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Abstract .... .

This paper is the first in a series to analyse the accuracy of polynomial in-
terpolation of functions and its dependence on the locations of the interpolation

nodes. It surveys known results for polynomnal interpolation .n an interval. It

also introduces the concept of the Minimal Interpolation Sets which are the

"optimal" interpolation sets. New results concerning the properties of the min-
imal sets as well as procedures for locating the minimal sets are presented.

The table for the minimal sets in the LV norm is given. An adaptive scheme
for determining the interpolation order is also presented. Examples show the

efficacy of this approach.
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I. Introduction

Problem of polynomial interpolation of functions is a classical topic in approxima-

tion theory. It is well known that the positions of the interpolation nodes influence

drastically the quality of the approximation for high degree polynomials. Various

theorems addressing this issue are known for interpolation in an one dimensional in-

terval, particularly through the work of P.L. Chebyshev. In contrast, in two and three

dimensions when the domain of interpolation is not a rectangle or a cube, little is

known concerning the approximation accuracy of the interpolation.

Accurate polynomial approximation of functions is critical for the success of Finite

Element computation, especially for the p and h-p versions of the Finite Element

method. Functions as well as shape informations can thus be specified from their

values at certain discrete points which can be selected a priori.

The present paper is the first in a series (see also [2]) to address the question of

the dependence of the approximation accuracy on the interpolation nodes. It gives

a survey of known results related to polynomial interpolation in an interval. It also

introduces the concept of minimal interpolation sets and presents the principle behind

the computational procedure used in finding these minimal interpolation sets for an

interval as well as for a triangle. Finding the minimal interpolation sets for the

triangle is the focus of the second paper.

In section II, we review known results pertinent to our study. Section III intro-

duces the concept of the minimal interpolation sets for various norms. Interpolation

using the minimal sets leads to the minimal interpolation error. The L' minimal
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sets are listed in Table 1 for polynomials up to order 20. Fig. 4 gives the graph which

characterizes the error bound for such interpolation. Section IV discusses interpola-

tion error in the derivative of the function. In Section V, we show various numerical

interpolation examples. Section VI presents a procedure for the adaptive selection of

the degree of the interpolation polynomial for a given error tolerance.

II. Overview of Known Results

Let I = [-1, 1], C(I) be the space of real continuous functions on I, P,, be the

space of algebraic polynomials of degree less or equal to n.

Polynomial interpolation of a function is to find an approximate polynomial which

takes the value of the function at some given points in I. Such polynomial always

exists.

Theorem 1 Let f(.) E C(I), T = (ro, rl .... r,,), where -1 < r0 < 7 < ... <- 1,

then there is a unique polynomial p,,(.) in P,, such that pn(ri) = f(ri), I = 0,1 .... n.

p,,(.) is given by Lagrange's formula

p.(t) = £Tf(t):= E,'=o f(rk)Lk(t), where L,(t) = r'j_=odk(

£T is a linear projection operator which maps a real continuous function to its

corresponding polynomial interpolant. n is called the order of the interpolation T. r,

are called nodes of the interpolation T.

Theorem 2 (WVeierstrass) [7] Every continuous function in C(I) can be uniformly

approximated by polynomials to any degree of accuracy.

The question arises as what is the best polynomial approximant in P,, to a given

function. We define the least deviation dn(f) := inf suptEIlq(t) - f(t)l,q(.) E 7'P).
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This least deviation is always attained.

Theoreui 3 [6] Given f(.) E C(I), there exists w,(.) E P,,, such that for all q,(.) E

P,,, Ill - w.11. < KIf - q.11., where 1[ 1[ is the Ll norm in C(I), i.e., IlfI1, =
SUPtElI f(t).

Let w(6, f(.)) be the modulus of continuity of f(t) in I, i.e., w(6, f(.))

supti-.t21<6,t1,t 2EIIf(tl) - f(t 2)1, then

Theorem 4 (Jackson) [71 Let f(.) be an r times continuous differentiable function,

f t be its r(th) derivative, then dn(f) < Ar+In-w(n-1 , f ()(.)), where A < 7rv/'/2.

Therefore, the least deviation d,(f) decreases with n at least algebraically to zero

with power r if f has r continuous derivative. Moreover, Bernstein showed that

Theorem 5 (Bernstein) [71 f(.) is analytic on I if and only if lim,_ -(d,(f))I/n < 1.

f(.) is entire if and only if (dn (f))l/- 0.

Since CT is a linear projection operator from C(I) to Pn, we define the LP norm
of CT, 1 < p !5 oc, as 1LCTIlp := supfo.IfEc()l , where the LP norm of a function

f E I is 1IfIl1 = (f-h If (t)lPdt) '"P.

From Theorem 1, we have

11

ICTrIK = A(T):= SUPtE! E ILk(t)l.
k=0

The L' norm A(T) is also called the Lebesgue constant of CT.

The "mean norm" of Cr is defined as

11(L) 11 (f L()12dt)/24
k=0
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Note that

1ICI~rlp <Cl 1£b = (j lLj(tO)Pdt)',"

We shall call I'CT-p the LP pseudonorm or the ILIP norm of the interpolation operator

7CT.

Since LT is a projection operator, IIT"Ip >- 2'/P.

We emphasize that the LP norm of "CT depends only on the distribution of the

interpolation nodes ri.

How well can £7Tf approximate f? We have the following Lebesgue inequality.

Theorem 6 For all f(.) E C(I), 1 < p _ ac, -if - £rf lip •_ (2'/P + I[Ci-lp)d,(f).

The proof uses the method of "intermediate approximation". Note that the n-th

order interpolant of the best approximating polynomial w,, in Theorem 3 is itself,

hence

hlf - LCfAi, = Ill - W. + LCT(W. - f)llp < Iif - Wnllp + hiCT(Wn - f)ilp < llf -

w. 1 .(2'/P + 112T11 p) = (2/P + 1l r-l1p)dn (f).

Therefore, the interpolation error of a function is always less than a numerical

factor, which does not depend on the interpolation function but depends sensitively on

the distribution of the interpolation nodes, multiplied by the least deviation. Note for

a given interpolation T, the bound tlCrllpdn(f) for l[CT(wn -f)llp is optimal, i.e., there

exists a nonpolynomial continuous function f such that IICTllpd.(f) = IILT(wn-f)llp,

where w,, is the best approximating polynomial in Theorem 3. In this sense, we say

the interpolation error bound in Theorem 6 is optimal.
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We shall study the efficacy of the interpolating polynomials as the number of

interpolation nodes increases. We shall consider an infinite triangle array consisting

of T, ...,Tn, ..., where T' = (7r6',r-),., .r'). {T'} defines an interpolation scheme.

Given f, What is the cnnvergence property of £T.f?

Theorem 7 [7] For any { T' 1, I[T'Lo 2r -2log(n + 1)+ bn, where b, is a bounded

sequence.

The right hand side of this inequality is related to the norm of the Fourier convo-

lution operator given by the Dirichlet kernel.

Theorem 8 (Erdos) [3] There exists a positive constant c such that for any { T' },

II4r'1,CT 1Ž 2r-'log(n + 1) - c.

It is possible to deduce the following result from Theorem 7 or Theorem 8,

Theorem 9 (Faber) [71 No matter what are the nodes of an interpolation scheme {

T' }, i > 1, there is a continuous function f(.) such that the sequence of interpolating

polynomials relative to the given scheme diverges in L' norm.

It is important to realize that such functions are non-differentiable in I, in fact,

they are not even piecewise differentiable. On the other hand, for a given continuous

function, it is always possible to choose an interpolation scheme (depending on the

function) such that the interpolating polynomials converge to the function in L'

norm.

To illustrate the importance of the choice of the interpolation nodes, consider the

uniform interpolation scheme T,,= {-1 + 2/n, i=,1, ..., n}, then
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Figure 1: A(T,,,,jf) as a function of n.

Theorem 10 [71 For a uniform system of nodes T,,i, A(T•,/) >_ Cexp(n/2), where

C>0.

The exponential divergence of A(T•nnif) is apparent in Fig, I. Theorem 10 im-

plies that ILCT:- 1ip diverges at least exponentially for p > 1. This follows from the

following lemma.

Lemma 1 [5]: Let u be a polynomial of degree n, then for 1 <_ p < q !5 o0,

llull. :_ (2n)I /"- I/qllUl1..

Take q = oc in Lemma 1, it follows that for an n-th order interpolation operator

IICrllp _> jICrll./(2n)'/P.

Note that from theorem 6, f - CTf converges in LP norm for the uniform interpo-

lation scheme if d,,(f) decreases faster than I[LT:.,,jlp. However, this is not the case

for functions with only finite number of derivatives. Even for analytic (or infinitely
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SFigure 2: The function R(t) = (1 + 25t 2 )-l and £T, R, £R.I R.

differentiable) functions, this condition may not be satisfied. As Runge showed that

for R(t) = (1 + 25t 2)-', £T:ý, R diverges from R in intervals 0.728 < Iti < 1. This

is illustrated in Fig. 2 for £.,, R and LT13 R. We see that as interpolation order

n increases, the interpolant £TJ fR(t) diverges farther away from R(t) in the speci-

fied intervals. In this sense, the uniform interpolation scheme is generally considered

"not good". Bernstein gave a similar result for the piecewise differentiable function

B(t) = [ti, He showed that £L7.:, B(t) diverges from B(t) in intervals 0 < ItI < 1.

For T consists of the zeroes of the (n +1 )-th order Chebyshev polynomials T&hb =

1-O (2/+!)•r i =OV, n) w have{-cos t =0.n}, we hv

Theorem 11 (Chebyshev) [6] A(Theb) < 27r-llog(n + 1) + 47r-(1 + log4).

In view of Theorem 8, we see that the Chebyshev interpolation scheme { Theb }

is almost optimal.
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Note that other than in L' norm, under an appropriate choice of interpola-

tion scheme { T, }C 1 T-J may converge to f for all f E C(I). In particular, if

we choose T to be the quadrature points for the Gauss-Legendre quadrature, i.e..

T~eg : (xIX2, .. x,+), where Xk's are the zeroes of the (n + l)-th order Legendre

polynomial, Pn+1(t), then

Theorem 12 [6] If f(.) E C(I), 11f-£CT,-,fll2 < 2Vi2dn(f); IIf- T£ ,,flu < 4d,,(f):

Similarly, we can also choose T to be the quadrature points for the Gauss-Lobatto

quadrature, i.e., Tj•,, = (-1. x...,.x,, 1), where x4's are the zeroes of the derivative

of the n-th order Legendre polynomial, Pn(t). The same inequalities hold for f -

LCT. 6 f. We note that for T Nheb, similar inequalities hold.

The nodes for the Fejer interpolation scheme consists of the zeioes of the integral

of the Legendre polynomials, i.e., T",,ir = ( x t,. +), where x.'s are the zeroes

of the integral of the n-th order Legendre polynomial, f, P,,(x)dx. Note that x =

-- ,xn+l =1.

Interpolation schemes using { Tj, 9 }, { T~, }, { Tpj, }, { I } will be called

Legendre, Lobatto, Fejer and Chebyshev schemes respectively.

Maday has recently shown that if f(.) E H'(I), i.e., if all the derivatives of f up

to order m are square integrable, then £CTf converges to f in H'(I) if m > 1:

Theorem 13 (Maday) [1] If f E H'(I), then there is a positive constant c, such

that 11f - .CTo-, fI11,,) -< cn!-m1lf11H-(1)•

The H' norm for f is 11flK- = (f 1 E-'o0 [gif(t)]2dt)'/ 2, where a'f(t) denotes the

i-th derivative of f.
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Erdos has shown the following results cincerning the L1 pseudonorm (ILII norm)

and the mean norm for the interpoiation operator

Theorem 14 (Erdos) [3] There exists a positive colistanri C such that for any r-th

ordei interpolation, [1CTI > Clog(n + 1).

Theorem 15 (Erdos) [3] To every positive c, there exists a positive iateger N such

that for every n-th order intrpolation operator T satisfying n > A.', Il(£r)TIV > 2 --

By definition of the Gauss-Legendre quadraturc, we have for the Legendre inter-

polation scheme, 11(CrTE,)II 2 = 2.

Theorem 16 (Fejer) [4] T he only n-th order interpolation set for which E'.0 ILk(t)12 <

1,t E I is the n-th order Fejer set TFejer.

Note that T~,�' and TPej, include the end points {-1.1} of I. Henc-, if a function

is piecewise approximated by polynomial interpolation in contiguous intervals using

the Lobatto sets or the Fejer sets, its continuity at the joint points is guaranteed.

This property is essential for the continuity of the piecewise interpolated polynomial

function in an intervai.

III. Minimal Interpolation Sets

In the following, we consider interpolation schemes whose nodes include the end

points {-1,1]. From Theorem 6, for a givtn interpolation T, the optimal upper bound

for the interpolation error of a function f in L' norm is (1 + 1[1CTJr)d,(f). We

can minimize this optimal error upper bound by minimizing the Lebesgue constant

of the interpolation operator I[ICT[11, through the redistribution of the interpolation

nodes (the least deviation d,(f) by definition is already the smallest possible error).
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Similarly, the interpolation error of a function f in LP norm is less than (2'P' +

I[£CTJp)d,,(f). However, IKT1Tlp is hard to work with. Since JILT!I. < CLTIp, (2`P +

I£vICp)d.(f) also gives an upper bound for the interpolation error in LP norm, we can

instead minimize ILCTiP which has a closed form. WVe shall see that the corresponding

minimal sets are also good interpolation sets. We shall say that an interpolation set is

minimal in ILIP or L' if it minimizes LCTIp or JIICTII. We shall say an interpolation

set is minimal in the mean if it minimizes II(CT)II. n-th order minimal sets are denoted

as TL., TI'l, and T("L> respectively. Interpolation schemes using { T(l, }. { T_ }

and { TnL) } are called minimal interpolation schemes in ILfP, L' and in the mean.

We shall see that minimal interpolation sets have quite similar properties.

i. Minimal interpolation sets in L'

For a given system of interpolation nodes T = (0, Tj ... , 7,), where 70 = -1,7" =

1, let A,(T) = maxtE,_,,l J= Lk(Qt)I, then A(T) = naxl 1 ... A,(i ).

Conjecture 1 T minimizes IITIIC if and only if AI(T) = A2 (T) = ... = A\(T), these

n - 1 conditions uniquely determine the n - 1 interpolation nodes 7"1.... rn- .

Note that the condition that the minimal sets contain the end points {-1,1} of the

interval I is essential. The minimal sets are not unique if {-1,1} is not included in the

minimal sets As can be verified in the case of order 2 interpolation, any inter,)olation

set T= (-y, O, y) where 2vl'/3 < y < I is also minimal.

The uniqueness implies that the minimal sets are symmetrical, i.e. they are in-

variant under the reflection x -- -x.
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Figure 3: The coordinates for TI.-.

We have numerically found the sets satisfying the equalities in Conjecture 1 for

interpolation order up to n = 50. They appear to be minimal in L'. We shall denote

n-th order such set by TL'. Conjecture I states that T•= = TL.

In the appendix, we list the coordinates for TA," from n = 1 to n = 20. The error

in the coordinate is less than 10-7. Fig. 3 shows the coordinates of TLI. They are

almost uniformly distributed in the circle coordinate: 0 = -cos-'(x),

Asymptotically A(TlA,) scales with log(n + 1). Fig. 4 shows tile Lebesgue con-

stant (the L' norm) for TA,. Our numerical result gives asymptotically X(TA,) --+

2r- I log(n + 1) + 0.522 - 0.523. This is consistent with Theorem 8. We note that even

at order 50 (which is considerably higher than the interpolation order in any practical

situation), A(TA,.) is only approximately 3, hence, from Theorem 6, the interpolation

error would be at most 4 times the least deviation at order 50. Note the Lebesgue

12
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Figure 4: A(TL,7) as a function of n.

constant of the interpolation operator depends very sensitively on the distribution

of the interpolation nodes. For the uniform distribution, from Fig. 1, the Lebesgue

constant at order 20 already exceeds 10'.

The ILIP norm of T/n also appears to scale with log(n + 1). However, the square

of the mean norm saturates from below at 2.

ii. Minimal interpolation sets in ILl', ILI' and in the mean

The minimal interpolation sets in ILII, ILl2 and in the mean are found by using

some standard minimization procedure for the corresponding norms.

We shall illustrate in this section that T!'2,, T7l21, T(L) have similar scaling be-

haviors as TL,. Their coordinate positions are relatively close, and their ILIP norms,

which determine the upper bounds for the interpolation error, are almost the same.

It was conjectured [31 that the n-th order minimal set for the mean norm is T',ejer,

13
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Figure 5: the differences in the Lebesgue constant (the L' norm) between TI'l, and
TL" (diamonds), TI,2 and TL,. (triangles), T7 and TtL (asterisks), Tn,, and TLn.
(squares) respectively.

the n-th order Fejer set. The mean minimal sets we have found indicate that this

conjecture is incorrect.

Fig. 5 shows the differences in the Lebesgue constant (LI norm) between T7j

and T,., T 7, and TL,, T() and TL-, TLob and TL. respectively. These differences

appear to asymptote to constants. In the case of TLIand Td 2, it appears that

they are very close to T/n. as n increases (the asymptotic differences in the Lebesgue

constants are close to zero). The differences in the Lebesgue constants between all

these sets are small so that these sets are almost the same in practical interpolation

situations. E.g., if we use T(L) instead of TL. the difference in the Lebesgue constant

(L' norm) is only of order 0.07. According to theorem 6, this only increases the

interpolation error for approximately 0.07 times the least deviation, which is usually

14
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Figure 6: The mean norm for the mean minimal set II(,C: T112 as a function of n.

negligible in practice.

The L' norm as well as the ILIP norm for all minimal sets scale with log(n + 1).

The square of the mean norm, II(,CT)112, asymptotes to 2 from below for all minimal

sets. Fig. 6 shows the dependence of the mean norm for the mean minimal set

on the interpolation order n.

ill. The Lobatto sets

For the Lobatto sets, using the Gauss-Lobatto quadrature formula, one obtains

that the square of the mean norm .(rT)112 equals to 2 - C,, where C,, > 0 and

lim,__=,C,, = 0. From Theorem 15, one sees that the Lobatto sets are almost optimal

in the mean norm.

The Lobatto sets are usually good enough for interpolation purpose in practice.

(As is any set consisting of the zeroes of any other orthogonal polynomial in I.)
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However, albeit there are generalization of orthogonal polynomials in some standard

connected domains in several dimensions, their relations to quadrature and interpo-

lation are unclear. The minimal sets, on the other hand, have direct generalization in

these situations and in view of Theorem 6, they are the "optimal" interpolation sets

(2].

IV. Approximation of Derivatives of Functions

Frequently, we not only need to approximate the function, but also its derivative.

Consider the following problem. Suppose we have only access to the function val-

ues, but not its derivative values at certain points, we want to extrapolate information

about its derivative. Theorem 1 again provides a way to estimate the derivative of

the function by evaluating the derivative of the interpolating polynomial:
p'(t) = £!.f(t) := o= f(rk)L' (t)

Here prime (f) denotes taking derivative with respect to t. We call 4 the derivative

interpolation operator. We note that it is not a projection operator.

Let q. be an n-th order polynomial, using the method of intermediate approxima-

tion, hIf' -C' f I-• 21/POf' - q.1(.I + 14'I plif - q- 1(., where

l[1CIr hoc= A'(T) :=SLt IL Z1(t)I
k=O

IITI£•'lP -< 141P := (f, (•' )L't(t)))Pdt)'/P.

-"A=0

Again we shall call JV£"p the LP pseudonorm or the ILPI norm of the derivative

operator and A'(T) the Lebesgue constant for the derivative operator.
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Figure 7: The Lebesgue constants for the derivative interpolation operator for T2,'12
(triangles), T ,)(squares), TO (asterisks) and TLo6(diamonds).

The approach we have used in the previous section can be used to minimize Jr•j,

We shall minimize I4JJ). and the mean norm for the derivative interpolation operator

1(4•)11 := (- 1  0 IL'•(t)I~dt)/ 2 
. We shall denote the corresponding minimal sets

by TIL,I, and 27',) respectively.

The error for the interpolation of the derivative is usually largest at the end

points. In quite contrast .o -k: Lebesgue constant for the interpolation operator, the

Lebesgue constant for the derivative interpolation operator )Y'(T) appears to increase

quadratically with n for both 2T,, and . Fig. 7 shows this scaling of the Lebesgue

constant for the derivative interpolation operator for TIL',I2, 77L,), TZn and T•Lb.

However, the ILIP and the mean norm for the derivative interpolation operator

appear to increase linearly with the interpolation order n. As ',s illustrated in Fig. 8

for the ILl2 norm. This is a result similar to Theorem 13.
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Figure 8: The ILl2 norms for the derivative interpolation operator for TI,', (triangles),
T(L,) (squares), T" (asterisks) and Tnob(diamonds).

NWe note that the values for the Lebesgue constants for the derivative interpolation

operator for different minimal sets are quite close. This indicates that the minimal

sets for the derivative interpolation operator are quite close to the minimal sets for

the interpolation operator.

Suppose we are not only able to access the function value, but also its derivative

at certain n+1 points. Then we can use Hermite interpolation formula to obtain a

2n + 1 order polynomial to approximate the function:

p2.+ 1 (t) = 7R/(t) := •,'.o(f(rk)Hk(t) + f'(rk)Hk(t)), where Hk(t) = (1 -

2L'(Tk)(t - rk))Lk(t), Hk(t) = (t - rk)L•(t).

The minimal sets for the Hermite interpolation operator W"tT can be considered

similarly.
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V. Examples

Let us consider the interpolation of the following rational function R3 (t) I ;

In Fig. 9, we show the interpolation error RI(t) - £TRI(t) for minimal sets TI1111

T7jI, TLn., Thn) and the Lobatto set Tnob for order n = 9 interpolation. Interpolation

using minimal sets does appear to have smaller interpolation error than any known

interpolation schemes. The magnitudes of the interpolation error for different minimal

sets are of the same order. Indeed, TLn. appears to have the smallest interpolation

error and T•L& has the largest error while the interpolation error for TnL) seems to lie

in between. The interpolation errors for Tj~j, and T7Lj, appear to be very close to that

of TLn. This is consistent with the fact that the norms for T7I2 and T)Lj, are very

close to the norm of TL%. The ordering of the L' norms for minimal sets appear to

be indicative of the ordering of their interpolation errors.

On the other hand, if we interpolate the same function to extrapolate the deriva-

tive, the error is larger. We show in Fig. 10 the derivative error R'(t) - £'TRI(t)

for minimal sets T77,, 7,, TL". and T7Lob for interpolation order n = 9. The error

in derivative is largest at the end points t = ±1. T", appears to have the smallest

derivative error, while T7L. has the largest error. They all have the same order in

interpolation error.

For minimal sets, both the interpolation error in L' norm or in H1 norm for

R3 decreases exponentially (see Fig. 11) , in accordance with Theorem 12 and the

fact that the function Ro is analytic hence d,,(RO) decreases exponentially. The

interpolation error in H' norm is dominated by the error in its derivative, since as

19
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Figure 9: The interpolation error RI(t) - £TRI(t) for minimal sets LTh2 (dot), TI'LI,

(dash dot), TLj(solid), TL) (dash)and the Lobatto set T•n,• (long dash) for order
n =9.

0.010 -,
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Figure 10: The derivative error R'(t) - £C'TR,(t) for minimal sets T",, (dash), T(nL,)
(dot), TL". (solid) and T•Lo, (dash dot) for interpolation order n = 9.
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Figure 11: The interpolation error in L2 norm (Ila) and H' norm (1ib) for R' where
3 = 1 and 3 = 3.

we have seen, the error in the derivative of the function from interpolation is much

larger than the error in the function itself. All minimal sets seems to have almost the

same order of interpolation error in L2 and H' norms.

VI. Adaptive Determination of Approximation Order

Suppose we want to approximate a function in an interval. It is neither appropri-

ate nor practical to use polynomial interpolation for the function in the entire interval.
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Figure 12: The polynomial interpolation of the function f in 4 subintervals

11 = [0, 21, 12 = (2, 41,13 = [4, 61, I4 = [6, 81

Approximation of functions using polynomials of arbitrarily large order may be pro-

hibitively expensive. This problem could be solved by dividing the whole interval

into subintervals and by s-ccessively approximating the function in each individual

subinterval. Note that if we use the minimal sets discussed in section III which con-

tains the end points of the interval, the continuity of the function at junction points

is automatically guaranteed.

However, if we use the same polynomial order for interpolation in all the subinter-

vals, the approximation error may be of quite different order of magnitude in different

subintervals. For example, in Fig. 12. we show the polynomial interpolation of the

function f ,- in 4 subintervals I, = [0,21,12 = [2, 4],13 = [4,6],14 = [6,81

using the same order 9 polynomial interpolation. We see that the function is well
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Figure 13: The error f - £Tf in different subintervals for order 9 interpolation.

approximated in each subinterval, however, as is shown in Fig. 13, the error f - £Tf

varies with quite different order of magnitude in different subintervals. In fact, com-

pared to the error in 14, errors in other subintervals are negligible. Frequently, it

is inefficient to have such a situation, since both the access of the function values

at interpolation nodes and the interpolation procedure cost more for high order in-

terpolation than for low order interpolation. The interpolation order in subintervals

I1,12, 13 can in fact be reduced to achieve the same order of accuracy (10-8 in all

subintervals). As is illustrated in Fig. 14, to achieve the same order of accuracy for

the approximation, we only need order 5 interpolation in I,, order 6 in 12, and order

7 in 13.

In the following, we give a simple adaptive procedure for the determination of the

approximation order. Let { T' = (r('i), (,.. r')), i = 0. ...,n,...; r(i) = -1, (i) =

1, ( = 0 } be the interpolation scheme in I = [-1, 11. Since low order interpolation
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Figure 14: The error f - CTf in different subintervals for interpolati. n using adap-
tively determined order.

informations are relatively cheap to obtain, the interpolation error can be estimated

by using low order quantities. At order n, we have at our disposal quantities {

fj (), .= .0. i = 1 ... , n }. Define the estimated interpolation error at order n

by en(f) = max]= . . . . . .  . 0 . . . . .rj (CTf)(r' )1. For a prescribed error toler-

ance p(f), calculate the estimated interpolation error e,•(f). If e"(f) < p(f), stop:

otherwise, continue to go to higher order polynomial interpolation until e"(f) < p(f).

Fig. 14 is generated using this adaptive procedurc. We see that it consistently

gives the appropriate interpolation order for different subintervals.

Numerical computation indicates that for all the minimal sets we have consid-

ered as well as the Lobatto interpolation schemes, the above error estimator satisfies

if-E fi --- 1, i.e., e,(f) is an asymptotic error estimator for these sets. This is

because all these sets are dense in I.
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Appendix

The coordinates of T1> Minimal Sets. Minimal sets are symmetrical under the re-

flection x -- -x. Only nonnegative coordinates are given.

n=1

1.000000000000000

n=2

0.000000000000000 1.000000000000000

n = 3

0.4177912974318541 1.000000000000000

n=4

0.0000000000000000 0.6209113447507076

1.000000000000000

n=5

0.2689070754306328 0.7341271205122524

1.000000000000000

n = 6

0.0000000000000000 0.4461215875027044

0.8034402333430620 1.00000000U000000

0.1992876906268561 0.5674310617087234

0.8488719620155624 1.000000000000000

n =8
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0.0000000000000000 0.3477880851677845

0.6535334678686619 0.8802308501922200

1.000000000000000

n=9

0.1585652002417824 0.4601504943340195

0.7166138903070984 0.9027709837119849

1.000000000000000

n = 10

0.0000000000000000 0.2848881583261380

0.5466676817797121 0.7640984500324875

0.9195087505000881 1.000000000000000

n = 11

0.1317517498523124 0.3862689500044784

0.6144355686309110 0.8006822718709737

0.9322747835437754 1.000000000000000

n = 12

0.0000000000000000 0.2412238223627454

0.4684174854953188 0.6683666122414075

0.8294354770322080 0.9422316270662717

1.000000000000000

n = 13

0.1127326359341456 0.3325422077453501

0.5356655185494467 0.7119103291764621
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0.8524275965461744 0.9501460629121580

1.000000000000000

n = 14

0.0000000000000000 0.2091512677285655

0.4091565197775405 0.5912705391349697

0.7475281136999568 0.3710916050399280

0.9565402629254455 1.000000000000000

n = 15

0.0985297784103952 0.2918018772197364

0.4738547252988244 0.6376896893581207

0.7770061975121303 0.8864437448634451

0.9617797393250818 1.000000000000000

n = 16

0.0000000000000000 0.1845994015541723

0.3629096447556914 0.5288572825810849

0.6767882746653493 0.8016617880341823

0.8992200395501156 0.9661264747628877

1.000000000000000

n = 17

0.0875146300475834 0.2598845240957428

0.4243549140109628 0.5759276777085162

0.7099951825658469 0.8224813031663734

0.9099637721447408 0.9697722167216912
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1.000000000000000

n = 18

0.0000000000000000 0.1652022750114381

0.3258963792565789 0.4776989264800610

0.6164674647713962 0.7384152647561639

0.8402138563369347 0.9190827135791494

0.9728598817268702 1.000000000000000

n = 19

0.0787199876854192 0.2342217468993406

0.3839541966C26281 0.5242305008694372

0.6515953463715364 0.7629. 13934252203

0.8554359783038173 0.9268876580527369

0.9754977712411774 1.000000000000000

n = 20

0.0000000000000000 0.1494917070738174

0.2956424244330606 0.4351881757862846

0.5650105307170965 0.6822087048389735

0.7841637256141400 0.8685966695651883

0.9336186965721600 0.9777691371910347

1.000000000000000
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