AD-A272 658

WL-TR-93-4096

WELDALITE ™ 049 (AI 2095-T8): ANISOTROPY EFFECTS AT CRYOGENIC CONDITIONS

John J. Ruschau University of Dayton Research Institute 300 College Park Dayton OH 45469-0136

Kumar V. Jata Materials Integrity Branch Systems Support Division

August 1993

Interim Report for August 1991 - June 1993

Approved for Public Release; Distribution is Unlimited

Materials Directorate Wright Laboratory Air Force Materiel Command Wright-Patterson Air Force Base, OH 45433-7734

93 11 12 105

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government thereby incurs no responsibility nor any obligation whatsoever. The fact that the government may have formulated, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner construed, as licensing the holder or any other person or corporation, or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is released to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NEAL R. ONTKO Engineering and Design Data Materials Engineering Branch

THEODORE J. REINHART, Chief Materials Engineering Branch Systems Support Division

THOMAS D. COOPER, Chief Systems Support Division Materials Directorate Wright Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by the organization, please notify WL/MLSE BLDG 652, 2179 TWELFTH ST STE 1, WPAFB OH 45433-7718 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security consideration, contractual obligation, or notice on a specific document.

	DOCUMENTATION F	PAGE	OMB No 0704 0188
for reporting burden for this collection of hering and maintaining the data needed, ection of information including sugrestic	information is estimated to average 1 hour p and completing and reviewing the collection o ins for reducing this burden to washington e	er response including the time for revie of information. Send comments regard leadquarters services. Directorate for in	wing instructions, searching existing data sources by this burden estimate or any other aspect of this formation Operations and Reports, 1215 intercon
AGENCY USE ONLY (Leave b)	202.4302 and to the Office of Management and ank) 2. REPORT DATE August 1993	3. REPORT TYPE AND Interim: 8/9	(0704-0188) Washington UC 20503 DATES COVERED L to 6/93
TITLE AND SUBTITLE		5	FUNDING NUMBERS
Weldalite TM 049: / Cryogenic Cond ⁺	Anisotropy Effects at itions		62102F 2418 07
AUTHOR(S)			03
John J. Ruschau a	and Kumar V. Jata		F33615-90-C-5915
PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		PERFORMING ORGANIZATION
University of Dayto	on Research Institute		REPORT NUMBER
300 College Park Dayton, OH 45469-(0136		UDR-TR-93-69
SPONSORING/MONITORING A Materials Directora	GENCY NAME(S) AND ADDRESS(ES) 1	0. SPONSORING / MONITORING AGENCY REPORT NUMBER
Wright Laboratory Air Force Materiel Wright-Patterson Af	Command FB, OH 45433-7734		WL-TR-93-4096
Approved for public	c release; distributio	on unlimited.	
. ABSTRACT (Maximum 200 wo	rds)		
. ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel	ros) acture, and FCGR testing dalite™ 049 (AI 2095-T8)	was performed on a pla	te of the aluminum-
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel liquid helium (4K	acture, and FCGR testing dalite [™] 049 (Al 2095-T8)	was performed on a pla over a temperature ran	te of the aluminum- ge from ambient to nens removed from
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel liquid helium (4K various orientatio	ros) acture, and FCGR testing dalite™ 049 (Al 2095-T8)) conditions. Properties we ns within a 12.7 mm (1/2 i	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate t	te of the aluminum- ge from ambient to nens removed from o characterize
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel liquid helium (4K various orientatio anisotropy with m	acture, and FCGR testing dalite™ 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to bness. Strength and EC	te of the aluminum- ge from ambient to nens removed from o characterize
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC	te of the aluminum- ge from ambient to nens removed from o characterize CGR properties are
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel liquid helium (4K various orientatio anisotropy with re compared to the c applications.	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum allo	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate t hness. Strength and FC by 2219-T87, developed	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Wel- liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in-	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum allo dicate a high degree of ani	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility,
B. ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in with the lowest st	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum allo dicate a high degree of ani trength/highest ductility oc	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to curring at 45-60° from	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility, the rolling direction. (over)
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in with the lowest st	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum allo dicate a high degree of ani rength/highest ductility oc	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to curring at 45-60° from	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility, the rolling direction. (over)
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in with the lowest st SUBJECT TERMS eldaliteTM 049 Fra luminum-Lithium Ter 095 Fat	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum alle dicate a high degree of ani rength/highest ductility oc acture Toughness Cr nsile 22 tigue Crack Growth	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to curring at 45-60° from	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility, the rolling direction. (over) 15. NUMBER OF PAGES 38 16. PRICE CODE
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in with the lowest st SUBJECT TERMS leldaliteTM 049 Fra luminum-Lithium Ten 095 SECURITY CLASSIFICATION of REPORT	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum allo dicate a high degree of ani rength/highest ductility oc acture Toughness Cr nsile 22 tigue Crack Growth 18. SECURITY CLASSIFICATION OF THIS PAGE	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to curring at 45-60° from cyogenic 219	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility, the rolling direction. (over) 15. NUMBER OF PAGES 38 16. PRICE CODE TION 20. LIMITATION OF ABSTRACT
ABSTRACT (Maximum 200 wo Tensile, fr lithium alloy Well liquid helium (4K various orientatio anisotropy with re compared to the c applications. Results in with the lowest st . SUBJECT TERMS eldaliteTM 049 Fra luminum-Lithium Ter 095 Fat	acture, and FCGR testing dalite [™] 049 (Al 2095-T8) c) conditions. Properties we ns within a 12.7 mm (1/2 i espect to strength and toug conventional aluminum alle dicate a high degree of ani rength/highest ductility oc acture Toughness Cr nsile 22 tigue Crack Growth 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	was performed on a pla over a temperature ran ere developed on specir n) nominal thick plate to hness. Strength and FC by 2219-T87, developed sotropy with respect to curring at 45-60° from cyogenic 19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	te of the aluminum- ge from ambient to nens removed from to characterize CGR properties are d for similar cryogenic strength and ductility, the rolling direction. (over) 15. NUMBER OF PAGES 38 16. PRICE CODE TION 20. LIMITATION OF ABSTRACT UL

Abstract contd.

Decreases in test temperature led to higher strengths and similar anisotropic behavior, with little or no change in ductility. Fracture toughness measurements did not reveal any significant orientation effects, with toughness levels insensitive to the cryogenic temperatures examined. It was not possible to develop valid FCGR data on C(T) samples oriented in either the T-L or T-L plate directions due to out-of-plane cracking. Constant amplitude FCGR data generated on 45° oriented samples are comparable with reference data on similar Weldalite material for the T-L and L-T directions, though a slight degree of anisotropy appears to exist at lower values of ΔK . FCGR data obtained at liquid nitrogen and liquid helium test conditions were identical and only slightly lower than similar data developed under ambient conditions.

ii

FOREWORD

This program was conducted by the University of Dayton Research Institute (UDRI) in cooperation with the Systems Support Division of Wright Laboratory (WL/MLSE) under Air Force Contract Number F33615-90-C-5915 "Quick Reaction Evaluation of Materials & Processes." Mr. Neal Ontko served as contract monitor.

This effort was conducted during the period of August 1991 through June 1993. The authors would like to extend special recognition to Messrs. John Eblin and William Fortener of the University of Dayton who performed all mechanical testing, and to Ms. Mary Ann Phillips of WL/MLSE who provided the test material and ample background information.

This report was submitted by the authors in August 1993.

Accesion	n For								
NTIS CRA&I DTIC TAB Unannounced Justification									
By Distribu	By Distribution /								
Availability Codes									
Dist	Avail a Spe	and / or scial							
A-1									

TABLE OF CONTENTS

1

SECTION		PAGE
1	INTRODUCTION	1
2	MATERIALS AND PROCEDURES	2
3	RESULTS AND DISCUSSION	5
	3.1 TENSILE	5
	3.2 FRACTURE TOUGHNESS	6
	3.3 FCGR	7
4	CONCLUSIONS	9
	REFERENCES	10

AGE

۶.

LIST OF TABLES

vi

TABLE	PAGE	
1	Chemical Composition of Weldalite 049 (Al 2095-T8) Test Plate	
2	Tensile Data Summary for Weldalite 049 (AL 2095-T8) Plate 13	
3	Tensile Data Summary for Al 2219-T87 Plate14	
4	Fracture Toughness Summary for Weldalite 049 (AL 2095-T8) Plate	

•

¥)

-

•

•

₽

•

LIST OF FIGURES

も

K)

D

\$

FIGURE	PAGE
1	Photomicrograph of Weldalite™ 049 Test Plate
2	Setup for Liquid Helium Tests
3	Tensile Properties vs. Orientation for Weldalite 049 at (a) Room Temperature and (b) Liquid Helium Conditions
4	Tensile Properties vs. Orientation for Al-2219 Plate at (a) RT and (b) Liquid Helium
5	Strength vs. Temperature for Weldalite 049 for (a) L Orientation and (b) 45° Orientation
6	Strength vs. Temperature for Al 2219-T87 for (a) L Orientation and (b) 30° Orientation
7	Room Temperature and Liquid Helium YS/Ductility vs. Orientation for Weldalite 04922
8	Fracture Toughness vs. Temperature for Weldalite 049 at Various Orientations
9	Room Temperature FCGR Results for Al 2219-T87 at Various Orientations
10	Photograph of L-T Weldalite 049 Crack Growth Sample with 20% Side-Groove
11	Room Temperature FCGR Data for Weldalite 049 at Various Orientations
12	FCGR Data for Weldalite 049 at Cryogenic Temperatures
13	FCGR Data for AI 2219 at Room and Liquid Nitrogen Conditions

SECTION 1 INTRODUCTION

Since their introduction in the early 1980's aluminum-lithium alloys have been purported to be ideal replacements to their conventional, non-lithium containing counterparts in a number of applications due to such mechanical property enhancements as higher specific strength and stiffness. One particular area where aluminum-lithium is expected to outperform conventional aluminum is in cryogenic applications, where their high strength and toughness at low temperatures, coupled with lower density, make them an ideal candidate for liquid fuel storage (i.e., liquid oxygen and hydrogen) for airborne systems. Presently, the leading conventional aluminum alloy for such usages has been 2219, developed in the 1950's primarily as a weldable alloy with high strength and toughness properties at cryogenic conditions and currently used in the main fuel tanks for the Space Shuttle as well as in other similar launch systems.

In the last few years the mechanical behavior and fracture mechanisms at cryogenic temperatures have been reported for many aluminum-lithium alloys such as 2090, 2091, and 8090 [1-8]. One shortcoming of these commercially available alloys, however, which has severely limited their acceptance has been the high degree of anisotropy with respect to mechanical properties. In this effort a more recently developed aluminum-lithium alloy is investigated, Weldalite[™], which, as the name implies, was developed specifically for weldability and cryogenic applications^[9]. Strength/ductility, fracture toughness, and fatigue crack growth rate properties are developed for plate material at temperatures ranging from room temperature to liquid helium (4K). At each test temperature, the degree of anisotropy with respect to strength and fracture properties is documented. Comparisons are made to the aforementioned 2219 plate alloy.

SECTION 2 MATERIALS AND PROCEDURES

The material examined in this effort was a single plate of Weldalite[™] aluminumlithium, produced and furnished by the Reynolds Metals Co. This particular plate (Lot #901T391A) was delivered in early 1991 as part of the Air Force/Industry Cooperative Test Program on Advanced Aluminum and was originally designated as Weldalite 049 in a RX815-RT70 temper condition. It has since been redesignated as 2095-T8 by the Aluminum Association. In this report the names Weldalite, Weldalite 049 (RX815-RT70), and aluminum 2095-T8 are used interchangeably and refer to this same plate of material. Plate thickness was nominally 12.7 mm (1/2 in). A photomicrograph of the test material is provided in Figure 1. The chemical composition determined for this plate is furnished in Table 1, along with compositional limits established by the Aluminum Association for Al 2095. Lithium content for this particular alloy is lowest among current Al-Li alloys; consequently density reductions are not as great as compared to those of other available Al-Li alloys.

Sub-sized tensile samples were removed from the mid-thickness location of the plate material, oriented in the 0 (L), 30, 45, 60, and 90° (T) directions. Specimen geometry was cylindrical with a 4 mm (0.158 in) test section diameter and 25 mm (1.0 in) gage length (GL). Similar sized tensile samples were likewise removed from a single 6.4 mm (0.25 in) plate of Al 2219-T87 in the 0 (L), 30, 60, and 90° (T) plate directions to serve as a basis for comparison.

For fracture toughness evaluations, C(T) specimens with W = 38 mm (1.50 in)were removed in the 0° (L-T) orientation, as well as the 30, 45, 60, and 90° (T-L) plate directions. Thickness of the toughness samples was limited to the plate thickness. Fatigue crack growth rate (FCGR) data was generated using C(T) specimens with W = 51 mm (2.0 in), and thickness of approximately 6.4 mm (0.25 in). Due to the limited amount of available material, the FCGR samples were removed only from the L-T, T-L, and the 45° plate directions.

Tensile testing was performed in an MTS servo-hydraulic test machine operating in stroke control mode following guidelines established in ASTM E8-90a for Tension Testing of Metallic Materials. A displacement rate of 1.25 mm/min. (0.05 in/min.) was

used for the test temperatures of 21, -73, -196, and -269 °C (70, -100, -321, and -452 °F, respectively). Strain information was obtained using a 25 mm (1.0 inch) GL cryogenic extensometer. Percent elongation was determined using the fit-back method.

Fatigue crack growth and fracture toughness testing was likewise performed in an MTS servo-hydraulic test machine over a similar temperature range. Procedures described in ASTM E647-91 for constant load, K-increasing methods were adhered to. Crack growth data was obtained at all temperatures using a computer-automated data acquisition system developed by the author. Crack length measurements were accomplished using compliance techniques, while growth rates were determined using the secant method as described in the test standard.

Fracture toughness data was obtained at the cryogenic conditions using two standard test methods. For those limited cases where linear elastic behavior was prevalent, K_{IC} was obtained using the ASTM E399-90 Standard for Plane-Strain Fracture Toughness. For the majority of cases, however, K_{IC} values were derived from J_{IC} measurements following those guidelines established in ASTM E813-87. In the latter case, testing was performed using the single specimen J_{IC} software application program developed by MTS for use with the TestLinkTM computer control and data acquisition system. Values of K_{IC} were converted from the J_{IC} measurements using the following expression:

$$K_{IC} = \sqrt{(J_{IC} \cdot E)}$$

All testing at the -73°C (-100°F) condition was conducted using an environmental chamber which completely enclosed the specimen and extensometer/clip-gage arrangement. Liquid nitrogen was slowly introduced into the chamber through a solenoid valve controlled by a Gulton-West temperature controller. Temperature was maintained to within $\pm 2^{\circ}$ C ($\pm 4^{\circ}$ F) of the desired test temperature. Testing at -196°C (-321°F) was accomplished by submerging the specimen in liquid nitrogen throughout the test.

A liquid helium test chamber, manufactured by Andonion Cryogenics Inc., was used to perform tests at the liquid helium test temperature of 4K (-269°C or -452°F). A special tensile test apparatus, consisting basically of a pull rod within a compression tube, was used to apply load to the specimen while keeping it continually submerged in the liquid helium. A schematic illustration of the set-up is furnished in Figure 2. The excitation voltage for the extensometer/clip-gage was reduced to approximately 2 VDC to minimize heating of the strain gages which in turn would cause boiling of the liquid helium in the vicinity of the gage and lead to erratic strain readings.

4

*)

SECTION 3 RESULTS AND DISCUSSION

3.1 TENSILE

Tensile tests results for Weldalite 049 are tabulated in Table 2. For comparative purposes the results of similar testing on Al 2219-T87 6.4 mm (0.25 inch) plate are likewise presented in Table 3. The data shown in each table reflect the results of a single test per condition. Results furnished in Table 2 indicate that the Weldalite material possesses an excellent combination of strength and ductility for the principal plate directions, with strength properties greater than that of all other commercially available Al-Li alloys. Strength data presented for the L and T directions at RT are in good agreement with reference data [11] on identical material; elongation measurements are lower. This may be due to the smaller test section diameter used in this study.

Tensile results for the Weldalite alloy display a high degree of anisotropy for all temperatures investigated, as illustrated in Figure 3 for room temperature and liquid helium test conditions. Strength levels for each temperature are highest for the principal plate directions (L & T) and drop significantly in the 45-60° direction. Ductility inversely follows the strength level at each test temperature, i.e., lowest in the principal directions and highest in the 45-60° direction.

In contrast to this, similar data for 2219 at the same test temperatures are illustrated in Figure 4 and reflect little or no influence of orientation on strength properties. Only at liquid helium conditions does the strength of 2219 show a noticeable drop in the transverse (90°) plate direction relative to the other orientations; for all other temperatures, strength properties are relatively insensitive to orientation. Ductility for 2219 likewise appears insensitive to plate orientation for the cryogenic temperatures examined, though scatter in individual RA and elongation measurements makes subtle differences difficult to resolve.

Regarding the influence of test temperature, both Weldalite and 2219 show a consistent increase in both yield and ultimate strength with decreasing temperature, as illustrated in Figures 5 and 6, respectively, with Weldalite possessing typically a 125 MPa strength advantage over 2219 at any given test condition. Trends of ductility vs. temperature are not as pronounced for either alloy, though a slight increase in % elongation with decreasing temperature for both alloys is noted. The effects of

temperature on strength properties of Weldalite are further illustrated in Figure 7 at the two temperature extremes for the various orientations examined. Yield strength at the liquid helium environment is consistently in excess of 100 MPa over room temperature results for all orientations, while ductility changes little between the two temperatures illustrated. Again, yield strength is lowest and ductility highest in the 45-60° orientation for each temperature extreme.

As a final point regarding tensile strength anisotropy, reference data on similar Weldalite material ^[8] report short transverse tensile strength values nearly equal to those of the two principal plate directions (L & T) presented herein. Increases in short transverse tensile strength with decreasing temperatures were also reported, not quite to the extent as were developed in this study but still comparable to the in-plane strength levels at all temperatures. Thus, tensile anisotropy which exists in the in-plane dimensions is not apparent in the short dimensions of this material, a notable distinction from other commercial Al-Li alloys.

3.2 FRACTURE TOUGHNESS

Fracture toughness data obtained for the various plate orientations are presented in Table 4 for temperatures ranging from room temperature to 4K (-452°F). The same data is graphically depicted in Figure 8. Results based on a single test specimen per condition indicate no distinct differences in plane strain fracture toughness as a function of orientation for any of the test temperatures examined. Any subtle orientations effects which might exist are masked by the larger variability in Kic measurements. (Note: the variability in toughness values presented is believed by the authors to be due more as a result of the method in which they were derived from J_{IC} measurements. An accurate assessment of the J_{IC} values using the single specimen technique in ASTM 813 is not often exact, particularly with the relative low toughness material/conditions examined herein. Slight errors in compliance crack length values, particularly early in the test, make the location of the material's blunting line subject to approximation and hence may introduces slight errors in J_{IC} determination. Also, deriving K_{IC} from $\sqrt{J \cdot E}$ requires an accurate assessment of Young's Modulus; errors in E result in a similar error in K. Hence, errors of 5-10% in the reported K_{IC} values from J_{IC} measurements are not unexpected.) At liquid helium temperature, where KIc is obtained per ASTM E399 in 3 of the 4 cases, scatter is far less evident. Based on the preceding results, there does not appear to be any pronounced orientation effects on fracture toughness over the cryogenic temperature ranges examined, nor does there appear to be any distinct temperature

dependence on toughness properties. Reference toughness data [8] on similar Weldalite (2095-T851) material developed in the S-L orientation showed a similar insensitivity to cryogenic temperatures, though plane strain toughness levels based on chevron-notch samples were notably lower (see ASTM E 1304 for additional information regarding chevron notch testing).

Comparisons of toughness properties with Al 2219-T87 reference data^[11,12] indicate the Weldalite material possesses greater room temperature plane strain toughness (K_{IC}); however the toughness of 2219-T87 increases significantly with decreasing temperature^[8,12], with K_{IC} values exceeding those of Weldalite at liquid nitrogen temperatures and presumably lower temperatures. Thus, while Weldalite is superior to 2219 under room temperature conditions, the combination of strength and toughness at cryogenic temperatures may not be as advantageous.

3.3 FCGR

Anisotropy effects were documented on the conventional 2219 material at room temperature to serve as a basis for comparison, the results of which are presented in Figure 9. For the conditions listed, there does not appear to be any anisotropy with respect to FCGR properties for this material. For the L-T, T-L, and 45° plate directions, data fall directly on top of each other for the range of ΔK examined. With the Weldalite material in this study, however, it was not possible to develop valid FCGR data on L-T and T-L oriented C(T) samples due to consistent out-of-plane cracking. Side-grooving up to 20% on C(T) samples did not alleviate the angled cracking, as shown in Figure 10 for an L-T oriented sample. For non-side-grooved samples oriented in the 45° direction, however, self-similar cracking did occur as required in ASTM E647. Thus subsequent testing of Weldalite was limited to the 45° plate direction.

The FCGR data developed under ambient conditions on 45° C(T) samples are presented in Figure 11, along with reference data^[10] for Weldalite in the L-T and T-L orientations, developed from larger sized C(T) specimens tested under K-controlled (positive K gradient) procedures. Results presented in Figure 11 illustrate a slight increase in growth rates for the 45° direction at the lower values of ΔK ; at the moderate to high ΔK levels the data for the three orientations merge. This behavior at the higher stress intensity conditions is consistent with the toughness behavior previously noted which indicated similar fracture toughness values for all plate directions examined. Based on the limited data presented, no distinct orientation effects are noted for

Weldalite with respect to FCGR behavior for the majority of stress intensity ranges examined, though some anisotropy might exist at lower stress conditions. As to an explanation of the out-of-plane cracking noted in this effort, the FCGR testing was performed under constant load, K-increasing conditions beginning at low ΔK levels (i.e., <5 MPa \sqrt{m}) where some crack growth anisotropy is noted. Since crack growth resistance is in the 45° direction appears slightly lower than for the principal directions at these lower stress intensities and, given the fact that a high bi-axial stress state near the crack tip exists for the standard C(T) specimen^[13], it seems appropriate that cracking might occur more readily in this direction.

The results of cryogenic FCGR testing on Weldalite at RT, liquid nitrogen (77 K), and liquid helium (4K) are furnished in Figure 12. Similar testing on 2219 at RT and liquid nitrogen conditions are likewise furnished in Figure 13. For the conditions listed in the figures, the Weldalite material shows only a slight decrease in growth rates for the two cryogenic conditions as compared to data developed at RT. Data obtained at liquid helium and liquid nitrogen are identical for the range of ΔK examined and converge with the RT data at the higher ΔK values. A similar trend is noted for the 2219 alloy. Though not presented in the same figure, the FCGR data obtained for Weldalite and 2219 are nearly identical over the range of ΔK examined.

SECTION 4 CONCLUSIONS

4

In this effort the tensile strength, fracture toughness, and fatigue crack growth rate data for a single plate of Weldalite 049 (Al 2095-T8) were developed and examined for anisotropy with respect to mechanical properties over a range of cryogenic temperatures. Based on test results obtained from a single plate of material, the following conclusions are rendered:

- In-plane tensile strength/ductility anisotropy for the Weldalite material is pronounced at temperatures ranging from RT to liquid helium (4K) conditions. Tensile and yield strength are greatest in the principal plate directions (L & T), lowest in the 45-60° direction. Ductility is inversely related to strength in all orientations: lowest in the principal directions and highest in 45-60° direction.
- 2. Tensile and yield strength increase dramatically with decreasing temperature for all plate directions examined. Ductility, however, is relatively unaffected over the cryogenic temperature range investigated.
- 3. Strength levels of Weldalite are consistently superior to the conventional aluminum alloy 2219 at all temperatures, with no compromise in ductility over the range of temperatures examined.
- 4. There is no distinct influence of in-plane orientation on fracture toughness of Weldalite 049 at any of the temperatures examined. Plane strain fracture toughness (K_{IC}) is relatively insensitive to cryogenic temperatures ranging from RT to liquid helium.
- 5. No significant influence of orientation on FCGR properties is noted for the majority of stress intensities examined, although at low ΔK levels a sight increase in growth rates was noted for the 45° plate direction. Data obtained on Weldalite C(T) samples oriented in the 45° direction were similar to data obtained on Al 2219-T87 plate material. The influence of the lower test temperatures on the Weldalite material led to a slight reduction in growth rates, more evident at lower values of ΔK than for higher ΔK conditions.

REFERENCES

- 1. Jata, K. V., and Ruschau, J. J., "Fracture Toughness and Failure Mechanisms in Commercial 2091 Al-Li Sheet at Cryogenic Temperatures," WRDC-TR-90-4013, March 1990.
- Rao, K. T. V., Yu, W., and Ritchie, R. O., "Cryogenic Toughening of Commercial Aluminum-Lithium Alloys-Role of Delamination Toughening", Metallurgical Transactions, Vol. 20A, 1989, pp. 485-497.
- Glazer, J., Verzasconi, S. L., Sawtell, R. R., and Morris, J. W., "Mechanical Behavior of Aluminum-Lithium Alloys at Cryogenic Temperatures," Metallurgical Transactions, 1987, Vol. 18A, pp. 1695-1701.
- 4. Webster, D., "Aluminum-Lithium Alloys III", The Institute of Metals, London, 1986, pp. 602-609.
- 5. Dorward, R. C., "Cryogenic Toughness of Al-Cu-Li Alloy AA 2090," Scripta Metallurgica, 1986, Vol. 20, pp, 1379-1383.
- 6. Chu, D., and Morris, J. W., "The Cryogenic Mechanical Properties of Vintage III Al-Cu-Li-Zr Alloy 2090-T81", Light-Weight Alloys for Aerospace Applications II, E. W. Lee and N. K. Kim, Ed., TMS, 1991, pp. 45-63.
- 7. Jata, K. V., and Starke, E. A., "Fracture Toughness of Al-Li-X Alloys at Ambient and Cryogenic Temperatures," Scripta Metallurgica, Vol. 22, 1988, pp. 1553-1556.
- 8. Purtscher, P. T., and Drexler, E. S., "Through-Thickness Mechanical Properties of High-Strength Aluminum Alloy Plates For Cryogenic Applications," *Light-Weight* Alloys for Aerospace Applications II, E. W. Lee and N. K. Kim, Ed., TMS, 1991, pp. 65-75.
- Pickens, J. R., Heubaum, F. H., Langan, T. J. and Kramer, L. S., "Al--4.5-6.3Cu--1.3Li--0.4Ag--0.4Mg--0.14Zr Alloy Weldalite[™] 049," Presented at ALUMINUM-LITHIUM ALLOYS Conference, Williamsburg, VA, Materials and Component Engineering Publications Ltd., 1989.
- Phillips, M. A. and Thompson, S. R., "The Mechanical Property Data Base From An Air Force/Industry Cooperative Test Program On Advanced Aluminum Alloys (Weldalite[™] 049 RX815 Plate (2095-T8))," WL-TR-93-4076, May 1993.
- 11. Hart, R. M., "ALCOA Aluminum Alloys 2219 and 2419," ALCOA Green Letter, 1983.

- 12. Damage Tolerant Design Handbook, Metals and Ceramic Information Center, MCIC-HB-01R, Vol. 3, December 1983.
- Richardson, David E. and Goree, J. G., "Experimantal Verification of a New Two-Parameter Fracture Model," Fracture Mechanics: Twenty-Third Symposium, ASTM STP 1189, Ravinder Chona, Ed., American Society for Testing and Materials, Philadelphia, PA, 1993, pp. 738-750.

1)

11

ć

Table 1. Chemical Composition of Weldalite 049 (Al 2095-T8) Test Plate (wt. %)

ł

R)

Lithium	Copper	Magnesium	Silver	Zirconium	Iron	Silicon	Titanium
1.30	4.17	0.34	0.33	0.126	0.057	0.038	0.028

Compositional Limits for 2095 (from Aluminum Association)* (wt. %)

Lithiu	Copper	Magnesium	Silver	Zirconium	Iron	Silicon	Titanium
0.7-1.5	3.9-4.6	0.25-0.8	0.25-0.6	0.04-0.18	0.15	0.12	0.10

12

* - values given represent maximum unless range given.

WELDALITE 049 (AI 2095-T8) PLATE TENSILE DATA SUMMARY FOR

(e) MPa (KSi) MPa (KS) % GPa (MS) MPa (KS) % GPa (MS) MS	ST	TEMP.	ORIENT.	۶X		UTS		ELONG.	R.A.	Ψ		:	
70 0 573 83.1 617 89.4 7.4 27.0 73 10.6 0.000 45 476 63.0 520 75.5 8.9 41.7 66 9.9 0.056 60 463 67.2 527 76.4 8.8 29.2 71 10.3 0.056 90 588 82.4 613 88.9 8.8 26.5 75 10.9 0.076 90 586 86.2 637 82.3 8.8 26.5 75 10.9 0.076 30 53.4 77.4 555 8.9 30.6 75 10.9 0.075 60 499 77.4 555 86.3 8.9 30.6 75 10.9 0.076 60 438 71.1 11.4 21.6 76 11.0 0.075 60 430 73 81.9 76 11.4 21.6 76 11.0		(°F)	(。)	MPa	(KSI)	MPa	(KSI)	*	*	GPa	(ISN)		
30 526 76.3 580 84.2 8.8 29.2 71 10.3 0.066 45 476 68.0 526 75.5 8.9 41.7 68 9.9 0.056 60 463 527 75.5 8.9 41.7 68 9.0 0.056 90 568 82.4 613 88.9 8.8 30.6 75 10.9 0.076 45 493 71.5 543 78.7 11.4 21.6 76 11.0 0.067 90 596 86.3 8.9 30.6 75 10.8 0.066 90 596 86.3 78.7 11.4 21.6 76 11.0 0.076 90 596 86.5 746 108.2 73 76 11.3 0.076 90 598 733 91.9 8.0 26.2 76 11.3 0.076 90 549 77		20	0	573	83.1	617	89.4	7.4	27.0	73	10.6	0.080	
45 476 68.0 520 75.5 8.9 41.7 6.6 9.8 0.056 90 568 82.4 613 88.9 8.8 30.6 75 10.9 0.075 90 568 82.4 613 88.9 8.8 30.6 75 10.9 0.076 30 534 77.4 555 86.3 8.9 30.6 75 10.9 0.076 45 499 77.4 555 86.3 8.9 30.6 75 10.9 0.076 60 499 77.4 555 86.3 8.9 30.6 75 10.9 0.076 60 549 77.4 555 86.3 8.0 26.5 78 11.3 0.067 90 672 97.6 633 91.9 8.0 73.7 11.4 21.6 76 11.5 0.06 530 549 79.7 11.4 21.6 78 11.5 0.06 60 647 93.7 610 10.7 3			8	526	76.3	580	84.2	8.8	29.2	11	10.3	0.069	
60 463 67.2 52.7 76.4 8.3 43.8 69 10.1 0.055 90 568 82.4 613 88.9 8.8 30.6 75 10.9 0.073 30 534 77.4 595 86.2 637 92.3 8.8 26.5 76 10.4 0.055 45 493 71.5 543 71.4 543 8.9 30.6 75 10.8 0.075 60 493 72.4 553 8.9 30.6 75 10.8 0.075 90 586 85.0 633 91.9 8.0 26.2 79 11.5 0.076 90 586 85.0 633 91.9 8.0 26.2 73 11.5 0.066 30 571 10.2 20.8 8.0 16.2 11.5 0.066 591 549 746 1082 10.7 33.8 10.7 11.4 </td <td></td> <td></td> <td>45</td> <td>476</td> <td>69.0</td> <td>520</td> <td>75.5</td> <td>8.9</td> <td>41.7</td> <td>68</td> <td>9.9</td> <td>0.058</td> <td></td>			45	476	69.0	520	75.5	8.9	41.7	68	9.9	0.058	
90 568 62.4 613 86.9 8.8 30.6 75 10.9 0.073 -100 0 595 86.2 637 32.3 8.8 26.5 78 11.3 0.076 30 534 77.4 595 86.3 8.8 26.5 78 11.3 0.067 45 493 71.5 543 78.7 11.4 21.6 75 10.8 0.065 60 499 72.4 567 82.2 10.1 42.3 78 11.3 0.066 90 586 85.0 633 91.9 8.0 26.2 73 11.4 21.6 76 11.3 0.066 30 586 85.0 633 91.9 8.0 26.2 73 11.5 0.089 30 598 86.7 696 693 73.1 11.3 23.4 83 11.5 0.066 45 549 73.6			60	463	67.2	527	76.4	8.3	43.8	69	10.1	0.055	
-100 0 595 862 637 823 8.8 265 78 113 0.076 30 534 774 595 863 8.9 306 75 10.8 0.067 60 499 72.4 557 82.2 10.1 4.216 76 1110 0.065 60 586 85.0 533 91.9 8.0 262 79 115 0.069 30 598 86.7 618 89.6 15.2 46.4 59 11.3 0.069 45 549 79.7 618 89.6 15.2 46.4 59 11.3 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 46 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 46 89.6 15.2 10.7 43.8 80 11.6 0.066 47 93.8 77 10.7 11.3 23.8 71 10.2 0.069 40 712 103.3 855 124.1 11.3 23.3 87 11.4 0.017 43 86 10.7 128 85.0 10.4 11.6 20.066 40 712 103.3 855 124.1 11.3 23.3 80 11.6 0.066 40 712 103.3 855 124.1 11.3 23.3 80 11.6 0.066 40 700 102.8 85.7 104.0 12.7 23.4 80 11.6 0.017 40 700 102.8 85.7 104.0 12.7 23.4 80 11.6 0.017 40 700 102.8 86.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0117 40 700 102.8 85.7 104.0 12.8 45.3 80 11.6 0.0102 40 700 700 700 700 700 102.8 85.7 104.0 12.8 45.3 90 11.6 0.0102 40 700 700 700 700 700 700 700 700 700 7			6	568	82.4	613	88.9	8.8	30.6	75	10.9	0.073	
-100 0 534 77.4 535 66.3 8.9 30.6 75 10.8 0.067 30 534 77.4 595 66.3 8.9 30.6 75 10.8 0.067 60 499 72.4 567 86.3 8.9 30.6 75 10.8 0.067 90 586 85.0 633 91.9 8.0 26.2 78 11.3 - - - - 0.067 90 586 85.0 633 91.9 8.0 26.2 78 11.4 21.6 76 11.3 0.067 30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.069 45 549 79.7 618 89.6 10.7 33.8 71 10.2 0.066 90 647 93.8 10.7 45.3 89 11.4 0.066 91.5 10.7 33.8 71 11.3 29.3 82 11.4 0.066 90 <td></td> <td>0</td> <td>(</td> <td></td> <td>0</td> <td>100</td> <td>6 00</td> <td>0</td> <td>3 30</td> <td>70</td> <td></td> <td>0.076</td> <td></td>		0	(0	100	6 00	0	3 30	70		0.076	
3 -321 0.0 543 71.5 543 78.7 11.4 21.6 76 11.0 0.065 66 493 71.5 543 78.7 11.4 21.6 76 11.0 0.065 90 586 85.0 633 91.9 8.0 26.2 73 11.3 20.6 0.069 10 672 97.5 746 108.2 - 22.4 83 12.0 0.069 45 549 73.7 618 89.6 15.2 46.4 59 8.0 10.7 33.8 17 10.2 0.069 60 549 73.7 618 89.6 15.2 46.4 59 8.5 0.066 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.061 452 0 712 103.3 855 12.4 11.3 23.4 10.7 0.065 90 616 89.7 10.4 9.6 26.0 80 11.7 0.065 </td <td>~</td> <td>3</td> <td>2 6</td> <td>080</td> <td>7.00</td> <td></td> <td>0.70 0.70</td> <td></td> <td>20.5</td> <td>2 4</td> <td>10.8</td> <td>0.067</td> <td></td>	~	3	2 6	080	7.00		0.70 0.70		20.5	2 4	10.8	0.067	
60 499 72.4 567 82.2 10.1 42.3 78 11.3 0.069 90 586 85.0 633 91.9 8.0 26.2 79 11.5 0.069 30 586 85.0 633 91.9 8.0 26.2 79 11.5 0.069 30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.069 90 647 93.8 720 10.4 9.6 26.0 80 11.7 0.091 90 712 103.3 855 12.4 11.3 23.4 80 11.7 0.011 45 610 88.4 720 104.4 26.6 80 11.6 0.011 60 60 88.4 725 106.1 12.7 23.4 80 11.7			8.4	493	71.5	5 4 3	78.7	11.4	21.6	2.92	11.0	0.065	
30 586 85.0 633 91.9 8.0 26.2 79 11.5 0.069 31 -321 0 672 97.5 746 108.2 * 22.4 83 12.0 0.069 30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.069 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.068 90 60 549 79.7 618 89.6 15.2 46.4 59 8.5 0.068 90 647 93.8 720 10.4 9.6 26.0 80 11.7 0.091 452 0 712 103.3 855 12.4.1 11.3 29.3 82 11.9 0.117 30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.011 45 610 88.4 725 106.1 12.8 45.3 80 11.6 0.011 45 <t< td=""><td></td><td></td><td>60</td><td>499</td><td>72.4</td><td>567</td><td>82.2</td><td>10.1</td><td>42.3</td><td>78</td><td>11.3</td><td>•</td><td></td></t<>			60	499	72.4	567	82.2	10.1	42.3	78	11.3	•	
-321 0 672 97.5 746 108.2 • 22.4 83 12.0 0.089 30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.089 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.086 60 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.086 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.081 91.5 10.7 23.4 11.3 29.3 82 11.7 0.091 60 610 88.4 725 106.1 12.7 23.4 80 11.6 0.117 90 70 102.8 852 120.1 12.7 23.4 80 11.6 0.117 90 60 60 88.4 725 106.0			8	586	85.0	633	91.9	8.0	26.2	62 7	11.5	0.069	
-321 0 672 97.5 746 108.2 * 22.4 83 12.0 0.068 30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.068 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 60 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 90 647 93.8 720 104.4 9.6 26.0 80 11.6 0.066 30 647 93.8 720 104.4 9.6 26.0 80 11.7 0.091 455 10 712 103.3 855 12.4,1 11.3 2.93 82 11.6 0.0117 30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.117 45 610 88.4 725 16.1 12.7 23.4 80 11.6 0.011 60 60 88.4							1			;			
30 598 86.7 695 100.8 10.7 33.8 71 10.2 0.088 45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 60 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.083 90 617 33.8 720 104.4 9.6 26.0 80 11.7 0.091 30 668 97.0 825 124.1 11.3 29.3 82 11.7 0.091 45 610 88.4 725 105.1 12.7 23.4 80 11.6 0.117 90 60 603 87.4 717 104.0 12.7 23.4 80 11.6 0.0117 90 709 102.8 852 120.1 12.8 45.3 80 11.6 0.096 90 709 102.8 852	ശ	ŝ	0	672	97.5	746	108.2	•	22.4	83	12.0	0.089	
45 549 79.7 618 89.6 15.2 46.4 59 8.5 0.083 60 549 79.7 631 91.5 10.7 43.8 80 11.6 0.063 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.093 -452 0 712 103.3 855 124.1 11.3 29.3 82 11.9 0.0117 30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.0117 45 610 88.4 725 106.1 12.7 23.4 80 11.6 0.0117 90 60 603 87.4 717 104.0 12.7 23.4 80 11.6 0.0117 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.085 * . hoke outside G1 102.8 852 123.6 11.4 27.7 79 11.5 0.0108			30	598	86.7	695	100.8	10.7	33.8	7	10.2	0.088	
60 549 79.7 631 91.5 10.7 43.8 80 11.6 0.066 90 647 93.8 720 10.4 9.6 26.0 80 11.6 0.066 90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.091 30 668 97.0 825 124.1 11.3 29.3 82 11.9 0.117 45 610 88.4 725 105.1 12.7 23.4 80 11.6 0.117 60 603 87.4 717 104.0 12.8 45.3 80 11.6 0.095 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.095 * . hoke outside G1 300 102.8 852 123.6 11.4 27.7 79 11.5 0.0108			45	549	79.7	618	89.6	15.2	46.4	2 8	8.5	0.083	
90 647 93.8 720 104.4 9.6 26.0 80 11.7 0.091 -452 0 712 103.3 855 124.1 11.3 29.3 82 11.9 0.117 0.091 30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.117 45 610 88.4 725 105.1 16.8 33.0 70 10.2 0.095 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.085 * - Inden interide GI 709 102.8 852 123.6 11.4 27.7 79 11.5 0.085			60	549	79.7	631	91.5	10.7	43.8	80	11.6	0.066	
452 0 712 103.3 855 124.1 11.3 29.3 82 11.9 0.117 30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.111 45 610 88.4 725 106.1 12.7 23.4 80 11.6 0.111 60 603 87.4 717 104.0 12.8 45.3 80 11.6 0.085 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.087			8	647	93.8	720	104.4	9.6	26.0	80	11.7	0.091	
30 668 97.0 828 120.1 12.7 23.4 80 11.6 0.111 45 610 88.4 725 105.1 16.8 33.0 70 10.2 0.095 60 603 87.4 717 104.0 12.8 45.3 80 11.6 0.087 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.0065 * - broke outside G1 102.8 852 123.6 11.4 27.7 79 11.5 0.1086	a	453	c	712	103.3	855	1241	11.3	29.3	82	11.9	0.117	
45 610 88.4 725 105.1 16.8 33.0 70 10.2 0.095 60 603 87.4 717 104.0 12.8 45.3 80 11.6 0.087 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.087 * - broke outside G1 umage	>	ļ	s e	668	0.79	828 828	120.1	12.7	23.4	8	11.6	0.111	
60 603 87.4 717 104.0 12.8 45.3 80 11.6 0.087 90 709 102.8 852 123.6 11.4 27.7 79 11.5 0.108 * - broke outside G1 uom			45	610	88.4	725	105.1	16.8	33.0	2	10.2	0.095	
* - hroke nitside G1 * - hroke nitside G1			909	603	87.4	717	104.0	12.8	45.3	80	11.6	0.087	
* - broke outside G 1			8	209	102.8	852	123.6	11.4	27.7	79	11.5	0.108	
	*	- broke ou	Itside G.L.										

** - strain hardening exponent

•

#

R)

+

•

.

13

8

TABLE 3

TENSILE DATA SUMMARY FOR AI 2219-T87 PLATE

																		Ē
	(ISM)	10.6	10.4	10.9	11.2	11.9	11.6	11.2	11.4	11.7	10.9	11.2	12.6	12.6	11.1	12.0	8.8	3
IJ	GPa	73	72	75	1	82	80	77	79	80	75	7	87	87	7	83	61	
R.A.	8	28.5	32.0	25.1	22.6	30.8	27.8	26.8	23.1	30.1	27.6	27.6	22.9	28.6	26.2	23.6	25.9	
ELONG.	*	8.1	7.8	7.6	7.0	6.7	8.1	7.2	7.1	0.6	8.9	8.2	7.7	10.4	10.8	10.5	9.6	
	(KSI)	69.5	67.2	68.4	68.1	74.3	71.7	72.9	72.4	85.7	83.2	84.1	85.3	104.1	6 .66	103.1	86.7	
UTS	MPa	479	463	472	470	512	494	502	499	591	573	580	588	718	689	711	597	
	(KSI)	56.7	54.8	56.2	56.0	66.4	58.0	59.3	59.2	67.1	64.8	66.3	67.0	73.0	70.7	73.4	62.2	
λS	MPa	391	378	387	386	458	400	409	408	463	447	457	462	503	487	506	429	
ORIENT.	(。)	0	30	60	6	0	90	60	6	0	90	09	8	0	30	99	90 [1]	
TEMP.	(eF)	70				-100				-321				-452				
TEST	ပွ	21				-73				-196				-269				

[1] - Broke in threads after YS was determined; re-tested to failure.

Ŀ

۴

=

÷

)

)

Þ

٠

TABLE 4

FRACTURE TOUGHNESS SUMMARY FOR WELDALITE 049 (AI 2095-T8) PLATE

TEST	TEMP.	ORIENT.	ĸ	c [1]
•C	(*F)		MPa√m	(KSŀ√in)
21	70	0	35.8	32.6
		30	37.7	34.3
		45	33.5	30.5
		60	35.4	32.3
		90	35.3	32.1
-73	-100	0	35.8	32.6
		30	34.0	31.0
		45	36.8	33.5
		60	38.2	34.8
		90	38.4	34.9
-196	-321	0	35.1	31.9
		30	35.0	31.8
		45	32.6	29.7
		60	27.4	24.9
		90	31.6	28.8
-269	-452	0	34.3	31.2
		30	-	-
		45	36.4 [2]	33.1
		60	37.0 [2]	33.7
		90	34.8 ^[2]	31.7
				UDBI

[1] - K_{ic} derived from J $_{ic}$ data (K = $\sqrt{J^*E}$) except where noted.

[2] - K_{lc} developed per ASTM E399.

Figure 1. Photomicrograph of WeldaliteTM 049 Test Plate.

,

Figure 3. Tensile Properties vs. Orientation for Weldalite 049 at (a) Room Temperature and (b) Liquid Helium Conditions.

Ď

Figure 4. Tensile Properties vs Orientation for Al-2219 Plate at (a) RT, and (b) Liquid Helium.

Figure 5. Strength vs Temperature for Weldalite 049 for (a) L Orientation, and (b) 45° Orientation.

Figure 6. Strength vs Temperature for A1 2219-T87 for (a) L Orientation, and (b) 30° Orientation.

Figure 7. Room Temperature and Liquid Helium YS/Ductility vs Orientation for Weldalite 049.

J,

Figure 8. Fracture Toughness vs Temperature for Weldalite 049 at Various Orientations.

Figure 9. Room Temperature FCGR Results for Al 2219-T87 at Various Orientations.

Figure 10. Photograph of L-T Weldalite 049 Crack Growth Sample with 20% Side-Groove.

Figure 11. Room Temperature FCGR Data for Weldalite 049 at Various Orientations.

Figure 13. FCGR Data for AL 2219 at Room and Liquid Nitrogen Conditions.

U.S. Government Printing Office 550-106

X)