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IMAGE DETECTION USING EDGE EXTRACTION ALGORITHMS

CHAPTER 1
INTRODUCTION

The use of passive thermal sensors for detectine and tracking chemical vapor offers the advantage
of covertness, great mapping capability, and a smaller, simpler system design than active detection
using lidar. Unfortunately, these advantages are often outweighed by the difficulty in observing
low-concentration clouds against natural backgrounds. Obvious techniques for improving target
contrast such as frame-to-frame subtraction or thresholding are useful if the background spatial
fluctuations are (1) highly correlated in time between successive frames or (2) considerably less
than the difference between the target and mean background radiance.

The Low Contrast Detection Algorithm (LCDA) currently being used by CRDEC derives a
sequential likelihood ratio detector based on a model developed by Warren in [1,2] for vapor cloud.
Since it was shown by Brilliger that Fourier transforming a wide-stationary time series produced
a set of nearly uncorrelated Gaussian random variables, the clutter could be statistically approx-
imated by a normal distribution and whitened by mapping the data into spatial Fourier domain.
This approach offers improved detection and location performance for imaging sensors under a
much broader class of background conditions than the ad hoc methods currently in use. Based on
the well-established likelihood rational test, Warren was able to improve detection algorithms by
making optimal use of both the spatial and temporal statistics of the background to enhance target
contrast prior to the detection decision.

Despite the success of LCDA in improving low contrast of targets, it requires a parametric model
to statistically describe vapor clouds. It is often the case, however, that a statistical model may not
adequately fit the behavior of a vapor cloud since its characteristics vary with time. Consequently,
such a model-based approach may not yield the desired performance. In this report, we present two
new time-domain methods, Multistage Pulse Code Modulation (MPCM) and relative entropy-based
image thresholding both of which do not require statistical models of vapor clouds like Warren’s
approach.
~ MPCM was developed for image coding at the University of Maryland Baltimore County

(UMBC) in early 1991. The idea of MPCM is to expand the commonly used Pulse Code Modulation
(PCM) to multistage quantization which uses PCM to decompose an image into image components
in multiple stages. Basically, MPCM is a progressive data compression technique which use predic-
tive coding to decompose an image stage-by-stage, then recovers the original image progressively
by adding all image components in different stages. Since the image components generated by
the decomposition process represent different details of the signal, MPCM can be regarded as a
multiresolution technique. The original image can be approximated by first processing the image
component in the first stage, then progressively moving to higher stages until a desired image res-
olution is achieved. The resolution of the signal is refined by continuously processing more image
components in higher stages. A complete treatment of the theory of MPCM is detailed in Chapter
2.

In Chapter 3, it is found that during the course of image reconstruction, edges of objects
can be extracted from the background progressively. The target detection is then accomplished by
detecting the contours and boundaries of potential objects. Each stage represents image des_ription
with different details so that the image component in the first stage retains the most significant
details of the image and the least important information of the image is stored in the last stage.

1




By virtue of this decomposition, we can apply different image preprocessing techniques such as
image enhancement to contrast the objects of interest appearing in a certain stage or filter image
components to remove unnecessary details such as noise. After preprocessing, the original image can
be reconstructed by summing all preprocessed image components. As a result, the reconstructed
image generally enhances desired objects with less noise. Due to this capabilityy, MPCM can be
also viewed as a progressive edge detection technique. For vapor cloud detection, we are often
interested in detection of clouds. In this case, progressive edge detection provides a cost-effective
technique. Without reconstructing the original image, progressive edge detection extracts edges of
objects progressively from the most significant contours to the least important boundaries. One of
chief advantages is that the process is progressive and can be terminated at any stage as long as
the edges of the desired objects are detected and extracted. Another advantage of MPCM is easy
hardware implementation since its coding structure is relatively simple for circuit design. This is
very crucial in real-time processing.

It is also interesting to note that MPCM can be viewed as a top-down gray-level triangle method
opposed to commonly used bottom-up pyramid methods. By introducing a top-down gray-level
triangle structure, MPCM performs both decomposition and reconstruction of images from top to
bottom according to a pre-assigned top-down gray-level triangle. In contrast, a bottom-up pyramid
method decomposes an image from bottom to top by a pre-selected blurring window; however, it
reconstructs the image from top to bottom by interpolation. In Chapter 4, a detailed comparison
is investigated between MPCM and a popular pyramid method developed by Burt and Adelson.

The relative entropy-based image thresholding method was developed in late 1991 and uses an
information theoretic concept, relative entropy as a thresholding criterion to efficiently segment
potential objects from the background. Applying Shannon’s entropy concept to image thresholding
is not new. Several studies have been reported over the past years. All existing entropic methods
use a co-occurrence matrix to define second-order Shannon’s entropy. A co-occurrence matrix is a
transition matrix generated by changes in pixel intensities. For any two arbitrary gray levels ¢ and
J (3, are not necessarily distinct), the co-occurrence matrix describes all intensity transitions from
gray level i to gray level j. Two definitions are of interest, local entropy and joint entropy. Suppose
that ¢ is the desired threshold. ¢ then classifies all pixels in an image into either background or
objects where the background contains pixels with gray levels below or equal to ¢t and the objects
have gray levels above t. The two-region classification further divides the co-occurrence matrix
into four quadrants which correspond respectively to transitions from background to background
(BB), background to object (BO), object to b.ckground (OB) and object to object (OO). The
local entropy is defined only on two quadrants, BB and OO, whereas the joint entropy is defined
only on the other two quadrants, BO and OB. Based on these two definitions, two algorithms were
developed, each of which maximizes local entropy and joint entropy respectively.

The relative entropy-based method given in Chapter 5 is a new approach. Rather than maxi-
mizing entropies of background or object separately as mentioned above, we introduce the concept
of relative entropy (or cross entropy, Kullback-Leiber’s discrimination information and directed
divergence) to measure discrepancy between two probability distributions. Since an image can be
completely described by its probability distribution, the relative entropy can be interpreted as a
measure of the distance between two images. To implement the relative entropy approach, one
calculates the gray-level transition probability distributions of the co-occurrence matrices for an
image to be segmented and a thresholded bilevel image, then determine which threshold minimizes




the discrepancy between these two transition probability distributions, i.e., their relative entropy.
The threshold which has the smallest relative entropy will be used to segment the original image.
As a result, the thresholded bilevel image will be the best approximation of the original image.
Because transitions of OB and BO generally represent edge changes in boundaries and transitions
of BB and OO indicate local changes in regions, a thresholded bilevel image resulting from relative
entropy thresholding must have the best transition match to that of the co-occurrence matrix of
the original image.

In this report. we present the work which had been done during the contract period of 9/1991-
8/1992. The results are categorized into five chapters. Chapter 2 deals with the theory of MPCM.
Chapters 3 and 4 are two applications of MPCM by viewing MPCM as a progressive edge detection
and a top-down gray-level triangle method respectively. Chapter 5 is devoted to the relative entropy-
based approach. Chapter 6 is made of papers which were presented in various conferences under
the support of this contract.

In Chapter 2, we describe the theory of MPCM in detail, particularly, its encoding and decoding
algorithms, and apply MPCM to chemical vapor cloud detection. In Section 2.1, a brief description
of motivation of MPCM is given followed by Section 2.2 on the structure of 1-D MPCM, Section
2.3 on 1-D MPCM encoding and decoding algorithms with extension to 2-D MPCM and Section
2.4 on experiments. In Chapter 3, MPCM is suggested to be used as a progressive edge detection
technique in Section 3.1. In order to demonstrate effectiveness and efficiency of MPCM, MPCM
is implemented progressively to achieve image decomposition, edge detection and reconstruction.
Several experiments are presented in Section 3.2, particularly, chemical vapor cloud detection where
the experiment was conducted based on the data provided by CRDEC. Viewing MPCM as a
top-doum gray-level triangle method, an alternative view of MPCM is given in Chapter 4. Using
this interpretation, MPCM is compared to commonly used pyramid coding methods. Section 4.1
introduces the concept of top-down gray-level triangle and Section 4.2 describes Burt-Adelson’s
botiom-up pyramid method. A detailed comparison is treated in Section 4.3 with experimental
results given in Section 4.4. In Chapter 5, the relative entropy-based approach is described. Section
5.1 gives the design rationale of relative entropy followed by Section 5.2 on a review of previous work
on entropic thresholding methods. In Section 5.3, the proposed relative entropy-based approach is
described in detail. Section 5.4 investigates different experiments to analyze the relative entropy-
based method and compare the performance to that using local entropy-based and joint entropy-
based methods. Finally, Chapter 6 includes a brief conclusion and copies of papers which were
presented in conferences throughout this contract support.
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CHAPTER 2
MULTISTAGE PULSE CODE MODULATION (MPCM)

2.1 Motivation of MPCM

Multiresolution analysis has received considerable attention recently in image processing, par-
ticularly, computer vision [1]. The purpose of multiresolution analysis is to decompose an image
of interest into a set of appropriately localized image components where ea i1 image component
represents different image pattern information. Since the details of an image generally require
characteristics of the physical structures of local scenes with different resolutions, analysis from
coarse resolution to fine resolution provides a tool to localize or zoom in on significant parts of the
signal in time as well as in frequency, thus it is very useful for pattern recognition. Therefore, there
has been great deal of interest in developing multiresolution techniques for image representation.

PCM and DPCM are well-known coding schemes in converting analog signals to digital sig-
nals without and with predictors. Unfortunately, both PCM and DPCM are not multiresolution
techniques. The motivation behind MPCM is inspired by a desire of making PCM and DPCM
progressive and possess a multiresolution property. The idea is to expand single-stage PCM and
DPCM into multistage PCM and DPCM in such a way that an input signal is quantized one level
at a time rather than all levels at a time as is the case do in PCM and DPCM. As a result of
multistage quantization, each stage represents a different signal resolution.

In essence, MPCM has a similar structure ‘o that of multistage quantization [2]. However, the
MPCM presented in this report is unique in three aspects. (1) While at each stage, MQ needs a
new code book for the qantizer used in that stage, MPCM uses fixed quantization output levels.
Therefore, using the Lloyd/LBG algorithm (2] to generate optimum sets of output levels for MQ
is not necessary for MPCM. (2) The quantizers required in MQ are generally vectur quantizers. It
is however, not the case in MPCM where only scalar quantizers are used. (3) MPCM is relatively
simple compared to MQ in terms of computational complexity and coding structure.

Although MPCM also possesses capability of progressive transmission, MPCM distinguishes
itself from pyramid methods (3] in several important features. (1) Pyramid methods generally use
window functions as filters such as Gaussian window functions to decimate images. MPC uses
predictors to extract images. (2) Pyramid methods generate an image pyramid in which each level
represents a coarse version of the original image with reduced-size. In this case, in order to recover
the original image, a procedure of upsampling to expand reduced-size images to the same size of
the original image is necessary. However, the image componen*s generated by MPCM at each stage
have the same size as the original image. (3) In an image pyramid produced by pyramid coding
methods, the number of bits required to encode images at any layer is the same. This is not true for
MPCM where the image components generated by MPCM require different bit rates which start
with very low bit rates, e.g., one bit and gradually increase from a lower stage to a higher stage.
More details will be given in Chapter 4.

2.2 Structure of MPCM

The idea of MPCM is to use a quantizer of two quantization levels and three threshold intervals
coupled with a predictor to decorrelate input signals. More specifically, at each stage say stage k,
the input to the k-th stage is the difference between ex—(n) and Zi(n) (i.e., the kth prediction
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error) where e,_;(n) is the (k — 1)-th error signal resulting iroin the preceding stage and £,(n)
predicted at the k-th stage from the previous coded signal zx(n — 1). We then use a two-level
quantizer with three threshold intervals to quantize the k-th prediction error (ex—;(n) — Zi(n)).
The designed quantizer is a soft-decision limiter with two output levels set to be the upper limit
and lower limit respectively. As an input to the quantizer has value between these two limits, the
quantizer simply passes it without changing its value. If the input exceeds the upper limit or falls
below the lower limit, the input value will be tailored and replaced by either upper or lower limits.

Let M be the number of stages and {Ax}M, be a set of M quantization levels (or increments)
representing stage levels, each of which is associated with a stage, e.g., A is the stage level of stage
k. Basically, MPCM is a multistage version of PCM. Instead of quantizing inputs in a single stage
as does PCM, MPCM quantizes inputs one level at a time where each quantization level represents
one stage. As a result, M-level PCM can be expanded into M-stage MPCM and both also require
the same number of bits, (logoM) for coding. It should be noted that an M-bit quantizer can
generate 2™ output levels.

A general quantizer structure of an MPCM system described below is a multistage quantizer
which divides the encoding task into successive stages, where the first stage performs a crude
quantization using a small codebook. Then a second stage quantizer performs a quantization on
the error data resulting from the difference between the original data and quantized data from the
first stage quantization. A third stage quantizer further quantizes the second stage error data to
refine error accuracy. Continuing this procedure results in a sequence of cascaded quantizers.

Stage 2

AM _| stage M-1 |

AM Ak Az A1

Figure 1: Quantizer Structure of M-stage MPCM

The quantizers used in the multistage quantizer for MPCM are depicted in Figure 1 where {A}
are quantization levels used as stage levels and an image is quantized by one level at a time per
stage. More precisely, the multistage quantizer used in MPCM is a sequence of cascaded quantizers
Q« and each Q) is defined by two quantization levels {0, A} and three threshold-decision intervals
{(—00,0),[0, Ak, (Ak,00)}. If the input to Qi falls off the range [0, Ax], it will replaced by either




A or 0 depending upon whether the input is positive or negative. Otherwise, a soft decision is
made on the basis of the prediction from a predictor. While MPCM decomposes an image, it also
generates a specially designed code, a priority code shown in Figure 2.

=11

¢ (n) c (n) ¢, (n) c ) c,n

M
Priority stages range from 1 to 2 "

M
Stage 1 corrspondsto2 -1; Stage 2 corresponds to 0
Figure 2: Priority Code for MPCM

The task of a priority code is to prioritize stages according to the importance of data information
contained in stages. Assume that an MPCM system decomposes an image into M stages. The
priority code assigns to a stage an integral number ranging from 0 to M —1. The higher number, the
higher priority. The first stage representing the most significant information will be assigned by the
largest integer M — 1. This implies that the image component in stage 1 has the highest priority
to be processed. On the Contrary, the last stage, stage M which contains the least important
information will be assigned a 0. Therefore, it has the lowest priority. It should be nnted that each
priority determines a stage level, and vice versa. For example, a stage prioritized by k is stage
M - k with stage level Ajs_x. Based on the above assignment, the higher the number assigned to
the stage, the higher priority the stage. Since the priority code is the only information needed for
encoding and decoding processes, the number of bits to represent the priority code is that required
for an M-stage MPCM system.

In order to recover the original image, we use as a basis of reconstruction the coded images
generated by the priority code. Namely, MPCM first decodes pixels whose stages have highest
priority to.form a coded image which represents the coarsest edge map of the image. If the image
component predicted at this stage is added to the coded image, we then produce the coarsest
version of the image. If the image quality is not satisfied, we continue to extract pixels of stages
with the second highest priority so that a finer coded image can be generated from which a better
reconstruction can be produced. This process is continued until the lowest priority is processed; the
least significant edges are extracted and a complete reconstruction is then accomplished. During
the course of producing coded images from higher priorities to lower priorities, image components at
different stages can be added to reconstruct images to produce various resolutions of the image. As
a result, making use of the priority code to process images yields lower-level to high-level computer
vision analysis.

2.3 1-D MPCM

In order to illustrate the idea of MPCM, in what follows, we describe one-dimensional MPCM
(1-D MPCM) in detail and give a brief description of 2-D MPCM in the following section.

Let M be the number of stages and {Ax}}, be a set of M strictly decreasing increments
representing M stages, each of which is associated with one stage level, e.g., A, at stage k. This
gives rise to a (logzM)-bit MPCM system with M stages and 2M quantization levels. For instance,




if M = 8, a priority code ¢ will be designed using log,8 = 3 bits to represent 8 stages, e.g., 000
corresponding to stage 8, 001 to stage 7, ---, 111 to stage 1 such that the complement of the bit
representation of the code c is the stage it represents. More precisely, the sum of the value of ¢ and
the stage specified by the ¢ is fixed at 8 which is the total number of stages.

2.3.1 1-D M-Stage MPCM Encoding Algorithm (1-D MPCMEA)

The encoder of M-stage MPCM given below generates a priority code ¢(n) and a set of M
signal components {z;(n)} §‘=1. The general structure of the encoder of 3-stage MPCM is described
in Figure 3.

1-D M-STAGE MPCMEA
A flow chart of 1-D M-stage MPCMEA is given in Figure 4.

1. Initialization:

Let z(0) = 0 be the initial input signal and ¢(n) = 0. We initialize zx(0) by letting z;(0) =0
forall j =1,---, M. Let z(n) be an input signal forn=1,2,---.

Set eg(n) = z(n).
Set k=1 and ¢(n) = 0.
2. If k=M, set zp(n) =0 and c(n) = 0 and goto step (4).

3. If ex—1(n) — zx(n — 1) > Ak, then

(a) zk(n) = Ak, zj(n) =0foralk <j<Mandc(n)=M —k
(b) em(n) = ex—1(n) — zx(n).

Else,
if ex—1(n) — zx(n — 1) < 0, then
(8) zk(n) =0, zj(n) = A;
foralk<j<Mande(n)=M -k
(b) em(n) = ex~1(n) — T} 141 z(n)
= ee-1(n) — THip1 Aj(n).
else,
(a) zx(n) = zx(n — 1) and ¢(n) = 0.
(b) ex(n) = ex-1(n) — zi(n).
(c) Set k =k + 1 and goto step (2).
4. Output all z;(n) for all 1 < j < M and ep(n) if necessary.
Input the next signal z(n+1). Set n=n+1.




As a result, z(n) can be decomposed into M signal components {z;(n) };‘_‘_., and the reconstruc-
tion, z/(n) given by the sum of all z;(n)s obtained in M stages,

M
(n) = Z-J:j(n).
i=1

Three comments on MPCM are worth mentioning and given as follows.

In step (3), according to the way the priority code is designed, the stage number represented
by the value of ¢(n), k is M — k which is the complement of the bit representation of k. The
sum of k and M — k is always fixed at M. A block diagram of step (3) is given in Figure 5.

Since the signal component in the last stage, i.e., stage M contains the least important
information, the priority code representing stage M is value 0 which indicates stage M has
the lowest priority for signal recovery. In this case, we intend to do nothing to achieve bit
saving as depicted in step (5).

Although MPCM is basically designed for lossy data compression, it can be made error-free
by keeping tracking error correction terms ex(n). The extra number of bits required for such
lossless compression is bounded by [log,A;], the smallest integer equal to or larger than
logaAs.

2.3.2 1-D M-Stage MPCM Decoding Algorithm (1-D MPCMDA)

The following 1-D MPCM decoding algorithm is relatively simple because we only need the
priority code c¢(n) to reconstruct z(n). As mentioned previously, a higher value of ¢(n) corresponds
to a higher priority. The general structure of the decoder of 3-stage MPCM is depicted in Figure

6.

1-D M-STAGE MPCMDA

Since c(n) can take on integral values ranging from 0 to M — 1, we assume ¢(n) = k where
k €{0,1,---,M — 1} and 2/(n) = 0 is the reconstruction of z(n). A flow chart of 1-D MPCMDA
is given in Figure 7.

1.

Stagel: k=M —1.
If z;(n - 1) = A, then
(a) z1(n) =0 and zj(n) = A,
foralll<ji<M
(b) #(n) = T}, z(n)
(c) goto step (3).
Else, (in this case, z,(n — 1) = 0)

(a) .z'.l(n) =A)and zj(n)=0forall 1<j< M
(b) z'(n) = z1(n) = Ay




(c) goto step (3).

2. If k = 0, goto step (3). (i.e., last stage: stage M)
Else,
if z(M-k)(n — 1) = A, then

(8) TM-k)(n) =0and zj(n) =Ajforall M —k<j<M
(b) Z(n) = LM ' zi(n - 1) + TEpezin) = T 2i(n - 1) + TH k1 B

else,

(8) T(M-k)(n) =Ar and zj(n) =0foral M —k <j <M

(b) Z(n) = TM* 1 zi(n - 1) + zyi(n) = TM T zi(n ~ 1) + A

3. Output z'(n) and z;(n) for all 1 <j < M.

It should be pointed out that if the valus of ¢(n) is k, it indicates the signal component in stage
M — k needs to be updated and the increment to be used is Ax.

2.3.3 2-D MPCM

The 2-D MPCM presented here is a straightforward extension of 1-D MPCM by encoding images
line by line. It is also possible to use a zig-zag, horizontal or vertical scanning techniques to extend
1-D MPCM [4].

2.4 Experiments and Error Analysis

2.4.1 Exzamples of 1-D MPCM

In this section we apply 1-D MPCM to two examples. The first example is a 1-D waveform which
is a scan line taken from a video signal. Unlike the first example which deals with a continuous
signal, the second example uses discrete values to illustrate how 1-D MPCM works.

'XAMPLE 1

In this example we apply 3-bit MPCM to a 1-D waveform z(n). Figure 8 shows the decomposi-
tion and reconstruction of 3-bit MPCM. As shown in Figure 8, MPCM has 7 stages corresponding
to 7 stage levels {A, = 28-%}T_, = {128,64,32,16,8,4,2} which represent 7 coarse-to-fine signal
resolutions where the last stage, stage 8 is of little interest and not shown in Figure 8 because the
stage level is 0. As demonstrated, the first column shows the residual signals at different stages; the
second column represents decomposed signals and the third column reproduces signals for signal
recovery. The signal can be reconstructed by adding decomposed signals stage by stage.

EXAMPLE 2

In order to illustrate the ideas of 1-D MPCM, we apply 3-bit 1-D MPCM to two sets of numeric
values {z(n)}}2,. The first set data generates tables 1-2 and the second data produces tables 3-4.
Tables 1 and 3 tabulate signal components at all stages (8 stages for 3-bit MPCM) and priority codes
generated by encoders of MPCM. Tables 2 and 4 reconstructed by their corresponding decoders.
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As noted in these tables, the values of ¢(n) in most of cases are small which means that most stages
are in low priority. This implies that the data is highly correlated.

2.4.2 Exzamples of 2-D MPCM

In this section, 2-D MPCM is applied to a digitized girl image with 256 gray levels. The results
are compared to that produced by PCM and DPCM respectively.

EXAMPLE 3

The example provided here is to demonstrate relative performance between PCM, DPCM and
MPCM. Experiments were conducted using different bit rates. Figure 9b and 9c are results of PCM
and DPCM using 1, 2, and 3 bits. Figure 9a results from MPCM using 1, 2, and 3 bits with the
maximum stage level A; = 128 where 1-bit MPCM has two stage levels 128 and 0, 2-bit MPCM
has four stage levels labelled by {A, = 28-%}3_, = {128,64,32} and 0; 3-bit MPCM has 8 stage
levels represented by {Ax = 28-%}]_, = {128,64,32,16,8,4,2} and 0. In Figures 9a-9c, the 3/4
of each of the entire images is produced by using 3 bits, the 3/16 image at the right top corner is
done with 2 bits and the 1/16 image at the top right uses only one bit. It is worth noting that 1-bit
MPCM is embedded in 2-bit MPCM in the sense that the signal components resulting from 1-bit
MPCM can be generated by 2-bit MPCM at stage levels 0 and 128. 2-bit MPCM is embedded in
3-bit MPCM since the signal components produced by 2-bit MPCM can be also obtained by 3-bit
MPCM at stage levels 128, 64, 32 and 16. As a result, MPCM possess multiresolution property as
demonstrated in Figure 9 which shows that the image quality is gradually improved by increasing
the number of stages. This salient difference distinguishes MPCM from PCM and DPCM where
2-bit DPCM can not be embedded in 3-bit DPCM nor 2-bit PCM in 3-bit PCM. A similar idea for
such embeded quantization was treated in [5], but the approach is based on threshold alignment
which is completely different from MPCM which uses prescribed thresholds (or increments).

2.4.3 Error Analysis

An error analysis of PCM, DPCM and MPCM with different bit rates is given by Figure 10
which is plotted based on entropy rate versus the mean-squared error measure (MSE), normalized
MSE (NMSE) and signal-to-noise ratio (SNR) defined as follows.

MSE = 1 ‘E_ \ta(é,5) - }:xm Y
NMSE = | s— ,]_l("z(z J) - Ek—-l Tk (i, J)) ]
Zl— ,J—-l(x(l ]))
SNR = —10 logm[mz:._l,,_, (a:(z,.'i))zl a5)

MSE

where L = 200, N = 320.

Table 5 tabulates MSE, NMSE and SNR produced by PCM, DPCM and MPCM used in the
above experiments. Since for an image - “*h 256 gray levels the best choice of the largest stage level
for PCM and MPCM is 128, there are only three points in Figure 10 each of which corresponds to 1
bit, 2 bits and 3 bits respectively. Figure 11 shows error images of PCM, DPCM and MPCM with
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different number of bits. Obviously, there is no comparison for PCM based on the same number of
bits. As expected, DPCM achieves the higher SNR than does MPCM. However, this advantage is
offset by incapability of progression and multiresolution.
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Figure 4: 1-D MPCM Encoding Algorithm
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15




C(n)=K

Xpg(n)=A
X{n}=0
V j >M-K

YES

Xy(n)=0
Xn)=4A;
vji>1

'y

Xux(n)=0
Xi(n)=4,
Vv j>M-K

OUTPUT

vy

OUTPUT
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Table 1. Anexample for encoding of 3-bit multistage PCM ( MPCM ).

x'(n) = x(n) + x9(n) + x3(n) +,,, + xg(n)
&(n) = x(n) - x'(n)

MPCM encoding algorithm
INPUT | PREDICTION SIGNAL COMPONENTS
x1(m) | xa(n) { X3(n) [ x4(n) | x5(n) | xg(n) | x7(n) | xg(n)

nix(n)|x'(n){en)| 128{ 64| 321 16| 8f a | 2] 1] Cw
0 0 0 0 ol ol ol of of o] of o} o
1| 20 16 4 ol ol ol 6] of o] ol o 4
2| 22 20 2 o] o] o] 6] o 4] of of 2
3] 25 24 1 ol o] o] 16] 8] o] o] o 3
41 29 28 1 0] of o] 1] 8] 4] o] o] 2
5| 35 32 3 0] 0] 32] o] o] o] o] o] s
6| 34 34 0 0] of32] o] o] o] 2] ¢ 1
71 32 32 0 ol ol 32] ol of o] o] o 1
8| 30 31 -1 o] o] o] 16| 8] 4] 2] 1] s
9| 30 30 0 ol o] ol 16| 8] 4] 21 o] o
10 30 30 0 o] o] o] 6] 81 4] 2] of o

Table 2. An example for decoding of 3-bit multistage PCM ( MPCM ).

x'(n) = xj(n) + xp(n) + x3(n) +,,, + xg(n)

MPCM decoding algorithm

INPUT SIGNAL COMPONENTS OUTPUT
x1(n) { xa(n) | x3(n) | x4(n) | x5(n) | x5(n) | x7(n) | xg(n)

n|Cm | 128) 64| 32| 16] 8| 4| 2| 1 x'(n)
o] o 0] o] o] o] of o of o 0

1] 4 0] of ol 6] of o] of o 16
2] 2 o] o] ol 6] o 4] of o 20
3] 3 ol ol ol 16] 8l o of o 24
4| 2 o] o]l o] 6] 8] 4] ol o 28
s| s of of 32| ol ol o ol o 32
6] 1 o] o] 32] o]l of o] 2] o 34
7] 1 ol of 32| ol of o] of o 32
8] 5 o[ ol o] 16| 8] 4] 2] 1 31
9| o o] ol o]l 6] 8| a] 21 o 30
0] o 0] ol o] 6] 8] a4l 2] o 30

19




Table 3. An example for encoding of 3-bit multistage PCM ( MPCM ).
x'(n) = xj(n) + xp(n) + x3(n) +,,, + xg(n)
e(n) = x(n) - x'(n)

MPCM encoding algorithm
INPUT | PREDICTION SIGNAL COMPONENTS OUTPUT

X1(n) | x9(n) | x3(n) | x4(n) | x5(n) | xg(n) | x7(n) | xg(n)
n x(n) x'(n) e(n) 128 | 64 32 16 8 4 -2 1 C(l'l)
0 0 0 0 0 0 0 0 0 0 0 0 0
1| 100 64 36 0] 64 0 0 0 0 0 0 6
2 | 102 96 6 0] 64 32 0 0 0 0 0 5
3] 120 112 8 0] 64 32 16 0 0 0 0 4
4 | 120 120 0 0] 64 32 16 8 0 0 0 3
51 120 120 0 0] 64 32 16 3 0 0 0 0
6 | 118 119 -1 0| 64 32 16 0 4 2 1 3
7] 110 111 -1 0] 64 32 0 8 4 2 1 4
8 | 100 103 -3 0] 64 32 0 0 4 2 1 3
9 | 100 101 -1 0] 64 32 0 0 4 0 1 1
10 | 100 100 0 0] 64 32 0 0 4 0 0 0

Table 4. An example for decoding of 3-bit multistage PCM ( MPCM ).

x'(n) = xj(m) + Xa(n) + x3(n) +,,, + xg(n)

MPCM decoding algorithm

INPUT SIGNAL COMPONENTS OUTPUT
x1(n) | x9(n) | x3(n) | x4(n) | x5(n) | x5(n) | x7(n) | xg(n)

n|cn)| 128) 64| 32| 16 8| 4 2 1 x'(n)
0 0 0 0 0 0 0 0 0 0 0
1 6 0] 64 0 0 0 0 0 0 64
2 5 0] 4] 321 o 0 0 0 0 96
3 4 0| 64| 321 16] o 0 0 0 112
4 3 0] 64| 32| 16] 8 0 0 0 120
5 0 0] 64| 32| 16] 8 0 0 0 120
6 3 0]l 641 321 16] o 4 2 1 119
7 4 0] 64| 321 o 8 4 2 1 111
8 3 o] 64| 321 o 0 4 2 1 103
9 1 0] 64| 32] o 0 4 0 1 101
10 0 0] 64| 321 o 0 4 0 0 100
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Table 5. Error Analysis for PCM, Multistage PCM ( MPCM ) and DPCM

schemes |bpp levels entropy MSE | NMSE SNR
rate (dB)
8-bit PCM 8 [ 128,64,.,,,21 7100 <100 | <1/10280 | >40
7-bit PCM 7 | 128,64, ., .2| 6124 0.48 | 0.000047 43.28
6-bit PCM 6 | 128,64, .. .4 5.135 3.49 | 0.000340 34.69
5-bit PCM s | 128,64, ., .8 4.158 17.83 | 0.001734 27.61
4-bit PCM 4 | 128,64,32,16] 3.199 7883 | 0.007668 21.15
3-bit PCM 3 | 128,64, 32 2.269 287.17 | 0.027935 15.54
2-bit PCM 2 128, 64 1675 | 157589 | 0.153297 8.15
1-bit PCM 1 128 0784 | 380224 | 0.369868 4.32
3-bit DPCM 3 64,32, 16 1.431 249.17 0.024238 15.06
3-bit DPCM 3 32,16, 8 1.587 57.09 0.005554 22.55
3-bit DPCM 3 16, 8, 4 2.060 14.10 0.001371 28.63
3-bit DPCM 3 8, 4, 2 2.764 7.03 0.000684 31.65
3-bit DPCM 3 4, 2, 1 2.935 14.90 0.001449 28.39
3-bit MPCM | 3 | 128,64,,. .2 2.778 23.51 0.002287 26.41
2-bit MPCM | 2 | 128,64, 32 0.908 238.12 0.023152 16.35
1-bit MPCM | 1 128 0.142 | 3675.80 0.357568 4.47
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b | 2 MPCM: 128,64, ... 2 levels
2 b: PCM; 128, 64, 32 levels
¢ |nonel c:ppCM: 8. 4. 2 levels

C | G 80#50 pixels .1 bit
B e B: 160%100 pixels. 2 bits

A A: 320%200 pixels . 3 bits

Figure 9: Effect of Spatial Resolution Changes on Different Methods
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Figure 11: Error Images Corresponding to Figure 9
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CHAPTER 3
MPCM: PROGRESSIVE EDGE DETECTION

In (1], an edge in an image is described to be a boundary or contour at which a significant change
occurs in some physical aspect of an image, such as the surface reflectance, illumination, or the
distances of the visible surfaces from the viewer. Change in physical aspects manifest themselves
in a variety of ways, including changes in intensity, color, and texture. .. is known that an image
that consists of only edges is highly intelligible. Marr and Hildreth [2] observed that significant
intensity changes occur at different scales (resolutions) in an image. Optimal detection of significant
intensity changes, therefore, generally requires the use of operators that respond to several different
scales. Marr and Hildreth suggest that the original image be bandlimited at several different cutoff
frequencies and an edge detection algorithm be applied to each of the images. The resulting edge
maps have edges corresponding to different scales. They also argue that edge maps of different
scales contain important information about physically significant parameters. The visual world is
made of elements such as contours, scratches, and shadows, which are highly localized at their own
scale. This localization is also reflected in such physically important changes as reflectance change
and illumination change. If the same edge is present in a set of edge maps of different scales, it
represents the presence of an image intensity change due to a single physical phenomenon. If an
edge is present in only one edge map, one reason may be that two independent physical phenomena
are operating to produce intensity changes in the same region of the image.

3.1 Progressive Edge Detection

One of strengths of MPCM is its edge detection capability which is attributed to the priority
code. It extracts edges of objects from the background according to priorities assigned by the prior-
ity code. Since an abrupt change between two contiguous pixels will affect at least one component
in a certain stage, the priority code will record this information so that when the image is recon-
structed, this information can be retrieved for updating the data in that stage. As a consequence,
decoding the priority code based on a particular stage, say k generates a coded image composed of
pixels with values changed in the k-th stage. The resulting coded image represents an edge map
resulting from pixels which have a stage prioritized by k. Generally speaking, the most significant
edges will be detected by stage 1 assigned by the highest priority integer and the least important
edges will be extracted by the last stage with the lowest priority integer. A sequence of improved
coded images can be generated by processing more than one stage. For example, a coded image
obtained by processing stages 1 and 2 is an edge map composed of all pixels with stages prioritized
by the two highest integers. Therefore, the more stages processed, the more edges detected. This
idea is quite different from commonly used methods, zero-crossing of derivatives such as a Laplacian
operator. '

3.2 Experimental Results

In order to demonstrated the effectiveness of MPCM, an experiment is conducted on a vapor
cloud image obtained from CRDEC. The result shows that MPCM is indeed a promising detection
technique which is not only easy to implement, but also suitable for real-time implementation.
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The experiments given below were performed based on two images provided by CRDEC which
were taken from a thermal imager at two different time frames. One of the images has a chemical
vapor cloud embedded in the background as shown in Figure 12(a) and the other is Figure 12(b)
which contains no clouds but background clutter. Figure 12(c) is the differential image resulting
from subtracting Figure 12(b) from Figure 12(a). The MPCM implemented here uses 7 stage levels
specified by {A, = 28-*}]_, where the last stage specified by leve! 0 is of no interest. Figures 13 and
14 are decompositions of Figures 12(a) and 12(c) respectively. Figures 15 and 16 contain 7 coded
images of Figure 12(a) and 12(c) respectively. Figures 17 and 18 are obtained by summing coded
images successively from Figures 12(a) and 12(c). Figure 19 and 20 are reconstructed images of
Figure 12(a) and Figure 12(c) respectively. From Figures 13, 15, 17 and 19 which were obtained by
Figure 12(a), the clouds are heavily obscured by the clutter and are very hard to detect. However,
as shown in Figures 14, 16, 18 and 20 obtained by the differential image Figure 12(c), the edges
of the vapor cloud begin to emerge after the first stage is processed by the priority code. In this
case, the highest priority integer is 7 and the corresponding stage level is 128. As more stages
are processed according to decreasing priorities, more edges are detected and extracted. (It should
be noted that a stage prioritized by k is stage 8 — k with stage level 28-%.) As experimental
results suggested, a progressive edge detection algorithm coupled with background suppression will
significantly improve detectability. As a matter of fact, in most of practical cases, there is no need of
processing all stages to detect objects. It generally requires a few stages to extract significant edges
which are sufficient for object detection. Therefore, the cost of processing images is drastically
reduced. This is very crucial in real-time signal processing.
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A B

C Notes

A: CLD2002.IMG ( with vapor )
B: CLD2001.IMG (without vapor )
C: Differential Image Between A and B

Figure 12: Vapor Cloud Image

27




stage1.128:
stage2. 64;
stage3. 32:
stage4. 16:
stageb. 8:
stageb. 4:
stage?. 2.

MPCM Decomposition

Figure 13: MPCM Decompeosition
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Figure 17: MPCM Successive Coded Sum
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Figure 18: MPCM Successive Coded Sum
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Figure 19: MPCM Reconstructions
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CHAPTER 4

MPCM: TOP-DOWN GRAY-LEVEL TRIANGLE METHOD

A top-down M-tier gray-level triangle is a triangle structure generated by a sequence of M sets
of gray levels, one stacked on top of another where each tier is a set of gray levels and the set of
gray levels at the k-th tier, denoted by Gy is properly contained in that at the k + 1-th tier, Gx4,
namely, GkgGH_l. Since image quality is determined by the number of gray levels to be used, a
top-down gray-level triangle generates a series of coarse-to-fine images with resolutions determined
by tiers in the triangle. It first puts on the top tier of a triangle a set of gray levels, G, to be used
to decompose an image into an image component in stage 1. The second tier of the triangle, G2 is
made of gray levels used to produce the image component in the second stage included in which are
the gray levels contained in the top tier. The procedure is continued until a top-down gray-level
triangle is completely generated. Each tier represents a stage and each stage generates an image
component which is a coarse version of the original image. To reconstruct an image, we first use
the gray levels contained in the top tier to produce the coarsest image, then move down to the
next tier of the triangle to produce a finer image, etc. The process described is called a top-down
gray-level triangle method.

According to the procedure described above, MPCM can be viewed as a top-down gray-level
triangle method. It has several distinct differences in structure from the commonly used bottom-up
pyramid methods [1]. (1) In image decomposition, MPCM uses a top-down gray-level triangle as a
basis to represent an image from coarse to fine resolutions in multiple stages with the resolutions
specified by tiers of the triangle from top to bottom, while a bottom-up pyramid method such
as Burt-Adelson’s Gaussian-Laplacian pyramid method produces an image pyramid from fine-to-
coarse using various window functions. (2) Each tier of a top-down gray-level triangle represents
a stage specified by a set of gray levels; thus, it requires different bit rates for coding. However,
in pyramid methods, all layers of a bottom-up image pyramid require the same bit rate. (3) The
number of tiers for a top-down gray-level triangle is determined by the number of bits to be used
for coding, but the number of layers of a bottom-up image pyramid is independent of bit rates but
determined by the window size used for masking. (4) The sizes of image components generated by
MPCM are the same, whereas, the sizes of images at different 'ayers in an image pyramid vary and
generally are scaled by a constant such as 2. (5) The quality of images generated by a top-down
gray-level triangle is gradually improved as tiers go down. However, it is opposite for a bottom-up
image pyramid where the resolution is refined by upsampling from top to bottom. (6) MPCM can
achieve bit-saving by processing the first few levels of a top-down gray-level triangle while it still
produces a satisfactory result. A bottom-up image pyramid cannot do this because all layers of a
bottom-up image pyramid requires the same bit rate. (7) The stage level represented by each tier
in MPCM plays the same role as does that of the Laplacian pyramid in pyramid coding. Several
experiments are studied and compared to Burt-Adelson’s Laplacian bottom-up pyramid coding
method.

4.1 Top-Down Gray-level Triangle

In what follows, we describe how MPCM can be implemented as a top-down gray level method.
An M-tier top-down gray-level triangle to be used in MPCM is made of M gray levels {Ak},’:‘=1
where the gray levels Ay are arranged in decreasing order.
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It should be noted that in each tier, k there is a stage level, A, associated with k. The k-th
tier creates the k-th stage designated by its stage level Ax. With the stage level defined, the gray
levels of k + 1-th tier, Gi4) is formed by adding the k + 1-th stage level Ay to Gk, the gray
levels of the k-th tier, Gxy) = {Ak+1} U Gk. For example, Figure 21 shows an 8-tier top-down
gray-level triangle with {A, = 28-*}3_, where in the k-th tier of the triangle, the set of gray levels
is G, = {0} U {28-"}%_,. That is, the top tier contains gray levels 0 and 128 and the 8-th tier has
gray levels G = {0,2,4,8,16,32 64,128}. The value in quotes, “28~*” is the k-th stage level and
Giy1 = GxU{2%%-1}. Based on the top-down gray-level triangle described above, MPCM creates
one stage for each tier with which a stage level is assigned.

Gy 0 "128" A1=27 =128
G, 0 "64" 128 A,=26 = 64
Gs 0 "32" 64 128 Ay=25 = 32
Gq 0 "16" 32 64 128 Ay=24 = 16
Gs 0 "8" 16 32 64 128 Ag=23 = 8
Gg 0 "4" 8 16 32 64 128 Ag=22 = 4
Gz 0 "2"4 8 16 32 64 128 Ay=21 2 2
Gsg 0 ™"24 8 16 32 64 128 Ag=20 = 1

Figure 21: Top-Down Gray-Level Triangle

A multistage quantizer divides the encoding task into successive stages, where the first stage
performs a crude quantization using a small codebook. Then a second stage quantizer performs a
quantization on the error data resulting from the difference between the original data and quantized
data by the first stage. A third stage quantizer further quantizes the second stage error data to
refine error accuracy. Continuing this procedure results in a sequence of cascaded quantizers.
MPCM employs such a multistage quantizer to achieve image decomposition where each stage level
generates an image component with resolution determined by the gray levels in a top-down gray-
level triangle. The stage levels used in the multistage quantizer for MPCM were depicted by Figure
1 where the stage levels A are used as quantization layers and an image is quantized by one layer at
a time. More precisely, the multistage quantizer used in MPCM is a sequence of cascaded quantizers
Qx and each Qy is defined by two quantization levels {0, A} and three threshold-decision intervals
{(~0,0), [0, Ak}, (Ak, 00)}. If the input to Qi falls off the range [0, Ag), it will replaced by either
A or 0 depending upon whether the input is positive or negative. Otherwise, a soft decision has
to be made based on the prediction from a predictor.

While MPCM decomposes an image, it also generates a specially designed code, a priority
code. The task of the priority code is to prioritize stages in accordance with the significance of data
information. Assume that an MPCM system decomposes an image into M stages. The priority
code assigns to a stage a number ranging from 0 to M — 1. The most significant stage will be
assigned M — 1. It implies that the image component in that stage has the highest priority to be
processed. Contrarily, the last stage, stage M which contains the least important information will
be assigned 0. Therefore, it has the lowest priority. According to the above rule, the higher the
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number assigned to the stage, the higher priority the stage. Since the priority code is the only
information needed for the encoding and decoding processes, the number of bits to represent the
priority code is that required for an M-stage MPCM system.

4.2 Burt-Adelson’s Pyramid Method

One of most popular multiresolution techniques is the Laplacian Pyramid Method developed by
Burt and Adelson in 1983 [2] which decomposes an original image into a set of low-pass filtered
images in a pyramid structure, called Gaussian pyramid from which the original image can be
reconstructed. The bottom layer of the pyramid corresponds to the original image; then a sequence
of reduced-resolution images is successively generated by a family of Gaussian filters so that the
images are stacked on top of one another. During the construction of Gaussian pyramid, a Laplacian
pyramid is also generated by taking difference between two images at consecutive layers in the
Gaussian pyramid. (It should be noted that the image in a higher layer must be expanded to the
same size of that in the lower layer before subtraction). In other words, a layer of Laplacian pyramid
represents an image resulting from the difference between two Gaussian functions convolved with
the original image.

<= 1X1 pixel Levels {0,1,2,...,254,255)
A RN

/ \
@\ 2X2 pixels Level7 {0,1,2, ..., 254,255}

/ !l \ \

/ \ \
;@\ 2 K 2 kplxels Levelk {0,1,2, ..., 254,255)

2%28%pixels  Levelo {0,1,2, ..., 254,255)
original
Pyramid image
Figure 22: 8-level Bottom-Up Pyramid

Basically, Burt-Adelson’s approach consists of two major operations which are REDUCF and
EXPAND. The purpose of the REDUCE operation is to construct a Gaussian pyramid from the base
layer to the top layer and that of EXPAND is the inverse of the REDUCE operation and constructs
a pyramid from the top layer to the base layer. Suppose that the original image represented by
an array Go which contains M rows and N columns of pixels where each pixel represents the light
intensity. Let Go be the bottom layer (i.e., layer 0) of the pyramid which we want to construct.
Then the layer 1 which is immediate above layer 0, contains image G, that is a reduced-resolution
or low-pass filtered version of Go. Each value within layer 1 is computed as a weighted average

Gray Levels
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of values in layer 0 within a specified window, say, 5 x 5 matrix. Then each value in layer 2,
representing G, is obtained by the same pattern of weights from layer 1, etc. Generally, the
layer-to-layer up averaging processing is performed by

Gx = REDUCE|Gi_i]
where for each node (i,7), 0 <i < My, 0 <j < N,

2 2
Ge(i,5) = ) Y w(m,n)Ge_(2i+m,2j +n)

m=-2n=-2

and Mk, Ni are rows and columns of Gx. An example of such construction with 28 = 256 gray
levels is given by Figure 22 above.

On the other hand, the layer-to-layer down averaging processing can be done by the EXPAND
operation as follows. Let Gk, be the result of expanding G I times. Then Gro = Gy and

Gkt = EXPAND(Gyy-1)
where for each node (7,7) and 0 < I < N, 0<i < Mg, 0<j < Ny,

2 2 . .
Ge(i,) =4 Y Y w(m, n)Gk,z-x(z—zﬂ,%ﬁ)

m=-2n=-2

and Mg, N; are rows and columns of G respectively.

(It should be noted that the values of (i —m)/2 and (j —n)/2 are limited to integers and if we
apply the EXPAND operation k times to image Gi we obtain Gk which is the same size as the
original image Gp.)

Now if we start off with the value Ly = Gn at the node of the top layer and for each layer
0L<I<N,let

Ly =G~ EXPAND|G,],

then the above described layer-to-layer down averaging processing produces a Laplacian pyramid
and the original image can be obtained by Go = Z,’Y_., L;. Note that because two layers differ in
their sample density, it is necessary to interpolate new sample values between those in a given layer
before that layer is subtracted from the next-lower layer. Such interpolation can be achieved by
the EXPAND operation. The value L; represents the new information which can not be obtained
by the interpolation EXPAND.

4.3 Comparative Study Between MPCM and Burt-Adelson’s Pyramid Method

In this section, we make a comparative study of MPCM and Burt-Adelson’s pyramid coding
method. Comparing Figure 22 to Figure 23 described in the next page, there are several distinctly
different features between these two approaches both in structure and ideas.

(1) In Figure 12, MPCM generates a sequence of image components . at the k-th stage based
on the k-th tier in a gray-level triangle, while a bottom-up pyramid method produces an image
pyramid from fine-to-coarse using various window functions. (2) As shown in Figure 12, each tier
of a top-down gray-level triangle represents a stage specified by a stage level which will be added
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to the set of gray levels used in the previous stage. As a result, the number of gray levels is always
increased by 1 from one tier to the next tier. Consequently, it requires different bit rates for coding
image components in various stages. The lower the tier, the more gray levels, thus, the more bits
are required. However, in pyramid methods, all layers of a bottom-up image pyramid require the
same bit rate. (3) The number of tiers for a top-down gray-level triangle is determined by the
number of bits to be used for coding. This is different from pyramid coding where the number of
layers of a bottom-up image pyramid is independent of bit rates but determined by the window
size used for masking. This can be seen from Figures 11 and 12. (4) The sizes of image components
generated by MPCM are the same, however, the sizes of images in a Gaussian pyramid produced
by pyramid coding are reduced by a scale, e.g., the image size in Figure 11 is reduced by 2 and the
image size in Figure 12 is fixed at a constant 256 x 256. (5) The quality of images generated by a
top-down gray-level triangle is gradually improved as tiers go down. It is completely opposite for
a bottom-up image pyramid where the resolution is refined when layers move from top to bottom.
(6) MPCM can achieve bit-saving by processing the first few tiers of a top-down gray-level triangle
and still produces a satisfactory result. A bottom-up image pyramid cannot do it because all layers
of a bottom-up image pyramid require the same bit rate. (7) The stage level associated with each
tier in MPCM plays the same role as that of each layer in Laplacian pyramid. That is, a stage level
always represents new information not contained in previous tiers which is the same for a layer of
the Laplacian pyramid.

7 0 128 A1 =27 Staget |Q| X1 X

6 0 64128 A2 =28 staqez:'@‘: x2 X1+X2

5 0 32 64 128 A3 =25 stage3 '<|?1 X3 X14+X2 +X3

4 0 16 32 64 128 Ag =24 staged :ﬁ?: X4 X1+X24X3 +X4
3 08163264128 g =33 stages:'@Jl X5 xie """ uxs

2 048163264128 Ag=22 stage6 | X14 "% 45

i

1 0248163264128 A7=2" stage7 | X7 X1+ ""® +x7

B

0 01248163264 128 Ag =27 stages X14 "% 4xg

c(n)  Top-Down Gray-Level stage Images image Image
Triangle tevel of each stage component raconstruction
of each tier

Figure 23: Implementation of 8-Stage Top-Down Gray-Level Triangle
In the following section, several experiments are studied and compared to Burt-Adelson’s Lapla-
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cian bottom-up pyramid coding method.

4.4 Experimental Results

The experiments are conducted based on MPCM and Burt-Adelson’s pyramid coding method
with the window function w(m,n) chosen to be separable, namely, w(m,n) = w(m)w(n) with the
following conditions,

w(0) = @, w(—1) = w(l) = b, w(-2) = w(2) =¢,a+2¢c =2,

where a is a free variable set t0 0.5, b = 0.25, and ¢ = 0.

Both MPCM and the Burt-Adelson pyramid coding generate images at 8 different resolutions.
Figure 24 is the image decomposition of Lena by MPCM and Figure 25 is a sequence of image
components determined by 7 stage levels, {1,2,4,8,16,32,64,128} where stage level 0 is not shown.
Figure 26 contains 7 images obtained by summing successive image components in Figure 25.
Figure 27 shows reconstructed images produced by MPCM. Figures 28 and 29 represent an 8-layer
Gaussian pyramid and an 8-layer Laplacian pyramid respectively. Since the sizes of the images in
the Gaussian pyramid are scaled down by 4 from one layer to the above layer, they must be expanded
to the size of the original image prior to reconstruction. Figure 30 is the corresponding expanded
images of the 8-layer Gaussian pyramid in Figure 28 based on the EXPAND operation defined in
Section 4.2. By adding Figure 30 to the Laplacian pyramid in Figure 29 we produce Figure 31 which
a sequence of 8 reconstructed images at different resolutions. Namely, R(¢ — 1) =R(z)+L(i — 1)
for i = 1,2,---,8 where R(0) is the original image; R(Z) is the image reconstruction at layer i
for i =1,---,8; L(#) is the Laplacian pyramid at layer ¢ = 0,1,---,7; and L(8) is the expanded
Gaussian pyramid at layer 8. By comparing Figure 31 to Figure 27, we can conclude that MPCM
reconstructs better images than does the pyramid coding.

As demonstrated in experimental results, MPCM can generally do better than pyramid coding
methods, which have shown to be promising techniques in image analysis.
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Figure 29: Laplacian pyramid
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Figure 30: Expanded Gaussian Pyramid
a=0.3, b=0.25, ¢c=0.0
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CHAPTER 5
RELATIVE ENTROPY-BASED IMAGE THRESHOLDING

In Chapter 3, we have seen that MPCM employed a priority code to extract edges progressively.
Since the primary role of the priority code is to detect edges and contours of objects, MPCM can
be viewed as a multi-level object edge detection technique. Each level represents one stage cor-
responding to a thresholding scale. The levels, {A,‘}f:‘=l selected by MPCM are preset prior to
coding. Since no algorithms are required to generate the set of {Ak}ﬁ":l, these levels are neither
adaptive nor optimal. However, the pay-off is that they are very easy to implement. In this chap-
ter, we consider another distinct edge detection method, relative entropy-based image thresholding
technique which will generate a better value for thresholding than that prefixed by MPCM.

The idea proposed to obtain a good quality thresholded image is to use relative entropy as a
criterion to measure the discrepancy between the probability transition distributions of the original
image and the thresholded image is proposed. A gray level which minimizes the relative entropy
between the original image and the resulting bilevel image will be used to threshold the image.
The relative entropy approach is different from existing entropy-based ‘hresholding techniques. To
see the performance we test different types of image and compare the results to those produced by
the local entropy-based and joint entropy-based algorithms developed by Pal [1]. The experiments
show that the new approach generally performs better than Pal, et al.’s entropy-based algorithms.
In particular, the relative entropy-based algorithm possesses a very good capability for picking
up edges, while Pal, et al.’s algorithms do not. In addition, another advantage of the relative
entropy approach is the computational saving compared to Pal et al.’s algorithms, particularly,
computational complexity is largely reduced.

5.1 Introduction

Gray level image thresholding is a simple image segmentation method to extract objects in an
image from the background. It often represents a first step in image understanding. In an ideal
image where objects are clearly distinguishable from the background, the gray level histogram of
the image turns out to be bimodal. In this case, a best threshold segmenting objects from the
background is one placed right in the valley of two peaks of the histogram. It is generally not
true, however, that images to be segmented always have bimodal gray level histograms. Therefore,
finding an appropriate threshold for images is not straightforward. Various thresholding techniques
have been proposed to resolve this problem.

One approach is to reduce a multimodal problem to a bimodal problem in which case it requires
some modification of the gray level histograms. This is usually done on the basis of geometric
properties. Unfortunately, such modifications are either empirical or arbitrary without justification.
Accordingly, there are no acceptable objective criteria to determine which thresholding technique
is best. An alternative approach is to look into the information provided by gray levels rather
than images themselves [1]. Along this direction, using Shannon’s entropy concept as a measure
of goodness for image thresholding has received considerable interest recently [1-6]. Although Pun
[2-3] and Kapur, et al. [4] define the entropy of histogram differently, they basically assumed that
an image can be completely characterized by its gray level histogram. Since they did not take
into consic cration the spatial correlation of neighboring pixels, which is very important for images,
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particularly for highly correlated images such as medical images, there is room for improvement on
Pun’s and Kapur, et al.'s methods. In order to account for spatial dependency between pixels, it
seems natural to extend Pun [2-3] and Kapur, et al.’s first-order entropy to a second-order entropy.

Several studies applying second-order entropy to image thresholding have been reported in [4-
6]. Of particular interest is the use of a co-occurrence matrix to define second-order entropy. The
co-occurrence matrix is basically a transition matrix generated by changes in pixel intensities. For
any two arbitrary gray levels i and j (i,j are not necessarily distinct), the co-occurrence matrix
describes all intensity transitions from gray level i to gray level j. By means of the co-occurrence
matrix, two definitions were proposed for second-order entropy; local entropy and joint entropy [6].
Suppose that ¢ is the desired threshold. ¢ then classifies all pixels in an image into either background
or objects where the background contains pixels with gray levels below or equal to ¢ and the objects
have gray levels above t. The two-region classification further divides the co-occurtence matrix into
four quadrants which correspond respectively to transitions from background to background (BB),
background to object (BO), object to background (OB) and object to object (OO). The local
entropy is defined only on two quadrants, BB and OO, whereas the joint entropy is defined only
on the other two quadrants, BO and OB. Based on these two definitions, Pal, et al. [1) developed
two algorithms each of which maximizes local entropy and joint entropy respectively.

The relative entropy-based approach is different from those in [1-6]. Rather than maximizing
entropies of background or object separately, we introduce the concept of relative entropy (or
cross entropy, Kullback-Leiber’s discrimination information and directed divergence) which has
been widely used in source coding to measure discrepancy between two probability distributions.
Since an image is a source and can be completely described by its probability distribution, the
relative entropy can be interpreted as a measure of the distance between two images. To implement
the relative entropy approach, one calculates the gray-level transition probability distributions of
the co-occurrence matrices for an image to be segmented and a thresholded bilevel image, then
determine which threshold minimizes the discrepancy between these two transition probability
distributions, i.e., their relative entropy. The threshold which has the smallest relative entropy will
be used to segment the original image. As a result, the thresholded bilevel image will be the best
approximation of the original image. Because transitions of OB and BO generally represent edge
changes in boundaries and transitions of BB and OO indicate local changes in regions, a thresholded
bilevel image resulting from relative entropy thresholding must have the best transition match to
that of the co-occurrence matrix of the original image.

As shown in experimental results, the relative entropy-based algorithm generally outperforms
the local entropy-based and joint entropy-based algorithms. While the local entropy and joint
entropy approaches perform similarly, the relative entropy approach produces a more pleasing
result. In particular, the relative entropy approach is very good at picking up edges, which the
other two are not. The experiments also show that in some images the local entropy approach may
perform a little bit better than the joint entropy approach or possibly the other way around. There
is v~ evidence to indicate which one is generally better than the other. However, among all images
tes.ed the relative entropy approach demonstrated unique capability and is preferred to the other
two approaches. In addition, an advantage of the relative entropy approach is the computational
saving compared to the local and joint entropy approaches, particularly, computational complexity
is largely reduced.
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5.2 Review of Previous Work

5.2.1 Co-occurrence Malriz

Given a digitized image of size M x N with L gray levels G={0, 1, 2, ..., L — 1}, we denote
F={f(z,y)|MxnN to represent an image, where f(z,y) € G is the gray level of the pixel at the spatial
location (z,y). A co-occurrence matrix of an image is an L x L dimensional matrix, T = [ti;]LxL,
which contains information regarding spatial dependency of gray levels in image F as well as
the information about the number of transitions between two gray levels specified in a particular
way. A widely used co-occurrence matrix is an asymmetric matrix which only considers the gray
level transitions between two adjacent pixels, horizontally right and vertically below {1]. More
specifically, let ti; be the (Z,7)th entry of the co-occurrence matrix T. Following the definition in

(1,

M N
tii=Y. > 6(,k) (1)

=1 k=1
where

f(lvk) =1, f(l)k+ 1) =]
§(lLk)y=1, if and/or

f(l,k) =1, f(l+1ak) =]
6(l,k) =0, otherwise

One may like to make the co-occurrence matrix symmetric by considering horizontally right
and left, and vertically above and below transitions. It, however, has been found [1] that including
horizontally left and vertically above transitions does not provide more information about the
matrix or significant improvement. Therefore, it is sufficient to consider adjacent pixels which are
horizontally right and vertically below so that the required computation can be reduced.

Normalizing the total number of transitions in the co-occurrence matrix, we obtain the desired
transition probability from gray level i to j [1] as follows.

L-1L~-1

pii =t/ (3 3 tj) (2)

i=0 j=0
5.2.2 Quadrants of Co-occurrence Malriz

Let t € G be a threshold of two groups (foreground and background) in an image. The co-
occurrence matrix, T defined by (1) partitions the matrix into four quadrants, namely, A, B, C,
and D, shown in Figure 32.

These four quadrants may be separated into two types. If we assume that pixels with gray
levels above the threshold be assigned to the foreground (objects), and those below, assigned to the
background, then, the quadrants A and C correspond to local transitions within background and
foreground respectively; whereas, quadrants B and D represent transitions across the boundaries of
background and foreground. The probabilities associated with each quadrant are then defined by
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Figure 32: Quadrants of a Co-occurrence Matrix

The probabilities in each quadrant can be further defined by the so called “cell probabilities”
and obtained as follows by normalization.

tij / (Zb—l L—l tu)

p§ = pij/Pa =
7 Tio Timo (m/:’“ T tis)
Lij : .

_"—_7 for 0515t,05.7$t (4)
2:—0 2)=0 1]

pB = py/Ps = ——H—— — for 0<i<t t+1<j<L—1 (5)
-0 E,.—.:+1 tij

p,-c;= pij/Pc = — Lj , fort+1<i<L-1t+1<j<L-1 (6)
El—t+l ZJ—¢+1 4]

bij

D . ,
pi; = pij/Pp = , fort+1<i<L-1,0<j5<t (M
Y ’ T Theoti
5.2.3 Algorithms Developed by Pal, et al. [1]

The algorithms suggested by N.R. Pal and S.K. Pal in [1] attempted to take advantage of spatial
correlation in an image. By doing so, Pal and Pal introduced two concepts of second-order entropy

based on Eqgs. (4-7), which are called local entropy and joint entropy.
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Since quadrant A and quadrant C reflect the local transitions from background to background
(BB), and object to object (OO), they defined local entropy of background and local entropy of
object by Hpg(t) and Ho(t) respectively as follows.

HP() = g;;;p:;nogpﬂ (8)
¥ J

HP(@) = — Z Z P log p5 (9)
|—H-l]-t+l

It should be noted that (8) and (9) are determined by the threshold ¢, thus they are functions of ¢.
By summing up the local entropies of the object and the background, the second-order local
entropy can be obtained by

HZ,O =HP @) + HD (2). (10)

The algorithm proposed by Pal and Pal in [1] is one to select a threshold which maximizes the
H®) | over ¢t. In this paper, i* will be called the local entropy-based algorithm.

Alt.ematively, quadrant B and quadrant D provides edge information on transitions from back-
ground to object (BO) and object to background (OB). In analogy with the local entropy defined
above, another second-order joint entropy of the background and the object was also defined in {1}
and given as follows by averaging the entropy H(B;O) resulting from quadrant B, and the entropy
H(O; B) from quadrant D.

H2.0) = (H(B-0)+H<0-B)>/2

t
= - Z pij log ] + Z ZP3‘°gP /2

=0 j=t+1 i=t+1j=0
(11)
The algorithm maximizing (11) is called the joint entropy-based algorithm which is the second
algorithm developed by Pal and Pal in [1].
5.3 Relative Entropy-Based Approach

5.3.1 Definition of Relative Entropy

Let S be an L-symbol source and p; and pg be two probability distributions defined on S. The
relative entropy between p and p’ (or equivalently, the entropy of p relative to p’) is defined by

L-1
Lipip) = Y pjlog & (12)
j=0 p]

Equation (12) was first introduced by Kullback [7] as a distance measure between two probabil-
ity distributions and later was found very useful in many applications [8-12]. Since the information
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contained in an image source can be fully described by its entropy, which in turn can be completely
characterized by source symbol probabilities, the relative entropy defined by (12) basically provides
a criterion to measure the discrepancy between two images determined by probability distributions
p; and p; respectively. It is natural to use relative entropy as a measure of difference between
an image and its segmented image, in our case, a bilevel thresholded image. There are several
synonyms of relative entropy, e.g., cross entropy, Kullback-Leiber’s discrimination information and
directed divergence.

In order to obtain a good quality bilevel image, our aim is to find a threshold to segment an
image such that the resulting thresholded bilevel image will best match the original image. Using
the measure of relative entropy, one can choose the threshold ¢ in such a manner that the gray level
probability distribution p} of the thresholded image has minimum relative entropy L(p;p’) with
respect to the original image. More specifically, the desired threshold { minimizes the discrepancy
between p, and p’ where p and p’ are the gray level probability distributions of the original image
and the resulting thresholded image respectively.

5.3.2 Joint Relative Entropy-Based Method

As indicated previously, a thresholding method based on first-order statistics of an image does
not consider spatial correlation of an image. Therefore, exploiting the spatial dependency of the
pixel values in the image can help determine a good threshold. It seems reasonable to extend the
first-order relative entropy to a second-order joint relative entropy between p;; and pi; where p;;
and pj; are the transition probability distributions of the co-occurrence matrices defined by eqs.
(1-2) generated by the original image and the thresholded image respectively. Since transition
probability distributions defined by the co-occurrence matrix contain the spatial information which
reflects homogeneity within groups (quadrant A and quadrant C in Figure 1), and changes across
boundaries (quadrant B and D in Figure 32), one can envision that a better result may be obtained
if we choose the thresholded bilevel image to be the one which has the best transition match to
that of the original image in terms of relative entropy.

Let the joint relative entropy of the probability distributions p;; and pﬁj be defined by:

L-1L-1 Dii
L(p;p) =) ) pijlog pTJ (13)
i=0 j=0 ij

where p;; and pﬁj are the transition probabilities from gray level i to gray level j of the original
image and the bilevel image respectively. Minimizing L(p;p’) over t generally renders a bilevel
image which best matches the original image.

It should be noted that when we threshold an image, we basically assign all gray levels in an
original image to either 0 or 1 which corresponds to background or objects. As a result, there are
only two gray levels in the thresholded image. The indices 7,j used in the transition probability
pi; still refer to those of gray levels of the original image. In addition, the statistics of pixels not
adjacent to one another could also be considered, but the estimation of probabilities for such cases
would be very difficult.

56




5.8.8 Co-occurrence Matriz of a Thresholded Bilevel Image

Let us assume that ¢ is the selected threshold. By assigning 1 to all gray levels above threshold
t, Gy = {t+1,...,L ~ 1} and 0 to all gray levels below ¢, G2 = {0,1,...,t}, we obtain a bilevel
image. It should be noted that the gray levels in G, will be treated equally likely in probability, so
are gray levels in G3. Consequently, the pﬁj can be found as follows (see Figure 32).

PA(t)

A .
pl‘(.j )(t) = qa(t) = (t+1)x(t+l); for 0<i<t, (14)
KB Y = qg(t) = Pa(t) sfor 0<i<t t+1<j<L-1 (15)
Py =980 = ¥ x@L-t-1) - =7=
Po(t : .
M) = qelt) = (L_t_l)i(()L_t_l); for t+1<i<L-1,t+1<j<L-1(1)
Pp(t . .
P70 = ap(t) = (L_t_l)(l(t+l); for t+1<i<L-1,0<j<t (17)

where, P4(t), Pa(t), Pc(t), and Pp(t) are defined by (3). For each selected t, p'{{)(t), p/{2(t),

4 3
P ,(f)(t), and p’f,p )(t) are constants in each individual quadrant and only depend upon the quadrant

to which they belong. Therefore, we can denote them by g(t), ¢s(t), gc(t), and gp(t) respectively.

5.3.4 Relative Entropy-Based Algorithm
By expanding Equation 13, we have:

L—1L~1 -
Lp;p) = 3 py logp%
i=0 j=0 i
L-1L-1 L-1L-1
= > piylogpi— ), D pijlogp;
i=0 j=0 =0 j=0

(18)

Because the first term in the above equation is independent of the threshold ¢, minimizing
the relative entropy described by Equation 13 is equivalent to maximizing the second term of
Equation 18.

We can even further simplify the second term of the right side of the equation 18 as follows.

L-1L-1

z Z Dij 10gP£j

i=0 j=0

> _pijlogqa(t) + ) _mijlogga(t) +
A B

Y piiloggc(t) + Y_ pijlog qp(t)
C D

= Pa(t)logqa(t) + Pp(t)loggs(t) +
Pc(t)log gc(t) + Pp(t)log qp(t) (19)
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This implies that in order to obtain a desirable threshold for classifying the object from the
background, we need only maximize the last expression in Eq. 19 over t. The expression consists
of four terms only, each of which is a product of P; and log;(t) for i = A, B,C, D. In comparison
with Eq. 19 and Eq. 10 required for the local entropy and Eq. 11 for the joint entropy, the
computational load for the relative entropy is significantly reduced. From Egs. (8) and (9), (¢t +
1)2 + (L — t)? multiplications are required to calculate p;;log p;; for finding the local entropy and
from Eq. (11), 2(t + 1)(L — t) multiplications for the joint entropy. It is, however, that only
4 multiplications and 4 divisions are needed in Eq. (19) for the relative entropy. As a result,
computational saving can be tremendous when the size of an image is very large.

5.4 Experimental Results

In order to see performance of the relative entropy-based thresholding method we tested a set
of various images including a medical image and a thermal image. As shown in experiments, the
relative entropy approach provides a very efficient and effective image thresholding tool. All test
images have 256 gray levels. Figure 33(a) represents an original image of peppers and Figure 33(b)-
(d) show the thresholded images obtained based on the local entropy and the joint entropy and the
relative entropy approaches respectively. Figure 33 shows that the relative entropy based approach
performs better than the joint entropy and as well as the local entropy. In this image the local
entropy method produces a better result than does the joint entropy method.

Figure 34(a) is the original digitized image of an F-16 jet. As shown in Figure 34(b-d), the
relative entropy technique produces a better result than both the local and joint entropy approaches.
This can be seen from the “US AIR FORCE” logo. Interestingly, unlike the previous image of
peppers, the joint entropy method generates better image quality than the local entropy. Figures
2 and 3 show that there is no absolute preference between the local entropy and joint entropy
approaches. However, our relative entropy approach performs quite well and produces satisfactory
results on both images. Figure 35 is an image of a couple. Evidently, the image thresholded by the
relative entropy is much better than those by local and joint entropies.

Most surprising is Figure 36 which is a building image. The local and joint entropy approaches
give similar thresholded images, Figure 36(b) and 36(c), however, both fail to pick up edges of the
building, particularly, they miss all detail of the stairs in the front of the building. In this test
image, the relative entropy approach not only gives details of stairs including the building front but
also edges out the building, specifically the middle edges of the building which are not shown in
Figure 36(b) and 36(c). The reason for this we believe is that the relative entropy can best match
all possible transitions made from one gray level to another. The capability of the relative entropy
approach for finding edges is again demonstrated in Figure 37 where a part of the open edge of the
coffee cup is missing in Figures 37(b) and 37(c). However, Figure 37(d) picks up all open edge of
the cup. Figures 38 is an image of two jets taken by a thermal imager. For this two-jet image, the
relative entropy gives more details such as clouds. Two more experiments were discussed in [13].

Through the above experiments, it is demonstrated that the relative entropy-based approach
performs quite differently from the local und joint entropy-based methods. More importantly,
these experiments show that using relative entropy as a criterion for thresholding results in better
understanding of images than the other two entropy-based approaches.
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gure 33: Peppers Image
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Figure 34: Air Force Jet Image
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Figure 36: Building Image
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Figure 37: Teacup Image
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CHAPTER 6
CONCLUSIONS

This chapter concludes a summary of the work carried out during the period of September 1
1991-August 31 1992. Two new image edge extraction methods, “MPCM* and “Relative Entropy-
Based Thresholding” were introduced in this report. The theory of MPCM is described in detail
in Chapter 2 followed by two chapters on its applications. In Chapter 3, MPCM was suggested to
be used as a progressive edge detection which shows great promise in image detection. Chapter 4
interpreted MPCM as a top-down gray-level triangle method which can be used as a multiresolution
technique. Compared to widely used pyramid coding methods, MPCM provides an alternative
approach to process images in multiple scales. The work based on this report was presented in
various conferences [1-3|.

In addition to image detection investigated in this report, some progress which continues the
work in [4] has been made on chemical vapor detection for multispectral imagery and also presented
in different conferences [5-7]. In order to make the report complete, the copies of these conference
papers are included in this chapter for reference.
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