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ABSTRACT

The primary objective of this research is to explore how a back-propagation neural

network (BNN) can be applied to isolated-word speech recognition. Simulation results

show that a BNN provides an effective approach for small vocabulary systems. The

recognition rate reaches 100% for a 5-word system and 94% for a 10-word system. The

general techniques developed in this thesis can be further extended to other applications,

such as sonar target recognition, missile seeking and tracking functions in modem

weapons systems, and classification of underwater acoustic signals.
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I. INTRODUCTION

The demand for real time processing in a vast majority of applications (e.g., signal

processing and weapon systems) has led researchers to seek novel approaches to solve the

conventional serial processing bottleneck. Artificial neural networks, based on human-like

perception characteristics, provide one such approach that is currently receiving much

attention. Due to the significant progress in the computer field and new technology, neural

networks, once considered a dead area, are resurrecting from a four-decade "dormant"

period.

The primary objective of this thesis research is to explore how neural networks can

be employed to recognize isolated-word speech as an alternative to the traditional

methodologies. The main benefit of this study would be its contribution toward

understanding the neural network-based techniques for solving the common but difficult

problem of pattern recognition, particularly in automatic speech recognition (ASR). This

technique can be further extended to various other important practical applications, such

as sonar target recognition, missile seeking and tracking functions in modern weapon

systems, and classification of underwater acoustic signals.

The thesis is organized as follows. Chapter II introduces neural networks. Reasons

for using neural networks in speech recognition are briefly discussed, and the structure

and characteristics of a back-propagation neural network (BNN) are described. Chapter



III reviews basics of speech recognition and describes techniques to estimate the

parameters that are used as features of the speech signal in the recognition step. Chapter

IV presents the results of a small vocabulary BNN system. Chapter V summarizes the

important results, discusses the limitations of the proposed BNN system, and offers ideas

for further reseach.
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II. NEURAL NETWORKS

A. WHY NEURAL NETWORKS?

Recently, investigations have revealed the potential of neural networks as useful

tools for various applications that require extensive categorization. Several applications

of neural networks have been proven successful or partially successful in the areas of

character recognition, image compression, medical diagnosis, and financial and economic

prediction [Ref. 11. The power of parallel processing in neural networks and their

ability to classify the data based on selected features provide promising tools for pattern

recognition in general and speech recognition in particular.

Traditional sequential processing technology has serious limitations for

implementing pattern recognition related problems. The classical approach for pattern

recognition is often costly, inflexible, and requires data intensive processing

[Ref. 21.

On the other hana, neural networks accomplish the processing task by training

instead of programming in a manner analogous to the way the human brain learns.

Unlike traditional Von Neumann sequential machines where formula and rules need to

be specified explicitly, a neural network can derive its functionality by learning from the

examples presented.
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B. ARCHITECTURE

Neural networks consist of a large number of neurons or processing elements, PE

for short. Each PE has a number of inputs with associated connection weights as shown

in Figure 1. These weighted inputs are summed and then mapped through a nonlinear

threshold function. The threshold function, also called an activation function or transfer

function, is continuous, differentiable and monotonically increasing [Ref. 1]. Two widely

used threshold functions are the sigmoid

fl1 (2-1)

1 +e

and the hyperbolic tangent

f-e- (2-2)
e -e

The processing elements are arranged in layers in a predefined manner. Each PE

processes the inputs it receives via its weighted input connections and provides a

continuous value to other PEs via its outgoing connection.

The basic neuron model shown in Figure 1 can be easily realized in hardware. An

equivalent electrical analog model could be built using an operational amplifier with non-

linear feedback to represent the summing operator and the activation function while the

connection weights could be realized by the input resistors to the operational amplifiers

[Ref. 31.
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Figure 1. An artificial neuron.

C. BACK PROPAGATION NEURAL NETWORKS

Currently, the most popular and commonly used neural network is the back-

propagation neural network (BNN). A typical back-propagation neural network is a feed

forward multi-layer network with an input layer, an output layer, and at least one hidden

layer. Each layer is fully connected to the succeeding layer, however, there is no inter-

connection or feedback between PEs in the same layer. Each PE has a bias input with

an associated non-zero weight. The bias input is analogous to the ground connection in

an electrical circuit in that it provides a constant input value. The data flow from the
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input layer to the output layer. Figure 2 shows a typical multi-layer back-propagation

network with a single hidden layer.

Figure 2. A back-propagation neural network

In a neural network consisting of N processing elements, the input/output function

is defined as [Ref.41:

(2-3)
y = G(xW)

where x = {x,) is the input vector to the network, y = {Yyj}is the output vector from the

network, and W is the weight matrix. The latter is defined as

T T T (2-4)
W = (wI ,w2 ,...,WI)
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where the vectors w,, w2, ... Ws are the individual PE weight vectors, which are given

by

WI'
w,,I (2-5)

W U= , i= 1, 2, N.

Wi.

These connection weights adapt or change in response to the example inputs and

the desired outputs according to a learning law. Most learning laws are formulated to

guide the weight vector w to a location that yields the desired network performance.

There exist many learning laws depending on the type of application: delta rule or LMS

algorithm, competitive learning, and adaptive resonance theory to name a few [Ref. 4].

The back-propagation neural network implements the delta rule to update the

connection weights. The delta rule is a modification of the least mean square (LMS)

algorithm in which the global error function E between the current output, y,, and the

desired output, d, given by

E = -!E1(d-y)2 (2-6)
1 p

is minimized. The resulting weight update equation can be shown to be [Ref. 1]

I S aE + -t (-I (2-7)

where g is the learning rate, v is the momentum term, and s is the number of the layer.

7



The learning rate g is equivalent to the step-size parameter in the LMS algorithm.

Selection of an appropriate value for . is usually done by trial and error. Too large a

learning rate often leads to divergence of the learning algorithm while too small a value

results in a slow learning process. The value of . is required to be in the range 0 < g <

I [ Ref. 41. The momentum term v was added in equation (2-7) to act as a low pass

filter on the delta weight term; it is used to help "smooth" out the weight changes. The

value of v usually lies between zero and one [Ref. 1]. The use of a momentum term has

been found to speed up the learning process considerably. It allows a larger value for ga

yet avoids divergence of the algorithm.

The main mechanism of the back-propagation neural network is to propagate the

input through all layers to the output layer. At the output layer, the errors are determined

and the associated weights, wi, are updated by equation (2-7). These errors are then

propagated back through the network from the output layer to the previous layer (thus the

name back-propagation). The back-propagated error at PE j in layer s is given by

[Ref. 1.]

[ = x1 (1.0 Xj) E e w+1) (2-8)
k

This process is continued until the input layer is reached.



In summary, Artificial Neural Networks, which use highly parallel architectures with

the processing distributed among the PEs, overcome the limitation of the conventional

sequential processing bottleneck. The back-propagation algorithm discussed in this

chapter provides a simple mechanism to implement a nonlinear mapping between input

and output.
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III. BASICS OF SPEECH RECOGNITION

A. EXISTING DIFFICULTIES IN ISOLATED-WORD SPEECH RECOGNITION

Although the field of automatic speech recognition has been in existence for several

decades, many difficulties of ASR still exist and need to be addressed [Ref. 5].

Besides the syntactic and semantic issues in the linguistic theories, speech segmentation

is a big concern. Boundaries between words and phonemes are very difficult to locate

except when the speaker pauses. There is no separation between words as compared with

written language. Although boundaries can be estimated by a sudden large variation in

the speech spectrum, this method is not very reliable due to coarticulation, i.e., the

changes in the articulation and acoustics of a phoneme due to its phonetic content. The

speech signal is context dependent, i.e., the word before and the word after affect how

the signal is formed. The speech signal is also dependent on the speaking mode.

Softness, loudness, and stuttering also affect the speech signal. The environment, such

as a quiet room, background noise, or co-channel interferences, effects the signal

tremendously. The input devices, such as microphone, amplifier, and recorder, also alter

the speech signal [Ref.6].

Due to the asymmetries in producing and interpreting it, speech is a complex signal

for recognition. For effective results, ASR requires an approach that is closer to human

perception, and traditional computing techniques are inefficient at such tasks. Neural
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networks, which are modeled after the human brain, seem to provide a useful tool for

speech recognition.

B. BASICS OF SPEECH RECOGNITION

Speech data are often redundant and too lengthy to apply the whole signal to the

recognizer. A pre-processing step is often required to achieve high efficiency. This step

involves determining the discriminating characteristics that are particular to the signal

[Ref. 21. Most speech recognizers utilize only the aspects that help in sound

discrimination and capture spectral information in a few parameters to identity the spoken

words or phonemes. Typical speech signal parameters that are used as features are LPC

coefficients, energy, zero-crossing rate and voiced/unvoiced classification.

Most ASR systems utilize the same techniques as those used in the traditional

pattern recognition area. The procedure to implement these systems involves several

steps: normalization, parameterization, feature extraction, similarity comparison, and

decision. Figure 3 shows a block diagram of the general procedure for speech recognition

[Ref.7]. The speech signal is fed into a pre-processor which performs the

amplitude normalization, parameterization and generates a test template based on these

features. The test template is then compared with a set of pre-stored reference templates.

The reference template that most closely matches the test template is determined based

on predetermined decision rules.

11



Speech Refemce Recognition
template t=x / Word

step: Decion/
- Normaliation Compariso rule
- Parametrization
- Featumre extraction

Figure 3. Pattern Recognition block diagram for ASR.

1. Normalization

The magnitude normalization step attempts to eliminate the variability in the

input speech signal due to environment --- variations in recording level, distance from the

microphone, original speech intensity, and loss of signal in transmission.

2. Parameter estimation

The parameterization step involves converting the speech signal into a set of

statistical parameters that maximize the likelihood of choosing the right output features

corresponding to the input signal. Since most of the useful speech acoustic details are

below 4 KHz, a bandwidth of 3 to 4 KHz is suffic;ent to represent the speech signal.

12



Experience has shown that using extra bandwidth actually deteriorates the performance

of the ASR [Ref. 51. In general, eight to fourteen LPC coefficients are considered

sufficient to model the spectral behavior of the short-time speech spectral envelope

[Ref.31. Other parameterization techniques, such as cepstral analysis, can also be used.

The test template is formed by an arrangement of the features, such as LPC or Ceptral

coefficients, short-time energy, short-time zero-crossing rate, and V/U switch.

3. Similarity comparison and decision

Even for a single speaker, the same utterances are spoken with different

durations and at different speaking rates when repeated; therefore, a normalization of the

reference utterance along the time axis is needed before the comparison step in figure 3

[Ref.51. Linear time warping, which is accomplished through frame interval adjustment

before parameterization or through decimation/interpolation of the feature sequence, can

be used to partially overcome this problem. Linear time warping is simple to implement;

however, it ignores the non-linearity of the speaking-rate variation. For example, the

energy of long and short versions of the same word does not distribute evenly for each

phoneme but is often concentrated on a dominant vowel. Other approaches append silence

to the ends of the shorter utterances, using the length of the longest utterance as the

reference. The test template is then compared with the reference templates based on the

Euclidian distance or LPC distance measure. The word corresponding to the reference

template that yields the minimum distance is announced as the word being spoken.

When the ASR is accomplished by neural networks, the comparison and decision

steps are performed through training. The neural network is trained by presenting

13



examples of the reference templates. A learning algorithm based on the delta rule

discussed in chapter two is used to minimize a global error function between the current

output and the desired output. Once the network is "'rained", i.e., the error or the delta

weight term (w11 ,, - w~ij is less than a pre-set threshold, a final set of weight values are

obtained and used as the network characteristics. The unknown (or test) signal is then

passed through this network with fixed weight values; the word corresponding to the

highest value in the output vector is the word being recognized. The recognition rate is

then calculated based on the percentage of correctly identified outputs.

In short, understanding the techniques and related difficulties in conventional speech

recognition will help identify the key parameters to form the feature vector for the back-

propagation based speech recognition system reported here.

14



IV. SOFTWARE SIMULATIONS STUDIES AND RESULTS

A. DEVELOPMENT OF SIMULATION

In this section, the back-propagation neural network is applied to speaker

independent speech data extracted from the TIMIT database. Several experiments were

conducted using NeuralWorks Professional IT/Plus' software, covering the effects of

different parameters and feature vectors that are discussed later in the chapter.

1. Timit database

The speech data used in this thesis, for both training and testing, were

extracted from the TIMIT database. The data was prepared by the National Institute of

Standards and Technology (NIST) with sponsorship from the Defense Advanced Research

Project Agency's Information Science and Technology Office (DARPA-ISTO). Text

corpus material design was a joint effort among the Massachusetts Institute of

Technology, Stanford Research Institute, and Texas Instruments [Ref.8].

TIMIT contains a total of 6300 sentences spoken by 630 speakers from 8

different major geographical areas. The text material consists of phonetically-compact

sentences as well as phonettically diverse sentences to provide a good coverage of

phoneme utterances and add diversity to the phonetic contexts. Each sentence is broken

down into four different representations: waveform, text, word, and phoneme. The

NeuralWorks Professional Il/Plus@ is a registered trademark of NeuralWare, Inc.
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waveform is the speech data in the original digitized format. The text is the orthographic

transcription of the words. Word and phoneme representations use time-aligned word and

phoneme transcription, respectively. The boundaries were aligned with the phonetic

segments using dynamic string alignment program. For more details, refer to the

documentation of the TIMIT database [Ref. 81.

The original continuous speech database files were first converted into the

European multi-lingual speech input/output assessment methodology and standardization

(SAM) speech database format and then into the ASCII format. Once in this from, they

can be processed using MATLAB2.

2. NeuralWorks Professional H1/Plus software

The results of the experiments conducted in this thesis are derived from

NeuralWorks, a simulation software program from NeuralWare, Inc.

NeuralWorks is a comprehensive multi-paradigm prototyping and
development system used to design, build, train, test and deploy
neural networks to solve complex, real world problems. It allows
[the user] to easily generate over 20 well known network types, or
design ... custom networks. [One] can display the networks
through network diagrams or Hinton diagrams through an extensive
instrumentation package. A set of powerful diagnostic capabilities
let [the user] monitor and display weights, errors and activation
levels in graphical formats.

3. Speaker independent system

In this research, three speech recognizers, consisting of a 3-word, 5-word and

10-word vocabulary, were developed using a back-propagation neural network. These

2 MATLAB® is a registered trademark of The MathWorks, Inc.
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recognizers were trained using speech recordings of a variety of speakers, resulting in a

speaker-independent system. Figure 4 shows the block diagram of a typical 10-word

recognizer. The speech signal is passed through an end point detection block to isolate

the words. The input vector is then formed by computing the necessary features and fed

into the back-propagation neural network. The output vector is first normalized and then

compared with the desired output vector, e.g., (1,0,0,0,0,0,0,0,0,0) for the first word,

(0,1,0,0,0,0,0,0,0,0) for the second word, and so on. The recognition rate is calculated

based on the percentage of correctly matched outputs.

All pattern recognition tasks, including ASR, utilize two phases: training and

testing or recognition. Although there are some general guidelines for the size of the

training and testing data, in particular problems one is often limited by the available data.

Larger data sets produce more reliable results with lower variances on the estimates of

performance (error rate). The training set used for the 10-word recognizer includes 100

words spoken by 10 male speakers from one major geographic region. There are two

testing sets: one includes 100 words spoken by 10 speakers and the second includes 380

words spoken by 38 different speakers. For the 5-word and 3-word recognizer, the

number of speakers remains the same, but the total number of words for the training data

reduces to 50 and 30, respectively. The testing data consist of 190 words (5x38) for the

5-word recognizer and 114 words (3x38) for the 3-word recognizer.

17
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Figure 4. A typical 10-word recognizer

4. Preprocessing and feature extraction

The original speech signals from the database are digitized at 16 KHz. Since

most of the energy for voiced sounds is concentrated below 4 KHz [Ref. 3], the speech

signals am low pass filtered to a bandwidth of 4 KHz and decimated to remove the

redundancy. The input vector to the back-propagation neural network consists of linear

18



predictive coding coefficients, a., error variance, E, short time energy function, E. short

time average zero crossing rate, Z., and voiced/unvoiced discrimination, VAL

Speech is a non-stationary and time-variant signal. To cope with the temporal

variability, short-time processing techniques are used. Short segments of the speech

signal are isolated and processed as if they were segments from a signal that is

statistically stationary.

There are two methods of segmenting the speech signal. The first one

segments the speech signal into fixed length frames. The second divides the speech

signal into a fixed number of frames with variable length. The latter was used in this

work to deal with the non-uniform word length in the speech recordings. The digitized

speech signal is segmented into 10 frames of 10 to 40 milliseconds each depending on

the length of a given word in the vocabulary. Each frame is weighted by a hamming

window. A brief summary of the processing steps is given in Figure 5 [Ref.91.

The digitized speech signal sampled at 16 KHz is first pre-processed. It is

passed through a lowpass filter and decimated to 8 KHz; the signal is then segmented into

10 variable length frames. The feature vector is obtained by computing the LPC

coefficients, the error variance, the short time energy, the zero crossing rate and the

voiced/unvoiced classification for each segment. The Matlab programs for processing

these parameters in the feature vector are listed in Appendix A.
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Figure 5. Pre-processing block diagram.

a. LPC coefficients and error variance

Linear predictive analysis is a technique for estimating the basic speech

parameters, e.g., formants, spectrum, and vocal tract area function [Ref. 3]. A unique set

of parameters is determined by minimizing the sum of the squared error between the

actual and the predicted speech signal. The LPC parameters provide a good

20



representation of the gross features of the short time spectrum. The poles of the transfer

function indicate the major energy concentration in the spectrum, and the error variance

indicates the energy level of the excitation signal [Ref. 5]. The algorithm used to

compute the LPC coefficients is the covariance method which requires solving a set of

leastsquare based normal equations; Matlab Code for this is included in Appendix A.

b. Short-time energy function

The short-time energy function is used to reflect the amplitude variation

between voiced and unvoiced speech segments. This quantity is defined as

En = • x2(m)h(n-m) (41)

where h(n) = w2(n), and w(n) is the Hamming window (a length of 50 is used in this

experiment).

c. Short-time average zero-crossing rate

The short-time average zero-crossing rate is a simple measure of

frequency content of the speech signal. This quantity is defined as

= (4-2)
Z= I sgn[x(m)] - sgn[x(m-1)] I w(n-m)

where {1 ~)- 43
sgn[x(n)l] = x(n) (4-3)

and a n dW'n 0 :ý n & N - I1 (4 -4 )w(n) = 0 ~Z~'(4

1 otherwise.
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d. Voicedlunvoiced discrimination

There is a strong correlation between the energy distribution and the

voiced/unvoiced classification of speech. The speech signal corresponding to each word

is divided into 10 smaller segments for classification as voiced or unvoiced speech. The

differentiation between voiced and unvoiced segments is accomplished by setting a

threshold based on the short time energy function. For energy values higher than 0.8 of

the maximum level, the segment is treated as voiced and assigned a value of 1. For

values of energy lower than 0.2 of the maximum level, the segment is classified as

unvoiced and assigned a value of 0. Any mid-level is considered intermediate and

assigned a value of 0.5.

B. RESULTS AND ANALYSIS

For consistency and ease of comparison for different cases, BNN parameters are

kept constant in all experiments reported here. The learning algorithm used is the delta

rule. The transfer function is hyperbolic tangent. The values of momentum and learning

rate are 0.2 and 0.5, respectively. The training cycles used are 5000 for 3- and 5-word

networks, and 10000 for the 10-word network.

1. The feature vector

The performance of a network varies drastically depending on the features

used in the training and testing of the network. Too many features may decrease the

efficiency of the network since it takes too long to train the network, while too few

features may degrade the network's performance.
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Two experiments are conducted to emphasize the importance of the choice of

the features used in the preprocessing step. The first experiment only uses the LPC

coefficients and the error variance. The second one uses all features: LPC coefficients,

error variance, short time energy, short time average zero crossing rate, and

voiced/unvoiced discrimination.

In the first experiment, a 4th order LPC analysis is performed; for each frame,

a set of four LPC coefficients is generated along with the error variance. Thus the input

vector to the recognizer consists of a total of fifty parameters per word -- five parameters

per frame and ten frames per words.

For the second experiment, the short-time energy, the short-time average zero-

crossing rate, and the voiced/unvoiced switch are also computed for each frame, making

a total of eighty parameters per word. The results are summarized in Table 1. For a

small vocabulary set, the recognition rates do not change much between the two

experiments. With the 38-speaker testing set, the recognition rate remains 100% for the

3-word recognizer in both experiments. For the 5-word recognizer the rate decreases

from 94.7% to 91.6%. For the 10-word recognizer, the result not only deteriorates from

91.3% to 63.7%, but also the training time increases drastically from 10000 to 80000

training cycles.
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TABLE 1. EFFECT OF CHOICE OF FEATURES ON RECONGITION RATE

Training Vocabulary Error Recognition
vector size rate

50x30 3 words 0 100%
50x50 5 words 16/190 91.6%
5Ox100 10 words 138/380 63.7%

80x30 3 words 0 100%
80x50 5 words 10/190 94.7%
80x100 10 words 36/380 91.3%

2. LPC order

The order of the LPC coefficients plays an important role in the performance

of the network. Four experiments with different LPC orders were conducted on a 10-

word vocabulary back propagation network with 10 speaker testing set. A full feature

vector is used for all of the following experiments.

TABLE 2. EFFECT OF LPC ORDER ON RECOGNITION RATE

LPC order Recognition rate

2 84%
4 94%
8 92%

12 86%

The recognition rates shown in table 2 indicate that the fourth order LPC

system captures the essential features of the speech data. The second order system

apparently does not have enough parameters to differentiate between the words.

However, as the LPC order increases, the complexity of the system also increases, and
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the information becomes redundant, making the network more cumbersome for training

and recognition. This can actually result in decrease recognition rate, as shown.

3. Vocabulary size

The size of vocabulary used in the training and testing set also affects the

recognition rate of the network. As the number of words used in the network increases,

the performance decreases rapidly. The results are summarized in Table 3. With a 3-

word vocabulary and a 12th order system, the recognition rate is 96.5% for the 380 word

testing set. This rate decreases to 93.2% for a 5-word system and deteriorates to 86.6%

for a 10-word system.

TABLE 3: EFFECT OF VOCABULARY SIZE AND LPC ORDER
ON PERFORMANCE OF BNN

Vocabulary size 3 words 5 words 10 words

Testing set size 100wrds 380wrds 100wrds 380wrds 100wrds 380wrds

2nd order LPC 100% 100% 96% 94.2% 84% 87%

4th order LPC 100% 100% 100% 94.7% 94% 91.3%

8th order LPC 100% 99.2% 96% 94.7% 92% 89%

12th order LPC 100% 96.5% 98% 93.2% 86% 86.6%

4. The number of PEs in hidden layers and the number of hidden layers

The structure of the network also affects the performance of the network. A

back-propagation neural network generally has one to two hidden layers. The perfor-

mance of the network increases as the number of PEs increases to an optimal number and
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then starts to decrease. Here the optimal number of PEs in the hidden layer is determined

experimentally; a hidden layer with 24 PEs is found to perform well for the speech data.

The single hidden-layer network is found to give better results than the network with two

hidden-layers. The results are summarized in tables 4 and 5.

TABLE 4. EFFECT OF HIDDEN LAYER ON THE RECOGNITION RATE

Testing set size
100 wrds 380 wrds

one hidden layer 94% 91.3%
80-24-10

Two hidden layers 90% 87.4%
80-24-12-10

TABLE 5. EFFECT ON THE NUMBER OF PEs IN THE SINGLE
HIDDEN-LAYER NETWORK.

PE in Testing set size Training cycles
hidden layer 100 wrds 380 wrds required

12 91% 90% 10000
24 94% 91.3% 10000
32 89% 88.4 15000
64 89% 88 25000
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5. Learning rate and Momentum

For a learning rate of 0.5, the effect of the momentum term was

experimentally studied and the results are shown in Table 6. A momentum of 0.1 was

found to give the best recognition rate and fast training.

TABLE 6. EFFECT OF MOMENTUM ON RECOGNION RATE

Testing set of Training cycles

Momentum 100 wrds 380 wrds required

.01 93% 90% 5000

.1 97% 92.1% 5000

.2 94% 90.5% 10000
.3 90% 88.4% 15000
.4 73% 75.8% 30000

6. Effect of embedded noise

One special characteristic of the neural network is its non-succeptability to

noise. Its ability to classify in a noisy environment, which is demonstrated here, makes

it suitable for ASR. Noise added to the speech signal only affects the performance of the

network slightly. Uniform random noise may be added to the weighted sum input signal

prior applying the weight matrix. The source and the amount of noise added is

determined by the mode (learning or testing) and the appropriate parameter in the

"Temperature" row from the "learning schedule" [Ref. 1]. Table 7 shows the results of

a 10-word vocabulary using a 4th order LPC system with 20% added noise.
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TABLE 7. EFFECT OF EMBEDDED NOISE

Testing set of
100 wrds 380 wrds

No noise 94% 90.5%

With 20%
added noise 91% 89.2%

In summary, the choice of the feature vector in the design of a BNN is very

important. The discriminating characteristics that are particular to the speech signal must

be recognized to achieve good results. Also, the information fed to the network should

be adequate and optimal, i.e., too little information will lead to a low recognition rate, and

too much information will result in extensive training time.
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V. CONCLUSIONS

A back-propagation neural network, combined with speech signal processing

techniques, is used to develop a speech recognition system. Specifically, a BNN was

used to design a 10-word speech recognizer. Experiments were conducted on the

recognizer using recorded speech data from the TIMIT database and the simulation

software from NeuralWorks. The main observations from these experiments are

summarized below:

(1) BNN is an effective approach for small vocabulary ASR. The recognition rate is
100% in most cases for the 3 and 5-word vocabulary systems, and 94% for the
10-word system.

(2) The choice of feature vector plays an important role in the performance of the
BNN. The recognition rare may decrease drastically or the system may not
converge at all if the features are not correctly chosen. The feature vector chosen
in the experiments, which consisted of the LPC coefficients, short time energy,
zero-crossing rate and voiced/unvoiced classification, worked well and provided
good results for the systems studied.

(3) The techniques developed in this research on isolated-word speech recognition can
be extended to other important practical applications, such as sonar target
recognition, missile seeking and tracking functions in modern weapon systems,
and classification of underwater acoustic signals. However we cannot make
predictions about the likely performance of the methods in these areas until they
are actually tested.

In this research on ASR, all experiments used male speakers from one specific

geographical region. A larger, more diverse group of speakers should be used for a more
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general case. In addition, the 10-word recognizer system is small for most real

applications. Future research should be directed toward larger vocabulary systems,

involving say 50 words or more.

The emphasis of the research was to develop an isolated-word speech recognizer

using a BNN. The techniques and schemes used in training and testing the network to

improve the recognition rate, as well as to keep the system stable and the convergence

rate high, worked well in the experiments reported in the thesis. However, this set of

techniques may be only applied to this particular case. There are still no firm rules

available to train the networks. Most of the rules of thumb are experiment dependent.

More widely applicable learning and testing schemes are needed to further improve the

recognition rates as well as increase the vocabulary size.
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APPENDIX A. SIMULATION PROGRAMS

"% Covarc.m Covariance method to solve the leastsquare
"% normal equation (X'X)a=(S,O)'

% Usage: [A,S]=covarc(x,p,N);
% signal x of length N and order p

function [A,S]=covarc(x,p,N);
for i = l:(N-p)

for j = l:(p+l)
xp(i,j) = x(p+l+i-j);

end
end
Rx = xp'*xp;
[m,n] = size(Rx);
Rxp = [Rx(2:m,2:n)];
A = [inv(Rxp)*(-Rx(2:m,I))];
S = Rx(l:n)*[I;A];
S = S/N;

% *************************************************************

% stef.m Short time energy function

% Usage : y=stef(x);
% x is input speech vector and y is corresponding
% y corresponding short Time Energy function En.

function xos=stef(xi)
[m,nI=size(xi);
if n=•1,

xi=xi'; % make sure input is a row vector
end;
N= input (' enter window size (50 to 300 samples) N? ');
% N=50 is used;
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wt--input (' choose window type 0. Rectangular 1. Hamming? ');
% wtfl; hamming window is used
if wt==0

window=ones(I,N);advance=fix(N/2);wtstrng=' Rect. Win';
else

window=harnming (N)';advance=fix(N/4);wtstrng=' Harem. Win';
end
%shortseq = 0;
if length(xi)<N % case if length of input<length of window

xi=[xi,zeros(1,N-length(xi))]; % zero pad
end
input=xi.^2;
imp.response=window.A2;
xo(l)=sum(input(1 :N).*imp response);
for n=advance:advance:length(xi)-N,

xo(l+n/advance)=sum(input(n:n+N-I).*imp-response);
end;
xos=sum(xo);
subplot(21 1)
clg; plot(xo);
xlabel('time');title(['N=',num2str(N),wtstmg]);
ylabel('En');grid;

"% function xos=stazcr(xi)
"% stzcr.m Short time average zero crossing rate

"% usage : y=stazcr(x)
"% x : input speech vector
"% y : Short-Time Avarage Zero-Crossing Rate Zn

function xos=stazcr(xi)
[m,n]=size(xi);
if n=-l,

xi=xi'; % make sure input is a row vector
end;
%N= input (' enter window size (50 to 300 samples) N? ');
N=50; % window length N=50
%wt--input (' choose window type 0. Rectangular 1. Hamming? ');
wt=l; % hamming window is used
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if wt==O
window=ones( 1,N);advance=fix(Nt2);wtstrng=' Rect. Win';

else
window=haniming (N) ';advance=tix(N/4);wtstrng=' Hamnm. Win';

end
if length(xi)'zN % case if length of input'clength of window

xi=[xi,zeros(1,N-length(xi))]; % zero pad sequence
end
input=abs( sign( [xi(2:length(xi)),OJ )-sign(xi))
xo(lI)=suni(input( I:N).*window);
for n=advance:advance:length(xi)-N,

xo( 1 +n/advance)=sum(input(n: n+N- 1 ). *window);
end;
xos=sum(xo);
subplot(21 1)
cig; plot(xo);
xlabe1( 'time '); title ([ 'N=',num2str(N),wtstrngJ);
ylabel('En');grid;

% voiceunv.m Voiced and unvoied discrimination

% usage: vuv=voiceunv(data)
% function will return 0 if unvoiced

% 1 if voiced
% .5 if in between

function vuv=voiceunv(data)
NSeg=1O;
NSample=fix(length(data)INSeg);
for indx=1 :NSeg,

xx = data((NSarnple/2)*(indx-l1)+ 1:(NSamplet2)*(indx~sl ));
en(indx) = stef(xx);

end;
vuv=sum(en( 1:NSeg));
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% arl2lin.m 12th order AR model coefficients (normalized)

% Usage: arcoeff=arl2lin(data)

function arcoefff=ar I2lin(data)
p=12; % order of AR coefficients

Nd =2;
x=decimate(data, Nd);
NSeg= 10;
NSaniple=fix(length(x)/NSeg);
for indxl=l:NSeg,

xx = x(NSample*(indx 1-1)+ 1:NSarnple*indx 1);
xx = dtrend(xx);
xstore(:,indxl) = xx(:) ./ max(xx);
[a,sJ=covarc(xx,p,length(xx));
aa(:,indxl) = a(*)
astore(:,indxl) = a(:) J1 max(a);
ss(indxl) s;
en(indxl) =stef(xx);

zc(indx 1 )=stazcr(xx);
vuv(indxl1)=voiceunv(xx);

end;
vuv =vuv/max(vuv);
ss=Ss/max(abs(ss));
en=enlmax(abs(en));
zc=zc/rnax(zc);
for indx3=1:NSeg

if vuv(indx3)<.2
vuv(indx3)=0;

elseif vuv(indx3)<.8
vuv(indx3)=.5;

else
vuv(indx3)= 1;

end
end
arcol=aa(:);
scalef--max(abs(arcol));
arcoef=aa/scalef;
arcoeff=[arcoef;ss;en;zc;vuvj;
arcoefff=arcoeff(:)
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% arcoef.m AR coefficients output file

coef = arl2lin(dont(:));
coefl0(1,:) =[coef' 1 00 00 00 00 01;
coef = arl2lin(ask(:));
coefl0(2,:) =[coef' 0 10 00 00 0 00];
coef = arl2lin(me(:));
coefl0(3,:) = [coef' 0 0100 00 0 00];
coef = arl2lin(to(:));
coef 10(4,:) = '.oef' 0 00 10 00 0 001;
coef = arl2lhi(carry(:));
coef3(1,:) = llcoef' 1 0 0];
coef5(1,:) = [coef' 1 0 0 0 0];
coefl0(5,:) = [coef' 0 0 0 0 1 0 0 0 0 0];
coef = arl2lin(an(:));
coefl0(6,:) =[coef' 0 00 0 010 00 0];
coef = arl2lir (oily(:));
coef3(2,:) = [coef' 0 1 01;
coef5(2,:) = [coef' 0 1 0 0 0];
coefl0(7,:) =[coef' 00 00 0 0100 0];
coef = arl2lin(rag(:));
coef3(3,:) = [coef' 0 0 11;
coef5(3,:) = [coef' 0 0 1 0 01;
coefl0(8,:) = [coef' 0 0 0 0 0 0 0 1 0 0];
coef = arl2lin(like(:));
coef5(4,:) =[coef' 0 0 0 1 0];
coefl0(9,:) =[coef' 0 0 0 0 0 0 0 0 1 01;
coef = arl2lin(that(:));
coef5(5,:) = [coef' 0 0 0 0 1];
coefl0(10,:)= [coef' 000 0 00 0 00 1];

% artr.m AR mrining data file

load maddU'mnadd0wrd;
arcoef;,
arall3=coef3;
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save madd03tr.nna coef3 /ascii
uWal5=coef5;
save maddO5tr.nna coef5 /ascii
arall 1O=coefI0;
save maddOltr.nna coef 10 /ascii

load mbomONnbom~wiri;
arcoef;
ara113=[araII3;coef3l;
save mbomO3tr.nna coef3 /ascii
ara115=[~araII5;coef5];
save mbomO5tr.nna coef5 /ascii
arall 10=[arall 10;coef 101;
save mbom~ltr.nna coeflO /ascii

save ar3.nna aral13 /ascii
save ar5.nna arall5 /ascii
save arlO.nna aralilO /ascii
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