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X
ABSTRACT

4"

The ability of a submarine to maintain ordered depth, especially during periscope

depth operations at low speeds, is vital for the vessel to perform its mission and avoid

detection Modern submarines exhibit an inherent phenomenon that produces an

undesirable ship response at low speeds, commonly referred to as dive plane reversal The

physical parameters that govern this occurrence are related in this thesis to the problem of

multiple steady state solutions in the vertical plane.

Generic solution branching, in the form of pitchfork bifurcations, can occur when the

nominal level flight path loses its stability. A systematic study reveals the existence of a

critical Froude number, based on the vessel's speed and metacentric height, where this

branching occurs. Bifurcation theory techniques and numerical computations are utilized

to classify the effect that geometric parameters, trim and ballast conditions, and

hydrodynamic properties have on the existence of these multiple solutions.
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I. INTRODUCTION 4

One of the most critical functions of a submersible is accurate depth keeping at the

commanded depth. Such a function can be carried out either manually or automatically,

especially in cases where human intervention is not possible or desirable. Due to the

technological significance and numerous scientific applications of submersible vehicle

systems, design issues of appropriate depth keeping control laws have received wide

attention in the past. Such control system designs include linear and nonlinear controllers

[Refs l&2], model based compensators [Ref 3], adaptive control [Ref 4], and sliding

mode control laws [Refs. 5&6].

Response accuracy and stability are primary considerations in designing depth

keeping control law. Of paramount importance, in this area, are the robustness properties

of the particular design, i.e., its ability to maintain accuracy and stability in the presence of 0 0

incomplete sensor and environmental information, as well as actual/mathematical model

mismatch The scope of the work in this thesis is to demonstrate a potential loss of

stability that may occur when a submarine is operating at low speeds. This loss of stability

can occur regardless of the particular means used for depth control. The study is

accomplished through the use of an eigenvalue analysis, a steady state analysis and a

controllability analysis [Ref 7]. It is shown that such a loss of stability is accompanied by a

slow divergence of trajectories away from the commanded path. Solution branching

occurs in the form of generic pitchfork bifurcations [Refs. 8, 9]. A complete

characterization of the problem is given utilizing singularity techniques, which have been S

proven to be very useful in the analysis of similar problems [Refs. 10, 11, 12] The use of

10
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bifurcation theory allows the crucial vehicle parameters that govern the problem of X)

solution branching to be determined, and the develop guidelines to prevent its occurrence
Ar

Finally, a new look at the problem of dive plane reversal [Ref 13], based on solution

branching results is presented. The term dive plane reversal refers to a well-known

phenomenon in submarine operations where, ,'ring low speed depth keeping, there is a

need to reverse the direction of dive plane deflt otion in order to execute a given change in

depth Physically, this can be explained by considering the relative magnitude of the

hydrodynamic forces. At moderate and high speeds, the normal force on the submarine's

hull due to the angle of attack exceeds the normal L:ive plane force and the boat responds

to ordered dive plane angles as expected. The phenomenon of dive plane reversal occurs

at speeds below a certain critical speed in which the normal hull force is less than the

normal dive plane force and the response of the boat is reversed. [Ref 14] Vehicle

modeling in this work follows standard notation [Ref 15] and numerical results are

presented for the DARPA SUBOFF model [Ref 16] for which a set of hydrodynamic

coefficients and geometric properties is available. Special emphasis is given to identifying

the proper non-dimensional parameters in the problem, so that extension of these results

to full scale models and other designs is possible using minimal experimental and/or

analvtical results

2
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0

H. VEHICLE MODELING

A. EQUATIONS OF MOTION 0

1. Introduction

For the purpose of this problem, and the subject of the maneuvering and motion

control of the vehicle, the following assumptions are made: 0

I ) The vehicle behaves as a rigid body;

2) The earth's rotation is negligible as far as acceleration components of the

center of mass are concerned, 0

3) The primary forces that act on the vehicle have inertial, gravitational,

hydrostatic and hydrodynamic origins.

2. Coordinate Systems And Positional Definitions * *
A global navigation frame, OXYZ, as shown in Figure 2. 1, is defined with origin,

0, and a set of axes aligned with directions North, East and Down. This produces a right-

hand reference frame with unit vectors I, J, and k. Ignoring the earth's rotation rate in 0

comparison to the angular rates produced by the vessel's motion, it can be said that the J,

J. and k coordinate frame is an inertial reference frame in which Newton's Laws of

Motion will be valid As seen in Figure 2 1, a vehicle's position R , in this frame will have

the vector components, A = [XJ + YoJ + ZoK]. A standard convention that is used

in both aircraft and marine vehicle dynamics places the Y axis to the right while looking

along the X axis, and the Z axis is positive downwards Figure 2.1 also shows a vehicle

with some general attitude in the original coordinate system.

• • • •• • •



0

0

44

Y

Z R

•--__ f"•\ \

zt0

Figlure, 2-1. C~oordinate Aies Convention.
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0

Now define a body fixed frame of reference 0,, with the origin 0, located on U,

the vehicle centerline, moving and rotating with the vehicle, in which the vehicle's center

of mass, G, has some position other than the origin of the vehicle fixed frame (refer to 4

Figure 2-1) This origin will be the point about which all vehicle body force will be

computed in later sections of this chapter. The convention used for the vehicle fixed

frame, with unit vectors T, J, k, is that its origin lies at the ship's center (origin at the half

length), the x axis at main deck level, parallel to the longitudinal centerline, with the : axis

vertically down The vessel's center of gravity and center of buoyancy do not generally lie 0

at the origin of the body fixed frame, nor are they collocated. These points are denoted by

G and B respectively The vector components of 0, and P8 are thus [x7j + y] + :Gl/,

and [x T + y8j + :8k The location of the center of mass is important because •

Newton's Laws of Motion equate forces on a body to the rate of change of linear

momentum of the center of mass and moments about the body center of mass to the rate

of change of angular momentum+ This is a particularly important point to bear in mind for S 0

ship and submarine motion dynamics as the center of buoyancy is determined by the shape

of the submerged portion of the ship body while the center of gravity is determined by the

distribution of the weight over the entire ship body Having defined a coordinate system 0

that will be used to describe a ship's position, there is a need to define angular orientation

of the ship's body, leading to the definition of translational and rotational velocities and

accelerations 0

3. Angular Position In The Global Reference Frame

There are several different ways that the attitude of a vehicle can be described in

reference to the global frame The most usual and common method is to define three •

angles, called Euler angles that uniquely define the angular orientation of the vehicle

reference frame, relative to the global reference frame One problem with the Euler angle

5
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approach is that a singularity exists when one of the angles reaches 90 degrees (an aircraft

in pure vertical flight cannot distinguish its azimuth angle from its roll angle). This 0

limitation which can sometimes, although rarely, cause trouble in flight simulations and 4

control computations can be overcome by the use of quaternions which introduce four

rather than three variables to describe angular position. In this presentation, however, we 0

will use Euler angles as it is the most widely used method, although the use of quaternions

has found favor in robotics applications and computer graphics.

While any consistent definition of three base angles would be sufficient, the most 0

convenient formulation of these angles is in the widely used military terms of an azimuth,

elevation, and spin notation. The rates of change of these angles do not generally

correspond to the other commonly used angular rates describing angular velocity of a 0

vehicle, that is yaw rate, pitch rate and roll rate except. as will be seen, where motion is

limited to small angle rotations.

4. Rotational Transformations 0 -

Vehicle attitude is important in defining position. Under dynamic conditions, the

pitch or roll can cause problems for manned vessels and the heading is critical in

navigation. For the purpose of considering angular rotations, consider a forward 0

transformation from a coordinate triad aligned with the global reference frame and perform

a sequence of three rotations to finally align the result with a frame that is assumed to be

parallel to the vehicle body coordinate axes, and moving with the vehicle at all times 0

Begin by defining an azimuth rotation, Wi, as a positive rotation about the global Z axis.

Next define a subsequent rotation 0, (positive up) about the new Y axis, followed by a

positive rotation 0, about the new X axis. The triple rotational transformation in terms of 0

these three angles, is then sufficient to describe the angular orientation of the vehicle at any

time It follows that any position vector, A,, in an original reference frame given by

6
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Ro =[x0 .Yo.,o], will have different coordinates in a rotated frame when an azimuth

U)

rotation by angle W, is made about the global Z axis. 0

If the new position is defined by, 4 = [xJ,y,,:, ]', it can be seen that there is a

relation between the vector's coordinates in the new reference frame with those that it had

in the old reference frame. Using trigonometrical relationships and Figure 2.2 as a guide, it 0

follows that,

X, =X. cosW + Y. sin W (2.1)

Y, = -Xsin w + Yo cos w. (2.2) 0

This relation can be expressed in matrix form by the rotation matrix operation,

A• = [ TV, zP-?.; (2.3)

where the rotation matrix [T,.,], represents an orthogonal transformation

Premultiplication of this rotation matrix with any vector, R0, will produce the components

of the same vector in the rotated coordinate frame. Continuing with the series of rotations

results in a combined total rotation transformation,

T(qO, ,) = T(O)TO)T()T ) (2.4)

In expanded notation equation 2.4 takes the form;

[ cos W cos 0 sin W cosO -sine 1
cosWsinOsjnO-sinWcosO sin ,sinGsinO-cos ,cosO cosOsino ,

[cossin 0ncosO+sin vsinO sin1Msin0coso-cos1.Vsino cosOcos)

and it can be said that any position vector in an original reference frame may be

expressed in a rotated frame with coordinates given by the operation,

=. [',(2.5)

7
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5. Kinematics NJ

Kinematics deals with the relationships of motion quantities regardless of the

forces induced by their prescribed motions Descriptions of a ship's positiQn both

translational and rotational, will need to be related to velocities, both translational and

rotational, prior to extending the situation to accelerations. The connection between

translational velocity and the rate of change of translational position is straight forward.

Define the global velocity as,

R =[] (26)

This vector will have components that are different when seen in a body fixed frame.

Define the body fixed components of the global velocity vector as [u, v, w]'. These

components, in terms of the above global quantities are given by the forward

transformation defined earlier to be,

[ T(,.. { (2.7) 0

It is a simple reverse coordinate transformation from body fixed to global coordinates to

see that, 0

[ -YO1 0, {W (2 8)

This shows that the progression of a vehicle in a global frame clearly depends on its local

velocity components and its attitude. Put simply, u corresponding to a vehicle's forward

9
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0

speed (surge), v corresponding to a side slip velocity (sway), and w corresponding to any

velocity component in the local Z direction (heave) and the vehicle's global velocity 0

components depend on heading, pitch, and roll attitude.

The connection between angular attitude and angular velocity is not quite so

apparent At first sight, it is tempting to define the instantaneous angular velocity of the 0

vehicle simply as the rate of change of its angular position defined by the Euler angles

This is erroneous however, because the rotation 0, was defined as a rotation about the

intermediate frame after a rotation V had been made Vehicle inertial angular rates are 0

defined in terms of components that have angular velocities about the global axes It is

necessary to relate both Euler angles and their rates of change to angular velocity

components about the global axes to their components lying along the body fixed axes in •

any attitude The prime reason for this is that it is difficult to construct physical sensors to

measure rates of change of Euler angles However, rate gyros in common use today are

easily constructed to measure the components of the inertial angular velocity of a vehicle * *
that lie along the vehicle's body axes It follows that the instantaneous angular velocity of

the vehicle can be related to the instantaneous rate of change of angular orientation only

after considerations of the intermediate transformations used In other words, if cx is 0

defined as the angular attitude vector, x = [14.0.0], and the inertial components of the

vehicle angular rate lying along the body axes as co = [pqr]. then, &z = f(w) The details

of the nonlinear functional relations involved are provided by viewing the rate of change of •

the rotation W as a vector quantity lying along the original Z axis The rate of change of

the angle 0 is viewed as a vector quantity lying along the Y axis of the first intermediate

frame, and the rate of change of the angle 0 is viewed as a vector lying along the X axis of 0

the final (body fixed) frame Each of these component rates of change of angular position

has component parts that project onto the final frame and it is the sum total of all the

10
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components that give the total angular velocity as seen in the final frame of reference

Using the required transformations for the rate components from each Euler angle, we get, 0

4'

= . T(O)T(O)T(w 01 + T(O)T(0{01 + T(O{ 0 (29)

with the result,

[P1 -ijsin0 +ý
q~J *4sif0+6coso J (2.10)

r .coscoso-6sino

Inverting equation 2. 10 yields a solution for the rates of change of the Euler angles in

terms of the body fixed components of the angular velocity vector,

p +q snOano+r cosOtano1

6qcoso-rsino (2 11)0 0
eJ L (qsinO+rcosO) cosO ]

Notice that for small angular rotations, as expected,

0-q;

At this point the kinematic relationships between velocities, as seen in the body fixed

frame, and the rates of change of global positions and Euler angles have been defined. The

resulting set of differential equations forms a consistent set in that given a set of vehicle

velocity data versus time, its position and attitude may be computed

IIS
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6. Translational Equations Of Motion

The global acceleration of the center of mass is derived by differentiating the 0

velocity vector, Rk, taking into account that the center of mass lies in a rotating reference

frame Considering the total differentiation, the global acceleration of the center of mass

becomes, .

S=V+&XG+caxaxpo +Gxi, (2 12)

where V = R. The translational equation of motion is found by equating this acceleration

to the net sum of all forces acting on the vehicle in three degrees of freedom (X,Y,Z) One 0

important factor to recognize is that the equation of motion derived in this manner is a

vector equation with the components expressed in the body fixed frame and unit vectors

i, ] and A This has been deliberately done because the dominant forces acting on a 0

submerged body in motion are developed in relation to the shape of the vehicle and are

more conveniently expressed in relation to the body axes. Equating the applied force

vector to the acceleratioi, results in, 0 0

M = { PG +(A xWo x Pd- (2.13)

The applied force vector is composed of gravitational (weight) and hydrostatic (buoyancy)

forces together with any hydrodynamic forces arising from relative motion between the •

vehicle and the ocean water particles These will be discussed in further detail in following

sections

7. Rotational Equations Of Motion

To develop the rotational equations of motion, the sum of applied moments

about the vehicle's center of mass is equated to the rate of change of angular momentum of

the vehicle about its center of mass. This equating will provide the necessary equations of

motion for the remaining three degrees of freedom. In the practical case of marine

vehicles, however, the statement just made is modified slightly because it is much more

12
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difficult to assess the vehicle's mass moments of inertia about its center of gravity (CG)

As the CG changes with loading; it becomes simpler to evaluate the mass moments of

inertia about the body fixed frame which lies along the axes of symmetry of the vehicle in

most cases. The mass moments of inertia for the vehicle to be computed are,

1. IX .
I•, . -(.1 14)

0
The angular momentum of the body is thus,

Hýo = ICo, (2.15)

resulting in the total applied moments about the origin given by,

oHo+ PGx(mR) ) (216)

Since the rate of change of angular momentum is given by,

jo = IAG +4Cox H, (2.17)

and the acceleration of the global position vector is given by,

ko= V+CoxV, (2 18)

then the rotational equation of motion in vector terms is given by,

Mo =lo+X(loio)++ x X + P XCoX} (2.19)

The applied moments about the body fixed frame arise from a static balance of

weight and buoyancy effects to achieve the proper trim and heel, and hydrodynamic

moments from the forces applied through appendages such as control fins, hydrodynamic

effects from waves, and hydrodynamic effects from relative motion between the vehicle

and the water.

At this point, there are three translational equations obtained from equation

2113, three rotational equations obtained from equation 2. 19, and six unknown velocities

(6) and V) In itself this is aconsistent set of dynamic equations if the weight and buoyancy

13
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terms are always self canceling. However, with weight and buoyancy being applied in a X)

global vertical direction, and also being applied at different locations, they represent forces 0

that are dependent on the attitude of the vehicle. Notice that without weight and buoyancy

forces, the six consistent equations expressed in the body fixed frame of the vehicle could

be solved for the vehicle's velocity (given applied force descriptions). With weight and

buoyancy acting, we need additional equations (constraints) that will link vehicle attitude

to motion so that the combined set of equations can be solvable. The constraints to be used

are developed using the Euler angles which are a general set of angles used to define the

attitude of the rigid body From these angles a relationship between rate of change of

attitude and the body rotational rates given earlier as the angular velocity vector

C = [p.q.r], can be developed 0

8. Incorporation Of Vertical Forces Into The Equation Of Motion

The weight and buoyant forces that act at the centers of gravity and buoyancy

must be defined from static analyses For submerged bodies the weight and buoyancy force * *
vectors do not change with vehicle attitude For a surface ship, B will change with

attitude, and the righting moments must be computed from Naval Architectural

considerations. Assuming that weight and buoyancy are fixed in relation to the body fixed 0

frame, W = 01 + OJ + (mg)R. and B = 01 + 01 - (pV)/K Since the weight and buoyancy

terms in the applied forces act in the global vertical direction, they must be transformed

into components in the vehicle fixed frame before they can be added into the equations of 0

motion Returning to equation 2.4, we therefore find the components along the vehicle

fixed frame to be the third column of that transformation matrix. The net vertical force

components become, 0

14
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[ -snO 1 4
fs = (W - B) cos•mn/ (2.20)

kcosecosol

The weight portion of the vertical force acts at the center of gravity of the vehicle, The

buoyancy portion of the vertical force acts at the center of buoyancy. Because these forces

act at positions away from the body center they exhibit a moment about the body center

given by,

[-sino 1 [-sine 1
Wp= Gx case sino I-Bo,,x cos 0sin ~ (2.21)

Lcosecosoq [cosecoso]

This moment will not be zero even if W and B are identical because it is not usually the

case that 0, and 0, are collocated. For static stability it is advisable to locate the center of

gravity below the center of buoyancy The total vertical force vector can be written as,

F [f] (222)

and is added negatively to the left hand side of the equations of motion

9. Development Of The Full Six Degrees Of Freedom Non-Linear Equations

Of Motion For A Marine Vehicle

Define a vector . of vehicle body frame velocities to be, F = [uv,,w pq.r].'

and a vector ! of global positions to be 5 = [XY.ZOO,/., then considering M as a

6 x 6 mass matrix including translational and rotational inertial elements, the equations of

motion can be written in the following vector form,

A + f x) + Fz) F •(2 23)

and,

Z + g(x,:) = 0 (224)
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Therefore with suitable knowledge of the excitation force and moment loads,

F,, as a function of time and/or vessel motion, a solution for the vehicle's dynamics can be

obtained A more detailed insight into the development of the twelve differential equations, A'

in first order form given by the foregoing analysis shows,

XS

m(j+ G(J +m(COxCA)o+Cxý)+f+(:)=[Yr1 (2 25)Z,

and,

l,,I+m -pfR' xi7+Cx(lfo)+m(rx0  xvl+cns(z)= M, (226) 0
N,

It helps here to define the cross product coefficient matrix so that,

w• x p•, = -p5, x Co= -/crols(,•)• ((227) * *
where,

/cros(P.G)] 0= - 0 G (2 28) S

Now collecting the mass matrix coefficients into a 6 x 6 matrix including the inertia cross

coupling effects, results in the following equation, S
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0

M 0 0 0 z (•Yxx1'
0OMO0 -:G 0 X,

LO 0 = m x ) -X, 0 x (2.29)

The remaining terms on the left hand side of the equations of motion arising from the

centripetal and coriolis accelerations become,

)f(X) =- (OXOO [mi ~ +Cox iu (2.30)

The double vector cross products are nonlinear in the primary velocity variables and hence

the need for the nonlinear functional, f(e) The reader can perform the indicated

manipulations to express individual equations within the set if so desired. * 0

The components of the hydrodynamic and external forces and moments acting

on the vehicle body are separated in the above analysis into six components each acting

along the vehicle body fixed coordinate axes and form the total vector of forces and 0

moments as,

,(t ) =[X,(t), Y (1 ), Zf (1 ), Kf (t ). Mf(1), N (t )l, (2.31)

where the vector components in order refer to the surge, sway, heave forces, and the roll,

pitch, and yaw moments respectively.

The long form of the six degrees of freedom equations of motion can be written

as follows,

m[u - vr + i.q - x0(q: + r:)+ v,0 (pq -)+- 0 (pr+q)] (
-(W - B)snO + X(

17
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m[v+ur-wp+ xr(pq+r)-. 0 (p +r:)+z0 (qr -p)+ = (2
(W B~ossi0Yf(p +r: z, qr-(2.33) 0

(W - B)cos~stn*J + Y

m[wi - uq + vp+ xG(pr -)+ yG(qr + )-: 0 (p +q')] =(2.34)

(W - B)cos8cos0 + Zr

I.p + (1, - I,)qr + l,. ( pr -q) - l,(q -r: ) -l(pq+i)+

m[;,0 (w,-uq+vp)-:0 G(v+ur-wp)]=(yYoW-y8 B)cos0cos (2.35)

-(.GW - .GB)cosOsin0 + Kf

1.,4 + (Ix -1 ,)pr - l,(qr + P) + I•(pq - i) + l.(p- - r:) -

m[xG•(,- uq + vp) - z( -vr +wq)J = -(xW-xB)cos~cos0 (2.36)

-( zGW - zBB) sinO + 0

1/" + (ly - l.)pq - I.Y(p2 - q' ') - 1,,(pr + 4l) + I.,(qr -,b) +

m[ xG(v, + ur - wp) - y,(0u - vr + wp)] = (x 0 W- xB) cosO sin (2.37)
+(yW-y 8 B)sin 0+ Nf

while the kinematic relations for the vehicle rate of change of attitude and motion over the

ocean bottom require equations 2 11 and 2.8.

10. Adaptation Of The Non-Linear Equations Of Motion To The Vertical

Plane

Restricting the motions of the vehicle to the vertical (dive) plane, the only

significant motions that must be incorporated to effectively model the vehicle in the dive

plane are, the surge velocity (u), the heave velocity (w), the pitch velocity (q), the pitch

angle (0) and the global depth positio1a (Z). This restriction simplifies the twelve

previously developed equations to a system of four non-linear equations of motion, which

are;

m(wý - uq - -,Gq: - x.4) = Zf (2.38)

18
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IY4 + mz.wq - mx 0 (vw - uq) =M (2.39)

O=q (2.40)

Z= -usin0 + wcosO (241)

where,

zf = Zq4 + z.V'+ Z, uq + Z.uW,-

"-21P "Cb(x) (1w - xq I dx+(W- B)cosO+u2(Z 3 + (242)

and,

M = M.I+M.wv+M uq+M uw 0f q %, q %,

RpOCb(x) N (- xq) xdx (2.43)
tad

-(X GW -X B B)cosO-( ZGW - zB B)sinO+ u2
'( M8, + M 6,b)

results from expanding the Zf and the Mf terms from (2.31) in a first order Taylor series

expansion and incorporating both hydrostatic and fluid drag forces. 0

Equations 2.38, 2.39, 2.40 and 2.41 can be linearized for a level flight path when

the dive plane angle is zero, i.e 5o = 0. By setting all time derivatives to zero, and

neglecting for the moment the hydrodynamic drag terms the following are obtained, 0

Z uw + (W- B)cosO = 0 (244)

M uw - (xGW- x8B)cosO - (:.,W- -:B)stnO = 0 (2 45)

q=0 (246)

-usin@ + Wcos -0 (247)
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If the assumption is made that the vehicle is neutrally buoyant, then it can be said that

xr = x8 and W = B. From this equations 2.44 and 2.45 can be reduced to, S

Z,,uw = 0 (2.48)

M uw - (:z - :B)BsinO = 0, (2.49)

which yield the nominal position wo = qo = 0 and sin 0 = 0, resulting in the 0o solution as 0

either 0o = 0 or 0o = it. Choosing to linearize around the nominal point 0o =0 results in,

q- = 2qoq = 0 (2.50)

wq = woq+qow = 0 (2.51) 0

sine = cosO6o = 0 (2.52)

wcosO =(-wo smO)O + (cosOo)w = w. (2.53)

The linear equations of motion are then written as;

(m - Z,.* - (Zq + mx,,)4 = Zuw + (Zq + m)uq + Zbu 8 (2.54)

(I, -Mq, -(M,. +mxG)wf = M.uw+(Mq -mx 0)uq-(:, -z:)K+ Mu28 (2.55)

6=q (2.56) 0

S= -u6+w. (2.57)

As equations 2.42 and 2.43 show, both Z8 and M8 are a linear combination of

the respective stern and bow hydrodynamic control surface coefficients and the respective

input value of 8. This makes the system of equations as a multiple input system. To

reduce this system into a single input system the linear combination of control inputs will

be modified into the following form; -

Z= (Z6 +cXZ6 ) (2.58)
s s

This will allow a single input 8 to control both stern planes and bow planes, and will

cause the bow planes to be slaved to the stern planes. This technique is known as dual

control The value (X will range from -I to I The selection of the value of U will allow

the planes to operate as desired for the particular maneuvering condition, i.e., a = 0 for no
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bow plane control, x = -1 for bow plane and stern plane control opposed to each other,

yielding the maximum pitch moment, and (x = I for bow and stern plane control in the 0

same direction, yielding the maximum heave force.

In state space form these equations can be written as;

[0 0 1 0jO [a],
i _ aI3 GB allu a1,u 0 w + u2

a:3 GB a, 1u a,.u 0 q b~ u , (2.59)

"LJ Ll 1 0 ojzJ [ 0J
where the coefficients a, and b, are given by;

D,, = (m - Z.)(Iy - Mq) -(mxG + Z)(mxG + M.) (2.60)

a,,D = (I:.- Mq)Z. +(mxG+ Zq)M. (2.61)

a, D, = (Iy - Mq)(m+ Zq)+(mxo + Zq)(Mq -rmx) (2.62)

alAD = -(mxG + Zq)W (263) * 0
bjD, =(Iy-Mq)Z8 + (MxG + Zq)M6 (2.64)

a-.,D, = (m-Z.)M. + (mx + M.)Z. (265)

a:D,.= (M - Z.)(Mq -mXo) + (mxG + Mw)(m + Zq) (2.66)

a,,,Dý = -(m - Z.)W (2 67)

bzD, = (m- Z.)M8 + (mx + M.)Z8 (2,68)

and z=, - -B is the metacentric height.

This linear system of equations becomes the basis for the control law design in

the following section.

B. CONTROL LAW DESIGN 0

1. Introduction

The control design problem can be stated as follows: Given the system,
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00

x=Ax + Bs, (2.69) 3)

where the state vector equation is, 0

X (2.70)

how do we find 5, such that the system will behave as desired. The type of control that is

of interest in this problem is closed loop control where 8 is a function of the state x

Since the state x is used to determine the control effort 8(x) it is called feedback control.

2. Pole Placement

A linear full state feedback control law is introduced in the form

8 = -Kx, (2.71)

where K is the feedback gain vector to be determined such that the closed loop system of

equations 2.69 and 2.71 has the desired system dynamics. Substituting equation 2.71 into

equation 2 69 yields,

r = (A -BK)x. (2.72)

The actual characteristic equation of this closed loop system is given by

det[ A- BK- sl] = O. (2.73)

The gain vector K can be chosen such that the actual characteristic equation assumes any

desired set of eigenvalues. If the desired locations of the closed loop poles are chosen at

s = s for i= 1, ,n, the desired characteristic equation becomes

(S - s')(s - S') ... (S- S) = 0 (274)

The required values of K are obtained by matching coefficients in the two polynomials of

the actual and desired characteristic equations

22

• • • •• • •0

*nl ml ll ll I[ 0 nm n mu 0 -



Consider the previously developed linear state matrix equation 2 59

Substituting equation 2.71 into equation 2.59 results in the closed loop system 0

0 0 1 0o
a13"G H -bu'ki a,,u-bu -k" a1,u- 4b u -k3  -blu -k w (2 ,75)
a[3-Bj -[b-u kt a-,u-bzu k: a,,u-bzu k 3 -b.u 2 k, q

-u 1 0 0 1

The characteristic equation of the closed loop system is given by

-s 0 1 0

la3- -blukI a,, u - bu~k.-s a ,u - b~uk, -b~uk,
det•3-buk aI u-b, u 2k, au-buk -s -buk =, (276)la - - s a,4

-u 1 0 -s

which after some algebra reduces to

s4 +(A~k. + A k3 - E)s 3+(-B~k,-B k-B, k3 -B~ k 4-E,)s (7)3 k,-B~, - ~k,- Ez)sý(2 77)
+(-C,k, - Ck.. - C4k, - E,)s+ (-DOk, - D k,) = 0

where.

A. = -B. = bu: (2 78)

A3 = -B, = b.u (279)

B:ý = (a-. 2b, - a, :b.- )U3 (2.80)

B3 = C, = a,,k: -a:,, ,)u' (2 81)

,= =(a.,b, -a alb.)GBu: (282)

C, = (a,,b, + b, - a ,:b.,)u' (2.83)

D, = (a,,b, - ab, )Vu (2.84)

E, = (a,, +a-,)u (285)

E. = a,3:o, + (ala-a, -a, a,- a)U (2.86)
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E3 - (a, -a, a,3 ), 8zeB (2 87) u)

Now if the closed loop poles are placed at -p, -p.2, -p 3, and -p,, then the

desired characteristic equation is, it

(s+ p)(s + p: )(s + p 3 )(s + pI) = 0, (288)

or 0

s4 +0 as3 +a.:s: +a's+ 0, = 0 (289)

with,

a, = p + p + p3 + P 4  (2.90)

a. = PIP + PPA + PPA + P3 + PAP, + P3P4  (2-91)

a = P,,P 3 + PAP.P4 + PAP P 4 + PAP 3P4  (2.92)

0.4 = PP:P3P (2.93) 0

The control gains can now be computed by equating coefficients of the actual and desired

characteristic equations.

A~k, + A3k 3 = -a• - E, (2.94) *
B,k, + B~k. + B3k + =Ba, + E, (2.95)

C,k, + Czk +C4k, =a,+ E3  (2.96)

(D1 + A)k 4 = a4 (2.97) 0

Now that a method for computing the gains of a controllable single input system

that will place the poles at any desired location has been developed, the selection of pole

location must be accomplished.

3. Pole Location Selection

In a typical second order system control law design the transient response

specifications will be given This results in an allowable region in the s-plane where the •

desired location of the poles can be obtained For higher order systems the concept of

dominant roots can be employed In selecting poles for a physical system it is necessary to
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look at the physics of the system. If the poles are specified too negative, a very small time

constant for the control system will result, and the physical system may not be able to •

react that fast The control law u = -Kr, implies that for a given state x the larger the

gain, the larger the required control input In practice there are limits typically placed on u

(actuator size and saturation) Occasional control saturation is not serious and may even

be desired A system that never saturates is in all likelihood over designed.

Considering the control law design to stabilize the submarine to a level flight

path at 0 = 0 it will be required that the submarine return to level flight, after a small

disturbance in 0 or Z, within the time it takes for the vehicle to travel three ship lengths

Since the submarine is about 14 feet long and it travels at 5 ftlsec, the required recovery

time is about 10 seconds. This means that the time constant is about 3 seconds, and the 0

closed loop poles should be placed at approximately -0. 3.

Control design using pole placement is very easy using MATLAB The

appropriate MA TLAB command is place, which accepts as inputs the A and B matrices * 0

along with a vector of the desired closed loop poles, and returns the gain vector K. Using

equation 2 59 with a nominal speed of 5 ft/sec and the vector

p = [-0. 3 - 0.31 - 0.32 - 0.33], (place does not like poles in the exact same location), 0

the gain vector K was calculated using MA TLAB and by simultaneously solving equations

2 94 through 2 97 yielding the same results Substituting the gain vector and state variable

vector into equation 2.71 results in a control law of 0

8 = -(-0.99170-0.8333w- 0.6026q + 0.035 IZ). (298)

Using this control law along with equations 2.38 through 2.43 a simulation

program was developed to investigate the vehicle's response to initial disturbances, the

results.of which will be presented in the following chapter.
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0

m. PROBLEM IDENTIFICATION 0

4r

A. VEHICLE SIMULATIONS 0

With the control law developed and the vertical plane equations of motion defined, a

vehicle simulation program was developed (see Appendix A). This program was used to

simulate the vehicle's response at a variety of speeds and initial disturbances The

simulations were conducted with several simplifications applied to the vertical plane

equations of motion (E.OM), equations 2.38 through 2.43 The simplifications or

constraints applied to the E.O.M. were , 0

1 ) to consider the body drag forces negligible,

2) to consider the vehicle to be neutrally buoyant, i e, (W=B),

3) to assume that the locations of the center of gravity and center of buoyancy, * *
in the X-Y plane, are coincidental, and

4) that the rudder is restricted to ± 23 degrees.

These assumption resulted in the reduction of equations 2.38 through 2.43 to the

following system of equations;

S(M - Z.) -Zq m(uq + zq2 ) + Zuq + Z.uw + u1Z8
-M. I 2 -Mq 0 1[ =m(-:0 wq) + Mquq + M.uw - BZ.B sin0 + u2 M6 (

0 0 1- -usin0+wcosO

forming the basis of the initial vehicle simulations.

0
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The vehicle's response to small disturbances, as stated earlier, was investigated over a
0

wide range of speeds A small sample of these simulations is shown in Figures 3-1 through

3-3

As Figure 3-1 depicts, the vehicle returns to level flight in approximately 10 seconds.

This response is as expected based on the control system design of Chapter 1I. The

simulation results represented in Figure 3-2 also show the vehicle steadying out in a level

flight at the desired depth, however the vehicle requires a significant amount of time for
0

this to occur. The reason for this extended amount of time is that the control law gains

were set for the nominal operating speed of 5 fps, and the vehicle is being simulated at

one-third of that speed. This results in a very slow return to ordered position caused by

the reduced hydrodynamic effects at this speed.

The final plot of the sample vehicle simulations, Figure 3-3, illustrates a problem with

the vehicle stability. As can be seen, the vehicle does not return to the desired position, but

instead steadies out at a pitch angle of eight degrees, with a steady state dive plane value

of 23 degrees. This same type of response, but with different pitch angle values, was

observed in all the simulations conducted below approximately 1.9 fps. These results

indicate that there is a critical point, or speed at which the vehicle stability is affected.

Determining this point will be the basis for the remainder of this chapter.

B. CRITICAL SPEED IDENTIFICATION

1. Eigenvalue Analysis

Consider the nonlinear system of state equations 3. 1, which can be written in the

form,

x=f x). (3 2)

It is known that the equilibrium points, x., of the system are defined by
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Figure 3-1. Vehicle Response For a Nominal Operating Speed of 5 fps.
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Figure 3-3. Vehicle Response at 1.885 fps.
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f (X d)= O0 (3.3) X)

This is a nonlinear system of algebraic equations and it may have multiple solutions in x.,

which means that the nonlinear system of equations may have more than one position of

static equilibrium If one equilibrium value xo, is selected, the stability properties can be

established by linearization The linearization converts equation 3.2 into the form 0

i = Ax, (3 4)

where A is the Jacobian matrix off(x) evaluated at the equilibrium point xo,

.4 =- 1ao" (35)
a3x

and the state x has been redefined to designate small deviations from the equilibrium xo,

x -.- x - x'. (3 6)

As long as all eigenvalues of A have negative real parts, the linear system will be stable

This means that the equilibrium x, will be stable for the nonlinear system as well. This

statement is nothing more than Lyapunov's linearization technique.

The question that must be answered is, what happens if one real eigenvalue of

the linearized A matrix is zero? The interesting case here is when the rest of the

eigenvalues have all negative real parts, otherwise x, is unstable and the problem is solved

If the case of a zero eigenvalue appears too specialized to be of any practical use, consider

this Assume that f(x) depends on one physical paramettr and that physical parameter is

allowed to vary over some range Then clearly A will depend on that parameter and as the

parameter varies, it is possible that one real eigenvalue of A will become zero for a specific

value of the parameter The problem is then to establish the dynamics of the nonlinear

system as one real eigenvalue of A crosses zero, ie, goes from negative to positive As

the solution evolves in time, things are interesting only along the direction of the

eigenvector that corresponds to the critical eigenvalue Along the rest of the directions in
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the state space, everything should converge back to the equilibrium, remember it was
X)

assumed that all remaining eigenvalues of A have real negative parts. Although, strictly 0

speaking, this is a true statement for linear systems, there are technical reasons that force it 4

to be true for nonlinear systems as well, the only difference is that the corresponding

directions in the state space are curved instead of straight. 0

By taking the previously developed characteristic equation 2.77, and

remembering that the roots of this equation are the eigenvalues of interest, it is easy to see

that if x4 of equation 2.93, is set equal to zero, then one eigenvalue will be zero. If this is 0

done, and recalling that k4.holds a non-zero value, equation 2.97 reduces to

(a, 1 b -1 a,b,)u 2 + zGB (al 3b - al ) = O. (3.7)

Since all parameters of equation 3.7 have a fixed value with the exception of u, there must 0

be some value of u that causes the linear A matrix to become unstable. Recognizing this

fact will allow equation 3.7 to be solved in terms of u yielding

FI 11 0 0
U z.,(a,3b, -a, 3b, ) (3.8)

Using equations 2.60 through 2.68, equation 3.8 can be simplified into the following form,

0
U GBZ6B (3.9)
-= (MZ4-ZM (39)

Substituting the appropriate values from Appendix B, equation 3.9 can be solved for the
0

value of u that causes the systems to become unstable. This results in a value ofu =

1. 8979 fps using an ax = 0. This value corresponds very closely to the value of 1 9 fps

obtained by vehicle simulations.
0

0
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As a check to this solution, a MATLAB program was written to compute the U

closed loop eigenvalues of the matrix equation 2.59 as a function of the speed u
4,

Figure 3-4 shows a plot of the real parts of the eigenvalues versus speed It can be seen

that the real part of the eigenvalue, represented by the dash-dot line, becomes positive at

speeds less than approximately 1.9 fps supporting the earlier findings (For clarity

purposes, the values of the eigenvalue represented by the dash-dot line were scaled by a

factor often)

2. Steady State Analysis

To determine the existence of multiple steady state solutions, for the system

represented by equation 2.59, it is necessary to perform a steady state analysis on the

system of equations which models the vehicle dynamics Using matrix equation 3 1, and

setting all time derivatives equal to zero, results in the following set of equations,

q = 0, (3 10)

Zquq + Zuw + u:Z.8 = m(-uq -:q), (3 11)

Muq + Msuw - B.-, sinO + u&M6.8 = m.:0 wq, (3 12)

-usinO + wcosO = 0 (3,13)

Simplifying these four equations yields the following two equations in terms of 0, u, and

the physical parameters of the vehicle,

Z.u:' anO+u-Z.6 = 0 (3 14)

M u: tanO- B:0 8 sinO+ uM 6.8 = 0 (3 15)

Now if equation 3 14 is multiplied by M., equation 3 15 is multiplied by Z. and the two

resulting equations are set equal to each other and simplified, the following single equation

is obtained,

(Z. M6 - M. Z. )u- + Z6B:Gc cos ] seinn = 0 (3 16)
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Real Pan of Eigenvalues vs. Speed
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0.1 •

ao- 0.050

0 7rZ .
x for critical speed

-0.05

(0

-0.1w

-0.15-- -".....................................

-0.'7"1.8 1.82 1.84 1.86 1.88 1.9 1.92
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Figure 3-4. Real Part of Closed Loop System Eigenvalues as a Function of Speed.
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Through inspection it can be seen that equation 3.16 could have multiple

solutions in 0, besides the trivial solution of 0 = 0 So, if this equation is rearranged and 0

solved for 0 * 0, solutions occur when

cosO= u:(M.Z8-ZM 8 ) (3 17)CO=U Z•Bz,, (317

Therefore, the steady state value of 0 is represented by

o0 =COs . I (3.18)

which may have multiple solutions based on the value of the speed u, As discussed

previously, these multiple solutions were evident in the simulations conducted earlier in

this chapter .

Knowing that the maximum value for cosO is equal to one, the right-hand side

of equation 3.17 will be true for values less than or equal to one. If this constraint is

imposed on 3 17, then the equation may be manipulated into the following form 0

u2 < ZsB--GB .(19
(MU Z6-Z. (3 19)

Rearranging this equation and solving for the upper limiting case yields the same results as 0

equation 3.9. Again this supports the critical speed values discussed earlier.

Equation 3 19 can be expressed in a non-dimensional Froude number form by

dividing the equation by both the gravitational constant g and the physical parameter ZGB

and taking the square root of the result. This will convert equation 3.19 into the non-

dimensional form given below;

gng(M Z6 _Z M6 ) (3.20)
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With the steady state 0 solution derived, equations for both the steady state

value of 8 and steady state value of Z can be determined. Using equation 3.14 and 0

substituting the steady state value of 0 will allow the steady state 8 equation to be

obtained,

8, = -- tan0.. (3.21)
z6

To achieve the steady state solution of Z. begin by writing equation 2.71 in

expanded general form as 0

6=-(k1 O + k~w + k3q + k4Z). (3.22)

Then by applying the same conditions to equation 3.22 that resulted in equations 3.14 and

3.15, and using the previously developed steady state equations for 0 and 8, an equation 0

of the form

- Z tanh, +kO,, +k~utanO,

Z.,= Z6 (3.23) 0 0

is obtained

The loss of stability of an equilibrium and the generation of additional

equilibrium states, is called a pitchfork bifurcation and is very common in nature The

buckling of a beam is one such example. Using equations 3.18, 3.21, and 3.23 as a basis

for another MA TLAB program, the steady state solutions of 0, 8, and Z versus Froude

number were investigated with the results displayed in Figures 3-5 through 3-7 These

three plots are referred to as supercritical pitchforks, so named because upon the loss of

stability of the trivial equilibrium the additional nearby equilibrium states are stable

Graphically, this can be represented in Figures 3-5 through 3-7, where the solid curves

represent stable and dotted curves represent unstable equilibria [Ref 17] These three

figures also demonstrate the control input saturation, Upon control surface saturation, the
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steady state equations for 0, 8 and Z are no longer valid due to the limit placed on the 1

maximum plane angle The steady state equations that hold for this region of saturation 0

are given below,

= + 22.90 (04 radians (3.24)

w= -UZ (3.25)

z.

and,

sm 'Mu:8ý. - M.uw,
sin - -Mwj 1 (326)

As can be seen in Figures 3-5 and 3-6, at an approximate Froude number of 1.05 the 0

control surfaces saturate resulting in the linear solutions displayed below that saturation

Froude number In Figure 3-7 there is no steady state solution because if the steady state

values of 8 and 8 are placed into the 2 equation, Z is non-zero below the saturation 0 0

Froude number

A parameter introduced in Chapter II was ox, which allowed us to go from a

multiple input system to a single input system. This parameter has a significant effect on 0

the location of the critical speed and/or Froude number. Figure 3-8 shows the relationship

been the critical speed Ur and the metacentric height zGB for different values of oE.

These three curves shown in Figure 3-8 can be converted into a single curve by 0

plotting cx versus Froude number, and is shown in Figure 3-9. As can be seen in this plot

the critical Froude number varies from 0. 81 to 1 22 over the allowable range of cx

In addition to the effect that ot has on the location of the critical Froude number, 0

it also effects the magnitude of the steady state values at a given Froude number and the
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STEADY STATE VALUES OF THETA vs. FROUDE NUMBER Xj

it

10- for alpha = 0

5- for metacentric height =0.1 ft •
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-5

-5 0-,

-10--
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Figure 3-5. Steady State Values of 0 vs Froude Number.
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STEADY STATE VALUES OF DELTA vs. FROUDE NUMBER
2.5 0

71r

- for alpha = 0
20-
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Figure 3-6. Steady State Values of 8 vs Froude Number.
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STEADY STATE VALUES OF Z vs. FROUDE NUMBER X)
30 0

4'

for alpha = 0

20-

10- for metacenric height = 0.1 ft

0 . .............................-------....................--------------------- ----------
N

-10-
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Figure 3-7. Steady State Values of Z vs Froude Number.
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CRITICAL SPEED vs. METACENTRIC HEIGHT
2.5

for alpha between 1 and -1 0

for alpha = -1

for alpha = 0

-for alpha 1 1
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0
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Figure 3-8. Relationship Between Critical Speed and Metacentric Height For
Various Values of a.
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CRITICAL FROUDE ,NUMBER vs. ALPHA
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Figure 3-9. Froude Number as a Function of a.
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location at which the control surfaces saturate. When comparisons are made, it can be 0

shown that as the value of 0x becomes more positive the location of the critical Froude 0

number and steady state values of 0 and Z become greater Comparing the changes in the

8 steady state solutions, the shape of the 8 pitchfork does not change however, the

location of the critical point moves in the direction of increasing Froude number as oX

increases The results of this discussion are shown graphically in Figures 3-10 through

3-12

An interesting result is displayed in Figure 3-13. This figure depicts the 0

relationship between (t and the critical or saturation Froude number. At the lower Froude

numbers, there is very little difference between the critical Froude number and the

saturation Froude number This demonstrates that upon reaching a low critical Froude 0

number the control surface immediately saturates attempting to keep the vehicle stable. At

the higher Froude numbers there is a significant difference between the critical Froude

number and the saturation Froude number This is because as the Froude number 0

approaches 2 78, the value used in the control law design conducted in Chapter II, the

control surfaces will not have to saturate to maintain stability

3. Controllability Analysis 0

In general, every system of the form,

i= Ax+Bu.
c=Cx, (327)

can be divided through a series of transformations into four subsystems

lI A controllable and observable part

2) An uncontrollable and observable part.

3) A controllable and unobservable part

4) An uncontrollable and unobservable part
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STEADY STATE VALUES OF THETA vs. FROUDE NUMBER Xy
15 0

S=o

-for alpha -1

10-
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for metacentric height = 0.1 ft

"0 ------- -------
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Figure 3-10. Comparison of Steady State Values of 0 for Different Values of (x.

44

• •• •• •• ••

' ml- n~ ~ l l i~ II m ~miU i



STEADY STATE VALUES OF DELTA vs. FROUDE NUMBER
25

for alpha = 0
20-

- for alpha = 1

15 -
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. -

-10-

-15 -

-20 -

0------------- ----------------------------------------------

-* .

1 1.05 1.1 1.15 1.2 1.25 1.3

Fn

Figure 3-11I. Comparison of Steady State Values of 8 for Different Values of a.
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STEADY STATE VALUES OF Z vs. FROUDE NUMBER j
50 0
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Figure 3-12. Comparison of Steady State Values of Z for Different Values of (x.
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FROUDE ,NUMBER vs. ALPHA )
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Figure 3-13. Relationship Between Critical/Saturation Froude Number and ax.
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This is known as Kalman's decomposition theorem. Now, since the transfer function of X)

any system is determined by the controllable and observable subsystems only, then the

transfer function may contain less information than is actually needed to model the

complete systemThe precise definition of controllability is:

A system is said to be controllable if any initial state x(to) can be driven to any

final state x(lf) using possibly unbounded control u(t) in finite time to< , tf

From the state equations 327, this should depend only on A and B. where A is a it x n

square matrix The criterion for controllability is as follows: Compute the controllability

matrix

c =[B, AB, A2 B,.... A-B]. (3.28)

and the system is controllable if and only if the rank of c (the number of linearly

independent rows or columns) is n. Roughly speaking, c shows how possible it is to

change the state of a system using the input, For a single input system B is n x I and c is a

square matrix. The test is then that c be nonsingular

det(c) * 0. (3.29)

Now, if the controllability matrix is formed using the A and B matrices from

equation 2.59 then the following matrix results-

C, Ci., C13  C14

C C21 c-I CC, (330)
C3 1 C3:  C33  C;4

where.

c,, =0, (3 31)

c, =b .u, (332)

co• =a,,u~b, +a.u.3b,, (3.33)
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c,, = blu (a 1a,1u: +a,a:u-)+bu (a,:GB +a,1au2 +a,,u), (3.34) 0

C:j =bu 2, (3.35) 0

c-, =:au 3b +a1,u3b,, (3.36) it
= bu-(a ju- +a.la.u)+bu(a,3: +a,,a,,u2 +aa,.-u2), (3 37)

c-4= b uZ(a,,u(aIu: +aI a lu)+aIu(a•:3:G +a a 1JC+aa,.U))+

bzuial3:BaLzlu +aIza, 3:Gzu+aIzu(alZI +.a a.uI )+ (3.38)

a..u(a,3:GB +aI.a,1ut +a--u-)),

C3 = b.u2, (3.39)

c3 . =au3 b1 +a,.u3b., (3 40)
c31 =bu (a11 au +a, ,.:u )+bzu 2 (a.3:zB +alaI, ua +a-,u2 ), (3.41)

= b1u: (aIu(a1 a,uz +a 2a,au2) +a.lu(a,3zGB + aa, - ,"uu))+ 0
buz (al3:gBa.-]u + a-,a-3:,,u +a1 ,u(a,1 a,1 Uu +a1,a,,u: )+ (3.42)

au, + a 1 aa + a-1 u2 )),

C41 =0, (343)

C42 = bu- (3.44) * *
C4 3 = a111U3bl + (a1,u - u)bu2 , (3.45)

and c, =bu ,(a ;uz +a, u(au - u)) + bu2 (aI z +a1 a.u2 +a,,u(a1,u - u)). (3.46)

Now, if the determinant of the controllability matrix is computed as a function of

Froude number, then it can be shown that the system becomes uncontrollable at the critical

Froude number. The graphical results of this computation are shown in Figure 3-14 for

different values of the parameter ox.

With the critical parameter that causes the vehicle to lose stability identified. i.e,

the Froude number, and the effect that the parameter ox has on the location of this critical

value understood, the simplifications discussed at the beginning of this chapter can be

removed from the E.OM. and an analysis on the effects of incorporating these additional

parameters can be conducted. This detailed analysis will be the topic of Chapter IV.
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CONTROLLABILITY vs. FROLUDE NUMBER
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Figure 3-14. System Controllability vs Froude Number.
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IV. BIFURCATION ANALYSIS
4'

A. ASYMMETRIC PITCHFORK 0

Now that the critical parameter, the Froude number, has been identified, the

simplifications applied to the E-OM in the previous chapter can be removed The

resulting system of equations is given by equations 2.38 through 2 43. To determine the 0

existence of multiple steady state solutions for this new system of equations it is, once

again, necessary to perform a steady state analysis as conducted in Section B.2 of the

previous chapter This analysis will reduce the system of equations into the following, 0

ZW - pCDAwlw +(W- B)cosO+ Z~u" 8=0 (4,1)
2

M4 -lIpCDx 4 Awlwl-(xGW-xB)cosO-(: 0 W-:sB)sinO+Msu2:5=O, (42) * *

with equation 3.13 also obtained from the steady state Z equation. By multiplying equation

4. 1 by M6 and equation 4.2 by Z, and setting the resulting equations equal to each other

the following equation is obtained; 0

(ZwMb-M.Zb)uw-( pAC'D)(Mb- XZ&)w4wI+ (43)
2 (3

((W - B)M8 + (xGW - xB)Z,) cosO + Z. (zW - :,,B) sin 0 = 0 0

This equation, along with,

w = utanO, (44)

from equation 3 13 is the exact steady state solution set with all parameters included 0
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Figure 4-I shows the results obtained when equation 4.3 is solved numerically, using the U'

FORTRAN program in Appendix A, for a small value of x0 , (the difference in the location 0

of the center of gravity and buoyancy), with the submarine neutrally buoyant (W = B).

This small value of xGB perturbs the pitchfork, as seen, from the symmetric pitchfork

displayed earlier in Figure 3-5. This comparison shows that the critical or bifurcation point 0

has moved to a lower Froude number, with the stable solutions represented by the solid

lines and the unstable solutions represented by the dashed lines in both cases. The stable

steady state solution, that the vehicle will acquire, is dependent on the initial conditions 0

that are given to the vehicle Using the results displayed in Figure 4-1 as an indication that

x(;B may also be a critical parameter, the subsequent task is to determine the relationship

between the critical Froude number and xGB or f(Fn, x.,)

B. BIFURCATION GRAPHS

The first order of business in the attempt to identify f(Fn.xGB) is to simplify the

exact pitchfork equation. This can be accomplished by replacing the cosO and sine terms

in equation 4 3 with the following Taylor series expansions

s we 1~ Jw 3  2wu-w
sine = VIw - 2u (4.5) 0

u 2 u3  2u3

1 w 2u 2 -w:
cose = I = , (46)2 u- 2u 2

which will allow the exact solution to be represented as follows, 0

Z6(ZGW-zBB)w 3 + 2u 3CDA( M6 -x 4 Z,)wlwl

-(2u'(Z M6 - M.Za) + 2u:Z,(:GW -:zB))w - 2u-((W - B)M6, (4 7)

+ (xr, W- x8B)Z8 + ((W- B)M8 + (xW - xB)Z,)w: = 0

0
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Solution Set (CD-0.0, Zgb-0.1, Xgb/L--0.0001) U)

80
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Figure 4-1. Exact Solution Set for Xgb/L-O0.00O1.
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where CD now equals the terms 2pC, present in equation 4.3. Defining the following U)

parameters 4

58 = B-W, (4.8)

XGB = XG - XB, (4.9)

:'G = :G - "8, (4.10)

W-z (4.11)zGW - zB = -GBW ' A 'B-5, 41

xGW - xB = XGBW - XB5 8X, (4.12)

X =1 Fn-, (4.13)

and substituting them into equation 4. 7 will allow the coefficients in front of the various

powers of w to be written as follows;

w 3 A 4,= Z6(z:0 W-z 858 ) = Z6(xu:W-ZB8S), (4.14)

wjwj: A, = 2U3CDA(M6 - xAZs), (4.15)

A,4 = -2u(i.: (Z.M. - MwZ 6)+ Z5(ku-W - zB8)), (4.16)

wO: At = -2u (-8sMS -Z3(xGBW -xB8B)) (4.17)

W. , = (- 8 ,M6 - Za(XoBW- XsSa)). (4.18)

The resulting form of equation 4.7 can be written •

Aw 3 + Awjw,,+ A,w+ A, + Aw= = 0, (4.19)

which is a generic pitchfork equation. If it is assumed that the submarine is neutrally

buoyant, and equation 4.19 is divided by Z6:08W, then the above coefficients can be

redefined as,

A4 = 1, (4.20)

A = 2uCDA(M_ - xZ6) g u (4.21) •
Z6W g:0 "5
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A, -2u'( U2 g(Z.M 6 - M.Z 6) (4.22
9g Ba Z5W (4.22)

U/2

A, = -2g, (4.23)
gz 0 s

A, -g2 xoB (4.24)

Letting the critical parameter X be defined as

U. (4.25)
gzcB

will allow equation 4.19 to be put into the following pitchfork solution form;

w3 + y•wlwl- 2u-(1 + ý.:w + 2pu"A. + P.w" = 0, (4.26) •

where,

x 0 sg (4.27)
U- 0 0

= g(ZM 8 - M"Z8) (4.28)
z6W

y = 2uCDA(M6 - xZs)-g . (4.29) 0

ZaB

To determine if the above manipulation and definitions are correct and valid, take the

symmetric case that was developed in the previous chapter, i.e., xGB = 0. This causes

equation 4 26 to reduce to

w(w' + yXjwj - 2u-(l + ýX)) = 0, (4.30)

resulting in a solution always occurring at w=O, with two more solutions appearing at the

bifurcation value

1+ ko =0. (4.31)

Rearranging and substituting the appropriate values into equation 4.31 will yield
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U. Z8W (4.32) 0 _)
" A., MZ - Z. M6'

which is identical to equations 3.9 and 3.20, thus verifying the manipulation

To find the relationship between Fn and xGB the function h(w,X,3), and its partial

derivative h(w, X.13), must be determined. These two functions must then be set equal to 0

zero and to each other in order to obtain a function independent of w. As seen, equation

4.30 is much too complex to complete these requirements, but by neglecting the terms

Xwwlw and Xw: in equation 4.26 a simplified pitchfork of the form, 0

w3 - 2u:(I + X)w + 2p3u" = 0, (4.33)

or in general terms h(w, X, 13) = 0, can be obtained which can be manipulated to meet the

above mentioned requirements, thereby determining the critical (X, 13) curve. By taking 0

the partial derivative, h,, of equation 4.33, the following equation results,

k= 3w2 -2u (1+ýX)ý (4.34)

This equation can be set equal to zero, yielding 0 0

w 2 =U2 (l+ X), (4.35)
3

which can be substituted into equation 4.33 to obtain the value of w where the function 0

and it's partial derivative is equal to zero-

w =.P (4.36)2 0I+ Ck) 0

This value of w can now be substituted back into equation 4.35 to obtain the desired

f (X,O), or

271304 =8u2(l+•X. (4.37)

Attempting to solve this equation analytically for X as a function of 0, to determine

the shape of this curve is difficult. Therefore, an approximation to this equation is needed

for small values of 13 By rearranging equation 4 37 into the form
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-8u-w I + (4.38) 4271: '

an equation that determines 13 as a function of X is now produced. If this function is

represented in a Taylor series expansion and simplified, then equation 4.38 can be written

as 0

k= x +3( 13 2 (u•T V3, (4.39)
2

which can be considered as an approximation to the (X,P) curve, with equation 4.37 as

the exact (X, 1) curve Through inspection it can be seen that the general shape of this

curve is that of a cusp

Figure 4-2 shows a comparison of four bifurcation curves. The curves represent the

relationship between the critical speed U, which can be converted into the non dimensional

parameter X using equation 4.25, and the value of XGB, which also can be convened into a

non dimensional parameter P using equation 4.27. The curves labeled exact bifurcation

set, pitchfork bifurcation set, exact cusp and approximate cusp come from the numerical

solution to equations 4.7, 4.26, 4.37 and 4.39 respectively. Observe that in the general

vicinity of XGB=O and near the critical speed the shape of each of these curves is indeed

that of a cusp, with the peak occurring at the critical speed of 1.9 fps. Now, with the

comparison conducted in Figure 4-2 complete, equation 4.7, the exact pitchfork solution

will be used for the remainder of this analysis,

Returning to equation 4.7, it can be seen that there is only one additional parameter,

CD. that the cusp curve produced using equation 4.39 does not incorporate (because ZGB

and XGB are incorporated into the non dimensional parameters X and 0). It is therefore

necessary to conduct a sensitivity analysis to determine the effect that CD has on the shape

of the cusp curve, Figure 4-3 displays the results obtained when this sensitivity analysis

was conducted.
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Bifurcation Sets (CD-O, Zgb-O.1)
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Figure 4-2. Comparison of Bifurcation Curves. 0
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Bifurcation Sets (Zgb=0.1)
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Figure 4-3. Comparison of Exact Bifurcation Set for Different Values of Drag

Coefficient.
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0

As seen in the plot, the drag coefficient has no effect on the location of the peak of
UJ

the cusp. The drag coefficient, however, does modify the slope of the cusp as displayed by 0

the four cases shown in Figure 4-3.

C. SOLUTION SETS

In this section, the equilibrium solutions to equations 4.3 and 4.5 will be investigated

As determined in the previous section, the critical parameters that control the location and

shape of the pitchfork solution sets are X, P3 and the drag coefficient C, By running the

FORTRAN program of Appendix A for several values of xB L the shape and trend of

the solution sets can be determined. The result of this comparison, for a C" = 0.0, is

displayed in Figure 4-4 This plot supports the symmetry about xR, = 0 displayed in the

earlier cusp curves Observe that the critical or bifurcation point moves to a lower value of

X as xGB increases, and that for low values of X the equilibrium solutions converge to the

same value independent of the value of XGB. *

When the comparison is made regarding the effect that the drag coefficient has on the

solution sets, for a given value of xGB, Figure 4-5 is produced This variation in drag

coefficient for a constant value of xGB has a similar effect on the movement of the

bifurcation point as fixing the drag coefficient and varying XGB The difference is, however,

evident by studying the stable solutions The stable solutions for non-zero drag

coefficients become more linear as the value of CD increases This results from the

increased effect of the wlwl term in equation 4 3 as the value of CD increases

Although Figure 4-5 shows the actual solution to the exact pitchfork equation it is

not realistic since the effect of dive plane saturation is not considered Once the dive

planes saturate, the equations used to obtain the steady state solutions displayed in
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Solution Set (CD=0.0, Zgb=0.1)
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Figure 4-4. Comparison of Exact Solution Set for Different Values of XgbfL
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Solution Set (Zgb=0.1, Xgb/L=-0.0001)
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Figure 4-5. Comparison of Exact Solution Set for Different Values of CD.
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0

Figures 4-4 and 4-5 are no longer valid Instead, equations 4.1 and 4.2 are modified, still

remembering that the assumption of neutral buoyancy remains in affect, resulting in the 0

following two equations;

Zu - CCAwlwI+uZ , = o, (4.40)

Muw - CoxAAwlwl - Wx,, cosO- zBWsinO+ MAU 2 ,at = O. (4.41) 0

To obtain an equation that can be used to compute the steady state 0 solution while

taking into consideration dive plane saturation requires solving equation 4.40 for w and

then substituting this value into equation 4.41 which should yield at! equation independent 0

of w. The ability to perform this manipulation is hindered by the inclusion of the absolute

value term in both of the above equations. However, if the absolute value terms are

neglected by considering the case of CD=0.0, then a single equation for the steady state 0

value of 0 may be obtained.

Neglecting the drag affects, and performing the algebra will yield an equation of the

following form; , 0
(M Zb- MtZ,)u + Z ,W(X cosO+ zB sin0)=0, (4.42)

which may be used to determine the values of 0 once the dive planes have saturated. The

validity of neglecting the drag terms is questionable, and an analysis that incorporates CD 0

will be conducted later in this section once the effect of varying xGB is determined. Figure

4-6 displays the changes that occur to the solution set of Figure 4-1 when saturation is

considered. Notice that saturation occurs when the solution set is at approximately nine S

degrees, and that when multiple solutions occur, the stable equilibrium states are

represented by the saturation portions of the solution set.

0
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Solution Set (CD=0.0, Zgb=0.1, Xgb/L=-0.0001)
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Figure 4-6. Exact Solution Set for Xgb/L-O.OOO1 With Saturation Included.
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0

When the saturation condition is applied to the previously displayed solution sets for v
m j

different values of XGB (Figure 4-4), the results shown in Figure 4-7 are produced. Items 0

of interest in Figure 4-7 are that:

I) The bifurcation point on each solution set moves to a lower value of . as

the absolute value of xGB increases. •

2) The range where multiple solutions exist decreases as the absolute value of

xGB increases.

3) The amount of trim produced, in still water, by the given value of XGB can be 0

obtained from the point where the upper an lower solution branches

converge.

Incorporating the saturation condition into the solution sets raises some additional 0

concerns. To begin, 1iiiat if the point of dive plane saturation occurs after the bifurcation

points identified in Figure 4-4? If this condition did occur, referring to Figure 4-1 which

displays the stable and unstable solution branches, there would be at least one value of X 0

where there were three stable solution branches. To determine if this condition is possible

a comparison of solution sets with and without saturation is necessary. This comparison is

shown in Figure 4-8. As this plot depicts, the range between the bifurcation point and 0

saturation point increases as the value of XGB increases. This result will allow the fore

mentioned concern, of three stable solution branches, to be disregarded.

A second concern is the validity of the previously developed bifurcation cusp curves 0

Since the exact bifurcation equation, equation 4-7, does not include saturation, the cusp

curves produced using this equation will not accurately predict the occurrence of multiple

solutions However, if equation 4.42 is expanded in a Taylor series, it can be manipulated 0

into a form that will allow a cusp curve, which includes saturation, to be developed
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Solution Set (CD=0.0, Zgb=0.1)
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Figure 4-7. Comnparison of Exact Solution Set for Different Values of XgbfL With
Saturation Included.
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Solution Set (CD=0.0, Zgb=0.1)
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Figure 4-.. Comparison of Bifurcation Points and Dive Plane Saturation Points.
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Performing this manipulation will produce the following equation;

-x•ZW +- zWZsSo
GB = (4.43)(ZSM. - M8Z.O)(I(+ (ZS I Z. ,8.1)

By converting uW and xGB into the non dimensional parameters X and I3 the cusp

curve shown in Figure 4-9 can be produced. This cusp displays the saturation point for

both solution branches, and as seen it differs quite extensively from the exact bifurcation

cusp without saturation. If Figure 4-9 is replotted to allow the peak area of the cusp to be

more accurately represented, then Figure 4-10 is produced. By using these two cusp 0

curves then the general form of the resulting solution set for any path through the cusp can

be predicted. It is this prediction that the subsequent section will address.

D. PATH FORMULATION

The ability to accurately predict how the vessel will respond to various changes in

operating conditions is critical for proper control of the vessel. It is this prediction that

necessitates the need for path analysis to be conducted. If the ballast condition on the

vessel is held constant, xGB =-0.0001, and the speed of the vessel is varied, path A of

Figure 4-11 is obtained. Neglecting for the moment the saturation cusp shown in

Figure 4-11, it would be expected that a single steady state solution would exist for all

values, of the parameter sqrt(,), greater than the point where the path intersects the solid

cusp curve At the speed where the path intersects the cusp the bifurcation point occurs,

and for speed values which place the path inside the cusp multiple steady state solutions

occur The results of this path analysis are depicted in Figure 4-1, presented earlier in this

chapter

If attention is returned to the path through the saturation cusp of Figure 4-11, then

the same type of predictions made for the path through the solid cusp can be made for the

this cusp. with some slight differences As the speed decreases the path intersects the
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Bifurcation Sets (CD=O.0)
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Figure 4-9. Bifurcation Cusp With Dive Plane Saturation Included.
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Bifurcation Sets (CD=0.0)
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Figure 4-10. Expanded Bifurcation Cusp With Saturation Included.
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upper portion of the dotted cusp at an approximate value of 1.08. At this value saturation

occurs on one of the solution branches but there remains only one steady state solution 0

since the path has not yet entered the cusp. As the speed continues to decrease, the path

intersects and enters the saturation cusp at an approximate value of 0.99 with saturation of

the other solution branch and the existence of multiple steady state solutions occurring. •

These results are evident in Figure 4-6.

Now, if the speed of the vessel is held constant, and the loading conditions on the hull

are changed, then the paths shown in Figure 4-12 are obtained. Path B, at a Froude 0

Number of 1 I, is outside the cusp, therefore only a single steady state solution for each

value of XGB L should exist. While path C, at a Froude Number of 1.0, passes through the

cusp at ± 0.0001 values of xGyL resulting in single steady state solutions for values less 0

than or greater than ± 0.0001, while values between ± 0.0001 result in multiple steady

state solutions. Through numerical computation the solution set as a function of XGHY L is

obtained with the results shown in Figure 4-13. 0

As seen in Figure 4-13, path B, represented by the dotted line, does in fact result in a

single steady state solution throughout the range of XGH L, however, for path C this is not

the case Path C, represented by the solid line, exhibits multiple solutions between the 0

XGH L values of _ 0.0001, as predicted This is a hysteresis curve, with the unstable

solutions occurring between the corners of the curve. If the value of XGRL began

at -0 0005 and progressed to the positive value of 0 0001, the solution set would remain 0

on the curve with 0 taking on the values shown. Once the value Of XGB L becomes greater

than 0 0001 the solution jumps from -9' to 7 5'. This same jump would be evident if the

value of x(;R L began positive and progressed negative These jumps indicate that if the 0

dive planes are held constant, then the vessel will instantaneously change its pitch angle
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Bifurcation Sets Path Formulation X,
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Figure 4-12. Path Formulation at a Constant Speed With Xgb/L Varying.
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Solution Set for Path Formulation
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To counter this effect the dive plane angle must be reversed. It is this dive plane reversal Xj

that the following chapter will discuss.

Before proceeding to the next chapter it is necessary to determine the effect that drag

has on the previously developed bifurcation cusps. Using equations 4.40 and 4.41, and

substituting equation 4.4 into both equations will result in the following two equations;

Z~u tanO-, U 2 tan O eI + zsS,, = 0, (4.44)

Muw- Cx.,u' tan Otan -WxG, cos0- zGBW sin 0+ Ms23,., = 0 (4.45)

By using the MATLAB function fteros contained in the program of Appendix A, the

value of 0 that solves equation 4.44 can be determined as a function of speed This

relationship can then be used to solve equation 4.45 to obtain the relationship between XGB

and u

With this relationship obtained the cusp curves of Figure 4-14 can be plotted It can

be seen that for a given value of xGH L increasing the drag coefficient forces the

bifurcation point to a lower speed An interesting item to note is the diamond shape peak

on these cusps This is a result of saturation not occurring, for a small range of speeds, in

the small region around x(-H L=0 Path formulation through these cusps can be developed

as shown earlier in this section
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V. DIVE PLANE REVERSAL

A. STERN PLANE REVERSAL

The ability of a submarine to avoid detection and perform its mission is dependent on

its ability to maintain ordered depth. Modem asymmetric submarines exhibit an inherent

phenomenon known as dive plane reversal, which is difficult to deal with. To introduce 0

this physical occurrence, refer to Figure 5-1 [Ref 14] and consider the case of wanting to

dive the vehicle to a deeper depth. At moderate to high speeds the stem planes would be

deflected by an angle 8,, this would in turn cause a force and moment to be developed due 0

to the angle of attack of the planes. The vessel will respond by pitching downward, and

will assume some angle of attack to the fluid flow causing hull forces and moments to

develop. The stem plane and hull forces bring the ship to some steady state pitch angle 0 *
which is obtained when the restoring moment and pitching moments balance. The vessel

now has the ability tofly itself to the ordered depth with the normal hull force assisting in

pushing the vessel to a deeper depth. 0

At low speed we would expect the same to be true, however it is not. If the stern

planes are set to an angle 8,, this would cause a force and moment to be developed due to

the angle of attack of the planes, the vessel will pitch downward creating a pressure field 0

around the vessel due to the angle of attack with the fluid resulting in hull forces and

moments to develop The vessel once again steadies out at some steady state pitch angle

when the restoring moment and pitching moments balance Since the speed of the vessel is 0

not as great as in the previous case, the hull forces and moments are not as large, therefore
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instead of the vessel flving itself to the ordered depth with the hull force assisting, the

stern plane force actual pushes the vessel upward causing it to rise instead of dive, with

some non-zero pitch angle. [Ref 14] This condition was evident in the simulation shown

in Figure 3.3.

With this descnption of the vehicle response complete, it is obvious that to dive the

vessel at low speeds, the opposite stern plane angle must be ordered. This will result in the 0

vessel being pushed to the ordered depth at some bow up attitude. This required shift in

dive plane angle is what is known as STERN PLANE REVERSAL.

To tie together the previously completed bifurcation analysis with the physical 0

occurrence just discussed, Figure 5-2 is produced. Figure 5-2 presents the pitch angle and

stem plane angle required for straight and level flight with the bow planes centered As the

vessel's speed decreases, the metacentric moment (MO0 ) makes it increasingly difficult to 0 *
maintain a positive pitch angle on the hull The stern plane angle is negative trying to

produce a pitch-up moment, but the downward force of the stern planes requires an even

larger pitch angle [Ref 14] Between the speeds of I 08 and 1 18 knots, the required stem 0

plane angle is beyond the normal operating range and the vessel cannot be flown straight

and level Below the critical speed. the stern plane and vessel pitch angle must reverse sign

to maintain neutral tnm 0

In a final effort to show the phvsical significance of stem plane reversal, the force

input to the stern planes is plotted If the control gain% ate allowed to change as the speed

of the vessel changes. Figure ý- I is produced rhis plot shoss the norr dimensional forkre 0

per unit depth error input to the %tern plane a% a function of speed It i% habaLall% the

Lontrol %%stem gain used to set the %tern plane angle % can he seen a& the .rta&I .pmel
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0

is approached the value of input tends to infinity requiring the stern planes to operate

outside normal values. As the speed passes the critical value the sign of this input changes

requiring the stern planes to operate in the opposite direction. This reversal in sign is

evident of the stern plane reversal phenomenon shown and discussed earlier in this

chapter.

B. BOW PLANE REVERSAL 0

The reversal effect that was shown to occur with the stern planes can also be shown

to occur with the bow planes. If the value of a is allowed to tend to 00, indicating no stern

plane control and only bow plane control, then the same analysis conducted throughout

this thesis for stern plane reversal can be performed for bow plane reversal. If the critical

Froude number, (sqrt(k)), is plotted as a function of cx, then the results shown in

Figure 5-4 are produced This plot shows that for bow plane control only, the critical S 0

value approaches 2 05 as ax approaches o0

To show that the same type of results can be obtained for the bow plane analysis, the

case of neutral buoyancy, XGB = 0 and dive plane saturation, with bow plane control only

was investigated Referring to Figure 5-5, it can be seen that at a Froude number of 2 05

multiple steady state solutions occur These results are similar to the results displayed in

Figure 3-5 The major differences are that the critical point occurs at a Froude number of

2 0 %ice I10,. and the maximum value of O is only -_ 4 5' vice _- 95' The reason for

these changes is due to the values of Z4. andMl, being only one-half the respective value

for the stern planes

9:
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C. BIAS EFFECTS

As a final area of analysis, the condition of operating near the surface, such as during

periscope operations, must be investigated to determine the effects this will have on the

previously developed bifurcation cusps. Operating near the surface will require the

incorporation of a suction force and moment into the equations of motion. This force and

moment is a function of the distance away from the surface, and the angle the vessel

makes with the surface. Therefore, as a simple model of suction effects consider the case

of operating with excess buoyancy. To conduct the analysis requires the use of equations

4 1, 4.2 and 44. Performing the same substitution and solution technique as was used in

Chapter V to obtain the saturation curves that incorporated the drag coefficient will result 0

in solving the following equations to obtain the bifurcation cusps that would quasi-model

surface effects, * .
Z.u -IpCAu 2 tan Otan 0+ (W - B)cos6+ Z~u2 6,,, = 0, (51)

2

Afuwt - IpC,,xA u"I tan Otano - (X(;; - XRB)cosO 52e
2 52

-z ,,- B)sin 61+A 26,,, =0

If the value of ('I) is set equal to zero then the saturation cusp produced in

Figure 4-10 can be ompared to the results obtained for several cases of excess buoNanc,

Since it is the saturation cusp that controls the location of the bifurcation point, as shown

in prexious the chapter. the non saturation cusp %ill he neglected for the remainder (if the.

analksis Figure '-h shows the results obtained a% exces buoyant\ i% increased As can be

seen the cusp peak moses to do•hn and to the right oicurring at a loher %peed and at 'i

non Iero .alue of r T / The hbds of the cusp also shiftis t, the right 4a, ,,evn ssith the

• • • •• • •0
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entire cusp occurring in the positive region of the x(;R . range for a '.alue of 1 ; 0°

excess buoyancy

To determine how the value of drag coefficient effects the cusp cures. consider the

case of CD = 0.3 shown in Figure 5-7 These cusps were produced for the same .alue% ot

excess buoyancy used in Figure 5-6 Notice that the cusp curves shift to the right 1. thec

same value seen in Figure 5-6. but the peak value no'k occurs at an e'en a Iovker speed

In order to observe the sensitivity of the biased cusp to drag onlk consude, the ,I,t

of setting the excess buoyancy to 0 01 °o and .arNlng the drag coefficient h,,,,,r

Figure 5-8 These results indicate that increased drag causes the critical ,peed 1,, 0, ,A' 0'

a lower value They also showk that drag tends to counter the biasinL ettei tha. t'xt*

buoyancy was previously show to have This is evident bh the peak pini •,1 ivlTI

left as the value of drag coefficient increases 4

In summary, it can be stated that operating near the %urta,%% vi,ý rvw e

critical speed determined in prexious chapters and the \,e%%el , I hax.t' h ;1., r

different trim condition to counter surface effect%, and that inrea-nb .,L .A'. All

the critical speed but tends to counter the trim :ondition requi'eco

S
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BIASED BIFURCATION CUSP (CD-0.3) U)

1.3 , I 0

for 0.0 excess buoyancy A

,", - for excess buoyancy 0.01 % of weight ' 1

1.2 .for excess buoyancy 0.02 % of weight / "

"for excess buoyancy 0.05 % of weight
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.1 0
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Figure 5-7. Bias Effects Caused by Operating Near the Surface Considering Drag.
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BIASED BIFURCATION CUSP (0.01 % excess Bouyancy)

1.3

for CD-0.0

for CD-0.1
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for CD-0.5
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i ~//
I /
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Xgb/L xl0&

Figure 5-8. Bias Effects Caused by Drag While Operating Near the Surface.
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VI. CONCLUSIONS AND RECOMMENDATIONS S

A. CONCLUSIONS

- A method for analyzing submarine depth keeping and dive plane reversal has been

developed and presented. This analysis identified the three phenomena, a positive real

eigenvalue, a steady state pitchfork bifurcation, and an uncontrollable system, that lead to

vessel instability.

* The critical parameters have been identified that control the bifurcation. These

parameters combine speed, loading conditions and hydrodynamic coefficients into

non-dimensional values that may be applied to other models or vessels

* Since the non-dimensional Froude numbers are based on the metacentric height

and LCG-LCB separation, Froude scaling can be used to apply this analysis to full scale * *
vessels, allowing for the reduction of model testing during design phases.

B. RECOMMENDATIONS

Some recommendations for further research are as follows:

* Develop and incorporate into the bifurcation analysis a more complete expression

for the free-surface effects.

9 Conduct a Hopf bifurcation analysis to identify the critical parameters that lead to

vehicle instability at high speeds
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APPENDIX A •
A'

COMPUTER PROGRAMS

% THIS PROGRAM IS THESISI.M. IT SIMULATES THE RESPONSE OF THE 0
DTRC SUBOFF
% MODEL. IT PLACES THE POLES, CALCULATES THE CRITICAL SPEED, AND
USES
% PROGRAM THESISDE.M TO SIMULATE THE VERTICAL PLANE REPONSE.

clg,
global zg m zgb u U Zq Zw Zdlt Mq Mw B I Mdlt K I M bm xL Zval Mval rho

% ESTABLISH GEOMETRIC PARAMETERS
W=1 556.2363;BI=1 556.2363; 0
Iy=561.32,
g=32.2,
m=W/g,
rho= 1.94,
L=13.9792, * 0
xg=0;zg=O. I
zgb=0. I

% BEAM AND LENGTH DEFINITION FOR TRAPAZIODAL RULE USE
bm=[0.485.658.778.871 .945 1.01 1.06 1.18 1.41 1.57 1.66 1.67 1.67 1.67 1.63...
1.37,919.448.195.188.168.132.053 0],

xI=[O .1 .2.3 .4.5.6.7 1 2 3 4 7.7143 10 15.1429 16 17 18 1920201...
20.2 20.3 20.4 20,4167], ".

xl=(L/20)*x 1,
xL=xI-L/2,

% FACTORS TO CONVERT FROM NON-DIMENSIONAL VALUES TO
DIMENSIONAL VALUES
ndl=.5*rho*LA2
nd2=.5*rho*L^3;
nd3=.5*rho*L^4;
nd4=.5*rho*L/ 5,
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Alpha=O;
X,/

% NON-DIMENSIONAL HYDRODYNAMIC COEFFICIENTS
Zqdnd=-6. 33e-4;,Zwdnd=-1I.4529e-2;Zqnd=7. S45e-3-;Zwnd=- 1.391 e-2, i
Zds=(-5 .603e-3 )-Zdb=O. 5*(-5.603e-3 ),Zdltnd=(Zds+Alpha*Zdb);
Mqdnd=-8.8e-4;-Mwdnd=-5 .61 e-4;Mqnd=-3.702e-3 -Mwnd= 1. 0324e-2,
Mds=(-O. 002409);Mdb=O.5S*(0.002409);Mdltnd=(Mds+Alpha*Mdb),

% CONVERTION OF COEFFICENTS INTO DIMENSIONAL VALUES
Zqd=nd3 *Zqdnd,Zwd=nd2*Zwdnd;lZq~nd2 *ZqfldZw-nd I *Zn,
Zdlt=~ndI *Zdltnd -

Mqd=nd4 *Mqdnd-,Mwd=nd3 *Mwdnd-,Mq=nd3 *Mqnd,Mw~i-nd2*Mwnd. 0
Mdlt~nd2 *Mdltnd-

% FORMULATION OF A AND B MATRIX ELEMENTS
Dv--(m-Zwd)*(Iy-Mqd)-(m*xg+Zqd)*(m*xg+Mwd)I
a IIDv--(Iy-Mqd)*Zw+(m*xg+Zqd)*Mw, 0
al 2Dv-=(Iy-Mqd)*(m+Zq)+(m*xg+Zqd)*(Mq-m*xg),
al 3Dv.-(m*xg+Zqd)*W,
b I Dv-(Iy-Mqd)*ZdIt+(m*xg+Zqd)*MdtIt
a2 I Dv--(m-Zwd)*Mw~+(m*xg+Mwd)*Zw,
a22Dv-(m-Zwd)*(Mq-m*xg)+(m*xg+Mwd)*(m+Zq), *
a23Dv---(m-Zwd)*W,
b2Dv--(m-Zwd )*Mdlt+(m*xg+Mwd)*Zdlt,

a!I =aI IJDvIDv-a I2=a I2Dv/Dv,a I3=a I3Dv/Dv,
a2 I =a2 I Dv/Dvla22=a22Dv/Dv~a23=a23Dv/Dv,
b I =b I Dv/Dv,b2=b2Dv/Dv,

% ESTABLISHMENT OF POLE LOCATIONS
pl=[- 3 -31 -32 -33],

% CALCULATION OF CRITICAL SPEED
Ucr--sqrt(-(a13 *b2-a23 *b 1)*zgb/(a I I*b2-a21*bI1))

% INPUT OF SPEED WHICH THE VESSEL WILL USE IN THE SIMULATION
U~input('enter speed of vehicle ')

% CALCULATION OF FROUDE NUMBER
Fn=sqrt(UA2/(zgb*g))
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% CALCULATION OF MATRICIES FOR POLE PLACEMENT AND
CONTROLABILLITY ANALYSIS 3)

U=51
a=[0 0 1 0;,a13*zgb al l*u al2*u 0-;a23*zgb a2l*u a22*u 0,1...
-u 10 0]1.
al=[0 0 1 0;-a]3*zgb a] *Ucr a12%1cr 0.-a23*zgb a2l*Ucr a22*Ucr 0..
-Ucr 1 00].

b=[O,-bI*uA2,b2*uA2,0I
blI=[0,~blI*UcrA2.b2*UcrA^2OI]

KlI=placc(a,b~plII.
C=rank(ctrb(alI blI)),
H=(Mw*Zdlt-Zw*Mdlt)/(zgb*B I *Zdlt)-l
theta I =acos(H*UA2)* I 80/pi,
Dss=-(Zw/Zdlt)*tan(acos(H*UA2 ))* I 80/pi'
Z=(Dss+K 1 (1 )*acos(H*UA2)+K I(2)*U*tan(acos(H*U^2)))/...
(-K 1 (4)),

%/ ESTABISHES VEHICLE MASS MATRIX
NI=[I1 0 00.0 (m-Zwd) -Zqd 0,0 -Mwd (Iy-Mqd) 0 -10 0 0 1]

% SET TIMIE LIMITS AND INITIAL CONDITIONS FOR ODE SOLUTION* *
tO=0,tfl =2500*L/U,
xo(o0 00 I].

0/% SOLVES VEHICLE SIMULATION ODE'S
[t I ,X I I=ode45(fthesisde',tOtfl ,xO).

% REDEFINE THE OUTPUT VECTOR ELEMEENTS AND FORM DIVE PLANE
RESPONSE
wI=Xl( .2),qI=Xl( ,3) z I=XI1(,,4)' thl=XI( .),
d=-(K I1(1 )*th I +K( I(2)*wI1 +K I(3)*q I +K I(4)*zI1),
11 =1ength(d),

for n=l 11,
if d(n)> 4.

d(n)= 4,
elseif d(n)<- 4.

d(n)=- 4,
end,
end.
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% PLOT THE RESULTS
subplot(2 11),
plot(t I *U/L,th I * I 80/pi,t I *U/L,d* 180/pi,'--');title('THETA/DELTA vs. TIME '); 0
xlabel('non-dimensional time ');ylabel('theta/delta (degrees)');grid; 4
gtext('--delta');gtext(['for a speed of' num2str(U) ' fps']),

plot(t I *U/L,z 1/L);title(IDEPTH vs. TIIME');xlabel('non dimensional time');
ylabel('non dimensional depth ');grid; 0
pause-
subplot(I 11),

% THIS IS PROGRAM THESISDE.M. IT CONTAINS THE SUBOFF MODEL
SYSTEM OF 0
% EQUATIONS TO BE SOLVED BY PROGRAM THESIS LM

% SET SYSTEM OF EQUATIONS FUNCTION
function X I dot=thesisde(t I,X I);

% SET CONTROL LAW
dI=-KI( i )*X1(1 )-KI(2)*XI(2)-KI(3)*XI(3)-KI(4)*XI(4);

% APPLY DIVE PLANE SATURATION
ifdl> 4, > A

dl= 4,
elseif d I<-. 4,

dl=- 4,
end,

% INCLUDE DRAG TERMS AND CALCULATE AREA AND CENTROID
CD=0O

if XI (2)==O,
Xl(2)=le-5, 0

end,

if XI(3)==O,
X 1 (3)= 1 e-5,

end,

Zval=bm *((X i (2)-xL. *X 1 (3)) 3 )/(abs(X I (2)-xL. *X 1 (3))),
Mval=bm *(((X I (2)-xL *X 1(3)).A3) *xL) /(abs(X I (2)-xL. *X 1(3)));

ZDragval=0IMDragval=O0
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% trapaziodal integration N
for n=I: :Iength(xL)-1,

Zdragval=O.5 *(ZvaI(n)+Z val(n+l1))*(xL(n+ I)-xL(n)),
Mdragval=O.5 *(Mval(n)+MvaI(n+l1))*(xL(n+lI)-xL(n)),
ZDragval=ZDragval+Zdragval-;
MDragval=MDragval+Mdragval;

end-,

Zdr-=(O. 5)*rho*CD*ZDragval;
Mdr-=(O. 5)*rho*CD*MI~ragvaI- 0

% VEHICLE SYSTEM OF EQUATIONS
Fl=[X1(3);- m*(U*XI(3)+zg*XI(3)A2)+Zq*U*X1(3)+Zw*U*X1(2)+UA 2*Zdlt*dI -Zdr;-

M* (-zg* X I(2)*X I(3))+Mq*U*X1 (3)+Mw*U*X 1(2)-
BlI*zgb*sin(X 1(1 ))+UA 2*Mdlt*d I-Mdr;

mpr--inv(M),
X I dot~mpr*F I,

0

0

0

0

0
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C PROGRAM STEADY O
C U'

C STEADY STATE SOLUTIONS OF SUBMARINES
C IN THE DIVE PLANE AT LOW SPEEDS
C
C INPUT DATA
C
C ICON = 1 : COMPUTATION OF SOLUTION SETS (S.S)
C 2: COMPUTATION OF BIFURCATION GRAPHS (B.G.)
C
C IVAR = I i Fn VARIATION
C 2 Xgb VARIATION
C .

REAL MWLENGTH,MASS,MDSMDBMD,LAMBDA
C

DIMENSION B(25),X(25),BX(25)
C
C GEOMETRIC PROPERTIES AND HYDRODYNAMIC COEFFICIENTS 0
C

RHO = 1 94
LENGTH= 13 9792
WRITE (*,*)'ENTER CDZ'
READ (*,*) CDZ 0
CDZ = CDZ*0 5*RHO
BUO= 1556 2363
WRITE(*,*) 'ENTER VALUE OF EXCESS BUO'
READ (*.*) FAC
WEIGHT=FAC*BUO
MASS = WEIGHT/32.2
XB =00
ZB =00
WRITE (*,*) 'ENTER THE METACENTRIC HEIGHT ZGB'
READ (*,*) ZG
ZW =-0.013910*0.5*RHO*LENGTH**2
ZDS =-0.005603*0.5*RHO*LENGTH**2
ZDB =-0.005603*0.25*RHO*LENGTH**2
MW = 0.010324*0.5*RHO*LENGTH**3
MDS =-0.002409*0,5*RHO*LENGTH**3
MDB = 0002409*0.25*RHO*LENGTH**3 S

C
WRITE (*,*) 'ENTER THE VALUE OF ALPHA'
READ (*,*) ALPHA
ZD=ZDS+ALPHAA*ZDB
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MD=-MDS+ALPHA*MDB

C DEFINE THE LENGTH X AND BREADTH B TERMS FOR THE 0

INTEGRATION
C

X( 1)=20.4167
X( 2)=20.4000
X( 3)=20.3 0
X( 4)=20.2
X( 5)=20.1
X( 6)=20.0
X( 7)=19.0
X( 8)=18.0
X( 9)=17.0
X(10)=16.0
X(I 1)=15 1429
X(12)=10.0
X(13)=7.7143
X(14)=4.0
X(15)=3.0
X( 16)=2.0
X(17)=1 0
X(18)=0.7 7 *
X(19)=0.6
X(20)=o 5
X(21)=0.4
X(22)=O 3
X(23)=0.2
X(24)=0 I
X(25)=0 0

c
B( 1)=0.00000
B( 2)=0.03178
B( 3)=0.07920
B( 4)=0. 10074
B( 5)=0.1 1243
B( 6)=0 11724
B( 7)=0.26835
B( 8)=0 55025
B( 9)=081910
B(10)=0 97598
B(I I)= 1.00000
B(12)=1 00000
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B(13)=1.00000
B(14)=0.99282 U

B( 15)=0.94066
B(16)--0.84713
B(17)=0.70744
B(18)=0 63514
B(19)=0.60352
B(20)=0. 56627
B(21)=0.52147
B(22)=0.46600
B(23)=0 39396
B(24)=0.29058
B(25)=0.00000

C
DO 1 1=1,25

B(1)=B(I)* 1 ý6667
X(I)=(-X(1)+I10.0)*LENGTWU20.0
BX( I)=B(I )*X(I)

1 CONTINUE
CALL TRAP( 1 8,BXAREA)
CALL TRAP( I 8,BXX,CH)
XA=CHIAREA

C WRITE(*¶*)'AREA EQUALS 'AREA* *
C WRITE(*,*) 'XA EQUALS 'XA

IFC=0
C
C OPEN RESULTS FILES

OPEN (10.FILE='RIO RES',STATUS=NEW')
OPEN ( 1 YILE='R1 I RES',STATUS='NEW')
OPEN (12,FILE='RI2 RES.,STATUS=NEW')
OPEN (1 3,FILE='R13 RES'.STATUS='NEW')
OPEN (14,FILE='R14 RES'.STATUS='NEW')
OPEN 0I 5,FILE='R 15 RES',STATUS=NEW')
OPEN (16.FILE='RI6 RES%.STATUS='NEW-)
OPEN (20,FILE='C20 RES'. STATUS=NEW')
OPEN (2 1 FILE='S2 1 RES',STATIJS='NEW')
OPEN (22,FILE=5S22 RES.,STATL'S='NEW-)
OPEN (23,FILE='S23 RES'.STATUS='NEW')
OPEN (24.FILE='S24 RES'.STATUS=NEW-)
OPEN (3 1,FTLE='S3] RES.,STATUS='NEW')
OPEN (32,FILE='S32 RES',STATUS=NEW')
OPEN (33 .FTLE'S3 3 RES'. STATUS=NEW')
OPEN (34.FILE=5S34 RES', STATUS='NEW')
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n

OPEN (41 ,FILE='C41 RES',STATUS=NEW')
OPEN (42,FILE='C42 RES',STATUS='NEW')

OPEN (43,F1WE='C43 RES',STATUS='NEW')

C
C READ DATA INTERACTIVELY
C

WRITE (*,1001)
READ (*,*) ICON
IF (ICON EQ 2) GO TO 331
WRITE (*, 1009)
READ (*,*) IVAR
GO TO (331,332), IVAR

331 WRITE (*.1002)
READ (*,*) UMIN
WRITE (*1003)
READ (*,*) UMAX
WRITE (*1004)
READ (*,*) ITER
JU=ITER
IF (ICON EQ.2) GO TO 332
WRITE (*, 1010)
READ (*,*) XG * *
XG=XG*LENGTH

GO TO 300
332 WRITE (*, 1005)

READ (*.*) XGMIN
WRITE (*1006)
READ (*,*) XGMAX
WRITE (*1004)
READ (*,*) ITER
JXG=ITER
XGMIN=XGMIN*LENGTH
XGMAX=XGMAX*LENGTH 0

IF (ICON EQ 2) GO TO 334
WRITE (*1012)
READ (**) U

334 CONTINUE
GO TO 300 0

300 WRITE (*, 1013)
READ (*,*) ISET
IF (ICON EQ 2) GO TO 370
GO TO (350,360,400), ISET

0
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C0

C EXACT SOLUTIONSE

C0
350 DO 2 I= I,ITER

WRITE (*,2000) I,ITER
GO TO (351,352), IVAR

351 U=UMIh4+(UTMAX-UMI1N)*(I- 1)/(ITER- 1)
GO TO 355

352 XG=XGMIN+(XGMAX-XGMIN)*(I- 1)I(ITER- 1)
355 Al= ZW*MD-MW*ZD

A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG-XB)*WEIGHT*ZD
A4= (ZG-ZB)*WEIGHT*ZD
CALL

EXSOLS(IVAR,LL,IFC,U,XG,A 1,A2,A3,A4,CDZ,AREA,ZW,ZD,ZG,MW,
& MD,BUO,XA)

IF (LL. GT. 1) IFC=I1
2 CONTINUE

GO TO 5000
C
C PITCHFORK SOLUTION SET
C

3 60 DO 3 I= 1,ITER* *
WRITE (*,2000) I,ITER
GO TO (361,362), IVAR

361 U=UMlN+(UMAX-UMIIN)*(I- 1 )I(ITER- 1)
GO TO 365

362 XG=XGMIh4+(XGMAX-XGMJN)*(I I )/(ITER-1 I)
365 Al= ZD*(ZG-ZB)*WEIGHT

A2= 2.0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)* WEIGHT)
A4= 2.o*U*U*ZD*(XG-XB)*WEIGHT
A5=-ZD*(XG-XB)*WEIGHT
CALL PITSLS(IVARLL,IFC,U,XG,A1,A2,A3,A4,A5)
IF (LL.GT. 1) IFC= 1

3 CONTINUE
GO TO 5000

C
C SIMPLE PITCHFORK SOLUTION SET
C
400 DO 401 1=Il,ITER

WRITE (*,2000) I,ITER
GO TO (402,403), WVAR

1 00



402 U=UMIN+(UMAX-.UMIN)*(I I )/(ITER- I)
GO TO 405 *

403 XG=XGMIN+(XGMAX-XGMIN)*(I- I )/(ITER- 1)
405 A I= ZD*(ZG-ZB)* WEIGHT

A3=-2 *U *U *(U* U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)* WEIGHT)
A4= 2 O * U*U*ZD*(XG.)(B)* WEIGHT
CALL SIMSLS(IVARLLIFC.U.XG.A1.A3,A4)
IF (LL GT 1) IFC= I

401 CONTINUE
GO TO 5000

370 GO TO (380,390,410.430), ISET
C
C EXACT BIFURCATION SET
C

3 80 DO 4 I= IJXG
WRITE (*,2000) I.JXG
XG=XGMIN+(XGMAX-XGMIN)*(I- I )I(JXG- 1)
IHS=0
DO 5 J=I.JU

Uý=UMIN+(UMAX-UMIN)*(J- I )/(JU- 1)
A I ZW *MD-MW *ZD
A2=-CDZ*AkREA*(MD-XA*ZD)
A3=-( XG*WEIGHT-XB*B1JO)*ZD+(WEIGHT-BUO)*MD* *
A4= (ZG*WEIGHT-ZB*BUO)*ZD
CALL EXNUMS(NUMA1,A2,A.3,A4,Lr)
IF (J NE 1) GO TO 381
UO=U
NU7MO= NUM
GO TO 5

381 UN=U
NUMN=NUM
NDIF=IABSt'NUMO-NUMN)
IF (NDIF EQ 2) GO TO 382
UO=UN
NUMO=NLTNN
GO TO 5

382 LI=UO

DO061 ii= IJU
L'=U 1 -(Ii2-U I )*(JJ- I)/(JL'- 1)
AI= ZW*MD-MW*ZD
A2=-CDZ *AREA* (MD-XA *ZD)
A3=-( XG*WEIGHT-XB*BUO)*ZD+(WEIGHT-BUO)*M4D
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A4= (ZG*WEIGHT-ZB*BUO)*ZD6
CALL EXNLJMS(NUM,AI,A2,A3,A4,U)
IF (JJ.NE. 1) GO TO 383
UO=U
NUMO=NUM4
GO TO 61

383 UN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDEF EQ. 2) GO TO 384
UO=-UN
NUMO=NUMN

61 CONTINUE
GO TO 5

384 UI=UO
U2=UN
DO 62 JJ=1,JU

U=UlI+(U2-UlI)*(JJ 1 )/(JU- 1)
Al= ZW*NMDMW*ZD
A2=-CDZ*AREA*(MD-XA*ZD)
A3=-(XG*WEIGHT-XB*BUO)*ZD+(WEIGHT-BUO)*MD
A4= (ZG*WEIGHT-ZB*BUO)*ZD
CALL EXNUMS(NUM,A1,A2,A3,A4,U)
IIF (JJ.NEý 1) GO TO386
UO=U
NUMO=NUM
GO TO 62

386 UN=U
NUMN=NUM0
NDIF=IABS('NIMO-NUMN)
IF (NDIF.EQ.2) GO TO 385
UO=UN
NUMO=NUMN

62 CONTINUE
GO TO 5

385 UP=~(UO+UJN)/2.0
IHS-IHS+1
IJPL=SQRT(UP/(32 2.* LENGTH))
XGL=XGILENGTH
[PF= I0+IHS
WRITE ([P1K 100) XGL, UP
UO=UN
NUMO=NUMN

1 02



5 CONTINU

4 CONTINUE

GO TO 5000
C
C PITCHFORK BIFURCATION SET
C

390 DO 6 I= I,JXG
WRITE (*,2000) IJXG
XG=XGMIN+(XGMAX-XGMJN)*(I..I )/(JXG- 1)
IHiS'
DO 7 J=l1,JU

U=UMIN+(UMAX-UMIN)*(J- 1 )/(JU- 1)
Al ZD*(ZG-ZB)* WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-X*ZD)
AJ= 2 *U*U*(U*U*(ZW*MD-W*ZD)+ZD*(ZG-ZB)*WEIGHT)

A4= 2.0*U*U*ZD*(XG-XB)*WEIGHT
A5S=-ZD*(XG-XB)* WEIGHT
CALL PINUMS(NUM,A 1,A2,A3 ,A4,A5,U)0
IF (J.NE. 1) GO TO 391
UO=U
NUMO=~NUM
GO TO 7

391 UN=U
NUMN=NUM
NDIF=IABS(NIJMO-NUMN)
IF (NDIF.EQ.2) GO TO 392
UO=UN
NUMO=NUMN
GO TO7

392 UI=UO
U2=UN
DO 71 iJ=1,JU

U=UlI+(U2-UlI)*(JJ I )/(JTJ..1)0
A = ZD*(ZG-ZB)*WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-.XA*ZD)
A3=- 2*U*U*(U*U*(ZW*MD..MW*ZD)+ZD*(ZG..ZB)*1WEIGHT)
A4= 2 O*U*U*ZD*(XG )(B)* WEIGHT
AS=-ZD*(XG-XB)* WEIGHT
CALL PINUMS(NUM,A1, A2,A3,A4,AS,U)
IF (Ji.NE- 1) GO TO 393
UO=U
NUMO=NUM
GO TO 71
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393 UN=U

NDIP=IABS(NUMO-NUMN)
IF (NDIF.EQ.2) GO TO 394
UO=-UN
NUMO=NUMN

71 CONTINUE
STOP 1111

394 UI=UO
U2=UN
DO 72 JJ=1,JU

U=U I+(U2-Ul1)*(JJ..I )/(JU- 1)
A 1 = ZD*(ZG-ZB)*WEIGHT
A2= 2.0*U*U*U*CDZ*AREA*(MD-XA*ZD)
A3=-2*U*U*(U*U*(Z W*MD-MW*ZD)+ZD*(ZG-ZB)* WEIGHT)

A4= 2.0*U*U*ZD*(XG-XB)*WEIGHT
A5=-ZD*(XG-XB)* WEIGHT
CALL PINUMS(NUM,A1I,A2,A3 ,A4,A5,U)
IF (JJ. NE. 1) GO TO 3 96
UO=u
NUMO=NUM
GO TO 72

396 UN=U* *

NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDLF.EQ.2) GO TO 395
UO=UN
NUMO=NUMN0

72 CONTINUE
STOP 1112

395 IJP=(UO+UN)/2.0
IHS=IHS+l
UPL=SQRT(UP/(32. 2 * LENGTH))
XGL=XG/LENGTH
IPF=1I +IHS
WRITE (IPF, 100) XGL,UP
UO=UN
NUMO=NUMN

7 CONTINUE
6 CONTINUE

GO TO 5000
C
C SIMPLE PITCHFORK BIFURCATION SET
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410 DO411 I=1,JXG N

WRITE (*,2000) I.JXG
XG=XGMIN+(XGMAX-XGMIhJ)*(I- 1)/(JXG- 1)
IH-S=O
DO 412 J=1,JU

U=UMIN+(UMAX-.UMIN)*(J I )/(JU- 1)
Al=~ ZD*(ZG-ZB)* WEIGHT
A3=-2*U*U*(U*U*(Z W*NMDMW*ZD)+ZD*(ZG-ZB)* WEIGHT)
A4= 2.0*U*U*ZD*(XG-XB)*WEIGHT
CALL SINUMS(NUM,A1,A3,A4,U)
IF (J.NE. 1) GO TO 413
UO=U0
NUMO=NUM
GO TO 412

413 UIN=U
NUMN=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF. EQ. 2) GO TO 414
UO=UN
NUMO=NUMN
GO TO 412

414 UVIJO*
U2=UN
DO 415 JJ= IJU

U=UlI+(U2..U]I)*(JJ I )/(JU- 1)
Al =ZD*(ZG-ZB)*WEIGHT

A3=-2*U*U*(U*U*(Z W*MD-MW*ZD)+4ZD*(ZG-ZB)* WEIGHT)
A4= 2.O*U*U*ZD*(XG-XB)*WEIGHT
CALL SINUMS(NULM,A1 ,A3,A4,U)
IF (JJ.NE. 1) GO TO416
UO=U
NUMO=NUM
GO TO 415

416 UN=U
NUM4N=NUM
NDIF=IABS(NUMO-NUMN)
IF (NDIF. EQ. 2) GO TO 417
UO=UN
NUMO=NUMN

415 -CONTINUE
STOP 11111

417 U1=UO
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U2=UN
DO 418JJ= ,JU

U=U I +(U2-U I )*(JJ- 1 )/(JU- 1)
Al I= ZD*(ZG-ZB)* WEIGHT
A3=-2*U*U*(U*U*(ZW*MD-MW*ZD)+ZD*(ZG-ZB)*WEIGHT)4
A4= 2 0*U*U*ZD*(XG-XB)* WEIGHT
CALL SINUMS(NUM.AI.A3,A4,U)
IF (JJ.NE. 1) GO TO 419
UO=U
NUMO=NUN4
GO TO 418

419 UN=U
NUMN=NUM
NDIF=IABS(NUMO-NU-MN)
IF (ND[F.EQ.2) GO TO 420
UO=UN
NUMO=NUMN

418 CONTINUE
STOP 1112

420 UP=(UO+UN)/2.0
IHS=IHS+ I
UPL= SQRT(UP/(3 22 2*LENGTH))
XGL=XGILENGTH* *
IPF=10+IHS
WRITE (IPF, 100) XGL, UP
UO=UN
NUMO=NUMN

412 CONTINUE
411 CONTINUE

GO TO 5000
C
C ANALYTIC BIFURCATION SET
C

430 WRITE (-,10 17)
READ (*,*) ICUSP
GO TO (432,433), ICUSP

C
C EXACT" CUSP
C
432 DO0431 1=1.116

WRITE (*,2000) I.JU
L'=UMIN+(UMAX-UM1N)*(II 1)/(JU-I1)
DELTA=32.2*(ZW*MD-MW*ZD)/(ZD*WEIGHT)
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LAMBDA=U*U/(32,2*(ZG-ZB))
BETA2=(8 0*U*U*( I O+DELTA*LAMBDA)** 3)/(27 0* LAMBDA** 2) 3

IF (BETA2LT0,0) GO TO 431 0
BETA=SQRT(BETA2)
XGB=U*U*BETA/322 4'
WRITE (10,100) U,XGB/LENGTH

431 CONTINUE
GO TO 5000

C
C "APPROXIMATE" CUSP
C
433 DO 434 I=IJU

WRITE (*,2000) iJU1
U=UMIN+(UMAX-UMiIN)*(I- )/(JU- 1)
DELTA=32 2*(ZW*MD-MW*ZD)/(ZD*WEIGHT)
LAMBDA=U*U/(32 2*(ZG-ZB))
BETA2=(8 0* U* U*(I 0+DELTA* LAMBDA)** 3)/27. 0
IF (BETA2LT 0.0) GO TO 434
BETA=SQRT(BETA2)
XGB=U*U*BETA/3 22
WRITE (10. 100) U, XGB/LENGTH

434 CONTINUE
C 0 0
5000 STOP
1001 FORMAT (' ENTER I SOLUTION SETS 'V

I ' 2 BIFURCATION GRAPHS ')
1009 FORMAT (' ENTER I U VARIATION ',I

I 1 2 XG VARIATION')
1002 FORMAT (' ENTER MINIMUM VALUE OF U')
1003 FORMAT (' ENTER MAXIMUM VALUE OF U')
1004 FORMAT (' ENTER NUMBER OF INCREMENTS')
1005 FORMAT (' ENTER MINIMUM VALUE OF XG/L')
1006 FORMAT (' ENTER MAXIMUM VALUE OF XG/L')
1010 FORMAT (' ENTER VALUE OF XG/L')
1012 FORMAT C ENTER VALUE OF U')
1013 FORMAT C ENTER I EXACT COMPUTATION ',V

1 * 2 PITCHFORK APPROXIMATION'.!
2 3 SIMPLE PITCHFORK '/
3 ' 4 ANALYTIC SET

1017 FORMAT (' ENTER I EXACT CUSP ',V
1 2 APPROXIMATE CUSP ')

2000 FORMAT (215)
100 FORMAT (2E15 5)
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END
C----------------------------------------------------------------------------u~

SUBROUTINE TRAP(NAB,OUT) 0
C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

DIMENSION A( 1 ),B( 1)
NI=N-I
OUT=0 0
DO I I=I,NI

OUT 1 =0.5*(A(I)+A(I+ ! ))*(B(I+ 1 )-B(I))
OUT =OUT+OUT 1

I CONTINUE
RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE EXSOLS(IVARL,IFC,U,XG,A1 ,A2,A3,A4,CDZ,AREAZW,

&ZD.ZGMW,MD,BUO,XA)
C
C IT COMPUTES AND PRINTS THE EXACT SOLUTION SET THETA
C (DEG) VERSUS U OR XG
C

REAL MW,MD,PRNT,PI * *
DIMENSION VF(5,2)
PI=4.0*ATAN(I.0)
IF (IVAR.EQ 1) PRNT=U
IF (IVAR EQ 2) PRNT=XG

C
C FIND FIRST ESTIMATE OF SOLUTIONS
C

L=0
VA=-89.5
VA=VA*PI/180.0
VAO=VA
VO=THETEQ( I ,VA,A1 ,A2,A3,A4,U)
VAMIN=-89.5
VAMAX=+89 5
IVA=5000
DO 10 I=2,IVA

AI=I
V ,=VAMIN+(VAMAX-VAMIN)*(I- I )/(IVA- 1)

C VA=AI-90.5
VA=VA*PI/180.0
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VAN=VA
VN-THETEQ( I,VA,AI .A2,A3,A4,U)
VP=VO*VN
IF (VP.GEOO.) GO TOIlI
L=L+ 1
VF(L. I )=VAO
VF(L,2)=VAN

I I VO=VN
VAO=VAN

10 CONTINUE
C
C EXACT COMPUTATION OF SOLUTIONS VIA NEWTONS METHOD
C0

E=I .E-8
IEND=500
DO 20 J=I,L

X=(VF(J, 1 )+VF(J,2))/2.0
C

XI=X

IF (IXX.EQ.0) GO TO 35
C

F=THETEQ( 1,X,A1,A2,A3,A4,U)* *
FDER=THETEQ(2,X,A1 ,A2,A3,A4,U)
DO 30 K=lIJEND

IF (FDER. EQ. 0. 0) STOP 100 1
DX=F/FDER
XI=X-DX
F=THETEQ(1,XI,AI ,A2,A3,A4.U)
FDER=THETEQ(2, X I, ,AI ,A2, A3, A4, U)
IF (F. EQ. 0. 0) GO TO 3 5
A=ABS(X I-X)
IF (A-E) 3 5,3 5,40

40 X=XI1
30 CONTINUE

GO TO 20
35 SOL=X I *180/PI

C WRITE (*,*)X I
JPR=1I0+J
WD=U*TAN(X 1)
DLT=((CDZ *AREA*WD* ABS(WD))-(ZW* U*WD))/(ZD* U U)

IF ((ABS(DLT). GT. 04). AND. (CDZ. NE. 0.0)) THEN
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CALL
SATUR(U,XG,CDZ,AREA,ZW,ZD,ZG,MW,MD,BUO,XA,DLT,PRNT) U

ELSEIF ((ABS(DLT).GT.0.4).AND.(CDZ.EQ.0.0)) THEN
CALL

SATUR I(U,XG,CDZ,AREA.,ZW,ZD,ZG,MW,MD,BUO,XA,DLT,PRNT)4
ENDIF

IF (L.EQ. I.AND.IFC.EQ.0) WRITE (10,100) PRNT,SOL,DLT* 180/PT
IF (L.EQ.1I.AND.IFC.EQ.I1) WRITE (16,100) PRNT,SOL,DLT* 180/PI
IF (L. GT. 1) WRITE (JPR., 100) PRNT, SOL,DLT* I 80/PT

20 CONTINUE
RETURN

100 FORMAT (3 E15.5)
END

C -------------------------------------------------------
SUBROUTINE

SATUR(U,XG,CDZ,AREA,ZW,ZD,ZG,MW,MD,BUO,XA,DLT,PRNT)
REAL MW,MID,PRNT

C
C USED TO COMPUTE SATURATION CONDTTIONS FOR THE DIVE PLANE
WITH DRAG
C COEFFICENT INCLUDED
C

CD=CDZ
IF (DLT.GT.0.0) THEN

WI =(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(-CD*AREA)*ZD*U*U*0.4))
& /(2*(-CD*AREA))

IF (W1.GT.0.0) THEN
A=MW*U*W1.CD*XA*AREA*W1*WI-XG*BUO+MD*U*U*0.4
B=-2.0*ZG*BUO
C=MW*U*W1-CD*XA*AREA*Wl *WI+XG*BUO+MD*U*U*0.4
X I =(-B+SQRT((B I *B I )4*(A*C)))/(2.0*A)
SOLI=2.0*ATAN(XI)
X2=(-B-SQRT((B I *B I )-4*(A*C)))/(2.0*A)
S0L2=2.0*ATAN(X)(~
WRITE (21,200) PR 1NTSLI,N0L2

ENDIF
W2=(-ZW*U-SQRT((ZW*U)*(ZW*U)-4*(-CD*APREA)*ZD*U*U*0 4))

& /(2*(-CD*AREA))
IF (W2.GT.0.0) THEN

A=MW*U*W2-CD*XA*AREA*W2*W2-XG*BUO+MD*U*U*0 4
B=-2.0*ZG*BUO
C=MW*U*W2-CD*XA*AREA*W2*W2+XG*BUO+MVD*U*U*0 4
X I =(-B+SQRT((B I *B I )-4*(A*C)))I(2.0*A)
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SOLI=2.0*ATAN(XI)
X2=(-B-SQRT((B I *B )~4*(A*C)))/(2.0*A) 3
SOL2=2.0*ATAN(X2)0
WRITE (22,200) PRNT,SOLI,SOL2

ENDIF
W3=(ZW*U+SQRT((ZW*U)*(ZW*U).-4*(CD*A&JEA)*ZD*U*U*o 4))

& /(2*(CD*ARLEA))
IF (W3.LT.0.0) THEN

A=MW*U*W3+CD*XA*AREA*W3*W3-XG*BUO+MD*U*U*0.4
B=-2.0*ZG*BUO
C=MW*U*W3+CD*XA*AREA*W3*W3+XG*BUO+MrD*U*U*0 4
Xl =(-B+SQRT((B I*B 1)-4*(A*C)))/(2.0*A)
SOLI=2.0*ATAN(XI)
X2=(-B-SQRT((B 1 *B I )-4*(A*C))),/(2.0*A)
SOL2=2.0* ATAN(X2)
WRITE (23,200) PRNT, SOL1, SOL2

ENDIF
W4+(ZW*U-SQRT((ZW*U)*(ZW*U)-4*(CD*AREA)*ZD* U*I1*0.4))

& /(2*(CD*AREA))
IF (W4. LT. 0.0) THEN

A=MW*U*W4+CD*XA*AREA*W4*W4..XG*BUO+MD*U*U*O 4
B=-2 0*ZG*BUO
C=MW*U*W4+CD*XA*AREA*W4*W4+XG*BUO+N4D*U*U*0 4* *
Xl =(-B+SQRT((B I*B )-4*(A*C)))/(2.0*A)
SQL 1=2.0*ATAN(XI)
X2=(-B-SQRT((B 1 *B3 I )4*(A*C)))/(2.0*A)
SOL2=2.0*ATAN%~(X2)
WRITE (24,200) PRNT,SOLI,SOL2

END IF
ELSE

WI =(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(..CD*A&JEA)*ZD*U*U*
& (-0 4)))/(2 *(-CD* AREA))

IF (WI. GT 0.0) THEN
A=M4W*U*WI -CD*XA*AREA*W j *W'I -XG*BUO+MfD*U*U*(-O 4)
B=-2,0*ZG*BUO
C=MW*U*WI-CD*XA*AREA*WI *W1+XG*BUO+MD*U*LJ*(..0 4)
XlI=(-B-+SQRT((B I*B I)-4*(A*C)))/(2 0*A)
SQL 1=2.0*ATANl~(XI)
X2=(-B-SQRT((B 1 *B3 I )4*(A*C)))/(2 0*A)
S0L2=2 0*ATAN(X2)
WRITE (31,200) PRNT, SOL 1,SOL2

ENDIF
W2=(-ZW*U-SQRT((ZW*U)*(ZW*U)-4*(-CD*ARA)*ZD*U*U*



& (-0.4))) /(2*(-CD*AREA))
IF (W2 LT.0.0) THEN

A=MW*U*W2-CD* )(A*APREA*W2*W2..XG*BUO+MD* U U *(- -4)
B=-2.0*ZG*BUO
C=MW*U*W2-CD*XA*AREA*W2*W2+XG*BUO+MD*U*U*(-O 4)
XI=(-B+SQRT((Bi *Bl) 4*(A*C)))/(2 O*A)
SOLI=2 O*ATAN(XI)
X2=(-B-SQRT((BI1 *B3I)-4*(A*C)))/(2 0* A)
SOL2=2.O*ATrAN(X2)
WRITE (3 2,200) PRNT, SOL21, S0L22

END IF
W3 =(-ZW*U+SQRT((ZW*U)*(ZW*U)-4*(CD*AREA)*ZD* U*U*

& (-0 4)))/(2*(CD* AREA))
IF (W3.LT 0.0) THEN

A=MW*U*W3+CD*XA*AREA*W3*W3-XG*BUO+MD*IJ*U*(-0 4)
B=-2 0*ZG*BUO
C=MW*U*W3+CD*XA*AREA*W3 *W3+XG*BUO+MD*U*U*(-

04)
X I =(-B±SQRT((B 1 *B3 I )4*(A*C)))I(2 0*A)
SOLI=2.0*ATAN(XI)
X2=(-B-SQRT((B I*BI)~4*(A*C)))/(2 0*A)
SOL2=2 0*ATAN(X2)
WRITE (33,200) PRNT,SOLl,SOL2* *

ENDIF
W4=(-ZW*U±SQRT((ZW*U)*(ZW*U)-4*(CD*AREA)*ZD*Lr*U*

& (-0 4)))/(2 *(CD* AREA))
IF (W4 LT 0 0) THEN
A=N4W*U*W4+CD*XA*AREA*W4*W4-XG*BUO4+MD*U*U*(-0 4)
B=-2 0*ZG*BUO
C=MW*U*W4+CD*XA*AREA*W4*W4+XG*BUO+MD*U*U*t.

04)
X I=(-B+SQRT((B I B 1)4*(A*C)))/(2 0*A)
SOL I=2 0*ATAN%(X I)
X2=(-B-SQRT((B I *B I )-4*(A*C)))/(2 0*A)
SOL2=2 0*ATAN(X2)
WRITE (34.200) PRNT,SOLI,SOL2

ENDIF
ENDIF

200 FORMAT (3 E15 5)
END

C------------------------------------------------------
SUBROUTINE

SATUR I (U. XGCDZ. AREA.Z WZD.ZG.MWMD,BUO, XA.DLT,PRNT)



0

REAL MW,MD,PRNT
C
C COMPUTES DIVE PLANE SATURATION NEGLECTING DRAG 0
C

P1=4.0*ATAN(l 0)
AI=MD*U*U*0.4-MW*U*U*ZD*0.4-XG*ZW*BUO
A'-f=-M*U*U*0.4+MW*U*U*ZD*O.4-XG*ZW*BUO
BI=-2.0*ZG*ZW*BUO
C I=-MW*U*U*ZD*0.4+XG*ZW*BUO+Mvff*U*U*ZW*O 4
C2=MW*U*U*ZD*0.4+XG*ZW*BUO-MD*U*U*ZW*0 4
XCD I=((-B I /Al )+SQRT(((B I/AI )**2)-..40*(C I/AI)))/2.0
XCD2=((-B I/Al )-SQRT(((B I/Al )**2)-4.O*(C I/Al )))/2.0
XCD3=((-B I/A2)+SQRT(((B I/A2)* *2)-4.O*(C21A2)))/2.Q
XCD4=((-B I /A2)-SQRT(((B I /A2)* *2)-.40*(C2/A2)))/2.0
XC I =2.0*ATAN(XCD I )* 180/PT
XC2=2 O*ATAN(XCD2)* 180/PI
XC3=2 O*ATAN(XCD3)*180/PI
XC4=2 0*ATAN(XCD4)* 1 80/PT
WRITE (20, 100) PRNTXCl,DLT* 180/PI
WRITE (4 1, 100) PRNT,XC 2,DLT* 180/PI
WRITE (42,.100) PRNTXC3,DLT*I180/PI
WRITE (43, 100) PRNT,XC4,DLT* 180/PI

100 FORMAT (3 E15.5)* *
END

C--------------------------------------------------------
SUBROUTINE PITSLS(IVARLL,IFC,U,XG,AI,A2,A3,A4,A5)

C
C IT COMPUTES AND PRINTS THE PITCHFORK SOLUTION SET THETA
C (DEG) VERSUS UOR XG

DIMENSION VF(5,2)
P1=4 0*ATAN(I 0)
IF (IVAR EQ 1) PRNT=U
IF (IVAR.EQ.2) PRNT=XG

C
C FIND FIRST ESTIMATE OF SOLUTIONS
C

L=0
VA=-89 0

VA=VA*Pl/ 180 0
VAO=VA
VO=PITCEQ( I VA,A1I,A2,A3,A4,A5,U)
DO 10 1=2,180

0
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AI=I
VA=AI-90. 5
VA=VA*PII1 80.0
VAN=VA
VN=PITCEQ( I,VA,AI ,A2,A3,A4,A5,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO I11
L=L+l
VF(L, I )=VAO
VF(L,2)=VAN

I1I VO=VN
VAO=VAN

10 CONTINUE
C
C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD
C

E=1.E-5
LEND='500
DO 20 J= 1,L

X=(VF(J, I )#VF(J,2))/2.0
F=PITCEQ( 1,X,AI ,A2,A3,A4,A5,U)

C

IF (IXX.EQO0) GO TO 35
C

FDER=PITCEQ(2, X,A1I,A2,A3 ,A4,A5,U)
DO 30 K=ILEND

IF (FDER.EQ.0.0) STOP 1001
DX=FfFDER
XI=X-DX
F=PITCEQ( 1,X 1,A1 ,A2,A3,A4,A5,U)
FDER=PITCEQ(2,XI ,A1 ,A2,A3,A4,A5,U)
IF (F. EQ. 0. 0) GO TO 3 5
A=ABS(X I-X)
IF (A-E) 35,35,40

40 X=XI
30 CONTINUE

GO TO 20
35 SOL=X I* 1800/PI

JPR= I0+J
IF (L. EQ. 1.AND. IFC. EQ. 0) WRITE (10, 100) PRNT, SOL
IF (L. EQ. 1. AND. IFC. EQ. 1) WRITE (16, 100) PRNT, SOL
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IF (L.GT. I) WRITE (JPR,100) PRNT, SOL 0
20 CONTINUE

RETURN 0
100 FORMAT (2E15.5)

END
C ----------------------------------------------------------------------

SUBROUTINE SIMSLS(IVAR.L,IFC,U,XG,A1 ,A3,A4)
C
C IT COMPUTES AND PRINTS THE SIMPLE PITCHFORK SOLUTION SET
THETA
C (DEG.) VERSUS U OR XG
C

DIMENSION VF(5,2)
PI=4.0*ATAN( 0)
IF (IVAR.EQ 1I) PRNT=U
IF (IVAR.EQ.2) PRNT=XG

C
C FIND FIRST ESTIMATE OF SOLUTIONS
C

L=O
VA=-89,5
VA=VA*PI/1800
VAO=VA * •
VO=SIMPEQ(I,VA,A1,A3,A4,U)
DO 10 1=2,180

AI=I
VA=AI-90.5
VA=VA*PI/180.0
VAN=VA
VN=SIMPEQ( 1 ,VA,A1 ,A3,A4,U)
VP=VO*VN
IF (VP.GE.00) GO TO I I
L=L÷ 1I
VF(L, 1 )=VAO
"VT(L,2)=VAN

I I VO=VN
VAO=VAN

10 CONTINUE
C

C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD
C

E=i .E-5
IEND=500
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DO 20 J=IL
X=(VF(J, 1 )+VF(J,2))/2.0

C 0
XI=X

IXX-O
IF (IXX EQ 0) GO TO 35

C
F=SIMPEQ( I,X,A i ,A3,A4,U)
FDER=SIMPEQ(2,X,A I,A3,A4,U)
DO 30 K=I,IEND

IF (FDER.EQ 0.0) STOP 1001
DX=F/FDER
XI=X-DX
F=SIMPEQ( I ,X I,A I,A3,A4,U)
FDER=SIMPEQ(2,XI ,AI ,A3,A4,U)
IF (F.EQ 0.0) GO TO 35
A=ABS(XI-X)
IF (A-E) 35,35,40

40 X=X I
30 CONTINUE

GO TO 20
35 SOL=XI*180.0/PI

JPR= I 0+J
IF (L EQ I.AND.IFC.EQ.0) WRITE (10,100) PRNT,SOL 0
IF (L EQ I. AND.IFC. EQ. i) WRITE (16,100) PRNT, SOL
IF (L GT 1) WRITE (JPR,100) PRNT, SOL

20 CONTINUE
RETURN

100 FORMAT (2E15 5) 0
END

C ----------------------------------------------------------------------
SUBROUTINE EXNUMS(NUM,A 1,A2,A3,A4,U)

C
C IT COMPUTES THE NUMBER OF SOLUTIONS OF THE EXACT SOLUTION
SET
C

PJ=4 0*ATAN(I 0)
L=o
VA=-89 5 0
VA=VA*PI/180 0
VO=THETEQ( I,VAA I, A2,A3,A4,U)
DO 10 1=2,180

AlI=
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VA=AI-90.5

VA=AI*PI/180.0
VN=THETEQ(I ,VA,A1,A2,A3,A4,U) 0
VP=VO*VN
IF (VP.GE.0.0) GO TO I I
L=L+ 1

11 VO=VN
10 CONTINUE S

NUM=L
RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE PINUMS(NUM,AI ,A2,A3,A4,A5,U)

C
C IT COMPUTES THE NUMBER OF SOLUTIONS OF THE PITCHFORK
SOLUTION SET
C

PI=4.0*ATAN(I.0) 0
L=0
VA=-89.5
VA=VA*PII180.0
VO=PITCEQ(1,VA,AI,A2,A3,A4,A5,U)
DO 10 1=2,180 * *

AI=I
VA=AI-90,5
VA=VA*P11180.0
VN=PITCEQ( I,VA,AI ,A2,A3,A4,A5,U)
VP=VO*VN
IF (VPGE00) GO TO II
L=L+I

I I VO=VN
10 CONTINUE

NUM=L
RETURN
END

C ----------------------------------------------------------------------
SUBROUTINE SINUMS(NUM,A 1 ,A3,A4,U)

C
C IT COMPUTES THE NUMBER OF SOLUTIONS OF THE SIMPLE PITCHFORK
C SOLUTION SET
C

PI=4.0*ATAN( i0)
L=0
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S

VA=-89.5
VA=VA*PI/180.0 3,

VO=SIMPEQ(I,VA,A1,A3,A4,U)
DO 10 1=2,180

AI=I
VA=AI-90.5
VA=VA*PU180.0
VN=SIMPEQ( 1,VA,A1 ,A3,A4,U)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+ 1

11 VO=VN
10 CONTINUE

NUM=L
RETURN
END

C ----------------------------------------------------------------------
FUNCTION THETEQ(K,XAA1 ,A2,A3,A4,U)

C
C IT COMPUTES THE VALUE OF THE EXACT EQUATION FOR
C THETABAR FOR A GIVEN VALUE OF THETA
C
C K = 1 • COMPUTE THE VALUE OF THE FUNCTION
C K = 2' COMPUTE THE VALUE OF ITS DERIVATIVE
C

SP=SIN(XA)
CP=COS(XA)
AP=ABS(SP)
TP=TAN(XA)
ATP=ABS(TP)
GO TO (10,20), K

10 THETEQ=AI *U*U*SP*CP+A2*U*U*SP*AP+A3*CP**3+A4*SP*CP**2
C 10THETEQ=A I*U*TP+A2*U*U*TP*ATP+A3 CP+A4*SP

GO TO 50
20 THETEQ=A1 *U*U*CP*CP-AI *U*U*SP*SP-3.0*A3*CP*CP*SP+A4*CP**3
& -20"A4" SP*SP*CP+2.0*A2*U*U*CP*AP

50 RETURN
END

C--------------------------------------------------------
FUNCTION PITCEQ(K,XAA !,A2,A3,A4,A5,U)

C
C IT COMPUTES THE VALUE OF THE PITCHFORK EQUATION FOR
C THETABAR FOR A GIVEN VALUE OF THETA
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C w
C K = I : COMPUTE THE VALUE OF THE FUNCTION

C K = 2: COMPUTE THE VALUE OF ITS DERIVATIVE 0
C

TP =TAN(XA)
CP =COS(XA)
CP2=CP*CP
AP =ABS(TP) 0
GO TO (10,20), K

10 PITCEQ=Al *(U*TP)**3+A2*U*U*TP*AP+A3*U*TP+A4+A5*U*U*TP*TP
GO TO 50

20 PITCEQ=3.0*U*U*U*TP/CP2+2.0*A2*U*U*AP/CP2+A3*U/CP2
& +2.0*A5*U*U*TP/CP2

50 RETURN
END

C ----------------------------------------------------------------------
FUNCTION SIMPEQ(K,XAAI ,A3,A4,U)

C
C IT COMPUTES THE VALUE OF THE SIMPLE PITCHFORK EQUATION FOR
C THETABAR FOR A GIVEN VALUE OF THETA
C
C K = I ý COMPUTE THE VALUE OF THE FUNCTION
C K = 2 COMPUTE THE VALUE OF ITS DERIVATIVE * *
C

TP =TAN(XA)
CP =COS(XA)
CP2=CP*CP
AP =ABS(TP) 0
GO TO (10,20), K

10 SIMPEQ=AI *(U*TP)**3+A3*U*TP+A4
GO TO 50

20 SIMPEQ=3.0*U*U*U*TP/CP2+A3*U/CP2
50 RETURN 0

END

0

0
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06

% THIS IS PROGRAM BIFSU.M. IT COMPUTES THE BIASED BIFURCATION
CUSP FOR
% DELTA SATURATED INCLUDING DRAG TERMS. IT USES THE FZERO
FUNCTION TO
% SOLVE THE EQUATIONS.4

globaliWB I U nZw Zdlt AXACDrho,

% ESTABLISH GEOMETRIC PARAMETERS
W=I 1556.2363 ;B1I=1 .0001 *W-;
A= 19.8473 ;XA=O.20126,
CD=O. 3,
1y-561 32,1
g =32 .2.
m=W/g,
rho=l 1.94,
L= 13 9792,
xb=O,

Alphas=I1,
Alphab=O,
zg=O 1.
zb=O.
zgb~zg-zb,

% NON-DIMENSIONING FACTORS
ndl=.5*rho*L A2,

nd2= 5*rho*LP^3
nd3= 5*rho*LA4,
nd4= 5*rho*L,5,

%/ HYDRODYNAMIC COEFFICIENTS
Zqdnd=-6 3 3e-4,Zwdnd=- 4529e-2,Zqnd=7 545e-3 ,Zwnd=- 1 391 e-2,
Zds=-5 603e-3 .Zdb=0 5 *(.5 603e-3 ).Zdltnd=(Alphas*Zds+~Alphab *Zdb).
Mqdnd=-8 8e-4,Mwdnd=~-5.61e-4.Mqnd=-3 702e-3 .Mwnd 1 03 24e-2,
Mds=-O 002409,Mdb=O 5 *(Q 002409),Mdltnd=( Alphas*Mds+Alphab*Mdb).

Zqd=nd3 *Zqdnd Zwd=nd2*Zwdnd,Zq=nd2*Zqnd,Zw--nd I *Znd
ZdIt=nd I *Zdltnd,

Mqd~nd4*Mqdnd.Mwd=nd3 *Mw.dnd Mqznd3 *MqndMw-nd2*Mwnd,
Mdlt=nd2*Mdltnd.
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% ESTABLISH SPEED RANGE
U= 90O01126,
for n= 1: length(U)-,

% SOLVES FORCE EQUATION USING FZERO FUNCTION
th(n)=fzero('satur',(-ZdltIZw),0.0000 1)-,

% COMPUTES RELATIONSHIP BETWEEN U AND Xgb WITH RESULTS FROM
ABOVE EQUATION
xg(n)=(Mw*U(n)A2 *tan(th(n))-zg*W*sin(th(n))-(0. 5)*rho*CD*A*XA*U(n)A2*
tan(th(n))*absgtan(th(n)))+Mdlt*U(n)A2*(0.4))/(W*cos(tb(n)));,
end,
XgbL=xg/13.9792,
Lp~sqrt(U "'2/(3.22)),
for n= I Iength(U)';
th 1(n)=fzero( satur I ,(-ZdltIZw),O 00001),
xgl1(n)=~(Mw*U(n)'~2*tan(thlI(n))-zg*W*sin(thlI(n))-(O. 5)*rho*CD*A*.
XA*U(n)A2*tan(thl I *bs I th(n)))+Mdlt*U(n)A,2*(.O.4))/( W*cos(th 1(n)))I
end,
XgbLI=xgl/13 9792,

0%o THIS IS PROGRAM SATUR.M. IT ESTABLISHES THE FUNCTION TO BE
SOLVED IN
% THE BIFSU M PROGRAM.

fuanction y--satur(th),
y=Zw*U(n)A'2*tan( th)+( W-B 1 )*cos(th)+Zdlt*U(n)A"2*(0.4)..
-(0 5 )*rho*CD* A*U(n)A2*tan(th)*abs(tan(th));

0/ THIS IS PROGRAM SATJR I.M. IT ESTABLISHES THE FUNCTION TO BE
SOLVED IN
% THE BIFSU M PROGRAM

fuanction y I=satur I(thl)I
y I Zw* U(n)"2 *tan(th I )±(W-B 1 )*cos(th 1 )4Zdlt *U(n)A2*(-0.4)...
-(0 5) *rho *C D*A* U(n)A2 *tan(th 1 )* abs(tan(th 1)).
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APPENDIX B0

DTRC SUDOFF MODEL CHARACTERISTICS

O3S1iI ?"AIWM~!S -HULL

ý.engthi 3e'~reen ?trpedic.l~arz (,-?) 1 (f) .9

:..ng:n :i :he Center of 3uOYa~nc7 :.Z3) 6f) 6.604,
:.n~ Th Freoody ~I (:~332

..anq:h of ?ara2Jlel 44.ddlebocy .)(: ;250

Diameter (:,)I 1-667
Tixnenss 3.a:4.0

3are B.3. 3.3. - 3.3. F ully
311i Isail ? Lines Ring Ving k ppended

*70L(-:1 ) 141.692 Z4.834~24 Z4.78279 425.7678 :4.389911

*6.39003 6.3726 6.61Z732 6.iC889 i.-613906

7C3(!-) 0.0 4~.00671: 0.0 0.0 ..).06669 S
'J(:) 63.7/17 65.35 65.514 6,,717 i,5

3uoyanc7(lb) 1.537.684. :3 46..4,(a2 3 541.2280 1_ &s :. 7 -82' 'ý6:6

a0.0180"78 3.318182 0.018144 O.3181:2 ).018Z96

xs 00.388697 0 069 -0.::::72 -0.06:Z25 .. :-

3.0010!3 ).J010-19 10.30106.6 1.301066 0.0C4

7OL(f: )-19

Ln(!,)6.6129

1cs(!:) I-0.006669

'JS(!:) 67.651

3uoyzncy(lb) :536.2363

0.318296

".0 -3.I27.467

0.001084~
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OESII ?AJA ER - SAIL

S.pan (f:) 0.7.9
.Root Chord (f:) 1.208
7.P Chord .-:i :•208 0
7,0 to Sail ".Z .istanc ) 3.03
.Aect .Ratioi 0. 603

C.ALCJLAT2M ?ADAMTETU - SAIL.

?-anfo Area (: 2) ara0.55
0

08Sr1 PA8AMEMTS - CONTROL PLANE

Span (ft) 0.438
Root Chord (fe) 0.704
74p Chord (f:) 0.500
o? to ?Ian* =- Distance (ft) 13.146

Aspecz Ratio 0. 7 20
Section ?rofile (NACA) 0020

CALMULAT PARAMETER - CONtROL PLANE

?:an-4"rm rea (Et 2 ) o.267
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St

13.0 j - 00000 17300-00
0.1 0.29058 0.08444
0.2 0.39396 0.I5520O
0.3 0.46600 0.21713
0.4 0.2!4,7 0.27:9'
0.3 0.-566V7 0.32066
0.i 0.i0352 0.36424 0

10.7 0.63514 o.4O34o
1.0 0.70744 0.-0047

2.0 0.847113 0.371763
3.0 0.94066 0.88484
4.0 I0.99282 0.98570
77.7143 ) 1:00000 1.00000* *
1.l.429 1.00000 1.00000
16.0 0.97398 0.95Z!3
17.0 0.81910 0.67093

20.0 0.11724 0.01373
20.1 0.1.Z43 0.02Z64
20.2 0.1007-i 0.01013
Z0.3 0.07920 O.3-0623

ZO.41671 0.00 I co
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S

.• •• ' • n• • a . r '•.'•:• i n .- incý:- , e:e='-vac-ves . X)

7Urtical ?lane

.•'-,].oC 3702
Z.'-0. oli6.IZ9 0

.•.•'-0.000561.
AOpf.C633

.-. 000860

-0.0005603

Iq -. 0024609

3ori:onta. ?l.an*

3aro 3.3. - 3.3. - 3.3. uily
31al Sai: 4 ?lanes .ing "ing ippended

-0.00594a -0.023008 -0.010494 -0.305943 -0.027834

-0.01Z795 -0.015534 -0.011O154 -0.01:939 -0.0136.8

-0.000019 -0.000697 -0.000033 -0.000019 -0.000584
T _. 00181: -0.000023 0.006324 0 00381 O. O05Z51

-0.001'597 -0.002378 -0.00306, -0. 002.3 5 -0.004"4

-0.013'78 -3.015042 -O.01..71 -0. 01899 -0.016:86
0.000202 0.3000008 O.A000:.5 O. 00621 ).000296

0.000060 -0.000196 0. 000465 0.000347 O.000398

-0.000676 -0.0007'0 -0.0007" -0.000787 -0.000897

G -ZO.38506 --. 081818 -32.54zo8 -!".40374a -0..397

TI 30.305929

IC.

K r'-0. 100005
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