AD-A272 648
LU T

Fast Fourier Transforms of
Piecewise Constant Functions

Eugene Sorets
Research Report YALEU/DCS/RR-986
September 1993

Uresnaou
sustifioa
o e —
By .
D! Aab h
Avl

o —— e

Dist

YALE UNIVERSITY

93-27509
EATRRR

DEPARTMENT OF COMPUTER SCIENCE

~
&5

- b a '\/’ 1

i et st it

1

We present an algorithm for the evaluation of the Fourier transform of piecewise constant
functions of two variables. The algorithm overcomes the accuracy problems associated with
computing the Fourier transform of discontinuous functions; in fact, its time complexity
is O(log3(1/€)N? + log?(1/€¢)N?log N), where ¢ is the accuracy and N is the size of the
problem. The algorithm is based on the Lagrange interpolation formula and the Green's
theorem, which are used to preprocess the data before applying the Fast Fourier transform.
It admits natural generalizations to higher dimensions and to piecewise smooth functions.

Fast Fourier Transforms of
Piecewise Constant Functions

Eugene Sorets
Research Report YALEU/DCS/RR-986
September 1993

Accesien For
| S,

NTIS Clagl
OnC a8
Uremnau, ceg

LR, e
dusudtTation
]

Pom e e LT
By ...
DI ;t lrJ‘ ".a‘-,{ ST
F o e e
Availesaty Corcs
T T a—

Special

Al

DTE QuALITY AN srmUlED B

The author was supported by the National Science Foundation under Grant DMS$901213595.

Approved for public release: distribution is unlimited.
Keywords: Fourier Transform, Fast Algorithms.

Contents
1 Introduction

2 Mathematical Preliminaries
2.1 Lagrange Interpolation L oL oL
2.2 Green’stheorem e
2.3 Gauss-Legendre Quadratures,

3 Mathematical Description of the Algorithm
3.1 Statementof the Problem
3.2 Description of the Algorithm
3.3 ErrorEstimates. e

4 Formal Description of the Algorithm
4.1 Description of the Algorithm 0oL,
4.2 Complexity Analysis of the Algorithm

5 Numerical Experiments

6 Conclusions and Generalizations
6.1 Generalizations i e e e e e e e e e e e e e e e
6.2 Conclusions i i e e e e e e e e e e

References

W o = e

DWW

Xy
°
g
L,
°
x
™
°
°
° o
°
®
®
»

1 Introduction

The Fast Fourier Transform (see, for example, [2, 3, 8)]) is a ubiquitous tool of numerical
analysis, essential in signal processing, electrical engineering, VLSI circuit modeling. medical
imaging. and innumerable other fields. It is a very effective tool when the function to be
transformed is smooth; however, if the function has a jump discontinuity, then the accuracy
of the FFT is significantly reduced. This loss of accuracy is the result of the simple fact
that FFT, from the mathematical point of view, is a collection of integrals evaluated with
trapezoidal rule. Therefore, the numerical error that results from the discontinuity is on the
order of n~! for a problem of size n. Such errors make even single precision calculations,
especially in higher dimensions, prohibitively costly. The cost can be reduced with the
help of the Richardson extrapolation, but double precision calculations are still virtually
impossible.

We construct an algorithm that successfully attacks this problem; for example, on a
512 x 512 array our implementation takes about 50 times the CPU time of one 512 x 512
FFT for single precision results and about 160 times for double precision.

The algorithm uses Green's theorem to replace the area integrals, that naturally occur in
computing the two-dimensional Fourier transform of piecewise constant functions, with line
integrals, thereby reducing significantly the number of nodes required for integration: after
that the weights are redistributed onto the uniform grid with the help of the Lagrange inter-
polation formula. bringing the data to the form suita'le for the FFT. A detailed description
of the algorithm can be found in Section 4. and performance results in Section 5.

In this paper. we present the analysis in two dimensions under the assumption that the
functions to be transformed are piecewise constant and that the discontinuities occur along
a collection of polygons. Neither of these is a serious limitation; the algorithm generalizes
quite naturally to higher dimensions and to curved boundaries. In Section 6 we describe a
generalization of our algorithm to piecewise smooth functions.

Acknowledgements: The author would like to thank Professors Ronald Coifian and
Vladimir Rokhlin for several useful discussions. He would also like to thank Professor Eytan
Barouch for suggesting the problem and supplying the VLSI masks for the experiments.

2 Mathematical Preliminaries

2.1 Lagrange Interpolation

The Lagrange interpolation formula (see, for example, [1, 4]) approximates a function f :
R' — €! by the expression:

p Pz,
f(1)=Zf(l'm)H;‘—:—-’r‘ Ry(x), (1)
m=1 ::.l., 3 n
1
® ® ° °

X,
[]

*

L7,
[]

P
»
)

®
K

where ry < ... < z, are points on the real line and R,(z) is the error term. For each
m = 1,...,p, we will denote by §,, the polynomial defined by the formula:
6(1)—f1 -~ (2)
" - n=} Tm ~ In '
nym

and observe that
1 if m=n,

bm(zn) = { 0 if m#n.

In view of (2), formula (1) can be rewritten as

r
f(2) =Y f(zm)bm(z) + Rp(z). (3)

m=1

R,(r) in equations (1) and (3) is the error term and
(p) L4
Ry{z) = —{7'(—5-) H(r -1,) for some £ € (r).1,).
’ n=1

In our case, the nodes r,....,z, are going to be uniformly spaced with the sampling
interval h > 0, and the point z will lie in the interval of length h centered on the center of
the interpolation window [r,,rp]. Furthermore, the function f will be of the form f(r) =
exp(2nikz). Under these conditions,

re+1)?

o - hP(2nk)? for odd p.

2,
n
[Rp(x)| <
[r+y)?
p!

(r+n)?

- hP(2rk)? for even p

- hF(2mk)F, (H)

where I'(z) is the Gamma function: I'(z + 1) = 2.
We will also make use of the two-dimensional Lagrange interpolation formula:

p P
f(I-y)=§:zém(z)'bn(y)'f(zm‘yn)+Rp(fqy)- {5)

n=] m=1
Here the points {(zm.yx)}}, .=, are the interpolation nodes. the functions é;.....4, are the

same as in (2). and the error term. R,(z.y), admits the bound

re+1))°
Rytz,) < LOEIL Do orip 4 hgcany] (6)
!
when the function f(z.y)has the form exp(2ri(kr+1ly)}) and the nodes are uniformly spaced
with the sampling interval h, along the r-axis and h, along the y-axis.

2.2 Green’s theorem

L
We will encounter area integrals of the form
/ €—2mmre-21rmy dyd.t. &
D
where D is a bounded domain in R?. We will replace them with line integrals using the
following version of Green's theorem in the plane:
0
/ —Qdydzz/Qdy. (7)
D Oz r
Here Q : R? — €' is a function in C'3(D) and T is the boundary of D traversed counter-
clockwise. Applying (7) to Q(z,y) = e~2"™T¢~2™"y we arrive at a formula that will be
important to us later:
1 .
: / e 2mmI ~2mny gy when m # 0,
—2mim Jr
/ e—2mm:r€—21rmy dydx — (R)
D
/ re~ M dy when m = 0.
r
2.3 Gauss-Legendre Quadratures
Gauss-Legendre integration scheme (see. for example, [4, 7]) provides an approximation to
the integral of a function f:[0,1] — € o
b) 9
[frde= ¥ sttedn+ By, (9)
k=1
where the points t;,....t; are the Gauss-Legendre nodes, the numbers wy.....w, are the
Gauss-Legendre weights, and E,(f) is the error term. The Gauss-Legendre nodes and
weights are chosen to make the approximation (9) exact whenever the function f is a
polynomial of degree less than 2¢. Consequently, the Gauss-Legendre scheme is effective
for functions that are well approximated by polynomials: in fact:
29+ (g!)*
E f)= ————"— . f29(€) for some £ € {0.1]. (10)
)= B DT ¢ ¢elo.y
The proof of (10) can be found in [4].
3 Mathematical Description of the Algorithm
3.1 Statement of the Problem
Our goal in this paper is to find a way to compute Fourier Transforms of piecewise constant
functions in R?. In other words, we would like to construct an algorithm that for every
3
® L ° ° ° ° o

piecewise constant function f:R? — €! will compute an approximation to the collection
of integrals. to which we will refer as the Fourier Transform f of f:

R 11 . .
fim.n)d / / f(z.y)e?mimee=2miny gugy (11)
0 0

where m and n are integers such that —-M < m < M and —N < n < N. We will refer to
the pair (m, n) as the frequency. The pair (M, N), thus, is the highest frequency of interest.
The most common approximation to the integrals (11), the Discrete Fourier Transform [2] is,
essentially, the trapezoidal rule; its standard implementation is the Fast Fourier Transform
(see, for example, (2, 3, 8]). For discontinuous functions the trapezoidal rule has accuracy
on the order of N~! for an N by N problem, or, conversely, for accuracy ¢, will require
on the order of ¢~2 operations; such performance is woefully inadequate in most practical
problems.
In this paper we solve the following problem:

Problem 1 For every piecewise constant function f with discontinuities along a finite num-
ber of polygons. and for every accuracy ¢ > 0, compute all the integrals (11) with accuracy
€ in the number of operation not greater than

0 ((log3 %) N2yt (Iog2 %) Nlog }\7) . (12)

where N = max{M.N}.

Mathematical description and error analysis of the algorithm that solves Problem 1 can be
found in §3.2 and §3.3, respectively, Section 4 contains the full description of the algorithm.
and Section 5 contains the results of some of our numerical experiments. In Section 6 we
describe an extension of the algorithm to piecewise smooth functions.

3.2 Description of the Algorithm

A piecewise-constant function f : R? — €' can be written as a linear combination of
characteristic functions. By the characteristic function 15 : R? — ¢! of a set § C R? we
mean, as usual:
def } 1 if(z.y)€ S,
1s(z.y)= ()
0 otherwise,

Using this notation, we write the piecewise-constant f as:
J
fz.9) =Y K, 1p,(z,y). (13)
1=1

where J is a positive integer constant determined by the problem, and, for each j, K, is
a complex constant and D, is a bounded domain in R?. We will assume from now on
that all domains D; lie within the unit square, their interiors are pairwise disjoint, and the
boundaries T'; of the domains D, are polygons. Indeed, for each j, let {7} :[0.1] — TJ},L__f,
be the set of paths that form I';. Then, our assumptions are:

o

1. D, ¢ {0,1} x [0.1] for all j,
2. Int(D,) N Int(Di) = O for all j # k.
3. Every path 7{ has the form:
¥} (t) = (ao + at,bo + bt) for t € [0,1]. (14)

The first two assumptions do not restrict generality at all, and the third one is made to
simplify the error estimates and the implementation. It does not affect the algorithm itself.
Substituting (13) into (11) and using (8), we get:

. 1 1 J A .
fonmy = [f ZK:-1D,<z,y)e~2“mfe-2“"ydydr

E/ I‘J e—2mmx =2rminy dyd.z'

J—]

2_‘, /r Ky Fralz,)dy (15)

where each T, is the boundary of the domain D, and the function F,, : R? — €!is
defined by the formula:

E,-?mmre—%riny
wt | T Tomim when m # 0,
€ —ZTim
Fm,n = (16)
ze~ My when m = 0.

For each j. let {7/} be the set of paths that form T;. Along each 7{ we approximate the
line integrals in {15) with the help of Gauss-Legendre quadrature scheme of '2.3. Indeed,
using approximation (9) on each 4/ and substituting the result into (15) we get:

J L, o

fimn) = STSTS T K Frn(dawh) b v, (17)

1=11=1 k=1

where, for each [, the points {(x}.v%)}i, are the images under 4/ of the Gauss-Legendre
nodes t; of equation (9):

(xks k) = 7] (), (18)

{ w! are the corresponding Gauss-Legendre weights, and b has been

the numbers Wiy e e a Wy,
defined in equation (14).

In order to be able to use the Fast Fourier Transform, we redistribute the weights
from the Gauss-Legendre nodes in (18) to the uniform grid with the help of the Lagrange
Interpolation formula (5) applied to the function Fy, , at (z,y) = (xi,wi) for each k and [.
The final approximation to f(m,n) becomes:

J Ly q P P
(m. n)zz Kf'b'wi Z z 65, (Xk) b5, (d’k) Fon('fl‘y.fz)‘ (19)
1=11i=1 k=1 n=1=1
5
® ® ® [® ®

where, for each k and [, the points {(:tfl. yj"2)}‘;’l Ja=1 are chosen on the uniform grid so that
the point (\L. v!) lies in the h, by h, rectangle centered on the center of the interpolation
window [z§.z5] x [yf,y,'f].

Remark 3.1 Changing the order of summation in (19), we see that

L
z K,-b- ""L : 611()(5:) : 612(’”:)) “Fan(Z;,95) (20)

where the points {(z;,.y,,)} form a uniform grid on {0, 1] x [0, 1] with sampling intervals A,
and h,.
Let G : Z? — (! be defined by the term in the parentheses in (20):
def o e & (! !
G J2) F DY D K, bk -85 (xk) - &, (%) (21)

1=11=1 k=1

Then, substituting (21) into {20). and, using the definition of Fy, , in (16), we get:

fim.n) = ZZGUIJ“«’) “Fmnl5095,)

non

i
—2mim

S) Glhiiga) - €I e M2 when m # 0.
J1 J2
= (22)

Z (Z G J2) - 17],) €72y when m =0
N

J2

which can be readily computed for all m and n with the help of two- and one-dimensional
FFTs. =

3.3 Error Estimates

In this section we estimate the accuracy of the approximations (17) and (19) made in §3.2.
Let 9/ be a straight path as defined in (14):

3] (t) = (ao + at, by + bt) for t € [0.1].

Since Gauss-Legendre quadrature and Lagrange interpolation formula are translation in-
variant, the estimates will not change if we assume that ap = by = 0. Then, for every (m.n)
such that =M < m < M and —N < n < N, using (9) and (14), we get:

1
/ Fonlz,y)dy = /Fm,ﬂ(at,bt)-bdt
v 0

it

i
Y Fnlxk ¥k) b wi

k=1
+b-Ey(Fanon]). (23)
6

() o ® [)))

Lemma 3.1 For all (m,n) such that - M < m < M and -N < n < N, the error term
E,, in (23) satisfies the inequality:

23q1+l(ql!)47r'2q1

) an { 2ar + D(2a3
IEq:(n o)l S+ Di(2¢)')?

2
(VMT+ N Va1 12) q‘;—;. (24)

Proof. For 7/ : [0.1] — R? as defined by (14) with ao = by = 0

€—2m'(ma+nb)t

————— when m # 0,
(Fanodi)t)=4 ~2mm (25)
a-t-e ™ whenm =0
and. consequently.
d? —2ri(ma + nb 2q e—2mi(madtnb)t .
d2—q‘f(Fm'"07i])(”= [—‘;]m'm (26)
when m # 0. and
d*% A ,
W‘F’"‘" 0q])t) = [(—27rinb)2‘“ +2q-a-(=2minb)?0T1| ¢ 2rmh (27)

when m = 0.)
Let A denote (M? + N2)/2 aud let L denote (a? + 62)"/2. Then. it follows from (26)
and (27) that for m # 0.

d?a E (2w|ma + nb|)
- ¢ < ot s Tl
d?!“’(Fm'n 071)() = 21r‘m|
< (2rvVm? + n? - Va? + b?)2a
- 27 |m)|
ML)
(27 ML) (2%)
2m|m)|
and. for m = 0.
d%a
T (Frn o)1) < i(—27rinb)2‘“ +2g-a- (—an.b)?w-‘\
< |27nb)? 7t |~ 27inb + 2¢; - a
< [2rnbPHTT .\ [(27n)? 4+ (2q1)2 - Va2 + b2
< (2rMLY*' . J(2n M) + (2q1)2 - L
2
< (@eML)* . \[1+ (”_‘"..)
< (ML) g (29)
7
® []] ®

n,

——_ -

o 0 e

Putting (10), {28). and (29) together, we get an estimate of the error of Gauss-Legendre
quadrature in (23):
24 (gt (2n ML)

Cq+ V2P~ 2nm| When m # 0.

Ej(Frnon]) <
204 ()¢
(2q + 1)[(2q)'P
20t (g!)* 2
—_ - (2e ML)
ot DlzayF MY an

which is exactly the claim of the lemma. B

(2eML)* . q; when m #£ 0

Corollary 3.1 Let 7 : [0.1] — R? be a straight path defined by (14), and let F,,, be a
function defined by (16).
Then. for every e > 0.

q
[Fnndy= 3 Fun (2(t0)) -] < ¢ (30)
v k=1
whenever —M <m <M, -N<n< N, and
- 1
q >const.-max{.’tlL,log~}. (31)
€

Here t, and o are the Gauss-Legendre nodes and weights, respectively, and M. L have been
de fined in (28],

Proof. Using Stirling’s approximation to ¢!, we see that for large ¢ the right-hand side of
expression (24) is asvinptotic to:

239+ 1\4x2a o YA aMI 4
2 (g:)'m q ,(‘\[L)ZQN.I_\/E (_LEL < i) (32)
(2¢ + 1)[(29)2 4V \ 2372 q

Therefore, the inequality (30) will hold if

g > const. - max {MI:.logl} . (33)
€
[]

Remark 3.2 The quantity M is the frequency of the function Fas v along 9, and L is the
length of y. Corollary 3.1. then, implies that the number of Gauss-Legendre nodes needed
to compute the integral [Fa ~ dy with accuracy ¢ is proportional to the number of periods
of Fas n along 4 (so long as that number is greater than log(1/¢)). m

After computing Gauss-Legendre nodes and weights. in the equation (19) we redistribute
the weights onto the uniform grid with the help of Lagrange interpolation formula:

P P
Fonlxke %) = 3 2 6, (xk) - 6,5 (wh) - Fnw(zX . y%) + Rp(nke 1) (34)

71=113=1

The error R,(b '*";:) of this approximation is estimated in the next lemma.

Lemma 3.2 For all tm.n) such that =M < m < M and =N < n < N the error torm
R0y v) satisfies the mequality:

&+ l)]z

IR (\.v)] < i (2mh MY 4 (21, NV (35
p:
1

< /Tp- vl [(2rh MV + (270 N] RUT

forp > 2.

Proof. For m # 0. (33) follows directly from (6). When m = 0. ve observe that the
function r is approximated exactly bv Lagrange interpolation formula for p - 2 vand we
only consider thosei. so the estimate (35) applies to this case also. Ineguality (360 0+
consequence of Stirling’s formula '1]. @

Definition 3.1 Let i» = vip.¢) be the minimum number of points per wavelepgth that -
needed to make Lagrange interpolation forimula of order p approximate with accuracy « all

the functions

PRE MR A with - M<wm< M and - N << N

inside the central b, by h, rectangle of the interpolation window ‘ryor, 0 g, @

Remark 3.3 In order to assure that Lagrange interpolation has aconracy oo we now chooss
the parameters p and . defined in equation 1 and Defimmion 3000 respectiveln Tnoview o
Definition 3.1, we set the sampling intervals h, and b ra he:

| -
,I, = ;T’ and /I,’ = "’—K‘ 4
Substituting (37) into (36), we see that
IR < ! Dl ALY deh NP fpeay (' :
! ;_(\.Li;V/,Ap-z—,-[l..u:,.li s A2Th, N 1) R

Numerical evidence suggests that v = p’2 s a good chowee. Making thes choree n 4w
see that Lagrange interpolation is guaranteed to have acenracy ¢ if

27y}
V/ﬁ)(—‘) <k 14
p

(Consequently. we choose parameters p and i of the computation according to the relation-
. 1

20 = p~log-. 40
¢

Numerical experiments of Section 5. however. show that the requirement (391~ nnduh
strict. For example, for ¢ = 10714, the inequality (39) demands p = 25, while p = 16 1
sufficient. Similarly. for single precision. ¢ = 1077, the inequality (39 requires p I~
when. in fact. p = 10 is large enough. @

With the help of the lemmas 3.1 and 3.2 we can now estimate the total error of the
computation.
Substituting (34) intc (23), we get:

LA |4 P
[Frntastdy = 3 30 % 85,(5k) - 60 - Fraleh,) bk

{ k=175 =1 j2=1

o
+b-Eq(Fnnov))+ b wi- Rp(xk.vit) (41)
k=1
Denoting by R, the right-hand side of (36), by E,, the right-hand side of (24), and, observing
that 3°J' | wf = 1, we see that the error of integrating along the path 4] in (41) is bounded
by
bE, + bR, < 2be < 2Le, (42)
if p and v are chosen according to relations (40) in Remark 3.3.

Summing up the errors in (42) over all paths v/ that form the boundary I',. we see that
integration around each I'; results in an error not greater than

2¢[[T, .

where ||T';|| denotes the length of the perimeter of I',. The total error of the computation
is, therefore. at most

J
2¢ 3 IK1-HIT 1.
=1

Actual errors are reported in Section 5.

4 Formal Description of the Algorithm

4.1 Description of the Algorithm

Let f: R? — ! be as in (13), and M and N be the highest frequencies desired in the
Fourier transform of f along the z- and y-axis, respectively.

STEP 0: INITIALIZATION.

Comment: [We choose precision of the computation ¢ and determine the degree of
Lagrange interpolation p and the oversampling factor v as described in Remark 3.3.
Since we will need v points per wavelength, we create the function G(m,n), defined in
(21), on the uniform grid on {0, 1] x [0, 1] with the sampling intervals h, = 1/(¥M) and
hy = 1/(vN). We will also make use of a one-dimensional array Go(n) to compute the
Fourier Transform for the case m = 0. We precompute the denominators of Lagrange
interpolation and Gauss-Legendre nodes and weights on [0,1]. |

10

don=1,...,vN

Go(n) =0
dom=1,....vM
G(m,n)=0
enddo
enddo

STEP 1: GREEN’S THEOREM AND LAGRANGE INTERPOLATION.
Comment: [For each j, we integrate the constant function K, along each of the paths
7] :[0,1} — T,, defined in (14), and then redistribute the weight from each of the re-
sulting Gauss-Legendre nodes to p? Lagrange nodes from the uniform grid as described
in equation (19). Note: The double index (m(iy), n(iz)) of the array G corresponds to
the point (z,,yi,). |

doj=1,....J
dol=1,....L,
Using the precomputed nodes and weights on [0,1] calculate the Gauss-
Legendre nodes {(xi.d'i)} and weights wL (defined in (18)) needed to com-
pute the line integrals along v].
dok=1....,q
doij=1,....pandi;=1,....p
G(m(ir).n(i2)) = Gm(ir),n(i2)) + K, -b-wi -6, (1)) - 6., (vh)
Go(n(iz)) = Go(n(iz)) + K, - \f - b-wi - &, (k) - 8, (1))
enddo
enddo
enddo
enddo

STEP 2: FOURIER TRANSFORM.
Comment: [We apply the two-dimensional FFT to the vM by vV array G and only
keep the frequencies (m.n) with —M < m < M and —N < n < N. We store the
result in the array FG. Similarly, we apply the one-dimensional FFT to the array
Go. keep only the frequencies n with —N < n < N, and store the result in the array
FGy.]

STEP 3: INTEGRATION.
Comment: [For each frequency (m, n) with m # 0, we divide its coefficient by —27im,
which brings the computation in agreement with equation (19). The case m = 0 is al-
ready correct and needs no adjustment. |

dom=~-M+1,....Mandn=-N+1,....N;withm #0
FG(m,n) = FG(m.n}/(-2xim)

enddo

don=-N+1...., N
FG{(0,n) = FGy(n)

enddo

11

\"

\'.‘

X

Remark 4.1 Often. for example in VLSI modeling, the boundaries of the domains D, con-
tain vertical and horizontal straight-line segments. Contribution from horizontal segments
to (15) is zero, and if S is a vertical segment from (zg, yo) to (zg,y1), then, for n # 0.

/‘ Fm,n(qu)dy - Fm.n(IOv n)2_ .Fm.n(zOv yO). (43)
S —Z4min

that is. computation of a line integral is replaced by evaluation of a sum of two terms of
the same type as in the approximation (17). Effects of the resulting speed-up are discussed
in Section 5. ®

4.2 Complexity Analysis of the Algorithm

Time complexity of the algorithm is summarised in Table 1. We assume in this section, for
convenience, that M = N.

STEP 1 PN, N, is the number of Gauss-
Legendre nodes created.

STEP 2 | O(v*N%log N + vNlog N) | One two-dimensional and one
one-dimensional FFT.

STEP 3 O(N?) Division of each Fourier coeffi-
| cient FG(m,n) by ~2mim.

Table 1: Time complexity of the algorithm.

For a given accuracy ¢ the number of Gauss-Legendre nodes on a single path 4/, accord-
ing to Corollary 3.1, is

O(max{ML.log(l}). {44)

where M is the highest frequency along 7] and L is the length of 7/ as described in Re-
mark 3.2. Since M = N. M = N. Therefore. the number of nodes needed for I, is:

O(max{;\'-||I’J||.LJ~log%}). (45)

where ||T, || is the length of T,, and L, is the number of the paths] that form T',. It follows
that the total number of nodes, N, satisfies the relation:

J J 1
N,=0 (max{N-ZHI‘JII.(Z LJ) -log: . (46)
1=1 i=1

In the worst case, i.e., when the perimeter is largest, there are O(N?) domains D, with
diameter O(1/N) each. N, then, becomes

Ng=O(max{N-Nz-Rl-,.lV?-log%}). (47)

12

Choosing parameters p and v according to (40), i.e., with
1
2u=p~log;, (48)
we arrive at a bound for time complexity of the algorithm:

1
O(P*N, + v’ N?log N + N3) = 0 ((log3 ;) N? 4 (10,;2 %) NZlog N) . (49)

5 Numerical Experiments

We implemented the algorithm of section 4 both with and without the observation about the
Green'’s theorem in §2.2. The algorithm was implemented in FORTRAN 77 and was run on
SPARCstation 2. All internal calculations were performed in double-precision arithmetic,
but the parameters p and v were relaxed for single-precision experiments. Accuracy was
measured in the cases when all domains were rectangles; in these cases exact analytic
solution is available and it was computed in double-precision for comparison. To assure
that integration along more general curves does not introduce unexpected errors, we cut
the rectangles into more complicated shapes (thus preserving the final answer) and verified
that the error did not increase. This suggests that the error is not higher for the regions
for which closed form solutions are not available.

In the tables below we report the results of numerical experiments using the following
three algorithms. In Algorithm 1 we make use of the Green’s theorem as described in
the preceding sections and, in addition, make use of Remark 4.1 to integrate along the
horizontal and vertical lines. Algorithm 2 is also based on the Green’s theorem, but without
preferential treatment for horizontal or vertical lines. In Algorithm 3 the area integrals are
treated directly without recourse to the Green’s theorem.

When all the domains {D;} are rectangles, we report run times for a direct method.
which we also use to estimate the errors of the computations. When, for each j, D, =
(a,.b,) x (¢,.d;). the direct method consists of calculating the Fourier transform, ¢ : y/ A
('!. by evaluating the Fourier integrals analytically:

bJ d}
o(m.n) = Z/ / e~ 2mmT e=2Imny gy dy
j Y% Y

Z e—Zm'me _ e—21rima, e—21|'ind, _ e—2m'nc]
—27im —2%in ’

J

The error E., that we report is the maximal absolute error among all the frequencies:

Ex = _max |f(m,n)-¢(m,n)l. (50)
—N<n<N

We do not report results for Algorithm 3 with ¥ = 256 because its memory requirements
were excessive for our implementation.

In the examples 1 and 2 we also include the performance of the standard FFT. These
results are for illustrative purposes only; they can be improved with the help of some
standard techniques such as Richardson extrapolation.

13

Example 1 Here we compute the Fourier Transform of a single large rectangle (approx-
imately 0.6 by 0.66). Extrapolating the results for the FFT. we see that single precision
accuracy, Eo = 1077, would result in time complexity of more than 10° operations, and
for double precision we would need more than 1023

Example 2 In this and the next example we calculate the Fourier transforms of a piece
of a VLSI mask (courtesy of Eytan Barouch). In simulations, these masks usually consist
of a large number of simple geometric shapes that model the integrated circuit. In our
case, there are 1215 rectangles and 424 triangles. In this example we compute the Fourier
transform of the rectangles only in order to estimate the error of the computation. In the
next example, we calculate the Fourier transform of all the domains, including the triangles.
The results of this example can be found in tables 4 and 5, and those of example 3 in table 6.

Example 3 In this example we compute the Fourier Transform of 1215 small rectangles
(the same ones as in the previous example) and 424 triangles. Their total area is 0.183 and
the total perimeter of their union is 69.3. The total perimeter of the domains in this example
(and, consequently. the run times of algorithms 1 and 2) are slightly smaller than in the
previous example because some of the newly-added triangles share some of their boundaries
with the rectangles. (We remove from the computation the curves whose contributions can
be easily seen to cancel.)

The following observations can be made based on the numerical experiments above:
1. The errors for all three algorithins do not grow with N —the size of the problem.
2. All three algorithms have approximately the same accuracy.

3. The run times grow approximately like N2 in example 1 for all three algorithms, and
in example 2 for algorithms 1 and 3 (in agreement with (49)), while the run times for
Algorithm 2 in example 2 appear to grow linearly. This apparent linear growth is the
result of the large number N, of Gauss-Legendre nodes generated. causing Lagrange
interpolation to dominate the computation. Since N, grows linearly with N, the total
run times appear to grow linearly as well. The timings for Algorithm 1 in example 2
grow quadratically because FFT dominates the computation. On the other hand. in
Algorithm 3 in example 2 Lagrange interpolation dominates the computation, but N
in this case grows quadratically, so the overall growth remains quadratic. The VLSI
mask of example 3 cannot be handled with the method of Remark 4.1 alone: some line
integrals need to be computed numerically. As a result the run times of Algorithm 1
in example 3 grow at an intermediate rate.

4. Algorithm 2 is significantly faster than Algorithm 3, even when the ratio of perimeter
to area is large. But Algorithm 1 is only twice as fast as Algorithm 2 on realistic
problems (examples 2 and 3). On the same realistic problems all three algorithms are
faster (for N > 64) than the closed form solution even when it is available. When the
closed form solution is not available, straightforward calculations are prohibitively
slow: single precision would require at least 150 years and double precision over

14

Double Precision: p = 16 and v = 8

Run times (seconds)

The error E

N | Alg. 1 | Alg. 2 [Alg. 3| FFT | Direct || Alg. 1 | Alg. 2 | Alg.3 | FFT
16 2.3 3.7 129 [0.1 0.2 || 4.8e-15| 6.3e-15 | 6.3e-15 | 4.0e-02
32 11.1 14.2 671 0.2 0.8 || 4.6e-15 | 4.6e-15 | 3.3e-15 | 2.3e-02
64 52.0 57.1 1 2755§ 0.5 3.0 || 2.0e-15 | 2.0e-15 | 1.6e-15 | 9.2¢-03
128 | 208.0 | 222.0| 11112 2.0 12.2 {{ 1.0e-15 | 1.1e-15 | 1.1e-15 | 5.0e-03
256 | 1000.0 | 1028.0 8.7 48.6 || 1.0e-15 | 1.2¢-15 2.5¢-03
Table 2: Run times and errors for example 1; double precision.
Single Precision: p=10and v = 5
Run times (seconds) The error Eo,
N | Alg. 1| Alg.2| Alg.3 | FFT | Direct || Alg. 1 | Alg. 2 | Alg.3 | FFT
16 0.9 1.3 24| 0.1 0.2 || 1.7e-08 | 1.5e-08 | 1.5e-08 | 4.0e-02
32 39 4.7 95| 0.2 0.7 || 8.5e-09 | 8.3e-09 | 7.7e-09 | 2.3e-02
64 18.4 20.1 381 0.5 3.1 | 5.2e-09 | 4.7e-09 | 4.8¢-09 | 9.2¢-03
128 83.3 R6.4| 1538 | 2.0 12.2 || 2.0e-09 | 5.7e-09 | 4.3e-09 | 5.0e-03
256 | 339.0{ 345.0 8.7 48.6 || 1.5e-09 | 4.4e-09 2.5¢-03
Table 3: Run times and errors for example 1; single precision.
15
® ® ® ® L

Double Precision: p = 16 and v = 8

Run times (seconds) The error £
N {Alg. 1| Alg. 2| Alg. 3! FFT | Direct || Alg. 1 | Alg. 2 | Alg. 3 | FFT
16 6.4 T 283 [3.1 165 || 1.1e-14 | 1.0e-14 | 5.9e-15 | 5.7e-02
32 15.8 156 8K7 3.1 672 || 6.2e-15 | 9.4e-15 | 7.7e-15 | 4.2e-02
64 55.0 293 | 2277] 3.5 | 2707 || 5.7e-15 | 1.1e-14 | 5.1e-15 | 3.1e-02
128 | 213.0 643 | 6562 | 4.8 10874 (| 3.3e-15 | 7.8e-15 | 3.5e-15 | 2.9¢-02
256 | 1004.0 | 1834 11.7 | 43740 || 2.4e-15 | 1.0e-14 1.7e-02
Table 4: Run times and errors for example 2; double precision.
Single Precision: p=10and v = 5
Run times (seconds) The error E,
N [Alg. 1| Alg. 2| Alg. 3| FFT | Direct | Alg. 1 | Alg.2 | Alg. 3 FFT
16 2.9 31 94, 3.1 165 || 2.2e-08 | 3.8¢-08 | 1.3e-08 [5.7e-02
32 6.0 4R 190 3.1 673 || 2.2e-08 | 2.0e-08 | 1.Re-0R | 4.2¢-02
64 19.6 83 398 3.5 2717 [1.3e-08 | 4.0e-0% | 1.3e-0% | 3.1e-02
128 85.2 200 1075 4.8 1 10920) 9.2e-09 | 1.6e-08 | 9.0e-09 | 2.9¢-02
256 | 338.0 562 11.7 | 43630 || 5.3e-09 | 2.7e-08 1.7e-02
Table 5: Run times and errors for example 2; single precision.
Double precision: Single precision:
p=16andv =18 p=10and v =5
N [Alg. 1| Alg. 2| Alg. 3 || Alg. 1 | Alg. 2} Alg. 3
16 11 73 333 4.2 29 107
32 23 148 989 8.1 45 216
64 65 282 2451 22.3 RO 441
128 231 628 6972 R9.7 193 1153
256 1036 1804 347.0 555 |
Table 6: Run times (in seconds) for example 3.
16
o ® ® 4

10'® vears regardless of the values of V. Adjustments such as repeated Richardson
extrapolation will undoubtedly improve these times. but are unlikely to make them
competitive.

6 Conclusions and Generalizations

6.1 Generalizations

The entire algorithm of Section 4, including Remark 4.1, readily generalizes to higher di-
mensions: we will not describe the details of the higher-dimensional implementation here.

We will describe an extension of the algorithm to piecewise smooth functions. If the
function f{z.y)in (13)is piecewise smooth. i.e.. for each j, the coefficient K, = A (r.y)is
a smooth function of (z.y). we analyze it into a Fourier series with respect to r:

K(r.y)= ZI{'J(rrz)(y)(‘z"'"". (51)

where

- def [! . —2
Kytm)) [R (zypem2ms da.
0

We observe next that all the computations of §3.2 continue to hold if A, is a function of y
alone. That is, the algorithm of Section 4 can be applied to K’,(m)(y) separatelv for each
m and the results added up afterwards. The time complexity of this new algorithm would
be that of the algorithm of Section 4 times the width of the widest Fourier transform (in
the r-direction only) of the functions K,(r.y).

6.2 Conclusions

We have presented an algorithm for evaluation of the Fourier transform of piecewise constant
functions of two variables. The algorithm overcomes the accuracy problems associated with
computing the Fourier transform of discontinuous functions: in fact. its time complexity
is O(log?(1/€)N%log N), where ¢ is the accuracy and N is the size of the problem. The
algorithm is based on the Lagrange interpolation formula and the GGreen’s theorem. which
are used to preprocess the data hefore applying the FFT. It admits natural generalizations
to higher dimensions and to piecewise smooth functions.

References

{1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, (Dover, New
York. 1970).

(2] E. Oran Brigham. The Fast Fourier Transform and its Applications. (Prentice Hall,
Englewood Cliffs, NJ, 198%).

(3] J. W. Cooley and J. W. Tukey, An algorithm for the machine computation of complex
Fourier series, Math. Comp. 19. (1965).

'@

[4] G. Dahlquist and A. Bjorck. Numerical Methods, (Prentice-Hall, Englewood Cliffs, NJ.
1974).

[5] D. Gottlieb. M. Y. Hussaini. and S. Orszag. in Spectral Methods for Partial Differential
Equations, edited by R. G. Voigt, D. Gottlieb, and M. Y. Hussaini. (SIAM, Philadelphia
PA. 1984).

(6] 1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products, (Academic
Press, New York, 1980).

[7] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, (Springer Verlag, New
York. 1980).

[8] H. Joseph Weaver, Theory of Discrete and Continuous Fourier Analysis, (Wiley, 1989).

18

