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ABSTRACT

Multigrid methods were developed to solve partial differential equations.

Research has shown that these methods are applicable to a broader range of

problems. This thesis investigates the application of multigrid techniques to

minimal cost flow problems, specifically the long transportation problem.

This research shows that multigrid techniques can be successfully applied

to large-scale long transportation problems posed on a three-dimensional, regular

grid in cost space. A V-cycle algorithm is developed for the long transportation

problem. Analogies to the multigrid components of restriction, interpolation and

relaxation are detailed. Performance of the algorithm is discussed, and

computational cost is analyzed.

Future research is likely to include the development of more sophisticated

restriction and interpolation schemes to provide integer-valued flows, and the

development of a method to map an irregularly spaced problem to a regular grid,

and to map the regular grid solution back to the original problem domain.
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THESIS DISCLAIMER

The reader is cautioned that the computer program developed during this

research has not been tested on all cases of interest. While every effort has been

made to ensure that there are no logic or computational errors, the program

cannot be considered verified as yet. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. THE TRANSPORTATION PROBLEM

The generic transportation problem contains m origins and n destinations.

Origins and destinations are also referred to as nodes throughout this thesis. Each

origin i contains a supply of s, units of a particular commodity. Each destination

j has a demand for d, units of the same commodity. It is assumed that total

supply equals total demand and that s,,d,>O. The problem is to find a feasible

shipping pattern that minimizes total cost. The problem is represented

mathematically as follows:

Minimize z=cx11 x +... + C nXIn + C21x 2 1 + + C "nXR

Subject to: x +1... +÷ = SI

x21 -... + X2 n S2

xl + +x
MII

Xm! ... + Xra =dm

x 11 + X 21 + Xm ="Idi

x In + X 2n + X inn dn

X# 0 i=1,2,...,m, j=l,2,...,n



In general, a transportation problem with m supply nodes and n demand nodes

contains mn variables and m+n constraint equations.

A transportation problem where m<<n is referred to as tlie long transportation

problem.

B. MULTIGRID METHODS

Multigrid methods evolved out of an effort to improve iterative solution

methods for boundary value problems. The continuous boundary value problem

is transformed into a discrete problem by choosing a set of grid points in the

domain for the problem. At each grid point, an approximation to the differential

operator is formed using the difference between values of the unknown function

at neighboring grid points. This leads to a system of linear equations relating the

values of the unknown function at the grid points. A one-dimensional problem

is used in this thesis to illustrate multigrid methods for ease of demonstration,

although multigrid techniques are more commonly applied to higher dimensional

problems.

C. PREVIOUS RESEARCH

Aggregation/disaggregation is a method applied to large scale transportation

problems. It involves consolidating several neighboring origins or destinations to

form a smaller problem that is easy to solve, and provides an initial guess for the

original problem. This method aggregates demand nodes until a small problem,

which is easy to solve, is obtained. The solution is then disaggregated to provide
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an initial solution or a bound for the original problem. Kaminsky (1989)

developed a multilevel algorithm that uses an approach similar to the

aggregation/disaggregation approach. Kaminsky extended this approach from

two levels to multiple levels. He required that the supply and demand nodes

occupy a physical location in space and that shipping costs be directly related to

the physical distance between a supply node and a demand node. He then

aggregated nodes together that were physically close.

Cavanaugh (1992) relaxed tnis geometric restriction so that shipping costs

may have no correlation to the physical distance between the supply and demand

nodes. He then mapped the demand nodes to what he called cost space, where the

shipping cost from each supply node determines its position. For example, cost

space for the mxn problem is the m-dimensional space in which each coordinate

axis represents the shipping costs from each of the m supply nodes. Each of the

n demand nodes are then placed in cost space at the point whose coordinates are

the shipping costs from the supply nodes to it (Cavanaugh, 1992). This generally

results in a transportation problem posed on an irregular grid in cost space. The

idea is to aggregate the demand nodes together that have similar costs.

This thesis uses the idea of cost space and assumes that the problem is

posed on a regular grid.

3



D. THESIS OVERVIEW

The algorithm developed in this thesis is not intended to replace or compete

with any of the existing solution methods. The transportation problem is being

used as a test bed, and an effective method would, after development, be applied

to a class of more intractable problems.

Chapter II provides background information on the transportation problem

and outlines traditional solution methods. Chapter III provides an introduction

to multigrid techniques and describes the key elements in multigrid methods.

Chapter IV describes the analogies to the key elements in multigrid methods

developed in this thesis. Chapter V describes the entire algorithm and contains

the results of the numerical experimentation. It also describes the storage

requirements and provides a complexity argument of the algorithm. Chapter VI

contains conclusions and recommendations for future research.
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II. INTRODUCTION TO LINEAR PROGRAMMING

A. GENERAL LINEAR PROGRAMMING

Linear programming is concerned with the optimization of a linear function

with n variables subject to m linear constraints. The general form of the linear

programming problem is as follows:

Minimize '74 c I (1)

Subje-'- to: I" a-Xj > b. i=1,2,...,m (2)

X . 0 j-1,2,...,n (3)

The objective function is represented by the summation in (1) and is usually

denoted by z. The term optimization refers to the minimization or maximization

of the objective function. A minimization problem can be easily transformed into

a maximization problem and vice versa by simply taking the negative of the

objective function as follows: Maxýc.x,= -MinX(-crx?. The cost coefficients are

c,,c 2,...,c. and the decision variables are x,,x 2,...,x,. The constraint inequalities are

represented by (2). The coefficients a, for i=l,...,m and j=l,...,n are referred to as

the technological coefficients. Inequality (3) is the nonnegativity constraint. The

inequality constraints can be easily transformed into equalities by adding a slack

or surplus variable x,.,2: 0. Hence Yaqx, > b, can be rewritten as Ya#xi- x,÷, = bi,

5



likewise I.ax, < b, can be rewritten as -.ax, + x., = b,. A set of values for x,x 2 .... ,x.

satisfying all the constraints is referred to as a feasible point, feasible vector, or a

basic solution, although it may not yield ant optimal value for the objective

function. The set of all such points is known as the feasible region (see Figure 1).

If the solution contains fewer than m+n-1 positive solution variables then the

solution is said to be degenerate.

x>O
2-

4/

... ....- x- 2x > -18
2

AA

X ........ •++i+i+•+ ••• •i ++++i++•!•++++i+i•++++++•+++..>o_

I I+x2> 6

Figure 1. Illustration of Feasible Region, the Region in Which All Constraint
Inequalities are Simultaneously Satisfied
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The problem can be presented in matrix notation as follows:

Minimize cx

Subject to: Ax = b
xŽO

x1 bt[ a,1  a12  . .. a,

x2 b2  a21  a,2 . a.. 2,

c c, c2 ... cJ x a b, As

x 1 b . a ., a,,2 .. a

Note that the inequality constraints have been transformed into equality

constraints; this is standard practice, since systems of equations are easier to solve

than are systems of inequalities.

B. MINIMAL COST FLOW PROBLEMS

A graph consists of a set V of m nodes (or vertices) and a set E of edges, which

are unordered pairs of elements from V. A directed graph, or digraph, D, consists

of a set V of m nodes and a set A of arcs which are ordered pairs of elements

from V. The nodes are re1,'esented by points and there is a directed line from i

to j if and only if ije V and (i,J)e A. A network is a directed graph in which every

node i has a number bk associated with it, where i=l,...,m, and each arc has a

capacity for flow that is greater than or equal to zero (see Figure 2). The number

7



b, represents either the supply of some commodity present at the node or the

demand of the commodity, that is, the amount required at the node.

b =4
2

b =8 c =12 c=-2 3 b =-lO
1 4243

C 1 4 = 1 0 4 4 3

b4=-2

C31 =14

Figure 2. Graphical Representation of a Mimimal Cost Flow Network

The minimal cost flow problem is to ship the available supply through the network

to satisfy the demand at the cheapest possible cost. Let m represent the total

number of nodes in the network. Let x, represent the flow along the arc from

node i to node j. Let c, represent the cost to ship one unit of flow along the arc

(ij). Both x, and c, are assumed to be nonnegative. If b1<O, then b, represents the

demand at node i, while if b,>O, then b, represents the supply at node i. The

underlying assumption in this problem is that total supply equals total demand,

therefore Xb,=O. If this is not the case then a dummy node can be added to the

network so that b,,, 1=-,,b,, and then arcs with zero cost from each supply node to

8



the dummy node b7,.1 would also be added. The general minimal cost flow

problem can be written mathematically as follows:

Minimize 7.Ic x..

Subject to: I7'x- - '"x - b. V i (4)

X1.. 2 0, i,j=1,2,...,m

Equation (4) is referred to as the conservation of flow equation. Zrx# represents the

total flow out of node i, and j,,X represents the total flow into node i. Because the

network is actually a directed graph, solution techniques can take advantage of

this special structure to solve these problems much fasmer than general linear

programming problems.

C. THE TRANSPORTATION PROBLEM

The transportation problem is the simplest case of the minimal cost flow

problem. It can be represented by a complete bipartite digraph (see Figure 3). This

digraph is bipartite because the set of nodes can be partitioned into two disjoint

sets, O=(origin or supply nodes) and D=(destination or demand nodesl, and all

arcs are directed from 0 to D. The digraph is complete because there is an arc

connecting every node in 0 to every node in D. If an actual problem does not

contain an arc connecting some node ie 0 to some node je D, then an artificial arc

is added to the graph and assigned high cost so that x, becomes an artificial

variable.

9



origins Destinations

1 d I

i j

m dn

Figure 3. Graphical Representation of the Transportation Problem

The assumption that total supply equals total demand guarantees the

existence of a feasible solution to the transportation problem, provided that no

constraints are placed on the carrying capacity of the arcs. For example, it can be

shown that x,=(sfl)ld is a feasible solution, for all i=1 ...,m, j=l,...n, where

d=Z1t,=.Is 1  Also, a bound exists for each decision variable, such that,

0.:x#:-ninimum{s,,dj). It is well-known that a bounded linear program with a

feasible solution has an optimal solution (Bazaraa, 1990). Some traditional solution

methods are presf-nted next.

D. THE SIMPLEX METHOD

Whenever feasible solutions to a linear programming problem exist, the

region formed by the constraint equations is called the feasible region (see Figure

10



1). It can be shown that this region is also convex, which means that each pair of

points in the region can be joined by a line segment that lies within the region.

The boundaries of this region are lines or planes and there are corners where

these lines or planes intersect. Points on these corners are referred to as extreme

points. Two extreme points are adjacent if the line segment joining them is an edge

of the feasible region. Any point in the region can be written as a convex

combination of the extreme points, which leads to the property that an optimal

solution can be found at an extreme point.

Informally, the simplex method can be summarized as follows:

1. Begin at an initial extreme point.

2. Perform an optimality test (Is this extreme point at least as good as the
adjacent extreme point(s)?). If yes, stop; optimality has been achieved.

3. If not, move to an adjacent extreme point whose objective function value
is at least as good as the present extreme point. Repeat step 2.

The simplex method, as presented above, is an algorithm used to solve exactly a

linear programming problem in a finite number of steps or reveal that the

solution is unbounded, that is, that the objective function has a value of -c and

hence no optimal solution exists. This method breaks a difficult problem into a

series of easy problems. Some notation must be introduced before the simplex

method can be formally presented.

Consider the system Ax=b, x_>O. Let A be an mxn matrix, where m.n, and

b a vector of length n, and suppose that the rank of the augmented matrix [Abi

11



satisfies rank ([A,bJ)=rank(A)=m. The matrix A can be partitioned into A=[B NJ,

where B is an mxm invertible matrix and N is an mx(n-m) matrix. A solution to

the system is xT=[xo XNJ, where xB= B'b and XN=O. This is referred to as a basic

feasible solution. B is the basic nmtrix and N is the nonbasic matrix. The columns of

B are also referred to as the basis. The vector xv contains values of the basic

variables and XN contains values of the nonbasic variables. If x,>0 then the solution

is nondegenerate, while if at least one component of x. equals zero then the

solution is degenerate. The cost vector is partitioned so that c=[cB CNI, where c.

contains the basic variable costs and CN contains the nonbasic variable costs. The

dual variables are contained in the row vector u, where u is given by u=cBB"'. The

dual variables are used to compute the reduced costs denoted by (z,-c,)=ua,-c,,

where a, is the jth column of the matrix A and z, is given by z,=c.BWat for each

nonbasic variable. The reduced costs are actually the cost coefficients of the

nonbasic variables. The simplex algorithm for a minimization problem is as

follows:

1. Start with a basic feasible solution with basis B. (There are many different
procedures available for finding an initial basis.)

2. Solve the system Bx3=b, which has the unique solution x,=B-'b. Let xN=O
and Z=CBX1 .

3. Solve the system uB=cg, which has the unique solution u=cyB"'. Calculate
z-c,=ua1 -c,, for all nonbasic variables. Let zk-ck= maximum(zr-ci) for il. je R
where R is the current set of indices associated with nonbasic variables. If
zk-ckO then stop, the solution is optimal. Otherwise xk is the entering
variable.

12



4. Solve the system Byk=ak, with unique solution yk=B-'ak. If Yka 0 , that is, if
all components of the vector Y, are negative, then the optimal solution is
unbounded. Otherwise continue.

5. The variable xk enters the basis, while x., leaves the basis. The index r of
the variable x., which leaves the basis is determined by the minimum ratio
test. If the columns of B are the basis then ak enters the basis while Xk
becomes one of the basic variables. The minimum ratio test is as follows:

= =minimumi,,,, : y,,> 0 ', reR

6. Update the basis B, where ak replaces a8 ,, update the set R, and repeat step

2.

A transportation problem with 25 supply nodes and 1000 demand nodes

consists of 25000 variables and 1025 constraints. This type of problem cannot be

solved efficiently or quickly using the simplex method, even with the aid of a

large scale computer. The network simplex method is suited to the task because it

exploits the unique structure of the graphical representation of the transportation

problem.

E. THE NETWORK SIMPLEX ALGORITHM

Several terms must be defined before the network simplex method can be

discussed. A digraph D contains a path from s to t if an ordered set of the arcs in

A begin at s and end at t, where s,te V. That is, the arcs (wo,w,), (w1,w2),

(w2,w), .... (w,,.,w.) where wo=s and w.=t, and w, are all in A, for j--O,1,2,...n. A path

13



that begins and ends at the same node is a cycle. A digraph is connected, if

between every pair of vertices s and t there is a path. A tree is a connected

digraph with no cycles. A spanning tree in D is a tree containing every node in D.

A rooted tree has one node identified as the root such that there exists a unique

path from the root to every node in D.

If the solution to a minimal cost flow problem is examined graphically it

corresponds to a spanning tree in the network (Bazaraa, 1990). The network

simplex method exploits this fact and is a more efficient solution method than the

simplex method. The network simplex algorithm is as follows:

1. Find an initial basic feasible solution represented by a rooted spanning

tree.

2. Compute the basic flows, x., and the dual variables u,.

3. For each nonbasic arc (ij), compute the reduced cost u,-cq-u,.

4. If ui-c,-u_<•O then stop, as the solution is optimal. Otherwise select a
nonbasic arc (i,j) with a positive reduced cost to enter the basis (append to
the current basic tree).

5. Divert flow to the entering arc until flow along another arc is reduced to
zero. Remove the arc with zero flow from the tree, thereby creating a new
basic spanning tree. Go to step 2.

This method can be applied directly to the actual network representation of a

small problem and it can be programmed to solve larger and more complicated

problems. Recall that the transportation problem is the simplest case of a minimal

cost flow problem. Large scale transportation problems are normally solved using

14



the network simplex method, but occasionally a method known as

aggregation/disaggregation is utilized.

F. AGGREGATION/DISAGGREGATION

Aggregationidisaggregation (referred to as aggregation) is a method used

to solve large scale transportation problems. It involves partitioning the variables

in a problem and replacing each partition with a single variable. The same

technique is applied to the constraints. The resulting problem is referred to as an

aggregate problem. The method involves consolidating several "neighboring"

origins or destinations to form a much smaller problem that is easier to solve and

that will provide insight into the solution to the larger problem. The term

"neighboring" is intentionally loosely defined so that there are not explicit

restrictions on the aggregation method (Balas, 1963).

Aggregation provides an approximate solution to the original problem while

considering only a small portion of the problem data. To solve the original

problem directly using network simplex with m origins and n destinations

requires mn evaluations of the reduced costs, while if the aggregation method is

used the number of computations decreases significantly, depending on how

many aggregate variables are used. For instance, if a problem containing m=350

origins and n=500 destinations is solved directly it wf'l contain mn=175,000

variables and 850 constraint equations. If the aggregation method is used and

aggregation is five by five (five .ieighboring origins become one origin and five

15



neighboring destinations become one destination), then there are M=70

aggregated origins and N=100 aggregated destinations, resulting in MN=7000

variables and 170 constraint equations. The gain in computational savings

increases with the size of the problem and the concentration of the origins and

destinations. This method is not widely used, because the accuracy of a solution

is often traded for computational savings, and an optimal solution is therefore not

guaranteed. It must be emphasized that while the nontraditional solution

approach to the long transportation problem in this thesis is related to the

aggregation method, there are significant differences between them.

16



III. AN INTRODUCTION TO MULTILEVEL TECHNIQUES

A. THE MODEL PROBLEM

Consider the boundary value problem which describes the steady state

distribution of temperature in a long uniform rod. This may be represented by the

second order differential equation -u "(x)+au(x)=flx), where O<x<l, a->O (5) and

subject to the boundary conditions u(O)=u(1)=O (Briggs, 1987). This equation will

be referred to as the model problem.

Occasionally, the model problem can be solved analytically, but it is more

common to solve it numerically. Multigrid methods are applied to numerical

solution techniques. One such numerical method of solution is the finite difference

method. The domain O<x<l is partitioned into N subintervals with spacing h =

1/N, and each point is labeled x,, where x, = jh. This is the finest grid and is

denoted by 12' (see Figure 4).

X-0O/ X-1

Qh I i ! I I -ý I i I

Xo0 x x 2  X XN1 x

Figure 4. One-dimensional grid on the interval 0< x< 1. Grid spacing is h=1/N.
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At each grid point the differential equation is replaced with a finite difference

equation. Let u(x,) represent the exact solution and v(x,) represent the

approximation to the exact solution, where 1:j<_N-1. For ease of notation let u,

represent u(x7) and v, represent v(x), and let v=(v1 , v2, ..... v,)T. We seek to find v

such that the components of v satisfy N-1 linear equations, each having the form

(-vij+2vj-vj~,)/h 2+rav,=flx,), where lj:N-1. The boundary conditions yield VO=VN=O.

This discretization may be represented in matrix notation as

24.h' -1 V)
-1 24ah2  -1 V2 f2

. ... -1 i o

-1 24ah2  vN.4 N -•

or simply as Av = f (Briggs, 1987). Note that the matrix A is tridiagonal, sparse

and symmetric positive definite with dimensions (N-1)x(N-1). This system could

be solved directly using Gaussian elimination, but this method is computationally

expensive. Indirect methods such as iteration can also be used to solve systems of

this type. A special case of iteration is relaxation. Jacobi and Gauss-Seidel are two

examples of relaxation methods. Relaxation begins with an initial guess at the

solution, and then tries to improve the current approximation through a series of

iterations. Ideally this sequence of approximations will converge to the exact

solution. The rate of convergence of basic iterative methods for certain problems
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can be improved significantly using multigrid techniques. A discussion of basic

iterative methods is required before multigrid techniques can be presented.

B. BASIC ITERATIVE METHODS

Let Au = f denote the linear system in equation (5). The exact solution, u,

to Au=f is unknown but the approximation v is known. There are two important

measures of the quality of the approximation v. The first is the error, denoted by

e=u-v. The size of the error can be measured by any vector norm such as
I ll •=max

I Ie 1 max<< le,!. Since the error cannot be found if the exact solution is
unknown, consider another important measure, the residual. The residual r is

denoted by r=f-Av; it represents the amount by which the approximation fails to

satisfy the equation. The residual can be measured by a vector norm in the same

manner as the error. Rewrite r=f-Av as Av=f-r and subtract it from the equation

Au=f. This results in the equation Ae=r, referred to as the residual equation.

Multigrid methods employ iterative improvement, that is, the residual equation

is solved (approximately) for e and a new approximation is computed to improve

v in the next iteration using the definition u=v+e. That is, vr"÷1)-V=")+ e, where e

is an approximation to e.

Consider the Jacobi relaxation method when applied to the model problem,

rewritten as -u, 1+2uj-uj~+=h2fj, where 1-j•N-1, uo=uN-=O and a=--O. Let vl"' be the

current approximation and v'"' be the updated approximation. The Jacobi

method consists of solving the jgh equation for the f1 unknown u,, holding all of

the other unknowns fixed. When this has been done for all N-1 equations, we
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have performed one sweep of the Jacobi iteration. That is, for j=l,2,....N-I, compute

tv' . • , V + h2f),j I j<N-1. Ideally, these iteration sweeps are computed until

convergence to the solution is attained.

Typically, after a few sweeps the convergence stalls, meaning that the

answer will not improve with more iterations. This is because the error is made

up of oscillatory and smooth components, and many iterative methods eliminate

the oscdllatory components of the error while having very little effect on the

smooth components. This is known as the "smoothing property." The problem is

now how to reduce the smooth components of the error that still exist. Multigrid

methods evolved from attempts to solve this problem. The following sections

address this problem in greater depth.

C FOURIER MODES

A short discussion of Fourier modes is necessary to illustrate a key idea in

multigrid methods. Consider the model problem -u "(x)=O. This is discretized and

yields a simple linear homogenous system Au = 0. The unique solution is u=0

and the error in the approximate solution v is -v. The linear system Au=O

becomes u,.1+2uru,42 =O, where uo=uN=O and I•j.N-1. Let the initial guess (and

hence the initial error) Le z.ne the Fourier modes, that is, a vector Wk, whose ]il

component is wu =sin(!-- when Oj:eN and k is between 1 and N-1. The integer

k is the wavenumber and it represents the number of half-sine waves which

constitute wk on the domain of the problem. Small values of k correspond to long
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smooth waves and large values of k correspond to highly oscillatory waves.

Figure 5 displays several Fourier modes on a grid with N=12. The ke mode

consists of k half sine waves and has wavelength 1=2/k (recall that the length of

the interval is 1). The k = N/2 mode has a wavelength of 4h and the k = N-I mode

has a wavelength of 2h. Waves with wavenumbers greater than N or wavelengths

less than 2h cannot be represented on the grid. Through a phenomenon known

as "aliasing", a wave with length less than 2h actually appears with a wavelength

greater than 2h. Wavenumbers where I < k < N/2 are low frequency or smooth

modes, and wavenumbers where N/2 < k < N-i are high frequency or oscillatory

modes.

For the cases w2 and w,2, ten relaxation sweeps are performed on a grid with

N=64 (see Figure 6). After ten relaxation sweeps, the high-frequency modulation

on the long wave is nearly eliminated, but the smooth component remains. The

key point of this discussion is that there is a fast rate of convergence as long as

the error has high frequency components and convergence seems to stall when

only low frequency components remain.

This supports the earlier observation that for oscillatory waves the error is

damped very easily, but the smooth components remain essentially unchanged

and so convergence stalls. The multigrid approach is to treat the smooth

component of the error on a coarser grid where it will appear more oscillatory

and can be damped so that fast convergence to the solution is possible.

21



(a) o.5 tl vv(• .. u
kul: L.-o() 12247h

0 0.2 0.4 0.6 0.8
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0 0.2 0.4 0.6 0.8 1

Figure 5. Graphs of the Fourier modes on a grid with N=12, for wavenumbers

k=l, 4, 9.

D. COMPONENTS OF MULTIGRID

Suppose a relaxation scheme is applied until only the smooth error

components remain. The smooth wave on the grid jh looks more oscillatory on

the grid fe. This is because the mode k is the same, but it is the ke out of N/2,

rather than k' out of N. Also the grid points on & are the even numbered points

of Uh. Consider the k' mode of Qh evaluated at the even-numbered grid points.
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Figure 6. Initial guess (a) w2, (b) w, 2 and (c) combination of w2 and w, 2. The
figures on the left show the approximation before iteration. The figure on the
right is after ten iterations.

Then if 1.:,k-N//2, its components may be written as

wh W =sin( L) -,.in( j'') "wu', 2~5

ký N T/_2 "4 T

One can say that, under restriction, the k' mode on f? becomes the k' mode on

CP. Therefore, transferring from h to LP, the k' mode becomes more oscillatory.

This is true for wavenumbers k, where 1SkSN/2 (see Figure 7).
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k-4 wave on N-12 grid

k-4 wave on N-6 grid

Figure 7. A wave with wavenumber k=4 on flh(N=12) projected onto Wh(N=6).

For wavenumbers k, where k>N/2, the oscillatory waves on Ware aliased to

become smooth on f0a". This implies that the high frequency error must be

damped before moving to the coarse grid. Twc important features to note are:

1. Because the error is smooth after relaxation, it can be represented
accurately on Q'h.

2. The smooth error on flh appears more oscillatory on Wh where it is more

easily eliminated, since relaxation is cheaper.

This leads to the conclusion that an improvement to iterative methods would be

to transfer the smooth error components to the coarse grid, where the error

modes appear more oscillatory, and to then perform relaxation. Recall that there

exists an equation for the error, namely e=u-v, satisfying Ae=r=f-Av. Therefore

the residual equation can be used to relax directly on the error. Relaxing on Au=f
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with an initial guess v is equivalent to relaxing on the residual equation Ae=r

with initial guess u-v.

Nested iteration and coarse grid correction are two techniques that utilize the

coarse grids. Coarse grid correction uses the coarse grid to improve the current

approximation. Nested iteration uses the coarse grid to improve the initial guess.

An important question now arises: How does one move from the fine grid

1h to a coarser grid Q2 '? The next two sections address this question of intergrid

transfers.

1. Interpolation

The method used to transfer information from the coarse grid to the

fine grid is interpolation, also referred to as prolongation. There are several

interpolation methods to choose from, but only linear interpolation will be

discussed here. I' is the linear interpolation operator. Consider only coarse to

fine grid spacings with a ratio of 2:1. I' is a linear operator that transforms coarse

grid vectors into fine grid vectors, that is lhv2h=vh. For the model problem this

means

h2h h N
Vý -V v.-I .+Výj,ý 0O5j!,-T-1

Figure 8(a) illustrates this transformation.

25



2. Restriction

The method used to transfer information from the fine grid to the

coarse grid is restriction. There are also several restriction methods available, but

only full-weighting will be presented here. The restriction operator I," transforms

fine grid vectors into coarse grid vectors, that is P• vh--v'. For the model

problem this means

Vh= +2 v" V2 1:5j:5N-

2j 4\I -1 2 2

This method takes a weighted average of neighboring fine grid points. Figure 8(b)

illustrates this transformation.

3. Coarse Grid Correction

Coarse grid correction incorporates the use of the residual equation to

relax on the error. This method requires relaxation on the fine grid until

convergence stalls, then relaxes on the residual equation on the coarse grid to

obtain an approximation to the error, then returns to the fine grid to correct the

initial approximation. Coarse grid correction is a two grid process, and may be

written as:

1. Relax on Ahuh=fh to get vh.

2. Restrict re=Ih(fh-Ah).

3. Solve Aheh--rh to get eh.
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4. Interpolate and correct v--v+I'e"ez (Briggs, 1987).

I I I I I I I t I I I -

65 7 9 10 11 12JhI

(b)

0 1 2 3 4 5 6

Figure 8. (a) Restriction of a fine grid vector to a coarser grid. (b) Interpolation of
a coarse grid vector to a fine grid.

This leads to the question: How do we solve AV'he=r• for the coarse grid scheme?

The solution is to recursively apply coarse grid correction. This leads to the V-

cycle.
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4. The V-Cyde

The V-cycle algorithm applies the coarse grid correction scheme

recursively until the coarsest grid is reached, and a direct solution to the residual

equation is possible. It then works its way back to the finest grid. Note that as

this correction scheme is applied recursively to solve A~e'--r-h the notation can

be simplified by letting re=fa and e~"=v2. The coarse grid correction scheme

applied recursively is presented next. Let Q denote the number of grids, where

Q>1, and let L=2Q' so that the coarsest grid has spacing Lh.

Relax on AUh=fh ,, times with initial guess Vh.

Compute fP= I2 rh.

Relax on A2hu%=f 2 ' u, times with initial guess vh=O.

Compute f4h= I4 r2h.

Relax on Auo=fh u, times with initial guess v^'=0.

Compute f"'= I r"'.

Solve A~huU=flk.

Correct vh-ve'+ I- vh.

Relax on A%4 1%=f4h - 2 times with initial guess v"'.

Correct v•h--v 2h + I, vh.

Relax on A'"u2 =f 2h u2 times with initial guess v1.

Correct vN--vh+ I v2h.

Relax on Ahu h=fh u2 with initial guess vh (Briggs, 1987).
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The V-cycle scheme, where vh<MVh(vh,fh) may be defined recursively to give a

compact description as follows:

1. Relax v, times on Aluh=fh with a given initial guess vh.

2. If (ih equals the coarsest grid, then go to 4.

Else fl-I' W(eAv).
v2h4_O
vh+--MV•h(V•,f•h).

3. Correct vh--vh+ II V2h.

4. Relax u2 times on Ahuh=fh with initial guess vh (Briggs, 1987).

The V-cycle is one of many multigrid cycling schemes. It is depicted in Figure

9(a).

Recall that the smoothing property is effective at eliminating the

oscillatory components of the error while having little or no effect on the smooth

components. We use coarse grid correction to eliminate the smooth error

components. It is the combination of these techniques, relaxation for oscillatory

error and coarse grid correction for smooth L.,'Tor, that makes multigrid such an

effective method.

It stands to reason that if the initial guess is good, then the iterative

scheme has less work to do in solving the problem. A useful technique is to first

solve the problem on a coarse grid to obtain a good initial guess on the fine grid.

This method is called nested iteration.
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5. Nested Iteration

Nested iteration uses the coarsest grid to obtain an initial guess to the

next finer grid and continues this process until the original grid is reached. Given

the original problem Au=f posed on the coarsest grid, nested iteration proceeds

as follows: Solve Au=f on the coarsest grid. Interpolate the solution to the next

finer grid to obtain an initial guess. ...(repeat the process)...; solve Au=f on '4hand

interpolate to obtain an initial guess on 0'; solve Au=f on D' and interpolate to

obtain an initial guess on ih. -nd solve Au=f on fjh to obtain the solution (Briggs,

1987). The algorithm that combines nested iteration with the V-cycle is known as

the Full Multigrid (FMV) V-cycle.

6. The Full Multigrid V-Cycle

An efficient means of obtaining a good initial guess is to solve the

problem first on a coarser grid and interpolate that solution for use as a fine-grid

initial guess. This idea is nothing more than nested iteration. The next question

to arise is: How can one solve the coarse-grid problem? One obvious choice is to

use a V-cycle. This leads to the Full Multigrid (FMV) scheme. The FMV scheme

where vh+--FMVh(vh,fb) and fh, f,...;vh,v2 ,... are set equal to zero, is as follows:

1. If 12h is the coarsest grid, then go to step 3.

Else f2•- lI I (fh-Ahvh)

V2h+_O
V +- FMV1h(v21 ',e).

2. Correct vh +-- vh+ I hV2.
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3. vh - MVh(vh,fh) vo times (Briggs, 1987).

The FMV is depicted in Figure 9(b). Full multigrid is the culmination of the ideas

presented in the preceding sections in this chapter. Multigrid combines each of

the methods just described into an extremely efficient algorithm.

2h

s4h

(a) (b)

Figure 9. (a) The V-Cycle. (b) The FMV V-Cycle. The respective algorithms visit
the various grids in the sequence indicated.

E. MULTIGRID METHODS APPLIED TO THE LONG TRANSPORTATION

PROBLEM

One of the objectives of this thesis is to develop a multigrid algorithm to

solve the long transportation problem. Analogies to the components of multigrid

must be found. Recall that the key components in multigrid are interpolation,
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restriction, and relaxation which are combined together to form the V-cycle. One

major stumbling block is in drawing an analogy between some component of the

transportation problem and the residual equation, which is key to multigrid

solution methods. The following chapter presents the components of the

algorithm developed during this thesis research.
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IV. MULTIGRID COMPONENTS IN THE
LONG TRANSPORTATION PROBLEM

A. BACKGROUND

As stated previously, a necessary assumption for the algorithm developed

here is that the problem is posed on a regular grid. For instance, consider a

problem with m supply nodes and n demand nodes posed on a regular m-

dimensional grid. The dimension of the grid is determined by the number of

supply nodes, hence m supply nodes implies an m-dimensional regular grid. The

point identified by the three-tuple (ij,k) denotes a particular demand node. The

index i denotes the cost to ship to demand node (i,j,k) from supply node 1; the

index j denotes the cost to ship from supply node 2 and the index k denotes the

cost to ship from supply node 3. This can be written as c 1(#=i, c2c#=j, and c•,(#=k.

Therefore, m supply nodes correspond to an m-tuple identifying each demand

node. A three supply node problem with shipping costs mapped to a regular grid

is displayed in Figure 10.

The method developed here takes a problem posed on W? and transforms

it into a problem on Q22' where it is easier to solve, it then interpolates the answer

back to flt. Three questions immediately come to mind. The first is: How is the

problem transferred from L2h to LP3I? The second is: How is the problem solved

on iP? And finally: How is the problem transferred from 01 to back to Wi?
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Figure 10. A Three Supply Node Problem Posed on a Regular Grid

These questions are all answered in the next four sections. But first an explanation

of the grid and demand node relationship is necessary.

The finest grid in this algorithm contains n=(2'-I)" demand nodes. The

integer t represents the number of grid levels, m represents the dimension or the

number of supply nodes. In what follows, we assume m=3; therefore, the most

general problem considered will have size 3xn. The root of the rY grid is denoted

by (2'-1), where r=L,...t. Table I illustrates the relationship between the grid
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number, the root of the grid and the number of demand nodes for up to five

grids.

TABLE I. RELATIONSHIP BETWEEN GRIDS AND DEMAND NODES

Grid t Dimension, m Root, 2'-1 Demand nodes
N=(2'-I)m

1 3 1 1

2 3 3 27

3 3 7 343

4 3 15 3375

5 3 31 29,791

As shown above the number of grid levels is directly related to the number of

demand nodes in the original problem. If four grids are chosen then r=1,...,4. The

finest grid corresponds to r=4 and contains a 3x3375 transportation problem. The

coarsest grid corresponds to r=1 and contains a 3x1 transportation problem. Recall

that the spacing ratio between each grid in multigrid methods is 2:1; the same

convention is used here.

The analogies to restriction, interpolation, and relaxation developed during

this research are presented next.

B. RESTRICTION

The restriction method developed transforms vectors containing fine grid

demands into vectors containing coarse grid demands, that is, d2I1=I2dh. The
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coarsest grid transportation problem is the 3xl problem. This problem is trivial

to solve because the single demand node receives all the supply contained in each

supply node.

To restrict from the fine grid flh, with (2'-1)3 demand nodes to the next

coarser grid, D' with (2(-'J-1)3 demand nodes requires a method for aggregating

the demand nodes to achieve a smaller problem. Let array dh contain the fine grid

demand nodes and array d2h contain the next coarser grid demand nodes. The

demand node d2h(ij,k) on the re grid is made up of a weighted average of

demand node dh(2*i,2*j,2*k) and the 26 demand nodes surrounding it on the

(r+l)" grid. This is computed as follows:

d2h(i,j,k) =dh(2 4,2 ,,2 sik) +(1 /2)[dh(2 oi -1,2 ,,2 -sk) 4dh(2 4,2 , -1,2 4)

+dh(2 4,2,•,2 sk-1) 4dh(2 s +1,2 ý,2 k) 4dh(2,-i,2, u+1,2 #z)

4dh(2a4/,2 ,2ak+1)] +(1 /4)[dh(2asw-1,2,-1,2ask) +dh(2 4-1,2 ,2ask-1)

+dh(2*i-1,2,+1,2ask) +dh(24-1,2ý,24+') +dh(24+1,2,-1,2s)

+dh(2as4+l,2 ,24s-1) +dh(24+l,2ýsl,24s) +dh(2'./+1,2j,2ask+l)

+dh(2 4,2 ,j-1,2 ok -1 ) +dh(2 4,2,• -1,2 ok+1) +dh(2 4,2 ý ÷1,2 4k -1)

+dh(2 4,2, +1,2sk +1)] +(1/8)[dh(2,i -l,2 j-1,2a4k-1) +dh(2a4 -1,2 ,+1,2 4k-1)

+dh(2 4-1,2 +1,2 /c+1) +dh(2,sr-1,2 -1,2 41+1) +dh(2 0 +1,2 +1,2 4k-1)

+dh(2 i +1,2 '-1,2 4k+1) +dh(2 4 +1,2 +1,2 4k+1) +dh(2 a +1,2 , -1,2 4k-1)]

The restriction method is summarized as: Restrict on 'hwith (2 t-1 3 demand nodes

to the coarser grid &?'h with (2-"-l)3 demand nodes.
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C. INTERPOLATION

The interpolation step transforms vectors, containing the coarse grid flows,

to vectors containing the fine grid flows. That is, xh=I Ix'. The interpolation uses

a local solver to apportion the coarse grid flows. Each demand node on the coarse

grid represents 27 demand nodes on the fine grid. Thus for each coarse-grid

demand node we must apportion the coarse grid flows among the 27 fine grid

demand nodes in the least expensive manner. This is done by treating the 3

coarse grid flows to a given coarse grid demand node as supplies, and solving a

3x27 transportation problem. This means the global "solution" on Q' is

interpolated to 12h by solving the one local 3x27 problem for each demand node

d2h(ij,k), using the flow X10(2 i2 k) as supply s,, the flow x 2 ,.2,2,, as supply S2, and the

flow x 3(2iaj,.,•, as supply s3. The global solution on It is the combination of all the

local solutions. The 3x27 problems are what is referred to as the local transportation

problems. There are (2(-''-1)3 local 3x27 transportation problems on the r?' grid. The

local problems together comprise the global problem on the r? grid (see Figure 11).

As an example, suppose that the demand at node (3,1,2) on a coarse grid is

for 50 units of a particular commodity, and that the coarse grid solution indicates

that it should receive 40 units from supply node two, 10 units from supply node

three, and zero units from supply node one. These flows computed for demand

node (3,1,2) now become supplies to the 27 associated demand nodes on the next

finer grid. Hence, this local 3x27 problem has supplies s=0, s2-40, and s3=10.
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The demands for the local problem on ah must also be determined. Each

fine grid demand node may be part of one, two, four, or eight local problems,

depending on whether it lies in the interior, on a side, an edge, or a corner of a

local problem. The total demand on a fine grid node must be apportioned equally

among all the local problems that contain the node. This will ensure that local

demand nodes that are included in two or more 3x27 problems do not receive

more demand than required for the global demand node. The demand nodes on

flh receive some amount of demand from each of the demand nodes on

The interpolation process can be summarized as follows:

1. Determine local demands on 0h for each local 3x27 problem.

2. Solve each local 3x27 problem with the local solver, using the flows on the
coarse-grid as supply values, and combine the local solutions.

D. LOCAL SOLVER

Given a solution on f01, it is interpolated by solving as many 3x27 problems

as are necessary. The coarsest grid is a 3x1 problem, and only requires a single

3x27 local-solve for the first interpolation.

Because the problem is posed on a regular grid, there are thirteen distinct

ways in which the three shipping costs for a demand node (denoted by ij, and

k) can be related. They are as follows:
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1. i=j=k 8. iz<j<k

2. 1=j, j>k 9. i<k<j

3. i=j, j<k 10. j<i<k

4. i=k, j>k 11. j<k<i

5. i=k, j<k 12. k<i<j

6. j=k, j>i 13. k<j<i

7. j=k, j<i

The local solver exploits these patterns by choosing an order in which to fill the

demands, using thirteen simple tests. Note that this is done a priori, in other

words the list of ordered choices is hard-coded. This implies that none of this

need be computed; it is free. If a sort routine were used the complexity would

grow exponentially with the size of the problem; therefore, this method is much

more efficient. The values of ij, and k relative to one another determine the order

in which the demand nodes will be supplied. The ordering is determined as

follows:

1. For each demand node, determine the cost differential between the
cheapest (minimum(ij,k)) and the second cheapest supply node. This
differential is denoted by A1.

2. For each demand node, determine the cost differential between the second
cheapest and the remaining supply node. The differential is denoted by A2.

3. Form the string AA2.
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4. Lexicographically order the strings from largest to smallest. In the case of

a tie the demand node with higher overall cost is placed first.

The supply nodes are then placed in order of preference for each demand node.

The first choice supply node will be the cheapest supply node, the second choice

will be the second cheapest and the third choice will be the remaining supply

node. The local solver now fills each demand node in the predetermined order

(the order given by the lexicographic ordering of the strings). For each demand

node the method proceeds as follows:

1. Check the first choice supply node for adequate supply. If there is more
supply than demand then the demand is filled entirely.

2. If there is more demand than supply and the supply does not equal zero,
then fill the demand as much as possible from the first choice supply node.

3. If demand remains, check the second choice supply node. If possible, fill
the remaining demand; if not, fill as much of the demand as possible from
the second choice supply node.

4. If the demand is still not satisfied then fill the remaining demand from the
third choice supply node.

This local solver fills each demand node requirement completely before repeating

the process on the next demand node. The local solver provides an optimal

solution to a 3R27 transportation problem.

Theorem 1. Let x be the vector of flows determined by the algorithm above for the

3 x 27 problem. Then x is the optimal solution.

Proof: Let x be the flow vector determined by the algorithm, z = cx, and let

Z* = cx* be any optimal solution. Suppose that x * x*. Without loss of generality
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assume that c,, < c2 c. Let d, be the first demand for which the flows x and x*

differ, i.e., for all 1 < i < 3 and 1 < k < j we have x, = xi. As a consequence of

this and of the fact that the problem is balanced, for each I < I < 3 we have

27
E (x,,) =0, from which we see that

27
x -x. , (x-"x- ), i =1,2,3 (6)

3 3
balance implies also that, for any choice of k, • x, dk u x, so for any i and k

ifil i-I1

we have
3

x,,-X,,=I (ýX M~i (7)
rn-i

3
If we let A =x,,-.x,*, then in particular (7) implies A =' (x.*-x.). Note that, since

thealgorithm maximizes xlj, then A > 0. Now

Z *--Z'+Z .*-

-ECX *-CX

3 [j-1 27

-E+ C.(X.,-Xd 4OC (X O-X) - "X-,
i-I k-1 k-I÷

By our choice of j, the first sum within the brackets in (8) vanishes, so now
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3f 27
z0-z *=+EC (x*-x ) +~ ~'x

i [ k-1÷1 (9)

-C1 A4 2~ j (;X
2
) 43, (3*-3f

3 27
E £ Clk(X:-Xk)

i =1 k 4 ÷1

=z-C A4C (t ýx31 13 )4c3 (~¶
11 2j,,X? 3(3

3 27 (10)÷E E c(,-,)
i=l k 141

where the equality of (9) and (10) follows from (7). Rearranging, we have

3 27

i=1 k +1

27
z-(c,I -%C QA4(-c 31)(x3, .X3 + clk(xk -Xk)

ký•+I (12)
27 27

k ý +1 kI 41

-Z -(C c i -C z ) A "( 2j -C:3i) ( x3j "-X )

27 27 (13)

ký+l k-1j+1

where the equality of (11) and (12) follows from (6). Let 8k = I Clk - c.,, and let

"k= I ck - c, I. By hypothesis, 5, = c - c, and, by the action of the algorithm, if

k •j, then 8, 8k. For arbitrary values of k, the relationship between yj and Yk is

not clear, so let 71 = min{-'-, -yky. Then by rewriting (13) we have
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27 27
ZŽZX3jtTý 4(X-U) U ;T

k 7 +1k14

27 27
By (6) we have A = r (x1k) and (x3 --x3,)= ) (xE3-x3), whence

k--j÷ k 14l

27

*ý:~~~ z -+1k-X

--Z, 
k+

and we conclude that z = cx is optional. QED.

The next step is to try to improve the answer after each interpolation sweep

before moving to the next finer grid. This is necessary because, even though the

local 3x27 problems on the rjh grid are each solved to optimality, the global

problem on the rJh grid probably won't be optimal. The reason for this is as

follows.

Recall that an optimal solution to a transportation problem can always be

found containing n+m-1 arcs. Interpolating from the coarsest grid (3xl) requires

solving a single 3x27 problem. In the solution to that problem, no more than 29

arcs have flow on them, hence at most two demand nodes receive supply from

more than one supply node. As these flows are interpolated to the next finer grid

this property may cause difficulty. To interpolate, the local solver proceeds to fill

the demands of the (r-l) t grid local problem in the appropriate order. For

example, suppose a demand node on the re grid is only supplied by supply node
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one. A demand node in the local problem associated with this coarse grid node

whose first choice supply node is two and second choice supply node is three can

only receive supply from supply node one. This is clearly an optimal solution for

the local 3x27 problem because there is only one supply node containing supply,

but this is unlikely to be an optimal choice in the global problem. Hence, a

relaxation scheme to improve the initial flow allocation before interpolating to the

next finer grid is required. This relaxation scheme is described next.

E. RELAXATION

The relaxation method checks the flows computed during each interpolation

sweep to determine if each demand node was filled by the cheapest possible

supply node. If a demand node is not supplied by the cheapest supply node then

the flow is diverted to a temporary demand node, and the flow to the original

demand node is set equal to zero. Also, an equal amount of flow is added to a

temporary supply node, such that if the misapportioned supply was from supply

node i, the ith temporary supply node receives the same amount of supply. If a

demand node is supplied by the cheapest supply node then the demand in the

corresponding temporary demand node is set equal to zero and no flow is added

to the temporary supply node. Once all the demand nodes have been checked, the

temporary demand and supply nodes become part of a "dummy" problem that

has the same structure as the original problem but has only the supply that was

misapportioned and has demand only at those nodes where the cheapest supplier
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was not used. The local solver is applied to this global problem by solving as

many local 3x27 problems as necessary. The relaxation scheme is summarized as

follows:

1. If each demand node is supplied by the cheapest available supply node,
go to step 3; else, go to step 2.

2. Divert the flow to a temporary demand node and add the same amount
of flow to a temporary supply node. Set the flow to the original demand
node equal to zero. Go to step 4.

3. Set the corresponding temporary demand node equal to zero and do not

add to the temporary supply node.

4. Compute the flows for the temporary supply and demand nodes.

5. Add the new flows to the existing solution. Repeat after each interpolation
sweep.

This method improves the global flows because it only recomputes the flows for

demand nodes not supplied by the cheapest supply node and it can now choose

from all three supply nodes. In addition, it does not have any affect on the

demand nodes already supplied by the cheapest supply node.

The four operations just described: restriction, interpolation, solve, and

relaxation, are combined to form a V-cycle type of algorithm. The complete

algorithm and the results of the tests performed are presented in the next chapter.
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V. THE MODIFIED V-CYCLE

A. DESCRIPTION OF THE ALGORITHM

In this chapter, the components presented in Chapter IV are combined to

form a V-cycle algorithm. Assume that there are t>1 grids. The grid spacing on

the second coarsest grid, 01I,, will equal qh where q=2'-2. The coarsest grid

consists of a single demand node, which necessarily receives all the supply. The

algorithm can now be summarized as follows:

1. Restrict the original 3xn transportation problem posed on Q h to obtain the

demands on all Q'.

2. Solve the problem on fe and interpolate the solution to (Qh.

3. Solve the problem on Q' by restricting to fe then Eolving and
interpolating back to 01.

4. Solve the problem on 11' by restricting to f2' then solving and
interpolating back to f,.

5. This process continues until Q' is reached where the problem is solved
and interpolated back to •(r/2,.

6. Compute the value of the objective function on it.
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This process can be summarized recursively as

0* S&ol
SCoarsen -- lnterIpokadg-Relax

a4*•,lri~ ., ,,•z ..--lnt..,ssRelax

C'1 Comrenmn-olrvterolat-Relax

The net effect is a V-cycle depicted in Figure 12.

coarsen interpolate

coarsen interpolate

coar sen interpolate

coar sen interpolate

solve

Figure 12. The V-Cycle Algorithm

This algorithm differs from the traditional multigrid V-cycle mainly in that

there is no analogue to the residual equation. Thus the algorithm computes a

solution of the coarse grid and interpolates it to the fine grid, rather than using

the coarse grid to correct the fine grid solution. The relaxation scheme developed
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here may provide the bridge to developing a FMV cycle, by giving a mechanism

that can be used as a correction scheme. This will be discussed in Chapter VI.

This algorithm also has some key differences from aggregation methods.

One difference is that aggregation/disaggregation is performed on only two

levels; this algorithm is employed recursively on several levels. At first glance it

may seem that this algorithm is increasing the work required to solve the

problem, but this isn't necessarily so. Recall that on each level the problem gets

smaller until it reaches a point where it is easy and computationally cheap to

solve. This solution is then interpolated back up to the fine grid/original problem.

This property is always exploited in multigrid so that a full multigrid V-cycle

typically requires no more effort than two fine-grid relaxation sweeps. Another

difference is that aggregation methods only use a subset of the data of the original

problem to arrive at an answer; this algorithm uses all the information available.

In other words, every demand node is individually filled during interpolation and

then checked for optimality during relaxation. Finally, this algorithm uses the

flows computed on the coarser grid to be supplies on the next finer grid, and

there is no analogy to this in aggregation/disaggregation methods.

This algorithm is coded in FORTRAN and each component is written as a

subroutine. The actual code consists of the driver code and four subroutines;

Coarsen, Interp, Lsolve and Relax. The data structure used in this algorithm is

similar to that used in traditional multigrid algorithms and it is outlined next.
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B. DATA STRUCTURE

The arrays containing the supplies, demands and flows are the only

permanent storage required. All other calculations are stored in temporary arrays

which are overwritten on each iteration. The supply array requires three storage

locations and the entries remain constant. The flow array must be three times

longer than the demand array because flows from all three supply nodes to each

demand node must be stored. Demands and flows are computed on each grid

level; therefore, the demands and flows on each grid must be stored.

The data structure used stores the demands and flows, on each grid

contiguously, in two arrays, one for demands and one for flows. Assume, for

purposes of this argument, that the coarsest grid contains a single demand node.

Thus a problem with five grids contains (2%-1)3 demand nodes on the finest grid,

(jh; (2V_1)3 demand nodes on Q'; (23-1)3 demand nodes on f?; (22-1)3 demand

nodes on Q"'h, and finally, a single demand node on a,". The total number of

storage locations required for the demands is the sum of the storage required for

the demands on each grid. The total number of storage locations required for the

flows is three times that number. For t>1 grids, rh will represent the grid spacing

on the coarsest grid, where r=2''. In general, the finest grid requires

(2'-1)3+3(2t-1)3+3

storage locations. Since the supply storage requirements do not change from grid

to grid, they are not included in the storage calculations. For ease of calculation

let N=2' be the upper bound, since 2'-1 <2'. Thus ft' requires slightly fewer than
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4N3 storage locations for demands, flows, and supplies. Moving from any grid to

the next coarser grid reduces the number of storage locations by a factor of 2'=8.

Adding the storage requirements on each grid and using the sum of the resulting

geometric series yields

Storage-4N3(1 +23+2-+...+2--)<4N 3/ (1-2-3)=(32/7) N 3

which is an upper bound on permanent storage locations.

C COMPUTATIONAL COMPLEXITY

The driver code and the solve subroutine both have constant complexity,

denoted by 0(1). For t>1 grids, rh represents the grid spacing on the coarsest grid,

where r=2". The Coarsen subroutine has a constant number of calculations per

grid point, denoted by I. These calculations are performed (2-"'-1)3 times on the

finest grid, CP. These calculations are then performed (2('-t-1)3 on LT, and so on

until the grid preceding the coarsest grid is reached, 1(,/2"h, where these operations

are performed (22-1)3 times. For ease of calculation, let M=2t- be the upper bound,

since 2(-"-1<2(''. Therefore, f? requires JM3 operations. Moving from any grid to

the next coarser grid reduces the number of operations by a factor or 2V-8. This

gives a total operation count T, = JM3(1+ 3+2+6+...+2-"')<jM 3/(l-2"3) = (8/7)JM3.

A similar arguwiLent -an be given for the Interp subroutine. Let K denote the

number of constant calculations per grid point in Interp; therefore the total

number of operations in Interp is given by Tj=(8/7)KM3 . For the Relax subroutine

the same argument is used again, but in this case N=2' is the upper bound. This
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is because the relaxation scheme is performed at most, (2')' times, on any grid.

Coarsen and Interp are performed at most (2'-') times on any grid. Let L denote

the number of constant calculations required in Relax. Then the total number of

calculations required in Relax is TR=(8/7)LN 3.Considering the worst-case scenario,

and the fact that N>M; the computational complexity of the entire algorithm can

be expressed as S(8/7)N3, where S=I+K+L. Therefore, this algorithm has O(N3)

complexity.

D. PERFORMANCE

A separate program was written to generate random supply and demand

node quantities, which were used to generate test problems. The supplies,

demands and costs of the test problems were all integer valued. Approximately

twenty sample transportation problems with random demand and supply

quantities were solved using 3,4 and 5 grid levels. The average results on each

grid are depicted in Table II. Table II shows that this algorithm comes consistently

within 4% of optimality.

These results indicate that multigrid techniques can be successfully used to

solve large scale long transportation problems posed in cost-space on regular

grids. The solutions obtained are iairly close to optimality. While these results are

very encouraging, there remain some difficult aspects of the algorithm to be

addressed.
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First, the algorithm produces real-valued demands and flows through the

restriction and interpolation schemes. However, many real world problems of this

type require integer output.

A second problem is that some flow is lost due to round-off error. Therefore,

total supply does not equal total flow output. The flow loss increases with the

size of the problem. For example, the 3x343 problem loses no measurable amount

of flow. The 3x3375 problem loses .0003% of the total flow. And finally, the

3x29,791 problem loses .0026% of the total flow. This problem may disappear with

improved restriction and interpolation schemes. These improved schemes must

be able to preserve the integer values of the input to provide integer output.

A third problem stems from the fact that there are more than m+n-1 arcs

having flow on them in the final solution, which is an indicator that the solution

may not be optimal. For example, the 3x343 problem should contain, at most, 345

arcs with nonzero flow in the final solution, but there are actually 423 such arcs

in the final solution. This implies that the underlying undirected graph of the

solution to the transportation problem contains cycles. The interpolation scheme

used in this algorithm is responsible for introducing these cycles. The cycles are

a result of the coarse grid flows supplying only a portion of the demand for each

demand node on the next finer grid. Thus each demand node on the next finer

grid could ultimately be supplied by up to three different supply nodes. A search

method to detect and eliminate cycles would be computationally expensive

(Cavanaugh, 1992). However, revisions to the relaxation scheme used in this
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algorithm could prove beneficial. Some suggestions are provided in the next

chapter, as are conclusions, and recommendations for future research.

TABLE II. V-CYCLE-TYPE ALGORITHM

Number of Grids 3xn Algorithm Time to Solve % Over Optimal

2 27 O.O01s 0

3 343 0.63s 3.8

4 3,375 8.Os 3.4

5 29,791 78.41s 4.0
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis shows that multigrid methods can be successfully applied to

solution of large scale transportation problems when they are posed on a regular

grid in cost space. The method developed here is not intended to replace any

existing solution method. Instead the original goal of this thesis is to determine

the applicability of the multilevel approach to solving the long transportation

problem posed on a regular grid. The initial results are very encouraging, but

more research is needed.

A significant contribution of this thesis is the identification of a relaxation

scheme. The relaxation method developed is able to correct flows locally that are

not supplied by the cheapest supply node. These corrections are made locally on

the global grid on each grid level after the interpolation scheme. A method similar

to this has not yet been developed for solving transportation problems using

multigrid methods. In addition, this method could lead to a cycle detection

scheme so that the solution would contain at most m+n-1 arcs in the final

solution.

The relaxation scheme may also be the key to developing a full multigrid V-

cycle. Call the misdirected flow, that is placed in the temporary array, the error.
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Instead of solving several 3x27 local problems to correct the flow, solve one global

problem. The global problem is of the form Ae=r. The question now arises: How

does one solve Ae=r? The answer is to use the V-Cycle algorithm developed in

this thesis. Recall that u can be replaced by e and f can be replaced by r in the

equation Au=f to arrive at an equation of the same form, Ae=r. Suppose there

exists an initial guess on the coarse grid, interpolate the flc ,v to the next level and

find the error using the relaxation scheme. Repeat until the fine grid answer is

reached. This algorithm results in a Full Multigrid V-cycle algorithm depicted in

Figure 9(b).

The problem solved in this thesis is deliberately artificial. Further

advancements in this area of research require a solution method that is applicable

to more general problems. Specifically, a solver that can handle more than three

supply nodes must be developed.

B. AREAS FOR FUTURE RESEARCH

The results of this thesis indicate that further research in this area can be

productive. There are several avenues for future research.

This algorithm solves a very specific problem that is posed on a three-

dimensional grid. Generalization to an m-dimensional grid would logically follow.

Research into developing a method to map an arbitrary transportation problem

to a regular grid and then map the solution back to the original problem domain

is needed.
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Another area of research that is needed for the algorithm developed is to

find a different method of restriction that will not introduce real-valued demands

or flows into the problem. One such method could be analogous to the finite

volume element discretization used in modern multigrid methods (McCormick,

1989). A new interpolation method that also preserves integer flows is necessary.

These are the two most urgent areas of follow-on research aimed at correcting the

problem of lost flow in the output. As stated earlier, most users require integer

flows and costs.

A third area of research is to devise a more efficient relaxation scheme, or

perhaps to develop a new relaxation, based on detecting and eliminating cycles

(Cavanaugh, 1992). The scheme developed here already contains the necessary

information, such as the flow for each demand node and the supplier. Ar 2fficient

means of using this data to find cycles must be determined. A test similar to the

existing one that checks for optimality could also check for multiple supply nodes

to a single demand node and then redirect the flow.

Lastly and most important!y, this thesis provides a direction to begin to

implement a true Full Multigrid V-cycle algorithm which has not been done

before.
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APPENDIX

C THIS CODE WAS WRITTEN BY ANNETTE P. CORNETT
C 1606 KICKAPOO RD.
C PUEBLO, CO 81001
C
C THIS PROGRAM WILL SOLVE A LONG TRANSPORTATION PROBLEM ON A REGULAR
C GRID IN COST SPACE.THE LARGEST SIZE PROBLEM SOLVED BY THIS PROGRAM
C IS A 3X29,071 TRANSPORTATION PROBLEM. THE PARAMETER, NGRIDS MUST
C BE CHANGED BEFORE THE PROGRAM IS RUN. THE ARRAY FLOW CONTAINS THE
C FLOWS ON EACH GRID. :T IS INITIALIZED TO ZERO IN THE BEGINNING.
C THE ARRAY DEMANDS CONTAINS THE QUANTITY OF DEMAND FOR EACH DEMAND
C NODE ON EACH GRID. THE ARRAY SUPPLY CONTAINS THE INITIAL SUPPLY
C FOR THE FINE GRID PROBLEM. THIS PROGRAM CONTAINS THREE
C SUBROUTINES, THEY ARE: COARSEN, INTERP, LSOLVE AND RELAX. A BRIEF
C EXPLANATION FOR EACH PRECEDES THE ROUTINE.

PROGRAM TRANS11
INTEGER DIM
PARAMETER (NGRIDS = 3,DIM = 3)
REAL FLOW(90000) ,DEMANDS(30000),SUPPLY(DIM),XHTEMP(DIM,63,63,

+63) ,DHTEMP(63,63,63) ,STEMP(DIM)
INTEGER NROOT(NGRIDS) ,IDX(NGRIDS) ,ED(NGRIDS) ,NPTS(NGRIDS) .L,COUNT
COUNT =0
ITEMP = 1
JTEMP = I
KTEMP = 1
DO 1 I=3,3

I STEMP(I)=0

C SET UP INDEX SCHEME FOR ARRAYS DEMANDS AND FLOWS

DO 5 I = 1,NGRIDS
NROOT(I) 2**I1-
NPTS(I) = (2**I-1)**DIM
IDX(I) = 1
ED(I) = 1

5 CONTINUE
DO 10 J = 2,NGRIDS

IDX(J) = IDX(J-1) + NPTS(J-1)
ED(J) = IDX(J) + NPTS(J) -1

10 CONTINUE
K = IDX(NGRIDS) + NPTS(NGRIDS) - 1
DO 15 I = 1,K

DEMANDS(I) = 0
15 CONTINUE

DO 20 I = 1,3*K
FLOW(I) = 0

20 CONTINUE
OPEN(UNIT = 6,FILE = 'FINE DATA D',STATUS = 'OLD')
READ(6,22)(SUPPLY(I),I=1,DIM)

22 FORMAT(F12.0)
READ(6,22) (DEMANDS(I),I=IDX(NGRIDS),ED(NGRIDS))
DO 25 I = NGRIDS,3,-I
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25 CALL COARSEN(DEMANDS(IDX(I))kDEKANDS(IDX(I-1)),NROOT(I),NROOT(I-1)

I=2
CALL LSOLVE(FLOW(3*IDX(I)-2),DEMANDS(IDX(I)),SUPPLY.DIM,

+ ITEMP, JTEMP. KTEMP)
DO 30 I = 2,NGRIDS-1

DO 31 K = 1,NROOT(I)
DO 31 J =1,NROOT(I)

DO 31 11 = 1,NROOT(l)
DO 31 L = 1,DIM

XHTEMP(L.,2*II,2*J,2*K) =0
IF((K.LE.3).AND.(J.LE.3).AND.(II.LE.3).AND.(L.EO.1)

+ )THEN
DHTEMP(II,JK) = 0

ENDI F
31 CONTINUE

CALL INTERP(DEKNDS(IDX(I+1)),DHTEMP,XHTEMPSTEMP,
+FLOW(3*IDX (I) -2) .FLOW(3*IDX (14) -2) ,NROOT(I) ,NROOT(1+1), DIM)

30 CALL RELAX(STEMP,FLOW(3*IDX(I+1)-2),NROOT(I),NROOT(I+1LDIM)

END

C THE SUBROUTINE COARSEN WILL RESTRICT THE FINE GRID DEMAND NODES TO
C THE NEXT COARSER GRID BY USING A WEIGHTED AVERAGE. THE ARRAY
C DH CONTAINS THE DEMAND FOR EACH FINE GRID DEMAND NODE. THE
C ARRAY D2H CONTAINS THE DEMAND FOR EACH FINE GRID DEMAND NODE.
C R IS THE ROOT OF THE FINE GRID, RC IS THE ROOT OF THE
C COARSE GRID.

SUBROUTINE COARSEN (DH, D2H. R.RC)
INTEGER RRC, SUM
REAL IM,JM,KN,IP,JP,KP,IMJM,IMJP,IMKM,IMKP,JMKM,JMKPIPJP.IPJM.

+IPKP, IPKM,JPKPJPKN, IMJMKM, IMJPKM, IMJMKP, IMJPKP, IPJPKP. IPJMKM,
+IPJPKM,IPJMKP,DH(R,R,R),D2H(RC,RC,RC)

SUM =0
C COMPUTE THE WEIGHTED AVERAGE

DO 10 K 1,RC
DO 10 J = 1, RC

DO 10 I = 1,RC
D2H(IJ,K) =D2H(IJ,K) +DH(2*I,2*J,2*K)

IM = .5
IP = .5
JM = .5
JP = .5
KM = .5
KP = .5
IMJ]M = .25
IMJP = .25
IPJM = .25
IPJP = .25
IMKM = .25
IMKP = .25
1P104 = .25
IPKP = .25
JMKM = .25
JMKP = .25
JPKM = .25
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JPKP = .25
IMJMKM = .125
IMJPKM .125
IMJMKP = .125
IMJPKP = .125
IPJMKM = .125
IPJMKP = .125
IPJPKM = .125
IPJPKP = .125

C THE IF STATEMENTS CHECK FOR EDGE AND CORNER NODES

IF (I .EQ. 1) THEN
IM = 1
IMJM = .5
IMJP = .5
IMKM .5
IMKP .5
IMJPKM = .25
IMJMKP = .25
IMJPKP = .25
IMJMKM = .25

ELSEIF(I .EQ.RC) THEN
IP = 1
IPJM = .5
IPJP = .5
IPKM = .5
IPKP = .5
IPJPKM = .25
IPJMKP = .25
IPJPKP = .25
IPJMKM = .25

ENDIF
IF (J .EQ. 1) THEN

JM = 1
IMJM = .5
IPJM = .5
JMKM = .5
JMKP = .5
IMJMKM = .25
IPJMKP = .25
IMJMKP = .25
IPJMKM = .25

ELSEIF (J .EQ.RC) THEN
JP = 1

IMJP = .5
IPJP = .5
JPKM = .5
JPKP = .5
IMJPKM = .25
IMJPKP = .25
IPJPKP = .25
IPJPKM = .25

ENDIF
IF (K .EQ. 1) THEN

KM = 1
IMKM = .5
IPKM = .5
JMKM = .5
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JPKM = .5
IMJPKM = .25
IMJMKM = .25
IPJPKM = .25
IPJMKM = .25

ELSEIF (K .EQ.RC) THEN
KP = 1
IMKP = .5
IPKP = .5
JMKP = .5
JPKP = .5
IMJPKP = .25
IMJMKP = .25
IPJPKP = .25
IPJMKP = .25

ENDIF

D2H(I,J,K) = D2H(I,J,K) + IM*DH(2*I-1,2*J,2*K)
+ + IP*DH(2*I+1.2*J,2*K) + JM*DH(2*1,2*J-1,2*K)
+ + JP*DH(2*I,2*J+1,2*K)+ KM*DH(2*I,2*J,2*K-1)
+ + KP*DH(2*I,2-J,2"K+l)

IF ((I .EQ.1) .AND. (J .EQ. 1)) THEN
IMJM z 1
IMJMKP = .5
IMJMKM = .5

ELSEIF ((I .EQ.1) .AND. (J .EQ.RC)) THEN
IMJP = 1
IMJPKP = .5
IMJPKM = .5

ENDIF
IF ((I .EQ.RC) .AND. (J .EQ. 1)) THEN

IPJM = 1
IPJMKP = .5
IPJMKM = .5

ELSEIF ((I .EQ.RC) .AND. (J .EQ.RC)) THEN
IPJP = 1
IPJPKP = .5
IPJPKM = .5

ENDI F
IF ((I .EQ.1) .AND. (K .EQ. 1)) THEN

IMKM = 1
IMJMKM = .5
IMJPKM = .5

ELSEIF ((I .EQ.1) .AND. (K .EQ.RC)) THEN
IMKP = 1
IMJMKP = .5
IMJPKP = .5

ENDIF
IF ((I .EQ.RC) .AND. (K .EQ. 1)) THEN

IPKM = 1
IPJMKM = .5
IPJPKM = .5

ELSEIF ((I .EQ.RC) .AND. (K .EQ.RC)) THEN
IPKP = 1
IPJMKP = .5
IPJPKP = .5

ENDIF
IF ((J .EQ. 1) .AND. (K .EQ. 1)) THEN

JMKM = 1
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IMJMKM = .5
IPJMKM = .5

ELSEIF ((J .EQ. 1) .AND. (K .EQ.RC)) THEN
JMKP = 1
IMLJMKP = .5
IPJMXP = .5

END IF
IF ((J .EQ.RC) .AND. (K .EQ. 1)) THEN

JPKM = 1
IMJPKM = .5
IPJPKM = .5

ELSEIF ((J .EQ.RC) .AND. (K .EQ.RC)) THEN
JPKP = 1
IMJPKP = .5
IPJPKP = .5

ENDI F

D2H(I,J,K) = D2H(I,J,K) + IMJl4*DH(2*I-1,2*J-~12*K)
+ + IPJM*DH(2*I+1,2*J-1,2*K) + IMJP*DH(2*I-1,2*J+1,2*K)
+ + IPJP*DH(2*I+1,2*J+1,2*K) + IMKM*DH(2*I-1,2*J,2*K-1)
+ + IMKP*DH(2*I-1,2*0,2*K+1) + IPKM*DH(2I1+1,2*J,2*K-1)
+ + IPKP*DH(2*I.41,2*J. 2*K+1 ) + JMKI4*DH(2*I , 2J-1,.2*K-1)
+ + JMKP*DH (2*1. 2*J-1 ,2*K+1) + JPK?4*DH (2*1, 2*J+1,.2*K-.1)
+ + JPKP*DH(2*I,2*J+1.2*K+1)

IF ((I.EO.1).AND.(J.EQ.1).AND.(K.EQ.1)) THEN
IMJMKM 1

ELSEIF ((I.EQ.1).AND.(J.EQ.1).AND.(K.EO.RC)) THEN
IMJMKP = 1

ELSEIF ((I.EQ.1).AND.(J.EQ.RC).AND.(K.EQ.1)) THEN
IMJPKM = 1

ELSEIF ((I.EQ.1).AND.(J.EQ.RC).AND.(K.EQ.RC)) THEN
IMJPKP = 1

ELSEIF ((I.EQ.RC).AN~D.(J.EQ.1).AND.(K.EQ.1)) THEN
IPJMKM = 1

ELSEIF ((I.EQ.RC).AND.(J.EQ.RC).AN'D.(K.EQ.1)) THEN
IPJPKM = 1

ELSEIF ((I.EQ.RC).AND.(J.EQ.RC).AND.(K.EQ.RC)) THEN
IPJPKP = 1

ELSEIF ((I.EO.RC).MJD.(J.EQ.1).AND.(K.EQ.RC)) THEN
IPJMKP = 1

END IF

D2H(I,J,K) = D2H(I,J,K) + IMJMKM*DH(2*I-1,2*J-1,2*K-1)
+ +IPJMKM*DH(2*I+1,2*J-1,2*K-1) +IPJPKM*DH(2I*11,2*J+1,2*K-1)
+ +IPJMKP*DH(2*I+1..2*J-.1.2*K+1) +IMJPK14*DH(2I1-1,2*J+1,2*K-1)
+ +IMJMKP*DH(2*I-1,2*J.-1,2*K+1) +IMJPKP*DH(2*I-1,2*J+1,2*K+1)
+ +IPJPKP*DH(2*I+1,2*J+1,2*K+l)

10 CONTINUE

RETURN
END

C THE SUBROUTINE LSOLVE SOLVES THE LOCAL 3X27 TRANSPORTATION PROBLEM
C THE ARRAY X2H CONTAINS THE FLOWS FOR EACH COARSE GRID DEMAND NODE.
C THE ARRAY D2H CONTAINS THE DEMANDS FOR EACH LOCAL TRANSPORTATION
C PROBLEM DEMAND NODE. THE DEMAND NODES ARE FILLED IN LEXICOGRAPHIC

62



C DEPENDING ON THE RELATIONSHIP BETWEEN THE COSTS FROM EACH SUPPLY
C NODE. THE ARRAY D CONTAINS THE FIRST CHOICE SUPPLY NODE FOR EACH
C DEMAND NODE. THE ARRAY DP CONTAINS THE SECOND CHOICE SUPPLY NODE
C FOR EACH DEMAND NODE. THE ARRAY DPP CONTAINS THE THIRD CHOICE
C SUPPLY NODE FOR EACH DEMAND NODE.

SUBROUTINE LSOLVE (X2H,D2H,S,DIM,II,JJ,KK)
INTEGER DIM,P,D(27),DP(27),DPP(27)
REAL D2H(3,3,3), X2H(DIM,DIM,DIM,DIM),S(DIM), X(3,27),DEMAND(27),

+DTEMP (27)

INITIALIZE ARRAYS

DO 1 = 1,27
DTEMP(I) = 0
D(I) = 0
DP(I) = 0
DPP(I) = 0
DEMAND(I) = 0

CONTINUE
P = 1
DO 5 L = 1,DIM

DO 5 K = 1,3
DO S J = 1,3

DO 5 I = 1,3
X2H(L,I,J,K) = 0
IF (L .EQ. DIM) THEN

DTEMP(P) = D2H(I,J,K)
P = P + 1

ENDIF
5 CONTINUE

DO 6 I = I,DIM
DO 6 J = 1,27

X(IJ) = 0
6 CONTINUE

REORDER DEMAND NODE ARRAY

IF((II.EQ.JJ).AND.(JJ.EQ.KK)) THEN

DEMAND(1) = DTEMP(9)
DEMAND(2) = DTEMP(21)
DEMAND(3) = DTEMP(25)
DEMAND(4) = DTEMP(6)
DEMAND(5) = DTEMP(8)
DEMAND(6) = DTEMP(12)
DEMAND(7) = DTEMP(16)
DEMAND(8) = DTEMP(20)
DEMAND(9) = DTEMP(22)
DEMAND(10) = DTEMP(18)
DEMAND(11) = DTEMP(24)
DEMAND(12) = DTEMP(26)
DEMAND(13) = DTEMP(5)
DEMAND(14) = DTEMP(11)
DEMAND(15) = DTEMP(13)
DEMAND(16) = DTEMP(3)
DEMAND(17) = DTEMP(7)
DEMAND(18) = DTEMP(19)
DEMAND(19) = DTEMP(15)
DEMAND(20) = DTEMP(17)
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DE4AND(21) = DTEMP(23)
DEMAN'D(22) = DTEMP(2)
DEMAND(23) = DTEMP(4)
DE24AND(24) = DTEMP(1O)
DEMAND(25) = DTE314P(1)
DEMAND(26) = DTEMP(14)
DF24AND(27) =D'rEMP(27)
D(l) =3

DP(1) I

DPP(1M 2
D(2) =2

DP(2) I

DPP(2) 3
D(3) I
DP(3) =3

DPP(3) 2
D(4W 3
DP(4 2
DPPM4 1
D(5) 3
DP(5) I
DPP(S) =2

D(6) 2
DP(6) =3

DPP(6) =1

DM7 1
DP(7) =3

DPP(7M 2
D(8) 2
DP(8) I

DPP(S) =3

D(9) 1
DP(9) =2

DPP(9) = 3
D(10) =3

DP(1O) = 2
DPP(1O) = 1
D(11) = 2
DP(11) = 1
DPP(11) = 3
D(12) =1
DP(12) = 3
DPP(12) = 2
D(13) = 3
DP(13) = 2
DPP(13) = 1
D(14) = 2
DP(14) = 1
DPP(14) = 3
D(15) = 1
DPC15) = 2
DPP(15) = 3
D(16) = 3
DP(16) = 2
DPP(16) = 1
D(17) = 3
DP(17) = 1
DPP(17) = 2
D(18) = 2
DP(18) = 1
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DPP (18) =3
D(19) =2

DP(19) =3

DPP(19) 1.
D(20) 1
DP(20) =2

DPP(20) 3
D(21) 2
DP(21) I
DPP(21) 3
D(22) =3

DP (22) =2

DPP (22) 1
D(23) 1
DP (23) =3

DPP (23) 2
D(24) =2

DP(24) =1

DPP (24) =3

D(25) =1

DP (25) =2

DPP (2S) 3
D(26) =2

DP(26) =3

DPP (2 6) =1

D0(27) =3

DP(27) I
DPP (27) =2

ELSEIF((I1.EQ.JJ).AND.(KK.GT.JJ)) THEN

DEKAND(1) = DTEMP(21)
DEMAND(2) = DTEMP(25)
DEMAN~D(3) =DTEMP(12)
DEMAND(4 = DTEMP(16)
DEMAND(S) = DTEMP(3)
DEMAND(6) = DTEMP(7)
DEMAND(7) = DTEMP(20)
DEMAND(B) = DTEMP(22)
DEMAND(9) = DTEMP(24)
DEMAND(10) = DTEMP(26)
DEMAND(11) = DTEMP(11)
DEMAND(12) = DTEMP(13)
DEMAND(13) = DTEM4P(15)
DEMAND(14) = DTEMP(17)
DEMAND(15) = DTEMP(2)
DEMAND(16) = DTEMPM4
DEMAND(17) = DTEMP(6)
DEMAND(18) =DTEMP(8)
DEMAND(19) = D'rEMP(19)
DEMAND(20) = DTEMP(23)
DEMAND(21) = DTEMP(1O)
DEMAND(22) = DTEMP(27)
DEMAND(23) = DTEMP(14)
DEMAND(24) = DTEMP(l)
DEMAND(25) = DTEMP(18)
DEI4AND(26) = DTEMP(5)
DEMAND(27) = DTEMP(9)
DO 10 1 = 1,27,2

D(I) = 2
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DP (I) z 1
DPP (I) = 3

10 CONTINUE
DO 11 1 2,26,2

D(I) 1
DP(I) 2
DPPI'() =3

11 CONTINUE

ELSEIF((II.EQ.JJ).AND.(JJ.GT.KK)) THEN

DEK4AND(l) =DTEMP(9)
DEKAND(2) = DTEMP(6)
DE24AND(3) =DTEMP(8)
DEMAND(4) = DT24P(18)
DE24AND(5) = DTEMP(S)
DEMAND(6) = DTEMP(3)
DEMAND(7) = DTEMP(7)
DEMAND(8) = DTEMP(15)
DE4AND(9) = DTEMP(17)
DEMAND(10) = DTEMP(2)
DEMAND(11) = DTEMP(4)
DEMAND(12) = DTEMP(27)
IJEMAND(13) =DTEMP(14)
DEMAND(14) = DTEMP(l)
DEMAND(15) = DTE4P (12)
DE24AND(16) = DTEMP(16)
DEMAND(17) = DTEMP(24)
DE4AND(18) = DTEMP(26)
DEMAND(19) = DTEMP(11)
DEKAND(20) = DTEMP(13)
DEMAND(21) = DTEHP(23)
DEKAND(22) = DTEMP(10)
DEMAND(23) = DTEMP(21)
DEMAND(24) = DTEMP(25)
DEMAND(25) = DTEMP(20)
DEMANIJ(26) = DTE4P (22)
DEMAND(27) = DTEMP(19)
DO 12 I1 1,13,2

D(I) =3

DP(I) 1
DPP(I) =2

12 CONTINUE
DO 13 I1 2,14,2

D(I) =3

DP(I) =2

DPP(I) 1
13 CONTINUE

DO 112 I1 15,27,2
D(I) =3

DP(I) =2

DPP(I) 1
112 CONTINUE

DO 113 1 16,26,2
D(I) =3

DP(I) =1

DPP(I) =2

113 CONTINUE
ELSEIF((II.EQ.KK).AND.(JJ.GT.II)) THEN
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DEMAND(1) = DTEMP(9)
DEMAND(2) =DTEMP(25)
DEMAND(3) =DTEMP(6)
DEMAND(4) = DTEMP(22)
DEMAND(S) = OTEMP(3)
DEMAND(6) = DTEMP(19)
DEMAND(7) = DTEMP(8)
DEMAN'D(8) = DTEMP(16)
DEMAND(9) = DTEMP(18)
DEMAND(10)1 DTEMP(26)
DEMAND(11) zDTEMP(5)
DEMAND(12) =DTE2MP(13)
DEKAND(13) zDTEMP(15)
DEMAND(14) = DTEMP(23)
DEMAND(15) = DTEMP(2)
DEMAND(16) zDTEMP(1O)
DEMAND(17) = DTEMP(12)
DEMAND(18) = DTEMP(20)
DEKAND(19) zDTEM4P(7)
DEMAND(20) zDTEMP(17)
DEMAND(21) zDTEMP(4
DEMAND(22) =DTEMP(27)
DEMAND(23) = DTEMP(14)
DEMAND(24) =DTEMP(1)
DEMAND(25) = DTEMP(24)
DEMAND(26) = DTEMP(11)
DEMAND(27) =DTEMP(21)
DO 14 1 = 1,27,2

D(I) 3
DP(I) =1

DPP(I) =2

14 CONTINUE
DO IS 1 =2,26,2

D(I) =1

DP(I) =3

DPP(I) =2

1s CONTINUE

ELSEIF( (II.EQ.KK) .AND. (II.GT.JJ) )THEN

DEMAND(l) = DTEMP(21)
DEMAND(2) = DTE2MP(12)
DEMAND(3) = DTEMP(20)
DEMAND(4) = DTEMP(24)
DEMAND(5) = DTEMP(11)
DEMAND(6) = DTEMP(3)
DEMAND(7) = DTEMP(19)
DEMAND(8) = DTEMP(15)
DEMAND(9) = DTEMP(23)
DEMAND(1o) =DTEMP(2)
DEMAND(11) =DTEMP(10)
DEMAND(12) = DTEMP(27)
DEMAND(13) = DTEMP(14)
DEMAND(14) = DTEMP(1)
DEMAND(15) = DTEMP(6)
DEMAND(16) = DTEMP(22)
DEMAND(17) = DTEMP(18)
DEMAND(18) =DTEMP(26)

DEMAND(19) = DTEMP(5)
DEMAND(20) = DTEMP(13)
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DEMAND(21) = DTEMP(17)
DEMAND(22) = DTEMP(4)
DEMAND(23) = DTEMP(9)
DEMAND(24) = DTEMP(25)
DEMAND(25) = DTE34P(8)
DEMAND(26) = DTEMP(16)
DEMAND(27) =DTE2IP(7)
DO 16 I1 1,13,2

D(I) =2

DP(I) 1
DPP(I) =3

16 CONTINUE
DO 17 I1 2,14,2

D(I) =2

DP(I) =3

DPP(I) =1

17 CONTINUE

DO 116 I 15,27,2
D(I) =2

DP(I) =3

DPP(I) =1

116 CONTINUE
DO 117 1 16,26,2

D(I) =2

DP(I) =1

DPP(I) =3

117 CONTINUE

ELSEIF((JJ.EQ.KK).A-ND.(II.GT.JJ)) THEN

DEMAND(l) = DTEMP(9)
DEMAND(2) = DTEMP(21)
DEMAND(3) = DTEMP(8)
DEMAND(4) = DTEMP(20)
DEMAND(S) = DTEMP(7)
DEMAND(6) = DTEMP(19)
DEMAND(7) = DTEMP(6)
DEMAND(8) = DTEMP(12)
DEMAND(9) = DTEMP(18)
DEKAND(10) = DTEMP(24)
DEMAND(11) = DTEMP(5)
DEMAND(12) = DTEMP(11)
DEMAND(13) = DTEMP(17)
DEMAND(14) = DTEMP(23)
DEMAND(15) = DTEMP(4)
DEKAND(16) = DTEMP(1O)
DEMAND(17) = DTEMP(16)
DEMAND(18) = DTEMP(22)
DEMAND(19) = DTEMP(3)
DEMAND(20) = DTEMP(15)
DEMAND(21) = DTEMP(2)
DEMAND(22) = DTEMP(27)
DEMAND(23) = DTEMP(14)
DEMAND(24) = D'rEMP(1)
DEMAND(25) = DTEMP(26)
DEMAND(26) = DTEMP(13)
DEKAND(27) = DTEMP(25)
DO 18 1 1,27,2

D(I) =3
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DP(I) = 2
DPP (I) 1

18 CONTINUE
DO 19 1 2,26,2

D(I) =2

DP(I) 3
DPP(I) =1

19 CONTINUE

ELSEIF((JJ.EQ.KK).AND.(II.LT.JJ)) THEN

DEMAND(l) = DTEMP(25)
DE24AND(2) = DTEMP(16)
DEMAND(3 = DTEMP(22)
DEMAND(4) = DTEMP(13)
DEMAND(S) = DTEMP(26)
DEMAND(6) = DTEMP(7
DEMAND(7) = DTEMP(19)
DEMAND(B) z DTEMP(17)
DEMAND(9) = DTEMP(23)
DEMAND(10) =DTEMP(4)
DEMAND(11) =DTEMP(10)
DEMAND(12) =DTEMP(27)

DEMAND(13) = DTEMP(14)
DEMAND(14) =DTEMP(1)
DEMAND(15) =DTEMP(S)
DEMAND)(16) = DTEMP(20)
DEMAND(17) =DTEMP(18)
DEMAND(18) =DTEMP(24)
DEMAND(19) = TEMP(5)
DEMAND(20) =DTEMP(11)
DEMAND(21) =DTEMP(15)
DEMAND(22) =DTEMP(2)
DEKAND(23) =DTEMP(9)
DEMAND(24) DTEMP(21)
DEMAND(25) =DTEMP(6)
DEMAND(26) =DTEMP(12)
DEMAND(27) =DTEMP(3)
DO 20 I1 1,13,2

D(I) =1

DP(I) =2

DPP(I) 3
20 CONTINUE

DO 21 I1 2,14,2
D(I) =1

DP(I) =3

DPP(I) =2

21 CONTINUE

DO 120 I1 15,27,2
D(I) I
DP(I) =3

DPP(I) =2

120 CONTINUE
DO 121 1 16,26,2

D(I) I
DP(I) =2

DPP(I) = 3
121 CONTINUE
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ELSEIF((II.LT.JJ).ANIJ.(JJ.LT.KK)) THEN

DEKAND(l) =DTEMP(25)
DEMAND(2) = DTEMP(16)
DEMAND(3) = DTEMP(7
DEKAND(4) = DTE24P(22)
DEMAND(S) = DTEMP(26)
DEMAND(6) = DTEMP(13)
DEMAND(7) =DTEMP(17)
DEMAND(S) =D'rEMP(4
DEKAND(9) = DTEMP(8)
DEMAND(1O) = DTEMP(19)
DEMAND(11) = DTEMP(23)
DEMAND(12) = DTE24P (10)
DEMAND(13) = DTEMP(27)
DEMAND(14) = DTEMP(14)
DEKAND(15) = DTEMP(l)
DEMAND(16) = DTEMP(18)
DEMAND(17) = DTEMP(5)
DEMAND(18) = DTEMP(9)
DEMAND(19) = DTEMP(20)
DEMAND(20) = DTEMP(24)
DEMAND(21) = DTEMP(11)
DEMAND(22) = DTEMP(15)
DEKAND(23) = DTEMP(2)
DEKAND(24) = DTEMP(6)
DEMAND(25) = DTEMP(21)
DEKAND(26) = DTEMP(12)
DEMAND(27) = DTEMP(3)
DO 22 I = 1,27

D(I) =1

DP(I) =2

DPP(I) =3

22 CONTINUE

ELSEIF((II.LT.KK).AND.(KK.LT.JJ)) THEN

DEMAND(l) = DTEMP(25)
DEMAND(2) = DTEMP(22)
DEMAND(3) = DTEMP(19)
DEKAND(4) = DTEMP(16)
DEMAND(S) = DTEMP(26)
DEMAND(6) = DTEMP(13)
DEKAND(7) = DTEMP(23)
DEMAND(8) = DTEMP(1O)
DEMAND(9) = DTEMP(20)
DE24AND(1O) = DTEMP(7)
DEMAND(11) =DTEMP(17)
DEMAND(12) = DTEMP(4
DEMAND(13) =DTEMP(27)
DEMAND(14) =DTEMP(14)
DEMAND(15) =DTF24P(l)
DEMAND(16) = DTEMP(24)
DEMAND(17) = DTEMP(11)
DEMAND(18) = DTEMP(21)
DE4AND(19) =DTEMP(8)
DEMAND(20) = DTEMP(18)
DEMAND(21) = DTEMP(5)
DEMAND(22) = DTEMP(15)
DEMAND(23) =DTEMP(2)
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DEKAND(24) = D'rEM.Ptl2)
DEMAND(25) DTEMP(9)
DEMAND(26) = DTEMP(6)
L)EMAND(27) zDTEMP(3)
DO 23 1 =1 -'

0(I) 1
DP(I) 3
DPP(I) =2

23 CONTINUE

ELSEIF((JJ.TT.II).AND.(II.LT.KK)) THEN

DEMAN'D(l) =DTEMP(21)
DEMAND(2) = DTEMP(12)
DEMAND(3) DTEMP(3)
DEMAND(4) )TEMP(20)
DEMAND(S) -DTEMP(24)

DEMAND(6) =DTEM4P(11)

DEMAND(7) =DTEMP(15)

DEMAND(8) =DTEMP(2)

DEMAND(9) =DTEMP(6)

DEMAND(1O) DTEMP(19)
DEMAND(11) =DTEMP(23)

DEMAND(12) DTEMP(10)
DEMAND(13) rDTEMP(27)

DEMAND(14) =DTEMP(14)

DEMAND(15) =DTEMP(1

DEMAND(16) =DTEMP(18)

DEMAND(17) = TEMP(5)
DEMAND(18) DTEMP(9)
DEMAND(19) =DTEMP(22)

DEMAND(20) =DTEMP(26)

DEMAND(21) =DTEMP(13)

DEMAND(22) DTEMP(17)
DEMAND(23) =DTEMP(4)

DEMAND(24) =DTEMP(8)

DEKAND(25) =DTEMP(25)

DEMAND(26) =DTEMP(16)

DEMAND(27) =DTE4P (7)
DO 24 1 =1,27

D(I) =2

DP(I) =1

DPP(I) 3
24 CONTINUE

ELSEIF((JJ.LT.KK).AND.(KK.LT.II)) THEN

DEMAND(1) = DTEMP(21)
DEMAND(2) = DTEMP(20)
DEMAND(3) = DTEMP(19)
DEKAND(4) = DTE4P (12)
DEMAND(S) = DTEMP(24)
DEMAN~D(6) = DTEMP(11)
DEMAND(7) = DTE4P (23)
DEMAND(8) = DTE4P (1.0)
DEMAND(9) = DTEMP(22)
DEMAND(1O) = DTEMP(3)
DEMAND(11) = DTEMP(15)
DEMAND(12) = DTEMP(2)
DEMAND(13) = DTEMP(27)
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DE24AND(14) = DTEMP(14)
DEMAND (15) = DTEMP(l)
DEMAND(16) =DTEMP(26)
DEMAND(17) = DTEMP(13)
DEMAND(18) =DTEMP(25)
DEMAND(19) =DTEMP(6)
DEMAND(20) =DTEMP(18)
DEMAND(21) = DTEMP(5)
DEMAND(22) = DTEMP(17)
DEMAND(23) = DTEMP(4)
DEMAND(24) DTEMP(16)
DEMAND(25) =DTE?4P(9)
DEMAND(26) = DTEMP(8)
DEMAND(27) =DTEMP(7)
DO 25 I1 1,27

D(I1) =2

DP(I) =3

DPP(I) =1

25 CONTINUE

ELSEIF((KK.LT.II).AND.(II.LT.JJ)) THEN

DEMAND~l) = DTE2MP(9)
DEMAND(2) =DTEM,ýf6)
DEMANIJ(3) = DTEM (.;)
DEMAND(4 = DTEMP(8)
DEMAND(5) -DTEMP(183)

DEMAND(6) = DTEMP(S)
DEMAND(7) =DTEMP(15)
DEMAND(8) = DTEM"P (2)
DEMAND(9) = DTEMP(12)
DEMAND(10) =DTEMP(7)
DEMAND(11) = DTEMP(17)
DEMAND(12) = DTEMP(4)
DEMAUD(13) = DTEMP(27)
DEMAND(14) = DTEMP(14)
DEMAND(15) = DTEMP(1)
DEMAND(16) = DTEMP(24)
DEMAND(17) = DTEMP(11)
DEMAND(18) =DTEM4P(21)
DEMAND(19) = DTEMP(16)
DEMANID(20) =DTEMP(26)
DEMAND(21) = DTEMP(13)
DEMAND(22) =DTEMP(23)
DEMAND(23) = DTEMP(1O)
DEMAND(24) = DTEMP(20)
DEMAND(25) =DTEMP(25)
DEMAND(26) = DTEMP(22)
DEMAND(27) = DTEMP(19)
DO 26 I 1,27

D(I1) =3

DP(I) =1

DPP(I) =2

26 CONTINUE

ELSEIF((KK.LT.JJ).AND.(JJ.LT.II)) THEN

DEMAND(l) = DTEMP(9)
DEMAND(2) = DTEMP(8)
DEMAND(3) = DTEMP(7)
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DEMAND(4) =DTEMP(6)

DEMAND(S) DTEMP(18)
DEMAND(6) DTE4P (5)
DEMAND(7) DTEMP(17)
DEMAND(8) =DTEMP(4)

DEMAND(9) =DTEMP(3)

DEMAND(1O) =DTEMP(15)
DEMAND(11) =DTEMP(2)
DEMAND(12) =DTEMP(27)
DEMAND(13) = DTEMP(14)
DEMAND(14) = DTEMP(l)
DEMAND(15) = DTEMP(26)
DEMAND(16) = DTEMP(13)
DEMAND(17) = DTEMP(16)
DEMAND(18) =DTEMP(25)
DEMAND(19) = DTEMP(12)
DEMAND(20) = DTEMP(24)
DEMAND(21) = DTEMP(11)
DEMAND(22) = DTEMP(23)
DEMAND(23) = TEMP(10)
DEMAND(24) =DTEMP(22)
DEMAND(25) =DTEMP(21)
DEMAND(26) = DTEMP(20)
DEMAND(27) =DTEMP(19)
DO 27 I1 1,27

D(I) =3

DP(I) =2

DPP(I) = 1
27 CONTINUE

END IF

* BEGIN TO FILL DEMAND NODES

DO 45 I = 1,27
C IF(DEMAND(I).EQ.O)G0T04S

IF(S(D(I)) .GE. DEMAND(I)) THEN
X(D(I) .1) = DEMAND(I)
S(D(I)) =S(D(I)) - X(D(I),I)
DEMAND(I) = 0
GOTO 45

ELJSEIF (S(D(I)) .GT. 0) THEN
X(D(I),I)= S(D(I))
S(D(I)) = S(D(I))- X(D(I),I)
DEMAND(I) =DEMAND(I) - X(D(ILI)
IF(DEMAND(I) .EQ. 0) G0T045

ENDIF

IF (S(DP(I)) .GE. DEMAND(I)) THEN
X(DP(I),I) = DEMAND(I)
S(DP(I)) = S(DP(I)) - X(DP(I),I)
DEMAND(I) =0
GOTO 45

ELSEIF (S(DP(I)) .GT. 0) THEN
X(DP(I) ,I)= S(DP(I))
S(DP(I)) = S(DP(I)) - X(DP(I),I)
DEMAND(I) = DEMAND(I) - X(DP(I),I)
IF(DEMAND(I).EQ.O)GOTO 45

END IF
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IF(S(DPP(I)) .GE. DEMANDCI)) THEN
X(DPP(Il)I) =DEMAND(I)
S(DPP(I)) = S(DPP(I)) - X(DPP(Il)I)
DEMAND(I) = 0
GOTO 45

ELSEIF (S(DPP(1)) .GT.0) THEN
X(DPP(I) .1) S(DPP(I))
S(DPP(I)) =S(DPP(I)) - X(DPP(I),I)
DEMAND(I) =DEMAND(I) - X(DPP(I) ,I)

END IF
IF (DEMAND(I).NE.O) PRINT*,'ERROR',DEMAND(I),I

45 CONTINUE

* REORDER FLOWS TO BE INTERPOLATED TO THE FINE GRID PROBLEM

IF((II.EQ.JJ).AND.(JJ.EQ.KK)) THEN
DO 30 L = 1,DIM

X2H(L,1,1,1) = X(L,25)
X2H(L,2,1,1) = X(L,22)
X2H(L.3,1,1) = X(L,16)
X2H(L.1,2,1) = X(L,23)
X2H(L,2,2,1) = X(L,13)
X2H(L,3,2,1) = X(L,4)
X2H(L,1,3,1) = X(L,17)
X2H(L,2,3,I) = X(L,5)
X2H(L,3,J,1) = X(L,1)
X2H(L,1,1,2) = X(L,24)
X2H(L,2,1,2) = X(L,14)
X2H(L..3,1,2) = X(L,6)
X2H-(L,1,2,2) = X(L, 15)
X2H(L,2,2,2) = X(L,26)
X2H(L,3,2,2) = X(L,19)
X2H(L,1,3,2) = X(L,7)
X2H(L,2,3,2) = X(L,20)
X2H(L,3,3,2) = X(L,10)
X2H(L,1,1,3) = X(L,18)
X2H(L,2,1,3) =X(L,8)
X2H(L,3,l,3) = X(L,2)
X2H(L,1,2,3) = X(L,9)
X21i(L,2,2,3) = XCL,21)
X2F-(L,3,2,3) = X(L,11)
X2H(L,1.3,3) = X(L,3)
X2H(L,2,3,3) = X(L,12)
X2H(L,3.3,3) = X(L..27)

30 CONTINUE
ELSEIF((II.EQ.JJ).AND.(KK.GT.JJ)) THEN

DO 31 L = 1,DIM
X2H(L,1,1,1) = X(L,24)
X2H(L,2,1,1) = X(L,15)
X2H(L,3,1,1) =X(L,5)
X2H(L,1,2,I) =X(L,16)
X2H(L,2,2,1) =X(L,26)
X2H(L,3,2,I) =X(L,17)
X2H(L,1,3,1) =X(L 6)
X2H(L,2,3,1) =X(L,18)
X2H(L..3,3,1) =X(L,27)
X2H(L,1,1,2) =X(L,21)
X2H(L.,2,1,2) =X(L,11)

74



X2H(L,3,1,2) =X(L,3)
X2H(L,1,2,2) z X(L.12)
X2H(L,2,2,2) = X(L.23)
X2H(L,3,2,2) =X(L,13)
X2H(L,1.3,2) zX(L,4)
X2HCL.2,3,2) = X(L,14)
X2H(L,3,3,2) X(L,25)
X2H(L,1,1,3) =X(L,19)
X2H(L,2.1,3) =X(L.7)

X2H(L,3,1,3) =X(L.1)

X2H(L.,12,3) =X(L,8)

X2H(L,2,2.3) =X(L,20)

X2H(L,3,2,3) ~X(L,9)
X2H(L.,1.3,3) = X(L,2)
X2H(L,2,3,3) = X(L,1O)
X2H(L,3,3,3) = X(L,22)

31 CONTINUE
ELSEIF((II.EQ.JJ).AND.(JJ.GT.KX)) THEN

DO 32 L = 1,DIM
X2H(L,1,1,1) = X(L,14)
X2H(L,2,1,1) =X(L,1O)
X2[H(L..3,1,1) = X(L,,6)
X2i(1.,1, 2, 1) = X(L,11)
X2H(L,,2,2,1) = X(L,5)
X2H(L,3,2,I) = X(L,2)
X2H(L,1,3,1) = X(L,7)
X2H(L,2,3,1) = X(L,3)
X2H(L,3,3,1) = X(L.1)
X2H(L,1,1.,2) = X(L,22)
X2H(L,2,1,2) = X(L,19)
X2H(L,3,1,2) =X(L,15)
X2H(L,1,2,2) = X(L,20)
X2H(L,2,2,2) = X(L,13)
X2H(L,3,2,2) =X(L,8)

X2H(L,2,3,2) = X(L,19)
X2H(L,3,3,2) = X(L,4)
X2H(L,1.,3,) = X(L27)
X2H(L,2,1,3) = X(L,25)
X2H(L,3,1,3) = X(L,23)
X2H(L.31,,3) = X(L.,26)
X2H(L,2,2,3) = X(L,21)
X2H(L,3,2,3) = X(L,17)
X2H(L,1,3,3) = X(L,24)
X2H(L,1,3,3) = X(L,28)

X2H(L,3,3,3) = X(L,12)
32 CONTINUE

ELSEIF((II.EQ.KK).AND.(JJ.GT.II)) THEN
DO 33 L = 1,DIM

X2H(L,1,1,1) = X(L,24)
X2H(L,2,1,1) = X(L,15)
X2H(L,3,1,1) = X(L,5)
X2H(L,1,2,I) = X(L,21)
X2H(L,2,2,1) = X(L,11)
X2H(L..3,2,1) = X(L,3)
X2H(L,1,3,1) = X(L,19)
X2H(L,2,3,1) = X(L,7)
X2H(L,3,3,1) = X(L,1)
X2H(T,,1,1,2) = X(L,16)
X2H(L,2,1,2) = X(L,26)
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X2H(L,3,1,2) = X(L,17)

X2H(L,12,22) = X(L,12)
X2H(L,2.2,2) = X(L,23)
X2H(L,3,3,2) = X(L,13)

X2H(L.2,3,2) = X(L,20)
X2H(L.3,3,2) = X(L,9)
X2H-(L,1,1,3) = X(L,6)
X2H(L,2,l,3) =X(L,18)
X2H(L,3,1,3) = X(L,27)
X2H(L,l,2,3) = X(L,4)
X2H(L,2,2,3) = X(L,14)
X2H(L,3,2,3) =X(L,25)
X2H(L,1,3,3) = X(L,2)
X2H(L.2.3,3) = X(L,1O)
X2HCL,3,3,3) = X(L,22)

33 CONTINUE
ELSEIF( (II.EQ.KK) .AND. (II.GT.JJ) )THEN

DO 34 L = l,DIM
X2H(L,l,l,1) =X(L..14)
X2H(L,2,1,1) = X(L,1O)
X2H(L,3,1,1) = X(L,,6)
X2H(L,1,2,1) = X(L,22)
X2H(L,2,2,l) = X(L,19)
X2H(L,3,2,l) = X(L,15)
X2H(L,1,3,1) =X(L.,27)
X2H(L,2,3,1) = X(L,25)
X2H(L,3,3,l) = X(L,23)
X2H(L,l,1,2) = X(L,l1)
X2H(L,2,1,2) = X(L..5)
X2H(L,3,1,2) = X(L,2)
X2H(L,1,.2,2) = X(L..20)
X2H(L,2,2,2) = X(L,13)
X2H(L,3,2,2) = X(L,8)
X2H(L,1,3,2) = X(L,26)
X2H(L,2,3,2) = X(L,21)
X2H(L,3,3,2) = X(L,17)
X2H(L,l1,13) = X(L,7)
X2H(L,2,l,3) = X(L,3)
X2H(L,3,1,3) = X(L.1)
X2H(L.,1,2,3) = X(L,16)
X2H(L,2,2,3) = X(L,9)
X2H(L,3,2,3) = X(L.4)
X2H(L,1,3,3) = X(L,24)
X2H(L,2,3,3) = X(L.,l8)
X2H-(LJ,3,3) = X(L,12)

34 CONTINUE
ELSEIF( (JJ.EO.KK) .AND. (II.GT.JJ)) THEN

DO 35 L = 1,DIM
X2H(L.,l1,11) = X(L,24)
X2H(L,2,l.1) = X(L..21)
X2H(L,3,1,1) = X(L.,19)
X2H(L.l,2,1) = X(Ll5)
X2H(L,2,2,1) = X(L,11)
X2H(L,3,2,1) = X(L,7)
X2H(L,1,3,1) = X(L.5)
X2H(L,2,3,l) = X(L.3)
X2H(L,3,3,l) = X(L,1)
X2H(L,l.1,2) = X(L,16)
X2H(L,2,l,2) = X(L.12)
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X2H(L,3,i.,2) = X(L,8)
X2H(L,1,2,2) = X(L..26)
X2H(L,2,2,2) = X(L..23)
X2H(L,3,2,2) = X(L,20)
X2H(L,1,3,2) = X(L,17)
X2H(L,2,3,2) = X(L,13)
X2H(L,3,3,2) = X(L,9)
X2H(L,1,1,3) = X(L,6)
X2H(L.2,1.,3) = X(L,4)
X2H(L,3,1,3) = X(L,2)
X2H(L,1,2,3) =X(L,18)
X2H(L,2,2,3) = X(L,14)
X2H(L,3,2,3) = X(L.1O)
X2H(L,1,3,3) = X(L,27)
X2H(L,2,3,3) = X(L,25)
X2H(L,3,3,3) = X(L,22)

3S CONTINUE
ELSEIF((JJ.EQ.KK).AN~D.(II.LT.JJ)) THEN

DO 36 L = 1,DIM
X2H(L,1,1,1) = X(L,.14)
X2H(L,2,1,1) = X(L,22)
X2H(L,3,1,1) = X(L,27)
X2H(L,1,2,1) = X(L,1O)
X2H(L..2,2,1) =X(L,19)
X2H(L,3,2,1) = X(L,2S)
X2H(L,1,3,I) = X(L,6)
X2H(L,2,3,1) = X(L,15)
X2H(L,3,3,1) = X(L,23)
X2H(L,1,1,2) = X(L,11)
X2H(L,2,1,2) = X(L,20)
X2H(L,3,1,2) = X(L,26)
X2H(L,1,2,2) = X(L,4)
X2H(L,2,2,2) = X(L,13)
X2H(L,3,2,2) = X(L.,21)
X2H(L,1,3,2) = X(L,2)
X2H(L,2,3,2) = X(L,8)
X2H(L,3,3,2) = X(L,17)
X2H(L,1,1,3) = X(L,7)
X2H(L,2,1,3) = X(L,16)
X2H(L,3,1,3) = X(L,24)
X2H(L,1,2,3) = X(L,3)
X2H(L,2,2,3) = X(L,9)
X2H(L,3,2,3) = X(L,18)
X2H(L,1,3,3) = X(L,1)
X2H(L,2,3,3) = X(L,S)
X2H(L,3,3,3) = X(L,12)

36 CONTINUE
ELSEIF( (II.LT.JJ) .AND. (JJ.LT.KK)) THEN

DO 37 L = 1,DIM
X2H(L,1,1,1) = X(L,15)
X2H(L,2,1,1) = X(L,23)
X2H(L.3,1,1) = X(L.27)
X2H-(L,1,2,1) = X(L,8)
X2H(L.2,2,1) = X(L,17)
X2H(L,3,2,1) = X(L,24)
X2H(L.i.3.1) = X(L,3)
X2H(L,2,3,1) = X(L,9)
X2H(L,3,3,I) = X(L,18)
X2H(L,1,1,2) = X(L,12)
X2H(L,2,1,2) = X(L,21)
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X2H(L,3,1,2) = X(L,26)
X2H(L.1,2,2) = X(L,6)
X2H(L,2,2,2) =X(L,14)
X2H(L.3,2,2) = X(L,22)
X2H(L,1,3,2) =X(L,2)
X2H(L,2,3,2) = X(L,7)
X2H(L,3,3,2) = X(L,16)
X2H(L,1,1,3) =X(L,1O)
X2H(L,2,l,3) = X(L,19)
X2H(L,3,1,3) = X(L,25)
X2H(L,1,2,3) = X(L,4)
X2H(L,2,2,3) = X(Ll1)
X2H(L,3,2,3) = XCL,20)
X2H(L,1,3,3) = X(L,1)
X2H(L,2,3,3) = X(L,5)
X2H(L,3,3,3) = X(L,13)

37 CONTINUE
ELSEIF((II.LT.KK).AND.(KýK.LT.JJ)) THEN

DO0 38 L =1,DIM
X2H(L,l,l.1) = X(L,15)
X2H(L,2,1,1) = X(L,23)
X2H(L,3,1,l) = X(L..27)
X2H(L,l,2,l) = X(L.12)
X2H(L,2,2,l) = X(L,21)
X2H(L,3,2,1I) = X(L..26)
X2H(L,1,3,1) = X(L,1O)
X2H(L,2,3,1) = X(L~,19)

X2H11(L,13,3,12) = X(L,85)
X2H(L,1,1,2) = X(L,17)
X2H(L,2,1,2) = X(L,14)
X2H(L,31,22) = X(L,64)
X2H(L,1,2,2) = X(L,14)
X2H(L,2,2,2) = X(L.,22)
X2H(L,1,3,2) = X(L,42)
X2H(L,2,3,2) = X(L,11)
X2H(L,3,3,2) = X(L,20)
X2H(L,l,L3,) = X(L,20)
X2H(L,2,l,3) = X(L,9)

X2H(L.,3,1,3) = X(L,18)
X2H(L,1..2,3) = XL,2)
X2H(L,2,2,3) = X(L,7)
X2H-(L,3,2,3) = X(L,16)
X2H(Ll.3,3) = X(L~l)
X2H(L,2,3.3) = X(L,5)
X2H(L,3,3,3) = X(L,13)

38 CONTINUE
ELSEIF((JJ.LT.II).AND.(II.LJT.KK)) THEN

DO 39 L = 1,DIM
X2H(L.,1,1,1) = X(L,15)
X2H(L,2,1,1) = X(L,8)
X2H(L,3,1,1) = X(L,3)
X2H(L,1,2,1) = X(L,23)
X2H(L,2,2,I) = X(L,17)
X2H(L.3,2,1) = X(L,9)
X2H(L,1,3,1) = X(L,27)
X2H(L,2,3,1) = X(L,24)
X2H(L,3,3,l) = X(L,18)
X2H(L,1,1.2) = X(L,12)
X2H(L,2,1,2) = X(L,6)
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X2H(L,31,,2) =X(L,21)
X2H(L,2,2,2) = X(L,14)
X2H(L,3,2,2) = X(L,14)
X2H(L,3,2,2) = X(L.26)
X2H(L.,23,2) =X(L,26)
X2H(L,23.3.2) = X(L,16)
X2H(L,3.1.3) = X(L,1O)
X2H(L,2,1,3) = X(L,10)
X2H(L,3.1,3) = X(L.4)
X2H(L,31,,3) = X(L,19)
X2H(L.2,2,3) = X(L,19)
X2H(L.3,2,3) = X(L,11)
X2H(L1,3,,3) = X(L.25)
X2H(L,2,3,3) = X(L,25)
X2H(L,3,3,3) = X(L,13)

39 CONTINUE
ELSEIF((JJ.LT.KK).A-D.(gjc.LT.II)) THEN

DO 40 L = 1,DIM
X2H(L,1,1,1) = X(L,15)
X2H(L,2,1,1) = X(L,12)
X2H(L,3,1,1) = X(L,10)
X2H(L,1,2,1) = X(L,23)
X2H(L,2,2,1) = X(L.,21)
X2H(L,3,2,1) = X(L,19)
X2H(b.1,3,1) = X(L,27)
X2H(L,2,3,1) = X(L,26)
X2H(L.3.3.1) = X(L,2S)
X2H(L,1.1,2) = X(L,8)
X2H(L,2,1,2) = X(L,6)
X2H(L,3,1,2) = X(L,4)
X2H(L,1,2,2) = X(L,17)
X2H(L,2,2,2) = X(L,14)

X2H(L,3,3,2) = X(L,24)
X2H(L,1,3,2) = X(L.,24)
X2H(L,2,3,2) = X(L,20)
X2H(L,3,13,) = X(L,30)
X2H(L,1,1,3) =X(L,3)
X2H(L,2,1,3) = X(L,2)
X2H(L,,12,3) = X(L.,9)
X2H(L,2,2,3) = X(L.9)
X2H(L,3,2,3) = X(L,7)
X2H(L,3,1,,3) = X(L,18)
X2H(L,2,3,3) = X(L,16)
X2H(L,2,3,3) = X(L,13)

40 CONTINUE
ELSEIF((KX.LT.II).AND.(II.LT.JJ)) THEN

DO 41 L = 1,DIM
X2H(L,1,1,1) = X(L,15)
X2H(L,2,1,1) = X(L,8)
X2H(L.3,1,1) = X(L,3)
X2H(b.1,2,I) = X(L,12)
X2H(L,2,2,1) = X(L,6)
X2H(L,3,2,1) = X(L,2)
X2H(L,1,3,1) = X(L,10)
X2H(L,2,3,1) = X(L,4)
X2H(L,3,3,1) = X(L,1)
X2H(L,1,1,2) = X(L,23)
X2H(L,2,1,2) = X(L,17)

79



X2H(L,3i1,2) z X(L,9)
X2H(L,1,2,2) =X(L,21)
X2H(L,2,2,2) = X(L,14)
X2H(L.3,2,2) =X(L,7)
X2H(L,l.3,2) = X(L,19)
X2H(L,.3,32) zX(L..11)
X2H(L,3,3,2) = X(L,5)
X2H(L,1,1,3) =X(L.,27)
X2H(L,2,1,3) = X(L,24)
X2H(L,3,1,3) =XCL,18)
X2H(L,1,2,3) = X(L,26)
X2H(L,2,2,3) = X(L,22)
X2H(L,3,2,3) = X(L,16)
X2H(L,1,3,3) z X(L,25)
X2H(L,2,3,3) = X(L..20)
X2H(L,3,3,3) = X(L,13)

41 CONTINUE
ELSEIF((KK.LT.JJ).AND.(JJ.LT.II)) THEN

DO 42 L = bDIM
X2H(L,1,1,1) = XCL,14)
X2H(L,2,1,1) = X(L,11)
X2H(L.3,1.1) zX(L,9)
X2H(L,1,2,1) = X(L,8)
X2H(L,2,2,1) =X(L,6)
X2H(L.,3,2,1) = X(L,4)
X2H(L,1,3,1) =X(L,3)
X2H(L,2,3,1) =X(L,2)
X2H(L,3,3,1) = X(L,1)
X2H(L,1,1,2) = X(L,23)
X2H(L.2,1,2) =X(L,21)
X2H(L,3,1,2) =X(L,19)
X2H(L,1,2,2) =X(L,16)
X2H(L,2,2.2) = X(L,13)
X2H(L,3,2,2) = X(L,1O)
X2H(L,1,3,2) =X(L,17)
X2H(L,2,3,2) = X(L,7)
X2H(L,3,3,2) =X(L,5)
X2H(L,1,1,3) =X(L,27)
X2H(L.,2,1,3) = X(L,26)
X2H(L,3,1,3) = X(L,25)
X2H(L,1,2.3) =X(L,24)
X2H(L,2,2,3) =X(L,22)
X2H(L,3,2,3) =X(L,20)
X2H(L,1,3,3) = X(L,18)
X2H(L,2,3,3) = X(L,15)
X2H(L,3,3,3) =X(L,12)

42 CONTINUE
ENDI F
RETURN
END

C THE SUBROUTINE INTERP INTERPOLATES THE FLOWS FROM THE COARSE GRID
C BACK TO THE FINE GRID.
C THE ARRAY DH CONTAINS THE DEMANDS FOR THE FINE GRID DEMAND NODES.
C THE ARRAYS DHTEMP * XHTEMP, ANt) STEMP ARE TEMPORARY ARRAYS USED
C TO HOLD THE DEMAND, FLOW AND SUPPLY DURING THE INTERPOLATION
C SCHEME. THE ARRAY X2H CONTAINS THE FLOWS FOR THE COARSE GRID
C DEMAND NODES. THE ARRAY XH CONTAINS THE INTERPOLATED FLOW FOR
C THE FINE GRID.
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SUBROUTINE INTERP(DH,DHTEMP,XHTEMP,STEI"PX2H,XHRC,R,DIM)
INTEGER DIMRC,R,L,LL
REAL XH(DIM,R,R,R),DH(R,R,R),DHTEMP(DIM,DIM,DIM),XP2H(3,3,3,3),
*X2H (DIM. RC.RC. RC , STEMP (DIM) ,XHTEMP (DIM, 2RC 2-RC, 2RC)

,IM,JM.,KM, IP,JP, KP, IMJM. IMKM, IMJP, IHKP,JMKM,JMK<P, JPKM,JPKP.
+IPJM, IPJP, IPKM, IPKP. IMJMKM, IMJMKP, IMJPKMIQ4 I4JPKP, IPJMOO., IPJMKP,
+IPJPKM~, IPJPKP

DO 1 K = 1,RC
DO 1 J =1,RC

DO 1 I = 1,RC
DO 1 L = 1,DIM

XHTEMP(L,2*I,2*J,2*K) X2H(L, I,J,K)
I CONTINUE

DO 2 K=1,3
DO 2 J =1,3

DO 2 I = 1,3
DO 2 L = 1,3

2 XP2H(L,I,J,K)=O

C RECOMPUTE DEMANDS FOR THE DEMAND NODES ON THE FINE GRID

DO 5 K = 1,RC
DO 5 J = 1,RC

DO 5 I = 1,RC
DO 6 KK = 1,3

DO 6 JJ = 1,3
DO 6 11I 1.3

D)HTEMP(II,JJ,KK) = 0
6 CONTINUE

DO 7 LL = 1,DIM
STEMP(IL) =XHTEMP(LL,2*I,2*J,2*K)

7 CONTINUE

IM = .5
IP =.5
JM =.5
JP = .5
KM =.5
KP = .5
IMJM = .25
IMJP = .25
IPJM = .25
IPJP = .25
IMKM = .25
IMKP = .25
IPKM = .25
IPKP = .25
JMKM = .25
JMKP = .25
JPKM = .25
JPKP = .25
IMJMKM = .125
IMJPKM = .125
IMJMKP = .125
IMJPKP =.125
IPJMKM = .12S
IPJMI(P = .125
IPJPKM = .125
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IPJPKP = .125

C THE IF STATEMENTS CHECK FOR EDGE AND CORNER DEMAND NODES.

IF (I .EQ. 1) THEN

IM = 1
IMJM = .5
IMJP = .5
ItKM" .5
IMKP = .5
IMJPKM = .25
IMJMKP = .25
IMJPKP = .25
IMJMKM = .25

ELSEIF(I .EQ.RC) THEN
IP = 1
IPJM = .5
IPJP = .5
IPKM = .5
IPKP = .5
IPJPKM = .25
IPJMKP = .25
IPJPKP = .25
IPJMKM = .25

ENDIF
IF (J .EQ. 1) THEN

JM = 1
IMJM = .5
IPJM = .5
JMKM = .5
JMKP = .5
IMJMKM = .25
IPJMKP = .25
IMJMKP = .25
IPJMKM = .25

ELSEIF (J .EQ.RC) THEN
JP = I
IMJP = .5
IPJP = .5
JPKM = .5

JPKP = .5
IMJPKM = .25
IMJPKP = .25
IPJPKP = .25
IPJPKM = .25

ENDIF
IF (K .EQ. 1) THEN

KM = 1
IMKM = .5
IPKM = .5
JMKM = .5
JPKM = .5
IMJPKM = .25
IMJMKM = .25
IPJPKM = .25
IPJMKM = .25

ELSEIF (K .EQ.RC) THEN
KP = 1
IMKP = .5
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IPKP = .5
JMKP = .5
JPKP = .5
IMJPKP z .25
IMJMKP = .25
IPJPKP .25
IPJMKP = .25

ENDIF

DHTEMP(2,2,2) = DH(2*I,2*J,2*K)
DHTEMP(1, 2,2) = IM*DH(2*I-1,2*J,2*K)
DHTEMP(3 2,2) = IP'DH(2'I+1,2*Jo2*K)
DHTEMP(2 1,2) = JM*DH(2*I,2*J-1,2.K)
DHTEMP(2,3,2) = JP*DH(2*I,2*J+1,2*K)
DHTEMP(2,2,1) = KM*DH(2*I,2.J,2*K-1)
DHTEMP(2,2,3) = KP*DH(2*I,2*J,2*K+I)

IF ((I .EQ.1) .AND. (J .EQ. 1)) THEN
IMJM = 1
IMJMKP = .5
IMJMKM = .5

ELSEIF ((I .EQ.1) .AND. (J .EQ.RC)) THEN
IMJP = 1
IMJPKP = .5
IMJPKM .5

ENDIF
IF ((I .EQ.RC) .AND. (J .EQ. 1)) THEN

IPJM = 1
IPJMKP = .5
IPJMKM = .5

ELSEIF ((I .EQ.RC) .AND. (J .EQ.RC)) THEN
IPJP = 1
IPJPKP = .5
IPJPKM = .5

ENDIF
IF ((I .EQ.1) .AND. (K .EQ. 1)) THEN

IMKM = 1
IMJMKM = .5
IMJPKM = .5

ELSEIF ((I .EQ.1) .AND. (K .EQ.RC)) THEN
IMKP = 1
IMJMKP = .5
IMJPKP = .5

ENDIF
IF ((I .EQ.RC) .AND. (K .EQ. 1)) THEN

IPKM = 1
IPJMKM = .5
IPJPKM = .5

ELSEIF ((I .EQ.RC) .AND. (K .EQ.RC)) THEN
IPKP = 1
IPJMKP = .5
IPJPKP = .5

ENDIF
IF ((J .EQ. 1) .AND. (K .EQ. 1)) THEN

JMKM = 1
IMJMKM = .5
IPJMKM = .5

ELSEIF ((J .EQ. 1) .AND. (K .EQ.RC)) THEN
JMKP = 1
IMJMKP = .5
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IPJMKP .5
END IF
IF ((J .EQ.RC) .AND. (K .EQ. 1)) THEN

JPKM = 1
IMJPKM = .5
IPJPKM z.5

ELSEIF ((J .EQ.RC) .AND. (K .EQ.RC)) THEN
JPKP 1
IMJPKP = .5
IPJPKP = .5

END IF

DHTEMP(1, 1,2) = IMJM*DH(2*1-1,2*J-1,2*K)
DHTEMP(1,3 ,2) =I1JP*DH(2*I-1,2*J+1 ,2*K)
DHTEMP(1,2, 1) = IMKM*DH(2*I-1,2*J,2*K-1)
DHTEMP(1,2,3) = IMKP*DH(2*I-1,2*J, 2*K.1)
DHTEMP (3.1,2) =IPJN*DH (2*1+1, 2*J-1 ,2*K)
DHTEMP(3 .3,2) =IPJP*DH(2*I+1,2*J+1,2*K)
DHTEMP(3,2, 1) = IPKM*DH(2*I+1,2*J,2*K-1)
DHTEMP(3 ,2,3) = IPKP*DH(2*I+1 ,2*J,2*K+l)
DHTEMP(2,1, 1) = JK*H2I2J12K1
DHTE:MP(2, 1,3) =JMWP*DH(2*I,2*J-1,2*K+l)
DHTEMP(2,3, 1) = JPKM*DH(2*I,2*J+1,2*K-1)
DHTEMP(2,3,3) =JPKP*DH(2*I,2*J+1 ,2*K+l)

IF ((I.EQ.1).AND.(J.EQ.1).AND.(K.EQ.1)) THEN
IMJMKM = 1

ELSEIF ((I.EQ.1).AND.(J.EQ.1).AND.(K.EQ.RC)) THEN
IMJMKP = 1

ELSEIF ((I.EQ.1).AflD.(J.EQ.RC).AI'D.(K.EQ.1)) THEN
IMJPKM =

ELSEIF ((I.EQ.1).AND.(J.EQ.RC).AND.(K.EQ.RC)) THEN
IMJPKP = 1

ELSEIF ((I.EQ.RC).AND.(J.EQ.1).AND.(K.EQ.1)) THEN
IPJMKM =1

ELSEIF ((I.EO.RC).AND.(J.EQ.RC).AN'D.(K.EQ.1)) THEN
IPJPKM = 1

ELSEIF ((I.EQ.RC).AND.(J.EQ.RC).AND.(K.EQ.RC)) THEN
IPJPKP = 1

ELSEIF ((I.EQ.RC).AND.(J.EQ.1).AND.(K.EQ.RC)) THEN
IPJMKP 1

END IF

DHTEM4P(1,1,1)=IMJMKM*DH(2*I-1,2*J-1,2*K-1)
DHTEMP(1,1,3)=IMJMKP*DH(2*I-1,2*J-1,2*K+1)
DHTEMP(1,3,1)=IMJPKM-DH(2*I-1,2*J+1,2*K-1)
DHTEMP(1,3,3) =IMJPKP*DH(2*I-1,2*J+1,2*K+1)
DHTEMP(3,1,1)=IPJMKM*DH(2*I+1,2*J-1,2*K-1)
DHTEMP (3,1,3) =IPJMKP*DH (2*1+1, 2J-1 ,2*K+1)
DHTEMP(3,3,1)=IPJPKM*DH(2*I+1,2*J+1,2*K-1)
DHTEMP (3,3,3) =IPJPKP*DH (2*1+1. 2*J+ , 2*K+1)

IT = 2*I1-
JT = 2*J-~1
KT = 2*K-1

C SOLVE THE LOCAL 3X27 PROBLEM

CALL LSOLVE(XP2H,DHTEMP,STEMP,DIM,IT,JT,KTI

DO 25 L = 1,DIM
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C ACCUMULATE THE FLOW FOR EACH FINE GRID DEMAND NODE.

XH (L 2*1-1, 2J -1, 2K-1) =XP2H)L, 1, 1, 1)+XH (L, 2*I-1, 2J-1, 2*K-1)
XH (L 2*1 ,2 *J -1 .2*K-1) =XP2H (L.2, 1 ,1)+XH (L.2 I, 2 - 1,.2*K -1)
XH (L, 2 *It 1.2 3-1 ,2*K-I) =XP2H (L, 3.1, 1 +XH (L 2*1 1 ,2-J -1.2*K -1.)

XH (U,2 *11, 2 J, 2*K -1)=XP2H (L,12.2, 1)+XH (L,21.2 'J. 2*JK - I
XH (U.2*1*1, 2-J.2*K-1) aXP2H (L.3,2, 1) XH (L, 211 .2 3 . 2K- -
XH (L.2 *1-1,2 3 1, 2 *j(1) =XP2H (U,,3,,1) +XH (L, 2*1- .2 J,2* 1 .K-
XH(L,2*I-,2*J+1,2*K-1)=XP2H(L,2,3,1) ±XH(L,2*1.12J+1,2*K-1)
XH(L,2I+1,2*J*1,2*K-1) = XP2H(L,,3,,1) +XH(L,1,2IJ+1,2J+,K-1)
XH(L,2*I+1,2*J+1,2*K-) = XP2H(L,1,1,2) +XH(L,2*1+1,2*J+1,2*K)
XH(L,2*1I,2*J-1,2*K) = XP2H(L2,1,1,2)+XH(L,2I,2J1,2K)1,*K
XH(L,2*I+,2*J1,2*K) = XP2H(L,3,1,2) 4XH(L,*,2*J-1,2JK)
XH(L,2I1+1,2*J-,2K) = XP2H(L, 1,22) +XH(L,2*I+1,2*J-12K)
XH(L,2*I,2*J,2*K) = XP2H(L,22.2) +XH(L,2,2*J-,2*K)*K
XH(L,21+1,2*J,2*K) = XP2H(L,32.22) +XH(L,2*1+1J2*J2K)
XH(L,2*I+1,2*J*,2*K) = XP2H(L, 13,2) +XH(L,2*I+1,2*J+,2*K)
XH(L,2I1,2*J+1,2*K) = XP2H(L,2,3,2) +XH(L,2*I-2J1,2*K),2K
XH(L,2*I1,2*.J*1,2*K) = XP2H(L,,3,32) +XH(L,ý'I2*I+1,2J,*K)
XH(L,2*1+1,2*J+1,2*K+) =XP2H(L,1,1,3) +XH(L,2I+1,2*J+1,2*K1)
XH(L,2*1,2*J-1,2*K+1) XP2H(L2,1,13) +XH(L,2*I,2J1,2*J-1)2K
XH(L,2*I1,2*J-1,2*K+l) =XP2H(,3, 1,3) +XH(L,2*I,*J1,2J*,K+1)
XH(L,2*I+1,2J-,2*K+l) = XP2Hi(L,12,3,3)+XH(L,2I*1,2,22K+1,2Kl
XH(L,2*I-2*,2*J2K±1) = XP2H(L,2,2,3) +XH(L,2*I,2*,2K±1)K~
XH(L,21+1,2*J,2*K±1) = XP2H(L,2,2.3) +XH(L,2*I,2,2*JK+1)
XH(L,2*I+1,2*J+,2*K+1) =XP2H(L, 1,3,3)+XH(L,2*I+1,2*J+,K+l)
XH(L,2*I-,2*J*1,2*K+l) = XP2H(L,,2,3,3)+XH(L,2I1-,2*J+1,2K+1)

XH (L, 2*1+1, 2*J+1,*2*K+1) =XP2H (L, 3,3,3) +XH (L. 2*I+1, 2*J+1 ,2*K+l.)
2S CONTINUE
5 CONTINUE

RETURN
END

C THE SUBROUTINE RELAX IMPROVES THE SOLUTION OBTAINED BY THE
C THREE PREVIOUS SUBROUTINES. THE SUBROUTINE CHECKS THE FLOW TO
C EACH DEMAND FOR THE CHEAPEST SUPPLIER. IF THE FLOW IS NOT FROM
C THE CHEAPEST SUPPLIER, A DUMM'Y PROBLEM IS CREATED THAT IS OF THE
C FORM AS THE ORIGINAL PROBLEM. THE ONLY SUPPLY AND DEMAND IS
C FROM THE MISDIRECTED FLOW. THE ARRAY STEMP CONTAINS ALL THE
C MISDIRECTED FLOW. THE ARRAY XH CONTAINS THE FLOW FOR EACH FINE
C GRID DEMAND NODE. THE ARRAY DPTEMP CONTAINS THE MISFILLED DEMAND
C NODE'S DEMAND.
C THE RELAXATION TAKES PLACE ON THE GLOBAL GRID BY SOLVING SEVERAL
C LOCAL 3X27 PROBLEMS.

SUBROUTINE RELAX (STEMP,XH, PC,RP.DIM)
INTEGER DIM,R,RC,M, L,O, P,Q,S,C
REAL STEMP(DIM),DPTEMP(3,3,3),XH(DIM,R,R,R),COST,
+DTEMP (3 ,63 ,63 ,63) ,XHH(3,63, 63, 63) ,SUM,
+XTEMP (3,3,3,3)
CC= 0
DO 10 K=1,R

DO 10 J =1,R

DO 10 I = 1,R
DO 10 L = 1,DIM

DTEMP(L,I,J,K) = 0
XHH(L,I,J,K) = 0

10 CONTINUE
DO 15 K=1,3
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DO 15 J=1,3
DO 15 I=1,3

DPTEMP(I.J,K) =0
DO 15 L=1,DIM

XTEMP(L,.I,J,K) =0
15 CONTINUE

STEMP(l) =0
STEMP(2) = 0
STEMP(3 = 0
COST =0

SUM 0
OPEN(UNIT =12, FILE = 'FLOCOST DATA D',STATUS ='OLD')

C CHECK THE FLOW TO EACH DEMAND NODE TO VERIFY IF THE CHEAPEST
C SUPPLIER WAS USED. IF NOT CORRECT THE FLOW.

DO 20 K =1,R

DO 20 J =1,R

DO 20 1 = 1,R
DO 20 L =1,DIM

M = MIN(IJ,K)
IF(L .EQ. 1) THEN

IF (I.GT.M)THEN
DTEMP(L,I,J,K) = XH(L,IJ,K)+DTEMP(L, I,JK)
STEMP(1) =XH(L,I,J,K)+ STEMP(1)
XH(L,I,J,K) = 0
COST = COST + DTEMP(L,IJ,K)*I

END IF
COST = COST + I*XH(L,I,J,K)

ELSEIF (L .EQ. 2) THEN
IF (J.GT.M)THEN

DTEMP(L,IJ,K) = XH(L. I,JK) +DTEMP(L, I,J,K)
STEMP(2) =XH(L,I,J,K) + STEMP(2)
XH(L,IJ,K) = 0
COST = COST + DTEMP(L,I,J,K)*J

ENDIF
COST =COST + J*XH(LIJK)

ELSE
IF (K.GT.M)THEN

DTEMP(L, IJ,K) = XH(L, I,J,K) +DTEMP(L, I,J,K)
STEMP(3) =XH(L,I,J,K)+ STEMP(3)
XH(L,I,J,K) = 0
COST = COST + DTEMP(L,I,J,K)*K

ENIJIF
COST = COST + K*XH(LI,J,K)

ENDI F
SUM =SUM + XH(L,I,J,K) + DTEMP(L,I,J,K)

20 CONTINUE
WRITE(12,13) COST,SUM,STEMP(1l)STEMP(2),STEMP(3)

12 FORMAT(2X, 12,2X, 12,2X. 12,2X.12,2XF9.2,2X,F9.2)
13 FORMAT(2XF12 .2.2XF12 .2,2X,F8.2,2X.F8.2,2X.,F8.2)

DO 30 K = 1,RC
DO 30 J = 1,RC

DO 30 I =1,RC
DO 30 L = 1,DIM

DPTEMP(1, 1,1) = DTEMP(L,2*I-1,2*J-1,2*K-1)
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DTEMP(L,2*I-1,2*J-1,2*K-1) = 0
DPTEM4P(2,1, 1) =DTEMP(L,2*I,2*J-1,2*K-1)
DTEMP(L,2*I,2*J-~1,2-K-1) =0
DPTEMP(3, 1,1) = DTEMP(L,2*I+1,2*J-1,2*K-1)
DTEM4P(L,2*I+1,2*J-1,2*K-1) = 0
DPTEMP(1,2. 1) = DTEMP(L,2*I-1,2*J,2*K-1)
DTEMP(L,2*I-1,2*J,2-K-1) = 0
DPTEMP(2,2, 1) = DTEMP(L,2*I,2*J,2*K-1)
DTEMP(L,2*I,2*J,2*K-1) =Q
DPTEMP(3,2, 1) = DTEMP(L,2*I+1,2*J,2*K-1)
DTEM4P(L,2*I+1,2*J,2*K-1) = 0
DPTEMP(1,3, 1) = DTEMP(L,2*I-1,2*J+1,2*K-1)
DTEMP(L,2*I-.1,2*J+1,2*K-1) = 0
DPTEMP(2,3. 1) = DTEMP(L,2*I,2*J+1,2*K-~1)
DTEM4P(L,2*I,2*J+1,2*K-1) = 0
DPTEM4P(3 .3,1) = DTEMP(L,2*I+1,2*J+1,2*K-1)
DTEM4P(L,2*I+1,2*J+1,2*K-1) =0
DPTEMP(1, 1,2) = DTEMP(L,2*I-1,2*J-1,2*K)
DTEMP(L,2*I-1,2*J-1,2*K) = 0
DPTEMP (2,1,2) = DTEMP (L, 2*1, 2*J-1, 2*K)
DTEMP(L,2*I,2*J-1,2*K) =0
DPTEMP(3, 1,2) DTaiP(L,2*I+1,2*J-1,2*K)
DTEMP(L,2*I+1,2*J-1,2*K) = 0
DPTEM4P(1,2,2) = DTEMP(L,2*I-1, 2*J, 2*K)
DTEMP(L,2*I-1,2*J,2*K) = 0
DPTEM4P(2,2,2) =DTEMP(L,2*I,2*J, 2*K)
DTEMP(L,2*I,2*J,2*K) = 0
DPTEMP(3 ,2,2) = DTEMP(L,2*I+1,2*J,2*K)
DTEM4P(L,2*I+1,2*J,2*K) = 0
DPTEMP (1,3,2) = DTEMP(L, 2*I-1, 2*J+1, 2*K)
DTEMPCL,2*I-1,2*J+1,2*K) = 0
DPTE4P (2,3,2) = DTEMP CL, 21.,2 J+1, 2*K)
DTEMP(L,2*I,2*J+1,2*K) = 0
DPTEMP (3,3,2) = DTEMP CL, 2*I+1, 2*J+1 , 2K)
DTEMP(L,2*I+1,2*J+1,2*K) = 0
DPTEM4P(1, 1,3) = DTEMP(L,2*I-1,2*J-1,2*K+l)
DTEMP(L,2*I-1,2*J-1,2*K+1) = 0
DPTEMP(2. 1,3) = DTEMP(L,2-I,2*J-~1,2-K+1)
DTEMP(L,2*I,2*J-1,2*K+1) = 0
DPTEM4P(3,1,3) = DTEMP(L,2*I+1,2*J-1,2*K+1)
DTEMP(L,2*I+1,2*J-1,2*K+1) = 0
DPTEMP(1,2,3) = DTEM4P(L,2*I-.,2*J,2*K+1)
DTEMP(L,2*I-1,2"J,2*K+1) = 0
DPTEMP (2,2,3) = DTEMP CL, 2*1,2*J, 2*K+1)
DTEMP(L,2*I,2*J,2*K+1) = 0
DPTEMP(3 .2,3) = DTEMP(L, 2*I+1,2*J,2*K+1)
DTEMP(L,2*I+1,2*J,2*K+1) = 0
DPTEMP (1,3,3) = DTEMP(L,2*I-1. 2*J+1,2*K+1)
DTEMP(L,2*I-1,2*J+1,2*K+1) = 0
DPTEMP (2,3,3) = DTEMPCL, 2*1, 2*J+1 ,2*K+1)
DTEM4P(L,2*I,2*J+1,2*K+1) = 0
DPTEMP (3,3,3) = DTEMP (L, 2*1+1, 2*J+1, 2*K+1)
DTEMP(L,2*I+,1,2*J+1,2*K+1) = 0
ITEMP =2*I1-
JTEMP = 2*J-~1
KTEMP = 2*K-1

C SOLVE THE LOCAL 3X27 DUMMY PROBLEM TO CORRECT THE FLOW.

CALL LSOLVE (XTEMP, DPTEMP, STEM4P, DIM, ITEMP, JTEMP, KTEMP)
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C ACCUMULATE THE FLOW FOR EACH FINE GRID DEMAND NODE.

DO 140 C = 1,3
XHH(C,2*1-1,2*J-1,2wK-I1hXTEMP(C,1,1,1)+XHH(C,2*1.2,2*J-1,2*K-)
XHH(C,2*I,2*J-1,2*K-1) =XTEMP(C,2, 1, 1)+XHH(C,2*I,2*J-1,2*K-1)
XHH (C, 2*1+1, 2*J-1, 2*K-1) =XTEMP (C,3, 1, 1)+XHH (C,2*I+1,2*J-1,2K-1)
XHH(C,2*I-1,2*J,2*K-1) =XTEMP(C, 1,2.1) +XHH(C,2*I-1,2*J,2*K-1)
XHH(C,2*I,2*J,2*K-1) = XTEMP(C,2,2,1) +XHH(C,2I1,2*J,2*K-1)
XHH(C,2*I+1,2*J,2*K-1) = XTEMP(C,3,2. 1) +XHH(C,2*1.1 ,2*J,2*K-1)
XHH(C,2*1-1,2*J+1,2*K-1)=XTEMP(C,1,3,1)+XHH(C,2*I-1,2.J+1,2*K-)
XHH (C, 2*1, 2*J+1, 2*K-1) =XTEMP (C, 2,3, 1) +XHH (C,2*I,2*J+1 2*K-1)
XHH (C, 2*I+1, 2*J+1, 2*K-1) =XTEMP (C,3,3, 1) +XHH (C, 2*1+1, 2J+1, 2*K-1)
XHH(C,2*I1-1,2*J-1,2*K) =XTEMP(C, 1,1.2) +XHH(C,2*I-1,2wJ-1,2*K)
XHH(C,2*I,2*,J-1,2*K) = XTEMP(C,2,1,2)+XHH(C,2*1,2*J-~1,2wK)
XHH(C,2*I+1,2*J-1,2*K) =XTEMP(C,3, 1,2) +XHH(C,2*I+1,2*J-1 ,2*K)
XHH(C,2*I-1,2*J,2*K) = XTEMP(C, 1,2,2) +XHH(C,2*I-1,2*J,2wK)
XHH(C,2*I,2*J,2*K) = XTEM4P(C,2,2,2) +XHH(C,2*I,2*J,2*K)
XHH(C,2*1+1,2*J,2*K) = XTEMP(C,3,2,2) +XHH(C,2*I+1,2*J,2*K)
XHH(C,2*I-1,2*J+1,2*K) =XTEMP(C,1,3,2) +XHH(C,2*1-1,2*J+1,2*K)
XHH(C,2*I,2*J+1,2*K) = XTEMP(C,2,3,2) +XHH(C,2*I,2*d+1.2*K)
XHH(C,2*1+1,2*J+1,2*K) =XTEMP(C,3,3,2) +XHH(C,2*I+1,2*J+1,2*K)
XHH(C,2*1-1,2*J-1,2*K+1)=XTEMP(C,1,1,3)+XHH(C,2*1I1,2*J-1,2*K+l)
XHH(C,2*I,2*J-1,2*K+1) =XTEMP(C,2,1,3) +XHH(C,2*I,2*J-1,2*K+1)
XHH(C,2*I+1,2*J-1,2*K+1)=XTEMP(C,3,1,3)+XHH(C,2*I+1,2*J-1,2*K+1)
XHH(C,2*I-1,2*J,2*K+l) =XTEMP(C, 1,2,3) +XHH(C,2*I.-1,2*J.2*K+l)
XHH(C,2*I,2*J,2*K+1) = XTEM4P(C,2,2,3) .,XHH(C,2*I,2*J,2*K+1)
XHH(C,2*I+1,2*J,2*K+1) = XTEMP(C,3 .2,3) +XHH(C, 2*1+1,2*3, 2*K+1)
XHH(C.2*I-1,2*J+1,2*K+1)=XTEMpýr7,1,3,3)+XHH(C,2*I-1,2J+1,2*K+1)
XHH(C,2*I,2*J+1,2*K+1) =XTEMP(C,2,3,3) +XHH(C,2*I,2*J+1,2*K+1)
XHH(C,2*1+1,2*J+1,2*K+1)=XTEMP(C,3,3,3)+XHH(C,2*I+1,2*J+1,2*K+l)

140 i'ONTINUE
DO 35 0 =1,3

DO 35 P 1,3
DO 35 Q = 1,3

DO 35 S = 1,3
IF ( 0 .EQ. 1)TH-EN

DPTEI4P (P,Q,S) =0

ENDIF
XTEMP(O,P,Q,S) = 0

35 CONTINUE
30 CONTINUE

DO 45 K =1,R

DO 45 J = 1,R
DO 45 I = 1,R

DO 45 L = 1,3
IF (XHH(L,I,J,K).NE.0) THEN
XH(L,I,J,K) = XHH(L,I,J,K) + XH(L,I,J,K)

END IF
45 CONTINUE

C COMPUTE THE COST

COST = 0
SUM = 0
DO 50 K = 1,R

DO 50 J = 1,R
Do 50 I 1,R

DO 50 L = 1,3
IF(L .EQ. 1) THEN
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COST =COST + I*XH(L,I,J,K)
ELSEIF (L .EQ. 2) THEN

COST = COST + J*XH(LIJK)
ELSE

COST = COST + K*XH(L,I.J,K)
ENDIF
SUM = SUIM + XH(L,I,J,K)

IF(XH(L,I,J,K) .NE. O)THEN
WRITE(12, 12) L, I,J,K, XH (L I .JK)

END IF
50 CONTINUE

WRITE(12,13) COST,SLJM
RETURN
END
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