
r

Form Approved as

AD-A272 660 TPAGE 0 P~o O""" ..... ,.. I I- 0ll l le ..... e 1.. ,01.... the oe... ............. .... c , 0... 11... o.tal .S
8telm qon o, ,flr onV, d comments ejol 't0 9Q I"-, bI•tclf eti•tite or anv other at>oet Or tfts

(ollenron" 01 Eton ..e8"uaert Se'. .'es •)edo'ate or normn10On 4.0 eemon F nnootr".,t 12 is jetieson
a.nt g and S~qet Pk.-e1tOt Redundcl Pnf~etl(0104 0198) VaVAhnQton ['C 20S03

1. AGIN-.... ... . . . ..... 3. REPORT TYPE AND DATES COVEREDI June 1993 memorandum
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Measure Fields for Function Approximation N00014-91-J-4038
N00014-92-J-1879

6. AUTHOR($) ASC-9217041

NIH 2-S07-RR-0704
7

Jose L. Marroquin N00014-91-J-1270

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

Massachusetts Institute of Technology AIM 1433
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADR I 10. SPONSORING/MONITORING

Office of Naval Research A R I./" A
Information systems
Arlington, Virginia 22217

It. SUPPLEMENTARY NOTES S.

None

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

The computation of a piecewise smooth function that approximates a finite set of data
points may be decomposed into two decoupled tasks: first, the computation of the locally
smooth models, and hence, the segmentation of the data into classes that consist on the
sets of points best approximated by each model, and second, the computation of the
normalized discriminant functions for each induced class (which may be interpreted as
relative probabilities). The approximating function may then be computed as the optimal
estimator with respect to this measure field.
For the first step. we propose a scheme that involves both robust regression and spatial
localization using Gaussian windows. The discriminant functions are obtained by fitting
Gaussian mixture models for the data distribution in the boundary of each class. We
give an efficient procedure for effecting both computations, and for the determination of
the optimal number of components. Examples of the application of this scheme to image
filtering, surface reconstruction and time series prediction are presented as well.

14. SUBJECT TERMS 15. NUMBER OF PAGES

fuction approximation 22

classification 16. PRICE CODE

neural networks
17. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

h-,",cbe 0, ANSI Sid 1399-1
M98 102

S 0 0 0 0 0 0 .• A

•I • i i - i lIli Ii ~ u i u i



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY X,

A.I. Memo No. 1433 June, 1993 4

Measure Fields for Function Approximation 4
u, ,Jrnot•:,ced r0

DTIC QUALITY I.•8PECTED 5 JBJstficaon

Jose L. Marroquin By
Dist- ibý, tioa I

Availabiliy Codes

Avail and/ior

Abstract

The computation of a piecewise smooth function that approximates a fin: Lj ,, al
points may be decomposed into two decoupled tasks: first, the computation of the locally
smooth models, and hence, the segmentation of the data into classes that consist on the
sets of points best approximated by each model, and second, the computation of the
normalized discriminant functions for each induced class (which may be interpreted as 0

relative probabilities). The approximating function may then be computed as the optimal

estimator with respect to this measure field.

For the first step, we propose a scheme that involves both robust regression and spatial
localization using Gaussian windows. The discriminant functions are obtained by fitting
Gaussian mixture models for the data distribution in the boundary of each class. We
give an efficient procedure for effecting both computations, and for the determination of
the optimal number of components. Examples of the application of this scheme to image
filtering, surface reconstruction and time series prediction are presented as well.

Copyright @ Massachusetts Institute of Technology, 1993

This report describes research done at the Center for Biological and Computational Learning in the Department of
Brain and Cognitive Sciences, and at the Artificial Intelligence Labordtory. This research is sponsored by grants from
the Office of Naval Research under contracts N00014-91-J-1270 and N00014-92-J-1879; by a grant from the National
Science Foundation under contract ASC-9217041; and by a grant from the National Institutes of Health under contract
NIH 2-S07-RR07047. Additional support is provided b) the North Atlantic Treaty Organization, ATR Audio and
Visual Perception Research Laboratories, Mitsubishi Electric Corporation, Sumitomo Metal Industries, and Siemens
AG. Support for the AT Laboratory's artificial intelligence research is provided by ONR contract N00014-91-J-4038
J.L. Marroquin was supported in part by a grant from the Consejo Nacional de Ciencia y Tecnologia, Mexico.

_ 
93-28011

9-3 -- -" nnuM IInu

4 0 0 0



1 Introduction imating functions are always discontinuous, and the dis-
continuities are always piecewise parallel to the coor-

This paper addresses the problem of approximating a dinate axes, so that continuous functions, or piecewise
function z : Rd - Q, given a finite set of data points smooth functions with complex discontinuity shapes are
(examples) {(x, zi), z, E Rd, :, E Q, i = 1 ... , N. The not well approximated. This is remedied in the MARS X
set Q may be a finite set, as in pattern classification approach (5], by replacing the step functions by trun- 0
problems, or may coincide with the real numbers (as in cated power spline basis functions, and by not remov-
function approximation, regression and filtering) ing the parent basis functions after they are split. The 4

A natural way of approaching this problem is to fit problem here is that now the resulting approximation is
simple local models to the data, which are then put to- aways globally smooth (so that discontinuous functions
gether using appropriate weight functions. The fitting are not well approximated). and that the representation
process, for each local model, involves first, the assign- can no longer be expressed as a sum of spatially localized
ment of a relative weight to each data point that indi- simple models, which has a high intuitive appeal.
cates its importance for the determination of the model, The objective of this work is to overcome some of
and second, the computation of the parameters that mran- these lirmtations; specifically, our goal is to develop a
imize an appropriate weighted error measure, representation that is : easy to interpret; efficient to

These two steps may be carried out in a decoupled compute, and flexible, in the sense that it can generate
fashion, by making the weights depend only on the spa- both smooth and piecewise smooth approximations. It
tial distribution of the independent variables {zJ. Ex- is based in the following ideas: 0
treme instances of this strategy are the local learning The most flexible representation has the form of a
algorithms proposed by Vapnik [1], where a different lo-
cal model is used for each point x in which the function measure field, which is defined by the following elements
is to be evaluated, and the model parameters are made i) A relatively small set of simple functions, {Zk
to depend only on those data points that are closest to Rd _ Q. k = I , m} (the local models).
x. Another example may be found in the use of Radial ii) A probabilistic description of the regions where
Basis Functions with fixed knots for function approxima- each local model is a good approximation of the 0
tion; in this case, the location of the knots (and hence, function, that is, a set of functions {pk : Rd -
the relative data weights) are dete:mined as a function of [01] k = I.ml such that Ek PkW L. fvr
the distribution of hm8. for example, using the K-Means all x, where pk(x) represents the probability that
algorithm (15]. the function is optimally approximated by ik at

This decoupled scheme, although computationally location x.
simple, does not take into consideration the structure of * O
the function itself, and therefore, will lead to relatively Thb pairs {(pk, z-k)} define a discrete measure field p
complex local models, so that the approximation will be, that represents the function:
in general, difficult to interpret, if the local models are
to reflect the structure of the functioi. the data weights p( W YPk(6z - 4kW) (1)
must depend also on the goodness of fit k= )

A simple -although computationally expensive-
way of doing this is to specify pararnetric models for where 6(.) is the usual delta function. S
both the weights and the local regressi,,bu, awid then ad- One may specify different criteria for computing the
just the parameters in a coupled way by minimizing an approximation z given the measure field (1). For exam-
appropriate cost function. Thus, for example, in [16], the pie, a smooth function may be obtained by taking the
cost function is the log-likelihood of a statistical mix- mean value:
ture model, which is rmnirmzed using gradient descent;
the local models ("experts") are multi-layer perceptrons, ;() = 'P(X)ik(X) (2)
and the weights ("gating networks") are linear functions
followed by an exponential transformation and normal- k=1

ization ("softmax units") The number of components and a piecewise smooth one by taking the mode:
is found by setting it to a sufficiently large number, and
deleting, upon convergence, those components with in- Z(r) = Z, (x) , r = argmaxpi(x) (3)
significant weights. k

The interpretability of the approximation increases if It is also possible to include additional information, such
the local models are given a simpler form. Also, it is as prior conditions on the shape of the smooth patches
computationally more efficient to start with a single com- or on the location of the discontinuities, and compute i
ponent, and successively add new ones by splitting the as the optimal Bayesian estimator [12].
domain of the one with worst local fit until the global This type of representation has been proposed in the
fit error is below a given threshold. This is done, for context of machine learning [16] [8], and also for the so-
example, in Recursive Partition Regression (RPR) [21, lution of a class of computational vision problems [12].
where the local models are low-order polynomials and It will be adequate if the models for the functions Z; and
the weights are step functions on each one of the inde- p are intuitively appealing, and allow for a computation-
pendent variables, ally efficient implementation. Here, we will use for the

The problems with this approach are that the approx- local models polynomials of low order (0 or 1), so that

0I
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piecewise constant and piecewise linear functions are ex- 1: for k = 1,.. n, assign to each m(O) a random lo-
actly represented. The discriminant functions may be cation k

modeled as normalized sums of Gaussians: 2 at time t, set

.= E 2
',i Gr(,(' = 1 if d(x,,m(')) < d(i,-m(')) j k

where: {Gkj(.)} are Gaussians; 3 is a positive number = 0 otherwise
that controls the siiuothles Vf Lim apprQ.ii..,jii, aad (with an appropriate rule for solving the ties) and ,
nk is the number of Gaussians that model the distribu-
tion of class k. n

For the computation of the corresponding parameters, mO+i) =a r E i d(,,u)s,) (7)
we propose a strategy that combines the computational s=1 k=1

efficiency of decoupling the weight and model computa- for example, if d(•,) is given by (6), we get:
tion with the power of making the weights dependent on
the local fit. The scheme is as follows: compute the local M= , ,I
models in a first step using weights that depend on both Mtt+i) = _______

x and z, that is. using local robust regression; in a sec- F.S sik
ond step, classify the data according to the model that
best approximates the function at each point, and finally Alternatively, one may consider the data as samples
compute the p functions as the discrirmnants for this in- from a mixture of populations {Sk, k = 1. n}, each
duced classification task (for classification problems, of one normally distributed with mean mrn and identical
course, the first 2 steps are not needed) covariances I.

The number of components is determined by a strat.- Assuming that for each i the indicator variables for
egy similar to that of RPR; first, components are added these populations, {sik}, are independently and identi-
one at a time, until the error variance reaches an appro- cally distributed according with a multinomial distribu-
priate value. In a subsequent "backwards" step, redun- Lion consisting on one equiprobable draw on n categories. S
dant components are merged (in the regression phase) the conditional log density for data point x, is thus:
or deleted (in the classification ph.-?-)

What makes this methodology attractive is the ex- logp(x, Is) = E-B sis]Xi - mk 11 + K
istence of efficient algorithms to perform the compu- k=1
tations. In the next section we will show that by us-
ing Gaussian windows, local robust regression becomes where K is a constant.
equivalent to the estimation of the parameters of a Gaus- Assuming that the data x {x, } given s - {s, I are 0
sian mixture model (like the one used in the classifica- conditionally independent, we get that the log likelihood
tion stage), and that this problem is equivalent to vec- for the complete data x and s is:
tor quantization with a quadratic distortion measure, for
which efficient algorithms exist. Since the discriminant /'(m) = N MkI2
functions in the classification phase are also modeled as C(m) = -0 1 E +NK (8)
Gaussian mixtures, a single computational framework k=i ,=1
may in fact be used for both steps. We may now find the maximum likelihood estimator

for m = { mi } by treating s as missing data and applying
2 Gaussian Mixture Models and the the EM algorithm [4] [7]: in the expectation (E) step

Generalized K-Means Algorithm at time t, the expected likelihood < £ > is found by
replacing the variables {si} in (8) with their conditional

Suppose we have N data points in Rd, {X .. = 1.. } expected value, given z and m(). This is found using
and we want to approximate their distribution with n Bayes rule-
codewords or "centers" {imk E Rd k = 1..n} that
minimize a distortion measure of the form: E[sik I x. m(')] - = Pr(x, E .S I xim('))

N n
C - d(--, mc)sL (5) exp[-311x, - mk()012]
i=1 -=i 27=• exp[-/31l= - m('11121

where d(zi, iok) is a local distortion measure, such asI s ep, wm
112 In the M step, we find the value of rm that maximi~er

d(i,k) = jjxj - mnkII (6) < £ >
The indicator variables sik are given by: (I)

sik = ls,(xr) Mkia) min w I w1) rk

with Is denoting the indicator function of set S, and Z

where the sets Sk consist on those data points that are In the limit as /3 - o, each indicator variable is replaced 0
mapped into codeword k. by the mode of the conditional distribution (which co-

It is possible to show [11] that the following (K- incides with the mean) in the E step, and so, the EM
Means) algorithm will never increase E: 2 algorithm reduces to the K-Means scheme. For finite

•



values of 0, it minimizes a distortion measure that is 2.1 Local Robust Regression
obtained from dier iv6 likeiihood of the daLa. In this case, a natural choice for 4 is the quadratic fit i

N ( n' error; if the local models are linear, so that ik = ak r+
£ = E exp[-3Ilzi - m bk, we get:

k=1 4 (r, (z,z;Ok)=(z--ak z-- b) 2  (I1)

In practice, the behavior of both algorithms is very sir- The function 4 may be modified to enforce some prior
ilar, although it has been reported that the EM scheme constraint; for example, to give higher preference to hor-
tends to produce more uniform center distributions [16]. izontal planes (i.e., for local ridge regression [221) we may
If one uses the EM algorithm, one can estimate, upon put:
convergence, the indicator variables Sik by: 4b(x, z:.Ok) = (z - ak x - bi,) 2 + V1Iakl1 2

Sik = 1 if w, k ? w for allj With this choice, the M step of the GKM (or EM) 0
= 0 otherwise (9) algorithms is equivalent to the solution of a decoupled

set of linear systems (one for each local model) whose size
and thus define the domain for each center k as the set grows linearly with the dimension of the input space.
of points zi for which sk = 1. The solutions found by these algorithms may be un-

Suppose now that in addition to the data points {Xs} derstood, in terms of robust regression, as the best n
we are given the corresponding values {fz} of a function hyperplanes that pass through the data, with the con-
that we want to approximate. The problem now is to straint (enforced by the JJX - mkI12 terms) that the sup- 0
find not only the set of centers {mk} that represents port for each hyperplane must be spatially localized; this
the data, but also to associate with each one of them a constraint is crucial to get good results, since it prevents
local model ik(z; 8k) that represents the function z with the system from finding suboptimal solutions with non-
minimum distortion in the domain (Voronoi polytope) of local support. The relative weight of this constraint is
the corresponding center. This means that we now have controlled by the parameter A, if its value is too high.
to minimize a distortion measure of the form: the non-local solutions will prevail, while if it is too low,

N n the location of the centers will be controlled solely by the

S= E log E exp - [3 [lIX, - mk II2 + A4D(x,, :, ,Ok)]] data density. The solution, however, is not very sensitive
i=1 k=i to the precise value of this parameter; if one scales the

(10) data so that all xi are inside the unit hypercube, and all
where: 4) measures the fit error of the model given by z, are in the interval [0, 1], a value of A between 1 and 5
the parameter vector Ok (and possibly additional prior gives good results.
contraints on this vector), and A is a parameter. The nature of the solution also depends on the num- •

To derive the generalized K-Means (GKM) algorithm ber of local models: there should be enough of them for
in this case, we consider a mixture model for the joint the system to escape local minima that correspond to
distribution of z and z and obtain the GKM scheme as non-locally supported hyperplanes. On the other hand.
the limit, as 3 - oo of the EM algorithm that estimates if there are toe many, one would be, in effect, modeling
the vector (m, 0); the main iteration takos now the form: the noise (i.e., overfitting the data) with the correspond-

1. E Step: compute ing degradation of the generalization capabilities of the
system.

(t) = k(Xi) This trade-off between model capacity and generaliza-
Z. - (X.) tion error has been widely recognized, and criteria dif-

where ferent from the minimization of the empirical risk have
ep)) been proposed to find an optimal compromise (e.g., min-

k(x) = expr [li? - m•)iI + Av(2,, z'; )1] irmization of the structural risk [1]; minimum description
length criteria [20] or cross validation techniques [3]).

which in the GKM ca.se reduces to. In this case, due to the simplicity of the local models,

I~) 1 if C, (xi) > (xi), r $ k one may use directly as a criterion an approximation to
- 0 . otherwise the expected value of the fit error. In [6] it is shown that

thiz expected value may be decomposed into a bias and
2. M Step: Set a variance terms:

SIt+l) 00t+1))
(fl+k I k E[(;(x) - z(z))] (Ei(x)- z(x)) 2 + E[(i(z)- Ei(x))2 ]

- arg min Z tw( (fix,- u112 + A4(zx,,,; v)) If z(.) is piecewise linear, and there are enough lo-

cal models, the corresponding piecewise linear regression

The choice of the function <D is determined by the de- z(x) is unbiased, so that the mean fit error is controled

sired behavior of the centers, and also by computational by the variance. For each local model, the variance of
considerations: if it is quadratic in 0, the maximization the predicted mean response ik(p), for any point p inside

steps in the above algorithms are implemented simply its Voronoi polytope Sk, may be estimated as [21]:

by matrix inversion. We now discuss the specific choices 1a(I+(p--k)T(xTx,)-
that are relevant for the determination of the local mod- Vk(p) = Var(ik(P)) k Tk

els and for the classification stage. (12)

• • • •• • •
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where nv is the number of examples inside Sk. where ý,i, is the best (LSE) hyperplane through the

-1 points in S, U Sk.
ni, = ;Each merging step consists in finding the models (., k)

& z, ES with the smallest value of Fjk; this statistic is then corm-

l2 1: Z pared with the tabulated value of F with (D + 1) and N
k = nk - D - 1 Z(z - (,))2 (n, +nk-2(D+1)) degrees offreedom at the appropriate S

,,,ES, confidence level; if it is smaller, the 2 models are replaced
where D is the dimension of the input space and the by Zk and the whole process is repeated until the null
(nk x D) matrix Xk whose rows are (x, - jk)T for each hypothesis (equality of the regression hyperplanes) is re-
z, E Sk. jected for the smallest F.

Equation (12) allows one to estimate the reliability of This test may fail if the normality assumption is
the approximation at any pointý therefore, one may use grossly violated (although we have found that it is rel-
it to estimate, in addition to the reconstructed burface, at.*ely robust) In these cases it may be convenient to
a corresponding "error map". also put an upper bound on the number cf linear compo-

The optimal number of models is determined by mini- nerts that one wants to include in the complete model,
mizing the average variance. This may be approximated so that the merging process stops only if the smallest k
by the mean variance at the centers { i I of the Voronoi is too large and the total number of components is below
polytopes: averaging Vk(ik) over all K centers, and not- this bound.
ing that ni ;• N/K, w- get: After the merging process is completed, one associates S

"V-. K0.Y2N with each data point r, a class c, that corresponds to the
model that contains the center k for which the indica-

where tor variable s,, = 1. To compute the desired measure
a2 =I E __field representation, one now has to find the discrirmnant

N - (-functions for the data {(x,,c,), i = 1 . N)

is the empirical risk. 2.2 Local Gaussian Classifiers 5
The complete strategy, therefore consists in adding Consider the problem of finding discriminant functions

one model at a time (e.g., by splitting the center with that optimally classify the data: {(x,, ),i = I... N},
worst local fit error) until a maximum number Kmar is c, E {1,.. , Q} for all i A simple way of doing '%,ic ,-
reached, and then pick the solution that corresponds to to approximate the data distribution within each class
the number of centers K that minimizes 1/k. The num- c with a sum of n, Gaussians whose centers are found
ber Kma. is related to the minimum number of examples again with the GKM algorithm [13]. This may be ob- * 0
that reliably support a hyperplane, and may depend on: tained from the above model by setting A to a very large
the dimension of the input space: the total number of ex- value, and $ to:
amples and the noise power. Although it is convenient
to choose it in a reasonable way, its precise value is not $(X, z; mk,) = 1 - 6(z(z) - c)
critical for the performance of the system. where ik, is the center of the k" Gaussian that approx-

Since the models are locally supported, it is possible imates the data distribution of class c.
that several of them correspond in fact to the same -or i mat now defin of clas c.
very similar- hyperplanes. For this reason, it is nec- One may now define a 1-parameter family of discrim-
essary, once a solution is found, to merge together the inant functions (indexed by the positive parameter 0)

redundant components. To do this, one should find an as: rn
appropriate way of measuring how different two hyper- pc(c) = _k=l GkAj)" (13)
planes are. It may be shown [191 that given the usual F_= r=, Gq(-)1
normality assumptions, the relative MSE reduction ob- where
tamed by replacing the two hyperplanes by a single one
(with the appropriate corrections to compensate for the Gk1(r) =1 A, 11/ ex I( X_ TA -(x mkA)]
different number of parameters) has a standard F dis- PA2
tribution and hence, it may be used for testing the cor-resonin hpohess.Inpatiulr, oreah ai o The matrices Ak, (I Ak, I denotes their determinants)
responding hypothesis. In particular, for each pair o may all be taken equal to the identity (in which case this

procedure becomes similar to the LVQ1 method [9]), or
they may be computed as the covariance matrices inside

(SSjk -+55 -SSk)/(D + 1) the corresponding Voronoi polytope (see [13]):-j (SSJ + SSi.)/(n 1 + nt - 2(D + 1))1

where D is the dimensionality of the input space; Ak, = - E (Xi - mk)(Xi - Mko:)T

SS.? = 1_: (Z, _ ,•(:n))2 nk,ESk,

i:Z,=s, (this is usually important in high dimensions with S
anisotropic data).

SSjk = > (z, -Jk(7))' For high values of 0, the classifier simply assigns to
,:Z,.ESUSk 4 each point the class of the closest center (with a distance

• • • •• • •
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weighted by A matrices). As 3 decreases, the discrimi- The first set of examples deal with 2-dimensional
nant functions -and hence the inter-class boundaries- probfems The first one shows that the system cor-
become smoother, so that 3 controls, in some sense, the rectlv identifies the piecewise linear structure when it
trade-off between capacity and generalization capabili- is present panel (a) of figure 1 shows a function z(z, y)
ties. that is equal to a tilted plane inside an L-shaped re-

If the classifier is trained in such a way that it achieves gion and is constant elsewhere The input to the sys-
(near) perfect classification of the data with high 3, this tern consisted on 200 triplets {(zz,,yz,)}, where each
parameter may then be used to fine-tune the classifier (z,, yi) is a randomly selected point on the square and
(using. for example cross-validation) to attain low gen- ", = z(zt, y,) + n, where {hn} is a set of independent.
eralization errors. identically distributed Gaussian random variables with

"Training the classifier means finding the minimal zero mean and variance equal to 0.05. In step 1, the algo-
number of centers that achieve a given classification er- rithm found 5 local models, which after the merging step
ror. For this, one may use the following procedure: start were reduced to 2 The second step was thus a binary
with one center per class; upon convergence of the K- classification problem for which perfect classification was
Means procedure, compute the approximate classifica- achieved with 26 Gaussians (with covariance matrices
tion; add a new center at a location that corresponds equal to the identity), which after pruning were reduced
to a misclassified data point in the class with highest to 17 The reconstructed surface, obtained as the mode
classification error, and repeat the K-Means process of the measure field with 43 = 8, is shown in panel (b)

Once the target approximation accuracy (or the maxi- Note that additional information about the inter-class S
mum number of allowable centers) is reached, one should boundary may be easily incorporated, improving the so-
"prune" the irrelevant centers (those sample the interior lution without having to recompute the measure field, for
of a class, and therefore do not contribute to the cor- example, if one wishes to reconstruct the surface in the
rect classification of any point.). More precisely, a center nodes of a square lattice L, one may include a smooth-
mk, is pruned if its irrelevance function I(k, c) equals 1 ness constraint on these boundaries in the form of a prior
I k, c) is defined as Markov Random Field (MRF) model for the shape of the

smooth patches (see [12]). Using, for instance, a first
order .MRF model with Ising potentials, one may obtain

I(k, c) = 6 (1 - 6(c - -:k(Xi))) the optimal classification {c.z i E L} as the MPM estima-
(i. =C tor [14] with respect to the posterior Gibbs distribution

with energy:
where i(zi) is the current estimate for the class of x,,

and ik,(zt) is the class that would be estimated if Mk, U(i) = • V(c,, ;) - -pc,(xl(i)) . *
was deleted. Note tiiat for high 3 one needs to consider 10.il ,tL
in the sum only those points in the Voronoi polytope of
mk,, and ik,(z,) is simply the class associated with the with

second nearest center to x,. V(a,b) = - ,if a = b
In practice, it is possible to prune the irrelevant cen-

ters dynamically by computing I(k,c) for all centers at
each iteration; if a center is found to be irrelevant, it is where [i, j] denotes summation over all nearest neighbor 3
pruned and all the data points inside its Voronoi poly- pairs of sites in L, -" is a parameter and rI(i) is the
tope are marked as inactive. In this way. one works with coordinate vector of node i.
less and less data points, accelerating the whole process Figure 1-c shows the top view of the "true" classi-
(provided that at each iteration one checks the inactive fication: panels (d) and (e) show the maximum likeli-
points and includes again those that are misclassified), hood classifications (obtained by selecting the class with
We have found that in general this procedure gives the largest p, at each node) for /3 = 8 and 8 = 2, respec-
same results as the one described above, except when tively. The optimal Bayesian (MPM) classification (with
there is a very large inter-class overlap (classification y = 10) is shown in panel (f). Note that in all cases all
noise), when the dynamic pruning may fall into a limit the examples are correctly classified; the generalization
cycle, performance, however, will clearly be superior in the last

An interesting by-product of this pruning procedure case.
is a secondary class that may be associated with each Figure 1 around here
data point, namely, an indicator of its relevance or ir-
relevance for the primary classification task. One may The second example illustrates the system perfor-
then construct a binary classifier for this secondary class mance when one of the surface patches is non-linear.
which may be useful for guiding the recollection of new For this, we use the function studied in [10], which is
data, particularly when this involves complex and ex- illustratred in panel (a) of figure 2 on the unit square.
pensive procedures. Again. the input to the system consisted in 200 triplets

f (x,, y, zi) } with (xi, yi) selected randomly. The system
3 Examples found 6 components in step 1 (after merging), and 21

Gaussians (with covariance matrices equal to the iden-
In this section we present some examples that illustrate tity) in the 6-way classifier of step 2. The reconstructed
the performance of these techniques. surface is now computed as the mean of the measure field

0 00 S0 *



(to get a smooth reconstruction). It is shown in panels time series created by the Mdcaie)--lass delay-difference
(b) and (c) of figure 2 for 3 = 10 and J = 2, respectively equation

Figure 2 around here (t + 1 ) = (I - b)y(t) + a y(t -
Y~t~1l)=(lb)Y 1t+aly(t - i) 0

3.1 Image Filtering and Segmentation with a = 0.2, b = 0 1 and r = 17. 1

An important class of problems arises when one has Each 4-dimensional example point x, is formed by the
dense, noisy data on a regular lattice (i.e., an image), so values of the series at times: Ti - 6, T, - 12. T. - 12 and
that no interpolation is needed. In this case, the desired 7T, - 18. The corresponding z, is the value at T, + 85
result is just the output of step 1. This output may be Using a training set of 1000 examples the local robust
interpreted both as a filtered image (since the fitted lo- regression finds 26 components, which after merging are
cal models smooth out the noise) and as a segmentation, reduced to 21 For the classification phase, a simple
where each segment corresponds to the domain of each Gaussian classifier (i.e., with one center per class and
local model. Since there is an observation z, at every 3 = 1) was used (giving 3.8 % classification error). The
point where one wants to compute the approximation, final normalized rms error is 0.12, which is comparable
one may also construct a measure field representation to the accuracy of a standard Radial Basis Function net-
by p..tting: work [181 performing the same task (with an rms error

of 0. 1), as reported in [17]

exp [-3[I1x, - MkJ12 + A(z, 4(x,))2]] The most accurate algorithms reported there a
Pi(X) = -( ] multi-layer perceptron trained with back propagation2, exp [-3[ilx. - Mn 1 12 + A(:, - '(x.)) 2]] and a particular Resource-allocating network, achieved

for each center k (note that after merging one may have a normalized rms of 0.03) It is worth noting, how-
t e l m ever, that the computational load of our method is very

zk(z) = ,i(x) if centers j and k belong to the same light, and the total number of parameters. which is
component). By setting the filtered image to the mean 21 x (4 + 2 + 10) = 336 makes this representation more

value with respect to this measure field, one may use compact than all others reported in [17] (all ue s more

3 to control the amount of inter-component smoothing than 500 parameters).

for large 0 we get an edge-preserving filter and for small

3 a global smoother. The performance of this scheme 4 Summary and Discussion
for a piecewise linear, noisy synthetic image is shown in
figure 3. Note the correct identification of the 3 linear We have presented a strategy for approximating a func-
components (after merging), and hence, the correct seg- tion, given a set of examples, in which an intermedi-
mentation, in spite of the fact that the intensity gradient ate representation -a measure field- is computed in O
between linear regions disappears in some parts of the a first stage. This representation, which consists in a
image. The shape of the inter-class boundaries may be set of simple local models with associated probabilities,
made smoother (and the isolated pixels eliminated) by has the advantage of allowing for globally or piecewise
using a Gibbsian prior and computing the MPM estima- smooth reconstructions without any additional compu-
tor as above. tational effort; also, it permits the incorporation of ad-

ditional information about the reconstructed function
Figure 3 around here (e.g., about the location or shape of the discontinuities,

A similar idea may be used for image quantization, etc.) in an easy way.
suppose one wishes to represent an image with a fixed, For the computation of this representation, we pro-
small number of grey levels. In this case, the local mod- posed a procedure in which the local models are found
els are 0-order polynomials (constants) and the merging in a first step, and induce a segmentation of the data (in
phasp is stopped when the desired number of components terms of which local model is supported by each data
is reached. The result is illustrated in figure 4, where a point). The associated probabilities are then computed 1
detail of a real. noisy image is quantized to 5 levels (a in a second step as the discrirminant functions of this
uniform quantization is also included for comparison), induced classification task.

This procedure has the advantage of combining the
Figure 4 around here computational simplicity of decoupled methods for find-

3.2 Time Series Prediction ing the domain of each local model, with the power of
making the local model selection dependent on the lo-

This example illustrates the system performance in more cal fit, which permits the use of simpler models that are
than 2 dimensions and in a situation where the basic easy to interpret. What makes it specially attractive is
model assumptions (piecewise linear structure of the true the existence of efficient algorithms for performing these
function and additive Gaussian noise) are grossly vio- computations; these algorithms are generalizations of the
lated, as we show, the performance is still reasonable in K-Means procedure for vector quantization, with the ad-
this case. dition of terms that measure the goodness of fit. Here,

The task is to predict the value of a time series at they were derived from the EM algorithm for computing
some future time, based in 4 previous values. To be able the parameters of a Gaussian mixture model.
to make comparisons with other approximation meth- An important problem that this procedure has in com-
ods, we use the same example as in [17]: the chaotic 6 mon with all methods that approximate a function as

0 4
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a ,. .i tocal models is the trade-off between A1U) P Lancaster and K Salkauskas Curve and Surfact
overall capacity and generalization capabilities Here Fitting Academic Press. London, V1¶6
we proposed a simple statistical criterion, namely. the [11] Y Linde, A. Buzo, and R Gray algorithm for
average variance of the mean predicted response of each vector quantizer design Proceedinys of the IEEE.

model, to find the optimal number of models Com-28(1):84-95, January 1980
It is also important to eliminate redundancies after C

each step has converged, these redundancies are caused, [12] J L Marroquin. Random measure fields and the in-
in the first step, by the fact that the local models are tegration of visual information. IEEE Trans SMC
spatially localized (so that a hyperplane that extends 22 705-716, 1992
over a large region of the input space will be broken into [13] J L Marroquin and F Girosi Some extensions
several components to find a good approximation to its of the k-means algorithm for image segmentation
boundary). In the second step. there are Gaussians that and pattern classification Al Memo 1390. MIT Ar-
approximate the data distribution away from the inter- tificial Intelligence Lab., Cambridge, MA, January
class boundaries and are thus irrelevant for the classifi- 1993
cation task. In the proposed scheme. these redundancies [14] L Marroquin. S. MitterI and T Poggio Prob-
are eliminated by merging similar hyperplanes (using a abilistLc solution of ill-posed problems i computa-

criterion based on the F statistic) after the first step. tional vision J. Amer. Stat Assoc.. 82:76-89. 1987
and by pruning irrelevant components after the :econd,
this last method has the advantage of producing a model [15] J Moody and C. Darken. Fast learning in networks
for the relevance of the examples, which may be used to of locally-tuned processing units Neural Computa-
guide the gathering of additional data. tion. 1(2) 281-294. 1989

The results of the experiments we have performed ii- 116] S.J Nowlan Soft competitive adaptation Ph D
dicate the plausibility of this approach for general func- Thesis CMU-CS-91-126. Carnegie Mellon n'mv.
tion approximation tasks, and specially for surface re- Pittsburgh. PA, April 1991
construction problems like those that occur in image pro- '17] J Platt A resource-allocating network for func-
cessing and computational vision tion interpolation Neural g 312

tio inerplaionNeualComputation. 3.213-225Acknowledgements: I wish to thank Federico Girosi, 1991
Tomaso Poggio and John Harris for many useful discus-
sions. The data for the time series prediction example [181 T Poggio and F Girosi Regularization algorithms
were kindly provided by John Harris. for learning that are equivalent to multilayer net-

works Science. 247 978-982, 1990
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FIGURE CAPTIONS

Figure 1: (a) Original surface. (b) Reconstructed surface from 200 exam-
pies. (c) True classification (d) Maximum likelihood classification (/3 = 8).
(e) Maximum likelihood classification (3 = 2). (f) Bayesian (MPM) classifi-
cation.

Figure 2: (a) Original surface. (b) Reconstructed surface from 200 examples 0

(ý3 = 10). (c) Same as (b) with 3 = 2.

Figure 3: (a) Original noisy image. (b) Filtered image. (c) Segmentation
(each grey level corresponds to a linear component).

Figure 4: (a) Original image. (b) Optimal quantization. (c) Uniform quan-
tization. 5 4
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