network, and hierarchical. We

are only concerned with relational models here, although the result of a logical design

does not require the use of a relational model. Transforming the conceptual model into

a relational model is outlined in section E.

The last step is the physical design phase where the internal storage structures

(schema) and access methods are defined for a specific DBMS.

2. Conceptual Design Approach

In phase two of the database design process, a high-level conceptual model

is developed which consists of a conceptual schema that describes the structure and

information content of a database. As stated earlier, the ER model will be used in this

thesis to represent the conceptual schema. The ER model is the most popular formal

6

structure for conceptual data representation. It is based on a few simple modeling

concepts and has an effective graphical representation where each element of the model

is mapped to a distinct graphic symbol.

The conceptual approach to database design is deliberate in that it follows an

engineering-like regimen requiring the analyst to think, discuss, and reason. Automatic

tools cannot assist this process significantly because the designer has the responsibility

for understanding the requirements and transforming them into a conceptual schema.

Once an initial conceptual schema has been established, tools are available for data model

mapping or quick prototyping. This includes fourth-generation languages (4GL) such as

INFORMIX-4GL. These tools can be used for screen, application, and report

generation.

The most successful designs are achieved by complete cooperation between•

the designer and the user, who is responsible for describing requirements and explaining

the meaning of the data. Another advantage of this cooperation, or joint development,

is that users involved in the design process are more willing to accept and use the

system.

Batii.•, et al., give three advantages of using the conceptual design approach

over using a particular DBMS to develop the schema.

1. The choice of the target DBMS can be postponed, and the conceptual schema can
survive a late decision to change the target DBMS.

2. If the DBMS or application requirements change, the conceptual schema can still
be used as a starting point of the new design activity.

7

3. Different databases, described through their conceptual schema, can be compared
in a homogeneous framework. This feature eases the building of federated systems
from several preexisting databases and the creation of an integrated data dictionary
[Ref. 4:p. 111.

It is important that the conceptual schema he included with all the database

specifications. Together with the database documentation, the data schemes and

applicatiotis can be easily understood. The conceptual schema is an important document

for future maintenance and upgrade activities.

B. ENTITY-RELATIONSHIP MODEL

An Entity-Relationship (ER) diagram is a technique for representing the logical

structure of a database in a pictorial manner [Ref. 4:p. 587]. It is a popular and widely

accepted method of representing features of any given structure. It is important to realize

that it is developed independently of any specific DBMS.

The Entity-Relationship (ER) diagram is a tool to facilitate communication to verify

data requirements between the database designer and the end-user. "The goal of

conceptual schema design, where the ER approach is most useful, is to capture real-

world data requirements in a simple and meaningful way that is understandable by both

the database designer and the end-user" [Ref. 5:p. 21

There are three basic classes of objects represented in an ER diagram: entity,

attribute, and relationship.

8

1. Entity

a. Regular Entity

The first class of object is the entity. An entity is a representation of

a real-world object This is the principal data object about which information is

collected. It can denote a person, place, thing, or event. In an ER diagram, a rectangle

represents an entity. For example, Figure 2 shows two entities from the MILSATCOM

Requirements Database (MRDB), NETWORK and CONNECTIVITY. NETWORK is

the set of requirements a user has for MILSATCOM resources while a CONNECTIVITY

is the point-to-point link within a network.

,-@ONETID
NETWORK -- ACRONYM

________ -; (other attributes...)

Is
COMPOSED

OF

M

-OCONNID

CONNECTIVITY I)DATA-RATE
_) (other attruibutes ...)

Figure 2. Relationship between two entities.

9

An instance is a particular occurrence of an entity. In the

NETWORK/CONNECTIVITY example an instance of connectivity would be a

connection between a terminal at Falcon Air Force Base, Colorado and a terminal at

Thule, Greenland. This instance would also include values for its attributes such as

mode of operation, data rates, throughput rates, etc.

b. Weak Entity

Weak entities are derived from the attributes of one or more parent

entities, they cannot exist on their own. Consider the entity COMPONENT (related to

CINC) who is responsible for network requirements. Two values for COMPONENT can

be identical but can still represent different entities. For example, PACAF (Pacific Air

Forces) can be either a component of USAF or CINCPAC. Although PACAF in this

example is the same entity, the two different chains of command are represented. A

weak entity can also be modeled as a multivalued attribute associated with an entity or

as a many-to-many relationship between two entities [Ref. 5:p. 151. In an ER diagram,

a double-lined rectangle represents a weak entity (For an example of a weak entity, see

the COMPONENT entity in the ER diagram in Figure 6, Chapter IH.)

2. Attribute

The second class of objects in an ER model is the attribute. An attribute

provides descriptive information about an entity or a relationship. An attribute is also

known as a field. The order of attributes within an entity or relationship is not

10

important. They are represented on an ER diagram by using either ovals connected to

the entity or by small bubbles (see Figure 2).

A special class of attribute is called a key attribute. Its purpose is to provide

uniqueness to each instance of an entity. For example, if the name of a network is a key

attribute, then each instance should uniquely identify a network and no two networks

could have the same name. It is a constraint that prohibits any two entities from having

the same value for the key attribute at the same time.

Attributes can be single-valued or multivalued. A single-valued attribute is

the most common. For example, the NETWORK entity can have only one primary

mission, therefore the attribute PRIMARYMISSION is considered a single-valued

attribute. A multivalued attribute is an attribute of an entity that can have a different

number of values. In the MRDB, NETWORK can have zero, one, or more secondary

missions, therefore, the attribute SECONDARYMISSION is a multivalued attribute.

A derived attribute is one whose value is determined from the value(s) of one

or more other attributes within the same entity or from one or more related entities.

Null refers to an attribute with no value associated with it. A null is not a

zero value, nor is it a field with only blanks. It can be considered to be not applicable

or unknown. The following are rules for null values:

"* Null values are allowed only for foreign keys (foreign keys will be defined later
in this section) of optional entities in an entity table.

"* Null values are not allowed for foreign keys of mandatory entities in an entity
table.

11

* Null values are not allowed for any key in a relationship table because only
complete row entries (records) are meaningful in a relationship table [Ref. 5:p. 621.

3. Relationship

The third class of objects is the relationship. A relationship represents the

real world association between one or more entities. Relationships are usually defined

using verbs to describe roles between entities. In an ER diagram, relationships are

represented by diamonds.

Relationships are described as being "one-to-one," "one-to-many," or "many-

to-many." This is known as the cardinality ratio and refers to the mapping between

instances of each entity. It describes the constraint on the number of entity instances that

are related through a relationship. For example, NETWORK and CONNECTIVITY have

a one-to-many (1 :M) relationship. One network can have many connectivities but a

connectivity can belong to only one network.

A relationship can have attributes just like entities. For a one-to-one (1:1)

relationship between entities, attributes can be included as attributes for either the entity

or the relationship. For a I :M relationship, a relationship attribute can be included only

as an attribute of the entity on the "many" side of the relationship. For both of these

relationship types (1:1 and 1 :M), "the decision as to where a relationship attribute should

be placed--as a relationship type attribute or as an attribute of a participating entity type--

is determined subjectively by the schema designer" [Ref. 6:p. 52]

In many-to-many (M:M) relationship types, the value for a particular attribute

is determined by a combination of contributing entities and not by any single entity. This

12

attribute must be associated with the relationship. This is because entities from any

participating entity can be in numerous relationship instances.

C. RELATIONAL MODEL

1. Tables

A relational model represents the data in a database as a collection of

relations. A relation can be thought of as a table. Each row in the table represents a set

of related data values. These values are facts that describe an entity or relationship in

the ER model. In the relational model for the MRDB, some examples of tables are

NETWORK, CONNECTIVITY, POC, DOCUMENT, etc. (see Figure 10, Chapter III).

2. Key Attributes in a Table

a. Primary Key

A primary key is an attribute or group of attributes that uniquely identify

each element in a relation (representing an entity or a relationship). A primary key can

be atomic (single value) or composite (more than one field). A primary key is also

referred to simply as a key or an identifier. In relational model, a primary key is

identified by underlining the attribute(s) that makes up the primary key (see Figure 10,

Chapter III). In the ER model, primary keys are represented using solid bubbles

connected to the entity (see Figures 2, 3, or 4).

b. Foreign Key

An attribute is a foreign key if it is not the primary key of an entity but

its elements, or values, are constrained to be values of the primary key of another

13

relation [Ref. 4 :p. 1171. For example, in the relational model (Figure 10, Chapter III),

nomenclature, userid, and geo reference_code are foreign keys in TERMINAL. The

foreign key nomenclature is the primary key for TERMINAL_TYPE, userid is the

primary key for USER, and ferencecode is the primary key for GEOLOC.

D. GUIDELINES FOR CLASSIFYING ENTITIES AND ATTRIBUTES

1. Entities with only a identifier

Entities should contain descriptive information. If there is ifformation about

an object, the object should be classified as an entity. If an object requires only an

NETWORK -- 0 NETNAME

(other attributes ...)

1

Becomes...

HAS _- NETWORK

1 -- O NETNAME

K. REQTYPE

REQUIREMENT -0 REQTYPE , (other attr ...)
TYPE

(a) (b)
Figure 3. Entity becomes an attribute.

14

identifier, the object should be classified as an attribute [Ref. 5:p. 361. For example,

consider the entity REQUIREMENTTYPE in the MRDB (see Figure 3-a). The type

of requirement for the network should be classified as an attribute since the object

(REQUIREMENTTYPE) requires only an identifier (see b).

2. Multivalued Attributes

It is best to treat multivalued attributes as entities. If more than one value

of a nonkey attribute corresponds to one value of a primary key, the nonkey attribute

should be represented as an entity instead of an attribute. This requires creating an entity

for the multivalued attribute. It will have a one-to-many relationship with the entity from

*NETNAME

NETWORK (other attr...)

1

Becomes...

NETWORK IS ASSIGNED

'-*NETNAME M

- SECMISNNUMr-

' •SECMISNAME AUXILARY - MISSIONNUM
:(other attr ...) MISSIONS MISN_NAME

(a) (b)
Figure 4. AUXIIARY MISSION is separate entity from NETWORK.

15

which it was removed. For example, in Figure 4 AUXILIARYMISSION is a

imultivalued attribute since a network can have more than one (if any) secondary

missions. Therefore, AUXILIARYMISSION should be represented as an entity rather

than as an attribute.

E. TRANSFORMING TIHE ER MODEL TO A RELATIONAL MODEL

Once the data model is complete, it is ready to be transformed into a conceptual

schema in the model of a specific DBMS. This phase is also known as mapping the ER

model to the relational model (refer to Figure 1).

There are seven steps for mapping an ER model into a relational model [Ref. 6:p.

329]. In the following discussion, we will use the terms "table" and "relation"

interchangeably.

1. Regular Entities

Transform each regular entity E into a table TR with all key and nonkey

attributes of E mapping into columns within TR. The key attribute(s) of E becomes the

primary key for TR.

2. Weak Entities

For each weak entity W in the ER model, create a table Tw. Include all

simple attributes of W as attributes in Two Additionally, include as foreign keys of Tw

the primary key attributes of the relation that corresponds to the owner entity. The

primary key of Tw is a composite key consisting of the primary key of the owner and the

key of the weak entity.

16

3. Binary One-to-one Relationships

For binary one-to-one relationships, identify the relations that correspond to

the entities that are involved. We will arbitrarily call one A and the other B. Add the

primary key of relation A to relation B, thus making that attribute in B a foreign key.

Technically, it doesn't matter in which relation the primary key is used. However, look

for natural parent-child relationships. For example, in Figure 5 the tables NETWORK

and STATS have a one-to-one relationship. NETWORK can be considered the "parent"

of the "child" STATS. Therefore, NETWORK's primary key, NET_ID, will be added

to the STATS entity.

NET ID is the
primary key in [

NETWORK

NETWORK ACRONYM 'CLASS NETID

/add

STATS LASTUPDATE j GEOLOCATION NET ID ..

N ET ID is now aM

foreign key in the
STATS entity

Figure 5. Transforming relationship between NETWORK and STATS into tables.

17

4. Binary One-to-many Relationships

For binary one-to-many relatiornships add the primary key of the parent

("one" side) entity to the child ("many" side) entity. This attribute will be a foreign key

in the child entity. For example, in the MRDB, the tables NETWORK (parent) and

CONNECTIVITY (child) have a one-to-many relationship since one network/requirement

can have many connectivities associated with it. Therefore, the NETID attribute will

be added to the table CONNECTIVITY. (This is accomplished in the same way as

depicted in Figure 5.)

5. Binary Many-to-many Relationships

Transform every many-to-many relationship in the ER model into a new table

and add the primary keys of the related entities to the new table. Also add any attributes

of the relationship to that table. The keys from the related entities will form a composite

primary key for the new relationship table. Remember the null rules apply for all

relationship tables.

6. Multivalued Attributes

For each multivalued attribute create a new table that includes the attribute

and the primary key of the entity that represents the multivalued attribute. This is similar

to the treatment of multivalued attributes in the ER model. These two steps are mutually

exclusive. If the ER modeling process treats multivalued attributes as entities, then this

step in mapping to the relational model will not be necessary. (See Section D.2)

18

7. N-ary Relationships

The final step is to transform every ternary or higher n-ary relationship into

a new table. Keys from the associated entities make up the primary key of the new

table. However, if one of the participating entities has a constraint of I (for example

I:M:M) then the key of that entity does not need to be included as part of the primary

key of the relationship table. However, it will be added as a foreign key of the

relationship table.

F. NORMALIZATION

Normalization is a step-by-step process for analyzing data in relations and

redesigning these relations to prevent update anomalies [Ref. 7:p. 120]. It is built around

the concept of normal forms. A table or relation is said to be in a particular normal

form if it satisfies a certain set of rules.

Numerous normal forms have been defined. Most common are the rules for first,

second, and third normal form (INF, 2NF, 3NF). Additionally, there are other normal

forms such as Boyce-Codd normal form (BCNF), 4NF, and 5NF. Fourth normal form

considers an additional constraint called "multivalued dependency" while 5NF considers

a constraint called "join dependency."

Normal forms are defined by considering key constraints and functional

dependencies. A field Y is said to be functionally dependent on field X (written as X

-- Y) if it is invalid to have two records with the same X value but different Y values,

i.e. a given X value must always occur with same Y value [Ref. 7:p. 121]. For

19

example, in the table TERMINAL_TYPE, antennasize -- nomenclature. This means

that for an occurrence of the terminal type AN/FSC-79, the antenna (dish) size will be

60 feet. (Note that the converse, nomenclature - antenna-size, is not true. More than

one terminal type can have an antenna that is 60 feet diameter.)

The reason for normalizing is to prevent insertion, deletion, and update anomalies.

Good top-down database design methodology tends to generate fully normaliLed designs.

It isn't necessary to normalize a database to the highest possible form [Ref. 4:p. 5601.

Relations can be left in lower normal forms for performance reasons.

1. First Normal Form

All occurrences of a record type must contain the same number of fields. A

simple design principle that leads to INF is that the smallest pieces of information that

may be required by users should be allocated to separate attributes, i.e. remove all

repeating groups. Relational database theory does not deal with records that have a

variable number of fields [Ref. 7:p. 120]. A good summary of what INF is trying to

accomplish is reflected in the following quote from Lacy-Thompson:

The first stage of normalization is accomplished by ensuring that all attributes
contain only atomic values, i.e. values that cannot or will not need to be broken
down any farther, and by the removal of repeating groups, rewriting them as new
entities with the appropriate identifier or identifiers. [Ref. 8:p. 23]

2. Second Normal Form

A relation is in 2NF if and only if it is in INF and every nonkey attribute is

fully dependent on the primary key. In other words, every field within a record is either

part of the key or provides a fact about exactly the whole key and nothing else.

20

Second normal form can only be violated when the primary key is composite.

Second normal form is violated when a nonkey field is a fact about a subset of the

composite primary key. It is important, therefore, to ensure that all nonkey attributes

for an entity are dependent on the whole of the key, and not just a part of it.

3. Third Normal Form

A relation is in 3NF if and only if it is 2NF and every nonkey attribute is

mutually independent and dependent on the primary key. When a situation arises when

a nonkey attribute is functionally dependent on another nonkey attribute it is referred to

as a transitive dependency. Therefore, a transitive dependency is when a third attribute.

Z, is functionally dependent on Y which is functionally dependent on X (written as Z --

Y - X).

In 3NF, we remove any transitive dependencies by separating the attributes

that are dependent on another nonkey attribute and creating a new relation (two relations

will exist, one with {X, Y} and one with {Y, Z}). An example of this will be given in

Chapter III.

4. Boyce-Codd Normal Form

Boyce-Codd normal form (BCNF) is a stronger form of 3NF. Two terms

need to be defined. First, a candidate key is one or more attributes that can uniquely

identify a record in a relation. A primary key is selected from the set of candidate keys.

For example, in the table NETWORK, the network's acronym or full name can uniquely

21

identify a network. Each could be considered a candidate key. Second, a determinant

is any attribute on which some other attribute is functionally dependent.

A relation is in BCNF if and only if every determinant is a candidate key

[Ref. 4:p. 543]. In other words, only determinants are candidate keys. BCNF takes into

account all candidate keys, not just the primary key.

Normalization often results in a relatively large number of tables.

Additionally, there is some duplication of attributes, but a database in 3NF or BCNF

offers an assurance of data integrity. When the database grows and expands in the

future, disruption will be minimized if restructuring is required [Ref. 8 :p. 261. The next

chapter develops a normalized version of the MRDB that complies with the rules for

I NF, 2NF, 3NF and BCNF.

22

III. MILSATCOM REQUIREMENTS DATABASE

This chapter will use the concepts presented in the previous chapter to develop a

normalized version of the MRDB. First, an overview of the MRDB is presented.

Second, the structure of the current MRDB is examined and violations to the various

normal forms are identified. Third, using the ER model, a conceptual database schema

of the MRDB is generated. Fourth, a relational schema is created from the ER model.

Finally, normalization is discussed as it relates to the new MRDB schema.

A. BACKGROUND

1. Database Origin

The MILSATCOM Requirements Database (MRDB) was developed for

Headquarters Air Force Space Command (AFSPACECOM) and U.S. Space Command

(USSPACECOM) by ARINC Research Corporation of Colorado Springs, Colorado to

track military satellite communication (MILSATCOM) requirements.

AFSPACECOM/DRFC is the executive agent for the MRDB and can be considered its

"owner".

The MRDB was developed as an information management tool to support

AFSPACECOM and USSPACECOM in tracking MILSATCOM requirements, planning

future systems acquisition, and conducting system architecture studies. It was designed

to overcome the shortcomings of the old Users Requirements Database (URDB) and its

follow-on, the Integrated SATCOM Database (ISDB).

23

The URDB was the original tool for documenting MILSATCOM

requirements. It was a set of flat files that the Defense Information Systems Agency

(DISA) used to track Joint Chiefs of Staff (JCS) validated SATCOM requirements. The

MRDB was to track not only JCS validated requirements, but also non-validated

requirements in a relational database environment. The MRDB was originally developed

as a prototype without constructing a conceptual schema.

The URDB was upgraded by DISA and became the ISDB. According to

Memorandum of Policy No. 37, the ISDB is the database of all JCS approved

MILSATCOM requirements. Like the URDB, the ISDB contains shortcomings and does

not support the information needs of AFSPACECOM and USSPACECOM.

2. User Community

The MRDB user community consists of unified commands (referred to as

CINCs)' or government agencies that require MILSATCOM support. Requirements are

usually associated with a CINC's service component (e.g., AFCENT, ARCENT, etc.)

Requirements, however, can come directly from the CINC (a joint requirement) or a

subcomponent of a service (e.g., 82nd Airborne Division, 4th Air Wing, etc). It is often

difficult to associate or identify a certain set of requirements with a particular CINC,

component, or subcomponent.

'Each unified command is represented in the MRDB by CINC. e.g. U.S. Central
Command is represented as CINCCENT, Forces Command as CINCFOR, U.S. Space
Command as CINCSPACE, etc.

24

3. MRDB Data

The MRDB data are maintained by ARINC and are collected periodically

from the ISDBM the Worldwide Online System (WWOLS)2, and from various system

managers.

The data from the ISDB can be transferred electronically and then convened

to the MRDB format. However, according to ARINC, the formats for the ISDB and

MRDB don't match and some anomalies exist when data arn- ransferred from the ISDB

to the MRDB.

Recently, a conference was conducted by ARINC and USSPACECOM with

attendees from all the CINCs and agencies to "scrub" the MRDB and examine every

requirement. This process greatly improved the accuracy of the MRDB.

B. Current Design

This section will discuss the version of the MRDB as provided by ARINC. This

version was current as of January 1993. Entities, tables, and relations will be designated

by using capital letters, e.g., NETWORK, and attributes or fields by italics, e.g.,

acronym.

2WWOLS is a database that contains information that breaks each connectivity within

a network into physical components (land lines, LOS, satellite links, etc). A reference
to WWOLS is in the MRDB through the CCSD attribute in the CONNECTIVITY table.
A CCSD number will exist only if the connection has been implemented.

25

1. Tables and Attributes

The MRDB contains 25 tables with 244 attributes. Half of these attributes

belong to 3 tables whereas 13 tables have 3 or fewer fields and six tables have only one

field. The largest table is NETWORK with 79 attributes.

To determine the level of normalization of the MRDB, it is necessary to

examine the MRDB for various levels of normal forms. I will be discussing violations

to I NF, 2NF and 3NF.

2. Normal Forms

a. First Normal Form

First normal form (INF) is accomplished by ensuring all attributes in

each table are atomic or nondecomposable, that is, no repeating groups exist. A

repeating group can be found in REFERENCE where pagenum consists of beginning

page number and ending page number. For example, a pagenum value of "C-21-1/6"

refers to pages 21-1 to 21-6 in annex C of the AFSCN Communications Resources

Document. Without breaking down these values, it would be difficult to find all

networks referenced by Annex C. From this example, we can see that this field contains

a repeating value of page numbers. If the user wants to separate these values, it would

be a long and tedious manual process.

b. Second Normal Form

Violations to second normal form (2NF) involve nonkey attributes which

are dependent on a subset of a composite primary key. Only one table, NETUSER, in

26

the MRDB has a composite primary key and it does not violate the rules for 2NF. The

key fields of NETUSER are username, mobility, and platform. The nonkey fields are

place, state, radius, and region. Each nonkey field is dependent on the whole composite

primary key. Although radius is applicable for only mobile or transportable terminals,

it is still dependent on the whole composite primary key. For example, a terminal that

is mobile for one user may have a radius value of 500, where another terminal that is

also mobile for a different user can have a radius value of 900.

c. Third Normal Form

Violations of rules for third normal form (3NF) occurs when a nonkey

attribute is functionally dependent on another nonkey attribute. This usually leads to

transitive dependencies as discussed in Chapter H.

A violation of 3NF occurs in the CONNECTIVITY table. A unique

CONNECTIVITY record is identified by the connid field since that field is defined as

a serial' field. There are several fields which are not facts about the connectivity (the

link between two terminals), but rather are facts about the actual terminal at either end

of the connection. In other words, some nonkey attributes are functionally dependent on

other nonkey attributes.

The attributes org__platform and orgmobility are functionally dependent

on the attribute orgterminal which in turn is functionally dependent on orgtrm_id;

hence, (orgplatform, orgmobility) -- orgterminal - orgtrm id. This can be further

3Serial is an attribute type within INFORMIX. This type of field will have its value
automatically assigned. It is intended to be used as a primary field.

27

explained as follows: a given value of org_trmid, e.g., "88", will always occur with

the same value of orgjterminal, e.g., "commercial." Also, for each given value for

org rerminal, such as "commercial" or "FSC-78," the attribute orgmobility will have

the same value, "FIX."

These violations of normal forms can be the result of a schema that hes

been "denormalized" for performance reasons or, most likely, has not been normalized

in the firs: place. In the following section a conceptual model of the MRDB is developed

based on the ISDB, the existing MRDB schema, and interviews with users.

C. CONCEPTUAL MRDB DESIGN

The first phase of an effective database design is Requirements Collection and

Analysis which involves collecting information about the intended use of the database,

examining the existing system, documentation, and interviewing users.

The second phase, Conceptual Database Design, produces a conceptual schema for

the MRDB from the information collected during requirements analysis. The conceptual

schema will be represented using an Entity-Relationship (ER) model as follows:

"* all entities are identified,

"* attributes of those entities are determined,

"* relationships among entities are defined.

After the ER model is complete, it will be mapped into a relational model whose

tables will then be examined to determine if further normalization is necessary. The

28

main features of the ER model derived from this process are shown in Figure 6 and

consist of the following:

"0 NETWORK is a set of network requirements and is composed of one or more
connectivities. A NETWORK can have one or more POC's and can be referenced
by one or more documents. Each network is described by the network name, an
acronym, and several parameters that describe the network's survivability,
availability, and performance. No two networks can have the same name or
acronym.

"* CINC (or agency) is the organization responsible for generating the requirements
for the network. A CINC can be responsible for one or more networks. Each
CINC can have zero or more components who can be the responsible organization
for a network requirement. A CINC is described only by name. COMPONENT
is a weak entity to CINC in that each COMPONENT is describcd by the parent
CINC and the name of the COMPONENT.

M Is 1 _ M
POC -F-ESPOS18LE HAS - CINC HAS . coouEN"

FOR

OPOC 10 0 NAME
.OFFICE COMPONENT_NAME
NAME U M
ADDRESS.. 1
PHONE...

-- CNN ID

Do CSJ4U
M I k• M emp-NNETMP

M I tS M GONNECTJTYPE-
REFERENCES -..... NEiWORK. -... COMPOSED -.---- - OONcE1CM'T DAT TYE HASOF "•OPMD

.. STRESS...
P NE ID - • UNSTRESS...SPAENUM ACRONYM M NUMRCUTS

M -• NAME...
SURVIVABILITY

. _AVAILABIUITY...
---------- PERFORMANCE..

DOCUMENT CONNW rS

000C 1D ORGIDSTS. tO-- - RGDS USERNAME*- - -

--- AUTHOR M USERMO•LITY --
- PUB DATE USER_-LATFORM*

'CLASS
TERMINAL I 1 HAS M M

TERMINAL -- TERMINALý- HAS . USER
TYPE TYPE

*NOMENCLATURE L-STERMINAL ID
i -. PLATFORMSERIAL-NUIS MOBILITY Mi--L:: IANTREMARKS •M

FREQUENCY
ANTENNASIZE

LOCATED -GEOLOC- LOCATED
AT AT

LOCAInON-- AREA OODE
STATE.CNTRY.CD - GEOREFERENCECODE.-

Figure 6 ER model for the MRDB.

29

" POC (point of contact) is responsible for one or more sets of network
requirements. Each POC will be describe by name, organization, address.
commercial phone number, DSN number, secure fax number, unsecure fax
number, and STU-III number, and a identification number. No two POCs have the
same identification number.

"* DOCUMENT references the requirement for the existence of the network.
DOCUMENT can reference one or more networks. Each instance of a reference
will have a page number for the NETWORK and the DOCUMENT referenced.

"* CONNECTIVITY describes the connection between exactly two terminals. If the
connection has been implemented, then it will have an associated ISDB number and
CCSD number. Each unique connectivity will be described by a connection
identifier, the type of data on the connection, the mode of operation, data rates.
throughput rates, and more. No two connections have the same identifier.

"* A TERMINAL is a piece of communication equipment that has a user (owner), is
at a particular location (if fixed), and is of a particular model (type). A
TERMINAL can belong to one or more connectivities. Different terminals that are
the same model and at the same location are differentiated by serial number. A
mobile or transportable terminal will not be given a location.

"* A TERMINAL TYPE describes the characteristics of the terminal. There can be
one or more of each type of terminal. Each TERMINALTYPE will be described
by nomenclature, type of platform, mobility, frequency, antenna size, etc. No two
TERMINALTYPEs can have the same nomenclature.

"* A USER is a unit that owns one or more terminals. It is identified by name,
usually the unit's name (for example, 101 AD, 4 AW, etc.). A user will be at
only one geographic location.

"* A GEO LOC (geographic location) will name a unique location. This name can
be a military installation, a remote site, or a foreign country. It is described by a
name, country code, region code, geographic reference code, the U.S. region code,
and the latitude/longitude. No two places can have the same geographic reference
code or the same name/country code pair.

30

D. DATA MODEL MAPPING

The third phase of the database design process is to create a relational schema from

the ER diagram in Figure 6. This is done by using the rnles for mapping outlined in

Chapter H.

1. Regular Entities

For each regular entity in the MRDB, create a corresponding relation. These

relations are NETWORK, DOCUMENT, POC, CINC, CONNECTIVITY, TERMINAL,

TERMINALTYPE, USER, and GEOLOC (Figure 7). The primary keys for the

NETWORK TERMINAL

netid acronym, netname! .. terminalid serialnumber; remarks

DOCUMENT TERMINAL-TYPE

docid title i author! pub-date i nomenclature i platform frequency I ...

POC GEOLOC

pocjid name 1 address city ... geo.ref I place st.cntrycode I

CONNECTIVITY USER

connectid isdb-numi ccsd-numi ... user id user-name

CINC

cinc-name

Figure 7 Relational database schema after mapping regular entities.

31

relations are: net_id, doc_id, pocid, cinc name, connectid, terminal id,

nontenclature', userid, and geo ref.

2. Weak Entity

For the weak entity COMPONENT with owner CINC, create a new relation.

It will be called COMPONENT. Additionally, include as a foreign key attribute the

primary key of thc, relation CINC. The primary key for the relation COMPONENT will

NETWORK TERMINAL

netid acronym! netname " ... terminalid serialnumber remarks

DOCUMENT TERMINALTYPE

docid title author pub-dateI ... nomenclature platform frequency 1 ...

POC GEOLOC

pocjd name address georef, place i st._cntrycode)

CONNECTIVITY USER

connect id isdb num i ccsd_num user id user-name

CINC COMPONENT

cincname component namec

Figure 8 Relational database schema after mapping the weak entity.

'Nomenclature is the model for a terminal. For example,
TSC-100, GSC-43, ARC-171, etc.

32

be the combination of componentname and cinc name. Figure 8 shows the result of

mapping the weak entity COMPONENT.

3. One-to-many Relationship

For each binary 1 :M relationship, identify the relation that corresponds to the

entity at the "many" side of the relationship. Include in that relation, as a foreign key,

the primary key of the relation corresponding to the entity on the "one" side of the

relationship. The following list details the mapping of the I:M relationships. Figure 9

shows the relational model following the completion of mapping I:M relationships.

NETWORK CINC

net id cinc.name component name acronym ... cinc name
f.k, f.k.

DOCUMENT COMPONENT

docid title author i pub date ! component name: cinc.name

POC TERMINAL-TYPE

pocid name I address 1 city; ... nomenclature i platform, frequency; ...

CONNECTIVITY GEQLOC

connect id netid isdb num -... georef place st cntry_,code --.
t.k.

TERMINAL

terminal id nomenclature userd geojreference code se"alnumberFn renalsnumer • •I
f.k. fjk. f.k.

USER

Iuserjd geojreference._code I user-name
Uk.

Figure 9 Relational database schema after mapping 1 :M relationships.

33

"* For the CINCHASNETWORK relationship, add the primary key cincname as
a foreign key to the relation NETWORK.

"* For the COMPONENTHASNETWORK relationship, add only the partial key
component name to NETWORK, since cinc name was already added to
NETWORK in the previous step.

"* For the relationship ISCOMPOSEDOF add the primary key net_id to the relation
CONNECTIVITY as a foreign key.

"* For the relationship HAS TERMINALTYPE add the primary key nomenclature
to the relation TERMINAL as a foreign key.

"* For the USERHASTERMINAL relationship, add the primary key user id to the
relation TERMINAL as a foreign key.

"* For the TERMINAL IS LOCATEDATGEOLOC relationship add the primary
key geo reference_code to the relation TERMINAL.

"* For the USERISLOCATEDATGEOLOC relationship add the primary key
geo referencecode to the relation USER.

4. Many-to-many Relationship

For each M:M relationship create a new relation. Include as foreign key

attributes the primary keys of the relations that represent the participating entities. The

key of the intersection relation is the combination of foreign keys. Figure 10 shows the

result of this mapping. The following list gives the details of this process.

"* The first M:M relationship is REFERENCES (a document REFERENCES network
requirements). A new intersection relation, NETDOC, is created. The primary
keys net id and docid are added as foreign keys to the new relation. The primary
key for NETDOC is the combination of the foreign key attributes (net id and
docid). This relation will also have one attribute, page number.

"* The second M:M relationship is ISRESPONSIBLEFOR (a POC is responsible
for a specific set of network requirements). Create a new intersection relation
NETPOC and add the primary keys netid and poc_id as foreign keys. The
primary key for this relation is the combination of net id and poc-id. Their are
no additional attributes.

34

* The third M:M relationship is CONNECTS. Create a new intersection relation
TERMINALCONNECT and add the primary keys terminalid and connectivitryid
as foreign keys. Again, the primary key for this relation will be the combination
terminalid and connectivitv_id. This relation will have an additional attribute,
orgdst. This attribute will designate the terminal as either the originating or
destination terminal.

A complete relational schema model showing tables and relationships between tables can

be found in Appendix A and a listing of all attributes for each relation can be found in

Appendix B.

NETWORK CINC

netid cincname componentname acronym netname ... cinc.name

DOCUMENY" f.k. COMPONENT

doc id title author put-date ... componentname cinc name

POC TERMINALTYPE f.k.

pocid name address 1 city I ... nomenclature, platform mobility! ...

CONNECTIVITY GEOLOC

connect_id netid I isdbnum i •.. geo reference code ! place ...

TERMINAL f.k.

terminalid nomenclature user_id geo referencecodel serial number .
f.k. f.I- f.k.

USER NETPOC

user id geo reference-code user-name net id poc id
NET DOfCk_ f.k.NETDOC fTERMINAL CONNECT

doc-d net id pageqnumber connect_id termina, I' org/dst
f.k. f.k. f.k. Ifk.

Figure 10 Relational database schema after mapping M:M relationships.

35

E. NORMALIZATION

The last step in the database design process is to take the relational model and

design and implement a physical database within a relational DBMS environment. This

process involves selecting the storage structures and access paths to guarantee good

performance. To make intelligent physical design decisions, more information needs to

be gathered concerning frequency of queries/updates and all applications that will run on

the MRDB.

Implementing a good physical design is easier when a comprehensive database

design process is followed. A good top-down methodology will tend to generate a fully

normalized logical design. The reason for this is that the process of developing normal

forms is carried jut in the careful development of the conceptual and relational models.

The relational model shown in Figure 10 is in 3NF and BCNF since every

candidate key is a determinate. The relational model was designed in a way as to take

all attributes from one entity or relationship and make a single relation. This ensures that

the relationships between each object in the ER model were correctly translated into the

relational model.

For example, in the relation DOCUMENT the candidate keys are docid or

doc-title. All nonkey attributes, author, pub_date, and classification, are functionally

dependent on the candidate keys and no other nonkey attribute. Similarly, for every

relation, all nonkey attributes are dependent upon determinants that are candidate keys.

Hence, the schema can be considered to be in 3NF or BCNF.

36

The next chapter addresses the tradeoff between normalization and performance by

comparing query response times of the normalized MRDB and the old MRDB.

37

IV. DATABASE COMPARATIVE PERFORMANCE ANALYSIS

Balancing the need for normalized structures and the performance of a relational

database is a challenge. On one hand, short retrieval times require that data be stored

in very few physical files to eliminate expensive joins. On the other hand, preventing

update anomalies requires that data structures be simple and normalized. Normalization

results in more tables and, therefore, can lead to performance degradation for specific

applications. In order to improve performance for these applications, the normalization

process must be reversed. This process is known as "denormalizing," or, combining

tables.

Two questions concerning the MRDB are: 1) Do users require fast response time

for queries? and 2) Can favorable query response times be sacrificed in order to have a

structure that eliminates update, insert, and delete anomalies?

Some insight to these questions was gleaned from interviews with the users. In

most cases, the turn-around time to receive desired reports was hours or even days.

When the database was queried, the activity was heavy, but sporadic. However, because

only one person could query the database, some of these heavy periods lasted all day and

night for up to two weeks. To improve the situation, two copies of the database were

used, but problems were encountered later when the updates were combined into one

"master" MRDB. The contractor stated that although the MRDB experienced some

38

update anomalies, they (the contractor) were aware of them and were able to fix them

fairly well.

Therefore, the answer to the first question seems to be that fast response times in

a matter of seconds is not a major requirement of the users, whereas the answer to the

second question is that sacrificing some query response time would not hinder the

efficiency of the MRDB. A normalized structure would help eliminate the update

anomalies, but at the possible expense of increased query time response. In summary,

"normalized design enhances the integrity of the data by minimizing redundancy and

inconsistency, but at some possible performance cost for certain retrieval applications"

[Ref. 7:p. 121]. This performance cost does not seem to be a major consideration for

the MRDB. To verify this hypothesis, we conducted a comparative performance analysis

on each database structure.

A. OPERATING ENVIRONMENT

This section will discuss the environment used for the performance evaluation,

including descriptions of computer hardware, software, the databases used, the queries

used, and the indexing strategy.

1. Hardware and Software

The hardware used to store the MRDB and run the queries is an IBM PS/2

with a 386 processor. All database files are stored on a hard disk. All routines are

written in INFORMIX-4GL with embedded SQL commands to access the database.

39

2. Databases Used

The comparative analysis was conducted on two databases: The original

MRDB and the nonnalized MRDB structure.

a. Original MRDB Structure

An unclassified version of the MRDB was provided by ARINC for the

purpose of this study. It consists of 65 network and 415 connectivity records.

Additional records were created to bring the total number of records in the network and

conne,*,.vity tables to 195 and 1245 records respectively. This was done in order to

accurately evaluate a database that is the same size as the classified version. This larger

database is used to measure query response time. We use the original unnormalized

schema without any changes.

b. Normalized MRDB Structure

A physical table is created for each relation in the relational model

(Appendix A) of the normalized database. The data definition statements for the new

MRDB appear in Appendix B. Data is transferred from the original MRDB to the

normalized database. However, some table names were identical to table names in the

original database. In order to avoid confusion, an "N" is added at the beginning of

tables in the new MRDB to make them unique (e.g., NETWORK in the original MRDB

is called NNETWORK in the new normalized MRDB).

40

3. Queries Used

We will investigate the performance of some hypothetical queries on both the

original and the normalized versions of the MRDB. Five queries have been selected to

represent a wide range of cardinality in the result tables and to reflect the effects of

normalization on retrieval time. All queries are select-project-join except for query #4

which includes an aggregate function. The number of tables involved in the join and the

number of records retrieved for each query are summarized in Figure 11.

a. Query #1

This query selects all networks and their associated connectivities and

terminals that have had requirements validated by the JCS. This is the largest of the five

queries. The SQL for this query on the original database is shown in Figure 12. Query

#1 performs an outer join between NETWORK and CONNECTIVITY for all networks

that have the value "JCS VALIDATED" in the field urdbstatus. This join was selected

because it is performed often in generating reports for the MRDB.

ORIGINAL MRDB NORMALIZED MRDB

Tables in Records Tables in Records
join retrieved join retrieved

Query #1 2 746 4 1492

Query #2 2 9 4 18

Query #3 2 65 4 130

Query #4 2 63 2 63

Query #5 no join 537 4 1145

Figure 11 Joins and records retrieved for the five queries

41

SELECT *

FROM network, OUTER connectivity
WHERE (network.urdb status = "JCS VALIDATED") AND

(network.netid = connectivity.netid)

Figure 12 Query #1 on the original database

The SQL for this query on the normalized database is shown in Figure

13. In contrast with the query on the original database, this query performs a join on

four tables; NNETWORK. NCONNECTIVITY, TERMINALCONNECT, and

TERMINAL. The conditions in the WHERE clause links the four tables together.

b. Query #2

This query selects all associated connectivities and terminals in the

Automated Weather Network (AWN). This is the smallest query and selects only one

network (AWN) and nine connectivities. The SQL for the this query on the original

database is shown in Figure 14. Similar to query #1, this query also requires a join

between NETWORK and CONNECTIVITY, but in the WHERE clause, only one

network is selected.

SELECT *

FROM nnetwork, OUTER (nconnectivity, terminalconnect, terminal)
WHERE (nnetwork.urdbstatus = "JCS VALIDATED") AND

(nconnectivity.netid = nnetwork.net_id) AND
(terminalconnect.connectid = nconnectivity.connect_id) AND
(terminal.terminalid = terminalconnect.terminal_id) AND
(terminal.connect_id = terminalconnect.connectid)

Figure 13 Query #1 on the normalized database

42

SELECT *
FROM network, OUTER connectivity
WHERE (network.net id = "49") AND

(network.netid = connectivity.net id)

W'igure 14 Query #2 on the original database

The SQL for query #2 on the normalized database is shown in Figure 15.

This query is similar to the first query except that only one network is retrieved.

c. Query #3

This query selects all networks and their associated connectivities and

terminals that have had requirements not reviewed by the JCS. This condition selects

nine networks and 65 total connectivities. The SQL for this query on the original

database is in shown Figure 16. It performs a join on the same tables as the first two

queries, with the only difference being that this query specifies a value of

"UNREVIEWED" for urdb status.

SELECT *
FROM nnetwork, OUTER (nconnectivity, terminal_connect, terminal)
WHERE (nnetwork.netid = "49") AND

(nconnectivity.net_id = nnetwork.net id) AND
(terminalconnect.connectid = nconnectivity.connectid) AND
(terminal.terminalid = terminalconnect.terminal_id) AND
(terminal.connect id = terminalconnect.connectid)

Figure 15 Query #2 on the normalized database

43

SELECT *

FROM network, OUTER connectivity
WHERE (network.urdbstatus = "UNREVIEWED") AND

(network. net_id = connectivity. netid)

Figure 16 Query #3 on the original database

The SQL for query #2 on the normalized database is shown in Figure i7.

It also performs a join on the four tables, NNETWORK, NCONNECTIVITY,

TERMINALCONNECT, and TERMINAL. It will select networks that have a value

of "UNREVIEWED" for urdb status. The other conditions in the WHERE clause link

tables that were specified in the selection process.

d. Query #4

This query finds the total objective unstressed throughput rate for all

networks whose requirements are CINC advocated. The term "unstressed" refers to a

terminal that will be transmitting or receiving a signal in an environment that does not

experience jamming, interception, or any phenomena that would impair the signal. The

SQL for query #4 on the original database is shown in Figure 18. There is a join

SELECT *
FROM nnetwork, OUTER (nconnectivity, terminalconnect, terminal)
WHERE (nnetwork.urdbstatus = "UNREVIEWED") AND

(nconnectivity.netid = nnetwork.netid) AND
(terminalconnect.connectid = nconnectivity.connectid) AND
(terminal.terminalid = terminalconnect.terminal_id) AND
(terminal.connectid = terminal connect.connectid)

Figure 17 Query #3 on the normalized database

44

SELECT network.net id, SUM(unstress_thru_o)
FROM network, connectivity
WHERE (urdb status = "CINC ADVOCATED") AND

(network.netid = connectivity.netid)
GROUP BY network.net id

Figure 18 Query #4 on the ongina! database

condition involved because the data on throughput rates are in CONNECTIVITY. The

query gives the network name and the total throughput rate for an unstressed

environment. This query differs from the other queries in that the total is determined by

taking the aggregate sum of the unstressed throughput rates for all connectivities in the

network. There will be one total for each network in the database. There are 63

networks that are CINC advocated.

The SQL for query #4 on the normalized database is shown in Figure 19.

This query is similar to the query on the original database in that only two tables are

joined and the same number of records will be retrieved.

SELECT nnetwork.netid, SUM(unstressthru-o)
FROM nnetwork, nconnectivity
WHERE (nnetwork.urdbstatus = "CINC ADVOCATED") AND

(nnetwork.netid = nconnectivity.net id)
GROUP BY nnetwork.net id

Figure 19 Query #4 on the normalized database

45

e. Query #5

This query selects all connectivities and their associated terminals that

have full duplex connections. This is the only query that does not perform a join. All

information needed for this query is in the CONNECTIVITY table. The SQL for this

query is shown in Figure 20. It is another large query and retrieves 537 records from

the CONNECTIVITY table.

The SQL for this query on the normalized database is shown in Figure

21. These two queries are unique in that the query on the original database uses only

one table (and no join) whereas the query on the normalized database has a join of four

tables. This type of query should demonstrate clearly the tradeoff between normalization

and query retrieval time.

4. Indexing Strategy

Indexes are created on key fields to optimize the performance of queries.

Significant time savings result from building the appropriate indexes. A disadvantage of

having an index is that it can slow down insertions and updates to the database.

However, this is only a problem when inserting a large number of records from one table

to another. It isn't a serious problem when inserting one record at a time. The

SELECT acronym, org_user, orgterminal, dstuser, dst terminal
FROM connectivity
WHERE modeop = "F"

Figure 20 Query #5 on the original database

46

SELECT *
FROM nnetwork, OUTER(nconnectivity, terminalconnect, terminal)
WHERE (opmode = "F") AND

(nnetwork.net id = nconnectivity.net_id) AND
(nconnectivity.connect_id = terminalconnect.connect_id) AND
(terminalconnect.connectid = terminal.connect_id) AND
(terminalconnect.terminalid = terminal.terminal_id)

Figure 21 Query #5 for normalized database

INFORMIX-4GL Reference Manual suggests the following rules-of-thumb when

developing an indexing strategy:

"* Do not create indexes for small tables with fewer than 200 records.

"* Do not create indexes on a field that has only a few possible values (e.g., yes/no
responses, data types and connectivity types in the CONNECTIV Y table).

"* If the WHERE clause of a SELECT statement imposes a condition on a single
field, put an index on that field.

"* If there are conditions placed on several fields, mLke a composite index on all the
affected fields.

"* If there is a join condition between a single field in one table and a single field in
another table, create an index on the field in the table with the larger number of
records

Normally, no relationship exists between the physical order of the data in disk

storage and the order in an index. The physical order of the data in disk storage can be

the same as the order in an index through "clustering." This is done in INFORMIX-4GL

either by using a CLUSTER clause in the CREATE INDEX statement or by altering an

existing index.

47

The database with the old structure used the indexing specified by its

designers. The indexing strategy for the new database structure is as follows:

"* create an index on net id in NNETWORK

"* create a clustered index on net id and an index on connect id in
NCONNECTIVITY. This will group together, in storage, all connectivities within
the same network.

"* create a clustered index on connect id and an index on terminal id in
TERMINALCONNECT.

"* create a clustered index on connect id and an index on terminal id in TERMINAL.

5. Implementation Issues

The data to populate the normalized MRDB is the same data that populates

the original MRDB. The data is transferred using an INFORMIX-4GL program as

shown in Appendix C. In order to transfer the data while maintaining relationships and

information content, connectid, the primary key in NCONNECTIVITY, is added to

TERMINAL. This is done in order to uniquely identify a terminal at the end of each

connectivity, since the fields orgtrm_id and dsttrmid in CONNECTIVITY do not

uniquely identify a terminal, but rather a terminal location. It is very difficult to

identify an individual terminal in the original MRDB.

Two other changes are needed in order to create the physical database. First,

the composite primary key username, user-mobility, and user_platform from NETUSER

in the original MRDB is used as the composite primary key in TUSE_ 5 . Second, it is

' TUSER is used because INFORMIX-4GL treats 'USER' as a reserved word. The
CREATE TABLE statement in DDL for USER does not work. Therefore, TUSER is
used as a substitute.

48

decided to use the composite primary key location and stcntrvcd for NGEO_LOC

instead of geo referencecode. The reason for this selection is that it is easier to use the

existing primary key than to convert each occurrence of these composite primary keys

to new single-field primary keys.

In addition to the problems described above, the data translation process is

a lengthy and difficult one for the following reasons:

"* Data has to be extracted from tables in the original MRDB that are not normalized.

"* Relationships among the different tables has to be preserved from one database to
another.

"* Values in fields of different records that are supposed to be identical tend to differ.
For example, within doetitle of REFERENCE, one record uses "and" and another
record uses "&" for the title. The document is the same, but because of the
spelling difference, they translate as two separate documents into DOCUMENT.
This is known as the "synonym" problem.

B. RESPONSE TIME MEASUREMENTS

This section describes and reports the results of measurements taken on the two

different database structures. The choice of a performance metric depends upon how a

database is used. A transaction processing database will use throughput (rate at which

transactions are completed) as a performance metric. However, the MRDB is not used

to process transactions from users, but rather is used as a decision support tool for ad

hoc queries to support decisions by management. The performance metric for a decision

support database is typically a measure of response time, also called query elapsed time

[Ref. 9:p. 323]. Additionally, since the normalized database returns more records than

the original database, we will examine the average response time per record retrieved.

49

For the purpose of this thesis, query elapsed time is the time it takes to retrieve all

records satisfying the criteria specified in the query. Response times are measured with

and without indexing. Figure 22 shows a summary of the response times for the various

scenarios. Average record response time is calculated by dividing the response time by

the total number of records retrieved. Figure 23 shows a summary of the average

response time per record retrieved and the percentage of increase or decrease in response

time from the original MRDB to the normalized MRDB.

1. Results of Query #1

Using an index, the response time for the normalized structure is about nine

minutes greater than that of the original structure. This means an increase of 264

percent. However, the query on the new database structure retrieves twice as many

records. This fact increases the response time per record about 30 percent. The reason

twice as many records are retrieved is that the CONNECTIVITY table in the original

ORIGINAL MRDB NORMALIZED MRDB

w/index w/o index w/index w/o index

Query #1 5:25 min 8:05 min 14:18 min 62:03 min

Query #2 6 sec 2:53 min 15 sec 2:45 min

Query #3 29 sec 3:36 min 1:17 min 7:07 min

Query #4 51 sec 3:55 min 45 sec 2:20 min

Query #5 37 sec 37 sec 9:01 min 55:11 min

Figure 22 Summary of total response times for the five queries

50

ORIGINAL NORMALIZED % INCREASE
MRDB MRDB

Query #1 .436 .575 30

Query #2 .666 .833 27

Query #3 .446 .592 33

Query #4 .810 .714 12 (decrease)

Query #5 .069 .472 580

Figure 23 Average response time (in seconds) per record retrieved

database contains attributes for two terminals, one at each end of the connection. In the

process of normalizing, each terminal has a separate record in the TERMINAL table;

hence, twice the number of tuples are retrieved.

2. Results of Query #2

The response time for query #2 on the original MRDB is 2.5 times faster than

the normalized MRDB. Again, response time on both databases are penalized severely

without indexing. Like query #1, the response time per record shows a much lesser

percentage increase (27%) than the total response time increase (250%).

3. Results of Query #3

The difference in response times between the two schemas for this query is

similar to queries #1 and #2. The query on the original database was 2.65 times faster

than the query on the normalized database. Response times were also severely degraded

51

without indexing. Like queries #1 and #2, query #3 experienced only a slight increase

in response time per record retrieved (33%).

4. Results of Query #4

The response times on each database is the same (the query on the normalized

database was slightly faster, but not enough to make any conclusions). Although these

queries retrieve the same number of records as query #3 on the original database, elapsed

time for these queries are almost double (on the indexed databases).

5. Results of Query #5

Total response time for query #5 on the normalized database is over 14 times

slower than the query on the original database. Average response time is better but is

still over five times slower. Without indexing, the response times on the normalized

database was severely penalized. Because the condition in the WHERE clause is not an

indexed field, the response times for queries on the indexed and non-indexed database

were identical.

C. DISCUSSION OF RESULTS

The response times measured support the assertion that queries on the indexed

original database were faster than the queries on the normalized database. This is

particularly true because more tables are joined for the queries on the normalized

database. When the query involved the same number of tables in a join (query #3), then

response times were essentially the same on both databases.

52

As expected, total response times are smaller for queries that retrieve a smaller

number of records. As the number of records to be retrieved increases, the total

response time increases also. If we examine the average response time per record on the

normalized database, we see that there is only a 30% increase. This increase is

independent of the cardinality of the resultant table (see results of queries #1, #2, and #3

in Figure 23) and can be attributed to the extra time it takes to join the additional tables.

This can be readily seen in the results for query #4 in which response times were equal

an the cardinality of the result tables are equal.

Without indexing, response times will be degraded significantly whether the tables

are normalized or not. An exception is made for query #5 on the original database.

These time are identical because the condition in the WHERE clause is on a field that

isn't indexed on either execution of the query. It should be restated that these response

times are for data retrieval only. Additional tasks such as creating a detailed report on

each network will increase overall processing time.

Overall, the response times for the indexed normalized database were not

excessive. If significant processing were to be done in conjunction with these queries

(in one of the current application programs, for example), then the differences in

response times would be insignificant. For example, the case when reports are to be

generated for the networks selected in query #1. The additional time for the application

program to prepare and print the reports would make the seven minute difference in

retrieval time insignificant. However, differences would be very significant if the MRDB

were to be used in an interactive environment. This would require response times to be

53

less than one second, or near real-time. In this case, a denormalized structure would be

preferred over a normalized structure.

54

V. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to present conclusions based on research done in this

thesis and to make recommendations for improvements and further study. In this thesis,

we examined the current structure of the MRDB, re-engineered a new conceptual model

of the real world system using the ER diagram and then translated it into a relational

model. The relations in this model were implemented into the INFORMIX DBMS and

a comparative performance analysis was performed.

A. CONCLUSIONS

The first half of this thesis examined the current MRDB and developed a new

conceptual schema using a structured database design process. Based on this work, the

following conclusions can be made:

"* The current MRDB is not a normalized structure and can experience some update
and insert anomalies.

"* A structured approach to designing the MRDB will result in a normalized structure
that is simple and easy to implement.

"* It is imperative that a database be developed using a structured design process.
Data modeling using a high-level model should be a major activity consisting of
gathering user requirements and representing them in a high level model.

"* Once that is accomplished, a logical database structure is derived from the high
level data model.

"* The relations in the logical database model can easily be implemented using an
appropriate DBMS.

55

* Depending upon query and update patterns, the set of normalized table in the

DBMS can be denormalized (tables combined) to obtain better performance.

Based upon the results of the comparative analysis of database response times, the

following conclusions can be made:

"* As the number of tables involved in a join increases, per record query response
times will increase. For example in queries one, two, and three the number of
tables in the join increased from two for the original database to four for the
normalized database. The query times increase by an average of 30% for each
query.

"* The response times for the original database and the normalized database were the
same when the number of tables involved were the same. For example, in query
#4, the query response times were the same for both databases.

"* The increased response times for the normalized database does not seem to have
a significant impact on overall database performance (generating reports, ad hoc
queries, etc.) based upon the current turn-around time for database output.

B. RECOMMENDATIONS

The work performed in this thesis is a starting point for an overall database design

process. The following additional research and study on the development process is

needed:

"* It is important that a comprehensive database design process be performed,
especially phase one, Requirements Collection and Analysis. Without a well-
developed set of requirements, the database designed will not meet the needs of the
users. These requirements would be the foundation of a responsive and flexible
relational database that will support decision makers.

"* A new MRDB should be hosted on a commercially available, PC-based, relational
database. The selection of a relational DBMS should consider economic and
technical factors. It should be affordable and it should have a good graphical user
interface, a sophisticated database engine, and an interactive SQL facility to handle
quick ad hoc queries.

56

* An analysis should be done on the query and update pattern in order to determine
if denormalizing is necessary.

An advantage to using a COTS database product is transportability. For example,

the MRDB and its database management system could be installed on a notebook PC with

a 486 processor. This computer could travel with decision makers to provide quick

access to applicable information and on-the-spot answers to questions as they arise.

If the query response times are not acceptable, then combining the physical tables

that resulted form the design process may be the answer. When application programs,

such as the MRDB, are developed around a particular data structure, denormalization or

further normalizing becomes impractical. Even small changes to tables can have a

serious impact on application programs. This is why it is important to accurately specify

requirements at the onset.

A common method to overcome the effects of normalization is to create logical

views of tables to produce denormalized virtual tables [Ref. 10: p. 581. In the MRDB,

the commnnly used fields for reports could be combined into a logical view and the

separate physical tables maintained for use by other applications. If this structure causes

performance problems, the view can be materialized into a physical table.

This method would minimize the impact of denormalization. The trade-off of

having a materialized view with faster access time would be additional storage space.

Also, a strategy for maintaining the duplicated data would need to be developed.

Programs to update the existing normalized tables would need to be revised to update the

new materialized views.

57

Another factor to consider is the computer that hosts the MRDB. A 486 (or

Pentium) will also reduce the query response times and the overall impact of

denonnalization.

The results of the comparative analysis show that although a highly normalized

database will penalize query response time, normalization would not significantly impact

the current turn-around time for MRDB products. It is more important that the MRDB

contain data that's accurate and free from data anomalies. A normalized database

stnrcture will ensure that future modifications to the MRDB and associated applications

are smooth and easy. This will give decision makers high confidence in the information

provided by the MRDB.

58

APPENDIX A

RELATIONAL MODEL FOR TIlE MRDB

The chart in Figure 24 shows the relationships between the tables within the

MRDB. For clarity and simplicity, only the primary and foreign keys are shown.

59

I . i I's

li
I

-I II

Figure 24 MRDB Relational Model

60

APPENDIX B

TABLES AND ATTRIBUTES FOR TIHE MRDB

This appendix lists the statements to define the tables in the new MRDB. Also

included is a description of each attribute. Information describing these fields was

obtained from the data dictionary for the original MRDB and the ISDB.

create table NGEOLOC

geo ref cd char(4), (unique id for each geographic location)
location char(8), (location of terminal or facility; together with st cntry cd forma composite

primary key)
stcntrycd char(2), (DCAC 310-65-1 defined code for state or country)
areacd char(l), (DCAC 310-65-I code for operational area)
usrgncd char(l), (US region code)
cntryabrv char(S), (abbreviation of country)
fullname char(25), (full name of location)
lat deg smallint. (latitude of terminal or user)
lat min smallint.
lat sec smallint,
lat hem char(l),
Iondeg smallint, (longitude of terminal or user)
Ion min smallint.
Ion sec smallint,
Ion-hem char(l)

create table NPOC
(

pocid serial not null. (primary key for NPOC)
agency char(20), (organization to which poc is assigned)
offcode char(12), (office code for mailing address)
addressl char(20), (first line of address)
address2 char(20), (second line of address)
city char(20),
sc char(2), (state country code (see ngeoloc))
zip char(1O), (zip code)
coamnhum char(16), (commercial phone number)
dsnnum char(16), (DSN phone number)
stunum char(16), {STU-III number)
sfaxnum char(16), (secure fax number)
ufaxnum char(16) (unsecure fax number)

61

create table NNETWORK

net id serial not null. (primary key for each network)
canc name char(12), (foreign key, name of CINC responsible for generating requirements)
component char(12), (foreign key; name of service component or CINC component)
acronym chart 10), (acronym of network)
class char(4), (security classification of network requirement)
netname char(35), (long name of network)
con_ops char(00), (concept of operations)
cincprty char(3), (cinc-assigned priorty for requirement)
globprty char(2), (priority assigned by ISDB)
rqtype o char(l 1), (support type: full period or contingency (objective))
rqtypet char(I1). (support type (threshhold))
rqtype_crit char(l), (is this type of support critical to network?)
duration smallint, (length in days of requirement (for short term req.))
rqbegin date, (first day of validation)
rqend date. (last day of validation)
urdb status char(15), (status of requirement in validation process (from ISDB)}
satisfy char(l), (level of req. satisfaction (partial, full, etc.))
primary chartI) (primary system which req. is satisfied (freq. hand))
secondary char(l), (backup to satisfy req.)
milstarloaded char(l), (in milstar loading analysis?)
bermant decimal(2,1), (mantisa of bit error rate)
berexpo smallint, {exponent of bit error rate (obj.))
berexp t smallint, { (thresh.))
bercrit char(l), (is BER critical to network service quality?)
minavail o decimal(5,2), (min percent availability of net to user)
minavailt decimal(5,2), ("
empo char(l), (does net reqire emp protection?)
emp-t char(l), ("
empcrit char(l), (is emp critical to operation of net?)
nsp char(l), (will net xmit through nuc. scint. environment?)
aj char(l), (does net reqire aj protection?)
aj lvl_o smallint, (expected power level of jammer (0 to 4))
ajlvl_t smallint. ()
ajdist_o smallint, (distance from user and jammer)
ajdist_t smallint, { "
aj_crit char(l), (is aj critical to requirement?)
Ipi char(l), (is Ipi required for net?)
Ipi disto smallint, (est. distance from user for signal intercept)
Ipi-dist t smallint, (}
Ipicrit char(l), (is Ipi critical for net success?)
conflict_ char(l), (will net operate during conflict level I? (peace))
conflict_2 char(l), (-low-intensity conflict)
conflict_3 char(l), { -crisis)
conflict 4 char(l), { -theater conventional war)
conflict_5 char(l), { -global conventional war)
conflict 6 char(l), { -theater nuclear war)
conflict_7 char(l), (-strategic nuclear war)
conflict_8 char(l), (-post-attack/reconstruction)
maxouto smallint, (max time for interruption due to weather, nuc. etc)
maxout t smallint, { }

62

dcycleo decimal(4, 1). (duty cycle, % net to support transmission)
dcycle t decimal(4,I), ("
dcyclecrit char(1), (is this percent critical for net operation?)
callfreq smallint. (frequency of calls per hour by user)
callien decimal(3,1), (average length of calls by user)
maxmtt_o decimal(5,1), (max mean xmit time call rec after transmitted)
maxmtt t decimal(5,1), {)
maxmtt crit char(l), (is max mean xmit time critical to operation of net?)
maxaat o smallint, (max allowable access time to access net after request)
maxaatt smallint, { "
maxaat_crit char(l). (is max allowable access time critical to net ops?)
ascrit char(l), (is antispoof critical to net?)
net_excl char(l), (has network been deleted from the MRDB?)
netcrit char(l), (is net critical for completion of unit's mission?)
misnessen smallint, (is net essential for completion of unit's mission?)
uscntrl char(l), (is satellite system/terminals under US control?)
avail_crit char(l), (is availability of net critical?)
sl char(l), (eight various scenario for net to be operational)
s2 char([),
s3 char(l).
s4 char(!),
s5 char(I),
s6 char(l),
s7 char(l),
s8 char(l),
last update date (last date requirements were updated)

create index n net id on nnetwork (netid);

create table NETPOC (relationship between network and poc)

net(id smallint not null. (foreign key)
pocnid smallint not nul (foreign key)

create table DOCUMENT
(
docid serial not null, (primary key for document records)
doctitle char(70), (title of document)
author char(15), (author of document)
pub date date, (pulication date of document)
class char(5) (classification of document)

create table NETDOC (relationship between NNETWORK and DOCUMENT)
(
docid smallint not null, (foreign key of DOCUMENT)
net id smallint not null, (foreign key of NNETWORK)
page num char(1 5) (page number in document which references net)

63

create table NCINC

cmnc name char(12) not null (name of cinc or government agency)

create table NCOMPONENT

component char(12) not null, (name of component of a canc, service or agency)

cinc name char(12) not null (parent agency of component)

create table NCONNECTIVITY

connect id serial not null, (primary key; unique identifier of a connectivity)
net id smallint not null, (foreign key of NNETWORK)
conntype char(I), (type of configuration (point-to-point, hub, etc.))
data type char(5), (type of data (DATA, VOICE. IMAGE, VIDEO, etc.))
secure char(I), (is secure transmission required?)
opmode char(I), (mode of operation (duplex, half. etc.))
ccsd num char(8), (id for operational circuits in DSCS or DCS; ISDB)
ccsd restore char(2), (importance of circuit for restoration)
isdb num char(13), (control number for a requirement in the ISDB)
system_name char(1O), (of satellite system carrying circuit)
num circ smallint, (number of circuits in the connectivity)
critical char(l), (is connectivity critical to mission of network)
stress thru o decimal(16,3), (throughput rate in a stressed environment (obj.)}
stress thru t decimal(16,3), ((thresh))

unstress thr o decimal(16,3), {throughput rate in an unstressed environment)
unstress thr t decimal(16,3), ()
stress drate o decimal(16,3j, (data rate in a stressed environment)
stress drate t decimal(16,3), (}
unstress drt o decimal(16.3), (data rate in an unstressed environment)
unstress drt t decimal(16,3) { ' }

create index c connect id on nconnectivity (connectid);
create cluster index c net id on nconnectivity (net id);

create table TERMINAL TYPE
(

nomenclature char(15) not null, (primary key; type of terminal)
frequency char(3), (operating frequency band)
mobility char(5), (terminal mobility (fix, mobile, trans))
platform char(5), (terminal platform (ship, air, manpack, fix, etc)}
antenna size smallint, (diameter of antenna in feet)
lo.eirp smallint, (low end of range for terminal/antenna combo)
hieirp smallint, {high end of range for terminal/antenna combo)
lo_gt smallint, (lowest gain to temperature ratio)
higt smallint, (highest gain to temperature ratio)
min drate decimal(16,2), (min data rate in kbps)
max drate decimal(16,2) {max data rate in kbps)

64

create table TUSER

userid serial not null. (primary key)
username char(15), (together with mobility and platform form a composite primary key)
user_mobility char(5).
userplatform char(5),
location char(8), (part of foreign key of ngeoloc)
stcntry_cd char(2) (part of foreign key of ngeoloc)

create table TERMINALCONNECT (relationship between NCONNECTIVITY and TERMINAL)

connect id smallint, (foreign key of NCONNECTIVITY)
terminalid smallint, (foreign key of TERMINAL)
org dst char(3) (is terminal the originating or destination terminal)

create index tc connect id on terminalconnect (connectid):
create index tc terminal id on terminalconnect (terminal id);

create table TERMINAL
(

connect id smallint, (together with terminalid form composite key to uniquely identify a
terminal in a connectivity.)

terminalid smallint, (part of composite primary key)
nomenclature char(15), (foreign key of TERMINAL TYPE)
user-name char(15), (part of foreign key of TUSER)
usermobility char(5), (part of foreign key of TUSER)
user_platform char(5), (part of foreign key of TUSER)
location char(8), (part of foreign key of NGEOLOC)
st cntrycd char(2), (part of foreign key of NGEOLCO)
serial number char(10), (serial number of terminal)
trm region char(2), (region code)
trmrd char(3), (DISA-assigned reporting designator for DSCS terminals)
act-date date, (activation date; actual or projected for this terminal)
deact date date (deactivation date)

create index t connect id on terminal (connect id);
create index n terminal id on terminal (terminal id);

65

APPENDIX C

4GL TO TRANSFER DATA

This appendix is a summary of the INFORMIX-4GL source code that transfers the

data from the original database to the new normalized database. The actual data was

transferred one table at a time. However, all the code was combined into one listing to

make it easier to follow.

DATABASE new

MAIN

DEFINE tname CHAR(15), (For building the TUSER table }
tmob CHAR(5),
tplat CHAR(5),
tplace CHAR(8),
tstate CHAR(2)

DEFINE iconnid SMALLINT, { For building the TERMINALCONNECT table
iterm id SMALLINT

--
Build the POC table

INSERT INTO npoc (poc_id. agency, off_code. addressl, address2,
city, sc, zip, com_num, dsnnum, stu num,
sfaxnum, ufax num)

SELECT poc_id, agency, offcode, addressl, address2, city,

sc, zip, cornnum, dsnnum, stunuw,
sfaxnum, ufax-num

FROM poc

--
Build the NETWORK table

----------------------- ------.............

INSERT INTO nnetwork (netid,
cincname,
component,
acronym,
class,

66

net-name,
con-ops,
cincprty,
globprty.
rqtypeo.
rqtype t.
rqtype_crit,
duration,
rqbegin,
rqend,
urdb-status.
satisfy,
primary,
secondary,
maistar loaded,
hermant,
berexp_o,
berexp_t,
her-crit,
minavail o,
minavail t.
emp~o,
emp-t,
emp~crit,

nsp,
aj,
aj_lvi_a,
aj_lviC,
aj_dist -o,
aj_dist -t,
aj_crit,

Ipa,
Ipi_dist o,
Ipi_dist t,
Ipi_crit.
conflict_ I ,
conflict_2.
conflict_3,
conflict_4,
conflict_5,
conflict_6,
conflict_7,
conflict_8,
maxouto,
maxout t,
dcycle o,
dcycle -t,
dcycle crit,
callfreq,
callien,
maxmtt_0,
maxmtt-t,

67

maXMcttc rit,
maxaato.
inaxaaLt,
maxaat-crit.
as crit,
net excl,
net crit,
misn essen.
us ciflrl,
avail C rit,
si.
s2,
s3.
A4,
s5,
s6,
s7,
S8)

SELECT net-id.
cific,
component,
acronym,
class,

netnaine,
misndefn,
cincprty,
globprty,
rqtype_o,
rqtype_t,
rqtype~crit,
duration,
rqbe gin.
rqend.
urdb-status,
satisfy,
primary,
secondary,
milstar loaded,
bermant,
berexp~o,
berexp~t,
ber crit,
minavail-a,
minavailt,
emp._o,
emp-t,

emp~crt,
nsp,
ajI
aj-lvi-a,
aj_lvi -t,
aj dist a,

68

aj_dist_t.
aj_crit.
Ipi,

Ipi_dist o,
Ipidist t,
Ipicritt
conflict I.
conflict 2,
conflict 3,
conflict 4,
conflict 5,
conflict 6.
conflict 7.
conflict 8,
maxout o,
maxout t,
dcycle_o,
dcyclet.
dcycle_crit,
callfreq,
calilen,
maxmtt o,
maxmtt t,
maxmtt cnt,

maxaato.
maxaat t,
maxaat_crit,
as crit.

net excl,
net crit,
misn essen,
us cntrl,
avail-crit,
sl.
s2,
s3,

s4,
s5,
s6.

s7,
s8

FROM network

Build the NETPOC Table

-------------------------------.)

INSERT INTO netjoc (netid, poc_id)
SELECT netid, poc_id

FROM network
WHERE pocid IS NOT NULL

69

Build the DOCUMENT Table

INSERT INTO document (doc id. doctitle, author, pub_dare. class)
SELECT idnum. document, author, published. refclass

FROM reference

Build the NET DOC Table
------.................. -------..

INSERT INTO netdoc (docid, netid, page_num)
SELECT idnum. netid, pagenum

FROM reference

- ------------
Build the CINC Table

INSERT INTO ncinc (cincname)
SELECT cinc FROM cincs

Build the COMPONENT Table

------........................-.)

INSERT INTO ncomponent (component, cincname)
SELECT DISTINCT component, cinc

FROM network
WHERE component IS NOT NULL

- -------------
Build the CONNECTIVITY Table

-------------------------------.)

INSERT INTO nconnectivity (connect id,
netid,
conn-type,
datatype,
secure,
op mode.
num-circ,
critical,
stress thru o,
stressthrut,
unstressthru o,
unstress-thru-t,
stressdrateo,
stress dratet,
unstressdrateo,
unstressadrate_t)

70

SELECT connid.
net id.
contype,
d:ype,
secure,
modeop,
numcirc,
crntical,
stress thruao,
stress thrunt,
unstress thru o,
unstress thru t.
stress drate o.
stress drate t.
unstress drate o,
unstress drate t

FROM connectivity

Create the TERMINAL TYPE Table
-----------------------------------.)

CREATE TABLE intermediate

nomenclature CHAR(M5),
mobility CHAR(5),
platform CHAR(5)

INSERT INTO intermediate (nomenclature, mobility, platform)
SELECT DISTINCT orgterminal, org_mobility, org_platform

FROM co. -ctivity
WHERE org_terminal IS NOT NULL

INSERT INTO intermediate (nomenclature. mobility, platform)
SELECT DISTINCT dstterminal, dstmobility, dst_platform

FROM connectivity
WHERE dst terminal IS NOT NULL

INSERT INTO terminal type (nomenclature, mobility, platform)
SELECT DISTINCT nomenclature, mobility, platform

FROM intermediate

DROP TABLE intermediate

Build the TUSER Table

--------------.. ---------------..

DECLARE tuser_ptr SCROLL CURSOR FOR
SELECT username, mobility, platform, place, state

FROM netuser

71

FOREACH tuser ptr INTO (name, tmob, tplat, tplace, tstate
INSERT INTO tuser

VALUES (0. tname, tmob, tplat. tplace, tstate)
END FOREACH

Build the TERMINAL CONNECT Table

CREATE TABLE intermediate
(connect id SMALLINT NOT NULL.
terminal id SMALLINT NOT NULL.
orgdst CHAR(3))

DECLARE conptrl SCROLL CURSOR FOR
SELECT connid, orgitrm id

FROM connectivity
WHERE oig ;rm :d IS NOT NULL

FOREACH con ptrl INTO iconn id. iterm _id
INSERI INTO intermediate (connect id, terminal-id, org_dst)

VALUES (iconn id, iterm id, "ORG")

END FOREACH
DECLARE con_ptr2 SCROLL CURSOR FOR

SELECT connid. dst trm id
FROM connectivity
WHERE dst trm id IS NOT NULL

FOREACH conptr2 INTO iconn id, itermid
INSERT INTO intermediate (connectid. terminalid, orgdst)

VALUES (iconn id, iterm id. "DST")
END FOREACH

INSERT INTO terminal connect (connectid. terminal_id, orgdst)

SELECT DISTINCT connect id, terminalid, org_dst
FROM intermediate

DROP TABLE intermediate

Build the TERMINAL Table

-------------------------------.)

INSERT INTO terminal (connectid, terminalid, nomenclature, username,
user_mobility, user_platform, location, stcntry_cd,
serialnumber, trm_region, trmrd, actdate, deactdate)

SELECT connid, orgtrn_id, orgterminal, org user, org_mobility,
org_platform, trm_loc, trm_sc, trmsn, trm region,
trm rd. act-date. deact date

FROM connectivity, termioc
WHERE org trm id = trm-id

72

INSERT INTO terminal (connectid, terminal id, nomenclature, user-name,
user mobility, user platform, location, st cntrycd.
serial number, trm_region, trm rd, act-date. deact date)

SELECT connid. dst trm id, dst terminal. dst user. dst _mobility,
dst platform, trm ioc. trm sc. trm sn. trm region.
trm rd, act date. deact date

FROM connectivity, term Ioc
WHERE dst trm id = trm id

END MAIN

73

LIST OF REFERENCES

1. Major, William, Design and Implementation of a Prototype PC-based
Graphical and Interactive MILSATCOM Requirements Database System,
M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1993.

2. Henry, Hugh A., Military Satellite Communications Decision Support System
Requirements Analysis and User Interface, M.S. Thesis, Naval Postgraduate
School, Monterey, California, June 1993.

3. Batini, C., Ceri, S., Navathe, S.B., Conceptual Database Design: An
Entity-Relationship Approach, The Benjamin Cummings Publishing
Company, Inc., 1992.

4. Date, C.J., An Introduction to Database Systems, vol 1, 5th Edition, Addison
Wesley, 1990.

5. Teorey, Toby J., Database Modeling and Design: The Entity-Relationship
Approach, Morgan Kaufmann Publishers, Inc., 1990.

6. Elmasri, R., Navathe, S.B., Fundamentals of Database Systems, The
Benjamin Cummings Publishing Company, Inc., 1989.

7. Kent, William, "A Simple guide to Five Normal Forms in Relational
Database Theory," Communications of the ACM, v. 26, pp. 120-125,
February 1983.

8. Lacy-Thompson, Tony, INFORMIX-SQL: A tutorial and reference, Prentice
Hall, 1991.

9. Dietrich, S.W., et al., "A Practitioner's Introduction to Database
Performance Benchmarks and Measurments," The Computer Journal, v. 35,
pp. 322-331, August 1992.

10. Edwards, Joe B., "High Performance Without Compromise," Datamation,
July 1, 1990.

74

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. U.S. Space Command 3
Code J-6 Ops
Peterson AFB, CO 80914

4. Director for Command, Control and I
Communications Systems, Joint Staff
Washington, DC 20318-6000

5. C3 Academic Group, Code CC I
Naval Postgraduate School
Monterey, CA 93943

6. AFIT/CIRK 1
Wright-Patterson AFB, OH 45433-6583

7. Professor Tung Bui, AS/Bd 3
Naval Postgraduate School
Monterey, CA 93943

8. Professor Daniel R. Dolk, AS/Dk 1
Naval Postgraduate School
Monterey, CA 93943

9. Professor Magdi N. Kamel AS/Ka 2
Naval Postgraduate School
Monterey, CA 93943

75

10. Lt Col Anderson
Joint Staff
Satellite Communications Division (J6S)
Pentagon
Washington, DC 20318-6000

11. Capt Ronald Kearns 2
2620 Charlottsville Drive
Colorado Springs, CO 80915

76

