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ABSTRACT

The ability of a submarine to maintain ordered depth, especially during periscope
depth operations at low speeds, is vital for the vessel to perform its mission and avoid
detection. Modern submarines exhibit an inherent phenomenon that produces an
undesirable ship response at low speeds, commonly referred to as dive plane reversal. The
physical parameters that govern this occurrence are related in this thesis to the problem of
multiple steady state solutions in the vertical plane.

Generic solution branching, in the form of pitchfork bifurcations, can occur when the
nominal level flight path loses its stability. A systematic study reveals the existence of a
critical Froude number, based on the vessel's speed and metacentric height, where this
branching occurs. Bifurcation theory techniques and numerical computations are utilized
to classify the effect that geometric parameters, trim and ballast conditions, and

hydrodynamic properties have on the existence of these multiple solutions.
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I. INTRODUCTION

One of the most critical functions of a submersible is accurate depth keeping at the
commanded depth. Such a function can be carried out either manually or automaticaily,
especially in cases where human intervention is not possible or desirable. Due to the
technological significance and numerous scientific applications of submersible vehicle
systems, design issues of appropriate depth keeping control laws have received wide
attention in the past. Such control system designs include linear and nonlinear controllers
[Refs 1&2]. model based compensators [Ref 3], adaptive control [Ref 4], and sliding
mode control laws [Refs. 5&6].

Response accuracy and stability are primary considerations in designing depth
keeping control law. Of paramount importance, in this area, are the robustness properties
of the particular design; i.e., its ability to maintain accuracy and stability in the presence of
incomplete sensor and environmental information, as well as actual/mathematical model
mismatch The scope of the work in this thesis is to demonstrate a potential loss of
stability that may occur when a submarine is operating at low speeds. This loss of stability
can occur regardless of the particular means used for depth control. The study is
accomplished through the use of an eigenvalue analysis, a steady state analysis and a
controllability analysis [Ref 7]. It is shown that such a loss of stability is accompanied by a
slow divergence of trajectories away from the commanded path. Solution branching
occurs in the form of generic pitchfork bifurcations [Refs. 8 9] A complete
characterization of the problem is given utilizing singularity techniques, which have been

proven to be very useful in the analysis of similar problems [Refs 10, 11, 12). The use of




bifurcation theory allows the crucial vehicle parameters that govern the problem of
solution branching to be determined, and the develop guidelines to prevent its occurrence
Finally, a new look at the problem of dive plane reversal [Ref 13], based on solution
branching results is presented. The term dive plane reversal refers to a well-known
phenomenon in submarine operations where, . .ring low speed depth keeping, there is a
need to reverse the direction of dive plane defls ction in order to execute a given change in
depth Physically, this can be explained by considering the relative magnitude of the
hydrodvnamic forces. At moderate and high speeds, the normal force on the submarine's
hull due to the angle of attack exceeds the normal cive plane force and the boat responds
to ordered dive plane angles as expected. The phenomenon of dive plane reversal occurs
at speeds below a certain critical speed in which the normal hull force is less than the
normal dive plane force and the response of the boat is reversed. [Ref 14] Vehicle
modeling in this work follows standard notation [Ref 15] and numerical results are
presented for the DARPA SUBOFF model [Ref 16] for which a set of hydrodynamic
coefficients and geometric properties is available. Special emphasis is given to identifying
the proper non-dimensional parameters in the problem, so that extension of these results

to full scale models and other designs is possible using minimal experimental and/or

analytical results
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II. VEHICLE MODELING ¢
&
A. EQUATIONS OF MOTION °
1. Introduction
For the purpose of this problem, and the subject of the maneuvering and motion
control of the vehicle, the following assumptions are made: Py
1)  The vehicle behaves as a ngid body;
2)  The earth's rotation is negligible as far as acceleration components of the
center of mass are concerned, ®
3) The primary forces that act on the vehicle have inertial, gravitational,
hydrostatic and hydrodynamic origins.
2. Coordinate Systems And Positional Definitions ° ®
A global navigation frame, OXYZ, as shown in Figure 2.1, is defined with ongin,
O, and a set of axes aligned with directions North, East and Down. This produces a right-
hand reference frame with unit vectors 7. J, and K. Ignoring the earth's rotation rate in P
comparison to the angular rates produced by the vessel's motion, it can be said that the 7,
J. and K coordinate frame is an inertial reference frame in which Newton's Laws of
Motion will be valid. As seen in Figure 2.1, a vehicle's position Ra , In this frame will have °
the vector components, R =/X,J+YJ+Z K] A standard convention that is used
in both aircraft and marine vehicle dynamics places the Y axis to the right while looking
along the .X axis, and the Z axis is positive downwards Figure 2.1 also shows a vehicle °®
with some general attitude in the original coordinate system.
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Figure 2-1. Coordinate Axes Convention.



Now define a body fixed frame of reference O ,., with the origin O, located on
the vehicle centerline, moving and rotating with the vehicle, in which the vehicle's center
of mass, G, has some position other than the origin of the vehicle fixed frame (refer to
Figure 2-1) This origin will be the point about which all vehicle body force will be
computed in later sections of this chapter. The convention used for the vehicle fixed
frame, with unit vectors 7 , j . k. is that its origin lies at the ship's center (origin at the half
length), the x axis at main deck level, parallel to the longitudinal centerline, with the > axis
vertically down The vessel's center of gravity and center of buoyancy do not generaily lie
at the onigin of the body fixed frame, nor are they collocated. These points are denoted by
G and B respectively The vector components of f, and p, are thus [xi +y.] +z2.k /.
and [x,7+y,J+z,k]  The location of the center of mass is important because
Newton's Laws of Motion equate forces on a body to the rate of change of linear
momentum of the center of mass and moments about the body center of mass to the rate
of change of angular momentum. This is a particularly important point to bear in mind for
ship and submarine motion dynamics as the center of buoyancy is determined by the shape
of the submerged portion of the ship body while the center of gravity is determined by the
distribution of the weight over the entire ship body Having defined a coordinate system
that will be used to describe a ship's position, there is a need to define angular orientation
of the ship's body, leading to the definition of translational and rotational velocities and
accelerations.

3. Angular Pesition In The Global Reference Frame

There are several different ways that the attitude of a vehicle can be described in
reference to the global frame. The most usual and common method is to define three
angles_calied Euler angles that uniquely define the angular orientation of the vehicle

reference frame, relative to the global reference frame One problem with the Euler angle



approach is that a singularity exists when one of the angles reaches 90 degrees (an aircraft
in pure vertical flight cannot distinguish its azimuth angle from its roll angle). This
limitation which can sometimes, although rarely, cause trouble in flight simulations and
control computations can be overcome by the use of quaternions which introduce four
rather than three variables to describe angular position. In this presentation, however, we
will use Euler angles as it is the most widely used method, although the use of quaternions
has found favor in robotics applications and computer graphics.

While any consistent definition of three base angles would be sufficient, the most
convenient formulation of these angles is in the widely used military terms of an azimuth,
elevation, and spin notation. The rates of change of these angles do not generally
correspond to the other commonly used angular rates describing angular velocity of a
vehicle, that is yaw rate, pitch rate and roll rate except. as will be seen, where motion is
limited to small angle rotations.

4. Rotational Transformations

Vehicle attitude is important in defining position. Under dynamic conditions, the
pitch or roll can cause problems for manned vessels and the heading is critical in
navigation. For the purpose of considering angular rotations, consider a forward
transformation from a coordinate triad aligned with the global reference frame and perform
a sequence of three rotations to finally align the result with a frame that is assumed to be
parailel to the vehicle body coordinate axes, and moving with the vehicle at all times
Begin by defining an azimuth rotation, y, as a positive rotation about the global Z axis.
Next define a subsequent rotation 6, (positive up) about the new Y axis, followed by a
positive rotation ¢, about the new X axis. The triple rotational transformation in terms of

these three angles, is then sufficient to describe the angular orientation of the vehicle at any

time It follows that any position vector, R

in an original reference frame given by

oY
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R =[x,.y,z2,]. will have different coordinates in a rotated frame when an azimuth
rotation by angle y, is made about the global Z axis.

If the new position is defined by, R =/x,,y,.z ], it can be seen that there is a
relation between the vector's coordinates in the new reference frame with those that it had
in the old reference frame. Using trigonometrical relationships and Figure 2.2 as a guide, it
follows that,

X, = X, cosy +Y siny @n
Y ==X, siny+Y cosy. 22)

This relation can be expressed in matrix form by the rotation matrix operation,
R=[T,.]R.: (23)
where the rotation matrix [T,z] represents an orthogonal transformation
Premultiplication of this rotation matrix with any vector, R , will produce the components
of the same vector in the rotated coordinate frame. Continuing with the series of rotations

results in a combined total rotation transformation,

I(0.8,y)=T(¢)T(0)I(vy). (24)

In expanded notation equation 2.4 takes the form;

cos\y cos® siny cos@ ~-sin®@
cosy sin®sind - sinycosd sinysin@sing+cosycosd cosBsing |,
cos\y sin@cosQ+siny sing siny sinBcosd—cosy sind cosOcosd

and it can be said that any position vector in an original reference frame may be

expressed in a rotated frame with coordinates given by the operation,

R..=[T(0.0.W)]R,,. (2.5)
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S. Kinematics
Kinematics deals with the relationships of motion quantities regardless of the
forces induced by their prescribed motions. Descriptions of a ship's position both
translational and rotational, will need to be related to velocities, both translational and
rotational, prior to extending the situation to accelerations. The connection between
translational velocity and the rate of change of translational position is straight forward.

Define the global velocity as,

(2.6)

xn
"
N, <. e

This vector will have components that are different when seen in a body fixed frame.
Define the body fixed components of the global velocity vector as [u, v, w]' These
components, in terms of the above global quantities are given by the forward

transformation defined earlier to be,

u X
vi=Tre0y)NY | (2.7)
w V4

It is a simple reverse coordinate transformation from body fixed to global coordinates to

see that,

X u
Yi{=T"16.8.y) v (2.8)
b4

w

This shows that the progression of a vehicle in a global frame clearly depends on its local

velocity components and its attitude. Put simply, u corresponding to a vehicle's forward




speed (surge), v corresponding to a side slip velocity (sway), and w corresponding to any
velocity component in the local Z direction (heave) and the vehicle's global velocity
components depend on heading, pitch, and roll attitude.

The connection between angular attitude and angular velocity is not quite so
apparent At first sight, it is tempting to define the instantaneous angular velocity of the
vehicle simply as the rate of change of its angular position defined by the Euler angles
This is erroneous however, because the rotation 6, was defined as a rotation about the
intermediate frame after a rotation y had been made Vehicle inertial angular rates are
defined in terms of components that have angular velocities about the global axes It is
necessary to relate both Euler angles and their rates of change to angular velocity
components about the global axes to their components lying along the body fixed axes in
any attitude The prime reason for this is that it is difficult to construct physical sensors to
measure rates of change of Euler angles. However, rate gyros in common use today are
easily constructed to measure the components of the inertial angular velocity of a vehicle
that lie along the vehicle's body axes It follows that the instantaneous angular velocity of
the vehicle can be related to the instantaneous rate of change of angular onentation only

after considerations of the intermediate transformations used. In other words, if o is

defined as the angular attitude vector, o ={.8.0]. and the inertial components of the
vehicle angular rate lying along the body axes as w = [ p.q.r]‘; then, a = f(w) The details
of the nonlinear functional relations involved are provided by viewing the rate of change of
the rotation y as a vector quantity lying along the orginal Z axis. The rate of change of
the angle 0 is viewed as a vector quantity lying along the Y axis of the first intermediate
frame, and the rate of change of the angle ¢ is viewed as a vector lying along the X axis of
the final (body fixed) frame Each of these component rates of change of angular position

has component parts that project onto the final frame and it is the sum total of all the

10




components that give the total angular velocity as seen in the final frame of reference

Using the required transformations for the rate components from each Euler angle, we get,

p 0 0 ¢
q|= Y. T(0)T(8)T(y) O [+ T(0)T(8) 0]+ T(6)}0|, 2.9
r '} 0 0
with the result,
p -y sin+6
ql= \jlsin9+écos¢ , (2.10)
r W cos@cosd -0 sind

Inverting equation 2.10 yields a solution for the rates of change of the Euler angles in

terms of the body fixed components of the angular velocity vector,

) p+qsindtan®+rcosdand
8 |= qgcosd—-rsind _ (211)
1 (qsind+rcos¢) cos@

Notice that for small angular rotations, as expected,

]
Qo

0
8=g.
"

~

At this point the kinematic relationships between velocities, as seen in the body fixed
frame, and the rates of change of global positions and Euler angles have been defined. The
resulting set of differential equations forms a consistent set in that given a set of vehicle

velocity data versus time, its position and attitude may be computed

11




6. Translational Equations Of Motion
The global acceleration of the center of mass is derived by differentiating the
velocity vector, RG taking into account that the center of mass lies in a rotating reference
frame Considering the total differentiation, the global acceleration of the center of mass
becomes,

R, =V +@xp, +@x@DxP, +@XV, (2.12)
where ¥ = 1;{, The translational equation of motion is found by equating this acceleration
to the net sum of all forces acting on the vehicle in three degrees of freedom (X,Y.Z) One
important factor to recognize is that the equation of motion derived in this manner is a
vector equation with the components expressed in the body fixed frame and unit vectors
7.7and k This has been deliberately done because the dominant forces acting on a
submerged body in motion are developed in relation to the shape of the vehicle and are
more conveniently expressed in relation to the body axes. Equating the applied force
vector to the acceleratio.. results in,

F=m{V +@®xp,+@®xDXPg +®DXPg}. (2.13)
The applied force vector is composed of gravitational (weight) and hydrostatic (buoyancy)
forces together with any hydrodynamic forces arising from relative motion between the
vehicle and the ocean water particles These will be discussed in further detail in following
sections

7. Rotational Equations Of Motion
To develop the rotational equations of motion, the sum of applied moments
about the vehicle's center of mass is equated to the rate of change of angular momentum of
the vehicle about its center of mass. This equating will provide the necessary equations of
motion for the remaining three degrees of freedom. In the practical case of marine

vehicles, however, the statement just made is modified slightly because it is much more

12
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difficult to assess the vehicle's mass moments of inertia about its center of gravity (CG)
As the CG changes with loading; it becomes simpler to evaluate the mass moments of
inertia about the body fixed frame which lies along the axes of symmetry of the vehicle in

most cases. The mass moments of inertia for the vehicle to be computed are,

x x xz
L=\1, 1, 1. (2 14)
x EY 2z

The angular momentum of the body is thus,

A =1®, (2.15)
resulting in the total applied moments about the origin given by,
M, =H, +p; x(mR;). (2.16)
Since the rate of change of angular momentum is given by,
A =ld+dxA, (2.17)
and the acceleration of the global position vector is given by,
R = +@xv, (2 18)
then the rotational equation of motion in vector terms is given by,
M, =1o+@X(10)+mp,xv+p, xDXV}. (2.19)
The applied moments about the body fixed frame arise from a static balance of
weight and buoyancy effects to achieve the proper trim and heel, and hydrodynamic
moments from the forces applied through appendages such as control fins, hydrodynamic
effects from waves, and hydrodynamic effects from relative motion between the vehicle
and the water.
At this point, there are three translational equations obtained from equation
2.13, three rotational equations obtained from equation 219, and six unknown velocities

(dand ¥) In itself this is a consistent set of dynamic equations if the weight and buoyancy

13




terms are always self canceling. However, with weight and buoyancy being applied in a
global vertical direction, and also being applied at different locations, they represent forces
that are dependent on the attitude of the vehicle. Notice that without weight and buoyancy
forces, the six consistent equations expressed in the body fixed frame of the vehicle could
be solved for the vehicle's velocity (given applied force descriptions). With weight and
buoyancy acting, we need additional equations (constraints) that will link vehicle attitude
to motion so that the combined set of equations can be solvable. The constraints to be used
are developed using the Euler angles which are a general set of angles used to define the
attitude of the rigid body. From these angles a relationship between rate of change of
attitude and the body rotational rates given earlier as the angular velocity vector
® = [ p.q.r /. can be developed.
8. Incorporation Of Vertical Forces Into The Equation Of Motion

The weight and buoyant forces that act at the centers of gravity and buoyancy
must be defined from static analyses. For submerged bodies the weight and buoyancy force
vectors do not change with vehicle attitude. For a surface ship, B will change with
attitude, and the righting moments must be computed from Naval Architectural
considerations. Assuming that weight and buoyancy are fixed in relation to the body fixed
frame, W =07 +0J +(mg)K, and B=0] +0J -(pV )K . Since the weight and buoyancy
terms in the applied forces act in the global vertical direction, they must be transformed
into components in the vehicle fixed frame before they can be added into the equations of
motion Returning to equation 2 4, we therefore find the components along the vehicle
fixed frame to be the third column of that transformation matrix. The net vertical force

components become,

14
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-sin®
f; =(W-B)| cosOsin¢ |. (2.20)
cosBcosd

The weight portion of the vertical force acts at the center of gravity of the vehicle. The
buoyancy portion of the vertical force acts at the center of buoyancy. Because these forces

act at positions away from the body center they exhibit a moment about the body center

given by,
-sin® -sin®
m, =Wp; x| cos@sin¢ |- Bp, x| cos@sing | (2.21)
cosBcosd cosOcos ¢

This moment will not be zero even if W and B are identical because it is not usually the
case that p,; and p, are collocated. For static stability it is advisable to locate the center of
gravity below the center of buoyancy The total vertical force vector can be written as,
ﬁr,:[fﬁ}, (222)
mG
and is added negatively to the left hand side of the equations of motion
9. Development Of The Full Six Degrees Of Freedom Non-Linear Equations
Of Motion For A Marine Vehicle
Define a vector ¥ of vehicle body frame velocities to be, ¥ = fu.v,w,p.q.r/,
and a vector ? of global positions to be 7=/ X.Y.Z.0.0,y /, then considering M as a
6> 6 mass matrix including translational and rotational inertial elements, the equations of

motion can be written in the following vector form,

M+ f(x)+F(z)=F, (223)
and,
F+g(x2)=0 (2 24)
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Therefore with suitable knowledge of the excitation force and moment loads,
F",,, as a function of time and/or vessel motion, a solution for the vehicle's dynamics can be
obtained A more detailed insight into the development of the twelve differential equations,

in first order form given by the foregoing analysis shows,

X,
miv +@®XPg p+m@XDXP, +DxV )+ fi(2)=| Y, |. (2 25)
Z,
and,
K,
[ D+m{p, x T} +@x(1,0)+m{P, xDxV}+m (2)=| M, (2 26)
N,
It helps here to define the cross product coefficient matrix so that,
@ x P, = =P, x @ = ~f cros(p, ) J® (227
where,
0 s Vs
[cros(P;))=|-2, O xg4 (2 28)
Yo X 0

Now collecting the mass matrix coefficients into a 6x 6 matnix including the inertia cross

coupling effects, results in the following equation,




X,
o
*
L,
o
[ [m 0 © 0z =yl ¥
0 m O -2 0 x;
v 0 0 m Yo —x; O 5 39
N 0 Y I, I, 1, ' (2.29) ®
z;, 0 -x; I, I, 1,
-¥; X, O I, I, 1,
The remaining terms on the left hand side of the equations of motion arising from the o
centripetal and coriolis accelerations become,
mOXOXpP; +DXV)
x)=| _ - 2.30
J0x) [mx(lom)+m{ﬁcxmxv}] (2.30) °
The double vector cross products are nonlinear in the primary velocity variables and hence
the need for the nonlinear functional, f(e) The reader can perform the indicated
manipulations to express individual equations within the set if so desired. Py ®
The components of the hydrodynamic and external forces and moments acting
on the vehicle body are separated in the above analysis into six components each acting
along the vehicle body fixed coordinate axes and form the total vector of forces and P
moments as,
F)=[ X A1) Y, (0).Z,(1).K, (1), M(1)N(1)], (2.31)
where the vector components in order refer to the surge, sway, heave forces, and the roll, Py
pitch, and yaw moments respectively.
The long form of the six degrees of freedom equations of motion can be written
as follows, °
mla—vr+wq-x,(q +r’ )+ y.(pq—F)+:.(pr+q)]= 232)
~(W-B)sin@+ X, '
@




M[V+ur-wp+x,(pq+¥)=yo(p +r )+z,(qr-p)] =
(W -B)cos@sing+Y,

MV —ug+vp+x5(pr—4)+ys(qr+p)-z,(p +q')] =
(W —B)cos@cos¢+Z,

Lp+(1-1)gr+1 (pr—q)-1.(q" ~r')=1 (pg+r)+
mfy,(W—uq+vp)=z(v+ur—wp)]=(y;W-y,B)cosBcos¢
—(z;W —z;B)cosBsind+ K,

Lg+(1,-1)pr~1_(qr+p)+1 . (pg—r)+1 (p*-r’)-
m{x;(v—ug+vp)-z.(i—vr+wq)]=—(x;W—x,B)cos@cosd
—(z;W —z,B)sin@+ M,

Li+(1,-1)pq~1 (P-4 )= 1, (pr+4)+1.(qr-p)+
mlx;(v+ur—wp)=y.(u—=vr+wp)] =(x;W —x,B)cosOsin¢
+Hy;W —ysB)sin@+ N,

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

while the kinematic relations for the vehicle rate of change of attitude and motion over the

ocean bottom require equations 2.11 and 2 8.

10. Adaptation Of The Non-Linear Equations Of Motion To The Vertical

Plane

Restricting the motions of the vehicle to the vertical (dive) plane, the only

significant motions that must be incorporated to effectively model the vehicle in the dive

plane are, the surge velocity (), the heave velocity (w), the pitch velocity (g), the pitch

angle (0) and the global depth position (Z). This restriction simplifies the twelve

previously developed equations to a system of four non-linear equations of motion, which

are,

m(w ~uq _ch: -x4)= Z/

18
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Ig+mzwqg —mx;(w-uq)=M, (2.39)
0=¢g (2.40)
Z = —usin®+wcos0 (24D
where,
Z,=Z4+ZWw+Zuq+Z uw-
nose 242
_pICDb( )(]“ ’“’i dx+(W - B)cosO+u*(Z, 8, + Z,,8,) (242)
tail
and,

M =Mg+M.w+M ug+M uw
f qq W qq W

1 " Cpb(x)
—Epj

(w—xq) xdx
|w - xq . (2.43)

tail

~(x W —x pB)cos@-(z W -z B)sin 0+ W (M, 8,+M;5,)

G (26
results from expanding the Z, and the M, terms from (2.31) in a first order Taylor seres
expansion and incorporating both hydrostatic and fluid drag forces.

Equations 2.38, 2.39, 2.40 and 2 41 can be linearized for a level flight path when

the dive plane angle is zero, i.e 3, =0. By setting all time derivatives to zero, and

neglecting for the moment the hydrodynamic drag terms the following are obtained,

Zuw+(W-B)cos8=0 (2 44)
M uw—(x,W-x,B)cos@-(:;,W -z,B)sin® =0 (245
g=0 (2 46)

—usin®@+wcos®=0 (247




A

If the assumption is made that the vehicle is neutrally buoyant, then it can be said that
x; = x, and W = B. From this equations 2.44 and 2 45 can be reduced to,

Zuw=0 (2.48)

Muw-(z,-z,)Bsin@=0, (2.49)

which yield the nominal position w, =g, =0 and sin®, = 0, resulting in the 8, solution as

either 8, =0 or 8, = n. Choosing to linearize around the nominal point 8, = 0 results in,

g =2949=0 (2.50)
wg=wg+qw=0 (2.51)
s5in® = cos9 .0 =0 (2.52)
wcos® =(~w_sin6, )8 +(cos@, )w=w. (2.53)

The linear equations of motion are then written as,
(m=Z pw—(Z, +mx;)q=Zuw+(Z +muq+Zu'd (2.54)
(1, =M, )Gg—(M_ +mx; pw=Muw+(M,—mx; juq—(z;~z, WO+ Mu'd (2.55)
0=¢q (2.56)
Z=-uf+w. (2.57)
As equations 242 and 2.43 show, both Zg and M are a linear combination of
the respective stern and bow hydrodynamic control surface coefficients and the respective
input value of & This makes the system of equations as a multiple input system. To
reduce this system into a single input system the linear combination of control inputs will

be modified into the following form;

Z,=(Z, +0Z, ). (2.58)
A S

This will allow a single input & to control both stern planes and bow planes, and will
cause the bow planes to be slaved to the stern planes. This technique is known as dual
control The value 00 will range from -1 to 1. The selection of the value of O will allow

the planes to operate as desired for the particular maneuvering condition, i.e., ot = 0 for no
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bow plane control, o = -1 for bow plane and stern plane control opposed to each other,

yielding the maximum pitch moment, and o = | for bow and stern plane control in the

same direction, yielding the maximum heave force.

In state space form these equations can be written as,

] o o 1 ofe}fo
¢ z u 0 :
W _|9cs MU Q. w + bl"’ 5,
4| |antes ayu ayu O0jq| \buw
Z| (-« 1 0 o0fZ] O

where the coefficients a, and b, are given by,
D.=(m-Z )I1,-M,)-(mx;+Z, )mx; +M,)
a,D,=(1,-M,)Z, +(mx;+Z, )M,
a]:DV=(1y—M¢)(m+Zq)+(me+Zq)(Mq—me)
a,D,=-(mx;+Z, )W
bD,=(I,-M,)Z;+(mx;+Z, )M,
a,D,=(m-2, )M +(mx;+M,)Z,
a.D.=(m-Z )M, —mx;)+(mx;+M_)m+2,)
a,D,=-(m-27,)W
bD,=(m-Z )M,+(mx;+ M, )Z,

and z;, = z,; — z, is the metacentric height.

(2.59)

(2.60)
(2.61)
(2.62)
(2.63)
(2.64)
(2.65)
(2.66)
(2 67)
(2.68)

This linear system of equations becomes the basis for the control law design in

the following section.

B. CONTROL LAW DESIGN

1. Introduction

The control design problem can be stated as follows: Given the system;
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%= Ax+ Bs, (2.69)

where the state vector equation is,

, (2.70)

how do we find &, such that the system will behave as desired. The type of control that is
of interest in this problem is closed loop control, where & is a function of the state x.
Since the state x is used to determine the control effort 8( x) it is called feedback control.
2. Pole Placement
A linear full state feedback control law is introduced in the form
d=-Kx, (2.71)

where K is the feedback gain vector to be determined such that the closed loop system of
equations 2.69 and 2.71 has the desired system dynamics. Substituting equation 2.71 into
equation 2.69 yields,

x=(A-BK)x. (2.72)
The actual characteristic equation of this closed loop system is given by

detf{ A- BK -sl]=0. (2.73)
The gain vector K can be chosen such that the actual characteristic equation assumes any
desired set of eigenvalues. If the desired locations of the closed loop poles are chosen at
s=s fori=1, .n, the desired characteristic equation becomes

(s=s,)s5=5.)..(s=5,)=0 2.74)
The required values of K are obtained by matching coefficients in the two polynomials of

the actual and desired charactenistic equations.

22




Y,
[ ]
*
Consider the previously developed linear state matrix equation 2 59 n;
‘ Substituting equation 2.71 into equation 2.59 results in the closed loop system ¢
| x
8 0 0 1 o |e
Wi |ayzg,—buwk, au-buk, a.u-buk, -buk,|w 2.75) o
G| |anig —bu'k, au-bu'k, au-bu'k, -bu'k,|q| '
z -u 1 0 0o fz
The characteristic equation of the closed loop system is given by °
; =) 0 1 0
detia”:GB —bluik, a”u-b,u:kzz -5 a,:u—b,fflr3 —b,uik4 “o (276)
a2 —bwck,  au-bu'k,  au-buk-s -buk, L
{ -u 1 0 -5 |
which after some algebra reduces to
s'+(Ak.+ Ak, - E )s’+(-Bk - Bk, - Bk,~Bk,-E.)s 277) o o
+(-Ck, -Ck,—C,k,—E,)s+(-Dk,~D.k,)=0
where ,
A =-B,=bu (278) °
A =-B =bu (2.79)
B, =(a.b -a.b n' (2.80)
Bz=q=(anb:-a:1b1)u; (2 81) ®
C,=D =ra,b -a,b. )z u (2 82)
C,=(a.b +b -a. by’ (2.83)
D.=(a b, -a.b (2.84) °
E =(a, +a,)u (2.85)
E,=a;z+(aa, -a,a, (2.86)
°
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E,=(a,a, —a,a, )z;5u. (2.87)
Now if the closed loop poles are placed at -p,, —p., —p;, and - p,, then the

desired charactenistic equation is,

(s+p Ns+p.)s+p)s+p,)=0, (2 88)
or

s‘+a s +as +as+a, =0 (2 89)
with,

o =p+ptptp, (2.90)

O, =pp,+ PP+ PP+ PPyt PPt PiDs (291

O, = PP.Pyt PD.Pst PP\P Y PPrPs (2.92)

@, = PP, (2.93)

The control gains can now be computed by equating coefficients of the actual and desired

charactenistic equations,

Ak, + Ak, =-0a, -E (2.94)
Bk, + B.k.+ Bk, + Bk, =0, + E, (2.95)
Ck,+Ck, +Ck, =a,+E, (2.96)
(Dy+ Dy )ky =y (2.97)

Now that a method for computing the gains of a controllable single input system
that will place the poles at any desired location has been developed, the selection of pole
location must be accomplished.

3. Pole Location Selection

In a typical second order system control law design the transient response
specifications will be given This results in an allowable region in the s-plane where the
desired location of the poles can be obtained For higher order systems the concept of

dominant roots can be employed In selecting poles for a physical system it is necessary to
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look at the physics of the system. If the poles are specified too negative, a very small time
constant for the control system will result, and the physical system may not be able to
react that fast The control law u = ~Kx, implies that for a given state x the larger the
gain, the larger the required control input In practice there are limits typically placed on u
(actuator size and saturation). Occasional control saturation is not serious and may even
be desired A system that never saturates is in all likelihood over designed.

Considering the control law design to stabilize the submarine to a level flight
path at =0 it will be required that the submarine return to level flight, after a small
disturbance in 8 or Z, within the time it takes for the vehicle to travel three ship lengths
Since the submarine is about 14 feet long and it travels at 5 ft/sec, the required recovery
time is about 10 seconds. This means that the time constant is about 3 seconds, and the
closed loop poles should be placed at approximately —0.3.

Control design using pole placement is very easy using MATLAB The
appropriate MATLAB command is place, which accepts as inputs the 4 and B matnces
along with a vector of the desired closed loop poles, and returns the gain vector K. Using
equation 259 with a nominal speed of S fi/sec and the wvector
p=[-03 -031 -0.32 ~0.33/, (place does not like poles in the exact same location),
the gain vector K was calculated using MATLAB and by simultaneously solving equations
2 94 through 2 97 yielding the same results Substituting the gain vector and state variable
vector into equation 2.71 results in a control law of

3 =-(-0.99176-0.8333w - 0.6026¢ +0.0351Z ). (2.98)

Using this control law along with equations 2.38 through 2.43 a simulation

program was developed to investigate the vehicle's response to initial disturbances, the

results of which will be presented in the following chapter.
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1. PROBLEM IDENTIFICATION

A. VEHICLE SIMULATIONS
With the control law developed and the vertical plane equations of motion defined, a

vehicle simulation program was developed (see Appendix A). This program was used to
simulate the vehicle's response at a variety of speeds and initial disturbances The
simulations were conducted with several simplifications applied to the vertical plane
equations of motion (E.O.M.), equations 2.38 through 2.43. The simplifications or
constraints applied to the E.O.M. were ;

1)  to consider the bocy drag forces negligible,

2)  to consider the vehicle to be neutrally buoyant, i.e., (W=B),

3)  to assume that the locations of the center of gravity and center of buoyancy,

in the X-Y plane, are coincidental, and

4)  that the rudder is restricted to + 23 degrees.

These assumption resulted in the reduction of equations 2.38 through 2.43 to the

following system of equations;

1 0 0 off & q

0 (m-Z,) -Z, Ofw|_ m(uq+z,q° )+ Zuq+ Z uw +u’Z, 3
0 -M, I-M, Offg| |m(-z,wq)+Muq+Muw— Bz, sin®+u'My |
0 0 0 17 ~usin®+wcos0

forming the basis of the initial vehicle simulations.
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The vehicle's response to small disturbances, as stated earlier, was investigated over a
wide range of speeds. A small sample of these simulations is shown in Figures 3-1 through
3-3

As Figure 3-1 depicts, the vehicle returns to level flight in approximately 10 seconds.
This response is as expected based on the control system design of Chapter II. The
simulation results represented in Figure 3-2 also show the vehicle steadying out in a level
flight at the desired depth, however the vehicle requires a significant amount of time for
this to occur. The reason for this extended amount of time is that the control law gains
were set for the nominal operating speed of 5 fps, and the vehicle is being simulated at
one-third of that speed. This results in a very slow return to ordered position caused by
the reduced hydrodynamic effects at this speed.

The final plot of the sample vehicle simulations, Figure 3-3, illustrates a problem with
the vehicle stability. As can be seen, the vehicle does not return to the desired position, but
instead steadies out at a pitch angle of eight degrees, with a steady state dive plane value
of 23 degrees. This same type of response, but with different pitch angle values, was
observed in all the simulations conducted below approximately 1.9 fps. These results
indicate that there is a critical point, or speed at which the vehicle stability is affected.

Determining this point will be the basis for the remainder of this chapter.

B. CRITICAL SPEED IDENTIFICATION
1. Eigenvalue Analysis
Consider the nonlinear system of state equations 3.1, which can be written in the
form,
i=f(x). (32)

It is known that the equilibrium points, x,, of the system are defined by
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f(x,)=0. (3.3)
This is a nonlinear system of algebraic equations and it may have multiple solutions in x,,
which means that the nonlinear system of equations may have more than one position of
static equilibrium If one equilibnium value x,,, is selected. the stability properties can be
established by linearization The linearization converts equation 3.2 into the form
X = Ax, 34)
where A is the Jacobian matnix of fix) evaluated at the equilibrium point x,,

o |
A== 35
., (3 5)

and the state x has been redefined to designate small deviations from the equilibrium x,,

X3x—-x,. (36)
As long as all eigenvalues of 4 have negative real parts, the linear system will be stable
This means that the equilibrium x,, will be stable for the nonlinear system as well. This
statement is nothing more than Lyapunov's linearization technique.

The question that must be answered is, what happens if one real eigenvalue of
the linearized 4 matrix is zero? The interesting case here is when the rest of the
eigenvalues have all negative real parts, otherwise x,, is unstable and the problem is solved
If the case of a zero eigenvalue appears too specialized to be of any practical use, consider
this: Assume that ffx) depends on one physical parameter and that physical parameter is
allowed to vary over some range Then clearly 4 will depend on that parameter and as the
parameter varies, it is possible that one real eigenvalue of 4 will become zero for a specific
value of the parameter. The problem is then to establish the dynamics of the nonlinear
system as one real eigenvalue of A crosses zero, 1.e, goes from negative to positive As
the solution evolves in time, things are interesting only along the direction of the

eigenvector that corresponds to the cntical eigenvalue Along the rest of the directions in
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the state space, everything should converge back to the equilibnium; remember it was
assumed that all remaining eigenvalues of 4 have real negative parts. Although, strictly
speaking, this is a true statement for linear systems, there are technical reasons that force it
to be true for nonlinear systems as well, the only difference is that the corresponding
directions in the state space are curved instead of straight.

By taking the previously developed characteristic equation 2.77, and
remembering that the roots of this equation are the eigenvalues of interest, it is easy to see
that if o, of equation 2.93, is set equal to zero, then one eigenvalue will be zero. If this is
done, and recalling that k, holds a non-zero value. equation 2.97 reduces to

(a b, —a,b )u’ +z,.(a,b -ab )=0. 3.7
Since all parameters of equation 3.7 have a fixed value with the exception of u, there must
be some value of u that causes the linear 4 matrix to become unstable. Recognizing this

fact will allow equation 3.7 to be solved in terms of u yielding

12
u= zgg(ash —abh,) A (3 8)
(a,b,-ayb)

Using equations 2.60 through 2.68, equation 3.8 can be simplified into the following form,
Z B 12
u=|—=6878" | 3.9)
(sza - ZWMB
Substituting the appropriate values from Appendix B, equation 3.9 can be solved for the
value of u that causes the systems to become unstable. This results in a value of u =
1.8979 fps using an o = 0. This value corresponds very closely to the value of 1.9 fps

obtained by vehicle simulations.
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As a check to this solution, a MATLAB program was written to compute the
closed loop eigenvalues of the matrix equation 2.59 as a function of the speed u
Figure 3-4 shows a plot of the real parts of the eigenvalues versus speed. It can be seen
that the real part of the eigenvalue, represented by the dash-dot line, becomes positive at
speeds less than approximately 1.9 fps supporting the earlier findings (For clarity
purposes, the values of the eigenvalue represented by the dash-dot line were scaled by a
factor of ten )

2. Steady State Analysis

To determine the existence of muitiple steady state solutions, for the system
represented by equation 2.59, it is necessary to perform a steady state analysis on the
system of equations which models the vehicle dynamics Using matrix equation 3 1, and

setting all time derivatives equal to zero, results in the following set of equations,

q=0, (3 10)
Zuq+Zuw+uw'Zd=ml~uq-z,q9°), (31
M uq + M uw — Bz, sin®+u*M,d = mz wq (3.12)

-usin@+wcos8=0 (3.13)

Simplifying these four equations yields the following two equations in terms of 8, », and
the physical parameters of the vehicle;
Zuwtan®+u'Z5=0 (314)
M u* 1an® - Bz, sin@+u’ M3 =0 (315)
Now if equation 3 14 is multiplied by M, equation 3 15 is multiplied by Z, and the two
resulting equations are set equal to each other and simplified, the following single equation

is obtained.

[(ZM,~M.Z i’ + 2Bz, cos0 ] sin® =0 (316)
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Through inspection it can be seen that equation 3.16 could have multiple
solutions in 0, besides the trivial solution of 8 = 0. So, if this equation is rearranged and

solved for 8 = 0, solutions occur when

(M Z,-ZM,)

cos0 3.17)
ZsB:z,,
Therefore. the steady state value of 0 is represented by
8, =cos”| LML= ZMy) | (3.18)
ZyBz,,

which may have multiple solutions based on the value of the speed u. As discussed
previously, these multiple solutions were evident in the simulations conducted earlier in
this chapter.

Knowing that the maximum value for cos0 is equal to one, the nght-hand side
of equation 3.17 will be true for values less than or equal to one. If this constraint is

imposed on 3 17, then the equation may be manipulated into the following form

ZsBz;,

< A (3 19)
(M.Z,-Z.M,)

Rearranging this equation and solving for the upper limiting case yields the same results as
equation 3.9. Again this supports the critical speed values discussed earlier.

Equation 3.19 can be expressed in a non-dimensional Froude number form by
dividing the equation by both the gravitational constant g and the physical parameter z;p
and taking the square root of the result. This will convert equation 3.19 into the non-

dimensional form given below;

Fn= / P \[ %8 (3.20)
8<cs gM.Z;-Z M)
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With the steady state 6 solution derived, equations for both the steady state
value of & and steady state value of Z can be determined. Using equation 3.14 and
substituting the steady state value of @ will allow the steady state & equation to be

obtained,

S, =Zi5"tan9n. (3.21)

To achieve the steady state solution of Z, begin by writing equation 2.71 in
expanded general form as

d=—(kO+hkw+kqg+k2Z) (3.22)

Then by applying the same conditions to equation 3 .22 that resulted in equations 3.14 and

3.15, and using the previously developed steady state equations for 8 and &, an equation

of the form

—ZZW tan® + k0 +k.utand

Z,=—2 323

is obtained.

The loss of stability of an equilibium and the generation of additional
equilibrium states, is called a pitchfork bifurcation and is very common in nature The
buckling of a beam is one such example. Using equations 3.18, 3.21, and 3.23 as a basis
for another MATLAB program, the steady state solutions of 8, &, and Z versus Froude
number were investigated with the results displayed in Figures 3-5 through 3-7. These
three plots are referred to as supercritical pitchforks, so named because upon the loss of
stability of the trivial equilibrium the additional nearby equilibrium states are stable
Graphically, this can be represented in Figures 3-5 through 3-7, where the solid curves
represent stable and dotted curves represent unstable equilibria [Ref 17] These three

figures also demonstrate the control input saturation. Upon control surface saturation, the
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steady state equations for ©, & and Z are no longer valid due to the limit placed on the
maximum plane angle The steady state equations that hold for this region of saturation

are given below,

3, =1 22.9° (0.4 radians), (3.24)
~uZd
) = — 3.25
W Z (3.25)
and,
o, = sin"| Mt B = Muiw,, | (3 26)
ZssB

As can be seen in Figures 3-5 and 3-6, at an approximate Froude number of 1.0S5 the
control surfaces saturate resulting in the linear solutions displayed below that saturation
Froude number. In Figure 3-7 there is no steady state solution because if the steady state
values of & and @ are placed into the Z equation, Z is non-zero below the saturation
Froude number.

A parameter intrcduced in Chapter II was o, which allowed us to go from a
multiple input system to a single input system. This parameter has a significant effect on
the location of the critical speed and/or Froude number. Figure 3-8 shows the relationship
been the critical speed u,, and the metacentric height z; for different values of o.

These three curves shown in Figure 3-8 can be converted into a single curve by
plotting o versus Froude number, and is shown in Figure 3-9. As can be seen in this plot
the critical Froude number varies from 0 81 to 1 22 over the allowable range of o

In addition to the effect that & has on the location of the critical Froude number,

it also effects the magnitude of the steady state values at a given Froude number and the
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STEADY STATE VALUES OF Z vs. FROUDE NUMBER
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location at which the control surfaces saturate. When comparisons are made, it can be
shown that as the value of ot becomes more positive the location of the critical Froude
number and steady state values of 8 and Z become greater. Comparing the changes in the
O steady state solutions, the shape of the & pitchfork does not change however, the
location of the critical point moves in the direction of increasing Froude number as o
increases. The results of this discussion are shown graphically in Figures 3-10 through
3-12

An interesting result is displayed in Figure 3-13. This figure depicts the
relationship between & and the critical or saturation Froude number. At the lower Froude
numbers, there is very little difference between the critical Froude number and the
saturation Froude number. This demonstrates that upon reaching a low cntical Froude
number the control surface immediately saturates attempting to keep the vehicle stable. At
the higher Froude numbers there is a significant difference between the critical Froude
number and the saturation Froude number This is because as the Froude number
approaches 2 78. the value used in the control law design conducted in Chapter 11, the
control surfaces will not have to saturate to maintain stability.

3. Controllability Analysis

In general, every system of the form,

x = Ax+ Bu,
y=Cr,

(327)
can be divided through a series of transformations into four subsystems:

1) A controllable and observable part

2)  Anuncontrollable and observable part.

3) A controllable and unobservable part

' 4)  Anuncontrollable and unobservable part
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This is known as Kalman's decomposition theorem. Now, since the transfer function of
any system is determined by the controllable and observable subsystems only, then the
transfer function may contain less information than is actually needed to model the
complete system.The precise definition of controllability is:
A system is said to be controllable if any initial state x(1,) can be driven to any
final state x(1,) using possibly unbounded control #(2) in finite time 1,<7 - ¢,
From the state equations 3.27, this should depend only on 4 and B, where 4 isan X n

square matrix. The criterion for controtlability is as follows: Compute the controllability

matrix
c=/B.AB, A*B... . A"'B]. (3.28)
and the system is controllable if and only if the rank of ¢ (the number of linearly
independent rows or columns) is 7. Roughly speaking, ¢ shows how possible it is to
change the state of a system using the input. For a single input system Bisn x l andcisa
square matrix  The test is then that ¢ be nonsingular
det(c)#0. (3.29)
Now, if the controllability matrix is formed using the 4 and B matrices from

equation 2 59 then the following matrix results;

c= A § (3 30)

Coy € €y Cy
where,
¢, =0 (33D
c.=hu, (3.32)
c,=a,ub +a.ub, (333)
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| Ca = blu:(anan“: +a2la:2u:)+b2u:(aZJ:GB +a:|au“: +a:::“: ) (334)
¢, =bu, (3.39)
|
3 3
¢, =aub +a.ub,, ) (3.36)
e, =bu(a v +a,a.u )+ bu(a,z,, +a,a. 4 +a.a,.u° ), (337)

L =bu’ (a“u(a” W Haa,ut)+ayu(a,z +a, @ +a,aut )+
b.u’ (a,S.GBa”u+a,,a,3~GBu+al.u(a,, u+a.a.u’)+ (3.38)
a.u(a,z,, +a.a,u’ +a.,;’u)),

Sy =b:u:, (3.39)
¢, =a.w’b +a..w’b., (3 40)
¢, =buw(aa,w +a,a.0 )+bu(az, +a,a.u’ +a.'u’ ), (3.41)

W =bu’ (a”u(a”a,,u +a,a..u )+a,,u(a,,.GB+a,,a,lu +a,, u))+

bu (a,3.GEa~,u+a..a~3.GBu+a,~u(a,,a~,u +a,a.u’ )+ (3.42)
a.u(a,z., +a.a.u’ +a. u' ),
¢, =0, (343)
¢ =bu’, (3.44)
Cy =a b +(au—u)bu’, (3.45)
and ¢, =bu’(a, v’ +a,u(a u-u))+bu'(a,z,, +a,a.u’ +a.ul(a.u-u)).  (3.46)

Now, if the determinant of the controllability matrix is computed as a function of
Froude number, then it can be shown that the system becomes uncontrollable at the critical
Froude number. The graphical results of this computation are shown in Figure 3-14 for
different values of the parameter o

With the critical parameter that causes the vehicle to lose stability identified. i e
the Froude number, and the effect that the parameter o has on the location of this critical
value understood, the simplifications discussed at the beginning of this chapter can be
removed from the E.O.M. and an analysis on the effects of incorporating these additional

parameters can be conducted. This detailed analysis will be the topic of Chapter IV.
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IV. BIFURCATION ANALYSIS

A. ASYMMETRIC PITCHFORK

Now that the crtical parameter, the Froude number, has been identified, the
simplifications applied to the EOM in the previous chapter can be removed The
resulting system of equations is given by equations 2.38 through 2 43. To determine the
existence of multiple steady state solutions for this new system of equations it is. once
again, necessary to perform a steady state analysis as conducted in Section B.2 of the

previous chapter This analysis will reduce the system of equations into the following,

Z‘uw—%pCDAw|w|+(W—B)cos9+25u:5=O 4.1)

M uw - %pCDxAAwlwl ~(x;W —x,B)cos@—(z,W -z,B)sin0+ Mu'§=0, (42)
with equation 313 also obtained from the steady state Z equation. By multiplying equation
4.1 by M, and equation 4.2 by Z; and setting the resulting equations equal to each other
the following equation is obtained;

1
(Z,.,ME—M'Z,.,)uw-(EpACD)(Mb—xJZB)w|w|+ @3)
((W—-B)M;+(x;W~-x,B)Z )cos®+Z;(z ;W - z,B)sin® =0
This equation, along with,
w=utan9, (44)

from equation 3 13 is the exact steady state solution set with all parameters included
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Figure 4-1 shows the results obtained when equation 4.3 is solved numerically, using the
FORTRAN program in Appendix A, for a small value of x, (the difference in the location
of the center of gravity and buoyancy), with the submarine neutrally buoyant (W = B).
This small value of x,, perturbs the pitchfork, as seen, from the symmetric pitchfork
displayed earlier in Figure 3-5. This comparison shows that the critical or bifurcation point
has moved to a lower Froude number, with the stable solutions represented by the solid
lines and the unstable solutions represented by the dashed lines in both cases. The stable
steady state solution, that the vehicle will acquire, is dependent on the initial conditions
that are given to the vehicle. Using the results displayed in Figure 4-1 as an indication that
x;g may also be a cnitical parameter, the subsequent task is to determine the relationship

between the critical Froude number and x5 or f( Fn.x, ).

B. BIFURCATION GRAPHS

The first order of business in the attempt to identify f(Fn.x;;) is to simplify the
exact pitchfork equation. This can be accomplished by replacing the cos8 and sin terms
in equation 4.3 with the following Taylor series expansions

w o olw 2w —w

Sl'”e=—l;—-2-?—- 2u3 (45)
cose=l-l!;=2u.—w-, (46)

2.0 20’

which will allow the exact solution to be represented as follows:

Zy(z W - 2,B)w’ + 20’ C A( M — x Z, jw|w|
(U (Z My~ M Z,)+2uZy(: W ~z,B))w = 2u* ((W = B) M, @7
+(x,W=x,B)Zy+((W—-B)M;+(x W -x,B)Z; )4 =0
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1 . . . .
where C, now equals the terms EpCD present in equation 4.3. Defining the following

parameters
d,=B-W,

Xog = X ~ Xg,

268 =% " %

W =2,B=z,,W-2,8,=9,,
x;W=x,B=x,W~x,0,=0,

A=1 Fn',

(4.8)

(4.9)
(4.10)
(4.11)
(4.12)
(4.13)

and substituting them into equation 4.7 will allow the coefficients in front of the various

powers of w to be written as follows;
WA, = Zy(z W 2,0, ) = Zy( MW - 2,8, ),
wiw|: 4, =20’C A My ~x,Z; ),
w A ==2u (o (Z M- M Z )+ Z( MW ~2,8, ),
w' A =20 (-8, My - Zy( x, W - x;8,))
w' A, =8, My - Zy(x ;W —x58,)).
The resulting form of equation 4.7 can be written

AW + Awlwl+ Aw+ A+ Aw =0,

4.14)
(4.15)
(4.16)
4.17)
(4.18)

(4.19)

which is a generic pitchfork equation. If it is assumed that the submarine is neutrally

buoyant. and equation 4.19 is divided by Z,z,,#, then the above coefficients can be

redefined as;

4,=1,
4 =2uC, A(M, -x,Z) 5L
5W &%
54
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A =-24° 237 +1),
(gzca W /
A= ol 2g,
8258
PRI = 4
8 W

Letting the critical parameter A be defined as

will allow equation 4.19 to be put into the following pitchfork solution form;

w’ + YAw|w| = 207 (1+ 50 )w + 2Bu*A + PAw’ =0,
where,

_ _X5&
B o
_g(Z.M,-M.Z,)
ZW

3

S

y =2uC,A( M, - x,Z, )-Z;LB.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

To determine if the above manipulation and definitions are correct and valid, take the

symmetric case that was developed in the previous chapter, i.e, x;, =0. This causes

equation 4 26 to reduce to

w(w’ +YAw|-2u'(1+§X)) =0,

(4.30)

resulting in a solution always occurring at w=0, with two more solutions appearing at the

bifurcation value

1+5A, =0.

Rearranging and substituting the appropriate values into equation 4.31 will yield
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L. ZW (4.32)

w MZ,-ZM,’
which is identical to equations 3.9 and 3.20, thus verifying the manipulation.
To find the relationship between Fn and x;g the function A(w,A.B), and its partial
derivative h (w,A.B), must be determined. These two functions must then be set equal to
zero and to each other in order to obtain a function independent of w. As seen, equation

4.30 is much too compiex to complete these requirements, but by neglecting the terms

Aw|w| and Aw" in equation 4.26 a simplified pitchfork of the form,
w?=2u (1+ 0\ )w +2pu*A =0, (4.33)
or in general terms A(w,A,B) =0, can be obtained which can be manipulated to meet the
above mentioned requirements, thereby determining the critical (A,B) curve. By taking
the partial derivative, A,,, of equation 4.33, the following equation results,
h =3w' =20 (1+{)A). (434)

This equation can be set equal to zero, yielding
. 2,
w‘=-3—u‘(1+§l.), : (4.35)

which can be substituted into equation 4.33 io obtain the value of w where the function

and it's partial derivative is equal to zero;

3BA

- ' 436
MYV (4.36)

This value of w can now be substituted back into equation 4.35 to obtain the desired
SIAB). or

278°K =8u’(1+CA ) (4.37)

Attempting to solve this equation analytically for A as a function of B, to determine

the shape of this curve is difficult. Therefore, an approximation to this equation is needed

for small values of . By rearranging equation 4 37 into the form
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8w (1+LA)

B ==

(4.38)

an equation that determines B as a function of A is now produced. If this function is
represented in a Taylor series expansion and simplified, then equation 4.38 can be written

as
x=xo+%m= (wl*))’, (4.39)

which can be considered as an approximation to the (A,B) curve, with equation 4 37 as
the exact (A.B) curve. Through inspection it can be seen that the general shape of this
curve is that of a cusp.

Figure 4-2 shows a comparison of four bifurcation curves. The curves represent the
relationship between the critical speed U, which can be converted into the non dimensional
parameter A using equation 4.25, and the value of x;g, which also can be converted into a
non dimensional parameter B using equation 427 The curves labeled exact bifurcation
set, pitchfork bifurcation set, exact cusp and approximate cusp come from the numerical
solution to equations 4.7, 4.26, 4.37 and 4.39 respectively. Observe that in the general
vicinity of x;5=0 and near the critical speed the shape of each of these curves is indeed
that of a cusp, with the peak occurring at the critical speed of 1.9 fps. Now, with the
comparison conducted in Figure 4-2 complete, equation 4.7, the exact pitchfork solution
will be used for the remainder of this analysis.

Returning to equation 4.7, it can be seen that there is only one additional parameter,
Cp. that the cusp curve produced using equation 4 39 does not incorporate (because z;p
and x;p are incorporated into the non dimensional parameters A and B) It is therefore
necessary to conduct a sensitivity analysis to determine the effect that C has on the shape
of the cusp curve. Figure 4-3 displays the results obtained when this sensitivity analysis

was conducted.
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As seen in the plot, the drag coefficient has no effect on the location of the peak of
the cusp. The drag coefficient, however, does modify the slope of the cusp as displayed by

the four cases shown in Figure 4-3.

C. SOLUTION SETS

In this section, the equilibrium solutions to equations 4.3 and 4.5 will be investigated.
As determined in the previous section, the critical parameters that control the location and
shape of the pitchfork solution sets are A, B and the drag coefficient C,,. By running the
FORTRAN program of Appendix A for several values of x;, L the shape and trend of
the solution sets can be determined. The result of this comparison, for a C, =0.0, is
displayed in Figure 4-4. This plot supports the symmetry about x_, =0 displayed in the
earlier cusp curves. Observe that the critical or bifurcation point moves to a lower value of
A as x;p increases. and that for low values of A the equilibrium solutions converge to the
same value independent of the value of xp.

When the comparison is made regarding the effect that the drag coefficient has on the
solution sets, for a given value of xsg, Figure 4-5 is produced. This variation in drag
coefficient for a constant value of x;g has a similar effect on the movement of the
bifurcation point as fixing the drag coefficient and varying x;. The difference is, however,
evident by studying the stable solutions The stable solutions for non-zero drag
coefficients become more linear as the value of (', increases. This results from the
increased effect of the w|w| term in equation 4 3 as the value of C, increases

Although Figure 4-5 shows the actual solution to the exact pitchfork equation it is
not realistic since the effect of dive plane saturation is not considered. Once the dive

planes saturate, the equations used to obtain the steady state solutions displayed in

60




Theta (degrees)

Theta (degrees)

Solution Set (CD=0.0, Zgb=0.1)

80, —
60~ - Xgb/L =0.0 -
40+ . -

| o - Xgb/L =-0.0001 |
20k N 8 .

o- seaisanoniiniiniiil e — T T -

-20+ - Xgb/L =-0.0003 -

.. Xgb/L =-0.0005

12 14 16 18 2
SQRT(LAMBDA)
Solution Set (CD=0.0, Zgb=0.1)

80

- Xgb/L =0.0
60~ gb/L .
40+ - Xgb/L =0.0001 -
20;. \“\'\. -

. \, »

0;' S S — e -
-20- e - Xgb/L =0.0003 -
<0- - -

: . Xgb/L =0.0005
-60 - .
3 06 0.8 1 1.2 1.4 1.6 18 2
SQRT(LAMBDA)

Figure 4-4. Comparison of Exact Solution Set for Different Values of Xgb/L.

61




Solution Set (Zgb=0.1, Xgb/L=-0.0001)

80 ‘F— 4
) ~
7 N WITHOUT DIVE PLANE SATURATION
| AN
| AN
wi’ N . CD=0.0 ’
: j
' N N
T - CD=0.3
Ii \ - ’
- S . .. CD=0.5 ;
20+ 1
§ By
2 L
g : ___/“’/
2 0- B
3 | ey
2 i /
&= ! ?
! s '
-20+ S 4
. / !
\ /
| / ;
i 2 ‘
! /
//
-407- / -
! /
| ',/
60~ o S
3 0.6 0.8 1 12 1.4 1.6 1.8 2
SQRT(LAMBDA)
Figure 4-5. Comparison of Exact Solution Set for Different Values of Cp,.
62
® [ ] [ ] { ] ®




Figures 4-4 and 4-5 are no longer valid. Instead, equations 4.1 and 4.2 are modified, still
remembering that the assumption of neutral buoyancy remains in affect, resulting in the
following two equations,
Zuw-CpAnww|+0° 23, =0, (4.40)
M uw - Cpox , Aw\w| - Wx;, cos8 — 2o, W sin@+ MuS , = 0. (4.41)
To obtain an equation that can be used to compute the steady state 8 solution while
taking into consideration dive plane saturation requires solving equation 4.40 for w and
then substituting this value into equation 4.41 which should yield ar eguauon independent
of w. The ability to perform this manipulation is hindered by the inclusion of the absolute
value term in both of the above equations. However, if the absolute value terms are
neglected by considering the case of C=0.0, then a single equation for the steady state
value of 6 may be obtained.
Neglecting the drag affects, and performing the algebra will yield an equation of the
following form,

(M,Z,- M,Z )u'S , +ZW(x,,cos0+z,,sin8)=0, (4.42)
which may be used to determine the values of 8 once the dive planes have saturated. The
validity of neglecting the drag terms is questionable, and an analysis that incorporates (',
will be conducted later in this section once the effect of varying xp is determined. Figure
4-6 displays the changes that occur to the solution set of Figure 4-1 when saturation is
considered. Notice that saturation occurs when the solution set is at approximately nine
degrees, and that when multiple solutions occur, the stable equilibrium states are

represented by the saturation portions of the solution set.
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When the saturation condition is applied to the previously displayed solution sets for
different values of x5g (Figure 4-4), the results shown in Figure 4-7 are produced. Items
of interest in Figure 4-7 are that:

1)  The bifurcation point on each solution set moves to a lower value of A as
the absolute value of x;g increases.

2)  The range where multiple solutions exist decreases as the absolute value of
XGp Increases.

3)  The amount of trim produced, in still water, by the given value of x;g can be
obtained from the point where the upper an lower solution branches
converge.

Incorporating the saturation condition into the solution sets raises some additional
concerns. To begin, +/uat if the point of dive plane saturation occurs after the bifurcation
points identified in Figure 4-4? If this condition did occur, referring to Figure 4-1 which
displays the stable and unstable solution branches, there would be at least one value of A
where there were three stable solution branches. To determine if this condition is possible
a comparison of solution sets with and without saturation is necessary. This comparison is
shown in Figure 4-8. As this plot depicts, the range between the bifurcation point and
saturation point increases as the value of x;p increases. This result will allow the fore
mentioned concern, of three stable solution branches, to be disregarded.

A second concern is the validity of the previously developed bifurcation cusp curves
Since the exact bifurcation equation, equation 4-7, does not include saturation, the cusp
curves produced using this equation will not accurately predict the occurrence of multiple
solutions However, if equation 4 42 is expanded in a Taylor series. it can be manipulated

into a form that will allow a cusp curve, which includes saturation, to be developed
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Performing this manipulation will produce the following equation;

W= ~XosZ W +25,WZD,, . (4.43)
(ZBM\« - MSZw)(sml(l + (ZB ’ Zw)z 8ml)| /2)

By converting #* and x;p into the non dimensional parameters A and B the cusp
curve shown in Figure 4-9 can be produced. This cusp displays the saturation point for
both solution branches, and as seen it differs quite extensively from the exact bifurcation
cusp without saturation. If Figure 4-9 is replotted to allow the peak area of the cusp to be
more accurately represented, then Figure 4-10 is produced. By using these two cusp
curves then the general form of the resulting solution set for any path through the cusp can

be predicted. It is this prediction that the subsequent section will address.

D. PATH FORMULATION

The ability to accurately predict how the vessel will respond to various changes in
operating conditions is critical for proper control of the vessel. It is this prediction that
necessitates the need for path analysis to be conducted. If the ballast condition on the
vessel is held constant, x5 =-0.000/, and the speed of the vessel is varied, path 4 of
Figure 4-11 is obtained. Neglecting for the moment the saturation cusp shown in
Figure 4-11, it would be expected that a single steady state solution would exist for all
values, of the parameter sqrt(A), greater than the point where the path intersects the solid
cusp curve At the speed where the path intersects the cusp the bifurcation point occurs,
and for speed values which place the path inside the cusp multiple steady state solutions
occur The results of this path analysis are depicted in Figure 4-1, presented earlier in this
chapter

If attention is returned to the path through the saturation cusp of Figure 4-11, then
the same type of predictions made for the path through the solid cusp can be made for the

this cusp, with some slight differences. As the speed decreases the path intersects the
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upper portion of the dotted cusp at an approximate value of 1.08. At this value saturation
occurs on one of the solution branches but there remains only one steady state solution
since the path has not yet entered the cusp. As the speed continues to decrease, the path
intersects and enters the saturation cusp at an approximate value of 0.99 with saturation of
the other solution branch and the existence of multiple steady state solutions occurring.
These results are evident in Figure 4-6.

Now, if the speed of the vessel is held constant, and the loading conditions on the hull

are changed, then the paths shown in Figure 4-12 are obtained. Path B, at a Froude

Number of 1.1, is outside the cusp, therefore only a single steady state solution for each -

value of xgg L should exist. While path C, at a Froude Number of 1.0, passes through the
cusp at + 0.0001 values of x;p L resulting in single steady state solutions for values less
than or greater than = 0.0001, while values between + 0.0001 result in multiple steady
state solutions. Through numerical computation the solution set as a function of x5z L is
obtained with the results shown in Figure 4-13.

As seen in Figure 4-13, path B, represented by the dotted line, does in fact result in a
single steady state solution throughout the range of x;z L. however, for path C this is not
the case Path (. represented by the solid line, exhibits multiple solutions between the
x;p I values of = 0.0001, as predicted This is a hysteresis curve, with the unstable
solutions occurring between the corners of the curve If the value of x5 L began
at -0 0005 and progressed to the positive value of 0.0001. the solution get would remain
on the curve with 0 taking on the values shown. Once the value of x5 /. becomes greater
than 0 0001 the solution jumps from -9° to 7 5°. This same jump would be evident if the
value of x;z L began positive and progressed negative. These jumps indicate that if the

dive planes are held constant, then the vessel will instantaneously change its pitch angle
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To counter this effect the dive plane angle must be reversed. It is this dive plane reversal
that the following chapter will discuss.

Before proceeding to the next chapter it is necessary to determine the effect that drag
has on the previously developed bifurcation cusps. Using equations 4.40 and 4.41, and
substituting equation 4.4 into both equations will result in the following two equations,

Z u’tan@-C,Au’ tan ftan 6+ Zu’S,, =0, (4.44)

M, uw - C,x ,Au’ tan Btan 8 - Wx 5, cos 0 — 2, W sin @+ M’ = 0. (4.45)

By using the MATLAB function fzeros contained in the program of Appendix A, the

value of 6 that solves equation 4 44 can be determined as a function of speed This

relationship can then be used to solve equation 4 45 to obtain the relationship between x;y
and u

With this relationship obtained the cusp curves of Figure 4-14 can be plotted It can
be seen that for a given value of x;p L increasing the drag coefficient forces the
bifurcation point to a lower speed An interesting item to note is the diamond shape peak
on these cusps This is a result of saturation not occurring, for a small range of speeds. in
the small region around x;5 1.=0 Path formulation through these cusps can be developed

as shown earlier in this section
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V. DIVE PLANE REVERSAL

A. STERN PLANE REVERSAL

The ability of a submarine to avoid detection and perform its mission is dependent on
its ability to maintain ordered depth. Modern asymmetric submarines exhibit an inherent
phenomenon known as dive plane reversal, which is difficult to deal with. To introduce
this physical occurrence, refer to Figure 5-1 [Ref 14] and consider the case of wanting to
dive the vehicle to a deeper depth. At moderate to high speeds the stern planes would be
deflected by an angle d,, this would in turn cause a force and moment to be developed due
to the angle of attack of the planes. The vessel will respond by pitching downward, and
will assume some angle of attack to the fluid flow causing hull forces and moments to
develop. The stern plane and hull forces bring the ship to some steady state pitch angle
which is obtained when the restoring moment and pitching moments balance. The vessel
now has the ability to fly itself to the ordered depth with the normal hull force assisting in
pushing the vessel to a deeper depth.

At low speed we would expect the same to be true, however it is not. If the stern
planes are set to an angle §; , this would cause a force and moment to be developed due to
the angle of attack of the planes, the vessel will pitch downward creating a pressure field
around the vessel due to the angle of attack with the fluid resulting in hull forces and
moments to develop The vessel once again steadies out at some steady state pitch angle
when the restoring moment and pitching moments balance Since the speed of the vessel is

not as great as in the previous case. the hull forces and moments are not as large. therefore
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instead of the vessel flving itself to the ordered depth with the hull force assisting, the
stern plane force actual pushes the vessel upward causing it to rise instead of dive, with
some non-zero pitch angle. [Ref. 14] This condition was evident in the simulation shown
in Figure 3.3.

With this description of the vehicle response complete, it is obvious that to dive the
vessel at low speeds, the opposite stern plane angle must be ordered. This will result in the
vessel being pushed to the ordered depth at some bow up attitude. This required shift in
dive plane angle is what is known as STERN PLANE REVERSAL.

To tie together the previously completed bifurcation analysis with the physical
occurrence just discussed, Figure 5-2 is produced. Figure S-2 presents the pitch angle and
stern plane angle required for straight and level flight with the bow planes centered As the
vessel's speed decreases, the metacentric moment ( M,0) makes it increasingly difficult to
maintain a positive pitch angle on the hull The stern plane angle is negative trying to
produce a pitch-up moment, but the downward force of the stern planes requires an even
larger pitch angle [Ref 14] Between the speeds of | 08 and 1 18 knots. the required stern
plane angle is beyond the normal operating range and the vessel cannot be flown straight
and level Below the cnitical speed. the stern plane and vessel pitch angle must reverse sign
to maintain neutral tnm )

In a final effort to show the phvsical significance of stern plane reversal. the force
1nput to the stern planes 1s plotted If the control gains are allowed to change as the speed
of the vessel changes Figure $-1 15 produced This plot shows the nor dimensional torce
per umit depth error input to the stern plane as a4 function of speed It s baucally the

control svstem wain used to set the stern plane angle A« can be seen as the (ritical speed

L




Sternplane Angle and Vessel Pitch Angle (degrees)

- Plane Angle

|

f

’ - Pitch Angie
! [

I

|

i

~
-10-
.18 -
.20
Ga 'y 12 \ 4

Speed Ku )

Figure -1 \ aristion of Puch and Stern plone Angies 8 o Fuaction of Speed

[ IR

X

%)




K4 vs. SPEED

Fs
® o

| A T
S VR |
o M

o

—_ Py 1

8 e 8
S ?
(10132 dap ywun/aniof jrucisuaunp uou ) py

0.1-

0.1

)
3

18

A Q
3

u Uy,

Figure -3 ( ontrel System Force lnput to the Stern planes.




is approached the value of input tends to infinity requiring the stern planes to operate
outside normal values. As the speed passes the critical value the sign of this input changes
requiring the stern planes to operate in the opposite direction. This reversal in sign is
evident of the stern plane reversal phenomenon shown and discussed earlier in this

chapter.

B. BOW PLANE REVERSAL

The reversal effect that was shown to occur with the stern planes can also be shown
to occur with the bow planes. If the value of a is allowed to tend to oo, indicating no stern
plane control and only bow plane control, then the same analysis conducted throughout
this thesis for stern plane reversal can be performed for bow plane reversal. If the critical
Froude number, (sqrt(A)), is plotted as a function of a, then the results shown in
Figure 5-4 are produced. This plot shows that for bow plane control only, the critical
value approaches 2 05 as a approaches oo

To show that the same type of results can be obtained for the bow plane analysis, the
case of neutral buoyancy. x;g = 0 and dive plane saturation, with bow plane control only
was investigated Referring to Figure 5-5, it can be seen that at a Froude number of 2.05
multiple steady state solutions occur These results are similar to the results displayed in
Figure 3-S The major differences are that the cnitical point occurs at a Froude number of
208 vice 1 05 and the maximum value of 8 1s only = 4 5° vice * 9 5° The reason for

these changes 1s due to the values of Z, and M, being only one-half the respective value

for the stern planes

x

%

4




(Fn)cr

CRITICAL FROUDE NUMBER vs. ALPHA
2-1 M ' R AR i L .o ! H . . MRS

2+
19+
1.8+ :
|
|
/ |
1.7~ / y
| /
, /
| /
//
1.6~ -
: /
; /
/
| ,/
- / -
l..‘:1 /
; /
1.4- -
13- -
1.2 —— R
{14 104 108 10

log(ALPHA )

Figure $-4. identification of Critical Froude Number for Bow plane Control.

83

L)




theta (degrees)

STEADY STATE VALUES OF THETA vs. FROUDE NUMBER

5" T 1 ? T T T

| BOWP CONTROL ONLY
| r
|

n

|

%

1+ -
, for metacentric height = 0.1 ft |

[

o :
; |

|
4

tJ
3
P

1.2 1.4 1.6 - 1.8

Fn

Figure $-S. Steady State Values of 6 for Bow plane Control.

84

X

%




C. BIAS EFFECTS

As a final area of analysis, the condition of operating near the surface, such as during
periscope operations, must be investigated to determine the effects this will have on the
previously developed bifurcation cusps. Operating near the surface will require the
incorporation of a suction force and moment into the equations of motion. This force and
moment is a function of the distance away from the surface, and the angle the vessel
makes with the surface. Therefore, as a simple model of suction effects consider the case
of operating with excess buoyancy. To conduct the analysis requires the use of equations
41, 4.2 and 4 4. Performing the same substitution and solution technique as was used in
Chapter V to obtain the saturation curves that incorporated the drag coefficient will result
in solving the following equations to obtain the bifurcation cusps that would quasi-model

surface effects,

Znuw—%pC,,Au:tathanQHW-B)cosO+ Zu's,, =0, (51

M_uw—%pC,,x,Au:tanﬂtanq—(x(,.w-x,,ﬂ)cose (52)
~(z W ~z,B)sin@+Mu'S_ =0

If the value of ('}, 1s set equal to zero then the saturation cusp produced in

Figure 4-10 can be ompared to the results obtained for several cases of excess buovancy

Since 1t 1s the saturation cusp that controls the location of the bifurcation point. as shown

in previous the chapter. the non saturation cusp wiil be neglected for the remainder of the

analvsis Figure S-6 shows the results obtained as excess buovancy 1s increased As can be

seen the cusp peah moves to down and to the nght occurning at a lower speed and at a

non zero value of v,/ The bods of the cusp also shiftis 1o the night ax veen with the
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entire cusp occurring in the positive region of the x;z /. range for a value of 0 0< %,
excess buoyancy

To determine how the value of drag coefficient effects the cusp cunes consider the
case of (', = 0.3 shown in Figure 5-7 These cusps were produced for the same \alues of
excess buoyancy used in Figure S-6 Notice that the cusp curves shift to the nght by the
same value seen in Figure 5-6, but the peak value now occurs at an even a lower speed

In order to observe the sensitivity of the biased cusp 10 drag onlv consider the case
of setting the excess buoyancy to 001 °o and vaning the drag coetficient showr
Figure 5-8 These results indicate that increased drag causes the critical speed to ooiur &
a lower value They also show that drag tends to counter the biasing eftect that exces.
buovancy was previously show to have This 1s evident by the peak pom dnthing @ i
left as the value of drag coefficient increases

In summary. it can be stated that operating near the surtace wili tend - reduce he
cntical speed determined in previous chapters and the vessel will have © he piace
different tnm condition to counter surface effects and that increasing Jraw av e o

the cntical speed but tends to counter the tnm condition requn ed
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VI. CONCLUSIONS AND RECOMMENDATIONS hd
¥
A. CONCLUSIONS ®
o A method for analyzing submarine depth keeping and dive plane reversal has been
developed and presented. This analysis identified the three phenomena, a positive real
eigenvalue, a steady state pitchfork bifurcation, and an uncontrollable system, that lead to °
vessel instability.
o The critical parameters have been identified that control the bifurcation. These
parameters combine speed, loading conditions and hydrodynamic coefficients into PY
. non-dimensional values that may be applied to other models or vessels
» Since the non-dimensional Froude numbers are based on the metacentric height
and LCG-LCB separation, Froude scaling can be used to apply this analysis to full scale PS ®
vessels, allowing for the reduction of model testing during design phases.
B. RECOMMENDATIONS
Some recommendations for further research are as follows: °
¢ Develop and incorporate into the bifurcation analysis a more complete expression
for the free-surface effects. °
» Conduct a Hopf bifurcation analysis to identify the critical parameters that lead to
vehicle instability at high speeds.
o
L J
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APPENDIX A

COMPUTER PROGRAMS

% THIS PROGRAM IS THESIS1 M. IT SIMULATES THE RESPONSE OF THE

DTRC SUBOFF

% MODEL. IT PLACES THE POLES, CALCULATES THE CRITICAL SPEED, AND

USES

% PROGRAM THESISDE M TO SIMULATE THE VERTICAL PLANE REPONSE.

clg,
global zg m zgb u U Zq Zw Zdit Mq Mw B1 Mdit K1 M bm xL Zval Mval rho

% ESTABLISH GEOMETRIC PARAMETERS
W=1556.2363.B1=1556.2363;

Iy=561.32,

g=322,

m=W/g.

rho=1 .94,

L=13.9792,

xg=0;zg=0.1,

zgb=0.1,

% BEAM AND LENGTH DEFINITION FOR TRAPAZIODAL RULE USE

bm=[0 485 658 778 871 945101 1.061181411571.661671671.67163..

1.37 919 448 195 .188 .168 .132 .053 0];

x1=[0 1 23456712347714310151429161718192020.1 .
20.220.3 204 20 4167];

xI=(L/20)*x1,

xL=xI-L/2,

% FACTORS TO CONVERT FROM NON-DIMENSIONAL VALUES TO
DIMENSIONAL VALUES

nd1= 5*rho*L"2,

nd2=5*rho*L"3;

nd3=.5*rho*L"4;

nd4=.5*rho*L"§,
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Alpha=0; ‘

% NON-DIMENSIONAL HYDRODYNAMIC COEFFICIENTS 4
Zqdnd=-6.33e-4,Zwdnd=-1.4529¢-2,Zqnd=7.545¢e-3;Zwnd=-1.391e-2,
Zds=(-5.603e-3),Zdb=0.5*(-5.603e-3),Zdltnd=(Zds+Alpha*Zdb);

Mgqdnd=-8 8e-4,Mwdnd=-5.61e-4,Mqnd=-3.702¢-3;Mwnd=1.0324e-2,
Mds=(-0.002409);Mdb=0.5*(0.002409);Mdltnd=(Mds+Alpha*Mdb),

% CONVERTION OF COEFFICENTS INTO DIMENSIONAL VALUES
Zqd=nd3*Zqdnd;Zwd=nd2*Zwdnd;,Zq=nd2*Zqnd;Zw=nd1*Zwnd;
Zdit=nd1*Zdltnd;

Mqd=nd4*Mgqdnd:Mwd=nd3*Mwdnd;Mq=nd3*Mqnd,Mw=nd2*Mwnd, L
Mdit=nd2*Mdltnd;

% FORMULATION OF A AND B MATRIX ELEMENTS

Dv=(m-Zwd)*(ly-Mqd)-(m*xg+Zqd)*(m*xg+Mwd),

al 1Dv=(ly-Mqd)*Zw+(m*xg+Zqd)*Mw;, °
a12Dv=(ly-Mqd)*(m+Zq)+(m*xg+Zqd)*(Mg-m*xg).

al3Dv=-(m*xg+Zqd)*W,

biDv=(ly-Mqd)*Zdit+(m*xg+Zqd)*Mdit;

a21Dv=(m-Zwd)*Mw+(m*xg+Mwd)*Zw,

a22Dv=(m-Zwd)*(Mq-m*xg)+(m*xg+Mwd)*(m+2q), ) o
a23Dv=-(m-Zwd)*W,

b2Dv=(m-Zwd)*Mdlt+(m*xg+Mwd)*Zdlt,

al 1=al 1Dv/Dv;al2=al2Dv/Dv;al3=al3Dv/Dy;
a21=a21Dv/Dv;a22=a22Dv/Dv;a23=a23Dv/Dv; e
bl=b1Dv/Dv.b2=b2Dv/Dv,

% ESTABLISHMENT OF POLE LOCATIONS
pl=[-3-31-32-33],

®
% CALCULATION OF CRITICAL SPEED
Ucr=sqrt(-(al3*b2-a23*b1)*zgb/(al 1*b2-a21*bl))
% INPUT OF SPEED WHICH THE VESSEL WILL USE IN THE SIMULATION
U=input(‘enter speed of vehicle ') °
% CALCULATION OF FROUDE NUMBER
Fn=sqrt(U"2/(zgb*g))

®
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% CALCULATION OF MATRICIES FOR POLE PLACEMENT AND
CONTROLABILLITY ANALYSIS

u=s,;

a=[0010;al3*zgb all*ual2*u 0;a23*zgb a21*u a22*u 0. ..

-u100];

al=[0010;al3*zgb al1*Ucr al2*l4cr 0;,a23*zgb a21*Ucr a22*Ucr 0;...
-Ucr 1 00],

b=[0:b1*u”2;b2*u"2;0],
b1=[0:b1*Ucr*2;b2*Ucr"2;0];

K1=place(a,b.pl).

C=rank(ctrb(al . bl)),

H=(Mw*Zdlt-Zw*MdIt)/(zgb*B1*Zdit);
thetal=acos(H*U"2)*180/pi,
Dss=-(Zw/Zdlt)*tan(acos(H*U"2))* 180/pi;
Z=(Dss+K1(1)*acos(H*U"2)+K 1(2)*U*tan(acos(H*U"2)))/. .
(-K1(4)).

% ESTABISHES VEHICLE MASS MATRIX
M=[1000,0 (m-Zwd) -Zqd 0 ;0 -Mwd (Iy-Mqd) 0:000 1];

% SET TIME LIMITS AND INITIAL CONDITIONS FOR ODE SOLUTION
t0=0,tf1=2500*L/U,
x0=(000 1].

% SOLVES VEHICLE SIMULATION ODE'S
[t1.X1]=0ded45('thesisde' 10 tf1,x0).

% REDEFINE THE OUTPUT VECTOR ELEMENTS AND FORM DIVE PLANE
RESPONSE

wi=X1(.2).q1=X1(:,3).z1=X1( ,4),;th1=X1(.1),
d=-(K1(1)*th1+K1(2)*w1+K1(3)*q1+K1(4)*z1),

11=length(d),

for n=111.

if d(n)> 4,
d(n)= 4,

elseif d(n)<- 4,
d(n)=- 4,

end.

end.
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% PLOT THE RESULTS

subplot(211),

plot(t1*U/L,th1*180/pi,t1*U/L,d*180/pi,"--);title( THETA/DELTA vs. TIME '),
xlabel('non-dimensional time ');ylabel('theta/delta (degrees)'),gnd,
gtext(‘--delta');gtext(['for a speed of ' num2str(U) ' fps']);

plot(t1*U/L,z1/L);title(DEPTH vs. TIME');xlabel('non dimensional time');
ylabel('non dimensional depth ');grid;

pause,

subplot(i11),

% THIS IS PROGRAM THESISDE M. IT CONTAINS THE SUBOFF MODEL
SYSTEM OF
% EQUATIONS TO BE SOLVED BY PROGRAM THESIS1 M

% SET SYSTEM OF EQUATIONS FUNCTION
function X1dot=thesisde(t1,X1),

% SET CONTROL LAW
d1=-K1(1)*X1(1)-K1(2)*X1(2)-K1(3)*X1(3)-K1(4)*X 1(4),

% APPLY DIVE PLANE SATURATION
ifdi>4,
di= 4,
elsetf d1<- 4,
dl=- 4,
end,

% INCLUDE DRAG TERMS AND CALCULATE AREA AND CENTROID
CD=0:;

if X1(2)==0,
X1(2)=1e-5;

end;

if X1(3)==0,
X1(3)=1e-5,

end,

Zval=bm *((X1(2)-xL *X1(3))."3) /(abs(X1(2)-xL *X1(3)));
Mval=bm *(((X1(2)-xL *X1(3))."3).*xL) /(abs(X 1(2)-xL *X1(3))).

ZDragval=0.MDragval=0,
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% trapaziodal integration
for n=1:length(xL)-1,

Zdragval=0.5*(Zval(n)+Zval(n+1))*(xL(n+1)-xL(n)),
Mdragval=0.5*(Mval(n)+Mval(n+1))*(xL(n+1)-xL{(n)),
ZDragval=ZDragval+Zdragval,
MDragval=MDragval+Mdragval;

end,

Zdr=(0.5)*rho*CD*ZDragval;
Mdr=(0.5)*rho*CD*MDragval;

% VEHICLE SYSTEM OF EQUATIONS

F1=[X1(3), m*(U*X1(3)+zg*X1(3)"2)+Zq*U*X1(3)+Zw*U*X1(2)+U"2*Zdlt*d1-Zdr,

m*(-zg*X1(2)*X1(3))*Mq*U*X1(3)+Mw*U*X1(2)-
B1*zgb*sin(X1(1))+U2*Mdlit*d1-Mdr,
~U*sin(X1(1))+X1(2)*cos(X1(1))];

mpr=inv(M),
Xl1dot=mpr*FI,
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PROGRAM STEADY

STEADY STATE SOLUTIONS OF SUBMARINES
IN THE DIVE PLANE AT LOW SPEEDS

INPUT DATA

ICON =1: COMPUTATION OF SOLUTION SETS (S.S)
2 . COMPUTATION OF BIFURCATION GRAPHS (B.G.)

IVAR =1 Fn VARIATION
2 - Xgb VARIATION

REAL MW LENGTH MASS MDS MDB .MD.LAMBDA
DIMENSION B(25).X(25).BX(25)
GEOMETRIC PROPERTIES AND HYDRODYNAMIC COEFFICIENTS

RHO =194

LENGTH= 13 9792

WRITE (*.*)"' ENTER CDZ'

READ (*.*)CDZ

CDZ =CDZ*0 5*RHO

BUO= 1556 2363

WRITE(*.*) 'ENTER VALUE OF EXCESS BUO'
READ (*.*) FAC

WEIGHT=FAC*BUO

MASS = WEIGHT/32.2

XB =00

ZB =00

WRITE (*,*) 'ENTER THE METACENTRIC HEIGHT ZGB'
READ (*.*) 2G

ZW =-0.013910*0.5*RHO*LENGTH**2
ZDS =-0.005603*0.5*RHO*LENGTH**2
ZDB =-0.005603*0.25*RHO*LENGTH**2
MW  =0.010324*0.5*RHO*LENGTH**3
MDS =-0.002409*0 S*RHO*LENGTH**3
MDB = 0.002409*0.25*RHO*LENGTH**3

WRITE (*,*) 'ENTER THE VALUE OF ALPHA'

READ (*.*) ALPHA
ZD=ZDS+ALPHA*ZDB
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C

C DEFINE THE LENGTH X AND BREADTH B TERMS FOR THE

MD=MDS+ALPHA*MDB

INTEGRATION

C

X( 1)=20.4167
X( 2)=20.4000
X(3)=20.3

X( 4)=20.2

X( 5)=20.1

X( 6)=20.0

X( 7)=19.0

X( 8)=18.0
X(9)=17.0
X(10)=16.0
X(11)=151429
X(12)=10.0
X(13)=7.7143
X(14)=4.0
X(15)=3.0
X(16)=2.0
X(17)=10
X(18)=07
X(19)=0.6
X(20)=0.5
X(21)=0.4
X(22)=0 3
X(23)=0.2
X(24)=0 1
X(25)=0 0

B( 1)=0.00000
B( 2)=0.03178
B( 3)=0.07920
B( 4)=0.10074
B( 5)=0.11243
B( 6)=011724
B( 7)=0.26835
B( 8)=0 55025
B(9)=081910
B(10)=0 97598
B(11)=1.00000
B(12)=1 00000
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C
C

C
C

B(13)=1.00000
B(14)=0 99282
B(15)=0.94066
B(16)=0.84713
B(17)=0.70744
B(18)=0.63514
B(19)=0 60352
B(20)=0.56627
B(21)=0.52147
B(22)=0.46600
B(23)=0.39396
B(24)=0.29058
B(25)=0.00000

DO 11=1,25
B(1)=B(I)*1 6667
X(I)=(-X(I)+10.0)*LENGTH/20.0
BX(1)=B(1)*X(I)
I CONTINUE
CALL TRAP(18 B, X.AREA)
CALL TRAP(18,BX.X,CH)
XA=CH/AREA
WRITE(*.*) ‘AREA EQUALS ' AREA
WRITE(*.*) 'XA EQUALS ' XA
[FC=0

OPEN RESULTS FILES
OPEN (10.FILE='R10 RES'.STATUS=NEW)
OPEN (11, FILE='R11 RES ' STATUS=NEW')
OPEN (12, FILE='R12 RES' STATUS=NEW)
OPEN (13 FILE='R13 RES'STATUS='NEW’)
OPEN (14 FILE='R14 RES' STATUS=NEW")
OPEN (15 FILE=R1S RES' STATUS=NEW')
OPEN (16, FILE='R16 RES' . STATUS='NEW')
OPEN (20.FILE="C20 RES',STATUS=NEW")
OPEN (21.FILE='S21 RES' STATUS="NEW')
OPEN (22.FILE='S22 RES'STATUS=NEW')
OPEN (23 FILE='S23 RES' . STATUS='NEW")
OPEN (24 FILE='S24 RES'.STATUS=NEW")
OPEN (31 ,FILE='S31 RES' STATUS='NEW')
OPEN (32,FILE='S32 RES' . STATUS=NEW')
OPEN (33.FILE='S33 RES'.STATUS=NEW')
OPEN (34 FILE='S34 RES'.STATUS=NEW')
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N MO

OPEN (41 FILE='C4]1 RES' STATUS='NEW)
OPEN (42 FILE='C42 RES' . STATUS=NEW')
OPEN (43 FILE='C43 RES' . STATUS=NEW')

READ DATA INTERACTIVELY

WRITE (*.1001)

READ (**) ICON

IF (ICON EQ 2) GO TO 331
WRITE (*.1009)

READ (**) IVAR

GO TO (331,332), IVAR

331 WRITE (*.1002)

READ (*,*) UMIN
WRITE (*,1003)
READ (*.*) UMAX
WRITE (*.1004)
READ (*.*) ITER
JU=ITER

IF (ICON EQ.2) GO TO 332
WRITE (*.1010)
READ (**) XG
XG=XG*LENGTH
GO TO 300

332 WRITE (*.1005)

READ (*.*) XGMIN
WRITE (*.1006)

READ (*.*) XGMAX
WRITE (*.1004)

READ (*.*) ITER
JIXG=ITER
XGMIN=XGMIN*LENGTH
XGMAX=XGMAX*LENGTH
IF (ICON EQ 2) GO TO 334
WRITE (*,1012)

READ (**) U

334 CONTINUE

GO TO 300

300 WRITE (*.1013)

READ (*.*) ISET
IF (ICON EQ.2) GO TO 370
GO TO (350,360,400), ISET
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C
C EXACT SOLUTION SET
C
350 DO 2 1=1,ITER
WRITE (*,2000) LITER
GO TO (351,352), IVAR
351 U=UMIN+(UMAX-UMIN)*(I-1)/(ITER-1)
GO TO 355
352 XG=XGMIN+(XGMAX-XGMIN)*(I-1)/(ITER-1)
355 Al= ZW*MD-MW*ZD
A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG-XB)*WEIGHT*ZD
A4= (ZG-ZB)*WEIGHT*ZD
CALL
EXSOLS(IVAR LL,IFC,U,XG,A1,A2,A3,A4,CDZ,AREA,ZW,ZD,ZG MW,
& MD,BUO,XA)
IF (LL.GT.1) IFC=1
2 CONTINUE
GO TO 5000
C
C PITCHFORK SOLUTION SET
C
360 DO 3 I=1,ITER
WRITE (*,2000) ,ITER
GO TO (361,362), IVAR
361 U=UMIN+(UMAX-UMIN)*(I-1)/(ITER-1)
GO TO 365
362 XG=XGMIN+(XGMAX-XGMIN)*(I-1)/(ITER-1)
365 Al=ZD*(ZG-ZB)*WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
A4= 2.0*U*U*ZD*(XG-XB)*WEIGHT
AS=-ZD*(XG-XB)*WEIGHT
CALL PITSLS(IVAR LL,IFC,U,XG,A1,A2,A3,A4,A5)
IF (LL GT.1) [FC=1
3 CONTINUE
GO TO 5000
C
C  SIMPLE PITCHFORK SOLUTION SET
C
400 DO 401 I=1,ITER
WRITE (*,2000) I,ITER
GO TO (402,403), IVAR
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402 U=UMIN+(UMAX-UMIN)*(I-1)/(ITER-1) ‘
GO TO 405 x,
403 XG=XGMIN+(XGMAX-XGMIN)*(I-1)/(ITER-1) PY
405 Al=ZD*(ZG-ZB)*WEIGHT
A3=-2*U*U(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT) v
Ad4= 2 0*U*U*ZD*(XG-XB)*WEIGHT
CALL SIMSLS(IVAR.LL.IFC.U.XG.Al.A3 A4)
IF (LL GT 1) IFC=1 ®
401 CONTINUE
GO TO 5000
370 GO TO (380,390.410.430), ISET
C
C EXACT BIFURCATION SET °
C
380 DO 4 1=1.JXG
WRITE (*,2000) 1.JXG
XG=XGMIN+(XGMAX-XGMIN)*(1-1)/(JXG-1)
[HS=0 °
DO S J=1.JU
U=UMIN+(UMAX-UMIN)*(J-1)/(JU-1)
Al= ZW*MD-MW*ZD
A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG*WEIGHT-XB*BUO)*ZD+(WEIGHT-BUO)*MD
A4= (ZG*WEIGHT-ZB*BUO)*ZD
CALL EXNUMS(NUM. A1,A2 A3 A4.U)
IF (J NE 1) GO TO 381
Uo=U
NUMO=NUM
GOTOS
381 UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF EQ 2) GO TO 382
UO=UN b
NUMO=NUMN
GOTOS
382 Ul=UO
U2=UN
DO 61 JJ=1JU 1 d
U=U1+(U2-U1)*(JJ-1)/(JU-1)
Al= ZW*MD-MW*ZD
A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG*WEIGHT-XB*BUO)*ZD+(WEIGHT-BUO)*MD
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383

61

384

386

62

385

A4= (ZG*WEIGHT-ZB*BUO)*ZD
CALL EXNUMS(NUM,A1,A2,A3,A4,U)
IF (JJNE.1) GO TO 383

uo=u

NUMO=NUM

GO TO 61

UN=U

NUMN=NUM
NDIF=IABS(NUMO-NUMN)

IF (NDIF EQ.2) GO TO 384
UO=UN

NUMO=NUMN

CONTINUE

GOTOS

U1=U0

U2=UN

DO 62 JJ=1,JU
U=U1+(U2-U1)*(JJ-1)/(JU-1)
Al=ZW*MD-MW*ZD
A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG*WEIGHT-XB*BUO)*ZD+(WEIGHT-BUO)*MD
A4= (ZG*WEIGHT-ZB*BUO)*ZD
CALL EXNUMS(NUM,A1,A2 A3 A4.U)
IF (JJ.NE.1) GO TO 386
Uo=U
NUMO=NUM
GO TO 62
UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF EQ.2) GO TO 385
UO=UN
NUMO=NUMN

CONTINUE

GOTOS

UP=(UO+UN)/2.0

IHS-IHS+1
UPL=SQRT(UP/(32.2*LENGTH))
XGL=XG/LENGTH

IPF=10+IHS

WRITE (IPF.100) XGL ,UP
UO=UN

NUMO=NUMN
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5 CONTINUE
4 CONTINUE
GO TO 5000
C x
C PITCHFORK BIFURCATION SET
C
390 DO 6 I=1 JXG
WRITE (*,2000) 1.JXG
XG=XGMIN+(XGMAX-XGMIN)*(I-1)/(JXG-1)
THS=0
DO 7J=1JU
U=UMIN+(UMAX-UMIN)*(J-1)/(JU-1) o
Al= ZD*(ZG-ZB)*WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
A4=2.0*U*U*ZD*(XG-XB)*WEIGHT
A5=-ZD*(XG-XB)*WEIGHT o
CALL PINUMS(NUM,A1,A2,A3,A4,A5.U)
IF (J.NE.1) GO TO 391
vo=u
NUMO=NUM
GOTO7 °
391 UN=U ®
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF.EQ.2) GO TO 392
UO=UN
NUMO=NUMN 4
GOTO7
392 Ul=UO
U2=UN
DO 71 JJ=1JU
U=U1+(U2-U1)*(JJ-1)/(JU-1) °
Al= ZD*(ZG-ZB)*WEIGHT
A2=2 0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
A4= 2 0*U*U*ZD*(XG-XB)*WEIGHT
AS=-ZD*(XG-XB)*WEIGHT °
CALL PINUMS(NUM,A1,A2.A3,A4.A5.U)
IF (J1.NE 1) GO TO 393
Uo=uU
NUMO=NUM
GO TO 71 °
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393  UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF EQ.2) GO TO 394
UO=UN
NUMO=NUMN
71 CONTINUE
STOP 1111
394 UI=UO
U2=UN
DO 72 J1=1,JU
U=U1+(U2-U1)*(JJ-1)/(JU-1)
Al= ZD*(ZG-ZB)*WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
A4= 2 0*U*U*ZD*(XG-XB)*WEIGHT
A5=-ZD*(XG-XB)*WEIGHT
CALL PINUMS(NUM,A1,A2,A3,A4,A5,U)
IF (JJ.NE.1) GO TO 396
UO=U
NUMO=NUM
GOTO 72
396 UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF.EQ.2) GO TO 395
UO=UN
NUMO=NUMN
72 CONTINUE
STOP 1112
395 UP=(UO+UN)/2.0
IHS=IHS+I
UPL=SQRT(UP/(32.2*LENGTH))
XGL=XG/LENGTH
IPF=10+IHS
WRITE (IPF,100) XGL,UP
UO=UN
NUMO=NUMN
7 CONTINUE
6 CONTINUE
GO TO 5000
C
C SIMPLE PITCHFORK BIFURCATION SET
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C
410 DO 411 I=1,JXG
WRITE (*,2000) L.JXG
XG=XGMIN+(XGMAX-XGMIN)*(I-1)/(JXG-1)
IHS=0
DO 412 J=1,JU
U=UMIN+(UMAX-UMIN)*(J-1)/(JU-1)
Al= ZD*(ZG-ZB)*WEIGHT
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
Ad=2.0*U*U*ZD*(XG-XB)*WEIGHT
CALL SINUMS(NUM,A1,A3,A4,U)
IF (J.NE.1) GO TO 413
UOo=U
NUMO=NUM
GO TO 412
413 UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF.EQ.2) GO TO 414
UO=UN
NUMO=NUMN
GO TO 412
414 UI=UO
U2=UN
DO 415 11=1.JU
U=UI1+(U2-U1)*(JJ-1)/(JU-1)
Al= ZD*(ZG-ZB)*WEIGHT
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)
Ad= 2.0*U*U*ZD*(XG-XB)*WEIGHT
CALL SINUMS(NUM,A1,A3.A4.U)
IF (JJ.NE.1) GO TO 416
Uo=U
NUMO=NUM
GO TO 415
416  UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF.EQ.2) GO TO 417
UO=UN
NUMO=NUMN
415 - CONTINUE
STOP 1111
417 U1=UO
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U2=UN ‘

DO 418 JJ=1JU x,
U=U1+(U2-U1)*(J-1)/(JU-1) °
Al= ZD*(ZG-ZB)*WEIGHT
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT) x
Ad= 2 0*U*U*ZD*(XG-XB)*WEIGHT
CALL SINUMS(NUM,A1,A3,A4,U)
IF (JJ NE.1) GO TO 419 .
uo=u
NUMO=NUM
GO TO 418
419  UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF EQ 2) GO TO 420
UO=UN
NUMO=NUMN
418 CONTINUE
STOP 1112
420 UP=(UO+UN)/2.0
IHS=IHS+1
UPL=SQRT(UP/(32.2*LENGTH))
XGL=XG/LENGTH
IPF=10+IHS
WRITE (IPF.100) XGL.UP
UO=UN
NUMO=NUMN
412 CONTINUE o
411 CONTINUE
GO TO 5000
C
C  ANALYTIC BIFURCATION SET
C
430 WRITE (*.1017) d
READ (**) ICUSP
GO TO (432.433), ICUSP
C
C  EXACT"CUSP
C ®
432 DO 431 =1 JU
- WRITE (*,2000) 1.JU
U=UMIN+(UMAX-UMIN)*(1-1)/(JU-1)
DELTA=32 2%(ZW*MD-MW*ZD)/(ZD*WEIGHT)
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LAMBDA=U*U/(32.2%(ZG-ZB))
BETA2=(8.0*U*U*(1.0+DELTA*LAMBDA)**3)/(27.0*LAMBDA**2)
IF (BETA2. LT .0.0) GO TO 431

BETA=SQRT(BETA2)

XGB=U*U*BETA/32.2

WRITE (10,100) U XGB/LENGTH

431 CONTINUE
GO TO 5000
C
C TAPPROXIMATE" CUSP
C

433 DO 434 I=1.JU
WRITE (*,2000) L.JU
U=UMIN+(UMAX-UMIN)*(I-1)/(JU-1)
DELTA=32.2*(ZW*MD-MW*ZD)/(ZD*WEIGHT)
LAMBDA=U*U/(32.2%(ZG-ZB))
BETA2=(8 0*U*U*(1. 0+DELTA*LAMBDA)**3)/27.0
IF (BETA2.LT.0.0) GO TO 434
BETA=SQRT(BETA2)
XGB=U*U*BETA/322
WRITE (10.100) U XGB/LENGTH
434 CONTINUE
C
5000 STOP
1001 FORMAT (' ENTER 1 : SOLUTION SETS "/
I ' 2 BIFURCATION GRAPHS )
1009 FORMAT (' ENTER 1 : U VARIATION '/
1 ' 2 XG VARIATION )
1002 FORMAT (' ENTER MINIMUM VALUE OF U")
1003 FORMAT (' ENTER MAXIMUM VALUE OF U')
1004 FORMAT (' ENTER NUMBER OF INCREMENTS')
1005 FORMAT (' ENTER MINIMUM VALUE OF XG/L')
1006 FORMAT (' ENTER MAXIMUM VALUE OF XG/L")
1010 FORMAT (' ENTER VALUE OF XG/L")
1012 FORMAT (' ENTER VALUE OF U")
1013 FORMAT (' ENTER 1 : EXACT COMPUTATION '/
1 ' 2 - PITCHFORK APPROXIMATION'/
2 ' 3 SIMPLE PITCHFORK '/
3 " 4. ANALYTIC SET P
1017 FORMAT (' ENTER | : EXACT CUSP '/
1 ' 2 APPROXIMATE CUSP )
2000 FORMAT (215)
100 FORMAT (2E1S §)
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END ‘

L,

SUBROUTINE TRAP(N,A.B,OUT) °

NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE *

nOO (]

DIMENSION A(1),B(1)
N1=N-1 °
OUT=00
DO 1 I=1.N}
OUT1=0.5*(A()+A(I+1))*(B(I+1)-B(I))
OUT =OUT+OUTI
1 CONTINUE °
RETURN
END

SUBROUTINE EXSOLS(IVAR,L,IFC,U,XG,A1,A2 A3, A4,CDZ ,AREA,ZW,
&ZD.ZGMWMD BUO,XA) ®

IT COMPUTES AND PRINTS THE EXACT SOLUTION SET THETA
(DEG.) VERSUS U OR XG

sNoNoNs]

REAL MW MD PRNT,PI e ©
DIMENSION VF(5,2)

PI=4 0*ATAN(1 0)

IF (IVAR EQ 1) PRNT=U

IF (IVAR EQ.2) PRNT=XG

FIND FIRST ESTIMATE OF SOLUTIONS

oNoKe!

L=0
VA=-895
VA=VA*P1/180.0
VAO=VA
VO=THETEQ(1,VA Al,A2 A3 A4.U)
VAMIN=-89 5
VAMAX=+89 §
IVA=5000
DO 10 1=2,IVA
Al=1
VA=VAMIN+(VAMAX-VAMIN)*(I-1)/(IVA-1)
C VA=AI-90.5
VA=VA*PI/180.0
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VAN=VA
VN=THETEQ(1,VA,A1,A2,A3,A4,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1
VF(L,1)=VAO
VF(L,2)=VAN

11 VO=VN
VAO=VAN
10 CONTINUE
C

C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD

C
E=1E-8
IEND=500
DO 20 J=1,L
X=(VF(J,1)*+VF(J,2))/2.0

X1=X
IXX=0
IF (IXX.EQ.0) GO TO 35

F=THETEQ(1,X,A1,A2 A3,A4 U)
FDER=THETEQ(2,X,A1,A2,A3,A4,U)
DO 30 K=1IEND
IF (FDER EQ.0.0) STOP 1001
DX=F/FDER
X1=X-DX
F=THETEQ(1,X1,A1,A2,A3, A4.U)
FDER=THETEQ(2,X1,A1,A2,A3 A4 U)
IF (F EQ.0.0) GO TO 35
A=ABS(X1-X)
IF (A-E) 35.35.40
40 X=XI
30 CONTINUE
GO TO 20
35 SOL=X1*180/P]
C WRITE (*.*) X1
JPR=10+]
WD=U*TAN(X1)
DLT=((CDZ*AREA*WD*ABS(WD))-(ZW*U*WD))/(ZD*U*U)
IF ((ABS(DLT) GT.0 4) AND (CDZ NE.0.0)) THEN
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CALL
SATUR(U,XG,CDZ,AREA,ZW,ZD,ZG,MW MD,BUO, XA, DLT,PRNT)
ELSEIF ((ABS(DLT).GT.0.4).AND.(CDZ.EQ.0.0)) THEN
CALL
SATURI(U,XG,CDZ,AREA,ZW,ZD,ZG,MW,MD,BUO, XA, DLT,PRNT)
ENDIF
IF (L EQ.1 AND IFC.EQ.0) WRITE (10,100) PRNT,SOL,DLT*180/PI
IF (L.EQ.1.AND IFC EQ.1) WRITE (16,100) PRNT,SOL,DLT*180/PI
IF(LGT.]) WRITE (JPR,100) PRNT,SOL,DLT*180/PI
20 CONTINUE
RETURN
100 FORMAT (3E15.5)
END

C
SUBROUTINE
SATUR(U,XG.CDZ,AREA.ZW,ZD,ZG,MW,MD,BUO, XA, DLT,PRNT)
REAL MW MD,PRNT
C
C USED TO COMPUTE SATURATION CONDITIONS FOR THE DIVE PLANE
WITH DRAG
C COEFFICENT INCLUDED
C
CD=CDZ
IF (DLT.GT.0.0) THEN
W 1=(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(-CD*AREA)*ZD*U*U*0.4))
& /(2*(-CD*AREA))

IF (W1.GT.0.0) THEN
A=MW*U*W1-CD*XA*AREA*WI*W1-XG*BUO+MD*U*U*0.4
B=-2.0*ZG*BUO
C=MW*U*W1-CD*XA*AREA*W1*W1+XG*BUO+MD*U*U*0.4
X1=(-B+SQRT((B1*B1)-4*(A*C)))/(2.0*A)

SOL1=2.0*ATAN(X1)
X2=(-B-SQRT((B1*B1)-4*(A*C)))/(2.0*A)
SOL2=2.0*ATAN(X2)
WRITE (21,200) PRNT,SOL1,SOL2
ENDIF
W2=(-ZW*U-SQRT((ZW*U)*(ZW*U)-4*(-CD*AREA)*ZD*U*U*0 4))
& /(2*(-CD*AREA))

IF (W2.GT.0.0) THEN
A=MW*U*W2-CD*XA*AREA*W2*W2-XG*BUO+MD*U*U*0.4
B=-2.0*ZG*BUO
C=MW*U*W2-CD*XA*AREA*W2*W2+XG*BUO+MD*U*U*0 4
X 1=(-B+SQRT((B1*B1)-4*(A*C)))/(2.0*A)
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SOL1=2.0*ATAN(X1)
X2=(-B-SQRT((B1*B1)-4*(A*C)))/(2.0*A)
SOL2=2.0*ATAN(X2)
WRITE (22,200) PRNT,SOL1.SOL2
ENDIF
W3=(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(CD*AREA)*ZD*U*U*0 4))
& /(2*(CD*AREA))

IF (W3 LT .0.0) THEN
A=MW*U*W3+CD*XA*AREA*W3*W3-XG*BUO+MD*U*U*0 4
B=-2.0*ZG*BUO
C=MW*U*W3+CD*XA*AREA*W3*W3+XG*BUO+MD*U*U*0 4
X1=(-B+SQRT((B1*B1)-4*(A*C)))/(2.0*A)

SOL1=2 0*ATAN(X1)
X2=(-B-SQRT((BI1*B1)-4*(A*C)))/(2.0*A)
SOL2=2.0*ATAN(X2)
WRITE (23,200) PRNT,SOL1,SOL2
ENDIF
W4=(-ZW*U-SQRT((ZW*U)*(ZW*U)-4*(CD* AREA)*ZD*U*U*0 4))
& /(2*(CD*AREA))

IF (W4.LT.0.0) THEN
A=MW*U*W4+CD*XA*AREA*W4*W4-XG*BUO+MD*U*U*0 4
B=-2.0*ZG*BUO
C=MW?*U*W4+CD*XA*AREA*W4*W4+XG*BUO+MD*U*U*0 4
X1=(-B+SQRT((B1*B1)-4*(A*C)))/(2.0*A)

SOL1=2 0*ATAN(X1)
X2=(-B-SQRT((B1*B1)-4*(A*C)))/(2.0*A)

SOL2=2 0*ATAN(X2)

WRITE (24,200) PRNT,SOL1,SOL2

ENDIF
ELSE
W1=(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(-CD*AREA)*ZD*U*U*
& (-0.4)))/(2*(-CD*AREA))

IF (W1.GT 0.0) THEN
A=MW*U*W1-CD*XA*AREA*W | *W |-XG*BUO+MD*U*U*(-0 4)
B=-20*ZG*BUO
C=MW*U*WI-CD*XA*AREA*W*W1+XG*BUO+MD*U*U*(-0 4)
X1=(-B+SQRT((BI*B1)-4*(A*C)))/(2 0*A)

SOL1=2 0*ATAN(X1)
X2=(-B-SQRT((B1*B1)-4*(A*C)))/(2 0*A)

SOL2=2 0*ATAN(X2)

WRITE (31,200) PRNT.SOL1.SOL2

ENDIF

W2=(-ZW*U-SQRT((ZW*U)*(ZW*U)-4*(-CD*AREA)*ZD*U* U*
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&

&

04)

&

04)

(-0.4))) /(2*(-CD*AREA))
IF (W2 LT.0.0) THEN

A=MW*U*W2-CD*XA*AREA*W2*W2-XG*BUO+MD*U*U*(-0 4)
B=-2.0*2G*BUO
C=MW*U*W2-CD*XA*AREA*W2*W2+XG*BUO+MD*U*U*(-0 4)
X1=(-B+SQRT((B1*B1)-4*(A*()))/(2.0*A)

SOL1=2.0*ATAN(X1)

X2=(-B-SQRT((B1*B1)-4*(A*()))/(2.0*A)

SOL2=2.0*ATAN(X2)

WRITE (32,200) PRNT,SOL21,SOL22

ENDIF
W3=(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(CD*AREA)*ZD*U*U*
(-0 4)))/(2*(CD*AREA))

IF (W3.LT.0.0) THEN
A=MW*U*W3+CD*XA*AREA*W3*W3-XG*BUO+MD*U*U*(-0 4)
=-2.0*2G*BUO
C=MW*U*W3+CD*XA*AREA*W3*W3+XG*BUO+MD*U*U*(-

X1=(-B+SQRT((B1*B1)-4*(A*C)))/(2 0*A)

SOL1=2.0*ATAN(X1)

X2=(-B-SQRT((BI*B1)-4*(A*C)))/(2 0*A)

SOL2=2 0*ATAN(X2)

WRITE (33,200) PRNT,SOL1,SOL2
ENDIF

W4=(-ZW*U+SQRT(ZW*U)*(ZW*U)-4*(CD*AREA)*2D*U*U*
(-0 4))/(2*(CD*AREA))

IF (W4 LT 00) THEN
A=MW*U*W4+CD*XA*AREA*W4*W4-XG*BUO+MD*U*U*(-0.4)
B=-2.0*2G*BUO
C=MW*U*W4+CD*XA*AREA*W4*W4+XG*BUO+MD*U*U*(-

X1=(-B+SQRT((B1*B1)-4*(A*C)))/(2 0*A)

SOL1=2 0*ATAN(X])

X2=(-B-SQRT((B1*B1)-4*(A*C)))/(2 0*A)

SOL2=2 0*ATAN(X2)

WRITE (34.200) PRNT,SOL1,SOL2
ENDIF

ENDIF

200 FORMAT (BEIS§)

C

SUBROUTINE
SATURI(U,XG.CDZ AREA.ZW .ZD.ZG.MW MD BUO,XA.DLT ,PRNT)
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REAL MW MD PRNT ‘

COMPUTES DIVE PLANE SATURATION NEGLECTING DRAG o

oEeEs]

PI=4 0*ATAN(].0)
A1=MD*U*U*0.4-MW*U*U*ZD*0.4-XG*ZW*BUO
A2=-MD*U*U*0.4+MW*U*U*ZD*0.4-XG*ZW*BUO
B1=-2.0*ZG*ZW*BUO °
C1=-MW*U*U*ZD*0.4+XG*ZW*BUO+MD*U*U*ZW*0.4
C2=MW*U*U*ZD*0.4+XG*ZW*BUO-MD*U*U*ZW*0.4
XCD1=((-BI/A1)+SQRT(((B1/A1)**2)-4.0%(C1/A1)))/2.0
XCD2=((-B1/A1)-SQRT(((B1/A1)**2)-4.0%(C1/A1)))/2.0
XCD3=((-B1/A2)+SQRT(((B1/A2)**2)-4.0*(C2/A2)))/2.0 °
XCD4=((-B1/A2)-SQRT(((B1/A2)**2)-4.0*(C2/A2)))/2.0
XC1=2.0*ATAN(XCD1)*180/PI
XC2=2 0*ATAN(XCD2)*180/PI
XC3=2 0*ATAN(XCD3)*180/PI
XC4=2 0* ATAN(XCD4)*180/PI °
WRITE (20,100) PRNT,XC1.DLT*180/PI
WRITE (41,100) PRNT,XC2.DLT*180/PI
WRITE (42,100) PRNT,XC3.DLT*180/PI
WRITE (43,100) PRNT,XC4,DLT* 180/PI

100 FORMAT (3E15.5) e ©
END

]

SUBROUTINE PITSLS(IVARLL,IFC,U,XG,A1,A2,A3,A4,AS)

IT COMPUTES AND PRINTS THE PITCHFORK SOLUTION SET THETA ®
(DEG ) VERSUS U OR XG

oEaNeNe!

|

} DIMENSION VF(5.2)

| PI=4 0*ATAN(I 0)
IF (IVAR EQ 1) PRNT=U
IF (IVAR EQ 2) PRNT=XG

FIND FIRST ESTIMATE OF SOLUTIONS

oEale]

L=0

VA=-89 5

VA=VA*PI/180 0

VAO=VA
VO=PITCEQ(1.VA,A1,A2 A3 A4,A5.U)
DO 10 1=2,180
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Al=1 ‘

VA=AI-90.5 n,
VA=VA*PI/180.0 °
VAN=VA
VN=PITCEQ(1,VA,A1,A2, A3,A4,A5,U) ¥
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1 ®
VF(L,1)=VAO
VF(L.2)=VAN
11 VO=VN
VAO=VAN
10 CONTINUE P
C
C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD
C
E=1E-5
IEND=500 °
DO 20 J=1L
X=(VF(J,1)+VF(J,2))/2.0
F=PITCEQ(1,X,A1,A2,A3,A4,A5U)

X1=X
IXX=0
IF (IXX EQ.0) GO TO 35

FDER=PITCEQ(2,X,A1,A2,A3,A4,A5 U)
DO 30 K=1,IEND
IF (FDER EQ.0.0) STOP 1001
DX=F/FDER
X1=X-DX
F=PITCEQ(1,X1,A1,A2,A3,A4,A5,U)
FDER=PITCEQ(2,X1,A1,A2,A3,A4,A5,U)
IF (F.EQ.0.0) GO TO 35
A=ABS(X1-X)
IF (A-E) 35,35.40
40 X=XI
30 CONTINUE
GO TO 20 L
35 SOL=X1*180.0/PI
JPR=10+)
IF (L.EQ.1.AND IFC .EQ.0) WRITE (10,100) PRNT,SOL
IF (L.EQ.1.AND IFC.EQ.1) WRITE (16,100) PRNT,SOL
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IF (LGT.1) WRITE (JPR,100) PRNT,SOL
20 CONTINUE
RETURN
100 FORMAT (2E15.5)
END
C

SUBROUTINE SIMSLS(IVARL.IFC,U . XG,Al,A3,A4)
C
C IT COMPUTES AND PRINTS THE SIMPLE PITCHFORK SOLUTION SET
THETA
C (DEG.) VERSUS U OR XG
C
DIMENSION VF(5,2)
PI=4 0*ATAN(1.0)
IF (IVAR.EQ.1) PRNT=U
IF (IVAR EQ.2) PRNT=XG

FIND FIRST ESTIMATE OF SOLUTIONS

oNoNe!

L=0
VA=-89.5
VA=VA*PI/180.0
VAO=VA
VO=SIMPEQ(1,VA ,Al1,A3,A4,U)
DO 10 1=2,180
Al=l
VA=AI-90.5
VA=VA*PI/180.0
VAN=VA
VN=SIMPEQ(1,VA,A1,A3,A4,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1
VF(L,1)=VAO
VF(L.2)=VAN
11 VO=VN
VAO=VAN
10 CONTINUE
C
C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD
C .
E=1.E-5
IEND=500
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C

C
C

DO 20 J=1.L
X=(VF(J,1)+VF(J,2))/2.0

X1=X
IXX=0
IF (IXX.EQ.0) GO TO 35

F=SIMPEQ(],X,A1,A3,A4,U)
FDER=SIMPEQ(2,X,A1,A3,A4,U)
DO 30 K=1,[END
IF (FDER EQ 0.0) STOP 1001
DX=F/FDER
X1=X-DX
F=SIMPEQ(1,X1,A1,A3,A4.U)
FDER=SIMPEQ(2.X1.A1,A3,A4,U)
IF (F.EQ.0.0) GO TO 35
A=ABS(X1-X)
IF (A-E) 35.35.40
40 X=Xl
30 CONTINUE
GO TO 20
35 SOL=X1*180 0/PI
JPR=10+]
IF (L.EQ 1.AND.IFC EQ.0) WRITE (10,100) PRNT,SOL
IF (L EQ 1 AND IFC EQ.1) WRITE (16,100) PRNT,SOL
IF(LGT 1) WRITE (JPR,100) PRNT,SOL
20 CONTINUE
RETURN
100 FORMAT (2E15 5)
END

SUBROUTINE EXNUMS(NUM, A1,A2,A3,A4,U)

IT COMPUTES THE NUMBER OF SOLUTIONS OF THE EXACT SOLUTION

SET

C

PI=4 0*ATAN(1 0)
L=0
VA=-895
VA=VA*Pl/180 0
VO=THETEQ(1,VA. A1 A2 A3, A4, U)
DO 10 1=2,180

Al=I]
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C

C
C

VA=AI-90.5
VA=AI*PI/180.0
VN=THETEQ(!.VA,A1,A2,A3,A4,U)
VP=VO*VN
IF (VP.GE.0.0) GOTO 11
L=L+1
11 VO=VN
10 CONTINUE
=L
RETURN
END

SUBROUTINE PINUMS(NUM,A1,A2 A3 A4,A5,U)

IT COMPUTES THE NUMBER OF SOLUTIONS OF THE PITCHFORK

SOLUTION SET

C

C----

oNoNoNe!

PI=4.0*ATAN(1.0)
L=0
VA=-89 5
VA=VA*PI/180.0
VO=PITCEQ(1,VA,A1,A2,A3,A4,A5,U)
DO 10 [=2,180
Al=I
VA=AI-90 5
VA=VA*PI/180.0
VN=PITCEQ(1,VA,A1,A2,A3,A4,A5,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1
11 VO=VN
10 CONTINUE
NUM=L
RETURN
END

SUBROUTINE SINUMS(NUM,A1,A3,A4,U)

IT COMPUTES THE NUMBER OF SOLUTIONS OF THE SIMPLE PITCHFORK
SOLUTION SET

PI=4 0*ATAN(1.0)
L=0
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VA=-89.5
VA=VA*Pl/180.0
VO=SIMPEQ(1,VA,Al,A3,A4,U)
DO 10 1=2,180
Al=1
VA=AI-90.5
VA=VA*PI/180.0
VN=SIMPEQ(1,VA,A1,A3,A4,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1
11 VO=VN
10 CONTINUE
NUM=L
RETURN
END

o

FUNCTION THETEQ(K,XA,A1,A2,A3,A4,U)

IT COMPUTES THE VALUE OF THE EXACT EQUATION FOR
THETABAR FOR A GIVEN VALUE OF THETA

K =1: COMPUTE THE VALUE OF THE FUNCTION
K =2 : COMPUTE THE VALUE OF ITS DERIVATIVE

oloNoEoNoNeNe!

SP=SIN(XA)
CP=COS(XA)
AP=ABS(SP)
TP=TAN(XA)
ATP=ABS(TP)
GO TO (10,20), K
10 THETEQ=A1*U*U*SP*CP+A2*U*U*SP* AP+A3*CP**3+A4*SP*CP**2
C 10 THETEQ=AI*U*TP+A2*U*U*TP*ATP+A3*CP+A4*SP
GO TO 50
20 THETEQ=A1*U*U*CP*CP-A1*U*U*SP*SP-3.0*A3*CP*CP*SP+A4*CP**3
&  -2.0*A4*SP*SP*CP+2.0*A2*U*U*CP*AP
50 RETURN
END

FUNCTION PITCEQ(K,XA,A1,A2 A3,A4,A5,U)

C IT COMPUTES THE VALUE OF THE PITCHFORK EQUATION FOR
C THETABAR FOR A GIVEN VALUE OF THETA
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K =1 COMPUTE THE VALUE OF THE FUNCTION
K =2 : COMPUTE THE VALUE OF ITS DERIVATIVE

oloNoNe!

TP =TAN(XA)
CP =COS(XA)
CP2=CP*CP
AP =ABS(TP)
GO TO (10,20), K
10 PITCEQ=A1*(U*TP)**3+A2*U*U*TP*AP+A3*U*TP+A4+AS*U*U*TP* TP
GO TO 50
20 PITCEQ=3.0*U*U*U*TP/CP2+2.0* A2*U*U*AP/CP2+A3*U/CP2
& +20*AS*U*U*TP/CP2

S0 RETURN
END
C
FUNCTION SIMPEQ(K,XA,A1,A3,A4,U)
C
C IT COMPUTES THE VALUE OF THE SIMPLE PITCHFORK EQUATION FOR
C THETABAR FOR A GIVEN VALUE OF THETA
C
C K=1:COMPUTE THE VALUE OF THE FUNCTION
C K=2: COMPUTE THE VALUE OF ITS DERIVATIVE
C
TP =TAN(XA)
CP =COS(XA)
CP2=CP*CP
AP =ABS(TP)
GO TO (10,20). K
10 SIMPEQ=A1*(U*TP)**3+A3*U*TP+A4
GO TO 50
20 SIMPEQ=3.0*U*U*U*TP/CP2+A3*U/CP2
50 RETURN
END
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% THIS IS PROGRAM BIFSU M. IT COMPUTES THE BIASED BIFURCATION
CUSP FOR

% DELTA SATURATED INCLUDING DRAG TERMS. IT USES THE FZERO
FUNCTION TO

% SOLVE THE EQUATIONS.

giobal W B1 U n Zw ZdIt A XA CD rho,

% ESTABLISH GEOMETRIC PARAMETERS
W=1556.2363,B1=1.0001*W,
A=19.8473,XA=0.20126;

CD=03;

Iy=561.32;

g=322;

m=W/g,

rho=1.94,

L=13 9792,

xb=0;

Alphas=1,
Alphab=0,
zg=01,
zb=0,
2gb=zg-zb,

% NON-DIMENSIONING FACTORS
nd1=.5*rho*L"2,
nd2= 5*rho*L"3,
nd3=5*rho*L"4,
nd4= 5*rho*L"S;

% HYDRODYNAMIC COEFFICIENTS

Zqdnd=-6 33e-4. Zwdnd=-1 4529¢-2.Zqnd=7 545e-3,Zwnd=-1 391e-2,
Zds=-5 603e-3.Zdb=0 5*(-5 603e-3).Zdltnd=(Alphas*Zds+Alphab*Zdb).
Mgqdnd=-8 8e-4. Mwdnd=-5.61e-4 Mqnd=-3 702e-3;Mwnd=1 0324e-2,
Mds=-0 002409 Mdb=0 5*(0 002409) Mdlitnd=(Alphas*Mds+Alphab*Mdb),

Zqd=nd3*Zqdnd.Zwd=nd2*Zwdnd.Zq=nd2*Zqnd.Zw=nd | *Zwnd.
Zdit=nd1*Zdltnd.

Mqd=nd4*Mqdnd Mwd=nd3*Mwdnd Mq=nd3*Mqnd Mw=nd2*Mwnd,
Mdit=nd2*Mditnd,
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% ESTABLISH SPEED RANGE
U=9.001:2.6;
for n=1:length(U),

% SOLVES FORCE EQUATION USING FZERO FUNCTION
th(n)=fzero('satur’ (-ZditV/Zw),0.00001),

% COMPUTES RELATIONSHIP BETWEEN U AND Xgb WITH RESULTS FROM
ABOVE EQUATION
xg(n)=(Mw*U(n)"2*tan(th(n))-zg*W*sin(th(n))-(0.5)*rho*CD*A*XA*U(n)"2*...
tan(th(n))*abs(tan(th(n)))+Mdit*U(n)"2*(0.4))/(W*cos(th(n)));

end,

XgbL=xg/13.9792,

Lp=sqrt(U ~2/(3.22)),

for n=1length(U),

thl(n)=fzero('saturl’,(-ZdIt/Zw),0.00001),
xg1(n)=(Mw*U(n)"2*tan(th1(n))-zg*W*sin(th1(n))-(0.5)*rho*CD*A*..
XA*U(n)*2*tan(th1(n))*abs(tan(th1(n)))+Mdit*U(n)*2*(-0.4))/(W*cos(th1(n))),
end,

XgbL1=xgl/13 9792,

% THIS IS PROGRAM SATUR M. IT ESTABLISHES THE FUNCTION TO BE
SOLVED IN
% THE BIFSUM PROGRAM.

function y=satur(th),
y=Zw*U(n)"2*tan(th)+(W-B1)*cos(th)+Zdit*U(n)"2*(0.4). .
-(0 5)*rho*CD*A*U(n)"2*tan(th)*abs(tan(th)),

% THIS IS PROGRAM SATURI M. IT ESTABLISHES THE FUNCTION TO BE
SOLVED IN
% THE BIFSUM PROGRAM

function yl=saturl(thl),

yl1=Zw*U(n)"2*tan(thl)+~(W-B1)*cos(th1)+Zdlt*U(n)"2*(-0.4). .
-(0 5)*rho*CD*A*U(n)"2*tan(th1)*abs(tan(thl)).
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APPENDIX B

DTRC SUBOFF MODEL CHARACTERISTICS

DESIGN PARAMETEZRS - HULL

f Length 3etveen 2erpedizulars (LC2) (i00:3.3792
- Lengza Jveralil ~(LoA) (§231 24,2907
' Lang:1 3 :he Canter of 3uoyancy {Ll3) (&)1 9.98042
~eng: > Toreoody (a0 (%=)1 3.3323
Lang:x of Parallel Middleboay (3) | {5y T.3128
Langsh of Run (Li} (37)) 3.9«38
Diameter ) (Zyh 1.3667
Ffineness a:io 3.57%
' ltem i
f 3are B.3. - 3.4, « 3.3. - ) Tully
| Jull Sail 4 ?lanes |Ring Ying ! | ipoended
. TOL(E:") 26.692 26.33424 | 26.78279 | 26.75678 | 24.798991
LC3( e 6.39003 6.3726 §.612732 §.50889 ;. 3.31.2906
TC3( %< 0.0 -0.006712 0.9 0.2 , =3.J066693
IS(57) 83.717 §5.354 65.31¢4 83.7v7 1 37.a31
Buoyaney(lh) | 1537.6841 | 1566.5483 | 1543.3380 | 1541.7183  1556.2263
2’ 0.018078 3.318182 0.018144 | 2.018122 ! 2.013296
2. 3 *0" 0.3388637 J3.310%89 -0.12.272 -0.26.225 ! =J. 127467
27 | 0.001053 J.201059 3.301066 2.00106¢ i 2.201C84
| Item I
‘ I rully ;
! i Appended
- woL(£:?) 2+.3899
o TEE I 6.5139 |
T8 | -0.006669 !
bl |
PoIS(EY) I 67.651
! 3uoyancy (1Y) | 1556.2163 °
Y . 0.018296
1 35 1 el -0.127467 !
LI ' “
= ! 0.00108 |
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DESIGN PARAMETERS - SAIL

i 5pan (£t) ‘ 0.729
| Root Chord (£2) ’ 1.208 i
i Tip Chord (22) i L.208 |
| 7P to 3ail LZ Distanca | (£r) I 3.032
Lﬁsspcc: Ratio 0.603 I

—_ CALCULATED PARAMETER - SAIL
| ?lanfora area [ 6%y | o.3ss |

DESIGN PARAMETERS - CONTROL PLANE

| Span (ft) 0.438
1 o0t Chord (£2) 0.704
; Tip Chord £t 0.300
{ TP ro Plane T Jigtance | (fr) 13.146

AspDect Ratia Q.70
‘ Section ?rofile (NACA) 0020

CALCULATED PARAMETER - CONTROL PLANE
. 2laniscm irea [(ee®y | o0.267 |
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Nondimeas:ional ofisets and :ross seczional ateas Sar the awll.

(STATION | a3 | asay
3.9 3.30000 | 9.30000
| 0.1 0.29058 | 0.0844a
0.2 0.39396 | 0.15320
| 0.3 0.46600 | 0.2:715
| 0.4 0.32147 | 0.27296
0.3 0.56627 | 0.32066
| 0.5 0.50352 | 0.36424
t0.7 0.63514 | 0.40340
{ 1.0 0.70744 | 0.50047 |
2.0 0.84713 | 0.71763 |
3.0 0.94066 | 0.38434 |
bs.0 0.99282 | 0.98570 !
| 7.7143 | 1.00000 ! 1.00000 '
[ 10.0 1.00000 | 1.00000
| 13.1629| 1.00000 | 1.00000 |
16.0 0.97%98 | 0.952%3 !
17.0 | 0.81910 | 0.67093 |
18.0 0.55025 | 0.30278
19.Q 0.26835 | 0.07201 |
| 20.0 0.11724 | 0.01375 |
| 20.1 | 0.11263 | 0.01264 |
. 0.2 10.1007s | 0.01013 |
. 203 10.07920 | 2.20633 .
| 20.4 1 0.03178 | 0.00101
[ 20.4167 ! 0.00000 | 0.00000
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Nong_=eas.ina. $TaoillI7 ind IJnCTI. lerivacives.

Jertical 2lane

ltam
Tully
Appenaed
T !
z, | -2.013910
., ;o 2.010324
' i i
1y | =3.307543
oy . -.303702
z, -0.01+329
L -0.000561
2 -0.00C633
My | -0.200860
i i (
e [ -1..6287a
Dl -J.30%603
Mgy | =9.002409
HBorizoatal Plane
llem i )
3are 3.3, . I 8.2, » | 3.3. . | Tully
Jull Sail 4 Planes | Uung 7ing . Appended
! h t
7, -0.005943 | -0.023008 | -0.010494 | -0.305943 | -0.027834
N, -0.012798 | -0.015534 | -0.0112854 f -0.012939 | -0.013648 |
R,’ -0.00C019 | -0.0006%7 | -0.000033 i -3.200019  -0.J00%584 i
!
T 0.001311 | -0.000023 | 0.006324 ; 0.0038i1  0.005251
N -0.001597 | -0.002378 | -0.003064 ! -0.002325 . -0.0044sé !
T, -3.013278 | -0.015042 ! -0.0la711 i -0.014899  -0.016186 !
PN 0.000202 : 0.000008 | 0.0C0415 . 0.J00625 | 0.300296 -
7. 0.000060 | -0.000196 | 0.J00463 ., 0.000347  0.000398
v, -0.200676 | -0.0007:0 | -0.00074s : -2.000787  -1.000897 |
G -20.18506 | -+.081818 | -1.152048 -1l.43743  -D.se3297
! Tse' | 5 ' 3.305929
i Ve g ; -0.022%7
| fac | | -3.300C08
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