I. APPORT DATE I. APPORT DATE I. APPORT TOPE AND DATES COVERD A November 1993 Technical 5/93-5/94 Technical 5/93-5/94 I. ANDONE NUMBERS ONR NONDEL 92-3-124 RAYNON(5) Jianshu Cao and Gregory A. Voth Jianshu Cao and Gregory A. Voth P.P. Schmidt	1. AUTORN SAME I I STORT GATE 1. AUTORN GAT 1. AUTORN SAME I 193 1. TEChnical 5/93-5/94 1. TRUMANE OWNER 1. TRUCK SAME I 193 1. TEChnical 5/93-5/94 1. TRUCK SAME 1. TRUCK SA		leting and the enjoy the "offertion of information. Send comments regarding this burden estimate or any other as in- ducing this burgen to Washington Headdwarters Services. Directorate for information Operations and Reports. 1711 and to the Offere of Management and Budget Paperwork Reduction Project (2014) 1881, Washington, OC (2019)		
Init and SUBITIE A New Perspective on Quantum Time Correlation Functions A New Perspective on Quantum Correlation Approved for Naval Research Approved for public release: distribution unlimited A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. SubJECT TEAMS Computer Simulation, Molecular Dynamics, Charge Transfer Security Cassification It. SUMMERT OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer Security Cassification It. Addition Page SubJECT TEAMS Computer Simulation, Molecular Dynamics, Charge Transfer Security Cassification It. Security Cassification It. Security Cassification It. Security Cassification It. Security Cassification Security Cassification Security Security Cassification Security	A New Perspective on Quantum Time Correlation Functions A New Perspective on Quantum Time Correlation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. A theoretical analysis Suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. Is sounce for Simulation, Molecular Dynamics, Charge Transfer Is NuMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer Is NuMBER OF PAGES Computer Simulation II SIGNIFY CLASSIFIED Interview Classification Yu /AQO' 400 5007	t handlaten hande konst folgete malast beref handlig die felget.	2. REPORT DATE	. REPORT TYPE AND DAT	ES COVERED
A New Perspective on Quantum Time Correlation Functions A New Perspective on Quantum Time Correlation Functions A UPHOR(S) Jianshu Cao and Gregory A. Voth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 13. ABSTRACT (Mammum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES COMPUTER SIMULATION [16. SIGURATY CASSIFICATION 19. SIGURATY CASSIFICATION [16. SIGURATY CASSIFIED] 19. NUCLASSIFIED 10. NUMER OF PAGES 10. NUMER OF PAGES 10. NUMER OF PAGES 11. NUMBER OF PAGES 12. DISTRIBUTION (CASSIFIED) 13. NUMBER OF PAGES 14. NUMBER OF PAGES 15. NUMBER OF PAGES 16. PRCC CODE 17. SIGURATY CLASSIFIED 19. NUMER OF PAGES 10. NUMER OF PAGES 10. NUMER OF PAGES 10. NUMER OF PAGES 11. NUMBER OF PAGES 12. NUMER OF PAGES 13. NUMBER OF PAGES 14. NUMER OF PAGES 15. NUMBER OF PAGES 16. PRCC CODE 17. SIGURATY CLASSIFIED 18. NUMBER OF PAGES 19. NUMER OF PAGES	A New Perspective on Quantum Time Correlation Functions Provide Auditability A New Perspective on Quantum Time Correlation Functions Provide Auditability A New Perspective on Quantum Time Correlation Functions ONN NOOL4-92-3-124 R Code 4131065 Scientific Officer Jianshu Cao and Gregory A. Voth Previde Auditability Personnic CodeAutation Name(5) AND ADDENDSI(5) Previde Auditability Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 Previde Auditability State 00 North Quincy Street Nov15 1993 Alteror Market Of Packation Bootsonauc Monitoance Agency Auditability Statement Approved for public release: distribution unlimited 12b. DISTRBUTION (ADDENDATION 13. ABSTRACT (Maximum 200 word) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TRAMS 18. SECURITY CLASSIFIED 15. NUMBER OF PackES 16. Field Code 16. Field Code 17. SUPPLICATION of Field 17. SUPPLICENTIAL TO CLASSIFIED 18. SECURITY CLASSIFIED 18. SUBJECT TRAMS 19. SECURITY C	A TITLE AND CURTITIE	4 November 1993	Technical 5/93-5	94
6 AUTHOR(S) Jianshu Cao and Gregory A. Voth Scientifie Officer: P.P. Schmidt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 8. PERFORMING ORGANIZATION REPORT NUMBER ONR Technical Report #4 0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 124. DISTRIBUTION/AVAILABUTY STATEMENT Approved for public release: distribution unlimited 125. DISTRIBUTION CODE 11. ASSTRACT (Meanmum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 17. SIGURITY CLASSIFIED 18. SECURITY CLASSIFICATION UNCLASSIFIED 19. SECURITY CLASSIFICATION 20. UNITATION OF ABST UNCLASSIFIED 19. 764007 280 3000 19. 764007 280 3000 19. Standard form 298 (Rev 4) 20. 2007	AUTHOR(S) JIanshu Cao and Gregory A. Voth P. P. Schmidt P. P. Schmi	A New Perspective on	Quantum Time Correlation	i Functions OI Ri	NDING HOMBERS NR N00014-92-J-124 NT Code 4131065
Jianshu Cao and Gregory A. Voth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) OFFice of Naval Research Chemistry Division BOON SORTH Quincy Street Arlington, VA 22217-5000 11. SUPPLEMENTARY NOTES 122. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4 SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 7 SEQURITY CLASSIFICATION IN STATE UNCLASSIFIED 19. SECURITY CLASSIFICATION IN CODE 7 SECURITY CLASSIFICATION IN CLASSIFIED 19. SECURITY CLASSIFICATION IN CODE 7 SECURITY CLASSIFICATION IN STAGE 19. SECURITY CLASSIFICATION IN CLASSIFIED 12. DISTRIBUTION CLASSIFIED 19. SECURITY CLASSIFIED 20. LIMITATION OF ABSTR <td>Jianshu Cao and Gregory A. Voth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MEMONITORING AGENCY NAME(S) AND ADDRESS Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 11. SUPPLEMENTARY NOTES 124. DISTRIBUTION/AVAILABUITY STATEMENT Approved for public release: distribution unlimited 13. ABSTACT (Maxmum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJICT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer UNCLASSIFIED 15. NUMBER OF PAGES 0. UNCLASSIFIED 7. SIGNITY CLASSIFIED 18. SECONTY CLASSIFIED 20. UNITATION of ASST UNCLASSIFIED 7. JORDATY CLASSIFIED 19. SECONTY CLASSIFIED 20. UNITATION of ASST UNCLASSIFIED</td> <td>6. AUTHOR(S)</td> <td></td> <td> Si P</td> <td>.P. Schmidt</td>	Jianshu Cao and Gregory A. Voth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MEMONITORING AGENCY NAME(S) AND ADDRESS Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 11. SUPPLEMENTARY NOTES 124. DISTRIBUTION/AVAILABUITY STATEMENT Approved for public release: distribution unlimited 13. ABSTACT (Maxmum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJICT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer UNCLASSIFIED 15. NUMBER OF PAGES 0. UNCLASSIFIED 7. SIGNITY CLASSIFIED 18. SECONTY CLASSIFIED 20. UNITATION of ASST UNCLASSIFIED 7. JORDATY CLASSIFIED 19. SECONTY CLASSIFIED 20. UNITATION of ASST UNCLASSIFIED	6. AUTHOR(S)		Si P	.P. Schmidt
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 9. PERFORMING ORGANIZATION REPORT NUMBER 3. SPONSORING/MONTORING AGENCY NAME(S) AND ADDOPORTIC Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONTORING AGENCY NAME(S) AND ADDOPORTIC ELECTE NUV1 5 1993 11. SUPPLEMENTARY NOTES 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 11. ASSTRACT (MAXIMUM 200 Words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6. 16. FARCE CODE 13. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer UNCLASSIFIED 15. NUMBER OF PAGES 0 Finis Page 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. FUNCHASSIFIED 15. NUMBER OF PAGES 16. FARCE CODE 17. SECURTY CLASSIFICATION UNCLASSIFIED 19. SECURTY CLASSIFICATION 07 ASTRACT UNCLASSIFIED 20. UNITATION OF ASTR 20. UNITATION OF ASTR 20. UNITATION OF ASTRACT UNCLASSIFIED	7. PERFORMING ORGANIZATION NAMI(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION NAMI(S) AND ADDRESSIES) Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 0. NR Technical Report Philadelphia, PA 19104-6323 9. SPONSORM/G/MONITORING GRECY NAMI(S) AND ADDRESSIES) Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORM/G/MONITORING ACCENT REPORT NUMBER 11. SUPPLEMENTARY NOTES 9. DISTRIBUTION / AVAILABULTY STATEMENT Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 11. AdSTRACT (Meannum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUNCT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer UNCLASSIFIED 15. NUMBER OF PAGES (16. PRCE CODE UNCLASSIFIED 17. SIGNATY CLASSIFIED UNCLASSIFIED 19. SIGNATY CLASSIFIED UNCLASSIFIED 19. SIGNATY CLASSIFICATION (10. CLASSIFIED)	Jianshu Cao and Grego	ry A. Voth		
Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 ONR Technical Repor #4 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDODY STIC Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Supproved for public release: distribution unlimited 12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 16. FACE CODE 7. SIGURITY CLASSIFIED UNCLASSIFIED 19. SECURITY CLASSIFIED UNCLASSIFIED 20. UNITATION OF ABSTR 20. UNITATION O	Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323 ONR Technical Repor #4 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDED TIC Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 Io. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES ELECTE NUV15 1993 Io. SPONSORING/MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION / AVAILABUTY STATEMENT Approved for public release: distribution unlimited 12. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 16. PROCE CODE 7. SECURITY CLASSIFICATION OF AFFORT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ASSTRACT UNCLASSIFIED 20. UNITATION OF ASST UNCLASSIFIED	7. PERFORMING ORGANIZATION NAN	E(S) AND ADDRESS(ES)	8. PE	REFORMING ORGANIZATION
UNIVERSITY OF PERRSYIVATIA Philadelphia, PA 19104-6323 #4 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDEDYSTIC Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Supproved for public release: distribution unlimited 12b. DISTRIBUTION CODE 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. A4STRACT (Maximum 200 words) 12b. DISTRIBUTION CODE 14. A4STRACT (Maximum 200 words) 12b. DISTRIBUTION code 15. Automation occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 7. SECURITY CLASSIFICATION OF AMSTRACT UNCLASSIFIED 15. SECURITY CLASSIFICATION OF AMSTRACT UNCLASSIFIED 15. SECURITY CLASSIFICATION OF AMSTRACT UNCLASSIFIED	SPONSORING/MONITORING AGENCY NAME(S) AND ADDORNATION SPONSORING/MONITORING AGENCY NAME(S) AND ADDORNATION SPONSORING/MONITORING AGENCY NAME(S) AND ADDORNATION SOURD AND ADDORNATION SUBJECT TO NAME AND ADDORNATION SUBJECT TERMS SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer SUBJECT TERMS SUBJECT TER	Department of Chemist	ry	01	NR Technical Repor
		University of Pennsyl Philadelphia, PA 1910	vania 4-6323	#	4
Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 SELECTE SUBJECT 1: 1993 Address of the provided of t	Office of Naval Research Chemistry Division 800 North Quincy Street Arlington, VA 22217-5000 Suppose Division Suppose Division Suppose Division Suppose Division Suppose Division Suppose Division Approved for public release: distribution unlimited 124. DISTRIBUTION/AVALABILITY STATEMENT Approved for public release: distribution unlimited 125. Distribution code 13. AdsTRACT (Maximum 200 words) 12. Distribution code in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TEAMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 17. SECURITY Classification UNCLASSIFIED 14. SUBJECT TEAMS UNCLASSIFIED 15. SECURITY Classification UNCLASSIFIED 17. JSCO 0: 140 3500 14. SECURITY Classification UNCLASSIFIED 15. SECURITY Classification UNCLASSIFIED	9. SPONSORING / MONITORING AGEN	CY NAME(S) AND ADDATA (EST	10. SP	ONSORING / MONITORING
SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 16. FRICE CODE * SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer UNCLASSIFIED 15. SECURITY CLASSIFICATION OF MIS FAGE UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ASSTRACT (Lassification OF MIS FAGE 19. SECURITY CLASSIFICATION OF ASSTRACT (Lassification OF MIS FAGE	Source A subject of the set	Office of Naval Resea	rch UI	TE	ENCY REPORT NUMBER
Arlington, VA 22217-5000 III. SUPPLEMENTARY NOTES 11. SUPPLEMENTARY NOTES III. SUPPLEMENTARY NOTES 12.2. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited III. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) III. ABSTRACT (Maximum 200 words) III. ABSTRACT (Maximum 200 words) 14. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TEAMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED III. SECURITY CLASSIFICATION OF UNCLASSIFIED 19. SECURITY CLASSIFICATION OF UNCLASSIFIED 20. UNITATION OF ABSTR OF UNCLASSIFIED 21. 7340.01 289 3500 Standard form 798 (Rev 2.4 Control of Control C	Arlington, VA 22217-5000 Image: Construction of the state of th	Chemistry Division 800 North Quincy Stre	et R NOV15	1993	
122. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 124. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 125. Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. PRICE CODE 6 7. SECURITY CLASSIFICATION OF FINIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRICT UNCLASSIFIED 20. UNITATION OF ABSTRICTION OF ABSTRICT ON O	12. OISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. AMSTRACT (Maximum 200 words) 14. AMSTRACT (Maximum 200 words) 14. AMSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 4. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 16. FRICE CODE 7. SECURITY CLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION UNCLASSIFIED 20. UNITATION OF ABSTR UNCLASSIFIED	Arlington, VA 22217-5	000		
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS 6 Computer Simulation, Molecular Dynamics, Charge Transfer 6 15. NUMBER OF PAGES 6 16. PRICE CODE 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 17. SECURITY CLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 17. Y540-0° 280 5500 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	122. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 17. SECURITY CLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF APSTRACT UNCLASSIFIED 20. UNITATION OF ABSTR Computer Signed for 290 (Stor)	11. SUPPLEMENTART NUTES	V E	I	
122. DISTRIBUTION / AVAILABILITY STATEMENT 126. DISTRIBUTION CODE Approved for public release: distribution unlimited 126. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS 6 Computer Simulation, Molecular Dynamics, Charge Transfer 6 15. NUMBER OF PAGES 6 17. SECURITY CLASSIFICATION OF ARSTRICT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. VINCLASSIFIED 18. SECURITY CLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. UNITATION OF ABSTR	12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release: distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. FRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTR 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTR 19. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTR 19. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTR 19. JS40.00 ' 280 3500 19. SECURITY CLASSIFICATION OF ABSTR				
Approved for public release: distribution unlimited 13. ABSTRACT (Meximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 19. 7560-0° 280 5500	Approved for public release: distribution unlimited 11. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 10. UNITATION OF ABSTR COMPUTER 11. STRACT OF THIS PAGE UNCLASSIFIED 12. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 13. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 14. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 15. AUMITATION OF ABSTR COMPUTER 16. SECURITY CLASSIFIED 17. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 18. SECURITY CLASSIFIED 19. SECURITY CLASSIFIED 19. SECURITY CLASSIFIED 19. SECURITY CLASSIFIED 10. SECURITY CLASSIFIED 10. SECURITY CLASSIFIED 11. SECURITY CLASSIFIED 12. UNITATION OF ABSTR COMPUTER 13. SECURITY CLASSIFIED 14. SECURITY CLASSIFIED 15. SECURITY CLASSIFIED 15. SECURITY CLASSIFIED 16. SECURITY CLASSIFIED 17. SECURITY CLASSIFIED 18. SECURITY CLASSIFIED 19. SECURITY CLASSIFI	12a. DISTRIBUTION / AVAILABILITY STA	TEMENT	12b. D	STRIBUTION CODE
13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Generation function, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 13. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 13. 126 UP 280 (S500 Standard form 298 (Rev 2.8 Market 2.8 M	13. ABSTRACT (Meximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF AFFORT 18. SECURITY CLASSIFICATION OF ABSTRICT ON OF ABSTRICT ON OF AFFORT 19. SECURITY CLASSIFICATION OF ABSTRICT ON OF ABSTRIC	Approved for public r	elease: distribution unl	imited	
13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Generation function, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTREED 18. SECURITY CLASSIFICATION OF ABSTREED 19. SECURITY CLASSIFICATION OF ABSTREED 19. SECURITY CLASSIFICATION OF ABSTREED 19. VICLASSIFIED Standard form 298 (Rev 2.8 March 2.8 Ma	13. AESTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTF UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTF UNCLASSIFIED 24. 7540-0° 280 5500 18. SECURITY CLASSIFICATION OF ABSTR (UNCLASSIFIED) 24. 7540-0° 280 5500 Standard form 298 (Rev 2 the relation of the relat			•	
13. ABSTRACT (Maximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 16. PRICE CODE 15. NUMBER OF PAGES 7. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. 7560-0° 280 5500 18. SECURITY CLASSIFIED 19. 7560-0° 280 5500 Standard form 298 (Rev 2-8 dropted standard f	13. ABSTRACT (Meximum 200 words) A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT 19. 7560-01-280 5500 18. SECURITY CLASSIFICATION OF ABSTRACT 19. 7560-01-280 5500 Standard Form 298 (Rev 2.2 emerges)				
A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION 06 REPORT UNCLASSIFIED 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. UNITATION OF ABSTR 07. JOINT 20. UNITATION OF ABSTR 07. JOINT 20. UNITATION OF ABSTR 07. JOINT 20. UNITATION OF ABSTR 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 12. UNITATION OF ABSTR 13. SECURITY CLASSIFICATION 14. JOINT 20. UNITATION OF ABSTR 15. NUMBER OF PAGES 16. PRICE CODE 17. JOINT 20. UNITATION OF ABSTR 19. SECURITY CLASSIFICATION 20. UNITATION OF ABSTR 19. SECURITY CLASSIFICATION 20. UNITATION OF ABSTR 20. UNITATION	A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges. 14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 12. UNITATION OF ABSTR 13. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 15. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 11. SECURITY CLASSIFICATION 12. UNITATION OF ABSTR 13. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 15. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY SECURITY CLASSIFICATION 19. SECURITY SECURITY CLASSIFICATION 19. SECURITY SECURITY CLASSIFICATION 19. SECURITY S				
14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. UMITATION OF ABSTR 30/ 7540-01-280-5500 Standard Form 298 (Rev 2-8 UNCLASSIFIED Standard Form 298 (Rev 2-8 UNCLASSIFIED	14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED 5%1 7540-0* 280 5500 Standard Form 298 (Rev 2.8 Provide the official of Price Communication of the official of the official of the official of the official of the official of the official of the official official official of the official official official official official official of the official official official of the official official official official of the official official official official of the official official official official official of the official off	13. ABSTRACT (Maximum 200 words) A theoretical ana	lysis suggests that the pa	th centroid variable	e in Feynman
14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR 20	14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED 19. Y1 7540-01 280 5500 Standard Form 298 (Rev 2-10 Provided by affecting 200 (Rev 2-10 Provided by affe	13. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum	lysis suggests that the pa es a central role in the be n. Based on this analys n correlation functions em	th centroid variable chavior of the real is, an intriguing terges.	e in Feynman time position quasiclassical
14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR 20	14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTR UNCLASSIFIED 20. LIMITATION OF ABSTR UNCLASSIFIED 30/ 7540-0: 280:5500 Standard form 298 (Rev 2:e Previous up attick ling (TRUM 20. UNCLASSIFIED	13. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum	lysis suggests that the pa es a central role in the be n. Based on this analys n correlation functions em	th centroid variable chavior of the real is, an intriguing herges.	e in Feynman time position quasiclassical
14. SUBJECT TERMS 15. NUMBER OF PAGES Computer Simulation, Molecular Dynamics, Charge Transfer 6 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMIT	14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITA	11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum S	lysis suggests that the pa es a central role in the be n. Based on this analys n correlation functions er	th centroid variable chavior of the real is, an intriguing herges.	e in Feynman time position quasiclassical
14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 6 6 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED 5/1 7540-01-280-5500 51andard form 298 (Rev. 2.8 Prescribed by -016-50g 219-108 209-102	14. SUBJECT TERMS Computer Simulation, Molecular Dynamics, Charge Transfer 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFICATION UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED 5%1 7540-0* 280 5500 18. SECURITY CLASSIFICATION UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR 21. Standard Form 298 (Rev 2:6 Presented by affecting 210-14 200 102	11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum	lysis suggests that the pa es a central role in the be n. Based on this analys n correlation functions er	th centroid variable chavior of the real is, an intriguing terges.	e in Feynman time position quasiclassical
Computer Simulation, Molecular Dynamics, Charge Transfer 6 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 5/1 / 5/40-01-280-5500 5/1 / 5/40-01-280-5500 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 5/1 / 5/40-01-280-5500 5/1 / 5/40-01-280-5500 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 5/1 / 5/40-01-280-5500 5/1 / 5/40-01-280-5500	Computer Simulation, Molecular Dynamics, Charge Transfer 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 5/1 /540-01 /280 /5500 C 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED C 20. LIMITATION OF ABSTR OF ABSTRACT OF ABSTRACT UNCLASSIFIED C 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED C 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED C 20. LIMITATION OF ABSTR OF ABSTRACT OF ABSTRACT OF ABSTRACT UNCLASSIFIED C 20. LIMITATION OF ABSTRACT OF	11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum	lysis suggests that the pa es a central role in the be n. Based on this analys n correlation functions er	th centroid variable chavior of the real is, an intriguing terges.	e in Feynman time position quasiclassical
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTR 20. LIMITATION OF ABSTR OF ABSTRACT UNCLASSIFIED 5 ^h 7540-01-280-5500 5500 5500 5500 5500	17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTI 20. LIMITATION OF ABSTI OF ABSTRACT UNCLASSIFIED 5%1 7540-01-280-5500 5500	11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	lysis suggests that the pa es a central role in the be on. Based on this analys on correlation functions err	th centroid variable chavior of the real is, an intriguing herges.	e in Feynman time position quasiclassical
OF REPORT OF THIS PAGE OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 5%1 7540-01-280-5500 \$tandard Form 298 (Rev. 2.8) 5%1 7540-01-280-5500 \$tandard Form 298 (Rev. 2.8)	OF REPORT UNCLASSIFIED OF THIS PAGE UNCLASSIFIED OF ABSTRACT UNCLASSIFIED Sh 7540-01-280-5500 Standard Form 298 (Rev. 2-6 Presented by -0151-51g 200-14 200-102	 ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum D perspective on quantum SUBJECT TERMS Computer Simulation, 	lysis suggests that the pa es a central role in the be on. Based on this analys on correlation functions err Molecular Dynamics, Char	th centroid variable chavior of the real is, an intriguing herges.	time position quasiclassical
5h 7540-01-280-5500 Standard Form 298 (Rev. 2-8 Percented by #05-56d 200-18 298-192	Shi 7540-01-280-5500 L Standard Form 298 (Rev. 2-8 Prescribed by write Stall 201-14 298-102	 ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum SUBJECT TERMS Computer Simulation, SECURITY CLASSIFICATION 18. 	lysis suggests that the pa es a central role in the be in. Based on this analys in correlation functions em Molecular Dynamics, Char SECURITY CLASSIFICATION 19.5	th centroid variable chavior of the real is, an intriguing herges. ge Transfer	e in Feynman time position quasiclassical 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTR
2/34 102		 ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum perspective on quantum SUBJECT TERMS Computer Simulation, SECURITY CLASSIFICATION IS. D SECURITY CLASSIFICATION IS. D SECURITY CLASSIFICATION IS. 	An analysis suggests that the particular descent the best of the b	th centroid variable chavior of the real is, an intriguing of herges. The second second second second rege Transfer ECURITY CLASSIFICATION F ABSTRACT INCLASSIFIED	e in Feynman time position quasiclassical 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTR
		 ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum 14. SUBJECT TERMS Computer Simulation, 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. OF A CONTINUES (18. CONTINUES) 	lysis suggests that the pa es a central role in the be on. Based on this analys a correlation functions err correlation functions err Molecular Dynamics, Char SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	th centroid variable chavior of the real is, an intriguing herges. rge Transfer ECURITY CLASSIFICATION F ABSTRACT INCLASSIFIED	15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTR
		 11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum D perspective on quantum 14. SUBJECT TERMS Computer Simulation, 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED SN 7540-0° 280-5500 	lysis suggests that the pa es a central role in the be on. Based on this analys n correlation functions err correlation functions err Molecular Dynamics, Char SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	th centroid variable chavior of the real is, an intriguing of herges. Transfer ECURITY CLASSIFICATION F ASSTRACT INCLASSIFIED	15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTR andard Form 298 (Rev. 2-8 minuted by -105 for 219-14
		 11. ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum 14. SUBJECT TERMS Computer Simulation, 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 	lysis suggests that the pa es a central role in the be in. Based on this analys in correlation functions err in correlation functions err Molecular Dynamics, Char SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	th centroid variable chavior of the real is, an intriguing herges. rge Transfer ECURITY CLASSIFICATION F ABSTRACT INCLASSIFIED	andard Form 298 (Rev. 2-8 andard Form 298 (Rev. 2-8 billion 2000 (Re
		 ABSTRACT (Maximum 200 words) A theoretical ana path integration occupic autocorrelation function perspective on quantum perspective on quantum 14. SUBJECT TERMS Computer Simulation, 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 32. 33. 34. 35. 35. 36. 35. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36	lysis suggests that the pa es a central role in the be in. Based on this analys in correlation functions em Molecular Dynamics, Char SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	th centroid variable chavior of the real is, an intriguing of herges. rge Transfer ECURITY CLASSIFICATION F ABSTRACT INCLASSIFIED	e in Feynman time position quasiclassical 15. NUMBER OF PAGES 6 16. PRICE CODE 20. LIMITATION OF ABSTR andard Form 298 (Rev. 2-8 minuted by afficing 218-14

OFFICE OF NAVAL RESEARCH

GRANT N00014-92-J-1243

R&T Code 4131065

Scientific Officer: P.P. Schmidt

Technical Report No. 4

A New Perspective on Quantum Time Correlation Functions

by

DTIC QUALITY INSPECTED 8

Jianshu Cao and Gregory A. Voth

Submitted

to

The Journal of Chemical Physics

University of Pennsylvania Department of Chemistry Philadelphia, PA 19104-6323

November 1993

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

Accesio	n For		
NTIS	CRA&I	X	
DTIC	TAB		
Unann	ounced		
Justific	ation		
Distrio	vailability	Codes	
Dist	Avail an Spec	nd / or cial	
A-1			

A New Perspective on Quantum Time Correlation Functions

8)

Jianshu Cao and Gregory A. Voth

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

ABSTRACT

A theoretical analysis suggests that the path centroid variable in Feynman path integration occupies a central role in the behavior of the real time position autocorrelation function. Based on this analysis, an intriguing quasiclassical perspective on quantum correlation functions emerges.

- 1 -

One of the most challenging problems in condensed matter theory is the computation of quantum time correlation functions. The satisfactory solution of this problem will require a theoretical formalism which, to within an acceptable degree of accuracy, can be implemented efficiently on a computer for general many-body systems. The present Communication is devoted to one such formalism which is based on the properties of the path centroid variable in Feynman path integration¹ which is defined within the context of the imaginary time path integral as

$$\tilde{q}_0 = \frac{1}{\hbar\beta} \int_0^{\hbar\beta} d\tau \, q(\tau) \quad . \tag{1}$$

In his derivation of an approximate quasiclassical expression for the partition function,¹ Feynman recognized that the path centroid was a particularly useful classical-like variable about which to define a quantum density, often called the "centroid density", defined as

$$\rho_c(q_c) = \int \cdots \int \mathcal{D}q(\tau) \,\delta(q_c - \tilde{q}_0) \exp\left\{-S[q(\tau)]/\hbar\right\} \quad , \tag{2}$$

where $S[q(\tau)]$ is the imaginary time action functional. [The quantum partition function can be obtained from Eq. (2) by integration over the position of the centroid, q_c .] Feynman determined a variational effective potential for the centroid variable using the approximation of free particle motion to describe the action for the imaginary time path fluctuations about the centroid. Since Feynman's seminal work, several authors² have improved upon his theory by employing quadratic variational action functionals which more accurately approximate the exact action for the imaginary time path fluctuations about the centroid variable. The latter approach, therefore, improves the accuracy of the resulting variational partition function. More recently, the path integral centroid perspective has been extended to calculate equilibrium averages $\langle A \rangle$, the central result being that the quantum operator \hat{A} is replaced by a Gaussian averaged effective classical function.³ The centroid density has also become the centerpiece of a path integral formulation of quantum mechanical transition state theory.⁴ To our knowledge, however, there has been little progress in the formulation of quantum *dynamics* from the path centroid perspective.

We have recently developed a theory⁵ for quantum imaginary time correlation functions in terms of the centroid variable and its corresponding density function [Eqs. (1) and (2)]. Quite accurate analytic expressions are obtained through the use of general quadratic action functionals, a properly formulated diagrammatic perturbation theory, and suitable renormalization techniques. In principle, once a good approximation to the exact imaginary time correlation function is obtained, the real time correlation function can then be determined by the inverse Wick rotation $\tau \rightarrow it$ (i.e., by analytic continuation). In the course of this research, however, an even more promising perspective has begun to emerge on the role of the centroid variable in the theory of quantum time correlation functions. This perspective, which is the subject of the present Communication, offers a computationally powerful algorithm to calculate quantum time correlation functions in many-body systems.

To begin the analysis, it proves particularly useful to define the centroid-constrained imaginary time correlation function⁵

$$C_{c}(\tau, q_{c}) = \frac{\int \cdots \int \mathcal{D}q(\tau) \,\delta(q_{c} - \tilde{q}_{0})(q(\tau) - \tilde{q}_{0})(q(0) - \tilde{q}_{0}) \exp\left\{-S[q(\tau)/\hbar]\right\}}{\int \cdots \int \mathcal{D}q(\tau) \,\delta(q_{c} - \tilde{q}_{0}) \exp\left\{-S[q(\tau)]/\hbar\right\}} \quad .$$
(3)

This correlation function, which describes the correlations of the imaginary time paths about the centroid variable, is related to the usual correlation function $C(\tau) \equiv \langle q(\tau)q(0) \rangle$ by the relationship

$$C(\tau) = \langle C_c(\tau, q_c) + q_c^2 \rangle_{\rho_c} \quad , \tag{4}$$

where the subscript " ρ_c " denotes averaging with the normalized centroid distribution $\rho_c(q_c) / \int dq_c \rho_c(q_c)$ [cf. Eq. (2)].

By definition, the centroid variable plays a central role in the behavior of the centroidconstrained correlation function in Eq. (3). A more subtle issue, however, is the role of the centroid variable in the *real time* quantum correlation function. In a formal sense, this information can be extracted from the exact centroid-constrained correlation function $C_c(\tau, q_c)$ through the analytic continuation $\tau \rightarrow it$. In a practical sense, however, such

- 3 -

a procedure. whether analytic or numerical, is not tractable unless there is some prior simplification of the problem. Fortunately, such a simplification can be achieved through the variational determination of an effective quadratic action functional, given for a single degree-of-freedom by^{2,5}

$$S_{eff}[q(\tau)] = \int_0^{\hbar\beta} d\tau \left\{ \frac{m}{2} \dot{q}(\tau)^2 + V_{eff}(q_c) + \frac{1}{2} m \bar{\omega}_c^2 [q(\tau) - q_c]^2 \right\} \quad , \tag{5}$$

where $V_{eff}(\bar{q}_0)$ is the variational effective centroid potential and $\bar{\omega}_c$ is the variationally determined effective harmonic frequency, both quantities being evaluated at a given centroid position. As in other work, the latter parameter is determined with the help of the properly formulated^{1,2} Gibbs-Bogoliubov-Feynman (GBF) variational principle⁶ for the centroid density in Eq. (2). The optimized frequency is given by the solution of the transcendental equation

$$m\bar{\omega}_{c}^{2} = \frac{1}{\sqrt{2\pi\bar{\alpha}_{c}}} \int dq \, V''(q_{c}+q) \exp(-q^{2}/2\bar{\alpha}_{c}) \quad , \tag{6a}$$

where the effective thermal width squared in the optimized reference system for a particular position of the path centroid is given by

$$\bar{\alpha}_c = \frac{1}{m\beta\bar{\omega}_c^2} \left[\frac{\hbar\beta\bar{\omega}_c/2}{tanh(\hbar\beta\bar{\omega}_c/2)} - 1 \right] \quad . \tag{6b}$$

With the above quadratic reference system in hand, the imaginary time correlation function in Eq. (4) can be determined analytically for the reference system, giving⁵

$$C(\tau) = \frac{1}{Z} \int dq_c \,\rho_c(q_c) \,\frac{\hbar}{2m\bar{\omega}_c} \,\frac{\cosh[\bar{\omega}_c(\tau - \hbar\beta/2)]}{\sinh(\hbar\beta\bar{\omega}_c/2)} - \langle (m\bar{\omega}_c^2\beta)^{-1} \rangle_{\rho_c} + \langle q_c^2 \rangle_{\rho_c} \quad , \quad (7)$$

where $Z = \int \rho_c(q_c) dq_c$ is the partition function. The combined and second and third term in Eq. (7) can be shown⁵ to be a representation in the effective quadratic reference system of the simple constant $\langle q \rangle^2$, where $\langle q \rangle$ is the thermal average of the variable q. From now on, those two terms will be replaced by $\langle q \rangle^2$.

Based on the expression in Eq. (7), it is now straightforward to analytically continue the above function to obtain the real time correlation function, the real part of which is given by

$$\bar{C}(t) = \frac{1}{Z} \int dq_c \,\rho_c(q_c) \,\frac{\hbar}{2m\bar{\omega}_c tanh(\hbar\beta\bar{\omega}_c/2)} \cos(\bar{\omega}_c t) \,+\,\langle q \rangle^2 \quad. \tag{8}$$

At this level of the theory, the real time correlation function is seen to be the superposition of centroid correlation functions for effective harmonic oscillators defined at different centroid positions q_c . In turn, each centroid correlation function is weighted by the centroid density for that value of q_c . The above expression for the correlation function is therefore a quantum mechanical generalization of the classical "instantaneous normal mode" perspective for condensed matter systems.⁷

Up to this point, the arguments have remained within the limits of rigorous mathematical analysis. On the other hand, if the bounds of rigor are "loosened" a bit, one can arrive at an even more compelling result. In order to proceed in such a fashion, it proves beneficial to first introduce another real time centroid correlation function, given by

$$C^*(t) = \frac{1}{Z} \int dq_c \,\rho_c(q_c) \,\frac{1}{m\bar{\omega}_c^2\beta} \cos(\bar{\omega}_c t) \,+\,\langle q \rangle^2 \quad, \tag{9}$$

which is the exact analog of the classical correlation function for an effective harmonic oscillator with the centroid "frequency" $\bar{\omega}_c$. Due to the properties of the Dirac delta function, the above correlation function is related⁵ to the one in Eq. (8) through their Fourier transforms, i.e.,

$$\tilde{C}^{*}(\omega) = \frac{\tanh(\hbar\beta\omega/2)}{(\hbar\beta\omega/2)} \bar{\tilde{C}}(\omega) \quad . \tag{10}$$

By noting that the first term on the right-hand-side of Eq. (9) describes the correlation of fluctuations about the mean value $\langle q_c \rangle_{\rho_c} = \langle q \rangle$, Eq. (9) can then be rewritten as

$$C^{*}(t) = \frac{1}{Z} \int dq_c \,\rho_c(q_c) \,\langle q_c(t)q_c(0)\rangle_{\bar{\omega}_c} \quad , \qquad (11)$$

where $\langle q_c(t)q_c(0)\rangle_{\bar{\omega}_c}$ is a quasiclassical position correlation function calculated for dynamics on the locally quadratic potential energy surface defined for each initial centroid coordinate

- 5 -

At this point, however, one might ask whether Eq. (11) is, in fact, an approximation to some more accurate expression. Some insight into the answer is provided by an examination of the limiting behavior of Eq. (11) for: (a) globally harmonic potentials, and (b) exact classical dynamics. In the case of a global harmonic potential, the correlation function $\langle q_c(t)q_c(0)\rangle_{\bar{\omega}_c}$ in Eq. (11) is the same everywhere [i.e., independent of the q_c in Eq. (11)]. Since $Z^{-1}\int dq_c\rho_c(q_c)$ equals unity, Eq. (11) then reduces to the correlation function $\langle q_c(t)q_c(0)\rangle_{\rho_c}$. In the global harmonic limit, therefore, one can simply propagate the centroid variable classically using forces derived from the effective centroid potential, average the initial conditions using the centroid density, and calculate the classical-like centroid correlation function

$$C_c^*(t) = \langle q_c(t)q_c(0)\rangle_{\rho_c} \quad . \tag{12}$$

The exact quantum harmonic correlation function is then determined from this centroid correlation function via Eq. (10). It should be noted that for general nonlinear potentials the analytically continued effective quadratic result in Eq. (9), which should be understood as a relatively short time approximation to the exact correlation function, further supports the notion of a quasiclassical time propagation of the centroid.

The second limiting behavior to consider is the case of exact classical dynamics. The approximate correlation function in Eq. (9) is given classically by

$$C_{cl}^{*}(t) = \frac{1}{Z_{cl}} \int dq_{cl} \rho_{cl}(q_{cl}) \langle q_{cl}(t) q_{cl}(0) \rangle_{\bar{\omega}_{cl}} , \qquad (13)$$

where the trajectories $q_{cl}(t)$ are generated by an effective quadratic classical potential with frequency $\bar{\omega}_{cl}$. The distribution based on this potential is used to average the initial conditions in the correlation function, while the second level of averaging is performed with the exact classical density $\rho_{cl}(q_{cl})$. The *exact* classical correlation function can be related to Eq. (13) by some mental mathematics. In particular, if the potential which generates the dynamics and averaging in the correlation function $\langle q_{cl}(t)q_{cl}(0)\rangle_{\bar{\omega}_{cl}}$ is transformed into the

- 6 -

exact potential, that correlation function becomes the exact classical correlation function. The "exterior" integration over classical distribution $\rho_{cl}(q_{cl})$ then becomes inconsequential and can be removed. The important point here is that the forces which generate the classical trajectories in $\langle q_{cl}(t)q_{cl}(0)\rangle$ are no longer the approximate linear ones as in Eq. (13), but are instead derived from the same nonlinear potential which generates the exact equilibrium distribution. The latter distribution is, of course, the classical limit of the centroid density. One might then argue that an analogous quantum mechanical limit of Eq. (11) is one in which the forces which generate the centroid distribution. This notion is, of course, rigorously correct in the globally harmonic limit. It also seems logical that the forces which generate the centroid trajectory at some later time and position in space should be no different from the forces experienced by a centroid trajectory which is initiated at that same point in space.

Based on the above arguments and Eqs. (9) - (12), the following picture emerges for a centroid density-based calculation of the position time correlation function in quantum mechanics: The correlation function $C_c^*(t)$ in Eq. (12) should, in fact, be a centroid correlation function which is calculated using the exact centroid density to average the initial conditions. The centroid trajectories are to be calculated from effective classical equations of motion, given by

$$m\ddot{q}_c(t) = -\frac{dV_c(q_c)}{dq_c} , \qquad (14)$$

where the effective centroid potential is given by

$$V_c(q_c) = -k_B T \ln \left[\rho_c(q_c)\right] \quad . \tag{15}$$

The centroid force $F_c(q_c)$ defined in the right-hand-side of Eq. (14) is a kind of quantum mechanical potential of mean force, given explicitly by

$$F_{c}(q_{c}) = -\frac{\int \cdots \int \mathcal{D}q(\tau) \,\delta(q_{c} - \tilde{q}_{0}) \,V'[q(0)] \exp\left\{-S[q(\tau)/\hbar\right]\right\}}{\int \cdots \int \mathcal{D}q(\tau) \,\delta(q_{c} - \tilde{q}_{0}) \exp\left\{-S[q(\tau)]/\hbar\right\}} \quad .$$
(16)

To determine the functional form of the centroid momentum distribution used to average the centroid trajectory initial momenta, one needs only to examine the action functional for the imaginary time phase-space path integral.⁸ given by

$$S_{E}[p(\tau), q(\tau)]/\hbar = \frac{1}{\hbar} \int_{0}^{\hbar\beta} d\tau \left\{ \frac{p(\tau)^{2}}{2m} + V[q(\tau)] - ip(\tau)\dot{q}(\tau) \right\}$$
$$= \beta \frac{\tilde{p}_{0}^{2}}{2m} + \beta \sum_{n \neq 0} \left[\frac{\tilde{p}_{n}^{2}}{2m} + \frac{2\pi n}{\hbar\beta} \tilde{p}_{n} \tilde{q}_{-n} \right] + \frac{1}{\hbar} \int_{0}^{\hbar\beta} d\tau \, V[q(\tau)] \quad , \quad (17)$$

where $\{\tilde{p}_n, \tilde{q}_n\}$ are the Fourier modes of the momentum and position paths. respectively. Remarkably, the momentum centroid \tilde{p}_0 is decoupled from position coordinates and generates precisely the classical momentum distribution. As the final step after the centroid correlation function $C_c^*(t)$ in Eq. (12) is calculated, the real part of the quantum position correlation function $\bar{C}(t)$ can be determined through the Fourier transform relationship in Eq. (10).

The above "centroid molecular dynamics" prescription for calculating the quantum position correlation function has both rigorous and ad hoc elements to it, though it is exact for globally harmonic systems and clearly has the correct classical limit. In order to subject centroid MD to a numerical test, the above algorithm was applied to a quartic oscillator potential given by

$$V(q) = \frac{1}{2}q^2 + g\frac{1}{24}q^4 \quad . \tag{18}$$

with the parameters g = 2.4, m = 1.0, $\hbar = 1.0$, and $\beta = 5.0$. The exact results were obtained by finding the eigenvalues and eigenvectors of the quartic Hamiltonian in a harmonic oscillator basis set. One hundred eigenstates were employed to yield the spectrum and time correlation function. The ground state energy was found to increase by 12% due to the quartic perturbation which in equivalent to a large anharmonic shift of a molecular vibrational spectrum. The centroid MD results were computed using the centroid forces from the variationally optimized quadratic reference system in Eq. (5). This reference system is extremely accurate for the potential in Eq. (18) and easy to implement numerically.

- 8 -

In Fig. 1. the real part of the time correlation function is shown for the exact dynamics (stars), the centroid MD result (solid line), the analytically continued effective harmonic result in Eq. (8) (dashed line), and the classical limit (dot-dashed line). The centroid MD is clearly the superior result, capturing the shift of the quantum coherence and the (smaller) dephasing relative to the classical limit. The results shown in Fig. 1 are for a very low temperature system, the dynamics of which are dominated by only the ground and first excited vibrational states. The agreement between the centroid MD and the exact results will become even better at higher temperatures.

The present Communication has contained only a preliminary description of the centroid molecular dynamics method, the emphasis being on the position time correlation function. Future research will focus on an extension of the method to calculate more general correlation functions.^{5,9} a more rigorous mathematical justification of the theory,⁵ the development of practical algorithms for computing centroid dynamics, and applications of centroid MD to study the vibrational, activated, and diffusional dynamics of quantum particles in condensed phase system ..

Acknowledgements

This research was supported by the National Science Foundation and the Office of Naval Research. GAV is a recipient of a National Science Foundation Presidential Young Investigator Award, a David and Lucile Packard Fellowship in Science and Engineering, an Alfred P. Sloan Foundation Research Fellowship, and a Dreyfus Foundation New Faculty Award.

- 9 -

References

- (1) (a) R. P. Feynman, Statistical Mechanics. (AddisonWesley, Reading, MA, 1972), Chap.
 3: (b) R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); Chap. 10.
- (2) R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986); R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985); Phys. Rev. B 33, 7647 (1986); W. Janke and H. Kleinert, Chem. Phys. Lett. 137, 162 (1987); J. Cao and B. J. Berne, J. Chem. Phys. 92, 162 (1987). See also Ref. 4.
- (3) G. A. Voth. Phys. Rev. A 44, 5302 (1991).
- (4) G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989); G. A. Voth, Chem. Phys. Lett. 170, 289 (1990); For a review of path integral quantum transition state theory, see G. A. Voth, J. Phys. Chem. (in press). See also the related work of M. J. Gillan, J. Phys. C 20, 3621 (1987).
- (5) J. Cao and G. A. Voth (to be submitted).
- (6) See, e.g., Ref. 1a, Sec. 3.5.
- (7) See, e.g., G. Seeley and T. Keyes, J. Chem. Phys. 91, 5581 (1989); B.-C. Xu and R. M. Stratt, ibid. 92, 1923 (1990), and references cited therein. Of particular relevance is the instantaneous normal mode perspective for classical correlation functions found in M. Buchner, B. M. Ladanyi, and R. M. Stratt, J. Chem. Phys. 97, 8522 (1992).
- (8) See, e.g., M. S. Swanson, Path Integrals and Quantum Processes, (Academic Press, San Diego, 1992), Sec. 4.2.
- (9) An ad hoc reactive flux procedure which is based on quasiclassical trajectories for the centroid variable has been proposed in G. K. Schenter. M. Messina, and B. C. Garrett, J. Chem. Phys. 99, 1674 (1993). This method can be used to estimate dynamical corrections to the path integral quantum transition state theory rate constant (Ref. 4). While a derivation of this procedure from first principles does not yet exist, it is clearly in the same spirit as the present work.

- 10 -

Figure Caption

Fig. 1: A plot of the real time position autocorrelation function for the quartic oscillator described in Eq. (18). The stars show the numerically exact results, the solid line is for the centroid molecular dynamics method [Eqs. (12), (14)-(17)], the dashed line is for the analytically continued effective quadratic theory [Eq. (8)], and the dot-dashed line is for classical molecular dynamics.

•

-

a den status denne er meine an e