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ABSTRACT

Weiss and Weinstein have recently derived a new lower bound on random

parameter estimation error. This report makes use of this bound to develop a

criterion for comparing two sparse array configurations. The arrays are first adjusted

in size so that their direction-finding (DF) accuracies at high element signal-to-noise

ratio (ESNR) are the same when averaged over all possible directions of arrival in the 0

hemisphere. Then their threshold ESNRs are calculated using the Weiss-Weinstein
bound. The array having the lower threshold ESNR is judged the better array. As
an example of the application of the bound, three 7-element arrays, a circle, a spiral,
and an L-shaped array, are compared.

The bound is also extended to the case of switched subarrays, where data are

collected from several subarrays sequentially in time and processed as a unit. The
purpose is to achieve DF accuracy approaching that of the full array while reducing

the number of signal processing channels. An example, using five receivers on the

7-element spiral array, shows that this is indeed possible.
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1. INTRODUCTION
X,

The purpose of this report is to develop a method for comparing two sparse planar array
configurations. The criterion for comparison is based on narrowband single-signal direction-finding 4
(DF) accuracy in the presence of spatially white noise (i.e., uncorrelated from receiver to receiver).
The directions of arrival are assumed to be confined to a he.aisphere, and DF error is averaged over
all possible directions of arrival in the hemisphere.

According to sampling theory, the aperture illumination must be sampled about every half-
wavelength in both spatial dimensions in order to preserve all the available information about
the directions of the signals. Each sample requires an antenna element and a receiver channel.
Unfortunately, system cost increases very rapidly with the number of receiver channels used in the
array.

The performance of an array is characterized by its array pattern, which is the response
of the array, phased to point in a particular direction, to a signal arriving from another direction.
When the array satisfies the half-wavelength sampling criterion, the array pattern has a well-defined
main beam and uniformly low sidelobes. As elements are removed from the array, the sidelobes
grow in size and number. A high sidelobe means that there are two directions having very similar
array response vectors. In the presence of noise and calibration uncertainties, confusion between
the mainlobe and the sidelobes can result. If the number of signals is known, or can be reliably
estimated, this confusion manifests itself as occasional large DF errors; if not, it causes false alarms
as well.

The value of element signal-to-noise ratio (ESNR) at which these large errors begin to occur
with significant probability is called the threshold ESNR of the array. If two arrays have equal
accuracy at high ESNR, the array having the lower threshold ESNR is deemed the better array.

The Weiss-Weinstein (WW) bound is a lower bound on the mean squared estimation error
for random parameters with known a priori distributions. As will be shown, it predicts remarkably
well the threshold ESNR of the maximum likelihood direction estimator. This quantity would
otherwise have to be determined by simulation.

Equations for the bound are developed for the planar array problem, and various issues that
arise in its calculation are addressed. A scalar measure of accuracy is proposed for two-dimensional
DF problems, and the Cramer-Rao (CR) factor of an array is defined. Arrays having the same CR
factor have the same DF accuracy bound at high ESNR. As an example of the application of the
bound, three 7-element arrays, a circle, a spiral, and an L-shaped array, are compared.

The bound is extended to the case of switched subarrays, where data is collected from several
subarrays sequentially in time and processed as a unit. The purpose is to achieve DF accuracy
approaching that of the full array while reducing the number of signal processing channels. An
example, using five receivers on the 7-element circular array, shows that this is indeed possible.

• • • •• • •1
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The main advantage of adaptive arrays is their ability to adapt their array patterns to the
signal environment, amplifying the signals of interest while simultaneously redut ing other unwanted
signals. Nevertheless, as a first step toward a rationale for adaptive array comparison, arrays will
be compared on the basis of their single-signal DF accuracy, assuming ideal (i.e.. omnidirectional)
antenna element patterns. If this appro,-ch provides some insight into the problem, then perhaps
it can be extended to more complicated scenarios.

The following notational conventions are used. Bold lowercase letters represent (column)
vectors, while bold uppercase letters represent matrices. No particular distinction is made between
real and complex quantities; the context should make it clear. The transpose of a matrix A is AT;
its complex conjugate is A*; its conjugate, or Hermitian, transpose is AH. The determinant of A
is denoted by det A. I denotes the id,-!ntity matrix; 1 denotes a vector having all elements equal
to 1. The notation [x] denotes the diagonal matrix, the nonzero elements of which are those of the
vector x. The inequality A > B means that the matrix A - B is nonnegative definite. All matrix
inverses (including scalars) that appear are assumed to exist, unless otherwise noted.

2
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2. THE PARAMETER ESTIMATION PROBLEM

0
DF is an example of a parameter estimation problem. An excellent discussion of such problems

is available in Van Trees [1]. The following brief description is given primarily to introduce some
terminology and notation.

Observations of a (scalar- or vector-valued) random process are made in order to determine
which of a set uf possible probability density functions (pdfs) generated them. if the set 0 possible 0

pdfs is finite (usually small), the problem is called a hypothesis testing problem; otherwise. it
is called a parameter estimation problem. Parameters are quantities that may be thought of as
indexing the set of possible pdfs. i.e., knowing the values of the parameters is equivalent to knowing
which pdf is true. The vector, the elements of whiclý are the parameter values, is called the paramtr
vector. 0

To best model the physical situation at hand, the elements of the parameter vector may be
treated either as unknown constants or as random variables with a joint pdf of their own. When
they are treated as unknown constants, the set of possible pdfs is usually written as pz(Z; u J, where
z denotes the observation and u denotes the parameter. When tihe parameters are treated as
random, the joint pdf for z and u is written as pz,u(Zu), the a przori pdf for u is the marginal •
density

Pu(U)= pz,u(Z. u)dz,
,* .

and similarly for z., arid the a posteriori density for u, i.e.. the pdf for u given the values of the
observations, is the conditional density

pU1Z(ulz) = Pz.u(Z, U) Pz1u(Z1U)Pu(U)
Pz(z) pz(z)

A similar notation is used for expectations of random quantities, e.g., the conditional expectation
of a function f(u) of u, given the value taken by z. is written

Eu1zjf(u)} f(u)p(ulz)du.

3
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Sometimes, when it is clear from the context what is intended, the subscript on p will be
omitted, as in the previous equation. In this report, the parameter vector will be treated as

random. An estimate of u is a function only of the observations, u(z). The estimation error.
4(z) - u, is a random vector, and so is completely characterized by the join, pdf p'z u). In many

cases, it can be argued that the error vector is approximately Gaussian and so is well characterized

by its inean value and covariance matrix, or by its mian squarmd 'rror matrix

Ez.u( ii(z) - u)(u(z)- u).

4•
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4
3. THE WW BOUND

Weiss and Weinstein [2,3,4] have recently derived a bound on the mean squared error ' in
estimating random parameters. The bound states that [4, Equation (18)]

Ez~u(U- u)(6 - u)T >__ HF-'HT n,(1)

where fiIx' is the vector estimate, uKxl is the true parameter vector, H"XT is a matrix, the
columns hi of which represent perturbations in the true parameter vector u, and rTXT is a matrix
to be defined below in terms of the likelihood ratio of the observations when the true parameter
vector is u + h and u, respectively,

L(z; u + h, u) p(z,u+ h) (2)p(z, u)

The likelihood function is defined only on the set U of values of u for which p(z, u) > 0. Define a
real random vector w, the ith element of which is given by

A LI/ 2 (z; u + hi, u) - LI/ 2 (z; u - hi, u)
w,, = E{LI/ 2 (z; u + hi, u)}

The matrix r is then simply the covariance matrix of w,

r = E{wwT}. (3)

It is clear from this representation that r is nonnegative definite; hereafter it is assumed to be
positive definite.

The number T and nature of the perturbation vectors in H are completely arbitrary. Every
choice of them produces a lower bound on the mean-squared error matrix. The addition of another
perturbation vector can only increase the bound, in the sense that if the bounding matrix is f0

before and W after a perturbation vector is added, then fW'- R' > 0. A proof of this result is given

in Appendix A.

'Their bound is actually more general than the one described here. See Weiss and Weinstein [4]

for the more general form.

5
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A

4. THE SINGLE-SOURCE, IDEAL-ARRAY DF PROBLEM

The mathematical model of the array DF problem for narrowband sources that will be used 4
here has been described in many papers (see, e.g., Johnson [5]). A brief description will be given
here in order to introduce the notation to be used. Attention is restricted here to the case of a
single narrowband source, so that the complex envelopes of the signals received at each of the M
array elements at time t form a complex M vector

z(t) = 0(t)v(u) + n(t), (4)

where u is a real unit vector pointing from the array origin to the source, 3(t) is the complex
amplitude of the incident wavefront at the array origin, v(u) is a complex M vector, the array
response vector for direction u, containing the complex signal components received at each of the
elements divided by 3(t), and n(t) is a complex M vector containing the noise components at each
element. The data consists of samples of z(t) taken at times (t1 ,t 2,.. ., tN). For brevity, all vector
values at time t,, will be indexed simply by n. It is assumed that the time between samples is large
enough so that the noise vectors n, and also the complex signal amplitudes On are statistically
independent. The noise vectors n,• are modeled as circular complex Gaussian random vectors with
zero mean and covariance matrix 1.2 The complex signal amplitude•3,. is also modeled as a circular
complex Gaussian random variable with zero mean and known, constant variance P.3 With these
assumptions, the data vectors zn are independent, circular complex Gaussian random vectors with

4 zero mean and common covariance matrix C = Pv(u)vH(u) + I.

The signal source is assumed to be far away from the array, so that the incident wavefront is
essentially a plane wave. If the mth ideal element 4 is located at position dm relative to the array
origin, its array response v,(u) is exp(jkuTdm), where k = 2ir/A is the wave number. The array
response vector (transposed) is

vT(u) = (exp(jku T d 1), exp(jku T d2),..., exp(jku T dM)). (5)

2 AU1 2M real and imaginary parts of the entries of n,. are statistically independent and have equal
variances of 1/2.
3 1f the variance P is unknown, it becomes an additional parameter to be estimated, and must be
assigned an a priori probability density if one wishes to use the WW bound.
4 An ideal element measures the complex amplitude of the incident wavefront with an ideal omni-
directional pattern.

7
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S

Note that JIv(u)iI 2 = M. Because the signal magnitude at each element is I10i and the noise variance X,

at each element is unity, P represents the ESNR at each element.

The array is assumed to be planar. This assumption affects the analysis in that it simplifies
the form of the derivative with respect to u of v(u). This means that the z component of all the
vectors d, are zero, and so they and the vector u may be regarded as two-dimensional. It is also
assumed that the direction of arrival is confined to the hemisphere above the plane of the array.
This eliminates any ambiguity in the z component of the vector u.

There are thus two real parameters to be estimated, the x and y components of u. An a
priori pdf must therefore be chosen for these variables. To keep the computation of the bound as
simple as possible, this function is chosen to be constant on the unit disk, i.e.,

1/7r if U2 + u2 <1
P(u) = P(UzUY) x= (6)

u0 otherwise.

This density implies that the marginal probability density of signals in elevation angle is sin 2o.
If the signal directions were uniformly distributed in solid angle over a hemisphere, the resulting
density in elevation angle would be cos 0, producing more signals near the horizon and less at higher
elevation angles. In many applications, this would be a more realistic model; however, it would
greatly complicate the computation of the bound.

8
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5. CALCULATION OF THE WW BOUND

The first step in computing the bound is to write down the joint probability density of the
measured data and the parameters, which is the product of the a priuri density on u and the
conditional density of the data when u is known. This conditional density is circular complex
Gaussian, with covariance matrix

C(u) ! E{zzH} = I + Pv(u)vH(u). (7)

The inverse of C is

P_ H
C- 1(u) = I- P v(u)v (u), (8)

and its determinant is

det C(u) = MP + 1.

The joint probability density of the data z = {z,, n 1,..., N} and the parameters u, uy is

N

p(z, u) = p(ZJU)p(U) = M(MP + 1)]-N exp{- E znC-(u)z,}p(u). (9)
n= 1

The likelihood ratios required in the evaluation of the bound are

z p(z,u+ h,)L(z; u + hi,,u) =-
p(z, u)

p~uh~)P N
_ p~u +&= exp MP -+ I (IzHv(u + h)l 2 _

p~)exp M P-+ n n~

Note that these likelihood ratios are defined only on the set U (the unit disk) where p(u) > 0.

All that is needed to compute the r matrix [Equation (3)] required for the WW bound is the
evaluation of two expectations. The first is

9
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E{L tl2(z;u+h,,u)} dup(u) p(u+ hi) 1/2

(pku) 0

* Jdz P{ qMP E-(IZHv(u+ h,)12 
- IzHv(u)12)}dz exp M P n=1 n ,=) '

[iM(MP + i)-N exp n .C

The last two factors under the z integral above are of course just p(zlu). The right side simplifies
to

N S]du p 112 (U + h)p/ 2 (U)] dz [7rM(MP + IWJNexp{- H (10)

where

1 P (v(u + hi)vH(u + hi) + v (u)). (11)
2MP+1

The z integration reduces to a product of N integrals of the form

[,rM(MP + 1)1' dznexp{-zHQzn) = [(MP+ 1)detQ]-'.

It is shown in Appendix C that

(P ldt 1+ (Mp)2 (1IVH(u)v(u + hi)12/Ml)(MP+)detQ = 4(MP+l)(

1+ (MP)2 ( IvH(O)v(hi)l)2/M2), (12)
4(MP+l)(

where v(O) = 1. Note that det Q is not a function of u, and so the two integrals in Equation (10)
are separable. The final result is

E{L12(Z; u + hi, u)} = [(MP + 1) det Q]-N ludu pI/2(u + hi)p'1 2 (u). (13)

10
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The second required expectation is

EI{L1/2(z; u + hi, u)Ll/ 2 (z; u + h, u)} =

udup~) p(u) AU + h)12 p(u +) ) /

"[,rM(MP + 1 ))-S f N= t

*ex Mp+ N(-• + h•)1 2 + Iz•,,(u + h, )(2 - 2iz-lv(u)l2)},

which reduces to [compare Equation (10)1

N

where [compare Equation (11)]
1 P

M +1(v(u+ h1 )v"(u + h)+v(u+ h3 )v"(u+ h3 )). (15) -

MP + 11 *j *VU )2+IH(U )2 IH()I

The same sequence of steps that produced Equation (13) now leads to

E{L/ 2(z;u+ h,, u)L1  nz; u+ hi, u)} =

(MP +1)det/R]-NJ/udu pll2(ut + h)pl/2(u + hj) (16)

where [compare Equation (12)]

R = I - 1 (M)P (v(u + hi)VHu+h)+ v(u + hj)VH(U+ Mh)).(5

(MP+l)detR = 1+ 4(MP+)(1

= + ( M P) 2  (1 vH (h1 )v( h3 )1 /M
2). (17)=+ 4(MP+1)

Again detR is not a function of u, and so the two integrals in Equation (14) are separable, yielding

Equation (16). Note that the determi.at detQ given by Equation (12) is just a special case of

Equation (17).

11

S= 1 1 - + • +hi12

0~~4M + 1) SSS



In order to obtain a coin)act expression for the r matrix that defines the WW bound, it is
convenient to define the functions

AN(h,,hj) = [(MP+1)detRIN, (18) 4

B(h,, h,) = JU du p"/ 2 (u + h,)p"/ 2 (u + h3 ), (19)

and their product

C(hi,,h) = AN(h 1,h,)B(h,,h3).

Note that only AN depends on the signal-to-noise ratio P and the number of samples N. Note
also that because the domain of integration in Equation (19) is the set U, the region of support in
Equation (19) is the intersection of three unit disks, not two (see Appendix D).

In terms of these fuictions, the ijth element of the r matrix of Equation (3) takes the form

- C(h,, hJ) + C(-h,,-h,) - C(h,,-h) - C(-h,,hj) (20)
C(hi, O)C(hj, 0)

It is clear from their definitions that AN and B have the common property

AN(hih,) = AN(h1 ,hi).

B(hi,h,) = B(hj,h,),

and that AN is an even function in the sense that

AN(-hi,-h,) = AN(hi,h 3 ).

If, as has been assumed here, the parameter set U has the property that if u is in U, -u is also in
U, and that the a priori density p(u) is an even function, i.e., p(-u) = p(u), then Equation (20)
simplifies to S

2[C(hj, hb) - C(hj, -hA)]r = C(hi, O)C(hj,O0)

12
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F

6. A SCALAR MEASURE OF DF ACCURACY U)

A planar array can estimate two real angular parameters (here u1 ,u,) that define a unique

direction in a three-dimensional hemisphere. The DF error is thus a two-vector having a two-

dimensional probability density. Different array geometries will produce distributions having dif-

ferent shapes. In order to compare two such arrays, their distributions must be characterized by a

single real number.

A convenient choice is the area of the ellipse of concentration of the error distribution (e.g.,

see Cramer [6, p.2831). A probability density for the error uniformly distributed over the ellipse of

concentration would have the same mean squared error matrix as the actual a posteriori density.

This area of the ellipse of concentration is given by 41rV/e-=, where -E is the mean squared error

matrix of the distribution. The array having the smallest area of concentration is deemed the best.

It is convenient to plot this error area on a logarithmic scale.

In the limit as ESNR goes to zero, the observations provide no information and the mean

squared error matrix becomes that of the a priori density. This has BE = I/4, so that det S = 1/16,

and its ellipse of concentration has area 7r. This is the value the scalar measure should approach

for low ESNR.

* .
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7. THE CR FACTOR OF AN ARRAY *1

General expressions for the Fisher information matrix F for nonrandom parameter estimation
are given in DeLong [7] for the case of a multiple signal scenario in which each signal has a
single unknown directional parameter. Both deterministic and random Gaussian signal models are
considered. In the deterministic model, the complex amplitudes may be either known or unknown.
In the Gaussian model, the covariance matrix of the signal complex amplitudes may be either
known, or unknown but diagonal (uncorrelated signals). The Gaussian, known covariance bounds
derived from this information matrix (assuming unbiased estimates) exhibit unusual behavior in the
multiple signal case, which has been verified by simulation of estimation algorithms in White [8].

The Fisher matrix of DeLong [7, Equation (2.242)], for the Gaussian-signal, known-covariance S
problem, is extended to signals with an arbitrary number of directional parameters (e.g., the planar
array problem) in Appendix F. When specialized to the case of a planar array of omnidirectional
elements, it becomes

MP2 [TI 1 T
F = 2k 2 N M DT(I • -11 )D, (21)

1+ MP 1

where

D... (22)
yl 12 ... YM

is a matrix containing the z, y positions of the elements of the array in some arbitrary coordinate
system. Note that F is not a function of u. This fact will be quite useful below. For Gaussian
signals, the quantity F-1 is a lower bound on the covariance matrix of any unbiased estimate of u.
It is referred to hereafter as the unknown parameter CR bound.

For large signal-to-noise ratios, the regime of interest below, Equation (21) becomes

F = 2k 2NP DT(I - 11 )D = 2k 2NPA.

The array configuration appears in this expression entirely by way of the matrix A. This matrix
is simpler than it appears at first glance. If the origin of the array coordinate system is moved to
the center of mass of the element positions (so that DT1 = 0 ), it becomes simply S

A= DTD = Z, ,, X ,]

m=1LXMlIM Yin

15
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i
In the limit of high ESNR, it has been found empirically that the WW lower bound on ,

the mean squared error matrix, for the problem of interest here, becomes essentially equal to the S
unknown parameter CR bound when the test points are chosen properly (see Section 8). That is,
at high ESNR, both bounds say that

-> F-1. (23)

The area of the ellipse of concentration [6] associated with the error matrix 3= is 47rV'e=. Because
det 2 > (det F)- 1 , a lower bound on this area is therefore

4irVde~= 2! (21rNP)-A 2 (det A)- 1/ 2. (24)

Thus, for high ESNR, both the WW and CR approaches yield the DF error bound given by

Equation (24). The CR factor of the array is defined to be the quantity (det A)'/ 4, which has the

dimension of length. Arrays having equal CR factors and operating at the same frequency have

equal DF accuracy bounds at high signal-to-noise ratios. It is sometimes convenient to include the
factor \- 1 in the definition of CR factor. When this is done, the CR factor is said to have units

of wavelength. The caveat about operating frequency can be dropped from the above statement if
the CR factors of the arrays are equaJ in wavelengths.

A similar quantity for line arrays, L = M -m /2, was developed in Evans et al. [9],

where it was called root mean square (RMS) array length. However, this parameter has the unde- S *
sirable proporty that removing an element can cause it to increase. It is easy to show that the CR
factor defined here must decrease when elements are removed.

Although the CR factor has the dimension of length, an array with constant CR factor must
shrink as elements are added. For this reason, the terms length and aperture are not used to describe

it. S

16
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8. CHOICE OF TEST POINTS u,

Intuition suggests and simulation confirms that the abrupt increase of the estimation error as
signal-to-noise ratio decreases occurs because noise causes a spurious sidelobe peak to exceed the
true peak of the likelihood function (or whatever function is being maximized by the estimator).
The unknown parameter CR bound takes into account variations of the pdf only in the immediate
neighborhood of the true parameter value [see Equation (F.1)]. Thus the performance threshold is S
not well-predicted by this bound. As will be seen below, the test points of the WW bound call be
chosen so as to predict the performance threshold quite well.

Another well known bound, the Barankin bound, is very similar in form to the WW bound
and also involves the use of test points. McAulay and Seidman [10] applied the Barankin bound
to a pulse-position modulation communications problem and suggested choosing the test points to
be the locations of the maximum sidelobes of the objective function (the matched filter output).

It is clear that the height of a sidelobe is not the only factor affecting the bound. If the
sidelobe is very distant in arrival angle from the mainlobe, the probability that the true direction
of arrival is such that the sidelobe is within "visible space," i.e., that it represents another valid
direction of arrival, is very small. Thus such a sidelobe contributes relatively little to the overall
DF error. Sidelobes near the mainlobe have a greater probability of causing an error, but the size
of the error is smaller.

Weiss and Weinstein [2,3,4] assert that if only incremental test points
* •

h= ( ,) h• =( )
0 E

are used, the WW bound becomes the random parameter CR bound derived by Van Trees [1, pp.72,84] 0
as c - 0. It is shown in Appendix B, for a simple one-parameter problem, that this is not the case
when the joint pdf p(z, u) has compact support in u and is not zero at the end points. The WW
bound instead approaches 0 for this case. This behavior is also exhibited by the computer program
used to compute the bound for the planar array problem of interest here.

Despite this fact, it is found empirically that there exists, for every instance so far examined, •

an optimal value of ( which yields the tightest bound. Furthermore, the bound so obtained is ex-
tremely close to that obtained from the unknown parameter CR bound. The empirically-determined
equation for c is

101og1 o c = mnin[0,0.5862 * (40- 10log1 0(NML 2 )) - ESNR(dB) - 30], .

17
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i
where N, M and L are the number of looks, number of elements, aid CR factor in wavelengths, U

respectively, of the array. Use of this formula gives a two-point VVW bound, which follows 'he

unknown parameter CR bound closely for ESNRs ranging from -10 to 40 dB.
4,

Experience shows that when the test points of the WW bound are placed at the locations
of the highest sidelobes of the array pattern, only a few test points are needed. The addition of
more test points has very little effect on the bound. An example of this is shown in Figure 1 for a

221432.W
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SPIRAL ARRAY

"0 - 7 ELEMENTS S
- GROWTH FACTOR 1.1

"CR FACTOR 1.1

u-10 CR FACTOR 8
a. "24 LOOKS

-I
0 -20

cc-3 TEST POINTS
LU 2 -
LL0 .4 ------
4C 40 - 8 -------

IX 16-

-50

-60
-10 0 10 20

ESNR (dB)

Figure 1. Effect of number of test points on the WW bound.

7-element spiral array having a growth factor of 1.1 and a CR factor of 8 wavelengths, processing

24 looks of array data. (The spiral array geometry and parameters are described more fully in

Section 11.) The incremental test points are the first two used; they produce a smooth curve

without a break point, essentially the unknown parameter CR bound. Addition of two more test
points at the two highest sidelobe locations produces the threshold behavior, and adding more test

points merely raises the bound slightly in the uninteresting ESNR region below threshold. At high 5

ESNR, the WW bounds agree with the unknown parameter CR bound, as discussed in Section 7,
regardless of the number of test points (> 2) used.

The next section discusses the array pattern and the selection of sidelobes in more detail.

0S
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9. COMPUTING THE ARRAY POWER PATTERN 4
I

The array power pattern function of an array is defined to be the squared magnitude of its
response, when steered in direction ul, to a signal incident from direction u2 , i.e.,

g(ul, u 2 ) = IMIX(Ul)Hx(u 2 )I2, (25)
M

where x(u) is the array response vector for direction u. When the array is composed of ideal,
omnidirectional elements, the response vectors x(u) become the vectors v(u) given by Equation (5).
It is then true that

9(ul,u 2 ) = 9(0, u2 - U0) !g (h), (26)

where h = u2 - ul. An array is characterized by computing g(ul, u2) over all possible pairs of
unit vectors in a hemisphere. From Equation (26), it is seen that this is equivalent to steering the
array to zenith (u = 0) and computing over all possible differences of pairs of unit vectors in a
hemisphere. It is clear that the maximum length of the difference of two unit vectors is 2.

The global maximum of the array pattern occurs at h = 0. Secondary maxima of the pattern
(which may sometimes be equally large) are called the sidelobes of the array pattern. The location
of a sidelobe is specified by a vector h. For a general array, h is three dimensional, but for planar * •
arrays (the case considered here) its component normal to the plane is of no consequence. The
array pattern is then a function of two real variables, the x and y components of h.

A list of sidelobe values arranged in descending order, accompanied by their locations (h val-
ues), defines the array as far as the WW bound is concerned. When the array is steered to zenith,
the h values define the sidelobe locations directly; otherwise, they define the difference vector
between the steering direction and the sidelobe direction.

While the array pattern is translation-invariant, the effect of a sidelobe is not translation-
invariant. When the array is steered to zenith, the only sidelobes that are important are those lying
within the unit circle in the h plane. This is sometimes called nisible space, because it contains all
the physically possible directions of arrival. When the array is steered to direction u0 , the main
peak moves there, and the sidelobes move with it. However, visible space is still the unit circle.
Thus, as the beam is steered in different directions, some sidelobes vanish from visible space, while
others enter. DF accuracy is thus very much a function of steering direction.

The WW bound overcomes this complexity by averaging over steering direction, using an
assumed a priori probability density for directions of arrival, as described in Sectioa 4. A fixed set
of test points is used; whether or not they make a contribution to the bount is determined by the
factors B(h,,h,) defined by Equation (19).

19
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When computing the array pattern, one must choose a wavelength. This should be the
smallest wavelength of interest. As the wavelength is increased, the sidelobes of the arr.y pattern 5
move radially outward in direct proportion. The sidelobe list obtained for a chosen wavelength can
thus be used as a source of test points for the WW bound computation at any longer wavelength.

20
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10. VALIDATION OF THE WW BOUND

A single-signal DF simulation was carried out in order to evaluate the tightness of the bound.
The DF algorithm used in the simulation was the maximum likelihood estimator, discussed in
Appendix E. The array configuration was a 5-element spiral5 with a growth factor of 21/s and a
CR factor of 4 wavelengths.

Each simulation point is the result of averaging 1000 Monte Carlo trials. On each trial, a
point (u. u.) was selected at random from the unit disk, representing the true direction of arrival.
Using these values in the data model of Equation (4), N = 24 data vectors (looks) were gener-ted
and used to compute the quantity

N

n=1

which is monotonically related to the likelihood function (see Appendix E). The maximum value
of this function on the unit disk Ifi _< I was found by a two-dimensional search. S

The results are shown in Figure 2. Note that two results are given for ESNRs of 15 and
17 dB. This is to enmphasize the fact that, near threshold, the increase in the error is due to a few
occurrences of a rare event (confusion of the main response with a sidelobe response). In the first
set of 1000 trials, this event did not occur. A closer match would presumably have been obtained
by conducting more trials, but the intensive computation required by the two-dimensional search S
makes this impractical. The implication is that simulation is not an efficient way to determine
threshold ESNR. In view of the difficulties inherent in such a simulation, the bound may be said
to accurately predict the threshold ESNR of this array.

'For a more complete description of the mpiral configuration, see Section 11.
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Figure 2 Comparison of simtslation results With WW bound.
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11. COMPARISON OF THREE ARRAY GEOMETRIES

This section shows how the WW bound can be used to compare the DF accuracy of different
array configurations. The three arrays to be studied have the same CR factor and therefore the
same accuracy bounds at sufficiently high signal-to-noise ratios. The best array is then the one
with the lowest threshold signal-to-noise ratio.

The arrays to be compared all have seven elements. The first is a circular array with elements
evenly spaced in angle. For a CR factor of 1 wavelength, this array has a radius of 0.535 wavelength.

The second array is a spiral array. Its elements are on the same radials as the circular array,
but their distance from the center grows geometrically by the factor b. This parameter will be
called the growth factor of the array. In this example, the growth factor is 1.1. For a CR factor of
1 wavelength, the first element is at a distance of 0.391 wavelength from the center.

The third array has the shape of the letter L. There is an element at the intersection and three
along each arm. Along each of the two arms, the element positions are geometric, i.e., r,br,b'r.
For radial arrays such as this, the parameter b will be called the growth factor. In this example,
b is 1.7. For a CR factor of 1 wavelength, the distance r is 0.840 wavelength. Although several
growth factors were tried for the spiral and L arrays, no further attempt was made to optimize
these parameters.

The three array geometries are shown in Figure 3.

The CR factor of an array is increased by expanding the array or, equivalently, increasing
the frequency of operation. Bounds on DF error for the circular, spiral, and L-shaped arrays,
respectively, are shown as a function of element signal-to-noise ratio in Figures 4 to 6 for various
CR factors. The threshold ESNR 6 for each array is plotted as a function of CR factor in Figure 7.

The circular array clearly has the lowest threshold ESNR, while the spiral is somewhat better
than the L for most CR factors. This Figure also illustrates the general principle that the threshold
ESNR is a nondecreasing function of CR factor. The reason for this is that increasing the size of
an array, and hence its CR factor, causes additional sidelobes to be drawn into visible space.

It must be emphasized that the purpose of this section is not to advocate the circular, or any
other, array geometry as being generally superior. It is simply to compare three particular arrays
on an equal basis using the WW bound as a tool.

'Threshold ESNR is defined computationally as that value of ESNR at which the multitest-point
WW bound has diverged from the two-test-point version by 0.25 dB. It is computed to a precision
of 0.2 dB in ESNR.
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Figure 3. Circular, spiral, and L-shaped arrays having CR factors of unity.
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12. EXTENSION TO SWITCHED SUBARRAYS

One possible solution to the problem of doing reliable DF with a small number of receiver
channels is to switch the available channels among a larger number of antenna elements. The
database from which the DF is derived then consists of several looks taken from each of several
subarrays. The various subarray patterns have high sidelobes in different directions, and these tend
to "average out," producing a pattern not unlike that of the full array.

Calculation of the WW bound for switched subarrays requires only minimal changes in the
previous analysis. In Equation (9), the sum that appears in the exponential is replaced by a sum
of sums, one for each subarray, and the first factor becomes a product of different factors. The
covariance matrix C is different for each subarray.

The effect of this change on the previous analysis is simply to replace Equation (18) with a
product of terms, each having the same form as Equation (18).

S
AN(h,, h3 ) = lI[(M.P+ 1) detR,]N,

where M. is the number of elements, R, is the matrix of Equation (15), and N8 is the number of
looks, all for the sth subarray.

The test points in the switched subarray case are chosen to be the highest sidelobes of the
switched subarram pattern, which is a weighted sum of the subarray patterns. The mathematical
definition of the switched subarray pattern and the rationale behind this definition are given in
Appendix E.

Figure 8 presents the results of a Monte Carlo simulation that validates the WW bound
calculation for switched subarrays. The simulated array is a 7-element spiral with a growth factor
of 1.1 and a CR factor of 4. Three 5-element subarrays are used, each providing eight looks. The
three subarrays are comprised of elements (1,2,4,6,7), (1,3,4,5,7), and (2,3,4,5,6), element I being
innermost. As before, each simulation point represents an average of 1000 Monte Carlo trials. At
each trial, the true direction cosines u., u. are chosen at random from the unit disk. The calculated
bound again is seen to give a reasonably accurate prediction of the threshold ESNR.

Figure 9 shows the predicted DF accuracy of the switched subarrays for various CR factors
(the CR factor is that of the full array). This can be compared directly with the unswitched array
accuracy shown in Figure 5. In all cases, there is a loss of about 2 dB in accuracy at high ESNR
(because only 16 looks are available from most elements instead of 24), and the threshold ESNR is
increased by approximately 2 dB. Similar results are obtained for the circular and L-shaped arrays.
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13. SUMMARY

A method has been developed for comparing sparse array configurations of ideal elements
based on DF performance. Arrays to be compared are sized so that each has the same DF error

bound at high signal-to-noise ratio. They are then ranked in terms of their threshold signal-to-noise

ratios, the lowest being deemed the best. The method makes use of the WW bound as it applies

to the array DF problem. This bound accurately predicts the threshold signal-to-noise ratio of an S
ideal array, without the need for computer simulation.

As an example of its use, three array configurations, a circle, a spiral, and an L, are compared.

The WW bound can also be computed for a slightly more general situation in which data

is available sequentially in time from several subarrays. In this way it is possible to collect data •

from a large array with a smaller number of multiplexed receiver channels. As an example, it is

shown that the spiral array already examined can be operated in this mode with only a small DF

performance degradation. Similar results are obtained with the circular and L arrays.

It is almost certainly true that the threshold ESNR of a real array is determined by calibration

errors, rather than by the noise and small sample effects that the bound takes into account. One

should not expect a real array to achieve the degree of DF accuracy predicted by the bound.

However, it is hoped that if one array is better than another in the sense of this report, and they

are implemented with equal attention to calibration issues, the ordering will be preserved.
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APPENDIX A W
PROOF THAT EACH ADDITIONAL PERTURBATION VECTOR

INCREASES THE BOUND

The following easily verified factorization of a partitioned matrix is valid whenever A is
invertible. A BO)( 0 A 01A-3

C D CA- 1 0 D -CA-'B 0 1

Assuming that D - CA- 1 B is also invertible, the inverse of this factorization is

A B I -A- 1B A- ' 0 1 0

C D 0 1 0 (D - CA-'B)-l -CA-' I

When a perturbation vector is aaded, the H matrix becomes (H h), while r becomes

g T a

Use of the above factorization for this matrix gives for the augmented bound matrix

'= (H h) r g (H h)Tfl = (H h) T a

= (H v) ( ( - 1  (H v)T
0 (a_- gTr- g)-'

= HrI'HT + cvvT

where

v = h - Hr-1 g,

and
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c = (a - gTr-Ig)-I

is a nonnegative number because the expanded Ir matrix must be nonnegative definite. It is now
evident that

xTfltX > xT•fX

for any vector x, and so fl' > fl.
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APPENDIX B
ON THE CONVERGENCE OF THE WW BOUND TO THE RANDOM S

PARAMETER CR BOUND

As mentioned in Section 8, it has been claimed that if only incremental test points are used,
the WW bound becomes the random parameter CR bound in the limit as E -. 0. The exdmple
given here shows that this is not always the case. 5

For simplicity, attention will be restricted here to the one-parameter case, so that the bound
is a scalar quantity. In this case, for a single incremental test point,

Hr•'H = 2[E{L'I/ 2 (z;u + c,u)}]2

E{[L'/ 2(z; u + C, u) - L/2(z; u - , u) 2}

[f dz f du p'/ 2(z, u + C)p'/2 (z, u)12

- f dz f du [pl/ 2(z, U + ) - pl/2(Z, U - f)]2(

It must be remembered that L, defined by Equation (2), is defined only for values of u where
p(z, u) > 0 and so the u integration is limited to this region.

The integral in the numerator approaches unity as c goes to zero (see. e.g., Rudin [11, Thm
9.5]). In the denominator, if the interchange of !he u integration and the limit operation can be
justified, then clearly the bound approaches

(4 f z f du '=/I(ZU))2 [ dz du  I

which is the CR bound for random parameter estimation as given by Van Trees [1].

On the other hand, suppose that for all z, p(z, u) is nonzero only on a finite interval [a < u < b]
and is nonzero and continuous from the left or right as appropriate at the end points. Then the
interchange referred to above cannoi be justified, as the following argument shows. The u-integrals
are then over the finite interval [a, b], and, for t > 0, the denominator of Equation (B.1) is

-i dz du p(z,u + c) + dup(zu - c)

+ J dz J du [p1/2(z, u + C) - p1/2(z, u - )]2 .

Because p(z, u) is not zero at its end points and is continuous from the right or left, as appropriate,
the expression within the large brackets is of order c, and so the limit of the first term above as c 0
is +oo. The remaining term is positive, so the denominator is +oo and the bound goes to zero. On

3

37



the other hand, Equation (B.2) may well give a finite result, as for example if z is a complex scalar

and p(z,u) is defined on C' x [0, 1] by S
11

p(z,U) = p(zlu)p(u) =exp{-(z U)2 }(u +

This problem can be avoided by choosing the a priori densities so that p(z, u) and its u- S
derivative are zero at the ends of the interval; however, this may greatly complicate the numerical
calculation of the bound.

I

38

•I

0 0 0,00 0 ,,w



46
APPENDIX C

EVALUATION OF A DETERMINANT

4.

The determinant of

Q = I - c(xxH + YyH),

where c is real, can be calculated by doing an eigendecomposition. Because Q is Hermitian, it has
exactly M eigenvectors. M - 2 of these are orthogonal to the subspace spanned by the vectors
x, y and have eigenvalue 1. The remaining two must be linear combinations of x, y 7 To determine
these, solve

(I - cXXH - cyyH)(x + ay) = A(x + ay),

which reduces to

(1 - A - c(xHx + ax Hy))x + ((1 - A)a - c(yHx + ayHy)y) = O.

The coefficients of x and y must both be zero. The value of a that makes the coefficient of y zero
is I

cyHx

1 - A - cyHy

Substitution of this result into the remaining coefficient yields a quadratic equation for 1 - A,

(1 - A)2 
- c(xHx + yHy)( 1 - A) + c2(xHxyHy -_ IxIyI) 2) = 0,

with the solution

A = 1- 2 (xHx+yHy-± _(XHX yHy)24+ 4.xHyf2

The value of the determinant of Q is the product of the eigenvalues.
S

71f x and y are colinear, the problem reduces to a simpler one.
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In the problem addressed by this report, the vectors x,y have equal length VM", so that the
previous equation reduces to

A = 1- c(M ± IxHyl),D

and the determinant is

detQ = (1- Mc) 2 
- (cIxHyI)2.
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APPENDIX D X/

CALCULATION OF B(h,,h,) 0

The calculation of B(h1 , hj) involves evaluating the integral in Equation (19) with p(u) given
by Equation (6). The region of integration U is a disk of unit radius centered at the origin, and the
factors in the integrand are nonzero only on disks of unit radius centered at -h,, -h., respectively.
The fundamental problem, then, is to find the area of intersection of three unit disks.

If two disks of unit radius intersect, the area of intersection is the union of two circular
segments (see Figure D-2). The inclusion of a third disk of unit radius can have four possible
results:

(a) Same area of intersection as above [Figure Tl-2(a)].

(b) Reduced area of intersection still composed of two circular segments [Figure D-2(b)].

(c) Reduced area of intersection bounded by three circular arcs, which is the union of
three circular segments and a triangle [Figure D-2(c)].

(d) No intersection.

The area of a circular segment (see Figure D-3) that subtends angle 0 is

9 - sin 0
Ase_ 9 = 2 (D.1)s - 2 " *

The angle 8 can be expressed in terms of the coordinates of the corners of the circular segment as

0 = 2 arcsin(d/2), d = V(X2 - ýX) 2 + (Y2 - Yl) 2 . (D.2)

The area of a triangle with vertices at (zX, YI), (X 2 , Y2 ), (X3 , Y3 ) is

At: = 1 1 det X2-X 1  Z3 -X 1  (D.3)2 Y2-Y 1/3-Y3 / Y

These formulas make it possible to evaluate Equation (19) without resorting to numerical integra-
tion.
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Figure D-1. Intersection of two unit disks. J
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Figure D-2. Possible intersections of three unit disks.

221432-12

Aseg = 1/2 (e - sine)

(a((2,'Y2))

Figure D-3. Area of circular segment.
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APPENDIX E X)

MAXIMUM LIKELIHOOD ESTIMATOR FOR SINGLE-SIGNAL I

DIRECTION-FINDING WITH NORMAL AND SWITCHED ARRAYS
4'

Let z.1, z3 ,2 ,. ,,Z.N. be independent M 8-dimensional vector measurements taken from the
sth subarray, s = 1,... S. It is assumed that these measurements are of the form

Zs,,= snVs(uo) + ns,n,

where

E{f13,,n }I' = P,

the same for all subarrays,

Efns,,,n,= IM.,

and

vH(u)v,(u) = M *

for all u, where M. is the number of elements in the sth subarray. Assuming that the condi-
tional probability density p(zlu) of the measurements is zero mean Gaussian, the logarithm of the
likelihood function for the measurements taken from the sth subarray is [see Equations (8) and (9)]

lnP(z,,1 ,2 , rju) = -N.[MIn7r + In(1 + MSP)]

N, P

n=1 1T+ -M. '

The maximum likelihood estimate of u is that vector fi, which maximizes the above expression. The
only term that depends on u is

p Ns

r.(u) = 1 E M zH ,( (E.1)
+ n=1 s) U1
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the expected value of which is X)

p N.

E{r,(u)} = I + M.PvS(u) v E{Z=.4,jva(u) .
n=1I

P (NsPlvH(u)v.(uo)12 + M'). (E.2)=1 + M'P( S

The maximum value of Equation (E.2) occurs at u = uo. The array power pattern g.(u, u0 ) of the
sth subarray is defined to be the dot product in Equation (E.2) normalized so that its maximum
value is unity, i.e.,

g.(u, uo) = ,(u)v3 (•)l 2 .

The mean value of the log likelihood function for the entire set of switched measurements is just the
sum of those for the individual subarrays, each of which is maximum when u = Uo. The quantity
analogous to Equation (E.1) for switched subarrays is therefore

S

r(u) E r,(u), (E.3)

with expected value

S M'P
E{r(u)} = 1 + M.3 (NSMSPg.(u'uo) + 1).

The switched subarray power pattern is therefore defined to be a weighted sum of individual subarray
patterns, the weights depending on the strength of the signal as well as the number of elements
and looks contributed by each subarray.

S

g(u, uO) = A .(gU, Uo),

where

A. NSM. NSM2
I- +M'P/ 1 + M'P"
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For simplicity, attention will be confined here to subarrays of equal size (M. = Mso that

A. = N, E N,,
8=1

i.e., the weight of each subarray is just the fraction of the total number of looks it contributes. The
sidelobe locations of the switched array pattern are used as test points when evaluating the WW
bound on switched subarray DF error.

The estimate fi(z) that maximizes Equation (E.3) is the maximum likelihood estimate of
direction for a switched subarray DF system. It is this estimator that was used in both the
unswitched and switched simulations described in this report.
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APPENDIX F
DERIVATION OF THE INFORMATION MATRIX FOR DF WITH

PLANAR ARRAYS

This appendix derives an expression for the Fisher information matrix F for the array DF
problem in the general case where each source is characterized by D real directional parameters.
The directional parameters are treated as constant, unknown parameters. Although D < 2 for
most DF problems, it is no harder to handle the general case, and the results may be useful in
other applications.

Assume there are S signals (indexed by k,l) each having D parameters (indexed by m,n).
The parameter vector for signal k is uT- (ulk, u2k,... UDO). The vector u is the concatenation of
these vectors. The complex S-vector of signal amplitudes is assumed to be a zero mean Gaussian
random vector with known covariance matrix P.

The Fisher information matrix consists of S2 blocks, each of dimension D x D. The block
corresponding to uk, u1 is (see Van Trees [1])

{( 9lnp(zIu) )T(alnP(z1u)).(F)u,.ur = E•zju( u-•-- u, ). F.1

For brevity, denote the mnth element of FukuT by f,,,. Then (see DeLong (12, Appendix BI)

= N Tr (C- C C-1 •C) (F.2)
O9Umk otunJ

where

C(u) = I + V(u)PVH(u)

is the multiple signal extension of Equation (7), in which

V(u) = (v(u1 ),v(u2 ),... ,v(us))

is a matrix, the columns of which are the array response vectors of the signals, and P is the
covariance of the Gaussian signal amplitudes. The necessary derivative is

OC = OV(u) PV(u) +Vu)P H(U) (F.3)

OUmk 4
9 Urrk Oumk
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Only the kth column of V(u) depends on uA,, so that X)

av(u) _a(uk) T0VT u ) = (0 ,.. ,0 , U • , 0,.. ,0) = ý'rke,eT, (F .-4)

where

_k Lt' _ _ __v(uk) A V(Uk) 1VU)'*'&U)

aUk 1
911k ' dU 2 k " 

9
UDk

and e, and ek are unit vectors of dimension D and S, respectively, with unit element in row m
and k, respectively. 5

Evaluation of Equation (F.2) using Equations (F.3) and (F.4) gives

, N Tr {C-(Vke,,pvH + VPekeTVHI)C-(VteleTPVH + VPele VU)}

N {(eTpVHC-lVieJ)(eTPVHC-lVkem) + complex conjugate +

(eTVHC-' Ven)(e TpVHc- VPek) + complex conjugate I

2N R{(PW)kn(PWVk),, + (WkI)mn(PWP)Lk,} (F.5)

where

W VHC-IV, (F.6)

Wk VHC-lVk, (F.7)

wkI qknc• (F.8)

The dot notation for the W is for mnemonic purposes only; it does not indicate differentiation.
Let (AkL),n,, and (Bkt),m, denote the first and second terms inside the brackets in Equation (F.5).

Define

W V (W*,W 2 ,.. . ,Ws)

and
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"*ivt W12 ... *is a
A4 • W 21  W22  ... W 2s

"WV•1  Ws 2  ... Vss

The second term (Bkt)..n is recognized as the product of the mnth element of Wk, and the
scalar ckJ = ((PWP)T)AI, so the contribution of this term to the complete Fisher information
matrix F is

W 1 1c 11 W 12c 12  ... WsJsCS

B = W 21 C21 W22 c22  ... W 2 sc2s

WsICSI Ws 2 cs 2 ... WScCss

CI1lDlD 1I21D D ... CIS1D1D
CIDT 110T " lDITD

W C) C211D1T C221D1D ... C2S1D1D

CS1D1LD CS21D1D ... CSSlD1 D

= W 0 ((PWP)T (F.9)

The symbol 0 denotes the Hadamard product;8 the symbol ® denotes the Kronecker product.9

The first term can be written as

(Akt)m. = (PWk)Tt(pw 1 )• = eT(pwk )Te eT(pWi)e,

=

"8(AOB)•,. = anbn, The Hadamard product is defined only when A and B have the same

dimensions.

(a11 B a12 B ...

'A B __ a 21B a 22B The Kronecker product is defined for any two matrices A and B.
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showing that the kith block of A is U.'

AV! = (PWk) etekpw, (F. 10)

which is a dyad involving two D-dimensional vectors. Any two such vectors x and y satisfy the
identity

T , YT.
xy W((xlT)E(1DyT).

Thus Equation (F.10) becomes

A-1 = ((PWk) el1T)O(1DekPWL).

Define

QkI = (PWk)TehlTD

and observe that

Aki = QkICI(Qk)T,

so that the complete A matrix is of the form

A = QOQT.

The full Q matrix has the form

D P )Tl (PWI)TelTD ... (p*,)TeslL
= (PW 2 )Te,1T (PW2)Te21T ... (PW 2 )Tes1 5

• .".I

(PWs)Te l1T (PWS)Te 2 1T ... (PWs)TeslT

- ((PW)Tej 1 T, TpW)Te21T,..., (pW)Tes1T)
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= (pW)T(el , e 2 1T, ... , eslL).

The matrix on the right above can be written more compactly as Is ® I1. The complete A matrix
can then be written as

A ((pw)T(Is ® 1T))O((Is 0 1D)PW). (F.1l)

Finally, Equations (F.11) and (F.9) in combination give the complete Fisher information matrix
for the directional parameters,

(F)uuT = 2N ~?{ O { ((PWP)T®1ITD)+((PW)T(Is®IL))O((Is®(O )PW)}.(F.12)

If the array elements are omnidirectional and only one signal is present, Equation (F.12)
becomes quite simple. P and

W = vH( I- .- P .vv )v - M
MP l-AP1 MP+ I

become scalars, and because

(9= Ou) ' c9u) = ik[v(u)]D,

where D is given by Equation (22), Equations (F.7) and (F.8) become

W = jkvH(I - - vv- )[v]D= jk 1TD
M+ IMP+1

= k2 DT[vjln(I -MP vvH)[v]D = k2DT(I - P P 1 )D"
MP1MP + I1 L

The first matrix inside the brackets in Equation (F.12) becomes

k 2Mp 2 DT(I P 11T)D,
MP+I MP+I

while the second becomes
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k 2 P2  DTIITD
(MP + 1)2

The result is then just

F = 2Nk 2MP 2DT(I _-11T )D.1
MP+ I1

Note that this result is not a function of u.

I
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