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,Adaptive Mathematical Morphology for Range Imagery ,-

Jacques G. Verly and Richard L. Delanoy

Abstract-We explore the application of adaptive (i.e., data-dependent)
mathematical morphology techniques to range imagery, i.e., the use of / I
structuring elements that automatically adjust to the grayscale values in D/\
a range image in order to deal with te.g., extract or eliminate) features ELECTE
of known physical sizes. NOV 0 9 1993

O. INTRODUCTION (

Often, the output of a mathematical-morphology (MM) operation L
[1] (either binary or grayscale) describes how well a shape, called
a structuring element (SE), either fits or does not fit inside a local ,.•
image feature. -

Whereas the SE's used in most applications remain constant as 2

they probe an image. there are situations where SE's must change 3

their size, orientation, and/or shape during probing. If these changes - .---- 5

are determined a priori, independently of the data, the SE's can be ]
said to be space variant. If the change is made on the basis of the
value(s) of one or more pixels around the pixel being probed, the 2 3 4 6 n
SE's can be said to be data dependent or adaptive. We are aware of
only a few papers dealing with space-variant SE's, e.g., [2] (also in Fig. 1. Range intervals associated with integer-length SE's when the SE's
[3)) and [4], and of none dealing with adaptive SE's. must fit inside a feature.

Since range imagery [5] contains significant shape information and
since MM deals with shape in images, it is also surprising that so few where r0 is a range offset corresponding to the grayscale value of 0,
papers have been written on the application of MM to range imagery b is the range quantization value, and [x] is the integer part of x.
(examples are [6]-[10]). The length n. in units of pixels of a horizontal feature F (in

Since "angle-angle" range images are subject to the usual perspec- I?) that ",s an actual length of .x,,_ meters (in S) and is located at
tive distortions, the apparent length of a feature in such images is a distance of r,,. meters from the imaging sensor is given by the
a function of the feature range. With range available at each pixel, small-angle approximation
one can simultaneously process (e.g., extract or eliminate) all the
differently-scaled instances of the feature or object of interest by - (2)
adapting the sizes of the SE(s) to the local range. I' ,,o,

For simplicity, we will assume that all SE's of interest become fully
determined when their scalable .r size and y size are specified (.r and where a,. is the horizontal angular width (in radians) of a pixel.

y, respectively, refer to the horizontal and vertical image axes). In This expression can also be used to find the .r dimension n. (in

other words, we assume that adapting an SE to range simply amounts pixels) of the SE required to detect F in R (for convenience, we can

to finding the appropriate x' and y sizes. Examples of useful SE's that temporarily focus on the case of horizontal, rectangular, 1-pixel high

have such properties are the rectangular and ellipsoidal SE's (either SE's). Notice that we use primed symbols like n', to denote arbitrary

binary or grayscale). Note that, for this class of SE's, changing the x lengths in units of pixels, and unprimed symbols like n, for lengths

and y sizes can in some cases cause a spatial compression/expansion that are an integer number )f pixels.
From the functional dependency of r_ upon n for fixed a, and

of the pattern (either binary or grayscale). The goal of this paper ri x
is to develop a systematic, practical methodology for designing and x,- (e.g., as in Fig. 1), we observe the following.

applying adaptive SE's for range imagery under the constraints just First, consider SE's that mustfit inside F in R. Such SE's will be

described, said to be of type MF. For example, a SE used in an opening with
the intent of preserving a protrusion must be of type MF; ditto for

11. PRINCIPLES closing and intrusion. A fixed-length SE designed to fit inside F at
a given range will fit in the same F at a shorter range, but not at

Let us consider a range image R of a scene S. The grayscale value a longer range. Since the localization of F based on a fixed-length
r, associated with each pixel is related to the distance r- (say, in SE becomes less sharp as the range decreases, one should switch to
meters) between the corresponding patch of S and the sensor by the next larger size SE as soon as its design range is reached. In

r -= , . (1) summary, in the case of .\MF-type SE's, the range interval where a
b Jgiven SE can be used is from (and including) its associated range (i.e.,

Manuscript received January 8. 1991; revised September 15, 1992. This the range at which it fits exactly in F) down to (but excluding) the
work was sponsored by the DARPA Tactical Technology Office. The associate design range of the next iarger SE. For example, when all integer-
editor coordinating the review of this paper and approving it for publication length SE's are available, the semi-open range interval for the SE
was Dr. A. C. Bovik. corresponding to n, = 1 is obtained from the solid curve segment

The authors are with the Machine Intelligence Technology Group, MIT
Lincoln Laboratory, Lexington, MA 02173-9108. labeled 1 in Fig. 1 ( the interval is shown along the r,,-axis). Pixels

IEEE Log Number 9206911. with ranges corresponding to n. = 0 should not be processed at all.

-u-bl' t -. _____ .----- " 1057-7149/93$03.00 © 1993 IEEE . -

"- ......... " t bis reprint may be reproduced to satidfy need&
of U. S. Government agenciea



IEEE TRANSACrIONS ON IM1GE PROCESSING, VOL. 2. NO 2, APRIL 1993 273

rm 2. For SE's of type .. INF:

,i -..... = smallest integer in N,.
4 strictly greater than r'.

...max = smallest integer in .N%

strictly greater than .

1 •Thus the set of SE's that can be called upon is the ordered subset

N, = {ntk k 1. lh; 11,.k E .,V
- ...n.n • f<rA•-f<_ m,( .... ,K < Ur.k-,-}

, 6 of N, where K, < K; is the maximum index k needed.
2\ 2

3,
3, B. Selected-SEs' Range Intervals in Meters

""3 iDenoting the actual range (in meters) associated with each nr.k

... in N,- by r.-., with 1
5 ri-k.,,, --

nr.k fl

1 2 3 4 5 6 n.~ it can be shown that the lower and upper limits (in meters) of the
semi-open interval Er.,t, ...,.. r.T- H,k,mI are as follows.

Fig. 2. Range intervals associated with integer-length SE's when the SE's 1) Fo r SE's of tp fl w

must not fit inside feature. 1) For SE's of type MF:

rk+ 1,-. if k < K-
Second, consider SE's that must not fit inside F in R. Such SE's ri.,,, , - rA. if k = K.-

will be said to be of type MNF. For example, a SE used in an
opening with the intent of eliminating a protrusion must be of type ri-H . = r.,,.
.1tINF; ditto for closing and intrusion. Here, the range interval where 2) For SE's of type M.VF:
a given SE can be used is from (but excluding) its associated range
(i.e., the range at which it fits exactly in F) up to and including the rTt.k A = rT.k,,,
design range of the next smaller SE (Fig. 2). r ri.k-l.., if k > 1

In practice, it may not be feasible to use all the sizes n. thk:. arc rH,-,-, r =if
necessary to cover the total range interval of R. The dashed lines in Ir.,. k = 1.

Figs. 1 and 2 show the range intervals and the corresponding SE sizes C Selected-SEs' Range Intervals in Range Integers
for the hypothetical case where only the odd sizes n. are available.

Expressing interval limits in terms of range integers (instead of

Iii. IMPLEMENTATION meters) can speed up the repeated comparison of pixel grayscale
levels to the various intervals. Introducing

Denote the minimum and maximum values of R by r.A, and rin,,,

where i is a reminder that these numbers are integers. Using (1), one rk,, .. -

can find the limits of the span [rAm. rTB,] of actual range values b
(in meters) in B, i.e., one can show that the upper and lower limits (in range integers) of

rAm = ro + rAib the closed interval [r,L,,,. riH.k,] associated with each size ni,k

r1,m = ro + (rT., + 1)b. in N. are as follows.'
1) For SE's of Type MF:

A. Selection of Necessary SE'sA. eletio ofNecssay S'sr,.H,k., =largest integer smaller than or equal to r',.k,,

Using (2), one finds that the required interval of sizes n', is

[ , .m in - f' rm a x ], w ith rr-L,, = ,H A + .,, + 1 if k < K ,[n•.•X_ n . . , wthr_.k, = rA,. if k = I,', .

nimin - , irmax
1rR,mar rA,mat. 2) For SE's of type MNF:

Assuming that the only SE sizes available are those in the ordered
set rr,L~k,, = smallest integer strictly greater than ri•- 5,k

N l = {n..k Ik = 1, K; ;ni,t = 0; ni-k < rt-,k+1} riHA, = k Tr-A,, -1 if k > 1
wee ifi k

where K; is the number of available sizes, the corresponding interval
of integers n.- is [nx~in,,., I n,max] where the limits are as follows. D. General Implementation Strategy

1. For SE's of type MF: So far, we have focused on the x dimension of an SE and on

rt-,min = largest integer in N the particular case of a 1-pixel high horizontal SE. Of course, the
less than or equal to n.,, argument can be identically repeated for the y dimension and for a

nfx,max = largest integer in N, 'The limits rTiL,., and r,,iH,, are derived independently of their
less than or equal to n7l,x,. counterparts ri,f,kA. and r-,H,km.
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