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Velocity analysis by perturbation

Zhenyue Liu and Norman Bleistein

ABSTRACT

Prestack depth migration provides a powerful tool for doing velocity analysis in
complex media. Both prominent approaches to velocity analysis-depth-focusing
analysis and residual-curvature analysis, rely on approximate formulas in order
to estimate velocity errors. Generally, these formulas are derived under the as-
sumptions of horizontal reflector, lateral velocity homogeneity, or small offset.
Therefore, the conventional methods for updating velocity lack sufficient compu-
tational efficiency when velocity has large, lateral variations.

Here, using a perturbation method, we derive an analytic relationship be-
tween residual moveout and residual velocity. In our derivation, we impose no
limitation on offset, dip, or velocity distribution. Based on this formula, we revise
the residual-curvature-analysis method for velocity estimation that involves recur-
sion and iteration. Furthermore, this formula provides the P-nsitivity and error
estimation for migration-based velocity analysis, which is helpful in explaining
the reliability of the estimated velocity.

INTRODUCTION

Prestack depth migration that can handle dipping reflectors and lateral velocity
variations is robust in imaging complex structures. In order to process data by this
method, one often needs to have a more accurate velocity model than may be obtained
from simple velocity-analysis methods, such as normal moveout. Meanwhile, prestack
depth migration itself is an attractive tool for doing velocity analysis because of its
high sensitivity to the velocity model. Two approaches to migration velocity analysis
have been developed: depth-focusing analysis (DFA) and residual-curvature analysis
(RCA). Depth-focusing analysis is based on using stacking power to measure velocity
crror. Residual-curvature analysis is based on residual moveout to measure velocity
error.

Migration velocity analysis must address two issues to succeed: (1) how to estab-
lish a criterion for knowing if a migration velocity is acceptable; (2) how to update
the velocity, if it is unacceptable. In DFA, a migration velocity is acceptable if the
difference between migration depth and focusing depth is zero. In RCA. a migration
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velocity is acceptable if the difference between imaged depths from different offsets is
zero. Quantitatively, these differences can be used to update the velocity. To date,
a variety of updating formulas have been developed. These formulas degrade with
increasing complexity of media (lateral velocity variation and reflector dip), because
of rough approximations used to estimate velocity. Although iteration generally is
helpful in obtaining a more accurate velocity, a good approximation not only reduces
iteration steps but guarantees the convergence. The conventional formulas for updat-
ing velocity were derived under one or more assumptions as follows:

(i) lateral velocity homogeneity;
(ii) small offset;
(iii) horizontal reflector.

In DFA. all three assumptions are used (MacKay and Abma, in 1992). In RCA,
the assumptions vary with migration types. For common-shot migration or common-
receiver migration, Al-Yahya's formula (1989) used all three assumptions. Lee and
Zhang (1992) developed a formula that replaces assumption (iii) by the assumption
of small dip. For Common-offset migration, Deregowski's formula (1990) used the
first two conditions. [This was proven by Liu and Bleistein (1992).] Both DFA
and RCA use assumptions (i) and (ii). Under the assumption of a small offset, the
residual moveout can be approximated by a hyperbola or a parabola. However, this
approximation is poor when the velocity has an obvious lateral variation.

Conventional approaches, such as DFA and RCA, inspect information on each
midpoint individually. This may not be reliable when conflicting events exist because
velocity estimation will depend on which event is used. Furthermore, the conventional
approaches estimate the stacking velocities that are assumed to equal the rms veloc-
ities, and then convert the rms velocities into the interval velocities by Dix' equation
or other methods. The stacking velocity is very sensitive to the lateral variation in
velocity. When the velocity is laterally variant, the stacking velocity may be very
different from the rms velocity.

Because of limitations, conventional approaches to velocity analysis cannot handle
complex media (such as the model for Marmousi data). To overcome these limitations,
some geophysicists used a macro-model method for estimating the interval velocity
directly . A macro-model consists of velocities and velocity interfaces. An initial

macro-model is determined from conventional techniques; the macro-model is updated
iteratively by using depth-focusing, residual-curvature analysis, or both. The whole
process may be accomplished with interpretation based on geological knowledge. The
present macro-model method has two significant drawbacks. The first one is that
velocity distribution is assumed to be constant in layers. In fact, velocity may vary
within a block. The second one is that no efficient formula is used to update velocity.
The criterion used now for updating velocity is only qualitative, which results in
inaccuracy and inefficiency in velocity estimates.

In this paper, we present a new method for velocity analysis that revises the RCA
method. Based on perturbation theory, we derive a quantitative relationship between
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residual moveout and error of velocity that is valid for any. offset, dip and velocity
distribution. A similar formula was proposed by Lafond et al. (1993). However.
that formula is restricted to constant-velocity layers. In contrast. our formula can

handle any parameterization of velocity. To apply this formula, it is necessary to
calculate some quantities that depend on the specular source-receiver pairs for each
image point. Here, we use multiple outputs of Kirchhoff migration to determine these

quantities efficiently.

Although prestack migration has superior advantages to deal with complex me-
dia, its weaknesses should be considered in application. Besides the costly computa-
tion, complexity of medium may degrade the effectiveness of the prestack migration
method. Here, we discuss the sensitivity of migration-based velocity analysis, and
show what factors affect the sensitivity, so that we may estimate the velocity error
involved in the velocity analysis. Furthermore, this sensitivity analysis provides an

indicator of when a priori geological knowledge is necessary for estimating reasonable
velocities.

VELOCITY ESTIMATION

If an incorrect velocity is used in prestack migration, the imaged depths from dif-
ferent offsets at a common-image-gather will differ from each other. In this situation.
a residual moveout is observed in migrated data. The principle of velocity analysis
is to correct the velocity so that the imaged depths at each common-image-gather
are close to for each other. For this purpose, one needs a quantitative relationship
between the residual moveout and the velocity error. Here, we use the perturbation

method to derive the representation for the residual moveout.

We denote by X a 2-D vector, X = (x, z) . Let x, be the source position and x,

be the receiver position on the surface. For any point X below the surface, 7, (x,, X)

or -r(X, x,), respectively, denote traveltimes from x, to X, or X to x,.

Suppose we know the total reflection travetime function T(y, h) (therefore, OT/O9)
that depends on midpoint y and half-offset h. Given a velocity function v(x, z), then,
for each h. the reflector is determined by

7-,(x,,,X) + r,(X,x,) = T(y,h), (1)

D7, r, - T (2)Or Oii OTy

where X N_ (x, z) is the point on the reflector. The reflector is related to offset; for a
fixed image location x, the imaged depth z can be computed that is a function of h.
If v(x, z) equals the true velocity, then the imaged depth z is independent of offset h;
otherwise-for incorrect velocitv-z varies with offset It. Consequently, the imaged
deDth provides information on velocity.

Suppose that the velocity distribution v is characterized by a parameter A.

v = v(A;X).
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For example, when v(x, z) = vo + ax + bz, A is either vo, a, or b.

For a fixed image location x, we differentiate equation (1) with respect to A.
Noticing that y and z are functions of A, then

L7 -, +Lr,- T (]9 [Or 7-, ]d T

5yA [h+ _] + + L (3)

By using equation (2), the first term of the left side in equation (2) is balanced by
the right-hand term. Therefore,

[O" 4rOridz O-r5  97r7

+z z dA - A 49OA

From
OrF, cos 0, Oar cos 0,
Oz v Oz v

where 0, or 0r are angels between the raypath from the source or the receiver, and
the vertical at X, we have that

cos 0, + cos 0, dz Or, Or.r
dA 9- OA

That is,
dz-z = g(x,h), 

(4)

where,

g _([,rh)OT,. + Lt'v(A; X)
g(x'h)=-,9A A 0I cos0,+cosO, (5)

Suppose that the true parameter is A* and the true depth is z'. If there is a
small perturbation AA = A' - A between the true parameter and the parameter
used in migration, then the imaged depth will have a corresponding perturbation
Az(x, h) - z* - z(x, h). From equation (4), Az can be represented by

Az = g(x, h)AA. (6)

Equation (6) is true for an arbitrary velocity distribution, any dipping reflector,
and any offset, which is significantly different from the limited result of conventional
RCA.

When the velocity distribution is characterized by multiple parameters, A = (A1,
A2, ... , A,)T, the imaged-depth perturbation will be affected by the perturbations of
all these parameters. Therefore, equation (6) is modified by

Az(x,h) = - Az =-gi(x,h)AA,, (7)
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where
(9 T" 7-, 1,(A X)g, (x,h) - + , (8)

If we could solve for AA. the true parameters can be estimated by

A=' + A.

Notice that the left side of equation (7) involves the unknown z*, so it is necessary
to remove Z' in this equation. The true depth can be approximately replaced by the
corrected imaged depth z + Az,

n

, z(xh) + Az(x, h) = z(x,h) + 'gi(x, h)AA,.

Because z* is independent of offset, the corrected imaged-depths from different offsets
should be close to for each other. Suppose that there are offsets hI, h2, /4, and
image locations xl, X2, .. XK, then

n"(k)+ (k) - z(k) + (k)

~]• -- 9ij L"A i,
t=1

where
(k)zj = z(xk, hj),

AN(k) - Az(xk, hj),

g) = gi (xk, hj).

We seek AAj's such that the corrected imaged depths have the minimum variance,
i.e., Z m (zjk) + (k) (k) + A-z(k) 2= ma, (9)

k=1 j=1

where
z(k) = ( ),k) _(k.) . (k))T1. 1- Z ... '" 'm I

z(k) = (A•zk), AZ~k), ... Az.k))T.

Here we use the overline to denote the mean value of a vector over the offset index.
For example,

Indroduce the matrix and vector,
k) () (k) (bk)b(k).. b(k))T,A(• [ai Inxn, (b 1 ... n ; :-

5.."KQ

f ' " .... . ..l
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where

( ik) (= (ýk) g•(k) _T.

aill 9i 2 ' j "" 91

then, as shown in Appendix A. the solution of equation (9) must satisfy the linear

equation,

FA(k)1 z•A:=- b(k:). (10)
k=1 =

Specifically, if there is only one parameter to be determined, equation (10) will have

an explicit solution

zA 1 r =g )- (k)2 '(11)

where

g4k) =g9(xk,hA)'
and

ý(k) = (g(k)g~k)..g(k))T

If the corrected imaged-depths are not close enough to each other, we implement

iteration to obtain more accurate parameters. The iteration stops when the variance

achieves a given accuracy.

Calculation of the function gj

The function g,(y, h) involves the derivatives of traveltimes with respect to the

parameter A. In the eikonal equation.

( : A() 2 ý / 2) 110

a/+ \az) v-x~)

if we take the derivative with respect A, then

___ (kO)t 1 a ( 1i)

0-• O-' In- (k)•"• --" 22( Z 0 (12)

where
Or

For each source or receiver, Od-/O, is determined by solving equation (12). Therefore,

givenan imaged point (x, z) and a specular source-receiver pair xw and xt, we can
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calculate g9 from formula (8). However, there is not an explicit formula to represent
the specular source-receiver pair from the imaged point for a complex medium. To
solve this problem. here, we use the Kirchhoff integral to calculate g,. In the Kirchhoff

summation, we calculate two inversion outputs which have two different amplitudes.
One is tile original amplitude: the other is the original one multiplied by the quantity
g,. Thus, the ratio of the amplitudes of the two outputs will give gi at the specular

source-receiver position according to the stationary-phase principle, without requiring
knowledge of the specular source-receiver pair. This is the same technique as was used
to determine the angle of reflection in Kirchhoff inversion. (See Bleisten et al. (1987).]

Parameterization of Velocity

Although equation (7) holds for any velocity distribution, the solution will be
underdetermined if too many unknown parameters are involved. Consequently, it is
essential to characterize the velocity distribution by choosing appropriate parameters.
Conventionally, one assumes that a velocity model consists of the construction of the
macro-model (constant velocities and velocity interfaces). The interfaces divide the
whole model into a number of blocks. Here, we replace constant velocity in one block
by a linear function that is characterized by three parameters:

Al + A2(z - zO)+ A3 (x - Xo),

where (xo, z0 ) is a reference point. Thus. the velocity distribution is written in a form
of

v(x, z) = v0 (x, z) + A1 + A2(z - z0 ) + A3(X - xO), (13)

where v0 is a background velocity.

An imaged depth only depends on the velocity above it, except for turning rays.
Therefore, a recursive algorithm is possible to determine velocity in an individual
block. We start from the block nearest surface. In each block, iteration is used to
calculate velocity parameters. Given an initial guess for Ai's, common-offset depth
migration is implemented to obtain imaged depths and gi(x, h) in equation (8) for
each midpoint and each offset. Equation (10) will give a correction of the parameters.
Then by using the updated parameters as initial guess, we correct the velocity again
until convergence is achieved. After velocity analysis in one block, we migrate data
with the correct velocity, and then pick the block interface from the imaged structure.
When we finish determining velocity and velocity interface in one block, we will repeat
the same procedure to the next block.

SENSITIVITY OF MIGRATION VELOCITY ANALYSIS

Velocity analysis by prestack migration uses the difference between the imaged
depths from different offsets to correct the velocities, which is represented by equa-
tion (10). If the variance defined by (9) is zero, we conclude that the velocity is
correct. However, one cannot obtain exactly zero variance. Many factors result in
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a non-zero variance: noise in the input data. nonacoustic properties, and inaccurate
description of velocity distribution, so on. Even the variance is apparently zero. it
is actually not zero because of the errors in picking the imaged depths. The imaged
depths in the variance are picked on the migration output, so that the position error
in imaged depths is controlled by the resolution of tile migration output, which, in
turn, depends on wavelength, among other things.

Quantitatively, the matrices in equation (10) that depend on the functions, gi,
can be used to describe the sensitivity of the velocity error AA to the variance error.
Here, we will derive analytical representations for the simplest cases. For simplicity,
we assume that the velocity v(x, z) consists of a constant background velocity vo and
a perturbation that is a linear function of depth in one block. Moreover, we assume
that the upper boundary of the block is a horizontal line, z = d; i.e.,

v(x, z) = v0 + a(AI + A2(z - z0)), (14)

where a = 0 for z < d and a = 1 for z > d. The initial guesses are

A, = A2 = 0.

Suppose that the true parameters are A* and A.ý, and the reflector is a horizontal
segment at a depth z*. As shown in Appendix B, we obtain the representations for
the gi's in equation (8)

1 ) h2 + Z2 Z - d
Z2 o(15)

g2(x, h)= h2 + z 2 (z- Zo) 2 - (d- Zo) 2  (16)
h) 2vo

From the above two equations, we conclude that
_(z - z0)2 - (d- z0) 2g(r• )

g2 (x, h) Z _gx2-( -Z) 1(x, h).
2(z - d)

This means that the coefficients in equation (8) are proportional for all image locations
and all offsets, so that we cannot solve for A, and A2 separately. Thus, we have a
conclusion: The parameters A, and A2 cannot be determined at the same time if only
one reflector segment is used in the velocity-analysis process.

This conclusion shows that one should avoid solving for A1 and A2 at the same
time unless well-separated reflector segments are used for velocity analysis.

If the parameter A2 is given (i.e., AA 2 = 0), then equation (8) is simplified to

AzZ(x,h) = ( 2 +±) z-d AA1 . (17)
02 v0

When AA, is small, z(x, h) - z-. Therefore, for any different two half-offsets h2 and
hi (h2 > hi), the difference of imaged depths from these two offsets are

h2 h, z-- d
z(x, h 2) - z(X, hi) = ) (z)2 VO Ad .

8
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i.e..
ie,(11 . - /I')(' AA1) .(8

b,=(xrh i, h,) - :(x..tI-) - i(x, h1 ) = 1 - d \. (18)
(Z* )21.

Equation (18) shows that the error in A, is proportional to the thickness of the block
layer, which is consistent with results in the paper of Liu and Bleistein (1990). When
there is a thin layer, the velocity estimation will become unreliable, so that migration-
based velocity analysis cannot handle thin layers.

Similarly, if the parameter X, is given (i.e.. AA, == 0), then

(h' _ h1))(Z" - d)(z" + d - 2:o)
-z(xIIh.) 2(z')2o - (19)

Equation (19) shows that the error in A2 is determined not only by the thickness of
the block laver but by the difference between the central depth of the block layer and
the reference depth _..(

We have two kinds of the depth errors: .z and 6z. The former is the difference
between the true depth and the imaged depth. which reflects migration error due to
the velocity error; the latter is the difference between the imaged depths from different
offsets, which results in the velocity error in velocity analysis. The ratio of these two
depth errors is given by equations (17) and (18),

Az(x,h) h2 + ()2(2bz- •(r, hl,h12) -- (' -- 12)"20

The ratio -y indicates the migration error due to the resolution in migration output.
Equation (20) shows that Iy increases as the depth increases.

For a general case, we do not have analytical representations for the gi's. But we
can calculate the gi's numerically from which to estimate the velocity error. In fact,
if there is only one parameter. equation (11) gives an explicit error estimation.

r z~=1Y;'L (~(k)-7i' 211/2

EK Mgk _ _gý)j

where the Cauchy-Schwarz inequality is used.

COMPUTER IMPLEMENTATION

We applied our velocity analysis technique to synthetic data. The prestack migra-
tion is implemented by Liu's program (1993). The velocity model shown in Figure 1
consists of linear velocity functions and interfaces. Synthetic seismic traces are gen-
erated from this model, with 5 offsets ranging from 100 meters to 900 meters. Two
of the common offset gathers are shown in Figure 3.

9
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The velocity analysis process is outlined as follows:
In the first layer, the initial guess of velocity is 1500 rn/s. With two iterations.

the velocity is 2017 in/s. The true value is 2000 ni/s.
In the second laver. we assume that velocity has the foi --i v(z) = 20174 A(- -500)

rn/s, which guarantees a continuous velocity across the first interface. The initial
guess is A = 0. With two iterations, the velocity is

1,(z) = 2017 + 1.035(z - 500) = 1500 + 1.035z m/s.

The true velocity is v(:) = 1500 + 1.0z m/s.
In the left third laver, we assume that velocity has the form v,(x, z) = 1000 +

1.5z + Ax in/s. The initial guess is A = 0. With one iteration, the velocity is
'(x, -) = 1000 + 1.5z - 0.1.r rn/s. The true velocity is v(x,z) = 1000 + 1.5Z - 0.2x
rn/s. Despite the error in lateral variation, the stopping criterion is met since the
difference of the imaged depths is apparently zero. Therefore, iteration ceases.

In the right third layer, we assume that velocity has the form t,(z) = 2535 + A(z-
1000) m/s. The initial guess is A = 1.035, With one iteration, the velocity is

j,(z) = 2535 + 1.57(: - 1000) = 985 + 1.55Z m/s.

The true velocity is v(z) = 1000 + 1.5z m/s.
In the fourth layer, the velocity is a constant. The initial guess is v = 4000. With

one iteration, the velocity is 3586 mn/s. The true velocity is v = 3500 in/s.

After velocity analysis, we obtain the velocity model shown in Figure 2. With this
velocity model, we implement migration. and the result is shown in Figure 5 which is
close to the migration result with the true velocity, shown in Figure 4.

Also, we test the computation of gi in the first layer. The numerical g, is computed
from the ratio of the amplitudes in the Kirchhoff migration outputs. Then we compare
the numerical g, with the true value calculated in equation (17). In our test, v0 = 500
m/s and d = 0. The result listed in Table 1 shows that our numerical value of g1 is
accurate for all offsets.

Table 1. Test for gl. The unit of offset and depth is in/s.
Offset Imaged depth Numerical g, True g,

100 370 0.249 0.251
300 360 0.278 0.282
500 330 0.345 0.346
700 290 0.476 0.475

900 210 0.773 0.783

10
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CONCLUSION

\'elocitv analv3is by prestack migration can handle complex media for which
conventional approaches lack tile efficiency in updating velocity. The perturbation
method is used here to derive an analytical relationship between the residual nioveout
and the error in the background velocity. This method is not limited by offset, (dip,
or velocity distribution. Based on that, we can estimate velocity etficientlv. Further-
more. this relationship helps us to estimate the velocity error from the data resolution.
This velocity analysis technique also can be generalized to 3D and to converted waves.
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FIG. 1. The true velocity model. The velocity unit is m/s.

0

v = 2017

v = 1500 + 1.035
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FIG. 2. The velocity model from velocity analysis. The velocity unit is m/s.
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Midpoint (in)
1000 20100 30100

1.0

2.0. Al
(a)

Midpoint (in)

(O(b)

FIG. 3. Synthetic data: (a) with offset of 100 meters and (b) with offset of 900

meters.
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FIG. 4. Prestack migration with the true velocity model in Figure 1. The offset is
100 meters.
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FIG. 5. Prestack migration with the velocity model in Figure 2. The offset is 100
meters.
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DERIVATION OF EQUATIONS (10)

By using the matrix and vector notations on page 5 and 6, we have

m

1 m n

i=1

mn

= (AAj Mgk)) (2
M ==

and

(k)+ k) - k) +Aj(k) = (1) (k) + Azlk) -tk)

= -) (g() ,ga k . (23)
t=1

Define a function

f~EA E (Zjlk) + ,Zjk) - ilk) +Ajk
k=1 j=1

Thus, finding the minimum of f(Aý) is equivalent to that its gradient with respect

to Aý equal 0. i.e.,

af(AA) = 0 1 = 1,2,...,n. (24)

8AA1

By using equation (23),

f(mW) = E [ -k•(k-' E . (g 3k) -9 g
k=l j=l i=1

So,

±(ZZZ) k) ()- + W (k,, (•(k) 1k)) (()-- ~ A~ --9j-
aAA 2 E~ [j=1 EiT g

k=l j=l =

k=1 j=l 1=1
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The conditions (24) imply that

K m n (k) 7m r7()
-(k) ) I (k) .k (k-) kZE ZZ (gj - ) -- k = -- _k - )"

k=lj=li=1 k=lj=l

i.e.K

E.A/k) Aý =- b~k). (26)
k=1

This completes the verification that the solution of equation (10) provides the
minimum of the left side in (9).

DERIVATION OF EQUATIONS (14) AND (15)

The solution of equation (12) can be represented by
O"-A= f a(I) dl = - v- 2 (xz) Ov(xZ' ) dl', (27)

5dA L IoAv(,z L aA

where L is the raypath. Here, to simplify notations, we suppose that all derivatives
with respect to A are evaluated at A, = A2 = 0. When the background velocity is a
constant v0 as in (13), equation (27) becomes

" 1 - oz Orv(x, z') dz', (28)TA- = 0 -Sos--- v° 0 a

where 0 is the angel between the raypath and the vertical. For the velocity function
in equation (14), if z > d, then

9v(x. z')
1-1,

and

Ov(x, z') ,
aA2 10

if z < d, then
i9v(x, z') dv(x, z')
0A, 0A2

Therefore,
07" 1f oL d dzo= 1 z - d (29)aAt c0-os d0, Cos 0 1,0

and
and 0_" _ 1 ( Z-Zo) 2 - (d-zO) 2

ODr cos 0 V0 d cos0 2v(3

16
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Because the reflector is horizontal, the raypaths from the source and the receiver are
symmetric. We have

Cos -- COS Or =

Substituting the above formula and equations (29) and (30) into equation (8), we
obtain

h2 h + z - dgi (x, h) = .

and h2 + Z 2 (z - zo) 2 - (d - Zo) 2
g2(x, h) = z22v 0

This completes the verifications of equations (15) and (16).

17
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