
AD-A272 500

NAVAL POSTGRADUATE SCHOOL
Monterey, California

•,•w,,,• ;• •a..:.

THESIS

USE OF COMPUTERS IN THE INSTRUCTION
OF INTEGRAL CALCULUS

by

Dennis Arthur Polaski

June 1993

CO Thesis Co-Advisors: Beny Neta
ZEE David Canright

Approved for public release; distribution is unlimited

Form Approved1

REPORT DOCUMENTATION PAGE A F ormo 0704-018

-0 of~ ntot,,at'- t a o caeae, ýou oe, 'esmne nclwaing theune treot lee n IgM P- 070 ng at W8
jatie",nq and na-nt&:n-ng t~e 3ata need** Jno cotOet nq a- ,e-e,-nq Ie 0el-o, Of -nformal'on S.end comments regarding tf,.s outoen eft.O ate , a-,r .• n e te D -,

0110<1 on at ,ntotmat or .nclwdg sugge~tions tot reducing tM, ourcem to AsW-9~tOn me~adarlecs Services Directorate for nto-a~t~on 0Oe,&tho,, 4nO Aeocris 1, ý .e*'vlson
S,,$.~wv ute 1204 .A,-ngtOn . A 2220241302 and 10 the 04#,:e ot Ma-alg~ernet and Budge', Paoefworit Oediilc)*O Project ýO 704-0 E5B) 4vain n(;l)n ,C Dc 05C J

1. AGENCY USE ONLY (Ledve blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

7 7 March 1M Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

USE OF COMPUTERS IN THE INSTRUCTION OF
INTEGRAL CALCULUS

6. AUTHOR(S)

Polaski, Dennis Arthur

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING i MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Denartment of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRI JTION CODE

Approved for public release, distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

One of the most difficult concepts in the area of integral multivariate calculus is finding the
limits of integration. This thesis describes an interactive computer program designed to help students
understand this important concept. The program shows how a given domain is plotted and teaches how
to find the limits of integration when evaluating two-dimensional integrals.

The program allows the user to enter any known information about a region and then evaluates
the integral. The region is plotted, the limits of integration are given along with the area of the region.
The program handles cartesian and polar coordinate, two-dimensional integral problems. This program
could be used independently by the student and/or used by the calculus instructor in the classroom.

14. SUBJECT TERMS 15. NUMBER OF PAGES

165
Double Integrals, Integral Calculus 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CI.ASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

I TIIle;EA I I Ini.lrccC,=A I Jnlarifled UL
NSN 7540-01-280-5500 Standard Form 298 ýRev 2-89)

Pisrb-lo N ,Sd '9'

Approved for public release; distribution is unlimited.

USE OF COMPUTERB IN THE INSTRUCTION OF

INTEGRAL CALCULUS

by

Dennis Arthur Polaski

Captain, United States Army

B.S., United States Military Academy, 1983

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 1993

Author:+ Y

Dennis Arthur Polaski

Approved by: • .
Benyeta, Co-Advisor

Canright, Co-Advisor

Richard Franke, Chairman
Department of Mathematics

ii

PREFACE

Upon completion of my graduate work at the Naval

Postgraduate School I will be assigned as an Assistant

Professor in the Department of Mathematical Sciences, at the

United States Military Academy. While there I will teach the

cadets calculus. I will incorporate this package on integral

calculus that I have developed into the cadets' instruction.

As an instructor I will see this integral calculus package

used by the cadets. I will get feedback from them on its use

and its value in the instruction. I will then use the

feedback to make improvements to the package and to expand its

capabilities. It is my vision that such an instructional aid

will improve the overall quality and effectiveness of the

calculus instruction at the Military Academy.

DTC QUALITY NMDW= 4

¶

iii

?or

LI'_ l

ABSTRACT

One of the most difficult concepts in the area of integral

multivariate calculus is finding the limits of integration.

This thesis describes an interactive computer program designed

to help students understand this important concept. The

program shows how a given domain is plotted and teaches how to

find the limits of integration when evaluating two-dimensional

integrals.

The program allows the user to enter any known information

about a region and then evaluates the integral. The region is

plotted, the limits of integration are given along with the

area of the region. The program handles cartesian and polar

coordinate, two-dimensional integral problems. This program

could be used independently by the student and/or used by the

calculus instructor in the classroom.

iv

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While effort has been made, within the time

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.

v

TABLE OF CONTENTS

I. INTRODUCTION 1

II. MOTIVATION 7

III. USE OF PACKAGE IN CALCULUS INSTRUCTION 12

IV. WHY MATHEMATICA 15

V. STRUCTURE OF THE PROGRAM 17

VI. SUBPROGRAM GRAPH 21

VII. SUBPROGRAM CART 23

VIII. SUBPROGRAM INVERSE 31

IX. SUBPROGRAM CARTPLOT 36

X. SUBPROGRAM POLAR1 39

XI. SUBPROGRAM POLPLOT1 43

XII. SUBPROGRAM POLAR2 46

XIII. SUBPROGRAM POLPLOT2 50

XIV. SUBPROGRAM EXAMPLES 53

XV. FUNCTIONS AND NOTATION 54

XVI. FUTURE WORK 56

APPENDIX A LAB BOOK 58

APPENDIX B TUTORIAL 94

APPENDIX C PROGRAM CODE 105

LIST OF REFERENCES 157

INITIAL DISTRIBUTION LIST 158

vi

I. INTRODUCTION

In the area of integral multivariate calculus one of the

most difficult topics is decidina on the limits of integra-

tion. This package shows the calculus student how a given

domain is plotted and teaches the student how to find the

limits of integration when evaluating two-dimensional

integrals.

Integral calculus is the mathematics we use, for example,

to find lengths and areas of irregular shapes; to calculate

average values of functions; and to predict future values in

population sizes and future costs of living. The development

of integral calculus starts from the calculation of areas.

The limits used to define areas are special cases of a

definite integral.

The focus of the package is on teaching the student how to

correctly find the limits of integration for a region. While

for typical calculus problems the limits of integration are

determined analytically, it is quite helpful to see the

regions of interest. It then is important to be able to

accurately graph the regions. The calculus student may have

difficulty with curve sketching especially in polar

coordinates. This package allows the student to visualize the

region of interest enabling the student to better understand

1

the problem. It is essential that the student be able to see

accurate plots.

This package was developed using the Mathematics software.

Mathematica uses an adaptive sampling algorithm for plotting

to determine when and where to sample a function. A section

with large curvature is sampled more frequently than a flat

section of a function. This sampling algorithm coupled with

a set prescribed number of equally spaced samples produces the

quite reasonable plots we want. This graphing capability is

one of the greatest attributes of this package.

This package, which teaches the student how to find the

limits of integration, has two parts. The first part, which

is found in Appendix A, consists of a lab book. This lab book

addresses two-dimensional integrals and walks the student

through numerous example problems. The two-dimensional case

considers regions given in the cartesian coordinate system as

well as regions in the polar coordinate system. In all

examples the student is shown the plot of the functions and

then is shown how the limits of integration are determined.

The integrals are set up and evaluated and the area of the

region is given.

The second part of this package is an interactive program

written in Mathematica's programming language. With this

program the student can solve two-dimensional integral

problems, given in both the cartesian coordinate system and

the polar coordinate system. The student enters the functions

2

which define a region's boundaries and any other known

information about the region. The curves are then plotted.

The limits of integration are determined and the area of the

region is calculated. The program output includes the limits

of integration, the curves and the calculated area of the

regions. The program also can be used to display any of the

plots for the example problems found in the lab book.

The program's greatest value, however, is in allowing the

user to input his own problems. The program is designed to

handle those types of integral calculus problems found in any

introductory level calculus text book.

No knowledge of Mathenatica is required to use the

interactive program. The tutorial, found in Appendix B, tells

the user how to load the program and how to use it. The

tutorial takes the user through three example problems. The

first is an integral problem given in cartesian coordinates.

The second problem is in polar coordinates and finds the area

between a polar curve and the origin. The final problem is

also in polar coordinates and finds the area between two polar

curves. These three problems are simple problems that show

how the program is used. The tutorial, while not compre-

hensive, gives the user some idea of the types of problems the

program handles. It demonstrates how the program prompts the

user for input and how that input is entered. The program is

capable of much more complicated problems than those in the

tutorial. In general, once the package is loaded and the

3

program is started the user simply follows the instructions

that the program displays.

Due to the varLety of ways in which a region can be

defined or in which a problem can be worded the program must

be versatile. The program prompts the user in such a way as

to sAicit the necessary information about the region

regardless of how the problem is stated. As mentioned

previously the program is written to handle the types of

problems found in calculus text books. These problems are

generally well defined such that the program has no difficulty

in determining the region of interest. On the other hand it

is quite possible to contrive problems which are not well

defined and for which the program is unable to determine the

region. An example of this type is when there is not enough

information provided. It is also possible to have a problem

which is seemingly well defined for which the program does not

work. An example of this type of problem is in cartesian

coordinates when the functions intersect and do not define a

single unique region. For instance the functions y=12-x 2,

y=x and y=O intersect to form three separate regions (see

Figure 1, page 5).

If such a problem is entered, the program produces either

no output, bad output, or an error message. There is still a

way in which the program can be used to solve these problems.

For problems given in cartesian coordinates there is a

cartesian plot-only option. If this option is selected the

4

user can input all the functions for specified ranges of the

variables. The functions will then be displayed and the plot

can be used to estimate the limits of integration. With the

estimated limits of integration obtained from the plot of the

functions the user can run the program again with this new

information. This plot-only option can be used also if the

user just wants to see what a particular function looks like.

1
2-12 - x .

S8
// \

-V2 \4

-4

Figure 1

In general the program does not have any difficulty with

the plots of the functions given in polar coordinates. If the

limits of integration are not known in advance the program

plots the polar functions from Q=O to Q=2w radians where Q

represents the polar angle theta. For the two options,

finding the area between a polar curve and the origin and

finding the area between two polar curves, this feature acts

as a plot-only option. The values of Q for which the polar

functions intersect are displayed when finding the area

between two curves. The values of Q for which the polar

function is equal to zero are displayed when finding the area

between a polar curve and the origin.

5

However if the user only w~nts to plot the polar functions

without solving the integral problem, he can, both for

plotting the area between a polar curve and the origin and for

plotting the area between two polar curves.

6

II. MOTIVATION

Integral calculus has a wide variety of applications in

mathematics, physics, engineering, economics, medicine, and

other fields. Integrals are used, for example, to compute

areas, volumes, lengths of curves, forces of fluids, work,

weight, centers of gravity, and probabilities, and to

determine functions from their rates of change. In these many

applications often the most difficult part is in properly

setting up the integrals to be evaluated. More exactly the

difficulty lies in determining the limits of integration for

these integrals.

Let R denote the region in the xy-plane that is bounded on

the top by the graph y=f(x) and on the bottom by the graph

y=g(x) and that extends from x=a on the left to x=b on the

right. Double integrals over R may be expressed as iterated

integrals by the formula

f h(xy)dA f Ix=b [.y=f(x)h(xy)dy]dx.

R x=a y=g(x)

To evaluate the iterative integral we start at the innermost

integral and work toward the outside.

The most difficulty with evaluating two-dimensional

integrals given in cartesian coordinates is in determining

g(x), f(x), a, and b which are limits of integration. The

region R may have either changing upper or lower boundaries in

7

which case the region R is composed of subregions. The double

integral over R then becomes equal to the summation of double

integrals, that are over each of the subregions. Then for

each subregion the limits of integration must be determined.

This situation is more complicated, making determining the

limits of integration difficult.

The focus of this thesis is teaching how to find the

limits. As such, all the two-dimensional integral problems in

this thesis are to find the area of a given region. That is

h(x,y)=l and so we have for integrals given in cartesian

coordinates

x=b ly=f ()

Area= f_ [f dyI dx. (2)
x=a I y=g (x)

After evaluating the innermost integral the equation becomes

x=b
Area= f [f(x)-g(x)]dx. (3)

x=a

The functions y=f(x) and y=g(x) can be found by graphing

the given functions. If the left limit, x=a, and the right

limit, x=b, are not known they are determined analytically.

The functions y=f(x) and y=g(x) are equated and solved for x.

Similarly in polar coordinates we have

Area= ff rdA = f Q=b[f r=r2(") rdr] dQ (4)
R Q=a r=rl(Q)

8

where both rl and r2 are functions of Q. For finding the

area between a polar curve and the origin, rl=O and we have

_Q=b r=r2 (Q)
Area= [f rdr J dQ. (5)

Q=a 0

If we evaluate the innermost integral we get

Area = Q=a I r22 dQ. (6)

For finding the area between two polar curves we evaluate

the innermost integral in equation (4) above to get

Q=b 2 2

Area= fQ=a j [r2 - rl] dQ. (7)

Again the most difficulty with two-dimensional integrals

given in polar coordinates is setting up the integrals. More

specifically the difficulty is in determining the elements a,

b, rl, and r2 which are the limits of integration. In polar

coordinate integral problems the graphs of the polar curves

are used to find the limits of integration. In finding the

area between a polar curve and the origin the limits a and b

(if not known) are determined by solving the equation r2=0 for

r. In finding the area between two polar curves the limits a

and b (if not known) are determined by equating rl and r2 and

solving for r.

9

The calculus student must do numerous example problems in

order to become proficient and confident in properly setting

up an integral. The more problems a student sees and does,

the more confident the student becomes. This package provides

numerous worked solutions to problems. The program provides

the solutions to as many integral problems as the student may

wish to work. The program can be used with whatever calculus

textbook the student may be using.

The program gives solutions that include not only the

numerical area, but also the graph of the region and the

limits of integration. The students then can use this

information to identify their problem areas. The students may

find that they are getting the right limits of integration

when they work the problems but that their solutions are not

correct. Then it is likely that they are making mistakes when

evaluating the integral. In this case the students see that

they should review their integration techniques. They may be

finding incorrect limits of integration. Then the graph of

the region may be helpful in determining where the errors are

being made. At any rate the program provides a great deal of

useful information. Most textbooks provide just the value of

the integral.

The lab book contains numerous worked out example

problems. It will complement the few worked problems that are

likely to be found in most textbooks. The fact that the

package is adaptable to any calculus textbook is very useful.

10

The simple-to-use program gives the students an extremely

efficient and effective way of learning how to find limits of

integration. The use of mathematical software can also make

learning calculus more enjoyable. Typically students are

first introduced to mathematical software in a higher level

course. By using this package in their calculus instruction

the students are introduced to mathematical software early

during their education. In this age of computers this becomes

more and more important all the time.

At the Naval Postgraduate School there is currently no

introduction to mathematical software included in the syllabus

for the instruction of calculus. While it is true that the

textbook being used references numerous examples and applica-

tions of different mathematical software, typically no use of

mathematical software is included in the course instruction.

By introducing mathematical software in the instruction of

calculus the students can be exposed to some of the very

powerful uses and applications of mathematical software. With

the students' introduction to mathematical software in their

calculus instruction via this package a major step is being

taken in changing current methods of instruction. This

package could be used at the United States Military Academy as

well as other colleges and universities.

11

III. USE OF PACKAGE IN CALCULUS INSTRUCTION

This section addresses incorporating the integral package

into the calculus instruction on two-dimensional integrals.

The integral package is not intended to be used by itself to

teach the calculus student how to find limits of integration

and calculate two-dimensional integrals. Rather it should

complement the classroom instruction and the homework problems

on this topic.

The package should be introduced to the students after

they have received the classroom instruction on two-

dimensional integrals given in cartesian coordinates. The

students should also first attempt to work a number of

assigned homework problems that require finding the area of a

region given in cartesian coordinates. After the students see

the solutions to these problems, they could be shown the

package.

The ideal way to introduce the package is in a computer

lab in which all students can have hands-on use at a terminal.

The instructor could either talk the students through turning

on Mathematica, loading the package and using it or let the

students simply follow the instructions in the tutorial found

in Appendix B. At this point in the calculus instruction the

students would only be ready for the first example problem in

the tutorial. In this problem the students would use the

12

program to find the area of a region given in cartesian

coordinates.

The instructor could have other problems for the students

to solve. These could be problems given in cartesian

coordinates which come directly out of the calculus textbook

being used. The greater variety of problems which the

students solve using the program will demonstrate the

program's many capabilities to solve integral problems given

in cartesian coordinates.

Once the students are shown how to use the integral

program part of the package they should be introduced to the

lab book which contains numerous worked problems. These

problems show the students step-by-step how to find the limits

of integration and evaluate the integral. These example

problems will supplement the examples worked in the classroom

instruction and those found in the calculus textbook being

used. These detailed solutions will further reinforce the

procedures established in the classroom for finding the limits

of integration and setting up the proper integrals.

The students at this point would not have received any

classroom instruction on integrals involving polar

coordinates. As such the students should only be told of the

program's ability to handle such integral problems. The

students should first be taught how to graph in polar

coordinates. Once the students have received this classroom

instruction on graphing and on integrals in polar coordinates

13

and had the opportunity to work some of these problems they

should be shown the polar coordinate capabilities of the

integral program. For polar coordinates the students should

be shown how the program can find the area between a polar

curve and the origin or to find the area between two polar

curves. Again the tutorial is best suited for this, with one

example of each of these problems.

For all integral problems the student should first work

the problems without the use of the program. The program

should be used by the students to check their work and to

identify any errors. All solutions given by the program

include the plot of the functions and the region. The

students can then see graphically presented the limits of

integration.

It is important that the student always first attempt to

do the problems on their own. The program is not intended to

do the student's homework but rather it is to assist the

student in learning. The goal is that the students can, by

themselves, find the limits of integration regardless how a

problem is presented. The program is an educational aid and

should be used as such. This integral package properly

incorporated into the calculus instruction can make learning

to find limits of integration for two-dimensional integrals

easier and fun. This integral package complements the

classroom instruction on finding the limits of integration for

two-dimensional integrals.

14

IV. WHY MATERMATICA

While there are many types of mathematical software'that

I could have used, I selected Kathematica. Since I have not

used any other mathematical software extensively I am unable

to comment on the relative advantages or disadvantages of one

software over another. One of my primary reasons for

selecting Kathezatica is its availability at both the Naval

Postgraduate School and the United States Military Academy.

Mathematica also had a number of important attributes

which lead me to select it. One such attribute of the

software is its sophisticated graphing capabilities.

Producing quality plots was essential to the package.

Mathematica enabled me to use a variety of graphing

capabilities and options. Not only did they plot the

functions but also provided necessary information about the

regions. This information was used to find limits of

integration, determine upper and lower curves, left and right

curves, or inner and outer curves, and finally the area of the

region.

A second attribute of the software was its programming

capability. Mathematica has an excellent pattern matching

feature which was used extensively. I also found it easy to

15

program and debug in Mathbaatica. With Professor David

Canright's expertise in Mathenatica which was quite

accessible, I felt confident in using it.

Another advantage or rather attribute of Mathematica is

the ability for students to use the package and other

Mathematica capabilities at the same time. In using

Mathematica I was also able to take advantage of many of

Mathematica's built-in functions.

Those platforms that support the program are IBM

compatible personal computers with the Windows environment,

the Unix workstation with X-Windows, and Macintosh computers.

The program operation described herein is with the notebook

interface and the Windows version of Mathematica. The details

differ for the non-notebook interface found with the Unix

version of Mathematica.

16

V. STRUCTURE OF THE PROGRIX

The integral program is organized into ten Mathematics

packages which have nine major subprograms and numerous other

defined functions. A package is simply a file containing

Mathematica definitions. To access the functions defined in

the packages, the packages must first be loaded. The file

named integral.ma is at the core of the integral program.

This file connects the ten files together along with the

functions defined within them. When integral.ma is loaded it

in turns loads all the other files which make up the program.

The program is started by calling the subprogram graph,

found in file integral.ma. The rest of the program is built

around subprogram graph which calls up the other subprograms.

After the program is invoked subprogram graph prompts the user

to respond to various instructions. It is in this manner in

which different options are selected. Depending on which

options are selected the appropriate subprograms are called

(see Figure 2 on next page).

17

Program Architecture

Subprogram
graph

To display a graph that 1 _____23
is in the lab book type Subprogram
in the example number, examples
otherwise type n.

n iSubprogram

To just cartplot
Type 1 for cartesian plot curve
coordinate system, 1 type y,
or type 2 for polar otherwise

coordinate system. type n. n SubprogramI I cart I
21

n To just plot curves type Subprogram
y, otherwise type n.

1 1 Subprogram1
Type 1 for plot of area polplotl
between the origin and a
polar curve, or type 2
for plot of area between
two polar curves. 2 Subprogram

polplot2

_______ Subprogram
Type 1 for the area polarl
between the origin and
a polar curve, or type 2
for the area between
two polar curves. 2 Subprogram

polar2

Figure 2

18

If the user desires to see the plot of the region for any

of the example problems in Appendix B, subprogram graph calls

subprogram examples (found in file examples-ma). If the user

just wants to plot a set of curves given in cartesian

coordinates subprogram graph calls up subprogram cartplot

(found in file cartplot.ma). If the user has a cartesian

coordinate problem to solve subprogram graph calls subprogram

cart (found in file cart.ma). The regions in these types of

problems must be given as functions of the independent

variable x. The integration is then with respect to x. For

problems given in cartesian coordinates subprogram cart calls

up subprogram inverse (found in file inverse.ma). Subprogram

inverse solves the problem by integrating over the region with

respect to the variable y. Subprogram inverse first

determines if integration with respect to the variable y is

appropriate. If the functions are invertible the user is

then asked if he desires to integrate the same problem with

respect to the variable y.

If the user wants just a plot of the area between the

origin and a polar curve, subprogram graph calls subprogram

polplotl (found in file polplotl.ma). If the user wants just

a plot of the area between two polar curves, subprogram graph

calls subprogram polplot2 (found in file polplot2.ma).

If the problem is to find the area between a polar curve and

the origin, subprogram graph calls subprogram polarl (found

19

in file polarl.sa). If the problem is to find the area

between two polar curves, subprogram graph calls subprogram

polar2 (found in file polar2.ma).

Many of the example problems in Appendix B have regions

which are shaded. File shades.ma contains the Mathematica

definitions which produce the different shades for those

example problems.

20

VI. SUBPROGRAM GRAPH

Subprogram graph is the main branch of the program.

Depending upon the type of integral problem or option selected

subprogram graph calls the appropriate subprograms.

After the program is started the first prompt says:

To display a graph that is in the lab book type in the

example number, otherwise type n.

The user can type a number from 1 to 23 to call up subprogram

examples. Subprogram examples displays the graph which

corresponds to that number example problem found in the lab

book.

If the user does not select this option the next prompt

appears:

Type I for cartesian coordinate system, or type 2 for

polar coordinate system.

If the user types 1 for cartesian coordinate system the

following prompt appears:

To just plot curves type y, otherwise type n.

If the user types y, subprogram graph calls up subprogram

cartplot which is the cartesian plot-only option. Otherwise

if the user types n, subprogram graph calls ups subprogram

cart which solves those problems given in cartesian

coordinates.

21

If when the user sees the prompt:

Type I for cartesian coordinate system, or type 2 for

polar coordinate system.

He types 2 for polar coordinate system, the following prompt

appears:

To just plot curves type y, otherwise type n.

If the user types y to select the polar plot-only option he

then sees the next prompt:

Type I for plot of area between the origin and a polar

curve, or type 2 for plot of area between two polar

curves.

If the user types 1, subprogram graph calls up subprogram

polplotl which allows the user to graph the area between a

polar curve and the origin. Otherwise if the user types 2,

subprogram graph calls up subprogram polplot2 which allows the

user to graph the area between two polar curves.

If the polar plot-only option is not selected the user

sees the following prompt:

Type I for area between the origin and a polar curve, or

type 2 for area between two polar curves.

If the user types 1, subprogram graph calls up subprogram

polarl which finds the area bounded by a polar curve and the

origin. Otherwise if the user types 2, subprogram graph calls

up subprogram polar2 which finds the area between two polar

curves.

22

VII. SUBPROGRAM CART

Subprogran cart solves those problems given in cartesian

coordinates. Subprogqra graph calls up subprogram cart when

the user indicates he wants to solve a problem given in

cartesian coordinates. Subprogram cart can be used by itself

without invoking the main program. In order to use this

stand-alone option the user types cart and then activates the

cell. The tutorial covers the many ways in which the cell can

be activated.

Regardless how subprogram cart is called, the subprogram

attempts to solicit all known information. The user is first

told to enter the functions defining the region. These

functions must be functions of the independent variable x.

After the functions have been entered the user is told to

indicate if any of the limits of integration is known. If the

user indicates yes he is then prompted to input those known

limits. The subprogram then includes the functions x=(left

limit) and x=(right limit) as appropriate, to those functions

of x already entered. If the left limit is not known and the

right limit is either not known or greater than zero, the user

is told to indicate if the region is restricted to the right

half plane. If the right limit is not known and the left

limit is either not known or less than zero, the user is told

to indicate if the region is restricted to the left half

23

plane. In some problems the functions will intersect and form

a region in the right half plane and one in the left half

plane. The subprogram must know which region to consider. An

example of this type of problem is the intersection of the

functions y=12-x 2 , y=x and y=O (see Figure 1 on page 5).

Once all this information is obtained, the subprogram is

ready to solve the problem. It first obtains all the points

of intersection for each of the curves and lines segments.

For all pairs of equations it does this by simultaneously

solving two equations with two unknowns, using Nathematica's

NSolve function. The transcendental functions defined in the

program are Taylor series expansions. When equations contain

transcendental functions the subprogram uses these Taylor

series expansions to find the approximate points of

intersection. These approximations are then used as starting

points in Mathematica's FindRaoots function to find the points

of intersection. FindRoots uses Newton's method to solve for

these values.

Subprogram cart uses the x coordinates of the points of

intersection, for each function entered by the user, to define

the right and left l.nits for the curve. If these x

coordinates are the same value the subprogram knows that the

points of intersection, for the entered function, form a

vertical line segment. In order for the program to solve a

problem each curve must have just two endpoints.

24

If there are fewer than two endpoints, the functions do

not bound a closed region. If there are more than two points

of intersection, the functions intersect to form more than one

region. In the latter case, the subprogram is unable to solve

the problem correctly.

Consider the example where the lines y=x and y=5x are the

only two functions entered. These functions intersect only at

the point whose coordinates are (0,0). The program then

determines only one endpoint (i.e., the point (0,0)) for each

function. These two functions by themselves, do not bound a

closed region and the program does not have enough informa-

tion.

Now consider the example where the functions are y=x, y=0

and y=12-x 2 . The points of intersection, and thus the

endpoints that the program determines, for the function y=x

are: (-4,-4), (0,0), (3,3). Those for the function y=0 are:

(-3.464,0), (0,0), (3.464,0) while those for the function

y=12-x 2 are: (-4,-4), (-3.464,0), (3,3), (3.464,0). Each of

the functions has more than two endpoints and they intersect

to form three separate regions (see Figure 1 on page 5).

If however the user indicates that the region is

restricted to the right half plane the program discards those

points of intersection which are in the left half plane.

Similarly if the user indicates that the region is restricted

to the left half plane the program discards those points of

intersection which are in the right half plane.

25

once the subprogram knows all the curves and their

endpoints, Xathýatica's Plot function samples the functions

and determines the points which define each curve. Each curve

and each line segment is then represented by a set of (x,y)

points. While only the endpoints are needed here, the list of

(x,y) points are formed to be used later in subpi..ram

inverse. The x coordinates of the points of intersection for

all the curves are taken to form a sorted list of points.

Each adjacent pair of points in this list are the limits of

integration for a subregion of the total region formed by the

intersection of the functions.

Subprogram cart can find the area of a region bounded by

two curves that intersect at two different points. In this

case the user enters the two functions of the independent

variable x and then indicates that no limits are known. An

example of this type of problem is the region bounded by the

two curves y=x3 + 1 and y=x2 + x (see Figure 3 on page 27).

Subprogram cart can find the area of the region bounded by two

curves that intersect at one point and by a line segment

perpendicular to the x-axis. In this case the user enters the

two functions of the independent variable x, indicates that a

limit is known and then enters that limit. An example of this

type of problem is the region bounded by the two curves y=x 2

and y=O, which intersect at the origin, and the line x=4 (see

Figure 4 on page 27). The third case is when both the right

and left limits are known. Here the user enters the two

26

functions of the independent variable x, indicates that the

limits are known and then inputs both limits. An example of

this type of problem is when the two curves are y=l and y=l-x 2

with the given limits x=1 and x=4 (see Figure 5 on page 28).

V

2 (1.2)

3/
Xi +

2
y X

+
X

(-1.0)1

Figure 3

2V X 4.2)

S -0

Figure 4

27

VX

4

-2

Figqure 5

The maximum number of functions of x that the user can

input is three. Then the maximum number of subregions which

can be formed is two. Hence the program is able to solve for

the area of a region which has changing boundaries. For

example the functions y=5x, y=x and y=cos x intersect to form

a region which consists of two subregions (see Figure 6

below). The first subregion has y=5x as its upper curve and

y=x as its lower curve. The second subregion has y=cos x as

its upper curve and y=x as its lower curve.

V = COS X08/
0.6

0 4 V XX

0. 2

02 04 06

Figure 6

28

For each set of limit points and corresponding subregion,

the subprogram determines the upper and lower curves. It does

this by selecting those curves (now represented as lists of

(x,y) points) whose largest and smallest x coordinate values

bound the average value of that subregion's two limit points.

The subprogram then uses Matheaatica's NIntegrate function to

integrate the upper curve minus the lower curve over the

limits of that subregion. The region is then plotted. The

output for each subregion includes: the limits of integra-

tion, the upper and lower curves, and the area. The area of

the total region is also provided.

In order to solve a problem, the subprogram cart must be

able to identify that region. It was mentioned previously

that the subprogram has limitations if the functions

intersect to form more than one region. The region of

interest may be such that the program can not directly solve

the problem. An example of this type of problem is again when

the functions are y=x, y=O and y=12-x 2 (see Figure 1, page 5).

Suppose that the region of interest is that region which lies

partly in the left half plane and partly in the right half

plane. For this type of problem the user would have to plot

the functions using the plot-only option (subprogram

cartplot). When the user indicates that his problem is given

in cartesian coordinates he is given the option to just plot

the functions. If this option is selected the functions are

plotted and the points where the curves intersect are provided

29

as output. From the plot of the functions and the points of

intersection the user could determine the limits for the

region of interest. The user could then use this information

and the program to solve the problem.

In the example problem above the plot (see Figure 1, page

5) shows that the upper curve for the subregion in the left

half plane is y=12-x 2 while the lower curve is y=O. For the

subregion in the right half plane the upper curve is y=12-x 2

and the lower curve is y=x. The user could treat each

subregion separately and use the program to solve for the

areas individually and then add the two areas.

The subprogram has no difficulty in solving problems in

which the functions bound a single region which lies, either

in part or whole, in the left half plane. Thus while

subprogram cart has limitations the plot-only option can be

used in conjunction with it to solve certain of these types of

problems.

30

VIII. SUBPROGRAM INVERBU

Subprogram inverse integrates those problems given in

cartesian coordinates with respect to the variable y. First,

however, the subprogram determines if it is appropriate to

integrate a problem with respect to y. It attempts to find

the inverse of each function of x that was input. If not all

the inverse functions exist subprogram inverse stops execu-

tion. If on the other hand they all exist the user is asked

if he wants to integrate the same problem with respect to y.

subprogram inverse uses Mathematicass InverseFunction to find

the inverse functions.

Subprogram inverse works similar to subprogram cart to

solve the problem. The y-values of the points of intersection

for the curves (found in subprogram cart), are limits of

integration. There can exist limits, however, that are not

any of the y-values of the points of intersection. An example

of this type of problem is when the functions are y=12-x 2 and

y=-3+x+x2 (see Figure 7 on page 32). These functions

intersect at the points (-3,3) and (2.5,5.75). The first

function is the upper curve and takes on a maximum y-value of

12. The second function is the lower curve and takes on a

minimum y-value of -3.25. Hence there are three subregions.

The limits of integration for the first region are y=-3.25 and

y=3. The limits of integration for the second region are y=3

31

and y=5.75. The limits of integration for the third region

are y=5.75 and y=12. The y-values -3.25 and 12 are limits

while they are not any of the y-values for the points of

intersection.

2
y - 12 - x

B

(2 5,5 75)
4

(-3,3)

-3 \ -1 2 3

-4 2
y--3 + x + x

Figure 7

The subprogram finds the minimum and maximum values of the

functions and includes them as limit points. In subprogram

cart all the curves are represented by lists of points. From

these lists subprogram inverse selects the minimum and maximum

values which y takes on in the curves. Once all the limits of

integration are known they are placed in a sorted list. Each

adjacent pair of points are then limits of integration of a

subregion of the total region.

For each subregion the subprogram determines the right and

left curves in the same manner in which subprogram cart finds

the upper and lower curves. Some inverse functions have a

32

positive branch and a negative branch. These functions are

identified as having a square root term involving the variable

x. Subprogram inverse checks to see if either the right curve

or left curve for a subregion has this type of inverse

function. If an inverse function is of this type, the

subprogram must determine whether it is the positive or the

negative branch.

If it is the negative branch, the subprogram calls

routine negbranch, which transforms the inverse function. The

term in the inverse function involving the square root is then

replaced with the negative of that term. For example consider

the region bounded by the functions y=O, y=-4+x2 and x=-4 (see

Figure 8 on page 34). The inverse of y=-4+x 2 is x= y-+-.

When the region is integrated with respect to y the right

curve is x=/ y+4 and the left curve is x=-4. But the right

curve is a negative branch so we have x=-,/-y4 as the right

curve. In the calculation of the integral the integrand is

the right curve minus the left curve, or (-!-)(-4)=

-f-y-+4.

If the right curve for a subregion is the same as the

left curve, the subprogram calls another routine bothbranches.

This routine works similar to the routine negbranch. It

insures that the region integrated over is the positive branch

minus the negative branch (or twice the positive branch). For

33

y - y

4 x2

V - -4 +÷

Figure a

example consider the region bounded by the functions y=x2 and

y=4 (see Figure 9 on page 35). The inverse function of y=x2

is x=--y. But in this problem the right curve is the positive

branch and the left curve is the negative branch. Therefore

the integrand is f - (-/-x) = 2 I-x, which is the right

curve minus the left curve.

The area of the subregions are then found using

Mathematica's NIntegrate function. The output for each

subregion includes: the limits of integration, the left and

right curves, and the area. The area of the total region is

also provided.

Subprogram inverse as mentioned previously works only when

all inverse functions exist. Also stated was that it only

integrates with respect to the variable y when it is

appropriate to do so. There are functions whose inverse

exists but which are complicated functions to integrate

34

V

V- 4

3

-2 -1 1 2

Figure 9

(Mathomatica has no problem but the calculus student might).

For those problems involving transcendental functions the

subprogram will not integrate with respect to y, even if such

integration is possible. Integration with respect to the

variable y is supposed to save the calculus student time.

Usually the inverse of a function containing transcendental

functions is complicated and more difficult to integrate.

35

IX. SUBPROGRAM CARTPLOT

Subprogram cartplot is an option which allows the user to

graph functions given in cartesian coordinates. After the

user indicates that a problem is given in cartesian

coordinates, subprogram graph asks if the user just wants to

plot the functions. If the user selects this option sub-

program graph calls up subprogram cartplot. The user first

enters all functions of the independent variable x and then

those lines perpendicular to the x-axis. The user enters the

ranges for both the independent variable x, and the dependent

variable y. The functions are then plotted and the points

where the curves intersect are given.

This plot-only option can be used to estimate the coordin-

ates of where the functions intersect and thus the limits of

integration. There is no limit on the number of functions

which can be plotted on one graph with this option. A single

function can be plotted if desired. Subprogram cartplot uses

Mathematica's Plot function to plot all graphs.

Subprogram cartplot can be used by itself without invoking

the main program. This is valuable in saving time if the user

just wants to plot several graphs. In order to use this

stand-alone option the user types cartplot and then activates

the cell. The tutorial covers the many ways in which the cell

can be activated.

36

Regardless how subprogram oartplot is called the first

prompt the user sees is:

To just plot curves type y, otherwise type a.

Suppose the user wants to plot the functions y=x, y=O and

y=12-x 2 . The user types y to select the plot-only option.

The next message the user sees is:

Enter the curves, one at a time. When finished type n.

y =

The user then types z and presses Enter to input the first

function. The above message appears again and the user then

types 0 and presses Enter to input the second function. Once

again the above message appears and the user inputs the last

function by typing 12-z 2 and pressing Enter. The above

message appears again and this time the user types n and

presses Enter to indicate that he is finished.

The user then sees the message:

Enter lines perpendicular to the z-axis. When finished

type n.

Since there are none the user types n. If there were lines to

enter they would have been entered one at a time as the

functions of the independent variable x were entered above.

The user then sees the message:

Enter lower limit for z-range of plot.

The user must guess what this value is as well as the upper

limit for the x-range and both the lower and upper limits for

the y-range. Suppose the user knows these values. For

37

example, to enter the lower limit for the x-range he then

types -5 and presses Enter. The user then sees the message:

Enter upper limit for x-range of plot.

He types S and presses Enter and sees the message:

Enter lower limit for y-range of plot.

He types -5 and presses Enter and sees the message:

Enter upper limit for y-range of plot.

He types 12 and the plot is displayed along with the points

where the curves intersect (see Figure 10 below). After the

plot is displayed the user may want to change the x or y range

of the plot. To do this the user must call up subprogram

cartplot again and enter all the information.

2 S- ~-2

The points where the curves intersect are:

((-4.,-4.), (-3.464,0.), (0.,0.), (3.,3.), (3.464,0))

Figure 10

38

X. SUBPROGRAM POLARI

subprogram polarl finds the area bounded by a polar curve

and the origin. Subprogram graph calls up subprogram polarl

when the user indicates the problem is to find the area

between the origin and a polar curve. Subprogram polari can

be used by itself without invoking the main program. In order

to use this stand-alone option the user types polarl and then

activates the cell.

Regardless how subprogram polar is called, the user first

enters the polar curve r, which bounds the region. The polar

curve must be a function of the independent variable Q

representing the polar angle theta. The subprogram asks the

user if the limits of integration are known and then to enter

them, if they are known. For those problems in which the

limits are known in advance the subprogram then graphs the

region and solves the problem. The subprogram uses Math*-

matica's PolarPlot function to produce all plots. The output

includes the limits of integration, the polar curve and the

area bounded by the curve.

A polar curve may be negative for certain ranges of the

independent variable Q. For example the polar curve r=sin3Q

takes on negative values in the range Q=v/3 to Q=2w/3. A

polar curve may also be undefined for certain ranges of the

independent variable Q (i.e., when equal to the square root of

39

a negative number). The polar curve r=J cos 2Q is defined

only for Q between Q=-w/4 and Q=w/4 and for Q between Q=3w/4

and Q=5w/4 (see Figure 11 below).

y

-05

-o S

Fiquro 12.

The subprogram determines for which values of Q the

function r is equal to zero. It uses Mathematiea's Naolve

function to do this. For all regions between these values of

Q (where r=0) and the values of Q entered as limits, the

function r must be positive, negative, or undefined. The

subprogram determines the case for each such region.

When the function r is defined for a region the subprogram

uses Mathematica's NIntegrate function to find the area of

that-region. The limits of integration are those values of Q

which define the region. Since the problem is to find the

40

area between the polar curve and the origin the absolute value

of the evaluated integral is taken. Therefore a region where

the polar curve r is negative contributes positive area to the

total area between the curve and the origin. If the function

r is not defined over a region, no area is contributed.

If the user does not know the limits of integration the

polar curve is plotted for Q=O to Q=2r. The plot of the curve

is displayed along with those Q values for which the function

r is equal to zero. After a brief delay the user is told that

the polar curve is plotted from Q=O to Q=2w and is asked to

input the limits of integration. From this point on the

subprogram works exactly like it did above when the limits of

integration were known in advance.

If the area bounded by a polar curve and the origin is

made up of more than one region, the limits of integration for

all those regions are provided as output. For example the

area between the polar curve r=j cos 2Q and the origin for Q=O

to Q=3w/2 consists of two separate regions (see Figure 12 on

page 42). The limits of integration for the first region are

al=O. and bl=w/4 while the limits of integration for the

second region are a2=3r/4 and b2=5w/4. These limits are

displayed along with the graph of the region and the total

area.

41

Y

-0 S

Figure 12

The subprogram does not tell how much area is contributed

by each region. If the user wants to know this, he could

treat each region as a separate problem. The program could

then be used to determine the areas individually, one at a

time.

42

I1. SUBPROGRAM POLPLOTI

Subprogram polplotl is an option which allows the user to

graph the area between the origin and a polar curve. After

the user indicates that a problew is given in polar

coordinates, subprogran graph asks if the user just wants to

plot the functions. If the user selects this plot-only option

the program then asks the user to select the type of plot.

The choices are: (1) the plot of the area between the origin

and a polar curve, and (2) the plot of the area between two

polar curves. When the user selects (1), subprogram graph

calls up subprogram polplotl.

The user enters the polar curve which bounds the region

and then indicates if the limits are known. If the limits are

not known, the polar curve is plotted for the polar angle Q=O

to Q=2v. Those points where the polar curve is equal to zero

are displayed along with the graph. The user is then given an

option to change the limits Tý the user selects this option

the polar curve is then replotted for the new limits of the

polar angle Q, which the user enters. Subprogram polplotl

uses Mathematicas PolarPlot function to plot the graphs.

Subprogram polplotl can be used by itself without invoking

the main program. In order to use this stand-alone option the

user types polplotl and then activates the cell.

43

Regardless how subprogram polplotl is called the first

prompt the user sees is:

gnter the polar curve which bounds the region.

If the user wanted to plot the polar curve r= 1 - cos Q, he

would type I - coso(Q and press Enter. The next message the

user would see is:

If the limits are known type y, otherwise type n.

Suppose the user types n. The polar curve is then displayed

along with those points where the polar curve is equal to zero

(see Figure 13 below).

2

-2

The polar curve r is equal to zero when Q is: (0, 2 Pi)

Figure 13

44

After a brief delay the user sees the message:

The polar curve is plotted from Q=O to Q=2 Pi. If you

want to change the limits type y, otherwise type n.

Now suppose the user wants to change the lower limit to Q=w/2

and the upper limit to Q=3w/2. He types y and the next

message that appears is:

Input now lower limit.

The user types pi/2 and presses Enter. The next message

that appears is:

Input new upper limit.

The user types 3 pi/2 and presses Enter. The plot of the

polar curve is then displayed for the new range of the polar

angle Q (see Figure 14 below).

y

Figure 14

45

XII. SUBPROGRAM POLAR2

Subprogram polar2 finds the area between two polar curves.

Subprogram graph calls up subprogram polar2 when the user

indicates the problem is to find the area bounded between two

polar curves. Subprogram polar2 can be used by itself without

invoking the main program. In order to use this stand-alone

option the user types polar2 and then activates the cell.

Regardless how subprogram polar2 is called, the subprogram

directs the user to enter the two polar curves. These polar

curves must be functions of the independent variable Q. After

the two polar curves have been entered the user is asked if

the limits of integration are known and to input them if

known.

The program determines those values of Q where the curves

intersect. The functions which define the curves are

represented as Taylor Series expansions. The subprogram uses

Mathematica,s NRoots function to obtain the approximate values

of Q for which the curves intersect. These values are then

used as starting points in Xathematica's FindRoot function.

This function uses Newton's Method to find the points of

intersection.

If the limits are not known the subprogram then plots the

two polar curves for Q=O to Q=2r. All plots are produced

using Mathematica's PolarPlot function, The values of Q for

46

which the two polar curves intersect are also provided.

After a brief delay the user is told that the curves are

plotted for Q=O to Q=2v. The subprogram asks the user if he

wants to change these limits. If the user desires he can then

input the new limits. If the limits of integration are known

and inputted iritially, the program plots the two polar curves

over this region.

Once the limits are entered the subprogram calls up a

number of routines which check for certain types of

conditions. Routine negoheck determines if the polar curves

are negative. The user is told if one or more of the curves

are negative in the range Q=lower limit to Q=upper limit. The

user is also told that the program does not handle this type

of problem. Routine complexchock determines the ranges of Q

for which the curves are undefined (if they are). Routine

diffcheck checks to see if the outer and inner polar curve

changes between the upper and lower limits. If the outer

curve and inner curve changes the subprogram lets the user

know this. The user is told that a point of intersection

cannot lie between the two limits. The user is then directed

to input new limits.

Once all conditions have been checked and the program

determines that the problem is well defined it calculates the

area between the two polar curves. The subprogram has two

routines which it uses to find the area. If both curves are

defined over the entire interval routine findarea2 is used.

47

This routine uses Mathematicats Nlnteqrate function to

evaluate the single integral. If hL'wever the inner curve is

undefined over certain ranges of Q the routine findareal is

used to find the area.

An example is when the outer curve is the circle r=l and

the inner curve is r=. cos 2Q (see Figure 15 below). Here the

inner curve is not defined for the polar angle Q=r/4 to Q=3w/4

and for Q=-3v/4 to -w/4. Routine findareal first finds the

area between the outer polar curve and the origin and then

finds the area between the inner polar curve and the origin.

The difference between these two areas is the area between the

two polar curves.

y

-0 S

Figure 15

48

The region bounded by the two polar curves is then

plotted. The output includes the limits of integration, the

outer curve, the inner curve, and the total area of the

region. The program does not provide the areas of any

subregions. If the user wanted to know this, each subregion

could be treated as a separate problem. The program could

then be used to find the area of each individual subregion,

one at a time.

49

XIII. SUBPROGRAM POLPLOT2

subprogram polplot2 is an option which allows the user to

graph the area between two polar curves. After the user

indicates that a problem is given in polar coordinates,

subprogram graph asks if the user just wants to plot the

functions. If the user selects this plot-only option the

program then asks the user to select the type of plot. The

choices are: (1) the plot of the area between the origin and

a polar curve, and (2) the plot of the area between two polar

curves. When the user selects (2), subprogram graph calls up

subprogram polplot2.

The user enters the two polar curves which bound the

region and then indicates if the limits are known. If the

limits are not known, the polar curves are plotted for the

polar angle Q=O to Q=2w. Those points where the two polar

curves intersect are displayed along with the graph. The user

is then given an option to change the limits. If the user

selects this option the polar curves are then replotted for

the new limits of the polar angle Q, which the user enters.

Subprogram polplot2 uses Mathematicals PolarPlot function to

plot the graphs.

Subprogram polplot2 can be used by itself without invoking

the main program. In order to use this stand-alone option the

user types polplot2 and then activates the cell.

50

Regardless how subprogram polplot2 is called the first

prompt the user sees is:

Enter one of the polar curves which bounds the region.

Suppose the user wanted to plot the area between the two polar

curves r= 2 and r= 1 + sin Q. To enter the first polar curve

the user would type 2 and press Enter. The next message the

user would see is:

Enter the other polar curves which bounds the region.

The user would type 1 + sin[Q] and press Enter to enter the

second polar curve. The next message the user would see is:

If the limits are known type y, otherwise type n.

Suppose the user types n. The polar curves are then displayed

along with those points where the polar curves intersect (see

Figure 16 on page 52).

After a brief delay the user sees the message:

The polar curves are plotted from Q=O to Q=2 Pi. If you

want to change the limits type y, otherwise type n.

Now suppose the user wants to change the upper limit to

Q=w. He types y and the next message that appears is:

Input new lower limit.

The user types 0 and presses Enter. The next message that

appears is:

Input new upper limit.

The user types pi and presses Enter. The plot of the two

polar curves is then displayed for the new range of the

polar angle Q (see Figure 17 on page 52).

51

V

The two polar curves intersect at Q= Pi
2

Figure 16

-2 -1i 2

-1

-2

Figure 17

52

XIV. BSUPROGRAR EXAMPLES

The file named examples.ma contains the Nathematica code

for each of the graphs found in the lab book. All of the

graphs are in a package and can be displayed by the subprogram

examples. When in the main program the first prompt says:

To display a graph that is in the lab book type the

example number, otherwise type n.

The user can then type a number from 1 to 23 to call up

subprogram examples. The subprogram then displays the graph

which corresponds to that number example problem.

There may be only limited value in displaying two-

dimensional graphs which are already in the lab book.

However, when this integral package is expanded to include the

three-dimensional case this could be a very useful option.

Mathematica has a sophisticated three-dimensional graphing

capability which uses a three-color lighting system to

illuminate three dimensional surfaces. Mathematica also has

the ability to change the point of view interactively to

explore three-dimensional graphics. For these types of

problems being able to display the graphs becomes important.

53

XV. FUNCTIONS AND NOTATION

A. FUNCTIONS

When inputting information both the program and

Mathematica are case sensitive. Some transcendental functions

are defined within the program code and must be in lower case

letters. These transcendental functions are represented as

Taylor Series expansions. They were needed to solve algebrai-

cally for where two curves intersect, using NRoots. These

approximate points were then used as starting points for

Mathenatica's FindRoot function which uses Newton's Method.

Nathenatica has its own built-in transcendental functions

which in most instances are spelled exactly the same. The

only difference is that all Mathematica functions begin with

an upper case letter.

Below are those functions which the program recognizes:

sin[x] sec(x]

cos(x] exp(x]

tan[x] ln[x]

cot(x] sqrt[x]

csc(x]

B. NOTATION

1. Brackets and Parentheses

Square brackets and parentheses are intended for

different purposes. Square brackets are used for specifying

54

arguments of functions. Parentheses are used for grouping.

Without parentheses, multiplication and division have a higher

precedence than addition and subtraction.

2. Mathenatical Symbols

The standard mathematical operations are referred to

with symbols. Those symbols used are:

Mathematical Symbol Operation

+ plus, add

minus, subtract

* times, multiply

/ divide

A power

3. Other Symbols

The symbol Q is used for theta in problems given in

polar coordinates. All trigonometric functions must be

functions of the variable Q. The program does not recognize

any other such variable. The symbol pi represents the

numerical value of the mathematical constant w.

55

XVI. FUTURE WORK

Right now the program just handles two-dimensional

problems. The package could be extended to include three-

dimensional problems. The three-dimensional case would

include problems given in cartesian as well as cylindrical and

spherical coordinate. Three-dimensional problems could also

be included in the lab book. Subprogram examples then could

display the graphs for these example problems. Matheuatica's

representation of three-dimensional plots would give the

student a feel for the depth of the region and insight into

how the surfaces intersect.

Currently there is no flexibility in defining the

dependent and independent variables for either cartesian or

polar coordinate problems. In cartesian coordinates,

functions are of the independent variable x and the dependent

variable is y. In polar coordinates the polar function r must

always be a function of the independent variable Q. The

program could be improved by allowing the user to determine

the variable names (i.e., the user may want the dependent

variable to be t).

The focus of all future work should support the intent of

the integral package, which is to teach the calculus student

how to find the limits of integration for integral problems.

56

As such, all future work should be to improve upon the

package's ability to do this.

57

APPENDIX A

LAD BOOK

I. INTRODUCTION

One of the most difficult topics in calculus is deciding

on the limits of integration. This lab book shows the

calculus student how a given domain is plotted and teaches the

student how to find the limits of integration when evaluating

two-dimensional integrals.

A. Integration

Integral calculus is the mathematics we use to find

lengths, areas, and volumes of irregular shapes and to

calculate the average values of functions. The development of

integral calculus starts from the calculation of areas.

V

y - f(x)

/.:.............
.

x

b

We can use the integral calculus to find the areas of

regions like the shaded one here.

58

3. Lab Book Organization

This package uses numerous example problems for the
two dimensional case. It considers cartesian as well as
polar coordinates. Almost all of the problems begin with a
description of a given domain over which an integral is to be
evaluated. The given domain is plotted and the way in which
the limits of integration are found is shown. Finally the
integrals are set up and evaluated.

II. CARTESIAN COORDINATE SYSTEM

A. Finding the Area under the Graph of a Nonnnegative
Continuous Function.

How to Find the Area under the Graph of a
Non-negative Continuous Function y=f(x) from a to
b.

STEP 1: Find an antiderivative F(x) of f(x).

STEP 2: Calculate F(b)-F(a). This number will be
the area under the curve from a to b.

Example 1

Find the area under the curve y=x 2 from x=O to
X=1.

2

/
/

/
/5

/
/

/

/-x

59

Solution. In this example f(x)=x2 , a=O, and b=l.
We start with a graph of the function and identify
the area of the region that lies between the curve
and the x-axis from a to b. We then find the area
in two steps.

STEP 1: Find an antiderivative F(x) of f(x)=x 2.

F(x) - -
3

STEP 2: Calculate F(1)-F(O).

(1)1 (0)3 1 1
F(1)-F(O) ..- -= - - 0 = -

3 3 3 3

The area is 1/3.

Example 2

Find the area under one arch of the curve y=cos x.

COE X

-Pi/2 Pi/2

Solution. In this example f(x)=cos x, however a and
b are not explictly given. We graph the function
and observe that it crosses the x-axis at x=-w/2 and
x=v/2. Note that cos(-w/2) =0 and cos(Ir/2) =0.
Thus we have a=-w/2 and b=w/2. We then find the
area in two steps.

60

STEP 1: Find an antiderivative F(x) of f(x)=cos x.

F(x)=sin x

STEP 2: Calculate F(-x/2)-F(w/2).

F(-w/2)-F(w/2)=sin(-w/2)-sin(w/2)=1-(-l)=2

The area is 2.

B. The Average Value of a Function

The average value of the function f on [a,b] is the
integral of f divided by the length of the integral.

Average value of f on [a,b) is - Y f(x)dx.
b-a a

If f is continuous and nonnegative on [a,b], its
average value is the height of a rectangle whose
area,

f(c) (b-a)= Yf(x)dx,

a

is the area under the graph of f from a to b.

y

* f(x)

/ T
f (c)

O c b

(b •) ---

61

Example 3

Find the average value of f(x)= V4 - X2, on
the on the interval (-2, 2].

Solution: We graph the integrand f(x) over the
interval of integration [-2, 2] and see that the
graph is a semicircle of radius 2. The area between
the semicircle and the x-axis is

1 1
Area = (-)v r 2 (-)7(2)2=2w.

2 2

Because the area is also the value of the integral
of f from x=-2 to x=2, the average value of f on
[-2, 2] is

Average value 44 -. x 2 dx=(-)2w= -.

2-(-2) -2 4 2

y 2
y4-x

-2 0 2

Example 4

Find the average value of f(x)=2x on the interval
[1,4].

Solution. We graph the integrand f(x) over the
interval of integration [1,4] and we see that the
graph of the area is a trapezoid whose base is on
the x-axis. The area of a trapezoid is

62

1 1
Area= - base(hl + h2)= -(3)(8 + 2)=15.

2 2

Because the area is also the value of the integral
of f from x=l to x=4, the average value of f on (1,
4] is

Average value= -- J 2xdx = -(15)=5.
4-1 1 3

/•(4.8)

y 2x

(1 2)

x
1 4

C. Area Between Curves

This section shows how to find the area of a region
in the coordinate plane by integratinq the functions
that define the region's boundaries.

Definition

If functions f and g are continuous and if f(x) is
greater than or equal to g(x) throughout the
interval [a,b] such that x is in [a,b], then the
area of the region between the curves y=f(x) and
y=g(x) from a to b is the integral of (f-g) from a
to b:

63

Area= Y[f(x)-g(x)]dx.

a

How to find the Area between Two Curves

1. Graph the curves together. This tells you which is f,
(upper curve) and which is g, (lower c'rve). It also
helps to find the limits of integration if you do not
already know them.

2. Find the limits of integration.

3. Write a formula for f(x)-g(x). Simplify it if you
can.

4. Integrate f(x)-g(x) from a to b. The number you get is
the area.

Example S

Find the area between the curve y=cos x and the
curve y=-sin x from x=0 to x=w/2.

Solution.

STEP 1: The graphs. We graph the curves together.
The upper curve is y=cos x, so we take f(x)=cos x
in the area formula. The lower curve is y=-sin x,
so g(x)=-sin x.

-x

V = -Sin x

64

STEP 2: The limits of integration. They are
given:

a=0 and b=w/2.

STEP 3: The formula for f(x)-g(x). From Step 1,

f(x)-g(x)=cos x - (-sin x)

=cos x + sin x

STEP 4: Integrate f(x)-g(x) from a=0 to b=w/2.

w/2 wr/2
f (cos x + sin x)dx =[sin x - cos x]
0 0

=[(l-0)-(0-l)]=2

The area between the curves is 2.

Example 6

Find the area between the curves y=l and y=l-x"2

for x=l to x=4.

Solution.

STEP 1: The graphs. We graph the curves together.
The upper curve is y=l, so f(x)=l. The lower curve

is y=1-x", so g(x)=l-x 2 .

V

V=
65

y- 1 -x

65

STEP 2: The limits of integration. The limits of
integration are given: a=l and b=4.

STEP 3: The formula for f(x)-g(x).

f(x)-g(x)=1-(l-x.
2) =x 2

STEP 4: Integrate.

A r e a = [?f(x) - g (x l ld x = I x " d x _ - (- - -) = -

a x 1 4 1 4

The area of the region is 3/4.

D. Curves that Cross

When a region is determined by curves that cross,
the crossing points give the limits of integration.

Example 7

Find the area of the region enclosed by the
parabola y=2-x 2 and the line y=-x.

Solution.

STEP 1: The graphs. We graph the curves together.

The upper curve is y=2-x 2 , so f(x)=2-x 2 . The lower
curve is y=-x, so g(x)=-x. The x-coordinates of the
points where the parabola and line cross are the
limits of integration. We find them in Step 2.

2

(-1.1)
x

V = -x

-2

(2.-2)

66

STEP 2: The limits of integration. We find the
limits of integration by solving the equations
y=2-x 2 and y--x simultaneously for x:

2-x2=-X (Equate f(x) and g(x))

x2 -x-2=0 (Transpose)

(x+l) (x-2)=O (Factor)

x=-l, x=2. (Solve)

The region runs from x--1 on the left to x-2 on the

right. The limits of integration are a=-- and b=2.

STEP 3: The formula for f(x)-g(x).

f (x) -g(x) = (2-x 2)- (-x) =2+x-x2

STEP 4: Inteqrate.

Area= Y [f(x)-g(x)Jdx = (2+x-x 2)dx
a -1

X2 Xz 3 2i

= 2x + -2-
2 3 1-1

4 8 1 1
=(4 + - - -) - (-2 + - + -)

2 3 2 3

3 9 9
=6 + - = -

2 3 2

The area of the region is 9/2.

67

Example S

Find the area of the reiion enclosed by the curve

y=x 3+l and the curve y=x+x.

Solution.

STEP 1: The graphs. We graph the curves together.

The upper curve is y=x 3+l, so f(x)=3+l. The lower
curve is y=x2 +x, so g(x)=x2 +x. The x-coordinates
of the points where the curves cross are the limits
of integration. We find them in Step 2.

y

2 (1 2)

3
y-x +1

2
v'x +x

STEP 2: The limits of integration. We find the
limits by solving the equations y=x3+l and y=x 2+x
simultaneously for x:

x3+l =x 2+x (Equate f(x) and g(x))

x 3-x 2-x+l =0 (Transpose)

(x+l)(X-l) 2 =0 (Factor)

x=-l, x =I. (Solve)

The region runs from x=-I on the left to x=l on the
right. The limits of integration are a=-l and b=l.

68

STEP 3: The formula for f(x)-g(x).

f (x) -g (x) -x 3 +1- (x 2+x) =x 3 -x 2-x+i

STEP 4: Integrate.

Area= Y[f(x)-g(x))dx= f[x3-x2-x+l]dx
a -i

1 1 1 I1

=- x - -x 3•--x + 1
4 3 2 -1

= -(1)' - -i(l)3 (1 - - -(-1)~ - -(-1)2 +114 _() _(1)2+ _1(_1)l +11

4 3 2 4 3 2

1 1 1 1 1 1 4
-+1 +

4 3 2 4 3 2 3

The area of the region is 4/3.

Example 9

Find the area of the region enclosed by the
parabola y=12-x 2 and the parabola y=4+x2

Solution.

STEP 1: The graphs. We graph the curves together.
The upper curve is y=12-x 2 , so f(x)=12-x 2 . The lower
curve is y=4+x 2 , so g(x)=4+x2 . The x-coordin-ates of
the points where the two parabolas cross are the
limits of integration. We find them in Step 2.

69

2

y * 12 - x

(-2. 9) (2 8)

S"4 + x

STEP 2: The limits of integration. We find the
limits by solving the equations y=12-x 2 and y=4+x 2

simultaneously for x:

4+x 2 = 12-x 2 (Equate f(x) and g(x))

2x 2 = 8 (Transpose)

X2 = 4 (Divide by 2)

x=2, x=-2. (Solve)

The region runs from x=-2 on the left to x=2 on the
right. The limits of integration are a=-2 and b=2.

STEP 3: The formula for f(x)-g(x).

f (x) -g (x) =12-x 2- (4+x 2) =8-2x 2

STEP 4: Integrate.

Area= Y[f(x)-g(x)]dx = [8-2x2]dx

a -2

70

a 2 12

3 -2

2 2 62
=[81(2) - -(2)3] - [8(-2) - -(-2)3]= -

3 3 3

The arei of the region is 62/3.

3. Boundaries with Changing Formulas

If the formula for one of the bounding curves
changes at some point across the region, you may
have to add two or more integrals to find the area.

Example 10

Find the area of the region in the first quadrant
bounded above by the curve y=j-x and bounded below
by the x-axis and the line y=x-2.

Solution.

STEP 1: The graphs. We graph the curves together.
The entire upper boundary of the region consists of
the curve y=f7-x, so f(x)=f--x. The lower boundary
consists of two curves, first y=O for x=O to x=2 and
then y=x-2 for x=2 to x=4. Hence the formula for
g(x) changes from g(x)=O for x=O to x=2, to g(x)=x-2
for x=2 to x=4.

V

2
2 y .(4.2)

2

X/ /

Y70 2 4

71

STEP 2: The limits of integration. The limits of
integration for the pair f(x)=,F- and g(x)=0 are a=O
and b=2. For the pair f(x)=r-x and g(x)=x-2, the
left-hand limit is a=2 and the right- hand limit is
the x-coordinate of the upper point where the line
crosses the parabola. To find it, we solve the
equations y-=jx and y=x-2 simultaneously for x:

./-x-=x-2 (Equate f(x) and g(x))

x=(x-2) 2 =x 2 -4x+4 (Square)

x2-5x+4=0 (Transpose)

(x-l) (x-4)=O (Factor)

x=l, x=4. (Solve)

The value x=l does not satisfy the equation /-x=x-2.
It is an extraneous root introduced by squaring.
The x=4 gives our upper limit of integration.

STEP 3: The formulas for f(x)-g(x).

For x=O to x=2: f(x)-g(x)=f!-O=,-xF,

For x=2 to x=4: f(x)-g(x)=,f--(x-2)

='x-x+2.

STEP 4: Integrate. We have two integrals to
evaluate. Their sum is the area.

Area= ý[f(x)-g(x)]dx
a

= ,F- dx + j[,F--x+2]dx
0 2

2 x + 2 X 2 + 2x 4

3 0 3 2 2

72

2 3212 3/2 4)1_12 3/2 (4)?
= -(2) -(4) - - + 2(4) -(- - + 2(2)

3 3 2 2

10

3

The area of the region is 10/3.

Example 11

Find the area of the region in the first quadrant
bounded above by the curves y=x and y=2-x 2 and below
by the x-axis.

Solution.

STEP 1: The graphs. We graph the curves together.
The upper boundary consists of two curves, first

y=x for x=0 to x=l and then y=2-x 2 for x=1 to
x=./•T. Hence the formula for f(x) changes from
f(x)=xfor x=0 to x=l, to f(x)=2-x 2 for x=1 to x=,1-2.
The entire lower boundary of the region consists of
the curve y=O, so g(x)=O.

y

2
y = 2x-

y=x

y 0 1

STEP 2: The limits of integration. For the pair
f(x)=x and g(x)=0 the left-hand limit is a=0. The
right-hand limit is the x-coordinate of the upper
point where the line crosses the parabola. To find
it, we solve the equations y=x and y=2-x 2 simul-
taneously for x:

73

x=2-x 2 (Equate f(x) and g(x))

x2+x-2=0 (Transpose)

(x+2) (x-l)=0 (Factor)

x=-2, x=l. (Solve)

Since x is greater than or equal to zero in the
first quadrant we must pick x-l. The limits of
integration are a=0 and b=l. For the pair
f(x)=2-x2 and g(x)=0 the left-hand limit is 1 and
the right-hand limit is obtained by solving for
where the curve y=2-x 2 crosses the x-axis:

2-x 2=0 (Equate f(x) and g(x))

2=x2 (Transpose)

x=j-•. (Solve)

This region runs from 1 on the left to /2 on the
right. The limits of integration are a=1 and b=/-2.

STEP 3: The formulas for f(x)-g(x).

For x=O to x=l: f(x)-g(x)=x-O=x,

For x=l to x=F-2: f(x)-g(x)=2-x 2 -0=2-x 2 .

STEP 4: Integrate. We have two integrals to
evaluate. Their sum is the area.

Area= ([f(x)-g(x)]dx = xdx + -• [2-x 2]dx
a 0 1

X2 1 X
=- +2x - -

2 03 1

(1)2 (,/-2)'3()
= - + [2/-2 - -] - [2(1) - -]

2 3 3

=.719

74

Example 12

Find the area bounded by the parabola y 2 =x and the
line y=6-x.

solution.

STEP 1: The graphs. We graph the curves together.
The upper boundary consists of two curves, first
y=J-F for x=O to x=4 and then y=6-x for x=4 to
x=9. Hence the formula for f(x) changes from
f(x)=fr for x=O to x=4 to f(x)=6-x for x=4 to
x=9. The entire lower boundary of the region
consists of y=-F--x, so g(x)=-J-x.

y

\V

(9,-3)
2

STEP 2: The limits of integration. For the pair
f(x)-,/-x and g(x)=-T--x the left-hand limit is 0.
The right-hand limit is the x-coordinant of
the upper point where the line crosses the
parabola. To find it, we solve the equations
y=.-x and y=6-x simultaneously for x:

,/-x=6-x (Equate f(x) and g(x))

x=x 2-12x+36 (Square)

x2-13x+36=0 (Transpose)

(x-4) (x-9)=0 (Factor)

x=4, x=9. (Solve)

75

The upper point where the parabola and line cross
is at x=4. The limits of integration are a=0 and
b=4. For the pair f(x)=6-x and g(x)--,/-x the
left-hand limit is x=4 and the right-hand limit is
the x-coordinate of the lower point where the
parabola and line cross. We found this point when
we solved the two equations above simultaneously
for x. The right-hand limit is x=9. The limits of
integration are a=4 and b=9.

STEP 3: The formulas for f(x)-g(x).

For x=O to x=4:

For x=4 to x=9: f(x)-g(x)=6-x-(-J-x-)

=6-x+./-x -

STEP 4: Integrate. We have two integrals to
evaluate. Their sum is the area.

Area=ý(f(x)-g(x)]dx= 12,/-x dx + f (6-x+,/-x]dx
a 0 4

=14 X3/214 +
x1 2 3/2 9

- 6x - - + - x
3 0 2 3 14

4 3/2 (9)2 2 3/2 (4)2 2 3/2
=-(4) +[6(9) - - + -(9) [6(4) - - + -(9)

3 2 3 2 3

=20.833

The area of the region is 20.833.

F. Integrating with Respect to y

when a region's bounding curves are described by

giving x as a function of y, the basic formula

changes.

For regions like these,

76

y

b x

y

b = f gy)/

/z-

use the formula:

Area= Y[f(y)-g(y)]dy.

a

The only difference is that we are now integrating with

respect to y instead of x. We can sometimes save time by

doing so. The basic steps are the same as before.

Example 13

Fn the area of the region between the curves x=y 2 and
x=y+2 in the first quadrant.

solution.

STEP 1: The graphs. We graph the curves together. The
right-hand curve is X=y+2, so f (y)=y+2. The left-hand

2K

curve is x=y , so g(y)=y.

77

2
2 V " x4.2)

x

V - 2 4

STEP 2: The limits of integration. The lower limit of
integration is y=O. The upper limit is the y-coordinate
of the upper point where the line crosses the parabola.
We find it by solving the equations x=y+2 and x=y 2

simultaneously for y:

y+2=y2 (Equate f(y) and g(y))

y2+y+2=o (Transpose)

(y+l)(y-2)=O (Factor)

y=-l, y=2. (Solve)

The upper limit of integration is 2. (The value y=-l
gives the point of intersection below the x-axis.)

STEP 3: The formula for f(y)-g(y).

f(y)-g(y)=y+2-y 2

STEP 4: Integrate.

Area= ý[f(y)-g(y)]dy= f[2+y-y2]dy

a 0

y2 y3 2 4 8 10
=2y + -=- 4 + - = --

2 3 0 2 3 3

The area of the region is 10/3.

Example 14

Find the area of the region between the curves x=y
and x=T"iy in the first quadrant.

Solution.

STEP 1: The graphs. We graph the curves together. The
right-hand curve is x=2, so f(y)=f=• . The left-hand
curve is x=y, so g(y)=y.

78

2
x 2 -

x

STEP 2: The limits of integration. The lower limit of
integration is y=O. The upper limit is the y-coordinate
of the upper point where the line crosses the parabola.
We find it by solving the equations x=y and x=r-•=-
simultaneously for y:

y=1r-72--y (Equate f(y)-g(y))

y 2=2-y (Square)

y 2+y-2=0 (Transpose)

(y+2) (y-l)=0 (Factor)

y=-2, y=l. (Solve)

The upper limit of integration is 1. (The value y=-l gives
the point of intersection below the x-axis.) The limits
of integration are a=O and b=l.

STEP 3: The formula for f(y)-g(y).

f(y)-g(y)=/ 2-y - y

STEP 4: Integrate.

Area= Y[f(y)-g(y)]dy = f[4•:y- y]dy
a 0

2 3/2 y 2 11
= - -(2-y) - -

3 20

79

2 3/2 (1)' 2 1 2 3/2
=[- -(2-1) - -] - - - - + -(2) - 0=.719

3 2 3 2 3

The area of the region is .719.

Example 15

Find the area bounded by the parabola y2=x and the line
y=6-x.

Solution.

STEP 1: The graphs. We graph the curves together. The
right-hand curve is x=6-y, so f(y)=6-y. The left-hand
curve is x=y2 , so g(y)=y2 .

x 6

(9-3
ý2I x-y

STEP 2: The limits of integration. The lower limit of
integration is the y-coordinate of the lower point where
the parabola crosses the line. The upper limit is the
y-coordinate of the upper point where the parabola and the
line cross. We find these points by solving the equations
x=y 2 and x=6-y simultaneously for y:

y2=6-y (Equate f(y) and g(y))

y 2+y-6=0 (Transpose)

(y+3)(y-2)=O (Factor)

y=-3, y=2. (Solve)

The upper limit of integration is 2 while the lower limit
is -3. The limits of integration are a=-3 and b=2.

STEP 3: The formula for f(y)-g(y).

f(y)-g(y)=6-y-y'

80

STEP 4: Integrate.

Sy!y
3

Area= J[f(y)-g(y)]dy = (6-y-yl 2 dy = 6y - - - y

a -3 2 3 -3

(2)2 (2)3 (-3)2 (-3)3
=[6(2) - -.] - [6(-3)-.--

2 3 2 3

8 9
=[12 - 2 - -) - [-18 - - + 9] = 20.833

3 2

The area bounded by the curves is 20.833.

81

111. POLAR COORDINATE SYSTEM

This section shows how to calculate areas of plane
regions and lengths of curves. The general methods for
setting up the integrals are the same as for cartesian
coordinates, although the resulting formulas are somewhat
different.

A. Area in the Plane

y
B

/ brf(0)

We calculate areas of plane regions like the shaded one
above using polar coordinates.

Area Between the Origin and r=f(Q), Q between a and b:

S1
Area = - r 2 dQ.

a 2

Example 16

Find the area of the region enclosed by the cardioid
r=2(l+cosQ).

Solution.

STEP 1: The graph. We graph the cardioid and determine
that the radius OP sweeps out the region exactly once as
Q runs from 0 to 2w.

82

V
r- 2(l+cosQ)

P(rQ)

2

SQ=O.2Fi

4

-2

STEP 2: The limits of integration. The limits of

integration are a=0 and b=2W.

STEP 3: Determine the integrand.

1 1
- r' = -(4) (l+cosQ) 2 = 2(l+2cosQ+cos 2 Q)
2 2

1+cos2Q
= 2+4cosQ+2[- = 3+4cosQ+cos2Q

2

STEP 4: Integrate.

sin2Q 12i
Area=1 [3+4cosQ+cos2Q]dQ Q3Q+4sinQ+[-

0 2 0

= 6v++0=6v

The area of the region is 6r.

Example 17

Find the area of the region bounded by the rays Q=-w/4 and
Q=w/4, and the graph of the cardioid r=l+sinQ.

Solution.

STEP 1: The graph. The region is the portion of toe
cardioid swept out by the radius of length r=l+sinQ as Q
increases from Q=-w/4 to Q=-/4.

83

r I + sinQ

0--Pi/4

STEP 2: The limits of integration. The limits are given:

a=-w/4 and b=w/4.

STEP 3: Determine the integrand.

- r2 -[l+sinQ] 2
=-[l+2sinQ+sin

2Q]
2 2 2

1 1 1
-[-(+2sinQ+(- - -cos2Q)]
2 2 2

1 3 1
-[+ 2sinQ - -cos2Q]
2 2 2

3 1
-- + sinQ - -cos2Q
4 4

STEP 4: Integrate.

l~1 w/4 3 1
Area= J - r2 dQ =f [- + sinQ - -cos2Q]dQ

a 2 -w/4 4 4

=1 -Q - cosQ - 1-sin2Q w/ .928
4 8 w/

The area of the region is .928.

Example 18

Find the area inside the smaller loop of the limacon

r=2cosQ+l.

84

Solution.

STEP 1: The graph. After sketching the curve we see that
the smaller loop is traced out by the point (r,Q) as Q
increases from Q=2w/3 to Q=4w/3.

Y

r - 2 cosQ + 1

Q-2Fi/3

x

Q-4Pi/3

STEP 2: The limits of integration. Since the curve is
symmetric about the x-axis, we may calculate the area of
the shaded half of the inner loop by integrating from
Q=2w/3 to Q=w. The limits are then a=2w/3 and b=x. The
area we seek will be twice the value of the resulting
integral:

Area= 2 r 2 dQ = f r 2 dQ.
2x/3 2 2Y/3

STEP 3: Determine the integrand.

r' = (2cosQ + 1)2 = 4cos 2 Q + 1

l+cos2Q
= 4[- I + 4cosQ + 1

2

= 2 + 2cos2Q + 4cosQ + 1

= 3 + 2cos2Q + 4cosQ

STEP 4: Integrate.

Area= f (3+2cos2Q+4cosQ]dQ
2x/3

85

= 3Q+Sin2Q+4sinQ

12w/3

= 3w 2jr + -
2 2

3,r-T

2

The area of the smaller loop is x - 3j'-"T/2.

Zxample 19

Find the area of the region enclosed by the graph of the
polar equation r=sin3Q.

solution.

STZP 1: The graph. When we graph the region we see that
it is a three-leaved rose.

V
Q-Pi/3

r -sin3O

Q-PI/6

Q
Q.0

86

STEP 2: Limits of integration. Since the three leaves
are congruent, and since the leaf determined by Q from Q=O
to Q=w/3 is symmetric about the ray Q=v/6, we may obtain
the area of the figure by calculating the area of the half
leaf determined by Q=O to Q=w/6 and multiplying the result
by 6. The limits of integration are a=O and b=w/6.

v/6 1
Area=6f - r 2 dQ

0 2

STEP 3: Determine the integrand.

1
6 [- r 2] - 3r 2 ' 3(sin3Q) 2

2

1 1 3 3
= 3- - -cos6Q] = - - -cos6Q

2 2 2 2

STEP 4: Integrate.

r/6 3 3 3 1 7/6 =
Area= f [- - -cos6Q]dQ = -Q - -sin6Q

0 2 2 2 4 0 4

The area of the region is w/4.

Example 20

Find the area of the region enclosed by the lemniscate r 2

=cos2Q.

Solution.

STEP 1: The graph. By extracting square roots on both
sides of the equation we obtain r=/ cos2Q and we graph the
figure. V

Q=b r2-

I,2

// ri 2

/1. --'
-..-

Q~
/

87

STEP 2: The limits of integration. We note that the
function r is defined only for Q between Q=-w/4 and Q=w/4
and for Q between Q=3w/4 and Q=-w/4. As Q ranges through
these two intervals the two lobes of the lemniscate are
traced out. The rays Q=-w/4 and Q=w/4 determine half the
area of the lemniscate. We may therefore integrate from
Q=-w/4 to Q=w/4 to obtain the area of one lobe and double
the result. The limits are then a=-w/4 and b=w/4.

STEP 3: Determine the integrand.

r 2 = cos2Q

STEP 4: Integerate.

r/4 1 r/4
Area= T cos2QdQ = -sin2Q = 1

-w/4 2 I-v/4

The area of the region is 1.

B. Area of Region which lies Between two Polar Curves

y

2
r - cos2Q

3Pi/4 P1/4

//

SPi/4 -Pi/4

To find the area of a region which lies between two polar
curves from Q=a to Q=b, we subtract the integral of
(1/2)r12 dQ from the integral of (1/2)r22 dQ. This leads
to the following formula.

Area of the Region: rl(Q) less than or equal to r and r
less than or equal to r2(Q), Q from Q=a to Q=b

88

= 1 • 1 b 1
Area= - r2 2 dQ - - r12 dQ = f -(r22 -rl 2)dQ.

a 2 a 2 a 2

EZxaple 21

Find the area of the region that lies inside the circle
r=l and outside the cardiod r=l-cosQ.

Solution.

STEP 1: The graphs. We sketch the region to determine
its boundaries and find the limits of integration. The
outer curve is r2=l, and the inner curve is rl=1-cosQ.

V

r I 1Q=Px/2

r 2 = 1

Q--P ,'2

STEP 2: Limits of integration. We see that Q runs from
-w/2 to x/2. Because of symmetry we find the area for Q=O
to Q=v/2. The limits of integration are a=-*/2 and b=x/2.

x/2 1 r/2 1
Area= -(r2 2 -rl 2)dQ = 2 f -(r2 2 -rl 2)dQ

-w/2 2 0 2

f (r22 - r1 2)dQ
0

STEP 3: Determine the integrand.

r2 2-rl 2 = 1-(l-2cosQ+cos 2Q) = 2cosQ-cos 2Q

89

cos2Q+l

= 2cosQ -
2

STEP 4: Integrate.

r/2 cos2Q+l
Area= f[2cosQ -]dQ

0 2

sin2Q Q 1/2 iw
= 2sinQ -- -- 2 --

4 20 4

The area of the region is 2 - w/4.

Example 22

Find the area of the region lying inside the circle
r=3cosQ and outside the cardioid r=l+cosQ.

Solution.

STEP 1: The graphs. We sketch the graphs of the two
equations r2=3cosQ and rl=l+cosQ.

y

Q=Pi/3
/ r2 -3cosQ

rl = I + cosQ
Q=-Pi/3

STEP 2: The limits of integration. By solving the two
equations simultaneously, we find the point of inter-
section:

90

3cosQ=l+cosQ (Equate rl and r2)

2cosQ-l (Transpose)

1
cosQ=- (Divide)

2

Q=w/3, Q=-w/3. (Solve)

The limits of integration are a=-w/3 and b=w/3.

STEP 3: Determine the integrand.

1 1
-(r2- r1 2) = -[(3cosQ) 2 - (1 + cosQ) 2]
2 2

1
= -[9cos 2Q -(1 + 2cosQ + cos 2Q)]

2

1
= -(8cos 2Q - 1 - 2cosQ]

2

1
= 4cos 2Q - - - cosQ

2

1 1 1
= 4[- + -cos2Q] - - - cosQ

2 2 2

1
= 2 + 2cos2Q - - - cosQ

2

3
= - + 2cos2Q - cosQ

2

STEP 4: Integrate.

7/3 3
Area= [- + 2cos2Q - cosQ]dQ

-w/3 2

3 7r/3
-Q + sin2Q - sinQ =Pi
2 -7/3

91

The area of the region is w.

C. The Length of a Curve

We calculate the length of a curve r=f(Q), Q from a to b
by expressing the differential ds=./-(dx" +dy2) in terms of
Q and integrating from a to b.

If r=f(Q) has a continuous first derivative for Q from a
to b and if the point P(r,Q) traces the curve r=f(Q)
exactly once as Q runs from a to b, then the length of the
curve is given by:

dr2

Length= J r 2 + (-1 dQ.
a dQ

Example 23

Find the length of the cardioid r=l-cosQ.

Solution.

STEP 1: The graph. We sketch the cardioid to determine
the limits of integration. The point P(r,Q) starts at the
origin and traces the curve once, counterclockwise.

y

Pr.O

STEP 2: Limits of integration. We see that Q runs from

0 to 2r, so the limits of integration are a=O and b=2r.

STEP 3: Determine the integrand.

dr
r=l-cosQ, - = sinQ,

dQ

92

dr2
r2+ (-) =(l-COSQ)2 +(sinQ) 2 =1-2COSQ+COS2Q+Sin2Q

dQ

=1-2cosQ+ 1-2-2cosQ

STEP 4: Integrate.

d2

Length= J 2 + ()dQ .J! 2-2cosQ dQ
aV dQ 0

= !2(l-cosQ) dQ =JrJ (2 sin2 -)dQ
0 0 2

C4sin2 - d w=~
2 Q

0 2 0 2 0 2

I -4cos-Q2r=44=2 0

The length of the curve is 8.

93

APPENDIX B

TUTORIAL

A. INTRODUCTION

This tutorial instructs the user on how to start Mathe-

natica and how to load and use the program. The tutorial

includes three example problems that are intended to show the

user how the program works. The first example problem is an

integral problem given in cartesian coordinates. In the first

problem, the program is used to find the area of a region by

first integrating with respect to the variable x and then with

respect to the variable y. The second problem is an integral

problem given in polar coordinates. In this problem the

program finds the area between a polar curve and the origin.

The final example problem is also given in polar coordinates.

In this problem the program is used to find the area of the

region bounded by two polar curves. These three example

problems are representative problems that the program can

solve. They show some of the program's many capabilities.

The tutorial, while not comprehensive, gives the user some

idea of the types of problems the program can solve. It

demonstrates how the program prompts the user for input and

how that input is entered.

94

B. STARTING NATHZEATICA AND LOADING PROGRAX

To start Xathematica, double-click the Mathematica icon.

Mathematica documents are called Notebooks. When you start

Mathematica, an empty Notebook window appears on your screen.

As soon as you start typing, a cell is created, indicated by

a cell bracket along the right edge of the Notebook window.

Each piece of information in a Notebook is contained in a

separate cell. To load the program and start the kernel first

type: <<integral.ua.

You now must activate the cell. There are several ways to

do this. You can use the Mouse and select Evaluate Selection,

in the Action menu which appears at the top of the screen (see

Figure 18 on page 96). The three keyboard equivalents are:

1. Shift+Enter

2. Insert

3. 5 on the numeric keypad.

Once you have activated the cell you are ready to use the

program.

95

E ile _Edit Cell Graph Action Style Window
_Help L

Figure 18

96

C. EX•KPLZ I

Find the area of the region bounded by the functions y =
5x, y = x and y = 4 - x2 in the first quadrant.

* Press the down arrow to create a new cell and then type
graph.

* For this problem press the Insert key to activate the
cell.

* You will see appear the message:

To display a graph that is in the lab book type the
example number, otherwise type n.
Because you are going to enter our own example type n and

press Enter.

You will see the message:

Type 1 for cartesian coordinate system, or type 2 for
polar coordinate system.

Since your first example is a problem given in cartesian

coordinates type I and press Enter.

* You will see the message:

To just plot curves type y, otherwise type n.

Since you do not want to just plot the functions type n.

You will see the message:

Enter the functions which define the region's
boundaries. When finished type n.

The functions must be functions of the independent
variable x and are entered one at a time. They can be
inputted in any order. You are now ready to enter the
functions. Type 5x then press Enter, type x then press
Enter, type 4 - z2 then press Enter.

* You will see the message:

If any of the limits are known type y, otherwise type n.

Since none of the limits are explicitly given you type n.

You will see the message:

97

If the region is restricted to the right half plane
type y, otherwise type n.

Because we are told in the problem statement that the
region is restricted to the first quadrant type y.

The region is then plotted and the program solves the
problem. You will see the following output:

y

35

3
2.5

2

05
x

0 25 0 S 0 75 1 1.25 1 5

The limits of integration for the first region are x 0
and x = 0.702
The upper curve for the first region is y = 5 x
The lower curve for the first region is y = x
The area of the first region is 0.985608
The limits of integration for the second region are x =

0.702 and x = 1.562
The upper curve for the second region is y = 4 - x2

The lower curve for the second region is y = x
The area of the second region is 1.31145
The area of the total region is 2.29706

* All of the functions are invertible and and it is
appropriate to integrate the problem, with respect to the
variable y. As a result, after a breif delay you will
see the message:

Type y if you wish to integrate the same problem with
respect to y, otherwise type n.

98

Type y and you will see the following output:

The limits of integration for the first region are y = 0
and y = 1.56
The right curve for the first region is x = y

y
The left curve for the first region is x = -

5
The area of the first region is 0.973443
The limits of integration for the second region are y =
1.56 and y = 3.51
The right curve for the second region is x=Sqrt[4-y]

y
The left curve for the second region is x = -

5
The area of the second region is 1.32362
The area of the total region is 2.29706

D. EXAMPLE 2

Find the area of one leaf of the three-leaf rose formed by
the polar curve r =/ sin3Q.

* Press the down arrow to create a new cell and then type
graph.

* Activate the cell by using the Mouse to select Evaluate
Selection from the Action menu.

* You will see appear the message:

To display a graph that is in the lab book type the
example number, otherwise type n.

Because you are going to enter our own example type n and

press Enter.

* You will see the message:

Type I for cartesian coordinrte system, or type 2 for
polar coordinate system.
Since your second example is a problem given in polar

coordinants type 2 and press Enter.

* You will see the message:

To just plot curves type y, otherwise type n.

Since you do not want to just plot the polar curve type n.

99

You will see the message:

Type I for area between the origin and a polar curve, or
type 2 for area between two polar curves.

Type I since your problem is to fiid the area between the
origin and the polar curve r =Psn for one leaf.

You will see the message:

Rnter the polar curve which bounds the region.

Type sqrt[sin[3Q]].

You will see the message:

If the limits are known type y, otherwise type n.

Since the limits are not known type n.

* The polar curve is then plotted. You will see the
following output:

y
1

-1 5 0 1

0.S

The polar curve intersects the origin at Q:

Pi 2 Pi 4 Pi 5 Pi
(0, -, , Pi, , - v, 2Pi)

3 3 3 3

After a brief delay you will see the message:

100

The polar curve is plotted from Q=0 to Q=2 Pi. If you want
to change the limits type y, otherwise type n.

Since you are only interested in the area of one leaf

type 7.

You will see the message:

Input now lower limit.

Type 0.

You will see the message:

Input new upper limit.

Type pi/3.

The region in which you are interested is then plotted.
You will see the following output:

V

1

x
-1 -05 05 1

-O 5

-1

The limits of integration for the regior which is bounded
by the polar curve r = Sqrt[sin[3Q]] and the origin are:

Pi
a=O and b=-

3

The area bounded by the polar curve and the origin is
.333

101

3. EZXXPLE 3

Find the area of the region bounded by the circle r = 1
and the cardioid r = 1 - cos Q if the =uter curve is the
cardioid and the inner curve is the circle.

Press the down arrow to create a new cell and then type
graph.

* Activate the cell by pressing Shift+Enter.

* You will see appear the message:

To display a graph that is in the lab book type the
example number, otherwise type n.
Because you are going to enter our own example type n and
press Enter.

You will see the message:

Type I for cartesian coordinate system, or type 2 for
polar coordinate system.

Since your third example is a problem given in polar

coordinates type 2 and press Enter.

You will see the message:

To just plot curves type y, otherwise type n.

Since you do not want to just plot the polar curves type
n.

* You will see the message:

Type I for area between the origin and a polar curve, or
type 2 for area between two polar curves.
Type 2 since your problem is to find the area between two

polar curves.

* You will see the message:

Enter one of the polar curves which bounds the region.

Type 1 - cos[Q].

102

* You will see the message:

Unter the other polar curve which bounds the region.

Type 1.

* You will see the message:

If the limits are known type y, otherwise type n.

Since we do not know where the two curves intersect and
what the limits of integration are type n.

* The two polar curves will then be plotted. You will see
the following output:

2

The two polar curves intersect at Q:

Pi 3 Pi

2 2

After a breif delay you will see the message:

Input lover limit.

Since the two curves intersect and bound two different
regions you must be careful in selecting the correct
limits. Type pi/2.

103

You will see the message:

Input upper limit.

Type 3/2 pi.

* The region is then plotted. You will see the following
output:

y

2

-- 1 2

-2

The outer polar curve is r = 1 - cos(Q]
The inner polar curve is r = 1

Pi 3 Pi
The limits of integration are a=- and b=-

2 2
The area of the region bounded by the two
polar curves is 2.7854

104

APPENDIX C - PROGRAM CODE

1. FILE CART.XA

(*Copyright Dennis A. Polaski, May 4,1993 *

cart:=
Module[()f,
citranscend; ln~x)=. ;restrictionR=n; restrictionLan;
endpoints=(); intersect=();
myfunc={); rightlimit=n;leftlimit=n; type2D=l;

While[type2D==l,(
c2func=Input['Enter the functions which
define the region's boundaries. When finished type n.

y ="];
If~c2func =!Nn,
functotal=ToExpression [StringJoin("y==" ,"c2func"]];
AppendTo[myfunc, functotal)), type2D=O];
If[Length[myfunc]==3, type2D=O]
H];

myfunc--myfunc /.sqrt->Sqrt;
myfunc=myfunc I.pi->Pi;

If[Length[myfuncJ==2,
limitskcnown=Input("If any of the limits is known type
y, otherwise type n."];

While(limitsknown ===y,
leftlimit=Input["Input left limit if known, otherwise
type n.

x ="Y;
leftl imit=leftl imit I.sqrt->Sqrt;
leftlimit=leftlimit /.pi->Pi;
If(leftlimit =!= n, AppendTo~niyfunc,
ToExpression[Stringioin["x==","leftlimit") 3]);
rightlimit=Input["Input right limit if known, otherwise
type n.

105

x =")I;

righti imit=riqhtl imit I.sqrt->Sqrt;
rightlimit-rightliuiit I.pi->Pi;
If~rightliinit=!= n, AppendTo[myfunc,
ToExpression[StringJoin["x==","rightiuiit"J j];
limitsknown = n]

If~leftlimit === n &&f (rightlimit >0 H1 rightlimit-==n),
restrictionR=Input("If the region is restricted to the
right half plane type y, otherwise type n."]

If[rightlimit n && restrictionR===n &
(leftlimiit <0 leftlimit===n),
restrictionL=-Input["If the region is restricted to the
left half plane type y, otherwise type n."]
1;

last=Length fmyfunc];
For~ii=l, ii<= last,

(ival=ii; ++ii;

For(jj=l, jj<=last,
{jval=jj; ++jj;

If(jval!=ival &&
(myfunc[[ival,1JJ===y H1 myfunc[[jval,lfl===y),

ln[xJ :=Log[x);
If~myfunc[[ival,1]J===y && myfunc[[jval,1J11===y,

If[(myfunc[[ivalJJ, myfunc[[jval]))=!=
((myfunc[[ival]J, myfunc[[jvalJ] /. Log[*xJ->x)),
{theroots=(nSolve[(myfunc((ival) J,myfunc[[jval] Jfl)

ranscend;
theroots=NSolve[(myfunc([ivalJ], myfunc[[jval]]),(x,y)J;
theroots=N[(x,y) /. theroots];
thetoots=DeleteCases (DeleteCases (DeleteCases[
theroots, (xComplex,y_)] ,(x_,yComplex)],
(xComplex,yComplex)];

106

If[Lenqth~therootsj==0,(
theroots=Solve[(myfunc((iva1H], myfunc((jval]]),(x,y)];
theroots=N[(x,y) /. theroots];
theroots=DeleteCases (DeleteCases [DeleteCases(
theroots, {x_Coxuplex,y_) ' x_,yComplex)],
(x_Complex,yComplex)J J

citranscend;

If~theroots=!=(x,y) && theroots!=)&
(myfunc[(ival]]J,myfunc[(ival)])~
(((myfunc[tival)),myfuncE()val)))/ Sqrt~x_)->x),

rmtranscend;
theroots=Table(FindRoot~uiyfunc((ival, 2]]-
myfunc((jval,2]]==O, {x,theroots((ui,l]])],
(n, Length(therootsJ) ;
theroots=x /. theroots;
theroots=Table[(theroots([in]], (myfunc[[ival,2] 3/
x-> theroots[[m]])),(m,Length(theroots])J;
temp roots =
Table[(TrueQ[(Abs~myfunc(Cival,2])-myfuflc[jval,2))) I
x -> tlieroots[[s,l)]) <=.5]),(s,Length[theroots))];
theroots=Transpose [(theroots, temproots) J;
theroots=Transpose(DeleteCases~theroots, 1, (False)),1)) [(1]];
If~theroots== ()[[lJ],theroots=() 3

x=.
1];
H];
rintranscend;

If~inyfunc((ival,l))===y && myfunc[[jval,l])===x,
theroots=N[((myfunc[[jval,2]],(myfulc[[(ival,2]]/.
x->myfunc[[jval,2]])))));

If~inyfunc[(ival,l)]===x && myfunc((jval,1)3===y,
theroots=N[((myfunc[r~val,2]],(myfunc[[jval,2]]/.
x->myfunc([ival,2J3))Ij);

theroots=DeleteCases [DeleteCases (DeleteCasesC
theroots, (x_Complex,y_)] ,(xý,yComplex)),
(xCoinplex,yComplex)) ;

theroots=ReplaceAll(theroots, 0. -> 0];
If [restrictionR===y,
theroots=Select~theroots, (#C[1]J>=0) &]j;
If (restrictioriL===y,
theroots=Select~theroots, (#C[1]]<=O) &) ;

107

If(theroots =!= (x,y) && theroots -!= (),
endpoints-Join~endpoints, theroots])]

1ff leftlijiit =!=n, endpoints=Select~endpoints, (f[l(]]>=
leftlimit) &)];
Iffrightlimit =!=n, endpoints=Select~endpoints, (#C[1] J<=
rightlimit) &)];

endpoints=N(Round(endpoints*1000]/1000];
endpoints=Union(endpoints, (1);
intersect=Join(intersect, endpoints];
intersect-Union (erc, () ;

ycoord=Sort[Union(Transpose[Union~intersect,()]]([2]], (U];
ycoord=N[Union[Round[ycoord*100)]1/100];
uim=Transpose[(endpoints([1]], endpoints[(2]])j;
mnew=Sort[MM((1]J]; X=.;

If[ival==1,(
IfLmnew([[]] != mnew((2]],
(linel=Plot~myfunc((ival,2]J, (x,mnew[(1]] ,mnew((2]]),
DisplayFunction-> Identity]; linell=linel((l,1,1,11l),
(linel=Show(Graphics((Line~endpoints] 1],
DisplayFunction-> Identity]; linell=endpoints)]

If~ival==2, (
If[mnew([l]J != uinew[[2]],
{line2=Plot~myfunc[(ival,2]],{x,mriew((l]], mnew[[2]]),
DisplayFunction-> Identity); line22=line2[((,1,1,1]]),
(line2=Show[Graphics[(Line~endpoints])],
DisplayFunction-> Identity); line22=endpoints)]

If~ival==3,(
If(mnew(C1]] != mnew((2]],
(line3=Plot(myfunc((ival,2]],(x,mnew[(1]J, mnew[(2]]),
DisplayFunction-> Identity]; line33=line3((1,1,1,1))),
(line3=Show(Graphics[{Line~endpoints])],
DisplayFunction-> Identity); line33=endpoints))

H];
If~ival==4,(
If~mnew[[1]] != mnew[(2]],
{line4=Plot~myfunc((ival,2]],(x,mnew((l]], mnew([2]]),
DisplayFunction-> Identity]; line44=line4 [(1,1,1,1]]),
(line4=Show(Graphics((Line(endpoints])f,
DisplayFunction-> Identity]; line44=endpoints))

108

If~ival==5,
If[mnew((1]J 1- unew((2]),
(line5=Plot~myfunc[[ival,2]],1x,mnew[[l)), unew[[2))),
DisplayFunction-> Identity); line55=line((1,1,1,1)])),
(line5=Show(Graphics((Line~endpointsJ)],
DisplayFunction-> Identity]; line55=endpoints)]

If[ival==6,(
If[mnew[[1]] !- anrev[(2JJ,
(line5=Plot~myfunc[[ival,2fl,{X,innew((1]], anewf (2]]),
DisplayFunction-> Identity]; line66=line6([l(,1,111]]),
(line6=Show[Graphics[(Line~endpoints])f,
DisplayFunction-> Identity]; line66=endpoints)]

endpoints=()

If(ival==2, {Show~linel, line2 ,DisplayFunction->
$DisplayFunctionJ;
thelines=I linell, line22)));
If[ival==3, (Show~linel,line2,line3,DisplayFunction->
$DisplayFunction];
thelines=(liriell, line22, line33))];
If~ival==4, {Show(linel,line2,line3,line4,DisplayFunction->
$DisplayFunction];
thelines={ linell, line22, line33, line44))];
If~ival==5, {Show~linel,line2,line3,line4,line5,
DisplayFunction-> SDisplayFunction];
thelines=(linell~line22,line33,line44,line55))];
If~ival==6, (Show~linel,line2,line3,line4,line5,line6,
DisplayFunction-> $DisplayFurictionJ;
thelines=(linell,line22,line33,line44,line55,lifle66))J;

intersect=Transpose (intersect];
intersect=Sort~intersect([1)]]];
intersect=ReplaceAll (ine c, O->O.];

xcoord=Un ion (intersect, 1));
xcoord=Union~xcoord/l.];
rmtranscend;

For~kk=l, kk<=Length~xcoord] -1,
{kval=kk; ++kkc;

xx=(xcoord[[kval]]+xcoord[(kval+1)))/2;
integrfunc=Select(thelines, (xx> #[[1,1]j && XX< #[(-l,l)])q&
placel=Position~thelines, integrfunc[[lfl)([lJ]f[l]];
place2=Position~thelines, integrfunc[[2]))(([l))[[l));

109

x=. ;rmtranscend;
area=Nlrategrate(Evaluate~myfunc((placel, 2]]-myfunc[(place2, 2
3],
(x, xcoord((Ckval]), xcoord((kval+l]J)]J;
citranscend; ln[*xJ=.;
If (area <0,
(upper-myfunc[(place2]]; lower--myfunc((placel]]),
(upper--myfunc((placel)]; lower-iuyfunc((place2]])];

If~kval==l && Length~xcoord]==2,
(Print("The limits of integration are x=
xcoord((kval]J," and x = ", xcoord[[kval+l)]]);
Print["The upper curve is y = ",upper([2]]];

Print(NThe lower curve is y = ",lower([2]JJ;

Print("The area of the region is ", Abs~area]]fl

If~kval==l && Length~xcoordJ==3,
(Print[("The limits of integration for the first 'region
are x = "1, xcoord(1ckvalJ]," and x =", xcoord[(Ckval+l]]J;
Print["'The upper curve for the first region is y =
upper((2]]];
Print("The lower curve for the first region is y =
lower[(2])];
Print("'The area of the first region is "1, Abs(area]];
areal=Abs~areaJ)];

If~kval==2 && Length~xcoordj==3,
(Print["The limits of integration for the second region
are x = ", xcoord[[kvalJ]," and x = ", xcoord((kval+l]));
Print("The upper curve for the second region is y =
upper((2)]);
Print["The lower curve for the second region is y =
lower((2]]];
Print("'The area of the second region is ",Abs~areaJ];

Print[("The area of the total region is ",areal+

Abs (area]]I)] ;

inverse;
1;

cltranscend:=Module[(),sin[*x)=.; cos~x_]=.; tan~x)]=.;
cot~x_]=.; csc~x_]=.; secfx__]=.; exp~x_]=.)

transcend:=Module(1),
sin(x_]:= x _ XA 3/6 + XA 5/120 _ XA 7/5040 + XA 9/362880

XAl11/39916800;
cos[X_]:= I _ XA 2/2 + xA,4/24 - XA 6/720 + xABý/40320 -

XA 10/3628800 + XAl12/479001600 -
XAl14/87178291200 + XA 16/20922789888000;

tan(x]j:= x + XA 3/3 + 2x-5/15 + 17XA 7/315 + 62XA 9/2835 +
1382XA 11/155925;

cot[*_):= 1/x -x/3 -XA 3/45 - 2XA 5/945 - XA 7/4725 -

110

2XA 9/93555;

csc~x_]:= 1/x + x/6 + 7XA 3/360 + 31JXA5/15120 +
127x^7/604800 + 73XA 9/3421440;

sec[*_]:= 1 + xA2/2 + 5XA 4/24 + 6JXA 6/720 + 277 XA8/8064 +
5052 JXA 10/3628800;

exp~x_]:= 1 + X + XA 2/2 + XA 3/6 + XA 4/24 + XA 5/120 + XA 6/720

XA 7/5040 + XA 8/40320 + XA 9/362880]

rmtranscerad:=Module[(L, sin[x_J:=Sin[x]; cos[x]:=Cos(x];
tan[x_]:=Tan~xJ; cot~x_):=Cot~xJ; csc[*_J:=Csc(x];
sec(x]:=Sec(x]; exp[x_J:=Exp~xJ

nSolve((x=a_,y=d_:O+c_:*Log~b_:1*xJ)]:=
(a,N[d+c*Log[b*aJ J)
flSolve[(y==d_:O+c :1*Log~b_:l*xj],x==a_)J:=
(a,N~d+c*Log~b*a]ý)

nSolve[(y==dl :O+cl_:1*Log~bl_:l*x],
y==d2 :O+c2 :1*LogCb2_:1*x])]:=

nSolve[FList) :={x,y) /.NSolve[F, (x,y))

11- FILE CARTPWOT.MA

(*Copyright Dennis A. Polaski, may 4,1993 *

cartplot:=Module[() ,allyfunc=()I;allxfunc=();xlines={);
myfunc=();endpoints=();intersect=fl;
citranscend;
f (*(x) : =x;
type2D=l;

While [type2D==l,
yfunc=Input("Enter the curves, one at a time. When
finished type n.

y=";
yfunc=yfunc I.sqrt->Sqrt;
yfunc=yfunc I.pi->Pi;

If[yfunc=!=n,
AppendTo[allyfunc, yfunc],
AppendTo~myfunc, ToExpression(StringJoin("y==" ,"yfunc"]]J),
(type2D=O)]

While [type2D==O,
xfunc=Input['Enter lines perpendicular to the x-axis.
When finished type n.

x to]
xfunc=xfunc I.sqrt->Sqrt;
xfunc=xfunc /.pi->Pi;

If[xfunc=!=n,
AppendTofallxfunc, xfunc],
AppendTo[myfunc, ToExpression(StringJoin["x==", "xfunc"] JJI,
{type2D=--l 1]

xlower=Input["Enter lower limit for x-range of plot."];
xlower=xlower I.sqrt->Sqrt;
xlower=xlower /.pi->Pi;
xupper=Input["Enter upper limit for x-range of plot."];
xupper=xupper /.sqrt->Sqrt;
xupper=xupper /.pi->Pi;
ylower=Input["Enter lower limit for y-range of plot."];
ylower=ylower I.sqrt->Sqrt;
ylower=ylower I.pi->Pi;
yupper=Input["Enter upper limit for y-range of plot."];
yupper--yupper /.sqrt->Sqrt;
yupper=yupper I.pi->Pi;

112

If[Lerlgth~allxfunc]>z1,(
For[i=1, i<=Length~allxfunc), { ival=i; ++i;
1 ine=show [Graphics (
Line[((allxfunc[(lvalJ], ylower),(ailxfunc[(ival)),
yupperfl]), AxesLabel->{"x","ny"),DisplayFunction
->Idenitity];
AppendTo~xlines,linej)]

rmtranscend;
theplot=Plot(Evaluate(allyfuncj (x, xlower, xupper),
AxesLabel->("x", "y"), PlotRange->({xlower,xupper),
(ylower,,yupperj)) ,DisplayFunction.->Identity);
Show[xlines, theplot,DisplayFunction-.>$Displayrunction);

x=. ;y=.;
last=Length [myfunc];
For~ii=1, ii<= last,

(ival=ii; ++ii;

For[jj=l, jjcz=last,
(jval=jj; ++jj;

citranscend;
If[jval!=ivai &&
(myfunc[[ival,1Jj===y: myfunc[[jva1,lfl===y),

ln[xJ :=Log[x];
If~myfunc[[ival,1])===y && myfunc[[jval,1]]===y,

If[(lnyfunc[[ivalj], lnyfunc[[Jval]])=!=
((myfunc([ival]], myfunc([jval)] /. Log[)x_J->x)),
(theroots=(nSolve((myfunc[[ival]] ,myfunc([jval]])] I

transcend;
theroots=NSolve[(myfunc[[ival)), myfunc[[jvalfl),(x,y)];
theroots=N[(x,y) /. theroots];
theroots=DeleteCases [DeleteCases (DeleteCases(
theroots, (x_Complex,y_)], fx_,yComplex)],
(x_Complex,yComplex) I;

If (Length [theroots) ==O,(
theroots=Solve((myfunc[[ival]], myfunc([Jval]]),(x,y)];
theroots=N[fx,y) /. theroots);
theroots=DeleteCases [DeleteCases [DeleteCases[
theroots, (xýComplex~y_)], {x_,yComplexfl,
(x_Complex,y-Complex)]

113

citranscend;

If[theroots=!=(x,y) && theroots ()&
(myfunc[[ival]] ,iyfunc[[jval]])===
((mfn[ia],yucjvl])/ qtx]>)

rintranscend;
theroots=Table(FiridRoot~inyfunc[[ival, 2]]-
myfunc[[jval,2]]==O, (x,theroots[[m,l]])],
(m,Length~theroots])J;
theroot~s=x /. theroots;
theroots=Table[(theroots[[i]], (myfunc[([ival,2]] I
x-> theroots[[mJ])),(in,Length~therootsJ)];
temproots=
Table[(TrueQr(Abs(myfunc([ival,2]J-inyfuncC[jval,2]]J I
x -> theroots((s,l]]) <=.5]),(s,Length(theroots])];
theroots=Transpose [(theroots, temproots));
theroots=Transpose[DeleteCases~theroots, {_,(False)), 1]] [(1]);

x=.

H);

rintranscerad;

If~myfunc[[ival,lJ]===y && myfunc[[jval,l]]===x,
theroots=N[((myfunc([jval,2]],(myfunc([ival,2]]/.
x->myfunc[[jval,2]])))J J;

If[myfunc[[ival,l]]===x && myfunc[[jval,l]]===y,
theroots=N[{(myfunc[[ival,2]],(myfunc[[jval,2]]/.
x->myfunc[[ival,2]])))]];

theroots=DeleteCases [DeleteCases [DeleteCases(
theroots, (xComplex,yl, (x_,y_Complex)],
(xComplex,yComplex)];

theroots=ReplaceAll[theroots, 0. -> 0];

If[theroots =!= (x,y) && theroots =!= (),{

endpoints=join[endpoints, theroots]]

If[Length[endpoints >0,(
eradpoints=Select(endpoirits, (*[[1]]>=xlower) &);
endpoints=Select [endpoints,(# [[1]] <=xupper) &];
endpoints=Select~endpoints, (#[[2])>=ylower) &];
endpoints=Select [endpoints, (# [[2)] <=yupper) &);

114

1];
)1;

intersect=Union[N(Round[endpoints*l000]/1000] ,)]

If (Length (intersect) ==1,
Print["The curves intersect at the point: ",f~intersect)]];

If[Length[intersect]>=2,(
Print["The curves intersect at the points:");
Print~intersect];

115

III. FILE EXRMPLES.MA

(*Copyright Dennis A. Polaski, May 4,1993 *

gr[1) :=Show~shadeB,
Plot(.4 Sin~x] +.2 ,(x,.2,1.25),
DisplayFunction -> Identity,
AxesLabel ->("x","y"), Ticks-> None,AspectRatio ->1,

PlotRange ->((0,1.35),(-.07, .6))],
Graphics[(I
Text("a", (.2,-.05)],
Text[Ilb", (1.25,-.05)),
Text("y = f(x)", (.75,.6)]

DisplayFunction -> $DisplayFunction];

example[1] :=ShowC

DisplayFunction -> Identity,
AxesLabel -> (xy)
Ticks ->

AspectRatio -> 1,
PlotRange ->(-.611,-11)]

Graphics[(
Line (((1,0), (,)]
Text["00",(.04,-.08)],
Text ["y = x", (.5,.8)],
Text ["121,(.615,.85))
)1]
DisplayFunction -> SDisplayFunctionJ;

example [2] :=Show(
Plot[Cos[x), {x,-Pi/2, Pi/2),
DisplayFunction -> Identity,
AxesLabel -> (xy)
AspectRatio->. 5,
Ticks -> None,
PlotRange -> ((-1.65,1.65), (-.3, 1.2))],
Graphics [(
Text["1 y = cos x", (1.4,1.05)],
Text("1-Pi/2"1, {-Pi/2,-.2fl,
Text("Pi/2"1, {Pi/2,-.2)]

DisplayFunction -> SDisplayFunction];

gr(2] :=Show[
Plot(.5*(x-1) A3 +.2 , (x, .5,1.5), DisplayFunction -> Identity,
AxesLabel -> ("x","1y"), Ticks-> None, AspectRatio ->1,
PlotRange -> ((0,2), (-.085, .265))],
Graphics[(

116

Line[((.5, 0), (.5, (.5-1)^3+.325))],
Line[((1.5, 0), (1.5, .27))],
Line[((1.68,0), (1.68,.088))],
Line[((1.68,.13), (1.68,.2))],
Line[((.5,.2),(1.5,.2))],
Line[((1.58,.2), (1.78,.2))],
Line[((.5, -. 08),(.5,-.0525))],
Line[((1.5,-.08), (1.5,-.0525))],
PointSize[.01], Table[Point[(l,n .005)],(n, 0, 39)],
Text["a", (.5, -. 025)],
Text["b", (1.5, -. 025)],
Text["c", (1, -. 025)),
Text[" f(c)", (1.68, .11)],
Text("O", (-.075,-.025)],
Text["<--- (b - a) --- >", (1.005, -. 0675)],
Text["y - f(x)", (1,.25)],
Text[" V ", (1.68,.01)],
Text[" /\ ", (1.68,.19)]

DisplayFunction -> $DisplayFunction];

example[3]:=Show[Plot[(Sqrt[4-xJ 2],-Sqrt[4-xA 2]),(x,-2,2),
DisplayFunction ->Identity,
Ticks -> ((-2,0,2),()),
AxesLabel -> ("x","y"},
AspectRatio -> Automatic,
PlotRange -> ((-2.15,2.2),(0,2.1))],
Graphics[(
Text["y = 4 - x ", (2,2.35)],
Text["2'', (2.8,2.65)]

DisplayFunction -> SDisplayFunction];

example[4]:=Show[Plot[2x,(x,1,4),
DisplayFunction ->Identity,
Ticks -> ((1,4),()),
AxesLabel -> {"W","y"},
AspectRatio -> 1,
PlotRange -> f(0,4.6},{0,8}}],
Graphics[(
Text["y = 2x", (2,7)),
Text(" (1,2) ", { .5,2) J],
Text[" (4,8)", (4.6,8)],
Line((1,0),(1,2))],
Line[((4,0),(4,8))]

DisplayFunction -> $DisplayFunction];

example[5]:=Show(Plot[(Cos~x], -Sin(x)),(x,-.1,1.6),
DisplayFunction -> Identity, AxesLabel -> I"x" "y
Ticks -> ((0),(-1,0,1}}, AspectRatio -> Automatic,
PlotRange -> (-.l 5 ,l.B),(-1.2,1.l}}],

117

Graphics[(
Line[((Pi/2,0), (P1/2,-i))],
Text["Pi/2", (1.75,.2)],
Text["y = cos x", (1,1.1)],
Text["y - -sin x", (.75,-1.1)]

DisplayFunction -> $DisplayFunctionJ;

example[6) :=Show(shade1, Plot[-XA (-2) ,(x, .5,5),
DisplayFunction -> Identity,
AxesLabel -> ("x","y"), Ticks -> ((1,4),(1)),
AspectRatio -> Automatic,
PlotRange -> ((-.1,5), (-1.75,1.5))],
Graphics[(
Line[((0,1),(5.5,1))J,
Line[((1,0), 11,1))),
LineC((4,15/16), (4,1))],
Text["ly =11,2.3]

Text["y = 1 -x"1.,)]
Text["-21", (2.6,-.75)]

DisplayFunction -> $DisplayFunction];

example[7]:=Show[Plot[(-x, 2-xA'2),(x,-1,2),
DisplayFunction -> Identity, AxesLabel -> VX1 l#)
Ticks -> ((-1,0,1,2),(-2,0,2)), AspectRatio -> Automatic,
PlotRange -> ((-1.95,2.2), (-2.4,2.1))],
Graphics[(
Text("(-1,1)"1, (-1.65,1)],
Text(" (2,-2) ", (2,-2.2)]3,
Text(1"2", (2.35,1.9)],
Text["ly = 2 - x "1, (1.7,1.7)],
Text("ly = - x", (.9,-1.8))

)1

DisplayFunction -> SDisplayFunction];

example(8]:=ShowCP1ot[(xA3+1,xA 2+x),(x,-1.5,1.2),
DisplayFunction ->Identity, AxesLabel -> I11tl)
Ticks -> ((1),(2)), AspectRatio -> Automatic,
PlotRange -> ((-1.75,1.5), (-.5,2.3))],
Graphics[(
Text["y = x + l,-712]
Text('"3",(-.625,1.35)],
Text("121, (1.175, .65)],
Text["ly = x + x"l,(1.1,.5)],
Text["(-1,O)1, (-1.5,-.2)],
Text ("(1, 2)"',(1.4 ,2) 3

DisplayFunction -> SDisplayFunction];

example[9) =Show(Plot ({4+xA2, 12_XA 2), (x, -2 .2, 2.2),
DisplayFunction -> Identity, Ticks -> None,

118

AxesLabel ->("x","y"), AspectRatio ->Automatic,

PlotRange ->((-4.5,4.5), (2,13))],
Graphics[(
Text[" (-2,8)", (-3.2,8)],
Text[" (2 ,8) U (3 .1,8) J,
Text("y = 12 - x",(-3,12.5)],
Text["2",(-1.125,12.95)),
Text("y = 4 + x", (3,3.5)],
Text["2", (4.725,3.95))

DisplayFunction -> $DisplayFunctioriJ;

example[10] :=Show[Plot[Sqrt[x , (x,O,4),
DisplayFunction -> Identity,
AxesLabel -> ("x","y"), Ticks -> ((2,4),(1,2)),
AspectRatio -> .75,
PlotRange -> ((-.2,4.5), (-.2,2.2))],
Graphics[(
LineC(((2,0), (2,Sqrt[2]))],
Line[((2,0), (4, 2))),
Text[("2", (1.7,2.2)),
Text[I"y = x", (1.85,2.1j)],
Text ["(4 ,2) , (4.*4 ,2)
Text["ly = 0"1, (1,-.15)J
Text["ly = x - 2"1, (4,.9)]

DisplayFunction -> SDisplayFuriction];

example(I1]:=Show~shade2, Plot[2-XA 2,(x,O,Sqrt[2)),
DisplayFunction -> Identity,
AxesLabel -> ("x","y"l),
Ticks -> ((l),(1,2)), AspectRatio ->Automatic,

PlotRange -> (02,-0,-))
Graphics[(
Text("ly = 2 - x", (.65,2.1)],
Text["12", (1,2.2)],
Text["ly = x", (1.65,1.25)],
Text["ly = 0,.5-1]
Line[((0, 0), (1.7, 1.7))),
Line[((2.1,2.1), (2.3,1.55))],
Line[((1,O), (1,1))]

DisplayFunction -> $DisplayFunction];

example[12] :=Show~shade3,Plot[(Sqrt[x) ,-Sqrt[x] ,6-x),

DisplayFunction -> Identity, AspectRatio -> Automatic,
AxesLabel ->("x","y"), Ticks -> None,
PlotRange ->((-.1,11), (-4.2,4.2))],
Graphics[(
Line[((0,0), (9,0))],
Text["l(9,-3)"1, 10,-2.2)),

119

Text(" (4, 2)",(4 .2, 3 .2) J,
Text["y -x", (2.2,-3)],
Text["2", (1.85,-2.67)],
Text("y - 6 - x",(7.2,1.1)]

)1

DisplayFunction -> SDisplayFunction];

gr[3J :-Show[Plot[4(x+.1)A3, (x, .2, .5),
DisplayFunction -> Identity,
AspectRatio ->.4, PlotRange ->((-.1,1.2),(0,1)),

AxesOrigin (-.10
AxesLabel -> ("x","y"),Ticks ->None],

Plot[4(x-.4)'-3,{x,.7,1), DisplayFunction -> Identity,
AspectRatio ->.5, PlotRange - (,)(.,.)J
Graphics[((
Line[(((.485, .81),(.99,.81))J,
Line[(((.248, .175J,(.756, .175))],
Text[("a", (-.15, .175)],
Text("b",(-.15, .81)],
Text["x = gy"(2.5]
Text("x = f(y)",(1.1,.2)]
)], DisplayFunction -> $DisplayFunction];

gr[4]:=Show[Plot(2. 1-(x+ . 3)A 2, (x, .59, 1.1),
DisplayFunction -> Identity,
AspectRatio ->.4,AxesLabel-> ("x","y"}),Ticks -> None,
AxesOrigin -> (-.1,0),
PlotRange ->((-.1,1.3),(0,1.4))),
Plot((X+.5)A3-.2,(x,.2,.66), DisplayFunction -> Identity,
Ticks -> None,
AspectRatio ->.4, PlotRange -> {(0,1.3),(-.1,1.3))],
Graphics[(Line[((.25,.2),(1.08,.2))],
Text("'a", (-.15, .2)],
Text("lb", (-.15,1.235)],
Text["x = f(y)",(1.2,.9)J, Text["x =g(y)"',(.2,1).J)],
DisplayFunction -> SDisplayFunction];

gr[5J:=Show[Plot[(-Sqrt [XA 2.5]+1.5,SqrtCXA 2-.5]+1.5),(x,.70
711,1.5),
DisplayFunction -> Identity, AspectRatio ->.5,
AxesLabel -> ("x","y"), Ticks -> None,AxesOrigin -> (-.1,0),
PlotRange -

DisplayFunction -;Identity, AspectRatio -> .5,
Ticks -> None),Graphics[(Text["x = fy"(.,5]
Line[(((l.73205,1.45), (1.73205,1.55))],
Text("'a",(-.25,.38)], Text("lb",(-.25,2.62)],
Text["x = g(y)",{.55,2.7))fl,
DisplayFunction -> $DisplayFunction];

120

example[13J :=Show[Plot(Sqrt~x], (X,0, 4),
DisplayFunction -> Identity,
AxesLabel -> ("xw,"y"), Ticks -> ((2,4),(1,2)),
AspectRatio -> Automatic,
PlotRange -> ((-.2,4.5), (-.45,2.2))],
Graphics[(
Line[((2,0),(4,2))],
Text("211, (2.35, 2.3)),
Text("y = x", (1.8,2.1)],
Text[" (4, 2)", (4.*4 ,2)],
Text("ly = 0"1, (1,-.3)],
Text["x = y + 2", (4,.9)]

DisplayFunction -> $DisplayFunctioriJ;

example[14]:=Show[shade2, Plot[2 -XA2,(x,0,Sqrt(2]),
DisplayFunction -> Identity,
AxesLabel -> ll"y)
Ticks -> (()(),AspectRatio -> Automatic,
PlotRange ->((0,2.25), (-.22,2.05))],
Graphics[(
Text((1,1)"l, (1.3,1)],
Text["12", (1.5, .67)],
Text["x =2 - y", (1.7,.6)],
Text("ly =x", (.4,.8)],
Text["y =0"1, (.55,-.15)],
Line(((,O),(1.5,1.5))]

DisplayFunction -> SDisplayFunction];

example[15]:=Show~shade3,Plot((Sqrt[x],-Sqrt[x],6-x),(x,-.1,
11),
DisplayFunction -> Identity, AspectRatio ->Automatic,

AxesLabel ->("x","y"l., Ticks -> None,
PlotRange {(.,1)(42,.)3
Graphics[(
LineC(((0,), (9,0))],
Text(" (9,-3)", (10,-2.2) J,
Text ["(4 ,2)"',(4 .2, 3 .2) J,
Text["x = y"l,(2.8,-3.2)],
Text["2"1, (3.875,-2.8)],
Text["x = 6 - y"l,(7.5,.9)]

DisplayFunction -> $DisplayFunction];

gr[6] :=Show[shade11,Plot[Sqrt [1xA 2], (x, .59,.975),
DisplayFunction -> Identity,
AxesLabel-> ("x","y"),AspectRatio -> Automatic,
Ticks -> None,PlotRange -> (012,0.)]
Plot[Sqrt[.5_xA 2],(x,.4375, .7071),DisplayFunction -> Identity,
Ticks -> None,AspectRatio -> 1],
Plot[Sqrt[.25-xA 2],(x, .45, .5),DisplayFunction -> Identity,

121

Ticks -> INone,AspectRatio ->I],
Graphics[(
Text[%r-f(Q)", (1.15, .255)],
Text("b", (.575,.5)J,
Text("a", (.55,.125)],

Text["A", (.9, .55)],
Text("B", (.625,.865)],
Line[(A0,0),{1, .5))],
Line[(((,O),(.7,.88))]

DisplayFunction -> $DisplayFunctionJ;

example (16]: =Show (PolarPlot
[2(l+Cos[Q]) ,(Q,0,2Pi), DisplayFunction ->Identity,

AspectRatio -> Automatic, AxesLabel -> {"x","y"),
Ticks -> Norie,PlotRange -> (-,)(26,)]
Graphics[(
Line(((0,0), (2.414, 2.414))],
Line[(((4,0),(4.25, .225))],
Text["21, (-.2,2. 1)],
Text("-2", (-.25,-2.2)),
TextC"Q=0,2Pi", (5.1, .35)],
Text["4", (4.2,-.25)),
Text["P(r,Q)", (2.6, 2.75)],
Text["r", (1.2, 1.45)],
Text("r= 2(1+cosQ)", (2.5,3.35))

DisplayFunction -> $DisplayFurictionJ;

example[17J:=Show~shadel2,PolarPlot[(1+Sin[Q]), (Q,O,2Pi),
DisplayFunction -> Identity, Ticks -> None,
AspectRatio -> Automatic,
AxesLabel -> ("x","y"), PlotRange -> ((-1.8,2.5),(-1.1,2.3))],
Graphics[((
Text("r = 1 + sinQ",(-.95,2.2)],
Text["Q=Pi/4"1, (1.65,1.65)],
Text["Q=-Pi/4"1, (.85,-.85)],
Line[(((0,0), (1.4, 1.4))],
Line[((0O,0), (.7,-.7))]

DisplayFunction -> $DisplayFunction];

example[18]:=Show(shade7,PolarPlot((2 Cos(Q]+1),(Q,0,2Pi),
DisplayFunction -> Identity, Ticks ->None,
AspectRatio -> Automatic, AxesLabel -> ("x", fyll),
PlotRange-> ((-1.9,4), (-2,2.3))],
Graphics[((
Line[((-.75,1.3), (.5,-.866))],
Line[((-.75,-l.3),(.5, .866))],
Line (((3, 0), (3.2, .3))],
Line[((1,0), (1.2, .3))),
Line[((0,0),(3,0))],

122

Text["r - 2 cosQ + 1", (1.75, 2.15)],
Text(C"Q=2Pi/3", (-1.2,1.45)],
Text["`Q=4Pi/3",(-1.2,-1.45)J,
Text["Q-Pi", (1.65, .4)],
Text ["Q-0", (3.55, .4)]

DisplayFunction -> SDisplayFunction);

example[19):=ShowlshadelO,PolarPlot[(Sin[3Q]),(Q,0,2Pi),
DisplayFunction -> Identity, Ticks -> None,
PlotRange -> ((-.9,1.2) ,(-1.05,1.1)),
AspectRatio -> Automatic, AxesLabel ->
Plot[Sqrt(1. _XA 2], lx, .908,1.05) ,DisplayFunction -> Identity,
Ticks -> None, AspectRatio -> Automatic],
Graphics[(
LineC(((0,0), (1.039, .6))],
Line[(((0,), (.6,1.039))),
Text["r =siri3Q", (-.6,.9)],,
Text("Q=Pi/3l, (.6,1.15)],
Text["lQ=Pi/6", (1.15, .725)],
Text["lQ=0"l, 1,-.lfl,

)1

DisplayFunction -> $DisplayFunction];

example(20]:=Show[PolarPlot[{Sqrt[Cos[2Q]]), (Q,0,2Pi),
DisplayFunction -> Identity, AxesLabel ->lo"ty)
Ticks -> None, AspectRatio -> Automatic,
PlotRange ->((1111,(.11)]

Graphics[(
Line [((-.6, -.6), (.6, .6))),
Line(((-.6, .6), (.6,-.6))]3
Text("lr = cos2Q"l,(-.4,.95)J,
Text["2"1, (-.6,1.05)],
Text[("Pi/4l, (.7, .7)],
Text("-Pi/4l, (.7,-.7)],
Text["l3Pi/4l, (-.75, .7)],
Text["l5Pi/4"l, -.75,-.7)],
Text("l1l, (1.05,-.1)]

DisplayFunction -> SDisplayFunction];

gr[7) :=Show[shade6,Plot[Sqrt[1-xA2] , x, .555, .896),
DisplayFunction -> Identity, AxesLabel -> loeI$ys)
Ticks -> None, AspectRatio -> Automatic],
Plot[.5x, (x,0,1.275),DisplayFunction ->Identity,

Ticks -> None],
Plot[1.5x, (x,0, .665) ,DisplayFunction ->Identity,

Ticks ->None],
Plot [Sqrt [.75-xA"2+x] ,(x, .658, 1. 27),
DisplayFunction -> Identity, Ticks -> None],
Graphics[(
Textf"r~l",(.65,. 65)],

123

Text[wr2m, (1, .95)],
Text["Q-a",(1.2, .475)),
Text["Q=b", (.45,.95)]

Hl,
DisplayFunction -> SDisplayFunction];

example[21) :=Show~shade5, shade4,
PolarPlot(1,(Q,0,2Pi),AxesLabel -> (xy)
Ticks -> None, AspectRatio -> Automatic,
DisplayFunction -> Identity],
PolarPlot(.85, (Q,0, 1.3),
Ticks -> None, AspectRatio -> Automatic,
DisplayFunction -> Identity],
PolarPlot[(1-Cos(Q)),(Q,O,2Pi), DisplayFunction ->Identity,

Ticks -> None, AspectRatio -> Automatic),
Graphics[(

Line[((0,1), (.2,-1.3))),
Line[((0,0), (.2,1.98))),

LineC({(0,0),(.3,.954))],
Line [((0, 0), (1, 0)) J,
Text["Q=-Pi/2", {.5,-1.4)],
Text(l'Q=Pi/2', (.4,1.4)),
Text["Q", (.6, .4)),
Text["r2 = 101,(.55,1.15)],
Text["rl - 1 - cosQ",(-1.1,1.5)J

DisplayFunction -> $DisplayFunction);

example[22):=Show~shade9,PolarPlot[(3Cos[Q),
1+Cos[Q)), (Q,0,2Pi},
DisplayFunction -> Identity, AspectRatio ->Automatic,

AxesLabel ->("x","y"), Ticks -> None,
PlotRange ->((-.3,3.75), (-2.5,2.5))),
Graphics[(
LineC(((O,O),{1.25,2.16))],
Line[((0,0), (3,0))),
Line[((0,0),(1.25,-2.16)fl,
Line[((1.6,-1), (2.2,-1.9fl1,
Line [((1.9, 1.8), (1.*7 ,1. 5))),
Text["lQ=Pi/3"l,(1.25,2.3)],
TextV'Q=-Pi/3"',(l.25,-2.3)),
Text["lr2 = 3cosQ"l,(2.7,1.95)],
TextP"rl = 1 + cosQ',(3.05,-2.05))
Hl~
DisplayFunction -> $DisplayFunction);

example[23) :=Show[PolarPlot[(1-Cos(Q)),(Q,0,2Pi),
DisplayFunction->Identity,
Ticks->None, AxesLabel->("x", "y") ,AspectRatio->Automatic,
PlotRange->((-2.75,1), (-1.3,1.3))),
Plot[Sqrt[I-X 1x2) ,(x,-. 161, .318) ,DisplayFunction->Identity,

124

Ticks-> None, AspectRatio->Autonatic),
Graphics[((
Lirie(((O,OJ,(-.75,1.3))],
Text("Q", (.35,.2)],
TextC"r", (-.55, .55)],
Text(Nr - 1-cosQ",(-2.2,1.2)],
Text("P(r,Q)",(-.85,1.45)J,
Text["-2", (-2.15,-.15)J,
Text("1", (-.1,1.2)]

DisplayFunction->$DisplayFunction];

125

IV. FILE INTEGR&L.XA

(*Copyright Dennis A. Polaski, May 4,1993 *

Beg inPackage[("integral'"];

graph: :usage = "Type graph, to invoke a program which
plots a region, finds the limits of integration, and
evaluates the integral."

SetOptions(Plot, AxesLabel -> ",y)]
SetOptions [ParametricPlot, PlotPoints -> 600];
SetOptions[Plot, PlotPoints->150J;

Off[Drop: :drop];
Off [EndPackage: :noctx]
Of f[FindRoot: :cvnwt);
Off[General: :spellJ;
Of f[General: :spelll);
Of f[General: :stop);
Off(Get: :noopen];
Off[Graphics: :gprim);
Off [Graphics: :gptn];
Of f[Greater: :nord);
Off[Infinity: :indet);
Of f[Nlntegrate: :ncvb];
Of f[Nlntegrate: :nlim);
Of f[Nlntegrate: :slwcon);
Off [ParametricPlot: :pptr);
Off[Part: :partd);
Off[Part: :partwj;
Off(Plot: :plln];
Off[Plot: :plnrJ;
Off[Power: :infyj;
Of f[Remove: :remal];
Of f[ReplaceAll: :rmix];
Of f[ReplaceAll: :reps);
Off[Show: :gtypej;
Off [Solve: :ifun];
OffESolve: :tdepJ;
Off [Unset: :norep];

Needs ["Graphics'Master"'l];
«<c:polarl.ma;
«<c:polar2 .ma;
«<c: cartplot.ma;
«<c: inverse.ma;

126

<<c:examples.ma;
<<c:shades.ma;
<<c:cart.ma;
<<c:polplotl.ma;
<<c:polplot2.ma;

Begin["'Private%"];

graph:=
Module[(),

labexample=Input["To display a graph that is in the lab
book type in the example number, otherwise type n."];

Ifflabexample =!= n, example(labexample], (

type2D=Input["Type 1 for cartesian coordinate system, or
type 2 for polar coordinate system."];

If(type2D==l, (
plotonly=Input["To just plot curves type y, otherwise
type n."];
If[plotonly===y, cartplot, cart]H];

Ifftype2D==2,
plotonly=Input["To just plot curves type y, otherwise
type n."];
If[plotonly===y,
typepolplot=Input["Type 1 for plot of area between the
origin and a polar curve, or type 2 for plot of area
between two polar curves."];
If[typepolplot==l,polplotl];
If[typepolplot==2,polplot2]),
typepolar=Input["Type 1 for area between the origin and
a polar curve, or type 2 for area between two polar curves."];
If[typepolar==l, polarl];
If[typepolar==2, polar2];
M];
M];

]

End [];

EndPackage[];

127

V. FILE INVZRBB.XA

(*Copyright Dennis A. Polaski, May 4,1993 *

inverse:-Module[()f,
ln[xJ :-Loog[x];
If~myfunc--=(myfunc /. Log~x_]->x),(

transcend;
f[(*x)J:- X;
allycoord=Transpose[Join~f[thelines]] J[(2]];
ycoord=Union[ycoord, (Max~allJ -icoordfl, {Min~allycoord]));
ycoord=N[Union[Round~ycoord*lJOJ]/100];
ycoord=Union[ReplaceA~llycoord, 0. ->0),)];
xfuncs=Transpose (Partition-l oin [myfunc, ttielines J,
Length~myfunc]));

yfunc=Complement (xfuncs, Cases (xfuncs, (y==b_Integer, c)
ty==bReal,c_)]J ;

For~ww=1, ww<=Lengthryfunc] ,(vval=ww; ++ww;
If~yfunc[(wval,1,1])===y,,
yfunc[(wval,1]]=ToExpression[Stringioin("x=-",
"1(x /. Solve(yfunc((wval,1,2]]==y, x,
InverseFunctions-> True]))([1])"]]]
If(yfunc((wval,l]]===True Il
(yfunc[[wval,1,2]J /. (y_)A (1/3)->y)=!=yfunc((wva11l2]],
ww=99]

If[ww<99,
revlines=Transpose(yfunc] ((2]];
For~vv=1, vv<=Length~ycoord]-1, (vval=vv; ++vv;
yy=(ycoord([CvvalJ]+ycoord[[vval+1)])/2;
integrfunc=Select~revlines, ((yy> Min[Transpose~t] [(2]]]))&
(yy< Max[Transpose[#J [[2]]]))&];
If[Length(integrfuncj>2,(vv=99; ww=99fl;

If[WW<99,
Pause(8];
yintegr=Input["Type y if you wish to integrate the same
problem with respect to y, otherwise type n."1];

If~yintegr===y,(
Print[")

invfunc=Transpose[yfunc) ([1]);
tempinvfunc=invfunc;
revlines=Transpose~yfunc) ([2]);

128

For~zz=l, ZZ<=Length[ycoord]-l, (zval=zz; ++zz;
yy=(ycoord[[zval]]+ycoord[[zval+1)] 2f
integrfunc=Select~revlines, ((yy> Min[Transpose[#] [[2]]]) &
(yy< Max(Transpose[#) [[2]]])))&];

nv func=tempinvfunc;

If[Length[integrfunc]==2,(
cl=Drop[Select~integrfunc[[1]]
(#[[2]]>=ycoord[[zval]] && #C[(2]]<=ycoord[[zval+l1))&],l];
c2=Drop[Select(integrfunc[[2)],
(#[[2]]>=ycoord[[zvalJ) && #([2]]<=ycoord[(zval+1]])&],-1];
avgcurvel=(Transpose~c1]([l,1]]+Transpose~c1]([[1-1]])/2;
avgcurve2=(Transpose[c2]([l,1]]+Transpose~c2J [[1,-i]])/2;

adj cl=Transpose [Reverse [Transpose [ci]]);
maxcl=Max[Union[{adjcl[[-1,1)]), (adjcl[[1,1]])]];
mincl=Min[Union[tadjcl[[-1,1])), {adjcl[[i,1)))]);
curvel=Nlntegrate[Fit~adjcl,(l,y,yA-2),y],
(y,mincl,maxcl)]/(maxcl-mincl);
adj c2=Transpose [Reverse [Transpose [c2]]];
maxc2=Max[Union[(adjc2[[-i,1]]),(adjc2[[1,1]])]);
minc2=Min[Union[(adjc2[(-1,1]]), (adjc2[(1,1]])]];
curve2=Nlntegrate[Fit~adjc2,(1,yy,yA2),y],
{y,minc2 ,maxc2)1/ (maxc2-minc2);

If [Length [integrfunc] ==2, (
If [avgcurve2>avgcurvei, (integrfunc=Reverse [integrfunc];
tempcurve=curve2 ;curve2=curvel ;curve 1=tempcurve;
tempcurve=avgcurve2 ;avgcurve2=avgcurve ; avgcurvel=tempcurve)]

If[Loength[integrfunc]==2,(
piacel=Position~revlines, integrt~snc[[1]])[[1J][[1)J;
p1ae2=Position~revlines, integrfunc[[2)]]][ri]][[i]]),
(theplace=Position~revlines, integrfunc[[lflJ[[i]][[1])]);

If [Length [integrfunc) ==2, I
If[Replace~invfunc[[placel,2]l,Sqrt()xj->O]--
invfunc[[placel, 2]],
If [curvei<avgcurvel,
invfunc[[placei,2]]=negbranch~invfunc[(plhcel,21])

If [Length [integrfunc) ==2, (
If[Replace(invfunc[[piace2,2]],Sqrt[x_]->O] !
invfunc[[place2,2]],
If [curve2<avgcurve2,
invfunc[[place2,2]]=negbranch~invfunc[[piace2 ,2]]3

129

If (Length [integrfunc] ==2, I
area=Nlntegrate(invfunc([Cplacel,2]]-invfunc([Cplace2,2]],
(y, ycoord[[zval]),ycoord[[zval+l]])f),(
area=Nlntegrate [Evaluate (2bothbranches [invfunc [[theplace, 2]]

(y,ycoord[(zval)), ycoord[[zval+l))))));

If[Length [integrfunc] ==l,
right=invfunc([theplace,2]];
left=negbranch~invfunc[[theplace, 2))]]
(right=invfunc[[placel, 2)]; left=invfunc[[place2, 2))));

Print[" 11];
If[zval==l && Length(ycoord]==2,
Print["The limits of integration are y=
ycoord[(zval]]," and y = 11, ycocrd[[zval+l]] 3
Print["'The right curve is x = ",right];

Print["The left curve is x = ",left];

Print["'The area of the region is ",Abs~area]]

If~zval==l && Length[ycoord]>=3,
Print["'The limits of integration for the first region");
Print["lare y = "I,ycoord[[zval]j,
11and y = "l,ycoord[[zval+lJJJ;
Print["The right curve for the first region is x = ",right];

Print[I'The left curve for the first region is x = ",left];

Print["'The area of the first region is "1, Abs~area) J
areal=Abs~area])];

If[zval==2 && Length[ycoord]>=3,
Print["'The limits of integration for the second region");
Print["lare y = "1,ycoord[[zvalJ),

" and y = "l,ycoord([zval+l]]];
Print["'The right curve for the second region is x = ,right];

Print[("The left curve for the second region is x - ,left);

Print["'The area of the second region is "1, Abs[area)]
If[Length[ycoord]==3,
Print["'The area of the total region is "1, areal+Abs(area] 3
area2=Abs [area)

If[zval==3 && Length[ycoord]>=4,
Print["'The limits of integration for the third region"];
Print["lare y = l",ycoord[[zval]],
11and y = "l,ycoord([zval+l]]];

Print["'The right curve for the third region is x = "1, right];
Print["'The left curve for the third region is x = 11, left);
Print["'The area of the third region is "1, Abs~area]]
If[Length~ycoord]==4,
Print("'The area of the total region is "1, areal+area2+
Abs~area]], area3=Abs~area])

130

If~zval==4 && Length~ycoord]--5,
Print("The limits of integration for the fourth region");
Print["are y = ", ycoord[[zvalJ],

" and y = ",ycoord((zval+l)]];
Print["The right curve for the fourth region is x - ,right];

Print("The left curve for the fourth region is x = ,left];

Print("The area of the fourth region is ",Abs~areaJ];
Print["The area of the total region is " areal+area2+area3+
Abs(area]]

H);

H];

HI;
I

gl[(b_ + Sqrt~a_])*c_):=(b - Sqrt~aJ)*c;
g2((b_ + d -*Sqrt~a_])*c_]-=(b -d Sqrt(a))*c;
g3[b_ + d-*Sqrt[aJ]]:= b -d Sqrt~a];
g4[Sqrt~a_] *c-]-= -Sqrt~a] *c;
g5[Sqrt~aJ] -Sqrt~a);
g6(b_ + Sqrt[a_] J-b -Sqrt~a];

hl((b_ + Sqrt~a_])*c_]-= Sqrt(a)*c;
h2[(b_ + d_*Sqrt(a_])*c -]:d*Sqrt~a]*c;
h3C b_ + d-*Sqrt(aJ] J-d*Sqrt[a];
h4(Sqrt(aJ] *c_]-= Sqrt(aJ*c;
h5[Sqrt~aJ): Sqrt~aJ;
h6C b_ + Sqrt[a] J: Sqrt[aJ;

negbranch[x_]:=
If[Cases[(x),(b_ + Sqrt~a_))*c_]=!=fl,gl[x],
If[Cases[(x),(b- + d-*Sqrt~a_])*c-]=!=(),g2[x),
IfECaseslix), b- + d_*Sqrt[aJ]]!()g[]
If[Cases[Ix), Sqrt[a)] *c)]!=fl,g4[x).,
If[Cases((x), Sqrt[a_]]!))g(]
If[Cases((x), b_ + Sqrt[a_] =()gx]]fl

bothbranches [xJ : =
If[Cases[(x),(b_ + Sqrt~a_])*cJ]=!=(),hl(x],
If[Cases[(x),(b- + d *Sqrt[a_])*c_]!=(),h2[x],
If(Cases((x), b_ + d-*Sqrt[a_])!()h[)
If(Cases[(x), Sqrt[a_] *c_)=!=(),h4[x],
If[Cases[(x), Sqrt~a_]]=!=fl,h5(x],
If(Cases[(x), b- + Sqrt[a)j)!(,6()])]

131

VI. FILE POLARI.KA

(*Copyright Dennis A. Polaski, May 4,1993 *

polar : =
Module[(

func, limitsknown, theroots, lowerlimit,
upperlimit, newcurve, ae, totalarea=(), regions=(),
curvesknown, fundl, func2, temp,

citranscend;
func=Inputt"Enter the polar curve which bounds the region.

r ="]
func=func I.sqrt->Sqrt;
func=func I.pi->Pi;
func=func I.q->Q;
revfunc=Replace(func, Sqrt[x_] -> x];
limitsknown=Input("If the limits are known type y,
otherwise type n."];

If [limitsknown===y,
(lowerlimit=Input("Input lower limit."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit /.pi->Pi;
While[lowerlimit <-N[Pi), (lowerlimit=Input("'The lowerlimit
can not be less than -Pi, input lower limit again."];
lowerlimit=lowerlimit /.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;

upperlimit=Input["Input upper limit."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N[PiJ, (upperlimit=Input("'The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;

If[N[upperlimit] <N[lowerlimit] ,lowerlimit=N[lowerlimit-2Pi]]

(lowerlimit=o.; upperlimit= 2Pi)];

rmtranscend;
max=Max [DeleteCases [Table (func /. Q -> values,
(values, 0, 2Pi, .25)J,xComplex]];

rayl=N[(func I.Q->lowerlimit)J;
ray2=N[(func I.Q->upperlimit)];

132

llequivalent=N(Mod~lowerliuiit, 2Pi]];
ulequivalent=N(Mod~upperlinit, 2Pi]];

If~lowerlimit < 0, llequivalent= 2 N[Pi]+lowerlimit,
llequivalent= lowerlimit];
If[upperlimit < 0, ulequivalent= 2 N[Pi]+upperlimit,
ulequivalent= upperlimit);

If((rayl==ray2) && (llequivalent=-ulequivalentfll
(rayl==0 && ray2==0),(
PolarPlot[func, {Q, topi~lowerlimitJ, topi~upperlimit]),
AxesLabel -> ("lx","y"), AspectRatio -> Automatic,
PlotRange-> ((-1.02 max, 1.02 max),(-1.02 max, 1.02 max))),

Show(PolarPlot(func, (Q, topi~lowerlimitJ, topi[upperlimit)),
DisplayFunction -> Identity, AxesLabel -> ("x" I"Y"),
AspectRatio -> Automatic, PlotRange-> ((-1.02 max,1.02 max),
(-1.02 max, 1.02 max))],
Graphics[({
Line[((0,0),(Cos~lowerlimitJ*rayl, Sin[lowerlimitJ*rayl))J,
Line[((0,0), (Cos~upperlimit]*ray2, Sin~upperlimit]*ray2))J,

DisplayFunction-> $DisplayFunction]));

ptranscend;
theroots=NSolve[(r-==0, r=-=revfunc), (r,Qfl;
theroots=N[(r,Q) /. theroots);

If~theroots=!=(r,Q) && theroots !f,
theroots=DeleteCases [theroots, (r_, Q_Complex I
Abs[Im[Q) J>.lfl;
theroots=ReplaceAll (theroots,{rý_,Q_) -> (r,Re[Q])];
rmtranscend;
Q=.;
theroots=Table [FindRoot (revfunc==0,
(Q,theroots[[m,2J]])J, (m,Length(theroots])];
theroots=(0,Q) /. theroots;
theroots=N(Uniori(theroots, fl>J;
theroots=Union[theroots, theroots+ N[Table((0, 2Pi),
(i,Length~theroots])l]);
theroots=Select~theroots, (# [[2) <=N~upperlimitJ &
#[[))>= N~lowerlimit))&];

theroots=Union(N[(Round(100*theroots])/100J ,()];
H];
rmtranscend;

If[limitsknown=!=y,
If~theroots=!={r,Q) && theroots!=() &
Length[therootsj >=1,(
Prinxt(""]

133

Print["The polar curve r is equal to zero when Q is:
"IMap~topi,Transpose~therootsJ [[23]] 3

H3;

Pause[83;
newcurve=Input(I"The polar curve is plotted from Q=O
to Q=2 Pi. If you want to change the limits type y, otherwise
type n."];

If[newcurve=-=y,(
lowerlimit=Iriput["Input new lower limit."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit 1.pi->Pi;
Whileflowerlimit <-N(Pi], (lowerlimit=Input["The lower limit
can not be less than -Pi, input lower limit again."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;

upperlimit=Input["Input new upper limit."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N[Pi], (upperlimit=Input("'The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperlimit=upperlimit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
H];
If[N(upperlimit]<N[lowerlimit] ,lowerlimit=N[lowerlimit-2Pi]];

rayl=N[(func /.Q->lowerlimit));
ray2=N[(func I.Q->upperlimit)];

llequivalent=N[Mod[lowerlimit, 2Pi]);
ulequivalent=N[Mod~upperlimit, 2PiJ];

If(lowerlimit < 0, llequivalent= 2 N(Pi]+lowerlimit,
llequivalent= lowerlimit];
If[upperlimit < 0, ulequivalent= 2 N[PiJ+upperlimit,
ulequivalent= upperlimit];

If[(rayl==ray2) && (lleguivalent==ulequivalent)l
(rayl==0 && ray2==0),(
PolarPlot(func, {Q, topi[lowerlimit], topi[upperlimit]),
AxesLabel -> (I"x","y"}, AspectRatio -> Automatic,
PlotRange-> ((-1.02 max, 1.02 max),(-1.02 max, 1.02 max))]),

Show[PolarPlot~func, {Q, topi~lowerlimitJ, topi[upperlimit]),
DisplayFunction -> Identity, AxesLabel -> VX1111)
AspectRatio -> Automatic, PlotRange-> ((-1.02 max,l.02 max),
(-1.02 max, 1.02 max))],
Graphics [(
Line[((0,O),(Cos~lowerlimit]*rayl, Sin~lowerliinit]*raylj)f,

134

Line[((O,O),(Cos[upperlimit]*ray2, Sin~upperlimit]*ray2))],

)11

DisplayFunct ion-> $DisplayFunction])]

ptranscerid;
theroots-NSolve[tr==O, r==revfunc), tr,Q) J;
theroots=N[(r,Q) /. theroots);

If[theroots=!=(r,Q) && theroots 1=(),(
theroots-DeleteCases~theroots, (r ,QComplex I
Abs[Im(Q]]>.lfl;
theroots=ReplaceAll~theroots,{rý_,QI -> (r,Re[QJ)];
rmtranscend;

theroots=Table [FindRoot (revfunc==O,
(Q,theroots[[m,2]])), (m,Length[therootsJ)];
theroots-qO,Q) /. theroots;
theroots=N[Uniori[theroots, ()) J;
theroots=Union~theroots, theroots+ N[Table[(0, 2Pi),
(i,Length~therootsJ)]];
theroots=Select[theroots, (# [2)]]c=N[upperlimit] &
#C(]]>= N~lowerlimit])&];

theroots=Union(N[(Round[100*theroots])/100), fl];

If[theroots ===(r,Qfl Length[theroot~s]<=1, I
area=Nlntegrate[.5*(func)A A2, (Q,topi~lowerlimitj,
topi [upperlimit])f;
citranscend;
Print[" 11];
Print["The limits of integration for the region bounded by
the"];
Print["polar curve r = "1,func, "1, and the origin are:"];
Print(" "J];
Print[" a=g",topi(Chop~lowerlimit, .01)],"I and b=",
topi(Chop~upperlimit,.OlJ],"."];
Print[" "3);
Print["'The area bounded by the polar curve and the origin is

N~area, 3]])];

If (theroots =!=(r,Q) && theroots!=() && Length (theroots] >1,

theroots=Transpose [theroots];
theroots=theroots [[2]J ;
theroots=Sort (Union [ReplaceAll [Join [
(N[(Round[100*lowerlimit))/lO03),
theroots, (N((Round[100*upperlimit])/100))),O.->0] ,)]);

135

ruatranscend;
For~i=1, i<=Length[theroots]-1, (ival=i; ++i; area=.;
Q=(theroots([ivalJJ + theroots[(ival+l]])/2;
If (func=!=revfunc,(
If[N~funcJ >0, (Q-.;
area=Nlntegrate[.5*(func)A 2,(Q,topi~theroots[[ival]]]
topi(theroots[(Cival+1]]])];
AppendTo[totalarea, Absfarea));
AppendTo~regions, ival])
H];
If (func===revfunc,
If[Abs(N~func]] >0, {Q=.;
area=Nlntegrate(.5*(func)A 2,(Q,topi~theroots([ivalJ]]
topi[theroots((ival+l]]] f];
AppendTo~totalarea, Abs~area]];
AppendTo~regions, ival]))

area=Apply[Plus, totalarea];
numregions=Length (regions);
citranscend;
If~numregions==l, (Q=.;
Print[" "1];
Print("'The limits of integration for the region bounded by
the"];
Print("lpolar curve r = "1, func," and the origin are:"];
Print[" ")];
Print(" a='$,topi (Chop (theroots[([regions((1]]
3], .01]),
isand b="1,topi[Chop(theroots[[regions[[1]] + l].1J""3

Print[" "3);
Print["The area bounded by the polar curve and the origin
is ",N[area,3])3)];

If~numregions >1,
Print[" "3];
Print["'The limits of integration for the regions which
are bounded"]; Q=.; citranscend;
Print["lby the polar curve r = ,func," and the
origin are:"]; Print[" "il;

If[Abs[N(Mod(theroots[(regions[[1]J J]+2Pi,2Pi]] -
N[Mod[theroots((regions[[numregions]3+1])+2Pi,2Pi]]3 <.l,(

If[theroots[[regions[[1]] 3]3<0 &&
theroots[(regions[[numregions]) 3]>=N[Pi],
Print(" a=1
topi[Chop[N[theroots[[regions[[numregions3]
J)-2Pi),.O1]],I"bl="I,

topi[Chop~theroots[(regions[[l)]+1)),.O)]3);

136

If(theroots((regions[Cl]]]]<0 4&
therootaf (regions((nuinregions]] J]<-N(PiJ,
Print[" al-N,
topi[Chop~theroots[[regions[[nuznregions]J]], .01)),
Nand b1-",topi(Chop[N~theroots((regions((1JJ+1)]+2PiJ,.01]J

If[theroots[[regions[[lJ)))>-O &
theroots([regions((numregionsJ]]]>O,
Print[" al=",
topi[Chop(N~theroots([regions((numregionsJJ]J-2PiJ,.O1]],

" and bl-",topi(Chop(theroots[[regions((1)3+l)],.01]3)

For~j=3,j<-numregions, (jval=j;+j
Print [" a", jval-1, "=",
topi[Chop(theroots([regions((jval-1]]]],.01]],

" and bff,jval-1,"-",
topi(Chop~theroots[(regions[(jval-1]]+1J),.01J]])J

(For~j=1, j<=nuiuregions, (jval=j; ++j;
Print[" a", jval,"=",
topi[Chop~theroots[[regions[[jval))]], .01)),
11and b",jval,"=",

topi(Chop~theroots((regions[Cjval]]+1)],.01) 3fl

Print[" ";Q.
Print("The total area bounded by the polar curve and the
origin is"];
Print[" "1,N~area,3]);

H;

ptranscend:=Module[(1),
A+X

sin[xJ]:= x - XA 3/6 + XA 5/120 -x7/5040 +x9/362880 -

XA 1l/399l6800+XAl3/6227020800_XAl5/1307674368000+
XA 17/3556874280960o0 XA 19/121645100408832000;
XA 21/51090942171709440000 -

XA 23/25852016738884976640000 +
xA25/15511210043330985984000000;

COS[*_]:= 1 - XA 2/2 + XA 4/24 - XA 6/720 + XA 8/40320 -
XAl10/3628800 + XAl12/479001600;

tan[*_]:= x + XA 3/3 + 2XA 5/15 + 17XA 7/315 + 62XA 9/2835 +
1382XA 11/155925;

cot~x]):= 1/x -x/3 -XA 3/45 - 2XA 5/945 - XA 7/4725 -

2 XA9/93 555;
csc~x)]:= l/x + x/6 + 7XA 3/360 + 3JXA 5/15120 +

127XA 7/604800 + 73XA 9/3421440;
sec~x_]:= 1 + XA 2/2 + 5XA 4/24 + 61XA6/720 + 277 XA8/8064 +

5052 lXAl10/3628800;

137

exp~x_]:- 1 + x +X^2/2 + XA 3/6 + XA 4/24 + x-5/120 + xA6/720 +
xA7/5040 + XA 8/40320 + xA9/362880]

cltranscend:-ModuleU(),sin[x_]=.; cos[xJ]=.; tan[x_]=.;
cot~x_]=.; csc[xý]=.; sec~x_]=.; exp[x_]=.]

rmtranscend:-Module[fl, sin~x_]:-Sin~x]; cos[x_]:=Cos[x];
tar~x_]:=Tan[x); cot~x_]:-Cot[x]; csc[x_]:-Csc[xJ;
sec[x)]:=Sec[x]; exp~x_]:=Exp[xJ

topi(-.26]:=-Pi/12; topi(-.28J:=-Pi/11; topi(-.29]:=-Pi/11;
topi[-.31]:=-Pi/10; topi[-.34):--Pi/9; topi[-.35):--Pi/9;
topi[-.39J:=-Pi/8; topi(-.44]:=-Pi/7; topi[-.45):=-Pi/7;
topi(-.52]:=-Pi/6; topi[-.57):=-2Pi/11;topi[-.62):=-Pi/5;
topi(-.63]:=-Pi/5; topi[-.69]:=-2Pi/9; topi(-.70J:=-2Pi/9;
topi[-.78) :=-Pi/4; topi(-.79] :=-Pi/4; topi[-..85] :=-3Pi/11;
topi[-.86):=-3Pi/11; topi(-.94]:=-3Pi/1O; topi(-1.04]:=-Pi/3;
topi(-1.05]:=-Pi/3; topi[-1.14]:=-4Pi/11; topi[-1.17]:=-3Pi/8;
topi[-1.18J:=-3Pi/8; topi(-1.25):=-2Pi/5; topi[-1.26]:=-2Pi/5;
topi[-1.30] :=-5Pi/12; topi[-1.31] :=-5Pi/12;
topi[-1.34):=-3Pi/7; topi[-1.35):=-3Pi/7; topi[-1.39]:=-4Pi/9;
topi[-1.40) :=-4Pi/9; topi[-1.42J :=-5Pi/11;
topi(-1.43) :=-5Pi/11; topi[-1.57) :=-Pi/2;
topi (-1.71] :=-6Pi/11 ; topi (-1.74] :=-5Pi/9 ;
topi[-1.75]:=-5Pi/9;topi[-1.79]:=-4Pi/7;topi(-1.80]:=-4Pi/7;
topi[-1.83) :=-7Pi/12;
topi[-1.88) :=-3Pi/5; topi[-1.96] :=-5Pi/8;
topi[-1.99] :=-7Pi/11; topi(-2.00) :=-7Pi/11;
topi[-2.09J :=-2Pi/3; topi[-2.19J := -7Pi/10;
topi [-2.20] :=-7Pi/1O ; topi [-2.*24] :=-5Pi/7 ;
topi [-2.28] :=-8Pi/11 ; topi [-2.*35] :=-3Pi/4 ;
topi[-2.36):=-3Pi/4; topi[-2.44):=-7Pi/9; topi[-2.51]:=-4Pi/5;
topi[-2.57] :=-9Pi/11; topi[-2.61] :=-5Pi/6;
topi[-2.62]:=-5Pi/6; topi(-2.69]:=-6Pi/7; topi[-2.74]:=-7Pi/8;
topi[-2.75] :=-7Pi/8; topi[-2.79] :=-8Pi/9;
topi[-2.82] :=-9Pi/10; topi(-2.83] :=-9Pi/10;
topi[-2.85]:=-lOPi/11; topi[-2.86]:=-lOPi/11;
topi[-2.87] :=-llPi/12; topif-2.88] :=-llPi/12;
topi[-3.14]:=-Pi; topi[.26):=Pi/12; topi[.28]:=Pi/11;
topi[.29]:=Pi/11; topi(.31]:=Pi/10; topi[.34]:=Pi/9;
topiE .35) :=Pi/9; topi[.39) :=Pi/8; topi[.44) :=Pi/7;
topi[.45] :=Pi/7;topi[.52] :=Pi/6;topi[.57]:=2Pi/11;topi[.62]:=
Pi/5; topi[.63):=Pi/5; topi[.69):=2Pi/9; topi[.70]:=2Pi/9;
topi[.78]:=Pi/4; topi[.79]:=Pi/4; topi[.85]:=3Pi/11;
topi(.86]:=3Pi/11; topi[.94]:=3Pi/10; topi[1.041:=Pi/3;
topi[1.05]:=Pi/3; topi[1.14J:=4Pi/11; topi[1.17J:=3Pi/8;
topi[1.18]:=3Pi/8; topi[1.25]:=2Pi/5; topi[1.26]:=2Pi/5;
topi[1.30]:=5Pi/12; topi[1.31):=5Pi/12; topi[1.34]:=3Pi/7;
topi[1.35J:=3Pi/7; topi[1.39]:=4Pi/9; topi[1.40J:=4Pi/9;
topi[1.42) :=5Pi/11; topi[1.43) :=5Pi/11; topi[1.57) :=Pi/2;
topi(1.71]:=6Pi/11; topi[1.74):=5Pi/9; topi[1.75]:=5Pi/9;

* topi[1.79):=4Pi/7; topi[1.S0):=4Pi/7; topi[1.83):=7Pi/12;

138

topi(1.88J:-3Pi/5; topi(1.96J:-5Pi/8; topi[1.99]:-7Pi/11;
topi(2.0OJ:-7Pi/11; topi(2.09]:-2Pi/3; topi(2.19]:- 7Pi/1O;
topi[2.20J :-7Pi/1O; topi(2.24] :-5Pi/7; topi(2.28] :-8Pi/11;
topi[2.35]:=3Pi/4; topi(2.36]:-3Pi/4; topi[2.44]:=7Pi/9;
topi[2.51]:-4Pi/5; topi[2.57]:=9Pi/11; topi(2.61]:-5Pi/6;
topi(2.62]:=5Pi/6; topi[2.69]:-6Pi/7; topi[2.74):=7Pi/B;
topi[2.75]:=7Pi/B; topi(2.79]:=8Pi/9; topi[2.82]:-9Pi/1O;
topi(2.83J:=9Pi/10; topi[2.85J:-lOPi/ll;topi[2.86]:=lOPi/11;
topi[2.87J:=llPi/12; topi[2.88J:=llPi/12; topi(3.14]:=Pi;
topi[3.40J:=13Pi/12;topi[3.42J:-l2Pi/ll;topi(3.43]:-12Pi/11;
topi(3.45J:-llPi/10; topi(3.46]:=llPi/1O;topi(3.493:-lOPi/9;
topi(3.59] :=8Pi/7; topi(3.53] :-9Pi/8; topi(3.66] :-7Pi/6;
topi[3.67]:-7Pi/6; topi[3.71):=13P1/11; topi[3.76J:=6Pi/5;
topi(3.77J :=6Pi/5; topi[3.83] :-llPi/9; topi[3.84] :-llPi/9;
topi[3.92):=5Pi/4; topi[3.93]:-5Pi/4; topi[3.99]:=14Pi/11;
topi[4.0O]:=l4Pi/11; topi(4.03]:-9Pi/7; topi[4.04]:=9Pi/7;
topi[4.08]:=l3Pi/10; topi[4.18]:=4Pi/3; topi[4.19J:=4Pi/3;
topi(4.28]:=l5Pi/11; topi[4.31]:=llPi/8; topi[4.32]:=llPi/8;
topi[4.39]:=7Pi/5; topi[4.40J:=7Pi/5; topi[4.45):=l7Pi/12;
topi[4.48]:=lOPi/7; topi[4.49J:=lOPi/7; topi(4.53]:=l3Pi/9;
topi[4.54):=l3Pi/9; topi[4.56]:=16Pi/11;topi[4.57]:=16Pi/11;
topi[4.71J:=3Pi/2; topi[4.85]:=l7Pi/11; topi[4.86]:=l7Pi/11;
topi[4.88]:=14Pi/9; topi[4.89J:=l4Pi/9; topi[4.93):=llPi/7;
topi[4.94J:=llPi/7; topi[4.97J:=19Pi/12; topi[5.02J:-8Pi/5;
topi[5.03]:=8Pi/5; topi(5.10]:=l3Pi/8; topi(5.11]:=l3Pi/8;
topi[5.14]:=l8Pi/11; topi(5.23]:=5Pi/3; topi[5.24J:=5Pi/3;
topi[5.34]:=l7Pi/10; topi(5.38):=l2Pi/7; topi[5.39]:=l2Pi/7;
topi[5.42):=l9Pi/11; topi[5.43J:=l9Pi/11; topi[5.49J:=7Pi/4;
topi(5.50]:=7Pi/4; topi(5.58]:=l6Pi/9; topi(5.59]:=l6Pi/9;
topi[5.65):=9Pi/5; topi(5.71J:=2OPi/11; topi(5.75J:=llPi/6;
topi(5.76]:=llPi/6; topi[5.83]:=13P1/7; topi[5.89]:=l5Pi/8;
topi[5.93]:=l7Pi/9; topi[5.96]:=19Pi/1O;topi(5.97J:=l9Pi/10;
topi(5.99] :=2lPi/11;topi[6. 00] :=2lPi/11;topi[6. 02] :=23Pi/12;
topi(6.28]:=2Pi; topi(6.54]:=25Pi/12; topi(6.56]:=23Pi/11;
topi[6.57J:=23Pi/l1;topi[6.59J:=2lPi/1O;topi[6.60]:=2lPi/1O;
topi[6.63J:=l9Pi/9; topi[6.67):=l7Pi/8; topi[6.68]:=l7Pi/8;
topi[6.73J:=l5Pi/7; topi(6.80J:=l3Pi/6; topi[6.81]:=l3Pi/6;
topi(6.85]:=24Pi/11; topi[6.91J:=llPi/5; topi[6.98J:=2OPi/9;
topi[7.06J:=9Pi/4; topi[7.07]:=9Pi/4; topi(7.13J:=25Pi/11;
topi[7.14]:=25Pi/11; topi(7.18]:=16Pi/7;topi[7.22):=23Pi/10;
topi[7.23]:=23Pi/10; topi[7.33]:=7Pi/3; topi[7.42]:=26Pi/11;
topi[7.43]:=26Pi/11; topi[7.46J:=l9Pi/8; topi(7.53J:=l2Pi/5;
topi[7.54]:=l2Pi/5; topi[7.59]:=29Pi/12; topi(7.62J:=17Pi/7;
topi[7.63):=l7Pi/7; topi[7.67]:=22Pi/9; topi[7.68J:=22Pi/9;
topi[7.71]:=27Pi/11; topi[7.B5]:=5Pi/2; topi(7.99]:=28Pi/11;
toPi[8.00):=28Pi/11; topi[8.02]:=23Pi/9; topi[8.03]:=23Pi/9;
topi[8.07):=l8Pi/7; topi[8.08]:=l8Pi/7; topi[8.11]:=3lPi/12;
topi[8.12J:=3lPi/12; topi[8.16):=l3Pi/5; topi[8.17]:=l3Pi/5;
topi[8.24]:=2lPi/B; topi[8.25]:=2lPi/8; topi[8.28J:=29Pi/11;
topi[8.37]:=BPi/3; topi[8.38):=BPi/3; topi[8.48]:=27Pi/10;
topi(8.52]:=l9Pi/7; topi[8.53]:=l9Pi/7; topi[B.56J:=3OPi/11;
topi[8.57]:=3OPi/11; topi[B.63):=llPi/4; topi[8.64J:=llPi/4;

139

topi(B.80J:-l4Pi/5; topi[8.85]:-3lPi/11; topi[8.90J:=l7Pi/6;
topi[8.97]:=2OPi/7; topi[8.98J:-2OPi/7; topi[9.03J:-23Pi/8;
topi[9.07]:=26Pi/9; topi(9.08]:=26Pi/9; topi[9.11]:-29Pi/1O;
topi[9.13]:-32Pi/ll;topi[9.14]:=32Pi/l1;topi[9.16]:-35Pi/12;
topi(9.42]:=3Pi; topi~xJ]:=x;

1L40

VII. WILE POLRRI..33

(*Copyright Dennis A. Polaski, Nay 4,1993 *

polar2 :=Module[(

citranscend;
funcl-Input("Enter one of the polar curves which bounds the
region.

r = "];
funcl-funcl/ sqrt->Sqrt;
fund-~fund I pi->Pi;
funcl=funcl I.q->Q;

func2=Input["Eriter the other polar curve which bounds the
region.

r = "];
func2=func2 I.sqrt->Sqrt;
func2=func2 I.pi->Pi;
func2=func2 I.q->Q;

limitsknown=Input["If the limits are known type y,
otherwise type n.11];
If [limitsknown===y,
lowerlimit=Input["Input lower limit."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
upperlimit=Input["Input upper limit."];
upperlimit-upperlimit /.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;

If[N~upperlimit]<N[lowerlimitJ ,lowerlimit=N~lowerlimit-2Pi]]

(lowerlimit=o; upperlimit=2 N[Pi))];
bothfunc={ fundl, func2);
ptranscend;

If[{funcl,func2)=!=((funcl,func2) /. Sqrt[xj_ ->x),
theroots=NRoots [func1A 2==func2-~2, QI,
theroots=NRoots~funcl==func2, Q);
3;

If [theroots=! -False,
theroots= Table(theroots[(Ci,23]],(i,Length~theroots] I];
theroots=DeleteCases~theroots, QComplex I;Abs[Im[QJ 3>. 1];
theroots=ReplaceAll~theroots, Q_ -> Re(Q] 1
rmtranscend;

141

theroots-Table[FindRoot~funcl==func2, (Q,theroots[[In]))],
(m, Length~theroots])];
theroots- Q /. theroots;
therootsu'N[Union[theroots,])
theroots-Union(theroots, theroots + N [Table [2Pi,
1j, Length[therootsj))]);
testroots=Union[Select[N[Round~theroots*lOOJ/lOOJ,
(#>=N[-PiJ && #<-N[(5/2) Pi])&],()];
theroots-Select [theroots, (1<= N (upperliuiit] &
#>= N(loverliinitJ)&J;
theroots-Union(N[(Round[1OO*theroots])/lOO] ,)]
theroots-Nap [topi, theroots J;
testroots-Nap[topi, testroots);

theroots=Transpose[Select[Table((theroots((1]),
(N[Abs[funrl-func2J /. Q-> theroots[(iJJ])<.05),
(i,l,Length(theroots])],(#((2]]===True)&]]([l]];
If~theroots===() [1]] ,theroots=() ;

max= (0,0);
For[rr=l, rr<=2, jrval=rr; ++rr;
max[Erval)]=Max[DeleteCases[Table(bothfunc[[rvalJJ
/. Q->values, (values, 0, 2Pi, .25)], xComplex]J)J
max=Max[max);

plotroutine;

ptranscend;
For[hh=l, hh<=2, (hval=hh; ++hh;
otherroots=NSolve[(r-=0, r=-=bothfunc[[hval))), (r,Qfl;
otherroots=N[(r,Q) /. otherroots);

If[otherroots=!=(r,Q) && otherroots!=,
otherroots=DeleteCases~otherroots,{r_,Q__Complex /
Abs(Im[Q) J>.l)J;
otherroots=ReplaceAll[otherroots, (r_,Q_) -> (r,Re[Q])f;
rintranscerid;
Q=.;

otherroots=Table [FindRoot (bothfunc [hval)]]==O,
(Q,otherroots[[m,2])), (m,Length~otherrootsJ jj;
otherroots=(0,Re[Q]) /. otherroots;
otherroots=N[Union[otherroots, ()) J;
otherroots=Union [otherroots, otherroots+ N [Table [(0 ,2Pi),
(i,Length[otherroots])]]]) ;
otherroots=Select [otherroots, (# [[21) <=N (upperlimit) &&
#[[2]] >= N~lowerlimit])&];
otherroots=Union[N[(Round[lO0*otherrootsJ)/100), (1);
H];

142

otherroots=Unior4ReplaceAll[otherroots, tO,6.28)->{O,O)) ,t));
otherroots-Union[ReplaceAll(otherroots, (Q~r)->((Q,r} jI, U];
If (hval-=l, funciroots-otharroots, func2roots=otherroots);

allroots=(funciroots, func2roots);
endprograr=O;
runoption=O;
diffchez.k;

1ff (theroots===False testdiff===yes) && runoption==O &
Length(funclroots]<=1 & Length(func2roots]<=l, {
1ff limitsknown===n,(
1ff Length~theroots)==l,
Print["
"The two polar curves intersect at Q
t~opi(theroots[f1]]] l
If[Lengthftheroots] >1,
Print("The two polar curves intersect at Q:

"I, Map(topi, theroots))
Pausef 8];
newcurve=Input["The polar curves are plotted from Q=O
to Q=2Pi. If you want to change the limits type y, otherwise
type nx."];

If (newcurve===y,(
lowerlimit=Input("Input new lower limit.");
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
Whileflowerlimit <-N[Pi), (lowerlimit=Input(I"The lower limit
can not be less than -Pi, input lower limit again."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
H3;
upperlimit=Input["Input new upper limit."];
upperl imit=upperl imit /.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
while(upperlimit>2 N(Pi), (upperlimit=Input["The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperlimit=upperlimit /.sqrt->Sqrt;
upperlimit=upperlimit I.pi-->Pi;

If[N~upperlimit]<Nflowerl i .t] ,lowerlimit=N(lowerlimit-2Pi]];
rmtranscend; plotroutime,

complexcheck; negcheck;
If(Length(complexfuncl]<=2 && Length~complexfunc2]<=2 &&
endprogram==O, findarea2];
If[(Length[complexfuncl) >2 11 Lerxgth[complexfunc2) >2) &&

143

endproqram==O, findareal]; runoption=l
H];

If~testdiff=-yes && (Length~f~inclroots] >1 :
Length(func2rootsJ>l) && runoption==O,
If~limitsknown=='n,(
If(Length~therootsJ==l,
Print["
"The two polar curves intersect at Q
topi(theroots((l]]]]J;
If[Length[therootsJ >1,
Print["The two polar curves intersect at Q: I

", Map~topi, theroots]J]
Pause(S];
newcurve=Input["The polar curves are plotted from Q=O
to Q=2Pi. If you want to change the limits type y, otherwise
type n."1];

If~newcurve===y,(
lowerlimit=Input["Input new lower limit.");
loweri imit=lowerl imit I.sqrt->Sqrt;
lowerlimit=lowerlimit /.pi->Pi;
While(lowerlimit <-N[PiJ, (lowerlimit=Input(I"The lower limit
can not be less than -Pi, input lower limit again.");
lowerlimit=lowerlimit /.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
H:;
upperlimit=Input("Input new upper limit."];
upperl1imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit /.pi->Pi;
While~upperlimit>2 N[Pi], (upperlimit=Input["The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperi imit=upperl imit I.sqrt->Sqrt;

If(N~upperlimit]<N(lowerlimit] ,lowerlimit=N~lowerlimit-2Pi]];
rmtranscend; plotroutine;

)1;
complexcheck; negcheck;
If[Length~complexfuncl]<=2 && Length~complexfunc2]<=2 &
endprogram==O, findarea2];
If[(Length(complexfuncl] >2 H1 Length~complexfunc2] >2) &&
endprogran==O, findareal]; runoption=1

If ((theroots===False H1 Length (theroots] <=1) &&
runoption==O &&
(Length~funclroots) >1 ", Length[func2roots)>l),

If [1imitsknown===n,

144

If (Length~theroots)==l,
Print["
The two polar curves intersect at Q
topi~theroots[(l]J
Pause[8);
newcurve=Input["The polar curves are plotted from Q=O
to Q-2Pi. If you want to change the limits type y, otherwise
type n."];
If~newcurve===y,(
lowerlimit=Input["Input new lower limit.");
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit-lowerlimit I.pi->Pi;
While~lowerlimit <-N(Pi], (lowerlimit-Input("The lower limit
can not be less than -Pi, input lower limit again."];
lowerl imit=lowerl imit I.sqrt->Sqrt;
lowerlimit-lowerlimit I.pi->Pi;

upperlimit=Input("Input new upper limit."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N[PiJ, (upperlimit=Input[("The upperlimit
can not be greater than 2Pi, input upper limit again.");
upperlimit=upperlimit I.sqrt->Sqrt;
upperlimit=upperlimit /.pi->Pi;
H);
If[N~upperlimit]<N[lowerlimit] ,lowerlimit=N~lowerlimit-2Pi)];
rmtranscend; plotroutine;

1);
complexcheck; negcheck;
If(Length~complexfuncl]<=2 && Length~complexfunc2]<=2 &
endprogram==O, findarea2);
If((Length~complexfuncl) >2 H1 Length~complexfunc2) >2) &
endprogram==O, findareal) ;runoption-1

control=O;

If(Length~theroots)>=2 && limitsknown===n &&runoption==O,(
Print["'The two polar curves intersect at Q:"'

"i, Map[topi, theroots) 1;
Pause[B);
newcurve=Input["'The polar curves are plotted from Q=O
to Q=2Pi. If you want to change the limits type y, otherwise
type n.111;
If~newcurve===y,(
lowerlimit=Input["Input new lower limit.");
lowerl~imit-lowerlimit /.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
While(lowerlimit <-N(Pi], (lowerlimit=Input("The lower limit
can not be less than -Pi, input lower limit again.");

145

loweri imit-lowerlimit I.sqrt->Sqrt;
lowerliuait-lowerliuait I.pi->Pi;

upperliuiit-Input["Input new upper limit."];
upperi imit-upperlimit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N(Pi], (upperlimit-Input["The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperi imit-upperliniit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;

If(N~upperlimit]<N~lowerlimit) ,lowerlimit-N~lowerlimit-2Pi]);

badliniits-Select (N theroots),
(#>N~lowerlimit] && #<N~upperlizitJ)&];
While[Length~badlimits]>0,
If~control==l,(
Print["For Q=-Pi to Q=5/2 Pi the two polar curves intersect
at Q:",""1, Map~topi, testroots]j; Pause(8]1];
control=control+l;
lowerlimit=Input["A point of intersection can not lie
between the two limits. Input new lower limit."];
lowerl imit=lowerl imit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
upperlimit=Input ("Input new upper limit."];
upperi imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
If[N[upperlimitJ<N~lowerlimit] ,lowerlimit=N~lowerlimit-2PiJ];
badl imits=Select (N testroots],
(#>N~lowerlimitJ && #<N~upperlimitJ)&];

rmtranscend; plotroutine; complexcheck; negcheck;
If((Length~complexfuncl)<=2 && Length[complexfunc2J<=2) &&
endprogram==0, findarea2];
If[(Length~complexfunclJ >2 11 Length~complexfunc2J >2) &&
endprogram==O, findareal J; runoption=l
H];

onceprint=0;
If iLength~therootsj >=l && limitsknown===y && runoption==O,(
badl imits=Select (N(theroots),
(#>N(lowerlimit] && #<N(upperlimit])&];

While (Length (badlimits] >0,
If (onceprint==0,(
Print("'The two polar curves intersect at Q: 101

"I, Map~topi,theroots)); onceprint=lfl;
Pause[8];
If~control==l,
Print("For Q=-Pi to Q=5/2 Pi the two polar curves intersect
at Q:11,"11, Map~topi, testroots]]; Pause(8]));

146

control-control+1;
lowerlinit-Input("A point of intersection can not lie
between the two limits. Input new lower limit."];
lowerl imit-lowerl imit I.sqrt->Sqrt;
lowerlimit-lowerlimit I.pi->Pi;
upperlimit=Input("Input new upper limit."];
upperl imit-upperl imit I.sqrt->Sqrt;
upperlimit=upperlinit I.pi->Pi;
If(N (upperlimit] <N (lowerlimit] ,lowerlimit=N(lowerlimit-2Pi]];
badl imits-Select(N (testroots]
(1I>N~lowerlimit] &&f #<N~upperlimit])&];
If(Length~badlimitsj==O,
rmtranscend; plotroutine)];

complexcheck; negcheck;
If((Length~complexfunclJ<=2 && Length~complexfunc2J<=2) &&
endprogram==O, findarea2];
If((Length(complexfuncl] >2 H1 Length(complexfunc2] >2) &&
endprogram==O,findareal); runoption=1
H);
1;

complexcheck:=Module[({),
complexfuncl=DeleteCases (DeleteCases (Table (N (fund I
Q->values], (values, N(lowerlimit], N(upperlimit], .1)],
r_-Integer] ,rReal];
complexfunc2=DeleteCases (DeleteCases (Table (N (func2 I
Q->values), (values,N~lowerlimit],N~upperlimit], .1)],
rInteger], rReal]];

diffcheck:=Module[(),
difference=DeleteCases (Table (funcl-func2 / .Q->values,
(values, lowerlimit+.Ol, upperlimit-.Ol, .25)), xComplexJ;

If[Mx~difernce]=O & Mi~diferene]<
IfMax~difference]<=O && Hin(difference]<=O
testdiff=yes, testdiff=no]]

findareal:=Module({),
For(tt=l, tt<=2, (tval=tt; ++tt;
If[allroots((tval]) =!= ((Q,r)),I
otherroots=Transpose(allroots((tval]])
otherroots=otherroots((2]);
otherroots=Sort(Union(ReplaceAll (Join((N~lowerlimitj I,
otherroots, (N~upperlimit])J, O.->O],{)JJ;
otherroots=Select(otherroots, (#>=N(1owerlimit] &&
#<=N~upperlimit]) &];

{,otherroots=ReplaceAll((N~lowerlimitl ,N~upperlimit)),

rintranscend; area=.; totalarea=();
For~vv=l, vv<=Length(otherroots] -1, {vval=vv; ++vv;
Q=(otherroots((vval]] + otherroots((vval +1]])/2;
If[N(bothfunc((tvalJJ]>0, {Q=..;

147

areaT Nlntegrate(.5* bothfunc((tvalJ]A 2, (Q,
topi otherroots((vval])), topi[otherroots[[vval+l)] J)
AppendTo[totalarea, Abs~areaJ])J

area- Apply[Plus, totalarsa];
If[tval--l, areal-areaJ;
If[tval==2, area2-areaJ;
HI;
area= area2 -areal; cltranscend;Q-.;
printfuncl 1

findarea2 : Module[(4),
Q=.; rmtranscend; area=NrIntegrateC. 5* (func2A 2 - funcl-2),
(Q, topi[lowerlimit], topi~upperlimitJ)J; printfunc2J;

printfuncl:-Module[(,
If[area<=O, (temp-fundl; funcl=func2; func2=temp)];

Print[""J

Print["The outer polar curve is r = ",func2J;

Print["The inner polar curve is r = ",fund)];

Print["The area of the region bounded by the two");
Print("polar curves is ",Abs(area)J J

print func2 :=Module([),
citranscend;
If~area<=O, {temp=funcl-; funcl=func2; func2=temp)];
Print[" 11];
Print[" "];
Print["The outer polar curve is r = ",func2];

Print["The inner polar curve is r - " funcl];
Print["The limits of integration are a=",
topi[N[Round~lowerlimit*lOO]/lOO]],
toand b=", topi[N[Round[upperlimit*lOO]/lOO]]]

Print ["The area of the region bounded by the two"];
Print[("polar curves is ", Abs[area)])

negcheck:= Module[(),
negfuncl=Min[DeleteCases[Table(fund / Q->values,
(values, lowerlimit+.Ol, upperlimit-.Ol, .25)), xComplex]];
negfunc2=Min [DeleteCases [Table [func2 /. Q->values,
(values, lowerlimit+.Ol, upperlimit-.Ol, .25)], xComplexjj;
If(negfuncl<o 1 negfunc2<O, (cltranscend;

If[negfuncl<O && negfunc2<O,
(Print["Both functions have negative values for r.");
Print["'This program can not solve such problems."]),
If (negfuncl<O,
(Print ["The function r ="funcl,"1 has negative values.")
Print["This program can not solve such problems.")),
(Pr int ("1The funct ion r = 0", func2,"1 has negat ive va lues.")
Print[("This program can not solve such problems."])))

148

endproqram= 1

plotrout ins: -
Module[(),
plotchunk=PolarPlot((funcl, func2), (Q, N~lowerlinit],
N fupperlimit]), DisplayFunction->Identity, AxesLabel->
("x", "y"), AspectRatio->Automatic, PlotRange->
((-1.02 max, 1.02 max),(-1.02 max, 1.02 max))];

ray1=Re(N((funcl I Q-> lowerlimit)]];
ray2-ReN[MC(fund I Q-> upperlimit)]];
ray3=Re(N((func2 /.Q-> lowerlimit) J];
ray4=Re(N((func2 /.Q-> upperlimit)]J ;
llequivalent=N[Mod[lowerlimit, 2Pi]];
ulequivalent=N[Mod~upperlimit, 2Pi]];

Iftiowerlimit < 0, llequivalent= 2 N[Pi]+lowerlimit,
llequivalent=lowerlimit];
If[upperlimit < 0, ulequivalent= 2 N(Pi]+upperlimit,
ulequivalent=upperl imit J;

If[(rayl==ray2 && lleguivalent==ulequivalent &
ray3==ray4) j(rayl==O && ray2==0 && ray3==0 && ray4==0),
(Show(plotchunk, DisplayFunction-> $DisplayFunction])
(Show~plotchurxk, Graphics[(
Line[((Cos[lowerlimit]*rayl, Sin[lowerlimitJ*rayl),

(Cos~lowerlimit]*ray3, Sin~lowerlimit)*ray3))],
Line[((Cos[upperlimit) *ray2, Sin[upperlimit) *ray2),

(Cos~upperlimit]*ray4, Sin~upperlimit]*ray4))],
3,DisplayFunction-> SDisplayFunction)

ptrariscend:=Module[LI,
sin[xJ]:= x - XA 3/6 + XA 5/120 - XA 7/5040 + XA 9/362880 -

XA 11/399168 0O+XA13/6227020800-xA15/13O76743680O0+
XA 17/3556874280960OO-XA 19/121645100408832000;

cos[x_]:= 1 _ XA 2/2 + XA 4/24 - XA 6/720 + XA 8/40320 -
x,*10/3628800 + XAl12/479001600;

tan~x_):= x + XA 3/3 + 2XA 5/15 + 17XA 7/315 + 62XA 9/2835 +
1382XA 11/155925;

cot~x_):= 1/x -x/3 -XA 3/45 - 2xA5/945 _ XA 7/4725 -

2XA 9/93555;
cSc[x_]:= 1/x + x/6 + 7XA 3/360 + 31JXA 5/15120 +

127XA 7/604800 + 73XA 9/3421440;
sec(x_]:= 1 + x-2/2 + 5XA 4/24 + 6JXA 6/720 + 277XA 8/8064 +

50521JXA 10/3628800;

149

eXp[x_]:- 1 + X +X-2/2 + xA3/6 + XA4/24 + x^5/120 + xA6/720 +
xA7/5040 + XA8/40320 + xA9/362880]

150

VIII. FILE VOLPWOT1.NA

(*Copyright Dennis A. Polaski, Nay 4,1993 *

polplotl:=
Module[(I

func, limitsknown, theroots, lowerlimit,
upperlimit, newcurve, curvesknown, temp,

citranscend;
func=Input["Enter the polar curve which bounds the region.

r = "];
func=func I.sqrt->Sqrt;
func=func /.pi->Pi;
func=func I.q->Q;
revfunc=Replace~func, Sqrt~x_] ->x]
limitsknown=Input("If the limits are known type y,
otherwise type n."];

If (limitsknown===y,
{lowerlimit=Input["Input lower limit."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit /.pi->Pi;
While~lowerlimit <-N[Pi), (lowerlimit=Input["The lowerlimit
can not be less than -Pi, input lower limit again.");
lowerlimit=lowerlimit /.sqrt->Sqrt;
lowerlimit=lowerlimit /.pi->Pi;

upperlimit=Input["Input upper limit.");
upperlimit=upperlimit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N(Pi), (upperlimit=Input("'The upperlimit
can not be greater than 2Pi, input upper limit again.");
upperl imit=upperl imit I.sqrt->Sqrt;

1,elrtupzlni i>i

(lowerlimit=O.; upperlimit= 2PiJ];

rmtranscend;
max=Max[DeleteCases(Table~func /. Q -> values,
(values, 0, 2Pi, .25)),xComplex));

rayl=N[(func /.Q->lowerlimit));
ray2=N((func I.Q->upperlimit)J;

151

llequivalent=N(Nod~lowerlimit, 2PiJ J;
ulequivalent=N[Mod~upperlinit, 2Pi]];

1ff lowerlimit < 0, liequivalent- 2 Hf Pi]+lowerlimit,
liequivalent- lowerlimit];
If [upperlimit < 0, ulequivalent- 2 N[Pi)+upperlimit,
ulequivalent- upperlimit];

1ff (rayl-=ray2) && (llequivalent==ulequivalent)l
(rayl-=0 && ray2=-O),(
PolarPlot [func, (Q, lowerlimit, upperlimit),
AxesLabel -> ("x","y"), AspectRatio -> Automatic,
PlotRange-> ((-1.02 max, 1.02 max),(-1.02 max, 1.02 max)))),

Show [PolarPlot (func,({Q, lowerlimit, upperlimit),
DisplayFunction -> Identity, AxesLabel -> (xy)
AspectRatio -> Automatic, PlotRange-> ((-1.02 max,1.02 max),
(-1.02 max, 1.02 max))),
Graphics[(
Lile[(((0,0),(Cos[lowerlimit]*rayl, Sin(lowerlimit]*rayl))],
Line[((0,0),(Cos~upperlimit]*ray2, Sin~upperlimitJ*ray2))],

DisplayFunction-> SDisplayFunction])];

ptranscend;
theroots=NSolve [(r-==0, r==revfuric), (r, Q)];
theroots=N[{r,Q) /. theroots];

If~theroots=!=(r,Q) && theroots !{,
theroots=DeleteCases [theroots, (rý_, QComplex I
Abs(Im[Q)]>.l)];
theroots=ReplaceAll~theroots,(r_,Q_) -> (r,Re[Q])J;
rmtranscend;

theroots=Table [FindRoot [rev func==0,
(Q,theroots[[m,2]J)) , (m,Lerigth~therootsJ)];
theroots=(0,Q) /. theroots;
theroots=N[Union~theroots,(L))];
theroots=Union [theroots, theroots+ N [Table [(0, 2Pi),
(i,Length~theroots)])f);
theroots=Select[theroots, (# [[2))<=N[upperlimit) &
#[[2]] >= N~lowerlimit])&];
theroots=Union[N[(Round(100*theroots])/100) ,0)];

rutranscend;

If~lirnitsknown=!=y,
If~theroots=!=(r,Q) && theroots!=() &

Length~theroots) >=1,(
Print("")

152

Print["The polar curve r is equal to zero when Q is:
",Map(topi,Transpose[theroots](2J]]

Pause[4);
newcurve-Input("The polar curve is plotted from Q=O
to Q=2 Pi. If you want to change the limits type y, otherwise
type n.'1];

If~newcurve===y,(
lowerlimit=Input["Input new lower limit."U);
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
While~lowerlimit <-N[Pi], (lowerlimit=Input("The lower limit
can not be less than -Pi, input lower limit again."];
lowerlimit=lowerlimit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;

upperlimit=Input("Input new upper limit."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
While~upperlimit>2 N[PiJ, (upperlimit=Input("The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
1];

rayl=N((func I.Q->lowerlimit)];
ray2=N[(func I.Q->upperlimit)];

llequivalent=N[Mod~lowerlimit, 2Pi]];
ulequivalent=N(Mod(upperlimit, 2PiJ];

If(lowerlimit < 0, llequivalent= 2 N[Pi]+lowerlimit,
llequivalent= lowerlimit];
If~upperlimit < 0, ulequivalent= 2 N[Pi]+upperlimit,
ulequivalent= upperlimit);

If[(rayl==ray2) && (llequivalent==ulequivalent)l
(rayl==0 && ray2==0),(
PolarPlot[func, (Q, lowerlimit, upperlimit),
AxesLabel -> ("1xOO,"y"), AspectRatio -> Automatic,
PlotRange-> {{-1.02 max, 1.02 max),(-l.02 max, 1.02 max))]),

Show[PolarPlot(func, (Q, lowerlimit, upperlimit),
DisplayFunction -> Identity, AxesLabel -> ("Ix"," 1ye),
AspectRatio -> Automatic, PlotRange-> ((-1.02 max,1.02 max),
(-1.02 max, 1.02 max))],
Graphics[(
Line(((O,O),(Cos~lowerlimitJ*rayl, Sin~lowerlimitJ*rayl))),

153

Line[A(O,O),(Coslupperlimit]*ray2, Sin~upperliulit)*ray2))J,

DisplayFunction-> $DisplayFunction])

H;

154

IX. FILE POLPLOT2.MA

(*Copyright Dennis A. Polaski, May 4,1993 *

polplot2:=Module[((I
citranscend;
funcl=Input["Enter one of the polar curves which bounds the
region.

r ="]
funcl=funcl I.sqrt->Sqrt;
funcl=funcl I.pi->Pi;
funcl=funcl I.q->Q;
func2=Input["Enter the other polar curve which bounds the
region.

r ="]
func2=func2 I.sqrt->Sqrt;
func2=func2 I.pi->Pi;
func2=func2 I.q->Q;

limitsknown=Input["If the limits are known type y,
otherwise type n.");
If[limitsknown===y,
lowerlimit=Input("Input lower limit."];
loweri imit=lowerl imit /.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
upperlimit=Input("Input upper limit."];
upperl imit=upperl imit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi),
(lowerlimit=O; upperlimit=2 N[PiJ)];
bothfunc= (funcl, func2 1;
ptranscend;

If[(funcl,func2)=!=((funcl,func2) /. Sqrt~x)J->x),
theroots=NRoots (fun JA 2==func2 A2, Q],
theroots=NRoots~funcl==func2, Q];

If £theroots=!=False,
theroots= Table~theroots[[i,2fl, (i,Lengthftheroots])];
theroots=DeleteCases[theroots, QComplex I;Abs[Im[Q))>. 1);
theroots=ReplaceAll~theroots, Q_ -> Re[QJ]
rmtranscend;

theroots=Table(FindRoot~funcl==func2, {Q, theroots[[in])]
(in, Length(theroots] }];
theroots= Q /. theroots;
theroots=N [Union [theroots, {}l

theroots=Union~theroots, theroots + N[Table[2Pi,

155

(j, Length~theroots]) 33;
testroots=Union(Select(N[Round~theroots*100]/100],
(#>=N(-Pi] && #<cN((5/2) Pi])&].,()];
theroots=Select(theroots, (*<= N~upperliiuit] &
#>- N~lowerlimit])&];
theroots=Union[N((Round[lOO*theroots])/lOO], ()];

theroots=Transpose (Select (Table[((theroots [[1]],
(Abs~funcl-func2] /. Q-> theroots[[i)))<.Ol),
(i,l,Length~therootsj)],(#((2]J==-True)&]](Ll]];
If~theroots===() (1)3,theroots='() ;

maX=(O,O);
For~rr=l, rr<=2, (rval=rr; ++rr;
max((rval]]=Max(DeleteCases(Table~bothfunc((rval)]
/. Q->values, (values, 0, 2Pi, .25)], xComplex]J)H;
max=Max(maxJ;
plotroutine;

If (limitsknown===n,
If[Length~theroots]==l,
Print(["'I
The two polar curves intersect at Q-
topi(theroots(Cl]]] 3]1;
If[Length~theroots] >1,
Print("'The two polar curves intersect at Q:""

"i, Map~topi,theroots] 1];
Pause(lJ ;Pause[4];
newcurve=Input["'The polar curvns are plotted from Q=0
to Q=2Pi. If you want to change the limits type y, otherwise
type n.11];
If~newcurve===y,(
lowerlimit=Input["Input new lower limit."];
lowerl imit=lowerl imit I.sqrt->Sqrt;
lowerlimit=lowerlimit I.pi->Pi;
While~lowerlimit <-N[Pi], (lowerlimit=Input("'The lower limit
can not be less than -Pi, input lower limit again."];
lowerl imit=lowerl imit /.sgrt->Sqrt;
lowerlimit=lowerlimit /.pi->Pi;

upperlimit=Input["Input new upper limit."];
upperlimit=upper' imit /.sqrt->Sqrt;
upperlimit=upperlimit /.pi->Pi;
While~upperlimit>2 N[Pi], (upperlimit=Input("'The upperlimit
can not be greater than 2Pi, input upper limit again."];
upperlimit=upperlimit I.sqrt->Sqrt;
upperlimit=upperlimit I.pi->Pi;
H];
rmtranscend; plotroutine
H3;
H);

156

LIST OF RZFERZNCES

1. Finney, R. and Thomas, G., Calculus, Addison-Wesley
Publishing Company, Reading, Massachussets, September
1990.

2. Bittinger, M. and Morrel, B., ARplied Calculus, Addison-
Wesley Publishing Company, Reading, Massachussets, 1988.

3. Berkey, Dennis, Calculus, Second Edition, Saunders College
Publishing, New York, NY, 1988.

4. Blachman, Nancy, Mathematica: h Practical ApDroach,
Prentice-Hall, Inc., Englewood, New Jersey, 1992.

5. Blachman, Nancy, The Mathematica Quick Reference Guide,
Variable Symbols, Inc., Berkeley, California, 1990.

6. Wolfram, Stephen, Mathematica: A System for Doing
Mathematics by Computer, Addison-Wesley Publishing
Company, Reading, Massachussets, 1991.

157

INITIAL DISTRIBUTION LIST

1. Defense Technical Infomation Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor David Canright (Code MA/Ca) 2
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Richard Franke, (Code MA/Fe) 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Beny Neta (Code MA/Nd) 2
Naval Postgraduate School
Monterey, CA 93943-5000

6. LTC John Robinson 1
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996-1786

7. Amy Young 1
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820-7237

S. CPT Dennis A. Polaski 5
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996-1786

158

