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A New Perspective on Quantum Time Correlation Functions

Jianshu Cao and Gregory A. Voth

Department of Chemistry, University of Pennsylvania, Philadelphia. Pennsylvania 19104-

6323

ABSTRACT

A theoretical analysis suggests that the path centroid variable in Feynman path in-

tegration occupies a central role in the behavior of the real time position autocorrelation

function. Based on this analysis. an intriguing quasiclassical perspective on quantum cor-

relation functions emerges.

0

$

I • • •• • •



One of the most challenging problems in condensed matter theory is the computation

of quantum time correlation functions. The satisfactory solution of this problem will

require a theoretical formalism which, to within an acceptable degree of accuracy, can

be implemented efficiently on a computer for general many-body systems. The present

Communication is devoted to one such formalism which is based on the properties of the 5

path centroid variable in Feynman path integration' which is defined within the context

of the imaginary time path integral as

4= drq(r) (1)

In his derivation of an approximate quasiclassical expression for the partition function,'

Feynman recognized that the path centroid was a particularly useful classical-like variable

about which to define a quantum density, often called the "centroid density", defined as

p,(q,) = j'"/ Dq(r)b(qc-lo)exp{-S[q(r)]/h} , (2)

where S[q(r)] is the imaginary time action functional. [The quantum partition function

can be obtained from Eq. (2) by integration over the position of the centroid. qc.] Feynman

determined a variational effective potential for the centroid variable using the approxima-

tion of free particle motion to describe the action for the imaginary time path fluctuations

about the centroid. Since Feynman's seminal work, several authors 2 have improved upon

his theory by employing quadratic variational action functionals which more accurately

approximate the exact action for the imaginary time path fluctuations about the centroid

variable. The latter approach, therefore, improves the accuracy of the resulting variational

partition function. More recently, the path integral centroid perspective has been extended

to calculate equilibrium averages (A), the central result being that the quantum operator

A is replaced by a Gaussian averaged effective classical function.3 The centroid density

has also become the centerpiece of a path integral formulation of quantum mechanical

transition state theory.4 To our knowledge, however, there has been little progress in the

formulation of quantum dynamics from the path centroid perspective.
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We have recently developed a theory 5 for quantum imagmary time correlation func-

tions in terms of the centroid variable and its corresponding density function (Eqs. (1) and

(2)]. Quite accurate analytic expressions are obtained through the use of general quadratic

action functionals, a properly formulated diagrammatic perturbation theory, and suitable

renormalization techniques. In principle, once a good approximation to the exact imagi- 5

nary time correlation function is obtained, the real time correlation function can then be

determined by the inverse Wick rotation r -- it (i.e., by analytic continuation). In the

course of this research, however, an even more promising perspective has begun to emerge

on the role of the centroid variable in the theory of quantum time correlation functions.

This perspective, which is the subject of the present Communication. offers a computa-

tionally powerful algorithm to calculate quantum time correlation functions in many-body

systems.

To begin the analysis. it proves particularly useful to define the centroid-constrained

imaginary time correlation function 5

Cc(r, q f) ... f Dq(r) 6(qc - qo)(q(r) - qo)(q(O) - 4o) exp {-S[q(r)/h]} (
fC. .f JDq(r)6(qc-4o)exp{-S[q(r)]/h} (3)

0 This correlation function. which describes the correlations of the imaginary time paths

about the centroid variable, is related to the usual correlation function C(r) =(q(r)q(O))

by the relationship

C(r) = (C.Jr,q,)+ , (4)

where the subscript "Pc" denotes averaging with the normalized centroid distribution

P0(q,)/f dq.p.(qc) [cf. Eq. (2)].

By definition, the centroid variable plays a central role in the behavior of the centroid-

constrained correlation function in Eq. (3). A more subtle issue, however, is the role of

the centroid variable in the real time quantum correlation function. In a formal sense,

this information can be extracted from the exact centroid-constrained correlation function

C,(r, qc) through the analytic continuation r -- it. In a practical sense, however, such

-3- 5
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a procedure. whether analytic or numerical, is not tractable unless there is some prior

simplification of the problem. Fortunately, such a simplification can be achieved through

the variational determination of an effective quadratic action functional, given for a single

degree-of-freedom by2',

S&1f[q(r)] = ] dr 2 + Veff(qc) + Imrj[q(r) - q ,](

where Vff (do) is the variational effective centroid potential and &C is the variationally

determined effective harmonic frequency, both quantities being evaluated at a given cen-

troid position. As in other work, the latter parameter is determined with the help of

the properly formulated"12 Gibbs-Bogoliubov-Feynman (GBF) variational principle6 for

the centroid density in Eq. (2). The optimized frequency is given by the solution of the 5

transcendental equation

rnw* dq V"(q, + q) e1p(-q2/2C) , (6a) •

where the effective thermal width squared in the optimized reference system for a particular

position of the path centroid is given by

ac r h zo/2 (6b
S= ;m. [tan /2 )C 1 -l (6b)

With the above quadratic reference system in hand, the imaginary time correlation function

in Eq. (4) can be determined analytically for the reference system, giving 5

1 f Ic cosh[•,(r - h,3/2)] ((Mj 2 j + ( (

SC(r) =2 c sinh(hI3&fc/2) - ( )

where Z = f pc(q,)dq, is the partition function. The combined and second and third term

in Eq. (7) can be shown 5 to be a representation in the effective quadratic reference system

of the simple constant (q) 2,where (q) is the thermal average of the variable q. From now

on, those two terms will be replaced by (q)2.

--4--
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Based on the expression in Eq. (7), it is now straightforward to analytically continue

the above function to obtain the real time correlation function, the real part of which is

given by

() pr cos(Ct) + (q) 2  (8)d~t)= dc pcqc)2mýDtanh(hOC)/2)

At this level of the theory, the real time correlation function is seen to be the superposition

of centroid correlation functions for effective harmonic oscillators defined at different cen-

troid positions qc. In turn, each centroid correlation function is weighted by the centroid 5

density for that value of qc. The above expression for the correlation function is there-

Foie a quantumn mechanical generalization of the classical "instantaneous normal mode"

perspective for condensed matter systems. 7

Up to this point, the arguments have remained within the limits of rigorous mathe-

matical analysis. On the other hand, if the bounds of rigor are "loosened" a bit, one can

arrive at an even more compelling result. In order to proceed in such a fashion, it proves

beneficial to first introduce another real time centroid correlation function, given by

C t f cos(=t) + (q) 2  (9)

which is the exact analog of the classical correlation function for an effective harmonic

oscillator with the centroid "frequency" ýD. Due to the properties of the Dirac delta

function, the above correlation function is related5 to the one in Eq. (8) through their

Fourier transforms, i.e., S

tanh(h&3w/2) C(w) (10)

By noting that the first term on the right-hand-side of Eq. (9) describes the correlation of I

fluctuations about the mean value (q,,pO = (q), Eq. (9) can then be rewritten as

C*(t) = - dqcpc(qc) (qc(t)qc(O))c , (11)

where (qc(t)qc(0))•c is a quasiclassica_ position correlation function calculated for dynamics

on the locally quadratic potential energy surface defined for each initial centroid coordinate

-5- 5
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through the GBF variational procedure. The symbol (..)• denotes initial condition

averaging using the quadratic approximation to the centroid density.
4

At this point, however, one might ask whether Eq. (11) is. in fact. an approximation

to some more accurate expression. Some insight into the answer is provided by an ex-

amination of the limiting behavior of Eq. (11) for: (a) globally harmonic potentials, and 0

(b) exact classical dynamics. In the case of a global harmonic potential. the correlation

function (q,(t)qc(O)4T, in Eq. (11) is the same everywhere [i.e., independent of the qc in

Eq. (11)]. Since Z- 1 fdqcpc(q,) equals unity, Eq. (11) then reduces to the correlation 0

function (q,(t)q,(O)),,. In the global harmonic limit, therefore, one can simply propagate

the centroid variable classically using forces derived from the effective centroid potential.

average the initial conditions using the centroid density, and calculate the classical-like

centroid correlation function

C,*(t) = (qc(t)q%(O))p. (12)
• @

The exact quantum harmonic correlation function is then determined from this centroid

correlation function via Eq. (10). It should be noted that for general nonlinear potentials

the analytically continued effective quadratic result in Eq. (9), which should be understood

as a relatively short time approximation to the exact correlation function, further supports

the notion of a quasiclassical time propagation of the centroid.

The second limiting behavior to consider is the case of exact classical dynamics. The

approximate correlation function in Eq. (9) is given classically by

C 1(t) = 1 dqcl pci(qci) (qcd(t)qrL(O))•c, , (13)

where the trajectories qc (t) are generated by an effective quadratic classical potential 5

with frequency &cl- The distribution based on this potential is used to average the initial

conditions in the correlation function, while the second level of averaging is performed with

the exact classical density p,1 (qcj). The exact classical correlation function can be related to

Eq. (13) by some mental mathematics. In particular, if the potential which generates the

dynamics and averaging in the correlation function (qcL(t)qc1(O))c,, is transformed into the

-6-
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exact potential, that correlation function becomes the exact classical correlation function.

The --exterior- integration over classical distribution Pdl (qc) then becomes inconsequential

and can be removed. The important point here is that the forces which generate the

classical trajectories in (qL(t)qcL(O)) are no longer the approximate linear ones as in Eq.

(13), but are instead derived from the same nonlinear potential which generates the exact •

equilibrium distnbution. The latter distribution is. of course, the classical limit of the

centroid density. One might then argue that an analogous quantum mechanical limit of

Eq. (11) is one in which the forces which generate the centroid trajectories in q,(t) are

derived from the same effective potential which gives the exact centroid distribution. This

notion is, of course. rigorously correct in the globally harmonic limit. It also seems logical

that the forces which generate the centroid trajectory at some later time and position in

space should be no different from the forces experienced by a centroid trajectory which is

initiated at that same point in space.

Based on the above arguments and Eqs. (9) - (12), the following picture emerges for

a centroid density-based calculation of the position time correlation function in quantum

mechanics: The correlation function Cc (t) in Eq. (12) should, in fact, be a centroid

correlation function which is calculated using the exact centroid density to average the

initial conditions. The centroid trajectories are to be calculated from effective classical

equations of motion, given by

m4,C(t) : dVc(q,)
dqc

where the effective centroid potential is given by

V,(q%) = -kBTIn[pc(qc)] (15) S

The centroid force Fc(q,) defined in the right-hand-side of Eq. (14) is a kind of quantum

mechanical potential of mean force, given explicitly by

fc(qc) = - f ... f Vq(r)6(qý -to)V'[q(O)]exp{-S[q(-)/Ih]} (16)f ... f Vq(r)6(qc-qo)exp{-S[q(r)]/h}

-7-
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To determine the functional form of the centroid momentum distribution used to average

the centroid trajectory initial momenta, one needs only to examine the action functional

for the imaginary time phase-space path integral.8 given by

lEP7),(rll oa d{ P(7r)2 +sdv(-) qT)/h= jdT { + i~ Vtq(r)] - ip(,-)q(-)}

2+k3 L + 21rn + - drV[q(r)] (17)

where {Pn,, 4} are the Fourier modes of the momentum and position paths. respectively.

Remarkably, the momentum centroid Po is decoupled from position coordinates and gen-

erates precisely the classical momentum distribution. As the final step after the centroid

correlation function C*(t) in Eq. (12) is calculated, the real part of the quantum position 5

correlation function C(t) can be determined through the Fourier transform relationship in

Eq. (10).

The above "centroid molecular dynamics" prescription for calculating the quantum * *
position correlation function has both rigorous and ad hoc elements to it, though it is

exact for globally harmonic systems and clearly has the correct classical limit. In order

to subject centroid MD to a numerical test, the above algorithm was applied to a quartic

oscillator potential given by

12 1 4V(q) = 2q + gF4q (18)

with the parameters g = 2.4, m = 1.0, h = 1.0, and 3 = 5.0. The exact results were

obtained by finding the eigenvalues and eigenvectors of the quartic Hamiltonian in a har-

monic oscillator basis set. One hundred eigenstates were employed to yield the spectrum

and time correlation function. The ground state energy was found to increase by 12% due

to the quartic perturbation which in equivalent to a large anharmonic shift of a molec-

ular vibrational spectrum. The centroid MD results were computed using the centroid

forces from the variationally optimized quadratic reference system in Eq. (5). This ref-

erence system is extremely accurate for the potential in Eq. (18) and easy to implement

numerically.

-8-
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In Fig. 1. the real part of the time correlation function is shown for the exact dynamics 0

(stars), the centroid MD result (solid line), the analytically continued effective harmonic

result in Eq. (8) (dashed line), and the classical limit (dot-dashed line). The centroid

MD is clearly the superior result. capturing the shift of the quantum coherence and the

(smaller) dephasing relative to the classical limit. The results shown in Fig. I are for a

very low temperature system, the dynamics of which are dominated by only the ground

and first excited vibrational states. The agreement between the centroid MD and the exact

results will become even better at higher temperatures.

The present Communication has contained only a preliminary description of the cen-

troid molecular dynamics method. the emphasis being on the position time correlation

function. Future research will focus on an extension of the method to calculate more gen-

eral correlation functions.5"9 a more rigorous mathematical justification of the theory,5 the

development of practical algorithms for computing centroid dynamics, awd applications

of centroid MID to study the vibrational. activated, and diffusional dynamics of quantum

particles in condensed phase systernm.
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Figure Caption

Fig. 1: A plot of the real time position autocorrelation function for the quartic osciUator

described in Eq. (18). The stars show the numerically exact results, the solid line is

for the centroid molecular dynamics method (Eqs. (12), (14)-(17)j, the dashed line is

for the analytically continued effective quadratic theory [Eq. (8)], and the dot-dashed

line is for classical molecular dynamics.
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