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M A SYNTHETIC-APERTURE RADAR (SAR)
image of a golt course in Stockbridge, New
York was collected by the Lincoln Labora-
tory K,-band airborne radar, which
transmits and receives horizontally and
vertically polarized signals to produce three
unique polarimertric images (HH, HV, and
VV) of a scene. The polarimetric images are
combined by using the polarimetric
whitening filter, which reduces the speckle
inherent in high-frequency SAR imagery.
Two-by-two noncoherent averaging of the
darta reduces the speckle further. The
combination of polarimetric whitening and
noncoherent averaging produces a SAR
image with near-optical quality (see the
optical photograph below for comparison).
Unlike oprical sensors, however, the SAR
can produce high-quality imagery day or
night, under all conditions, including
through dense clouds or smoke.

The SAR data were collected from a
range of 7 km at a depression angle of 20°.
Range in the SAR image increases from top
to bottom; therefore, the radar shadows of
trees and ocher objects extend toward the
bottom of the image. Some features visible
in this image are a street, a parking lot, the
golf-cousse club house, a putting green
adjacent to a water hazard, and a fairway to
the right of the water hazard.

A large database of tactical target
imagery and Stockbridge clutter imagery
has been used to develop and test automatic
target recognition algorithms. The article
entitled “Performance of a High-Resolution
Polarimetric SAR Automatic Target
Recognition System,” by Leslie M. Novak,
Gregory J. Owirka, and Christine M.
Netishen, presents an overview of an end-
to-end automatic target recognition system
and a summary of the performance results
of the recognition algorithms.
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An Overview of Automatic Target Recognition
Dan E. Dudgeon and Richard 1. Lacoss

In this article we introduce the subject of automatic target recognition (ATR). Interest in ATR is increasing in the
detense community as the need for precision strikes in Jimited wartare situations becomes an increasingly important
part of our detense posture. We discuss the ditficulty of the ATR problem and we survey the variety of approaches that
try to solve the problem. We conclude by introducing the other articles in this issue of the Lincoln Laboratory Journal.

Performance of a High-Resolution Polarimetric SAR Automatic Target Recognition System
Leslie M. Novak, Gregory J. Owirka, and Christine M. Netishen

Lincoln Laboratory is investigating the detection, discrimination, and classification of grourd targets in high-resolution,
fully polarimetric, synthetic-aperture radar (SAR) imagery. This article summarizes our work in SAR ATR by discussing
the prescreener, discrimination, and classification algorithms we have developed. The prescreener required a low
threshold to detect most of the targets in the data. which reculted ina high density of false alarms. The disciminator
and ciassibier stages then reduced this false-alarm density by a factor of 100. We improved target-detection performance
by using fully polarimetric imagery processed by the polarimetric whitening filter (PWF), rather than by using single-
channel imagery. The PWE-processed imagery improved the probability of correct classification in a four-class classifier.

Discriminating Targets from Clutter

Daniel E. Kreithen, Shawn D. Halversen, and Gregory J. Owirka

The Lincoln Laboratory multistage target-detection algorithm for SAR imagery can be separated into three stages: the
prescreencr, the discriminator, and the classifier. In this article, we examine fifteen features that are used in the
discrimination algorithm. The set of best features trom this pool of fifteen was determined by a theoretical analysis, and
was then verified by using real SAR data. Performance was evaluated for a number of different cases; in all cases the
theoretical performance analysis closely matched the real data performance. In addition, we formulate a set of criteria
for best feature choice that apply to quadratic discrimination algorithms in general.

Improving a Template-Based Classifier in a SAR Automatic Target Recognition
System by Using 3-D Target Information
Shawn M. Verbout. William W, Irving, and Amanda S. Hanes

We propose an improved version of a conventional template-matching classifier currently used in an operational ATR
system for SAR imagery. This classifier was originally designed to maintain a library of 2-1) reference images formed at a
variety of radar viewing directions. The classifier accepts an input image of a target of unknown type, correlates this
image with a reference template selected from each targer library, and then classifies this image to the target category
with the highest correlation score. The algorithm produces surprisingly poor classification results for some target types,
however, because of differences in SAR geometry between the input image and the best-matching reference image. We
correct this deticiency by incorporating a model-based reference generation procedure ipto the original classifier.

Neural Systems for Automatic Target Learning and Recognition
Allen M. Waxman, Michael Seibert, Ann Marie Bernardon, and David A. Fay

We have designed and implemented several computational neural systems for the automatic learning and recognition of
targets in both passive visible and synthetic-aperture radar (SAR) imagery. Motivated by biological vision systems (in
particular, that of the macaque monkey), our computational neural systems employ a variety of neural networks. In this 0
article we present an overview of our research for the past several years, highlighting our earlier work on the
unsupervised learning of threc-dimensional objects as applied to aircraft recognition in the passive visible domain, the

recent modification of this system with application to the learning and recognition of tactical targets from SAR imagerv.
the turther application of this system to recntry-vehicle recognition from inverse SAR, or ISAR, imagery, and the
incorporation of this recognition system on a mobile robot called the Mobile Adaptive Visual Navigator (MAVIN) at
Lincoln Laboratory.
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Multidimensional Automatic Target Recognition System Evaluation
und | Kolodzy

We are developing an evaluation facility that includes an electronic terrain board (E'TBj o provide an cttective test
environment tor ATR systems. The input o the E'TB is very high-resolution data taken in the modalities of interest
(laser radar, passive IR, and visible). The E'TB contains sensor and arget models so that measured imagery can be
maoditied for sensitiviey analyses. The evaluadion taciliey also contains a reconfigurable suite of ATR algorithms thar can
be interfaced o real and synthetic dara for developing and testing ATR modules. This article presents a description of
the infrared airborne radar used to gather sensor data, a discussion of sensor fusion and the hybrid ATR measurement
system, and a review of the ATR evaluation tacility. We give results of processing real and synthetic imagery with the
ATR system, with an emphasis on interpreting results with respect to sensor design.

An Efficient MRF Image-Restoration Technique Using Deterministic
Scale-Based Optimization
Murali M. Menon

A method for performing piecewise smooth restorations on images corrupted with high levels of noise has been
developed. Based on a Markov Random Field (MRF) model, the method uses a neural network sigmoid nonlinearity
between pixels in the image to produce a restoration with sharp boundaries while providing noise reduction. The mode)
equations are solved with the Gradient Descent Gain Annealing (GDGA) method—an ethicient deterministic search
algorithm that typically requires fewer than 200 iterations for image restoration when implemented as a digical
computer simulation. A novel feature of the GDGA method is that it auromatically develops an annealing schedule by
adaptively selecting the scale step size during iteration.

Machine Intelligent Automatic Recognition of Critical Mobile Targets in Laser Radar Imagery
Richard L. Delanoy, Jacques G. Verly, and Dan E. Dudgeon

A variety of machine intelligence (M) techniques have been developed at Lincoln Laboratory to increase the
performance reliability of automatic target recognition (ATR) systems. Useful tor recognizing targets that are only
marginally visible (due to sensor limitations or to the intentional concealment of the targets), these M1 techniques have
become integral parts of the Experimental Target Recognition System (XTRS)—a general-purpose system tor model-
based ATR. Using laser radar images collected by an airborne sensor, the prototype system recognized a variety of semi-
trailer trucks with high reliability, even though the trucks were deployed in high-clutter environments.

Machine Intelligent Gust Front Detection
Richard L. Delanoy and Seth W, Troxel

Techniques of low-level machine intelligence. originally developed at Lincoln Laboratory 1o recognize military ground
vehicles obscured by camouflage and foliage, are being used to detect gust tronts in Doppler weather radar imagery.
This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of hazardous-weather-detection functions
being developed under contract with the Federal Aviation Administration. MIGFA has demonstrated fevels of detection
performance that have not only markedly exceeded the capabilities of existing gust front algorithms, but that are
competitive with human interpreters.

Extracting Target Features from Angle-Angle and Range-Doppler Images
Su May Hsu

For diffuse targets, features such as shape, size, and motion can be determined from a time series of images from either
angle-angle passive telescopes or range-Doppler radars. The extracted target features can then be used tor automared
target recognition and identification. An algorithm that uses scene-analysis techniques has been developed to perform
the feature extraction.




An Overview of Automatic
Target Recognition

Dan E. Dudgeon and Richard T. Lacoss

B In this article we introduce the subject of automatic target recognition

(ATR). Interest in ATR is increasing in the defense community as the need for

precision strikes in limited warfare situations becomes an increasingly important
part of our defense posture. We discuss reasons for the difficulty of the ATR
problem and we survey the variety of approaches that try to solve the problem.

We conclude by introducing the remaining articles in this special issue of the

Lincoln Laboratory Journal.

UTOMATIC TARGET RECOGNITION (ATR) gen-

erally refers to the use of computer pro-

cessing to detect and recognize target signa-
tures in sensor data. The sensor data are usually an
image trom a forward-looking infrared (FLIR) cam-
era, a synthetic-aperture radar (SAR), a television cam-
era, or a laser radar, although ATR techniques can be
appiied to non-imaging sensors as well. ATR has be-
come increasingly important in modern defense strat-
egy because it permits precision strikes against certain
tactical targets with reduced risk and increased eth-
ciency, while minimizing collateral damage to other
objects. If computers can be made to detect and
recognize targets automatically, the workload of a
pilot can be reduced and the accuracy and efficiency
ot the pilot’s weapons can be improved.

ATR technology can also be applied to non-mili-
tary problems as well. For example, the problem of
recognizing landmarks seen by a visual navigation
system or a robotic system is related to the ATR
problem. The recognition of particular objects or faces
in photographs or video sequences is also related to
ATR. We can think of the ATR problem as one part
of the general problem of machine vision; namely,
how can computers be made to do what we humans
do so easily and naturally?

The fundamental problem of ATR is to detect and
recognize objects of interest (targets) in an environ-
ment of clutter imaged by an imperfect sensor that
introduces noise into the resulting signal. The defini-

tions of target, noise, and clutter depend upon the
application. Target categories can be coarse (e.g.. a
treaded ground vehicle) or fine (e.g.. a specitic type of
tank or even a specitic tank). Oftten the term classificu-
tion is used for coarse categorization and rhe term
identification is used for tine categorization, although
they are also used synonymously with the term recog-
nition. Untortunately, usage is not consistent.

Clucter refers to real things that are imaged (build-
ings, cars, trucks, grass, trees, and other objects) but
are not rargets of interest. Sometimes a distinction is
made between naturally occurring cluteer (grass, trees,
topographical features) and man-made culwral clut-
ter (buildings, vehicles, and other works). Clutter
tends to dominate the imagery simply because targets
are generally sparse compared to the environment in
which they operate. Noise refers to electronic noise in
the sensor as well as inaccuracies introduced in the
computations by a signal processor. Depending on
the ATR application, the problem may be one of
extracting a signal from noise or it may be one of
separating a target from its surrounding cluteer.

The distinction between detection and recognition
is ill defined. We could argue that recognition is just
the detection of a specific target type. But algorithms
developed from this viewpoint tend to require pro-
hibitive amounts of processing. For this reason, ATR
systems generally include a front-end detection stage.
The goal of the detection stage is to eliminate most of
the sensor data from further consideration without
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Detection

Sensor data
containing potential
targets

Background
clutter

Processing pipeline

Recognition

Target list

Non-target
clutter

FIGURE 1. Conceptual data flow in automatic target recognition (ATR) systems. Simple detection algorithms
are applied to all the sensor data to isolate small portions that might contain targets. More complex recogni-
tion algorithms then process the selected portions of the data to reject non-target clutter and classify targets.
Ideally, all targets of interest pass through the pipeline and are included in the output target list.

climinadng any of the argets of interest. In this con-
text, the term detection means that something inter-
esting has been discovered, and this discovery requires
further analysis. For example, a small cluster ot bright
pixels in an image could indicate the presence of un
object. Compurarionally simple detection algorithms
are required ac this stage because all the sensor data in
the input image must be examined.

Practical implementations of ATR systems can be
viewed as pipeline processing systems, as ilfustrated in
Figure 1. Ideally, all targets of interest pass through
the pipeline and are included in the output target list.
As data move through the pipeline, the processing
algorithms become more target specific and compu-
tationally intensive for cach data item, while the num-
ber of data items processed and the number of clutter
false alarms cach decreases. Even with this structure,
the tfront-end detection stages of the processing, pipe-
line often require the most compurtational power be-
cause the ATR syscem must scarch large amounts of
imagery to find a few instances of the target.

For a specitic ATR problem, both the warget signa-
tures and the clutter background can vary. In thermal
images, for example, a tank can be hoteer or colder
than its background (causing positive or negative ther-
mal contrast). It can also exhibit one shape when
viewed from the side and another shape when viewed
from the frone its turret can be rotated o any posi-
tion and its gun barrel can take on a range of elevation

angles. The background clutter can be a benign

meadow, a creeline, a torest road, a teatureless desert,

or an urban arca. Such complicated variations in both

target signature and background clutter contribute
(9 Y

significantly to the difficulty of the ATR problem.

ATR Technology
Many technologies and techniques are utilized in at-
tempting to solve the problems of ATR. as illustrated
in Figure 2. Sensor technology is eritical because per-
formance is ultimately limited by che qualioe of the
information provided by the sensors. Processing hard-
ware is also critical because ATR algorithms must
process large quantities of data, often in real time, and
because system development can be signiticantly hin-
dered by the lack of processing capacity. Sofrware.
simulation, and evaluation methodologies and tools
arc also important clements. In addition. important
but indirect contributions are made by neural and
cognitive sciences, statistics, and sensor physics.
Figure 2 also identifies several algorithmic ap-
proaches to the problem of ATR: the multiplicity of
these approaches indicates that no satisfactory single
approach has vet been tound. The most successtul
ATR systems will probably blend several algorithmic

techniques to get satistactory performance.
Detection Theory
ATR is based in part on detection theory and related

statistical ideas chat date back to the carly days of

radar processing. If a target signature is deterministic
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or if it is stochastic with well-defined stationary statis-
tics, and if the cluteer is well characierized as a station-
ary random process, then optimal detection tech-
niques such as the matched fileer can be derived. [n
classical detection-theory problems, a trade-oft exists
between the probability of detecting a target signature
when the target is there, and the probability ot declar-
ing that a target is present when i fact it is not there
(i.c., a false alarm). The objective of optimal detection
processing is to separate the distributions of target

signatures and clutter signatures so that they can be
distinguished by a simple stadistical test.

A seductive aspect of the detection-theory approach
is that it provides a tirm theoretical foundation for
both the development of algorithms and the under-
standing of their performance. This approach to ATR,
however, requires valid and analytically (or computa-
tionally) tractable staustical models tor both targets
and clutter. Such models are difticult to develop, and
this approach is greatly complicated by signature and

Statistical
sciences

Image and
signal
processing

Simulation
and
evaluation

Sensor
technology

Processor
technology

Sensor Software methods Neural and
physics tools and cognitive
and models techniques sciences

Detection
theory

Pattern
classification

Artificial
neural
networks

Artificial
intelligence and
model-based

FIGURE 2. ATR technologies and processing methods. The circles identify some of the technologies and methods that are
required to solve difficult ATR problems, although not all technologies and processing methods are used in all cases. The
three boxes show some of the basic supporting research activities.
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clutter variability. Detection theory is conceprually
appealing, but it has had only limited success for ATR

problems.

Yittern Recognition

Pattern recognition is the most macure approach used
tor ATR applications. Target-signature representation
options range trom two-dimensional image templates
o lower-dimensional vectors of features that are de-
signed to be difterendally sensitive to targets and non-
targets. Recognition depends on feature vectors (or
templates thought of as vectors) for targets clustering
togeiher and being distinet trom non-target clusters.

Potential targets (detections) are contirmed by com-
paring rarget images or feature vectors with a database
of target and non-target exemplars. Recognition con-
sists of selecting the best match between the warget
data and the exemplar database. The matching crite-
ria. may be ad hoc (e.g.. mean-square difterences be-
oween data and exemplar vectors), or they may be
based on statistical assumptions that give the appear-
ance of a more rational basis.

Pattern recognition is not disjoint from the detec-
rion-theory approaches discussed above or from the
artificial neural network approaches discussed below.
A close tunctional similarity exists between template
(or feature vector) matching and matched filtering;
differences berween the two are ar a more detailed
level. Derection theory emphasizes ontimal (or near-
optimal) algorithms that are derived by using statisu-
cal models of raw data. Pattern recognition, which
also relies heavily on statistics, includes more ad hoc
approaches (e.g.. spectral coefficients, fractal dimen-
sions, and blob aspect ratios). especially i the defini-
tion and extraction of the features used to characeer-
1z¢ targets.

Artificial Neural Networks

The neural network approach places even more em-
phasis upon experiential learning-by-example than
does the pattern recognition approach. Neural net-
works represent a processing paradigm motivated by
the human visual system, which remains the most
tlexible and robust target-recognition system for im-
agery chat we know. The goal of neural network ap-

proaches is to develop an architecture that reproduces

the flexibility and robustess of the human visual
system in a piece of equipment.

In the nearer term, neural networks can have imple-
mentation advantages because they are highly paral-
lel, and their ability to learn by example can make
them capable of discovering and using signature dit-
terences that distinguish ditterent tvpes of targets.
Neural networks are a tvpe of nonlinear processing
that could have advantages over classical detection-
theoretic techniques or pattern-recogniton techniques.
One challenge tor neural network approaches is to
achieve good performance over the entire range of
target signatures and background-clutrer conditions,
given limited training data.

Neural network learning can be categorized as su-
pervised or unsupervised. Supervised networks are
trained by using independentdy classified images or
feature vectors, Training tvpically consists of comput-
erized adjustment of parameters to optimize pertor-
mance on the training set. Performance on new dara
depends on how well the training data are classitied
and how representadive they are. Unsupervised net-
works detine their own internal classifications of data,
independent of the external source. Data are clustered
together if they ook similar to other members of the
cluster. When new data are not similar enough to any
existing cluster, a new cluster is formed.

Unsupervised networks, however, ultimately require
supervised training to perform usetul recognition. A
target class must be associated with cach internal
cluster learned by the network. Typically, a cluster is
assigned the target name corresponding to the major-
ity (or even plurality) of training examples in the
cluster. This training is often an iterative process in
which parameters of the unsupervised nciwoik awe
adjusted by the ATR algorithm developer until cach
of its clusters tends to be dominated by only one
target type. Multiple clusters of data can be assigned
the same target type.

Model-Based Target Recognition

The genesis of model-based target-recognition meth-
ods is in artificial intelligence as it is applied to image
understanding. Two characteristics typity the model-
bascd approach: (1) matching of processed sensor

data to predictions based on hypotheses concerning
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the target type, pose, and range, and (2) macching of
processed sensor data on the basis ot multiple local-
ized features.

The ditterence between model-based target fea-
tures and the feature vectors of other approaches is
important. The elements of teature vectors are not
teatures in the model-based sense. Corners, bright
points, line segments, and small regions correspond-
ing to identitiable parts of a rarget (e.g.. the gun,
turret, or body of a tank) might be teatures for a
model-based system. Recognition depends on match-
ing parts and interrelationships between the parts.
Flexible and sophisticated matching techniques can
be used., in principle. to design systems that are more
robust with regard to obscuration and target variabil-
ity. In contrast, the elements ot feature vectors are
usually global target measures such as the coetticients
of a transform that represents the target image or a
texture measure such as fractal dimension.

In some sense, every ATR algorithm is model based
because every algorithm makes and uses a priori as-
sumptions about target and clutter characteristics.
The representation of the @ priori information can
vary widely, however, and it is conceprually different
tor model-based and non-model-based approaches.
Generally, in model-based target recognition the ap-
pearance of the target in an image is modeled.

The search-and-match approaches ot model-based
methods also tends to distinguish them from other
algorithmic approaches. The general paradigm is as
follows: first form an initial set of hypotheses based
on the sensor data (the indexing problem), then use
the hypotheses to predict features and their relation-
ships, and finally compare the predictions to features
extracted from the daca. This aporoach is quite ditfer-
ent from conducting a computationally intensive ex-
haustive search for a best matching pattern.

Continuing areas of research in model-based target
recognition include matching and evidence accumu-
lation (i.e., what is the most robust way to match
hypothesized signatures to the sensor data), indexing
(how to generate a small number of hypotheses that
contain the correct target), and modeling. In some
systems the models are built by hand; that is, analysts
examine sensor data, observe target signature charac-
teristics, and encode them into some form of data

representation that is convenient tor matching. This
approach is time consuming, and consequenty there
is a need to build models automatically trom data.
For example, the radar image-understanding svstem
discussed in an earlier article in the Lincoln Laboratory

Jowrnal can build target models of reentry vehicles

trom radar data [1]. (Note that a system does not have
to be a neural network to be capable of learning from

data.)

Data Requirements. for ATR System [ developinent

ATR system development and evaluation requires an
enormous quantity of data because of the variability
in target signatures and background clutter. The as-
sembly ot farge, realistic, experimental databases, how-
ever, Is time consuming and expensive. As a resule, we
need to develop techniques that minimize data re-
quirements or, to put it ditterendy, adlize experimen-
tal data more effectively. Simulation is one such ap-
proach; limited experimental data can be used to
develop and validate simulation models dhat can then
be used to generate dara tor system development and
evaluadion.

It the statistics of a target signature can be modeled
parametrically, then a small amount of experimenual
dara might be used to determine the model param-
eters. Another approach is to develop physical models
of image formation and use them to create synthetic
target signatures in both real-clutter and synthetic-
clutter backgrounds. This approach doesnt reduce
the need tor data: it simply allows us to create the data
in a computer rather than collect real data with a real
sensor observing real targets in real backgrounds in all
their various states. Of course, the synthetic imagery
musst be realistic to be usetul, and realism is deter-
mined by comparing the svnthetic data to a real data-
base. Fortunately, both model development and syn-
thetic scene generation are done oft line, so that
real-time performance is not required. But the issue
of how to develop and evaluate ATR systems in a
reasonable amount of time with a reasonable amount

of data is still open.

In This Issue

We are fortunate at Lincoln Laboratory to have sev-

eral state-of-the-art sensors for collecting data chat
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can be used o develop trget detection and recogni-
tion svstems, The in-house avatlabilic, Ot these sen-
SO Iy l'\‘ﬂmlcd n (hc .H’lidk’\ i".;‘\.ucd mn [hi\ L,
The articles emphasize researci mat atilizes daca from
svuthetc-aperture radars, Laser radars, range-Doppler
inaging radars., and airsurvedlance radars, Even when
the work has et involved such sophisticated sensors,
iy neverdcless eperimentally oriented and icem-
Pl\.l\ilt‘\ (hc use of chl SUTIsOT d.l(.l. RL‘.I“\(R‘ C\pcl’i‘
mental data samulate the work and provide a rich
saurce of intormation tor undersanding and evploit
ing how targets and the clutter backgrounds in which
thev are embedded can be modeled and separated.

In [lli\ ISsUC. We h.l\'L‘ L'U”c&lcd ning mhcr Jniclc.\
detailing various aspects of ATR We begin by tocus-
ing on polarimetric synthetic-aperture radar imagery
and the techniques used o detec diseriminarte, and
classity targets tound insich imagery. The article by
Feslie MU Novak coall gives an overview ot a classical
pattern-recognition approach. The article by Daniel
b. Kreithen e all discusses the problem of diserimi-
nating targets trom the nataral-clutier objects (e.g..
trees and bushes) that retlect enough radar energy o
Pass the detection stage. The .1rIiL'lL' h." Shawn M.
Verbout et all investigates some ot the problens in
recognizing three-dimensional targets from their two-
dimensional SAR signatures. and develops a tech-
nique tor incorporating three-dimensional informa-
tion in the dassification process.

Fhe aracde by Allen ML Waxman et als introduces
the wpic of neural network recognition svstems. Tt
discusses some of the moavation tor neural network
architectures that are derived from biological vision
svstems. Tt also presents the idea that information can
be extracted from the changes in target signature
tfrom one viewpoint o the nest as a targer and a
sensor move past cach other. These neural-processing
concepts are demonstrated on several ditterent target-
recognition problems.

The theme of neurat networks continues inarticles
by Paul J. Kolodzy and by Murali M. Menon. The
article by Kolodzv deseribes Laser radar imagery, which
simultancously capeures retlectiviey intormation and
range intormation. The article also addresses the prob-
fem of evaluating ATR algorithms. Because of the

cont of collecting accurate training and test imagery

spanning the breadih of possible ATR scenarios, the
development of an electronic terram board (which s a
svatem that can generate svnthend imagerny accuratehy
and quickh 1 tor eang and evaluating XTR algo-
rithims mav be more cost ettective,

The artide by Menon discusses the use of neural
networks o implement an image-enhancemen al-
gorithm. based on Markov random ficlds, tor laser
radar imagery. The ettecr of thiy preprocessing siep
on the performance of the targer dassitier s
demonstrated.

The ardidde by Richard o Delanov ecal. also dem-
onstrates the use of laser radar measurements tor war-
get recognition, but here the authors wse 4 model-
based approach. Detection iv done by several
algorichms that operate in parallel and are keved w
look tor various image teatures by using a4 proces
called fronctional template corredation. Multiple tunc-
tional-template outputs are combined o tormeasimple
interest image 1o focus subsequent processing. Target
nformation is extracted and decomposed into tea
tures thatare matched against stored appearance mod-
civ. The weights used 1o govern the matching process
can be adaptively learned on training data. The ap-
pearance models themselves canalso be buile semi-
automadically tfrom training data.

The article by Delanov and Seth W Troxel demon-
strates the Hlexibiliny and power ot tunctional wem-
plate correlation. This article discusses how tunctional
templates are used o detect and recognize gust trontes
in weather radar dawas The algorithme was recentdy
implemented in real tme and demonstrated on dhe
ASR-9 surveillance radar svstem at Orlando Interna-
tonal Airport in Florida,

The issue concludes with anaracle by Su Mav Hau
on research in ballisue missile detense, This artidle
discusses the use of image processing techniques o
extract target features for classitication of reentering

objects.

The Future of ATR

ATR continues to be an important detense technol-
ogy. While great progress has been made in sensor
technology and processing-hardware technology, the
development of recognition algorithms is far trom

complete, Fitorts are continuing 1o aceclerate the de-
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velopment ot these algorithms. These eftors are spon-
sored by ARPA, the Army Night Vision Electronic
Sensors Directorate (formerly the Night Vision Lab),
the Air Force Wright Laboratory, the Naval Air War-
fare Center (China Lake). and other government labo-
ratories. Common databases and evaluaton techniques
are being developed so that ATR approaches can be
objectively compared.

Because of the amount of data required to develop
and st ATR svstems for robustness, and the cost of
mounting realistic data collection efforts, the devel-
opment ot accurate synthetic data-generation tools is
also being addressed. Organizations such as the ATR
Working Group (a joint industry-government work-
ing group) and the Deparument of Defense Working
Group on ATR bring together government, industry,
and academic laboratories to exchange views on the
problems and potential solutions in ATR technology.

Just as the speech-recognition problem required
decades of serious rescarch betore simple applications
could be brought to market, the ATR problem needs
a wide range ot research betore we can expect practi-
cal systems. Most people believe the ATR problem
will not be solved by a single brilliant idea. The
solution will probably require a combination of im-
proved sensors, faster computers, and better algo-
rithms. From our point of view, the arca is extremely
interesting because it involves so many technical dis-
ciplines (material science, sensor technology, signal
and image processing, detection theory, algorithm
development, computer technology, data representa-
tion, pattern classification, and neural networks) and
because it has so many potential applications.
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Performance of a
High-Resolution Polarimetric

SAR Automatic Target
Recognition System

Leslie M. Novak, Gregory ]J. Owirka, and Christine M. Netishen

B Lincoln Laboratory is investigating the detection, discrimination, and

classification of ground targets in high-resolution, fully polarimetric, synthetic-
aperture radar (SAR) imagery. This paper summarizes our work in SAR

automatic target recognition by discussing the prescreening, discrimination, and
classification algorithms we have developed; data from 5 km? of clutter and 339
targets were used to study the performance of these algorithms. The prescreener
required a low threshold to detect most of the targets in the data, which resulted
in a high density of false alarms. The discriminator and classifier stages then
reduced this false-alarm density by a factor of 100. We improved target-
detection performance by using fully polarimetric imagery processed by the
polarimetric whitening filter (PWF), rather than by using single-channel
imagery. In addition, the PWF-processed imagery improved the probability of

correct classification in a four-class (tank, armored personnel carrier, howitzer,

or clutter) classifier.

HE ARPA-SPONSORED WARBREAKER program is
I a broad-based advanced technology program
to develop new weapons technology that can
locate and destroy critical mobile targets such as SCUD
launch systems and other highly mobile platforms.
Automatic target recognition (ATR) is an important
candidate technology for this effort. To address the
surveillance and targeting aspects of the Warbreaker
program, Lincoln Laboratory has developed a com-
plete, end-to-end, 2-D synthetic-aperture radar (SAR)
ATR system. This system requires a sensor that can
search large areas and also provide fine enough resolu-
tion to detect and identify mobile targets in a variety
of landscapes and deployments.
The Lincoln Laboratory ATR system has three
basic stages: detection (or prescreening), discrimina-

tion, and classification (see Figure 1). In the pre-
screening stage, a two-parameter constant-false-alarm-
rate (CFAR) detector selects candidate targets in a
SAR image by examining the amplitude of the radar
signal in each pixel of the image. In the discrimina-
tion stage, a target-sized 2-D matched filter accu-
rately locates the candidate targets and determines
their orientation. Then texture-discrimination features
(standard deviation, fractal dimension, and weighted-
rank fill ratio) are used to reject natural-cluster false
alarms [1]. In the classification stage, a 2-D pattern-
matching algorithm rejects cultural-clucter false alarms
(i.e., man-made objects that are not targets) and clas-
sifies the remaining detections by target type (tank,
armored personnel carrier, or howitzer).

To evaluate the performance of the ATR system,
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FIGURE 1. Block diagram of the SAR automatic target recognition system. The prescreener locates candidate targets
based on the brightness of pixels in the input image, the discriminator rejects natural-clutter false alarms, and the classifier
rejects non-target cultural clutter and classities targets by vehicle type.

we used high-resoludon (1t by 1 1), tully polarimet-
ric target data and clutter data gathered by the Lin-
coln Laboratory millimeter-wave SAR [2] ara depres-
ston angle of 22.5°% and a slant range of 7 km. We
demonstrated the robustness of the ATR system by
testing it against targets both with and withour radar
camoutlage.

Figure 2 is an example of the quality of the imagery
gathered by the Lincoln Laboratory SAR. In this
image of a golf course in Stockbridge, New York, the
high resolution of the SAR resolves individual trees
and bushes as well as small objects such as the flagpole
located in the center of the putting green. This par-
ticular SAR image was obtained under clear weather
conditions: the quality and resolution of the image
would not have been degraded, however, by dense fog
or thick cleud cover. Thus a SAR sensor has a signifi-
cant advantage over optical sensors. SAR image qual-
ity is not dependent on weather conditions, and the
sensor can be used at any time of dav or night. In
addition, SAR sensors can perform other tasks, such
as searching large areas from a long distance.

The image in Figure 2 was constructed from fully
polarimetric SAR data that were processed with
technique known as the polarimetric whitening filcer
(PWE) [3]. PWF processing optimally combines the
HH (horizontal transmit, harizontal receive), HV
(horizontal transmit, verrical receive), and VV (vert-
cal transmie, vertical receive) polarization components
of the radar return. This polarimetric combination
enhances the quality of the imagery in rwo ways:
(1) the amount of speckle in the imagery is mini-

mized. and (2) the edges of objects in the image (such

as the pond) are sharper. As a result, PWE-processed
imagery is visually clearer than single-polarimetric-
channel imagery. In additon, PWE-processed imag-
erv improves the performance of all three stages of the
ATR system (compared with the pertormance achieved
by using single-polarimetric-channel imagery) because
PWF processing reduces clutter variance and enhances
target signatures relative to the clutter background.
This article begins with an overview of the three
stages of the baseline ATR svstem. Next we describe
the performance of the ATR system with both cam-
outlaged and uncamoutlaged targets, and then we
compare performance using PWF data with perfor-
mance using single-channel (HH) data. We also
present details of the three discrimination features
used in our studies, with particular emphasis on the
fractal-dimension teature. Finally, we discuss fucure
improvements to the discrimination and classitica-

tion stages.
Overview of the Baseline ATR System
This section describes our three-stage bascline SAR

ATR system, which is illustrated in Figure 1 by a sim-
plitied block diagram. The three stages—prescreener,

discriminator, and classifier—are described below.

Stage 1: Prescreener

In the first stage of processing, a two-parameter CFAR
detector [4] is used as a prescreener: this stage of
processing identifies potential targets in the image on
the basis of radar amplitude (i.e.. by scarching tor
bright returns). Computation time for this stage of

processing is significantly reduced by operating the
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detector at a reduced resolution (1 m by 1 m) rather
than ac the full resolution (1 fr by 1 fr).

Figure 3 is a sketch of the two-parameter CFAR
detector used by the prescreener; the detector is de-
tined by the rule
X, - ua,
—L.i > K par = target,

g,
X, - a, (1
——’fi < Kipar = clutter,
.
where X, is the amplitude of the test cell, g, is the
estimated mean of the clutter amplitude, 6, is the

estimated standard deviation of the clutter amplitude,

and K-pag is 2 constant threshold value that defines
the false-alarm rate. As shown in the figure, the test
cell is at the center of a defined local region, and the
80 cells in the boundary stencil are used to estimate
the mean and standard deviation of the local clutter.
The guard area ensures that no rarget cells are in-
cluded in the estimation of the clutter statistics. 1f the
detection statistic calculated in Equation 1 exceeds
K paro the test cell is declared to be a targer pixel: if
not, it is declared 1o be a clutter pixel.

When the amplitude distribution of the clutter is
Gaussian, the CFAR detector provides a constant
false-alarm rate for any given Kp4 [5]. Because the
clutter distributions of high-resolution data are typi-

FIGURE 2. High resolution (1 ft by 1 ft) synthetic-aperture radar (SAR) image of a golf course near Stockbridge,
New York. Polarimetric whitening filter (PWF) processing was used to produce this minimum-speckle image.
The radar is Iccated at the top of the image; therefore, the radar shadows go toward the bottom of the page.
Notice that the SAR can resolve details as smali as the flagpole in the putting green near the center of the image.
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FIGURE 3. The prescreener CFAR detector. The ampli-
tude of the test cell is compared with the mean and stan-
dard deviation of the clutter. The boundary consists of 80
cells that are used for clutter statistics estimation. Each
cell in the boundary consists of 16 raw pixels that are
noncoherently averaged. The guard area ensures that no
target cells are included in the clutter statistics estimation.

cally not Gaussian [6], however, the detector does not
always yield a constant false-alarm rate. In spite of
this fact, the detector given by Equation 1 still proves
to be an eftective algorithm for detecting targets in
clutter.

Only those test cells whose amplitudes stand out
from the surrounding cells are declared to be targets.
The higher we set the threshold value of K. the
more a test cell must stand out from its background
for the cell to be declared a target. Because a single
target can produce multiple CFAR detections, the
detected pixels are clustered (grouped together) by
the detector if they are within a target-sized neighbor-
hood. Then a 120-ft-by-120-ft region of interest of
full resolution (1 fr by 1 ft) data around each cluster
centroid is extracted and passed to the discrimination
stage of the algorithm for further processing.

Stage 2: Discriminator

The discrimination stage takes as its input the 120-ft-
by-120-ft regions of interest passed to it by the
prescreencr, and it analyzes cach region - f interest at

PRDRETORS kA

=
B
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full resolution (1 fr by 1 tr). The goal of discrimina-
ton processing is to reject the regions containing
natural-clutter false alarms while accepting the re-
gions containing real targets. This stage consists of
three steps: (1) determining the position and orienta-
tion of a detected object, (2) computing simple tex-
wral features, and (3) combining the features into a
discrimination statistic that mcasures how targetlike
the detected object is.

In the first step of the discrimination stage the
algorithm determines the position and orientation of
the target by placing a rarget-sized rectangular tem-
plate on the image. The algorithm then slides and
rotates the template until the energy within the tem-
plate is maximized. The position estimate produced
in the discrimination stage is more accurate than the
position estimate produced in the prescreening stage.
This operation is computationally feasible because it
is performed only on the selected high-resolution re-
gions of interest passed by the prescreencr, and not on
the entire image. Mathematically, this operation is
equivalent to processing the data in the region of
interest with a 2-D matched filter for the case when
the orientation of the target is unknown.

In the second step of the discrimination stage the
algorithm calculates three textural features: (1) the
standard deviation of the data within the target-sized
template, (2) the fractal dimension of the pixels in the
region of interest, and (3) the weighted-rank fill ratio
of the data within the templace. The standard devia-
dion of the data wichin the template is a statistical
measure of the fluctuation of the pixel intensities:
targets typically exhibit significantly larger standard
deviations than natural clutter. The fractal dimension
of the pixels in the region of interest provides infor-
mation about the spatial distribution of the brightest
scatterers of the detected object. It complements the
standard-deviation feature, which depends only on
the intensities of the scatterers and not on their spatial
locations. The weighted-rank fill ratio of the data
within the template measures the fraction of the total
power contained in the brightest 5% of the detected
object’s scatterers. For targets, a significant portion of
the total power comes from a small number of very
bright scatterers; for natural clutter, the total power is
distributed more evenly among the scatterers.
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In the third step of the discrimination stage the
algorithm combines the three textural features into a
single discrimination statistic; this discrimination sta-
tstic is calculated as a quadratic distance measure-
ment (see the accompanying article entitled *Dis-
criminating Targets from Clutter” by Daniel E.
Kreithen et al.). Most natural-clutter false alarms have
a large quadratic distance and are rejected at this
stage. Most man-made clutter discretes (such as build-
ings and bridges) pass the discrimination stage; there-
fore, the next stage—the classifier stage—must have
the ability to reject them.

Stage 3: Classifier
A 2-D pattern-marching classifier rejects cultural false
alarms caused by man-made clutter discretes and then
classifies target detections by vehicle type. In our
studies we implemented a four-class classifier (tank,
armored personnel carrier, howitzer, and clutter) us-
ing high-resolution (1 ft by 1 ft) PWF imagery. De-
tected objects that pass the discrimination stage are
matched against stored references of the tank, ar-
mored personnel carrier, and howitzer. If none of the
matches exceeds a minimum required score, the de-
tected object is classified as clutter; otherwise, the
detected object is assigned to the class (tank, armored
versonnel carrier, or howitzer) with the highest match
score.

The pattern-matching references used in the classi-
fier were constructed by averaging five consecutive

(a)

FIGURE 4. Typical pattern-matching reference templates for (a) a tank, (b) an armored personnel carrier, and (c)

r

a howitzer. These pattern-matci.t:.y *¢

spotlight-mode images of a target collected ar 1° in-
crements of azimuth, yielding 72 smoothed images of
each of the targets. Figure 4 shows typical parctern-
matching reterences for the three targets at a particu-
lar aspect angle.

Performance of the Baseline ATR System

This section describes the performance of the pre-
screening, discrimination, and classification stages of
the baseline SAR ATR system. Clutter data from 5
km* of ground area were processed through the ATR-
system algorithms, along with data for 162 camou-
flaged targets and 177 uncamouflaged targets. The
camouflaged target data used in this study represent a
difficult scenario in which the test targets were realis-
tically deployed and covered with radar camouflage.
The training data used to design the ATR system
were taken from the uncamouflaged targets. The clut-
ter data contained a moderate number of man-made
cluteer discretes.

The CFAR detection threshold in the prescreener
was set relatively low to obtain a high initial probabil-
ity of detection (/) for the target data. At the output
of the prescreener, P, = 1.00 was obtained for the
uncamouflaged targets, while P, = 0.82 was obtained
for the camouflaged targets. At this CFAR threshold,
a false-alarm density of approximately 30 false alarms
per km? (FA/km?) was obtained. The initial detection
processing was carried out at reduced resolution (1 m

by 1 m).

(c)

‘ences are used to classify detected objects by vehicle type. They are

constructed by averaging five consecutive spotlight-mode images of a target collected at 1° increments of

azimuth.
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Table 1. Overview of ATR System Performance.

FAJkm?
Atter prescreening 30
After discrimination 30
After classification 0.3

Pp Pp
Uncamouflaged Camouflaged
Targets* Targets
1.00 0.82
1.00 0.7
1.00 0.70

* The uncamouflaged target test data was used for algorithm training.

Each derecred region of interest (containing a po-
tential target) was passed to the discrimination stage
tor turther processing ac tull resolution (1t by 1 o).
The discrimination stage determined the location and
oricntation ot cach detected object, and then caleu-
lated the textural feacures (standard deviacion, fracal
dimension, and weighted-rank Bl ratio) that were
used 1o rejecr natural-clutter discretes. Discrimina-
tion processing reduced the false-alarm density by a
factor of 10, to 3 FA/km®. No uncamoutlaged rargets
were rejected by the textural-teature tests; thus the
initial 7, of 1.00 was maintained. A few ot the cam-
outlaged targets were rejected by the textural-featare
tests, which resulted in ), = 0.75 for these targets.

In the classification stage of processing, the 2-D
pattern-matcher was applied to those detections which
had passed the discrimination stage. Classification
processing reduced the false-alarm rate by another
tactor of 10, to approximately 0.3 FA/km®>. No
uncamouftlaged targets were rejected by the partern
matcher (resulting in 5, = 1.00 for chese targets), but
some camoutflaged rtargets were incorrectly classified
as clutter (resulting in 72, = 0.70 for these targets).

Table 1 summarizes the performance of all three
stages of the ATR system. The uncamouflaged arget
data were used tor training the discrimination and
classification stages. The thresholds of the algorithms
were set so that pertect performance was achieved
with the uncamoutlaged data. Once the thresholds
had been set in this way, the clutter and camoutlaged
targets were processed.

Figure S illustrates how cluteer rejection was imple-

16 I T TS R = } S

mented by the pattern-macching classitier. As the fig-
ure shows, most of the clutter discretes had correla-
tion scores below the threshold value ot 0.7, and thus
were rejected (e, classified as cluteer). Detected ob-
jects with correlation scores equal to or greater than
0.7 were considered 1o be suthcienty targedike, and
were classified according to their highest correlation
scores (as tank, armored personnel carrier, or howit-
zer). Figure S also indicates that only a small fraction
ot the camoutlaged targets were declared to be cluter
because of low correlation scores.

The second tunction of the dassifier is 1o assign

1.0
08
£ Clutter :
= B Uncamouflaged
S 06 targets
a | :
14 Threshold ,
= 0.4 — '
3 —
§ Camouflaged
O 02 targets .
0.0 | I | 1
-0.2 0.0 0.2 0.4 0.6 08 1.0
Correlation

FIGURE 5. Overview of classifier performance. The clutter
and target data were processed separately. Most of the
clutter had correlation scores below the threshold value of
0.7, and was rejected. Detected objects above the thresh-
old were classified according to their highest correlation
scores.
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Table 2. Correlation Pattern-Matching
Classifier Performance

(training data: uncamouflaged targets;
test data: camouflaged targets and clutter discretes)

Percent Classified as
Tank APC  Howitzer Clutter

Tank 89% 1% 0% 0%
APC 0% 96% 0% 4%
Howitzer 0% 13% 71% 16%
Clutter 0% 14% 0% 86%

objects accepted as targets to target classes (tank, ar-
mored personnel carrier, howitzer). Table 2 shows the
classification performance of the baseline classifier as
a confusion matrix that tabulates the correct and
incorrect classifications. Recall that the classifier used
templates constructed from uncamouflaged targers;
the classification results shown in Table 2 are for
clutter discretes and camouflaged test targets that
passed the detection and discrimination stages. At the
output of the classification stage, 70% of the camou-

(a)

tlaged rtargets were classified as targets, and 85% of
those targets were correctly classified by vehicle type.

The tfour-class, 2-D pattern-matching algorichm
used in this study was implemented with normalized
dB references, which provided the best overall pertor-
mance among five different reference schemes that
were tested.

ATR Performance Using Single-Channel Data
versus Fully Polarimetric Data

We compared the performance of the ATR system
using single-channel (HH) data with the performance
of the system using fully polarimetric PWF dara.
Figure 6(a) shows an HH-polarization SAR image of
a scene processed 1o reduced resolution (1 m by 1 m).
In this image two regions of trees are separated by a
narrow strip of coarse scrub. Also visible in the image,
although somewhat faint, are four power-line towers
located in the scrub. Figure 6(b) shows the corre-
sponding PWF-processed image of the scene. The
power-line towers have greater intensity in the PWF
image than in the HH image because the PWF image
includes contributions from HH, HV, and VV polar-
izations.

Table 3 compares ATR system performance using
HH versus PWF data. The comparison was performed
by using the same target and clutter data used to

(b)

FIGURE 6. Comparison of (a) HH and (b) PWF imagery. The power-line towers are more clearly visible in the PWF image
because PWF processing combines data from all three polarization channels (HH, HV, and VV).
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Table 3. Comparison of ATR System Performance
Using HH Imagery versus PWF Imagery.

FAIkm®  Pp Py
HH Data PWF Data

After prescreening 30 0.65 0.82
After discrimination 3.0 0.57 0.75
After classification 0.3 0.24 0.70

generate the results in Table 1. Ac the output of each
stage (prescreening, discriminacion, and classification)
the false-alarm densities were set equal for HH and
PWF clutter imagery. This normalization permits us
to compare the HH and PWF detection performance
at each stage.

The detection performance was better with PWF
data than with HH data. At the output of the detec-
tion stage 1 = 0.82 tor PWF data and P, = 0.65 for
HH data. At the output of the discrimination stage
Py, =0.75 for PWF data and P}, = 0.57 for HH data.
At the outpur of the classification stage P}, = 0.70 for
PWF data and P, = 0.24 for HH data; the Pp at the
end of the classification stage represents the overall
end-to-end performance of the ATR system.

Details of the Baseline Discrimination Features

This section presents details of the three baseline
discrimination features: standard deviation, fractal di-
mension, and weighted-rank fill ratio. The equations
for calculating each feature are also discussed. Because
the concept of the fractal-dimension feature is fairly
involved, this feature is discusscd at greater length
than the other two features.

Standard-Deviation Feature

The standard-deviation feature is a measure of the
fluctuation in intensity, or radar cross section, in an
image. The log standard deviation for a particular
region is defined as the standard deviation of the
radar returns (in dB) from the region. If the radar
intensity in power from range » and azimuth « is
denoted by (7, a), then the log standard deviation ¢
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can be estimated as follows:

. S -STIN
o= =
VN -d
where
S, = 21010g,(,1’(r,a) .
r.a€region
and

S, = z[lOlog,(,l’(r,a)]l 3)

r.a€xegion

and N is the number of points in the region.

Fractal-Dimension Feature

The fractal-dimension feature provides a measure of
the spatial distribution of the brightest scatterers in a
region. In the following paragraphs we present the
formal definition of fractal dimension, along with
several simple examples to illustrate the definition.
We also show how to calculate the fractal dimension
of detected objects in a SAR image. By using high-
resolution SAR imagery gathered at Stockbridge, New
York, we demonstrate how the spatial texture differ-
ences measured by the fractal-dimension feature can
be used to discriminate between natural and cultural
objects.

The fractal dimension of a set S in a two-dimen-
sional space can be defined as follows:

r—( Iog(é) (4)

where M, = the minimum number of &-by-¢ boxes
needed to cover S. (By covering S, we mean finding a
set of square boxes B, such that UB; 2 §.) For small
values of ¢, the definition in Equation 4 is equivalent
to writing

Mr ~ Kf—dlm(S) , (5)

where K is a constant. This equation expresses one of
the important ideas behind fractal analysis: fracral
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dimension measures how certain properties of a set
change with the scale of observation ¢ In the fol-
lowing paragraphs, three specific examples clarity
this idea.

Example 1. Let §be a single point. A point can be
covered by one box regardless of the box size €1 hence

log M - lim log 1

dim(point) = lim =0.

: =0 1 ¢ =0 1
log( ) log ( )
¢

£

We could use Equation 5 to derive this same resule by
noting that the number of square boxes needed o
cover Sis independent of the box size; thus dim(point)
equals zero. Figure 7 summarizes this example. In
addition, as long as ¢ is below a certain critical value, a
finite set of isolated points can be covered by a fixed
number of boxes (independent ot ¢). Therefore, a
finite set of isolated points also has « dimension of
zero.

Example 2. Let S be a line segment. For simpliciry,
we assume the line is 1 unit long. A single T-unit-by-
1-unit box can cover the line. It we reduce the box
size to 1/2 unit by 1/2 unit, then two boxes are

£ | M()
. 1 1
. 12 | 1

) co o tog(l)
Dim (point) _(IT’O '——09(1/8)

FIGURE 7. Fractal-dimension calculation for a point. As
the size of the square box that covers the point decreases,
the number of boxes required to cover the point remains
the same (i.e., one). As a result, the fractal dimension of a
pointis zero.

needed to cover the line. It we reduce the box size
again, 1o 1/4 unit by 1/4 unit, four boxes are needed
to cover the line. Each time the box size 1s halved, the
number of boxes needed o cover a line doubles: thus

log 2"
og -1

#H

dim(line) = lim

Il l
— X
y l()g( ))

Figure 8 summarizes this example. Tt can also be
shown that a finite set of isolated line segments has a
tractal dimension of one.

Example 3. Let S be a square area. Again, for sim-
plicity, we assume the square is 1 unit by 1 unit in
size. A single T-unit-by-1-unit box can cover the square.
It we reduce the box size to 1/2 unit by 1/2 unit, tour
boxes are required. If we reduce the box size again, to
1/4 unit by 1/4 unit, 16 boxes are required. As the
box size is halved, the number of boxes needed to
cover the square area quadruples; thus

log 2

dim{square) = lim —=—— = 2,

=0 1 "
n—x log( 2)

£ [ M(#)
1 1
!
1/2 2

£ 1/¢

Dim (line) = lim log(t/e) =1
-0 log(1/e)

FIGURE 8. Fractal-dimension calculation for a line seg-
ment. As the size of each square box that covers the line
segment is halved, the number of boxes required to cover
the line segment doubles. As a result, the fractal dimen-
sion of a line segment is one.
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Figure 9 summarizes this example. We used a
square area in this example for convenience. Any
area that can be synchesized from a finite number of
square areas, however, will have a fractal dimension
of two.

From these simple examples, we see that tracual
dimension clearly has the potencial to discriminace
between certain types of objects in 2-D space. The
question is, how can this teature be applied 1o SAR
daw?

The first step in applying the fractal-dimension
concept to a radar image is to select an appropriately
sized region of interest, and then convert the pixel
values in the region of interest to binary (i.e., cach
pixel value equals 0 or 1). One method of performing
this conversion is amplitude thresholding, in which all
pixel values exceeding a specified threshold are con-
verted to 1, and the remaining pixel values are con-
verted to 0. Another method is to select the NV bright-
est pixels in the region of interest and convert their
values to 1, while converting the rest of the pixel
values to 0; this second method is the approach we
used (because it worked better).

After converting the radar image to a binary image,

£ IM(f)
1 1
1/2 4
1/4 | 16
€ 1/F2

2
Dim (square) = lim Iog(__1/5_)=2
-0 log(1/e)

FIGURE9. Fractal-dimension calculation for a square area.
Each time the size of each square box that covers the
square area is halved, the number of boxes required to
cover the square guadruples. As a result, the fractal di-
mension of a square is two.
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we let the pixels with the value 1 consttute the ser S
in Equation 4. A problem uarises. however, when we
attempt to apply the detinition of Equadion 4 directly
to our binary image. According to the detiniton of
tractal dimension, we need 1o take a limit as the box
stze & goes 1o zero. The smallest meaningtul value of
the box size ¢, however, is the size of one pixel.
Theretore, we must develop an approximation to the
tormula of Equation 4.
From Equation 5 we observe that

log M, = —dimlog ¢ + log A

tor small . Because the relation between log Af, and
log ¢ is lincar tor small ¢, with the slope equal to the
negative of the dimension, the tractal dimension can
be approximated by using only the box counts tor
£ =1and ¢ = 2 in the following way:

dim = - log M) - log M, = log M, - log M, .

logl —log 2 log 2

(6)

where M| is the number of 1-pixel-by-1-pixel boxes
needed to cover the image and M, is the number of
2-pixel-by-2-pixel boxes needed to cover the
image. Figure 10 summarizes the fractal dimensions
of simple objects as they are observed in SAR
imagery.

The following paragraphs provide two examples of
calculating the fractal dimension of regions of interest
in radar imagery. The examples use data extracted
from the SAR image shown in Figure 11. The figure
shows a Stockbridge, New York, clutter scene that
includes trees, a street with houses on both sides, a
swimming pool, and a meadow. The examples dem-
onstrate the fractal-dimension calculation for a typi-
cal tree (nacural clucter) and the rooftop of a house
(cultural clurter).

Figure 12 illustrates the ractal-dimension calcula-
tion for a binary image of a tree; the binary image was
formed by selecting the 50 brightest pixels from a
120-ft-by-120-ft region of interest in the image of
Figure 11. The number of 1-pixel-by-1-pixel boxes
needed to cover this image is identical to the number
of pixels with the value 1 (i.e., M| equals 50). The
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Point Line

. /

Points Lines
L T

Fractal dimension =0

(a) (b) (c)

L-shape

A

Fractal dimension =1 Fractal dimension =2

FIGURE 10. Fractal dimensions of simple objects in SAR imagery. (a) Points have a fractal
dimension of zero, {(b) lines have a fractal <.menrsion of one, and (¢) squares and L-shaped
objects have a fractal dimension of two. In the text we show how to calculate the fractal dimen-
sions of these objects by using the approximation derived in Equation 6.

mintmum number of 2-pixel-by- 2-pixel boxes needed
to cover the image is 415 Figure 12 shows this mini-
mal covering. By applving Equation 6, we find that
the fractal dimension of the tree is .29, This rela-
dvely low value reflects the fact that the binary image
of the tree consists primarily of isolated pixels.

Figure 13 illustrates the fractal-dimension calcula-
tion tor a binary image of a house rooftop (this image
was formed in the same way as the image of the tree in
Figure 12). Notice that the pixels m this image are
clustercd into lines and arcas. The number of 1-pixel-
by-1-pixel boxes needed to cover the image is 50, but
the minimum number of 2-pixel-by-2-pixel boxes
needed to cover the image is only 21. By using Equa-
tion 6, we find that the fractal dimension of the house
rooftop is 1.25. This relatively high value is
caused by the clustering of the pixels. The difterent
fractal-dimension values ftor the tree and the
rooftop illustrate that this feature can be used to
discriminate berween natural clutter and cultural

cluteer.

Weighted-Rank Fill Ratio Feature

The third textural feature, the weighted-rank fill ra-

tio, measures the pereentage of the total energy con-

wined in the brightest scatterers of a detected object.
Using the notation of Equations 2 and 3. we dehine

the weighted-rank fill ratio 1y as tollows:

I)(I'. )
Chrghtesn pivels
N -

/)(l'. 11)

all pinels

where 4 is selected 1o correspond approximately o
the brightest 5% of the devected object’s pixels. For
man-made objects a signiticant portion ot the total
energy comes tfrom a small number of bright scatter-
ers: for natural cluteer the total energy is distributed

morce evenly among the pixels.

Future ATR System Improvements

The baseline ATR system currently uses only three
features in the discrimination stage (standard devia-
tion, fractal dimension, and weighted-rank fill ratio):
we have found that these features reliably reject natu-
ral-clutter false alarms. Other discrimination features
could be added that would also reject some culrural-
clutter false alarms. For example, a size feature, such

as length and width of the detected object, could
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FIGURE 12. Fractal-dimension calculation for the kinary
image ot a tree. The 50 brightest pixe!s (indicated by the
small black boxes) are relatively isolated, and 41 two-pixel-
by-two-pixel boxes are needed to cover them, which re-
sults in a low fractal dimension of 0.29.
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FIGURE 13. Fractal-dimension calculation for the binary
image of a house rooftop. The 50 brightest pixels (indi-
cated by the small black boxes) are more tightly clustered
than they are for the tree in Figure 12, and only 21 two-
pixel-by-two-pixel boxes are needed to cover them, which
results in a higher fractal dimension of 1.25.

ognition System by Using 3-D Target Information”
by Shawn M. Verbour et al. presents an approach to
this classitication task based on the generation of 2-D
templates trom 3-1) models of targets.

Because the pattern-matching approach to classifi-
cation requires a large number of templates, we are

investigating an alternative approach to classification—

using spatial macched filters. The inidal resuls of

these studies indicate the possibility of a signiticant
reduction in compuration time and storage require-

ments with no reduction in pertormance 7.
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Discriminating 'Targets

from Clutter

Daniel E. Kreithen, Shawn D. Halversen, and Gregory J. Owirka

M The Lincoln Laboratory multistage target-detection algorithm for synthetic-
aperture radar (SAR) imagery can be separated into three stages: the

prescreener, the discriminator, and the classifier. In this article, we focus on the

discrimination algorithm, which is a one-class, feature-based quadratic
discriminator. An important element of the algorithm design is the choice of

features. We examine fifteen features that are used in the discrimination
algorithm—three features developed by Lincoln Laboratory, nine developed by
the Environmental Research Institute of Michigan, two developed by Rockwell
International Corporation, and one developed by Loral Defense Systems. The
set of best features from this pool of fifteen was determined by a theoretical
analysis, and was then verified by using real SAR data. Performance was
evaluated for a number of different cases: for fully polarimetric data and HH

polarization data and for 1-ft resolution data and 1-m resolution data. In all

cases the theoretical performance analysis closely matched the real data

performance. This closeness demonstrates a good understanding of the

discrimination algorithm. In addition, we formulate a set of criteria for best

feature choice that apply to quadratic discrimination algorithms in general.

INCOLN LABORATORY HAS PROCURED a fully
L polarimetric, instrumentation-quality, high-

resolution (1 ft by 1 ft), 35-GHz, millimeter-
wave (MMW) synthetic-aperture radar (SAR), which
has been used to gather imagery of targets of interest
and clutter in a number of different locations and
deployments. The radar, which is mounted in a
Gulfstream G-1 aircraft, records data in-flight onto
24-track magnetic tapes. The tapes are then processed
on the ground to form the SAR imagery. A recent
Lincoln Laboratory Journal article by Leslie M. Novak
et al. describes this radar system [1].

The Surveillance Systems group at Lincoln Labo-
ratory has been developing algorithms to detect tar-
gets of interest in this SAR imagery. A block diagram
of the algorithm suite is shown in Figure 1. The
target-detection algorithm suite takes the form of a
multistage algorithm. In theory, it is possible to con-
struct a single algorithm that performs target detec-
tion in an optimal manner, and which exploits all of

the information present in a high-resolution SAR
image. Unfortunately, it is often difficult to design
algorithms using the single-algorithm approach, be-
cause high-resolution SAR imagery is difficult to model
accurately and hence is poorly understood. The mul-
tistage approach becomes an attractive alternative,
because of the reduction in required computational
capability and the simplification in algorithm design.

The Lincoln Laboratory multistage algorithm has
three separate stages, each of which performs easily
identifiable functions. The first stage, which is called
the prescreener, is a computationally simple algorithm
whose function is to pass all targets and eliminate
only obviously non-targetlike naturally occurring clut-
ter. The second stage, called the discriminator, ideally
eliminates all naturally occurring clutter that has been
passed by the prescreener, and passes only man-made
objects to the third stage, which is called the classifrer.
The classifier receives all man-made objects that have
been passed by the discriminator and categorizes each
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Rejects imagery without
potential targets

Rejects natural-ciutter
false alarms

!

Rejects man-made
clutter

FIGURE 1. Block diagram of the multistage target-detection algorithm. This article concentrates on the discriminator stage.

one cither as « target of interest (of which there can be
a number of classes) or as an uninteresting man-made
object.

In this article, we concentrate our atcencion on the
second stage. the discriminator. The prescreencer stage
is covered elsewhere [2]; the classification stage is still

under development.

Algorithm Description

‘The discrimination algorithm used in the Lincoln
Laboratory automatic target-detection algorithm suite
is centered around a one-class quadratic discriminator
[3-5]. A one-class discriminator s trained only on a
target-training set, and it assumes thac che clutter
false-alarm dataset (L.c., the set of false alarms passed
by the prescreener stage) has unknown attributes in a
teature space. Figure 2 illustrates the concept of this

gion of interest,

the algorithm produces a score that measures the

discrimination algorithm. For each re

distance trom the candidate to the center of the tar-
get-training set (in a feature space). When the algo-
rithm is properly trained, a lower value of this
distance metric indicates a more targetike candidate.

Kev clements of the discriminadion algorithm are
the teatures used to compute the distance metric. We
cover the discriminatien features used in the Lincoln
Laboratory target-detection algorithm suite in the next
five sections of this article. Subsequent sections cover

the discrimination algorithm itself in grear detail.
Discrimination Features
A number of attributes that are present in the fully

polarimetric, high-resolution SAR imagery can be ex-

ploited to discriminate between targets and clatter

26

faise alarms. These ateributes include size, shape, power,
polarimetric properties, spatial distribution of reflected
power, and dimensionality. Unfortunately, ac present
no method exists for developing discrimination fea-
tures to exploit these attributes in any oprimal fash-
ion. The best that can be done is to design a teature
that scems to exploit a specific attribute, and then test
the feature on a variety of data to see if it separates
targets from natural-cluteer false alarms. It it does not
separate targets from false alarms, the feature design is
obviously poor; if it does separate them, then the
feature smay be a good one.

The other major criterion that a feature must sat-

isty is orthagonality. In simple terms, features used

A Clutter
° Target
£ | Separation training
§ in feature vector
space
Input vector Threshold

Feature 1

FIGURE 2. Conceptual diagram of a one-class discrimina-
tion algorithm. This diagram represents a two-dimensional
feature space. lf the separation in feature space is less
than the threshold, then the region of interest from which
the input vector is extracted is declared to be a target.
Conversely, if the separation in feature space is greater
than the threshold, the region of interest is declared to be
clutter.

M
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together in a discrimination algorithm must measure
ditterent attributes of the region of interest. For ex-
ample, five ditferenc features that measure similar
polarimetric properties of the candidate region of
interest should not be used rtogether in the same
discrimination algorithm. In fact, using similar fea-
tures is likely to make discriminadon performance
worse. This fact is a consequence of the likely occur-
rence that the target-training dataset will ditfer some-
what from the target-testing dataser. This phenom-
enon is covered more fully in the sidebar entitled
“"Adding Features Can Degrade Performance.”

Another desirable property of the features in a
discrimination algorithm is that they should be ro-
bust in a number of ways. Many feature algorithms
require thresholds to be set to isolate the brightest
scatterers, for example, or to isolate the scatterers with
the most contrast. The feature values should not be
too sensitive to the settings of these thresholds, be-
cause they may then work in one deployment situa-
tion but not in another similar situation. The features
should also be somewhat robust to countermeasures;
radar signatures of military vehicles are frequently
altered by any number of methods. Some common
methods include placing foliage and mud on the
vehicle, adding metal parts to the vehicle, deploying
camouflage netting around and on top of the vehicle,
coating the target with radar-absorbing marterial, or
simply opening the hatches of an armored targer.
An effective discrimination feature would ideally be
insensitive to these methods and to other types of
countermeasures.

We examined fifteen features for use in the Lincoln
Laboratory target discrimination algorithm; three of
these features were developed at Lincoln Laboratory
[6], nine were developed at the Environmental Re-
search Institute of Michigan (ERIM) of Ann Arbor,
Michigan, two were developed by Rockwell Interna-
tional Corporation of El Segundo, California, and
one was developed by Loral Defense Systems of
Goodyear, Arizona. The non—Lincoln Laboratory fea-
tures were developed under the Strategic Target Algo-
rithm Research (STAR) contract, a yearlong research
contract funded jointly by the Advanced Research
Projects Agency (ARPA) and the United States Air
Force. This contract was administered by Lincoln

t\r

Laboratory; the goal was 1o develop and test target
detection algorithms by using a common dataset pro-
vided by Lincoln Laborarory. Each contractor’s ap-
proach 10 the mrget-detection problem was some-
what different, but all used a number of features. We
chose the most promising teatures for evaluation in
this study.

Lincoln Labaratory Discrimination Features

The three Lincoln Laboratory discrimination features
are standard deviation, fractal dimension, and
weighted-rank fill ratio. They were developed by Leslie
Novak, Michael Burl, and Gregory Owirka, all of
Lincoln Laboratory. The teatures are computed from
target-sized arcas that are centered over the pixels
identified by the prescreener for further processing.
The extent of the target-sized area is determined by
the @ priori knowledge of what type of target is being
sought, and a box-spinning algorithm is used to de-
termine target orientation [7].

The standard-deviation feature is computed from
the typical estimator for the standard deviation. It
uses the power (expressed in dB) of all the pixels in a
target-sized box.

The fractal-dimension feature, which is illustrated
in Figure 3, provides a measure of the spatial dimen-
sionality of the potendial target [6]. This feature esti-
mates the Hausdorft dimension of the spatial disteri-
bution of the top Nscatterers in the region of interest.
For example, a straight line has a Hausdorft dimen-
sion of one, and a solid rectangle has a Hausdorft
dimension of two. Various other space-filling objects
with holes have a Hausdorft dimension thac falls be-
tween one and two. An isolated point has a Hausdorft
dimension of zero.

To compute the fractal-dimension feature, we
threshold the region of interest by taking only the top
N scatterers in terms of power. A binary image is
created from these scatterers, and the minimum num-
ber n; of 1-pixel-by-1-pixel boxes (4, = 1) that cover
all Nscarterers is determined. This number, of course,
is equal to the value V. Then the minimum number
1, of 2-pixel-by-2-pixel boxes (4, = 2) that cover all N
scatterers is determined. This number is less than or
equal to N. If the spatial distribution of the scatterers
is highly diffuse, the value of #, will be close to N if
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ADDING FEATURES CAN DEGRADE

IN THE MAIN ARTICLE, a theoreti-
cal analysis of the one-class qua-
dratic discriminator shows theo-
retical for the
probability of detection () and

expressions

the probability of false alarm ([’ﬁ,)
of the algorithm. We make the
claim in the section on discrimi-
nation features that adding fea-
tures does not necessarily improve
discrimination performance. We
show here thart this is indeed the
case by giving two examples; the
first example shows discrimina-
tion performance with the set of
five best features, and the second
example shows discrimination
performance with the same set of
features in addition to seven oth-
er features.

The idea that adding features
can degrade performance is, per-
haps, counterintuitive. In fact, we
cannot degrade performance by
adding features if a few key con-
ditions are met. These conditions
are (1) the real data obey perfect-
ly the mulcdivariate Gaussian as-
sumption made in e section en-
titled “Theoretica: A:-:iysis of the
One-Class Quadratic Discrimina-
tion Algorithm,” and (2) the tar-
get-training data and the target-
testing data have exactly the same
statistical distribution.

The multivariate Gaussian con-
dition is difficult to verify for the
real dara, especially when a num-

ber of features are being consid-

PERFORMANCE

ered (see the section entitled
“Confirming the Gaussian As-
sumption”). Small departures
from Gaussianity, however, are
probably not the major cause of
the phenomenon we are address-
ing here. Instead, the major cause
of degraded performance is that
the second condition is not
being met.

Figure A shows performance
curves for the 1-ft, polarimetric
whitening filter (PWF) dara us-
ing the features described in the
section entitled “Best Features for
Discrimination.” This figure,
which is the same diagram as Fig-
ure 17, also shows performance
curves for the same dataset using

all ewelve Lincoln Laboratory and
ERIM STAR discrimination fea-
tures. Notice the signiticant per-
formance degradation that occurs
when the seven extra features are
added. Notes on interpreting this
type of graph can be found in the
sidebar entitled “Interpreting
Plots of P;versus FA/km™."
Figure B is a notional diagram
that illustrates the degradation
phenomenon. The diagram is
complicated but the explanation
of it is relatively easy. There are
three distinct sets of data displayed
in the diagram: target training,
target testing, and clutter false
alarm. Each dataset is displayed
for two features, which we call

10 L llrnn' T vvllnl' ﬁ*vvllllvl Y_"Illll, T v!lrnvl TTrTTT
Prescreener
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FIGURE A. Performance curves comparing discrimination performance for
the five best features and for all twelve features. Performance degrades

when more features are added.
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Feature 1 and Feature 2. Imagine
that the rarget-training data and
the target-testing data are the same
(training and testing is done on
the same data, so ignore the red
points on the diagram for the time
being).

First, assume that the discrim-
ination algorichm uses only Fea-
ture 1 (refer to only the green and
black points plotted along the ab-
scissa for this case). We see chat
the discriminator does a good job
of separating targets from clutter
by using Threshold A (three false
alarms are called targets). In this
case the two key conditions are
satisfied: the target-training data
and target testing data have ex-
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actly the same satistical distribu-
tion, and the data obey (more or
fess) the Gaussian assumption
(within cach data type).

Now, while still assuming the
target-training data and target-
testing data are the same, we add
Feature 2 (refer to only the green
and black points in the middle of
the graph). We can then draw
Threshold B as an ellipse around
the dara, and do a still better job
at separating targets from clutter
(in this case one false alarm is
called a target). The two key cri-
teria are still obeyed.

If we assume now that the tar-
get-training data and the target-
testing data are different datasets,

A e Target testing
o Target traimng * e
o %0
¢ Clutter false alarms . e
o0
.. . .. L)
® [ ]
L
i
[ ] ¢
° o o .
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]
1
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FIGURE B. Notional diagram of reason for performance degradation when

features are added. This graph shows two features in a feature space.

we remove the second key condi-
tion mentioned above. First, we
assume that the discrimination al-
gorithm uses only Feature 1 (re-
fer to the green, red, and black
points plotted along the abscis-
sa). By drawing a threshold at the
point labeled Threshold A, we see
that the discrimination perfor-
mance is equivalent to the previ-
ous case because the targer-train-
ing data and the target-testing
data for Feature 1 have similar
characteristics.

Now, we add Feature 2. Per-
tormance is severely degraded be-
cause we cannot draw an ellipse
(with the same orientation as
Threshold B) around the center
of mass of the green points that
does not engulf large numbers of
clutter false alarms (black points)
while still engulfing the rtarget-
testing data (red points).

The important point is that
any threshold ellipse must have
the same orientation as the ellipse
shown as Threshold B, because
the orientation of the ellipse is
determined by the staristical char-
acteristics of the target-training
data. This example is a particu-
larly egregious illustration of
the failure of the second key
condition, because the target-
training data and the target-test-
ing data now have different
statistical characteristics. The ad-
dition of Feature 2 obviously de-
grades performance severely. More
subtle cases that significantly
affect performance occur more
frequently.
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(a) (b}

FIGURE 3. Calculation of the fractal-dimension feature, which measures the spatial bunching of the brightest pixels in
a region of interest. (a) The brightest pixels for a tree tend to be widely separated, which requires a relatively large
number of covering boxes and produces alow value for the fractal dimension. (b) The brightest pixels for a target tend
to be closely bunched, which requires fewer covering boxes and produces a high value for the fractal dimension.

the scatterers are spatially bunched the value of #, will
be considerably less than N. These values are deter-
mined for the two specific examples in Figure 3 and
plotted in Figure 4. with the logarithm of #, and »,
on the ordinate, and the logarithm of 4, and d; on the
abscissa. The negative slope of the line through the
two poines, which is given by

_ logm —logn,

/‘log(ll—logdl’ (1

is an estimate of the Hausdorff dimension of the
region of interest. For the high-resolution data in this
article, we used NV = 50.

The weighted-rank fill-ratio feature is computed
from the top N scatterers in the target-sized box. The
feature is computed by totaling the power in the top
N pixels within the target-sized box, and normalizing
by the total power of all pixels in the box. This feature
attempts to exploit the fact that power returns from
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FIGURE 4. An estimate of the Hausdorff dimension of the
tree and target in Figure 3. For both objects the total num-
ber of scatterers is 50; for the tree the minimum number of
covering boxes is 41 and for the target the minimum num-
ber of covering boxes is 20. The negative slope of the line
for each object is the estimate of the fractal-dimension
feature. Targets tend to have higher fractal dimensions
than natural clutter.
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most targets tend to be concentrated in a few bright
scatterers, whereas power returns from natural-cluteer
false alarms tend to be more diftuse. This feature
measures a power-related property of the rarget-sized
box, which makes this feature different from the fracral-
dimension feature, which measures a spatial property
of the entire region of interest.

ERIM Discrimination Features

The ERIM discrimination features were developed
and provided to Lincoln Laboratory under the STAR
contract mentioned above. They were modified for
this study by altering the thresholds to account for a
target datasct that was substantially different from the
dataset used for the STAR contract. Instead of using a
target-sized box as a preliminary step, as in the Lin-
coln Laboratory feature algorithms, the ERIM feature
algorithms compute a target-shaped blob by perform-
ing morphological operations. These operations serve
both as a method of grouping spatially related hits
from the prescreener and as a method of estimating
the size, shape, and orientation of the supposed
target.

There are three categories of ERIM discrimination
features: size-related features, contrast-based features,
and polarimetric features. Each of these three catego-
ries contains three teatures. The size-related features
are mass, diameter, and square-normalized rotational
inertia. The contrast-based features are maximum con-
stant false-alarm rate (CFAR) statistic, mean CFAR
statistic, and percent bright CFAR statistic. The pola-
rimetric features are percent pure, percent pure even,
and percent bright even. We describe each feature in
detail in the following paragraphs.

The three size-related features utilize only the bi-
nary image created by the morphological operations.
The mass feature is computed by counting the num-
ber of pixels in the morphological blob. The diameter
is the length of the diagonal of the smallest rectangle
(either horizontally oriented or vertically oriented)
that encloses the blob. The square-normalized rota-
tional inertia is the second mechanical moment of the
blob around its center of mass, normalized by the
inertia of an equal mass square.

The contrast-bascd features are determined by a

CFAR algorithm. This algorithm can be described by

where x represents the test pixel, and g, and o6 are
estimates of the local mean and local standard devia-
tion, respectively, of the surrounding clutter. The esti-
mates of the parameters from the surrounding clutter
are accomplished by using the pixels in a window
around the supposed target whose opening is large
enough to exclude the rarget return. Figure 5 illus-
trates this window, and the opening is called the grard
area.

The CFAR statistic given by Equation 2 is com-
puted for each pixel to create a CFAR image. The
maximum CFAR feature is the maximum value in the
CFAR image contained within the target-shaped blob.
This quantity is similar to the basic feature used in
the prescreener algorithm. The mean CFAR feature is
the average of the CFAR image taken over the target-
shaped blob. The percent bright CFAR feature is the
percentage of pixels within the target-shaped blob
that exceed a cerrain CFAR value.

The polarimetric discrimination features are based
on a transformation of the linear polarization basis in
which the Lincoln Laboratory MMW SAR gathers
data o an even-bounce, odd-bounce basis described
by the equations

|HH + VV/|°
foaa =

2[R

and

[HH - Vv’
2
IRR|” + |LL|".

+ 2|HV|?

even

The odd-bounce channel given by the first equation
corresponds to the radar return from a flat plate or a
trihedral; the even-bounce channel corresponds to
the radar return from a dihedral. Figure 6 illustrates
examples of these reflectors, along with notional dia-
grams of how they reflect the radar energy. The use-
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FIGURE 5. CFAR template, showing the pixel under test,
and the surrounding window of pixels from which clutter
estimates are computed. The test pixel and clutter window
are separated by a guard area, which protects the clutter
estimates from being corrupted by portions of the target
return,

fulness of these polarimetric feature resides in the fact
that few dihedral scructures exist in natural clureer,
but these structures are plentiful on most man-made
wargets. Natural clucter tends to exhibit more odd-
bounce reflected energy than even-bounce reflected
energy.

The ERIM polarimetric features are tormed from
the even-bounce and the odd-bounce images. The
percent-pure feature s the fraction ot pixels within
the target-shaped blob for which at least a certain
fraction of the scattered energy falls in either the
even-bounce channel or the odd-bounce channel. Per-
cent even is the fraction of pixels within the wrget-
shaped blob tor which at least a certain fraction of the
scattered energy falls in che even-bounce channel.
The percent-bright-even feature is the fraction of
pixels that exceed a certain value in the CFAR image
described above, and which are mainly even-bounce
scatterers.

The main impetus for these features is thac a man-
made object exhibits approximately equal amounts of
purce cven-bounce energy and odd-bounce cnergy.

whercas a natural-cluteer false alarm is more likely to

<
J
»

FIGURE 6. Reflection of radar signal from a variety of re-
flectors. {(a) Odd-bounce reflectors include a flat plate and
a trihedral. (b) Even-bounce reflectors include a dihedral.
Radar backscatter from natural clutter is predominantly
odd bounce, while backscatter from man-made objects is
typically an equal mixture of even bounce and odd bounce.

Fiat plate

Trihedral

(a)

Dihedral

(b)

exhibit large amounts of pure odd-bounce encergy.
Also, man-made objects are more likely to exhibic an
equal mixture of even-bounce and odd-bounce

energy than a natural-clutter false alarm.

Rockwell Discrimination Features

The Rockwell discrimination teatures were also devel-
oped and provided to Lincoln Laboratory under the
STAR contract. Like the ERIM discrimination fea-
tures, they were modified to account for the ditterent

type of target data used in the present study. These




* KREITHEN ET AL.
Discriminating Largets from Clueer

features use the pixels in a arget-sized box for teature
calculation; che algorichm used 1o determine the ori-
entation of the target-sized box is the same as that
used for computing the orientation tor the Lincoln
Laboratory discrimination features described carlier.
Some ot the Rockwell discrimination features are simi-
lar to those already used by Lincoln Laboratory and
ERIM. These similar teatures were not considered.
Instead we concentrated on two other Rockwell fea-
tures: (1) the polarimetric phase rado teature, and (2)
the specific-entropy feature.

The polarimetric phase ratio feature is another
attempt to exploit difterences in polarization between
radar returns from targets and radar returns from
clutter. The relative phase berween the HH polariza-
von channel and the VV polarization channel is used
tor this purpose. Only pixels in a target-sized box (the
orientation of which is determined by the box-spin-
ning algorithm described in Reference 7) are exam-
ined. In addition, to eliminate the low-return pixels
that may have a random phase due to corruption by
receiver noise, we use only the pixels that exceed a
threshold in both the HH polarization channel and
the VV polarization channel. This threshold, which is
set to a percentage of the maximum power in a pixel
in a given image, is set to a low value so the
thresholding operation eliminates only the lowest re-
turn pixels whose phase is most likely to be corrupted
by receiver noise.
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FIGURE 7. Histogram of relative phase between the HH
polarization channel and the VV polarization channel. This
type of plot is used in the calculation of the Rockwell
polarimetric phase ratio feature.

The relative phase between the HH polarization
channel and the VV polarization channel is then cal-
culated for the remaining pixels within the warget-
sized box. The values are arranged in a histogram
plot, such as the example shown in Figure 7. and the
teature is calculated from this plot. The polarimetric
phase ratio is defined as the number of pixels to tall
within £1° of 180° relative phase on the histogram,
divided by the number of pixels chat fall within £x° of
0° relative phase on the histogram. We used a value of
x=90°.

Specific entropy is the second Rockwell discrimi-
nation tear v used in this study. Because of the com-
plicated i ninition of this feature, it was nort clear
which step in the calculation provides the ability to
separate targets from natural-clutter false alarms. To
understand this teature better, we investigated it in
considerable detail. A number of steps are involved in
computing this feature:

1. Choose a threshold 7'that is set to the quantiy
corresponding to the 98th percentile of the surround-
ing clutter, and calculate a normalized amplitude by

a; = max(p;, - 1,0),
where a is the amplitude (in dB) above the threshold,
pis the amplitude of the original pixel (in dB). 7is the
pixel tag number (of which there are m, which is the
number of pixels in the target-sized box), and 7'is the
value (in dB) of the threshold.

2. Normalize the amplitude by

unless 2, = 0 for all 7= 1,..., m, in which case the
specific-entropy feature is set to zero.

3. Compute the specific-entropy feature by

m I .
specific entropy = _2 Jilog /i )
log m

7=

The idea behind this feature is to exploit two sup-
poscd propertics of a target: (1) the pixels exceeding
the threshold 7°do not vary greatly in amplitude for a
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target, but they do vary greatly tor a natural-clutter
talse alarm; and (2) more pixels exceed the threshold
I for a target than tor a natral-clutter false alarm.
The question that remains is which step in the teature
calculation provides the separation between targets
and natural-clutter talse alarms.

We studied this problem by separating the calcula-
tion of the specific entropy into the steps described
above, and then we calculated a teature based only on
the operation in each separate step. To this end, we
invented a simple count feature, which counts the
number ot pixels that exceeded the chreshold 7as it
was calculated above, and normalizes this value by the
total possible number of pixels in a target-sized box.
This procedure was done for targets and tor clutter
false alarms, and the count feature was then plotted as
a scatcerplot versus the specific-entropy feature, as
shown in Figure 8 for a sample target dataset.

In this plot, specific entropy is plotted on the

ordinate, and the logarithm of the count teature is
plotted on the abscissa. If the two teatures are highly
correlated, the plot shows the points falling along a
straight line, which is indeed the case for this ex-
ample. In fact, all the targer and cluter false-alarm
datasets that we examined showed similar scatterplots.
For practical purposes, this scatterplor indicares that
the count teature and the specitic-entropy feature are
equivalent. The extra steps given above in the calcula-
tion of the specific-entropy teature do lide to
increase the separation berween targets and natural-
clutter false alarms.

Loral Discrimination Feature

Loral Defense Systems was the third participant in
the STAR contract. Many of cheir discrimination
features substantially overlapped the features of the
other two contractors and Lincoln Laboratory. For
this reason, we examined only one Loral discrimina-
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FIGURE 8. Scatterplot of the Rockwell specific-entropy feature versus count feature. Points falling on a straight

line indicate a high correlation between the two features.
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tion feature—the contiguousness texcure.

To calculate this teature, we segment cach image
into three separate images based on the amplitude of
individual pixels, as shown in Figure 9. All the pixels
in an individual image are histogrammed and then
divided into three categories. The lowest 25% of pix-
els are called shadow (Level 1), the middle 60% are
called background (Level 2), and the wp 15% are
called the rarget region (Level 3). For the purposes of
this studv, we moditied the procedure by applying the
thresholding process only 1o each region of interest,

Region of interest

Target
(a)
A Shadow Background Target region
(Level 1) (Level 2) (Level 3)
25% 60% 15%
f f
Lower Upper
threshold threshold
(b)

FIGURE 9. Concept of contiguousness feature. (a) The
target within the region of interest has an irregular shape.
The radar illuminates this shape from the top, which causes
a shadow to extend downward in the image. (b) The two
thresholds in the histogram of pixel power (in dB) divide
the region of interest into three categories: shadow, back-
ground, and target region. The Loral contigucusness fea-
ture is computed by first forming six separate regions of
interest based on these categories.

"ET AL

which consists of a target-sized arca plus a border
conraining the surrounding clutter. Fach region of
interest was then segmented into the three categories
by using only the clutter area surrounding cach rarget
candidarte to determine the threshold levels.

The thresholding procedure eftectively creates three
regions of interest: one that contains the brightest
pixels (called the Level 3 image), one that contains
the dimmest pixels (called the Level 1 image), and
one that contains the midlevel pixels (called the Level
2 image). The same chresholding procedure is per-
tormed on the CFAR image, which is derived in the
same way as the CFAR image described in the section
on ERIM discrimination teatures and determined by
the expression in Equation 1. The contiguousness
teature is determined by computing numbers from
cach of these six regions of interest.

The computation of the contiguousness feature is
straightforward. Each contiguousness number is de-
rived from only one image (i.c., the Level 1 CFAR
image, the Level 2 CFAR image, the Level 3 CFAR
image, the Level T image, the Level 2 image. or the
Level 3 image). Each pixel included in cach particular
image is counted, and its immediate neighbors that
appear in the same image are counted as well. The
count is then normalized by the total number of pos-
sibilities that could have occurred (which is nine times
the number of pixels in the image). The final number,
which has a value berween zero and one, is the con-
tiguousness number for that image. This operation is
done tor every image, so the contiguousness feature

gives six separate numbers for cach region of interest.

Discrimination Algorithm

As mentioned at the beginning of the section on
algorithm  description, the Lincoln Laboratory dis-
crimination algorithm is based on a one-class qua-
dratic discrimination algorithm, the inputs of which
are the feature vectors for each candidate region of
interest. The algorithm is trained beforehand with
representative target data only (no clutter data are
used for the training, hence the one-class algorithm).
Often these target data consist of images of targets
with no countermeasures applicd. The tests performed
tor this article use this training method.

The reasoning behind this type of training is that
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predicting the use or moditication of enemy targers is
impossible, so training on exactly the same types of
targets that will be encountered in a real sicuation is
also impossible. Theretore, data gathered by using
non-countermeasured targets seem a reasonable choice
tor a target-training dataset. Any realistic test of the
discrimination algorithm, however, must include rar-
gets that have some countermeasures applied.

Thearetical Analysis of the One-Class Quadratic
Discrimination Algorithm

The one-class quadratic discrimination algorithm used
in the Lincoln Laboratory muldistage target-detection
algorithm can be described mathematically as

Z =YX, oM ) §I X - M),
1 (;)
fori=12,....k + k. .

where # is the number of features used in the dis-
criminator, M,, and §,, are the estimates of the mean
vector and variance-covariance matrix of the training

target ser, X,

; is a random vector representing the

observed candidate features, and 7, is a random vari-
able representing the distance from the test point to
the target-training class. The two variables £, and .
are the number of targets and the number of clutter
talse alarms, respectively, that the discriminator re-
ceives from the prescreener stage of the multistage
algorithm,

To analyze the discriminator given by Equation 3,
we need to find the quantities

i

Prob {/ < KI 11s targct} =P, (4)
and
Prob {7, < K |iisclutter} = P, (5)

where K'is the hard threshold. This analysis involves
finding the probability distribution function (pdf) of
Z; for the rarget case and for the clutter false-alarm
case, and then integrating the pdf according to Equa-
tions 4 and 5.

The distribution of Z, for the target-training dataset
is easy to calculate if the assumption is made thar the
estimates of M, and S, take on their true values. For
tractability, we also assume that the features are multi-
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variate Gaussian distributed. Then the 7 values are
chi-squared distributed (8], and the pdt can be writ-

ten as

where F(z) = 1 and Var(z) = 2/x.

The distribution of Z under the arget (non-train-
ing) and clutter false-alarm classes with these assump-
tions is more difficulr 1o calculate. In cach of the two
cases, a different marrix A must be found such that

A'S A =1
L

t

A’S A,
and

A'S A =1

A’SA =L,

where L, and L are diagonal matrices. This operation,
which is a simultancous diagonalization, reduces the
problem of evaluating Equations 4 and 5 w0 one of
finding the distribution of

|+ ,
= 2 A Xy = ) (6)
" A
and
1 » ) ,
- 2 o (Xy=w )7 (7)
n 4
where
}'1,/ = dldg (L’)/
w, ;= A//(M/ - M/r)/
and
/.L‘..I = di’dg (L‘ )/
w. ;=AM -M,),.

Sy
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and where the operator diag(+) indicates the extrac-
tion of the diagonal vector trom the matrix argument,
The quantity # is the number of teatures used in the
discriminator.

Calculating the distribution of Equation 6 or Equa-
tion 7 without the multivariate Gaussian assumption
would be dithicult because the summation would chen
be over uncorrelated—but noc necessarily indepen-
dent—random variables. Once again, we make an
assumption that the estimates of M, and S, take on
their true values.

The characteristic funcrion of the distribution of

Equations 6 and 7 is given by

"

{ o ] Ul \ 1
9, t) = cxp( 2 I——%J 1—[ (1 - Z_jt/ll,)-.‘ .
- =]

r=1 fi=1

[0 this cquation, j= \ =1. We can omit the target and
cluter-talse-alarm subscripts because the machemart-
ics tor the two cases 1s similar. This characteristic
function can be inverted and integrated according to
tquations 4 and 5 by using Fourier transtorm theory,

so that

P
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0
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q
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0
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Confirming the Ganssian Assumption

We nuake a key assumption in dhe theoretical pertor-
mance prediction tor the discrimination algorithm
given above—we assume that the dacasets (target train-
ing, target testing, and cluter talse alarm} are mulo-
variate Gaussiar distributed. There are two tests that
are teasible to contirm this assumption: the first test i
tor the univaniate case and the second test is tor the
bivariate case. Tests tor higher dimensions exist. but
they can become complicated and ditficult wo inter-
pret [9] (or they rely on making some other crucial
assumption, which can be difticult o check). We
chose to perform the univariate and bivariate tests, tor
which we give the resules herer We also created a
scatterplot for a trivariate test.

All the tests deseribed here were done as a check on
algorithm pertormance and not as an end in them-
selves. We did not try to caleulate exact quantuative
measures tor goodness of fit. An exact study would
have added considerable complexity to our task, while
providing little insight. Instead. our wests were done
by using graphical rechniques and the fits were per-
tormed by ever only approximate Gaussianity can be
ascertained by such techniques. The proot that the
theory is an accurate predictor of performance is not
contained in these tests, but racher in the comparison
of real data results with theoretical results. This com-
parison is given in the section entided “Real Darta
versus Theoretcal Pertormance.”

The univariate test is straighttorward. We plot cach
feature on Gaussian-scaled paper, and test it by exam-
i=*ng it the cumulative density tunction is a straight
line. In general, we found that most of the features for
most of the datasets were adequately univariate
Gaussian. In the few exceptional cases. the distribu-
tions were not far off, and the discrepancies were not
significant in the tinal resules. Figure 10/is an example
of a univariate test with the fractal-dimension feature.

The bivariate case is tested by using scarterplots,
which show data points of one feature versus another
teature. For Gaussianity, these points should fall in an
cllipsoidal bunch around the centroid of the data
points. There should be more data points near the
center of the ellipse, and fewer data points farther

from the center of the ellipse. We could caretully and
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FIGURE 10. Univariate Gaussian test of the fractal-dimension feature. Any straight
line on this graph represer ‘s a Gaussian curve.

quantitatively verify the percentage of points within a
certain normalized radius of the center of mass, which
would give a measure of how Gaussian the data were
distributed. We did not, however, perform this quan-
titative verification; we merely observed how closely
the data points were bunched around the center of
mass.

These graphs are also useful for checking the corre-
lation between two features; the more linear the data
points are, the higher the correlation. If the data
points fall in an ellipse that is horizonually or verti-
cally oriented, then the data points are uncorrelated.
This test is not just an interesting footnote; the sec-
tion entitled “Feature Choice Guidelines” describes
the importance of choosing features that are orthogo-
nal (i.e., uncorrelated) for good discrimination per-
formance. The scatterplots can also give additional
insight into the ability of two features (taken simulta-
neously) ro separate targets from clutter. Ideally, we
would like the target-training dataset and the target-
testing dataset to be coincident, and the clutter false-
alarm dataset to be separated from the other two by a
wide margin (measured both along the abscissa and
the ordinare).

Figure 11 shows an example of a scatterplot for the
fractal-dimension feature versus the weighted-rank
fill-ratio feature. The target-training, target-testing,

;8 EE N RS 1 B T ) i N T e

natural-clutter false-alarm, and racural- and culwural-
clutter false-alarm datasets are shown. The target-
training and target-testing dartasets seem to be reason-
ably elliptically distributed around their centers of
mass, and they seem to be close to each other: both of
these properties are desirable. The clutter false-alarm
datasets seem to be somewhat less elliptical, bur are
reasonably well separated from both target datasets.

The three-dimensional scatterplot shown in Figure
12 illustrates all three Lincoln Laboratory discrimina-
tion features for the target-training, the target-testing,
and the narural-clutter false-alarm datasets described
in the section entitled “Data Used.” There are two
things to be noticed about this figure. First, the figure
clearly shows the separation between targets and natu-
ral-clutter false alarms, and it shows that the clurter
false alarms intermingled with the target datasets tend
to be those created by man-made objects (i.e., cul-
tural clutter). Second, the figure helps confirm the
approximate Gaussianity of the target datasets and
the natural-clutter false-alarm dataset.

Notice the distribution of the red points (che tar-
get-training dataset) in the figure. If these red points
are Gaussian distributed, they should form an ellip-
soidal pattern around the center of the red point
cloud with greater density of points toward the cen-
ter. Likewise, the dark blue points (the rarget-testing
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dataset), the green points (the natural-cluceer false-
alarm dataser), and the light blue points (the cultural-
clutter false-alarm dataser) in the figure should be
distributed in a similar manner for Gaussianity to
hold.

Figure 12 shows that the red points and the dark
blue points are distributed in an approximarely ellip-
soidal pattern around their respective centers. The
green points, however, are less ellipsoidal in their
distribution, and the light blue points are clearly non-
cllipsoidal. As we demonstrate in a later section, the
minor deviation of the green points (i.c., the natural-
clutter talse alarms) from Gaussianity does not greatly
affect the agreement between the theory and the real
data. The lack of Gaussianity in the light blue points
(i.e., the cultural-clutter false alarms) is not critical
because the discriminator is designed to eliminate the

® Stockbridge natural-clutter false alarms
® Stockbridge natural- and cultural-clutter false alarms

natural-clutter false alarms and pass the cultural-cl.-
ter false alarms to the classification algorichm.

The goal of the discrimination algorithm, as stated
carlier in this article, is to reject false alarms caused by
natural clutter. For most of this article, we do not dis-
tnguish between cluteer false alarms caused by natu-
ral cluteer and clutter false alarms caused by culural
clutter, because it is impossible to know, in any kind
of realistic scenario, which type of clutter false alarm a
given region of interest is (or even if the region of
interest is a clutter false alarm or a legitimate target).

In Figure 12 we separate the two types of false
alarms for analysis purposes. For the discrimination
algorithm to perform well, the targets must be sepa-
rated from the natural-clutter false alarms. Figure 12
shows that the targets are indeed separated from the
natural-cluteer false alarms but not from the culwral-

® Target testing
® Target training
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FIGURE 11. Scatterplot of fractal-dimension feature versus weighted-rank fill-ratio feature. For good discrimination
performance with these two features, the target datasets should be separate from the false-alarm datasets.




z
-
c
©
I
°
ot
bt
=
2
2

e hREVIHIEN BT AL

4 oot

Target training
Target testing
Natural clutter

Cultural clutter

FIGURE 12. Three-dimensional scatterplot of the thiee Lincoln Laboratory discrimunation features: fractal

dimension, weighted-rank hill ratio, and standard deviation.

Jdurer talse abarms, I other words, the discrimina
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ot features based on these predictions. We shall sce
thac this strategy is a reasonable one.

We would also like to examine discrimination re-
sules for ditferent resolutions and different polariza-
tions. The Lincoln Laboratory MMW SAR has a
resolution of 1 ft by 1 ft, but we can easily construct
lower-resolution, single-look radar imagery from the
dara at hand. Additionally, the Lincoln Laboratory
MMW SAR is tully polarimetric (fully polarimerric
SAR data allow synthesis of any polarization or com-
bination of polarizations). Many radar sensors are not
tully polarimetric, and use only a single polarization.
The most common polarization used is HH; there-
fore, we use HH data as well as fully polarimetric
dara in this study. We expect the best feature set to
change, depending on our choice of resolution and
polarization.

Choosing a Feature Set

The method we use to choose the best feature set is
straightforward. First, the data are prescreened by
using a simple two-parameter CFAR algorithm (2,
10]. This stage is designed to eliminate (with a mini-
mum of computation) only the most obviously non-
targetlike clutter. The prescreening algorithm oper-
ates on imagery that has already been reduced to a
resolution of 1 m by 1 m. The resolution was re-
duced by taking a noncohkerent average of each
4-pixel-by-4 pixel non-overlapping box (a pixel has a
nominal resolution of approximately 0.23 m). This
method of resolution reduction has two advantages:
(1) it reduces the amount of data we need to process,
and (2) it reduces the speckle that is present in the
high-resolution SAR imagery (the article by Leslie M.
Novak et al. in this issue gives an explanation of
speckle in SAR imagery).

In the prescreener for this study we use a threshold
value that allows the detection of 80% of the targets.
This percentage was chosen for consistency among
datasets; it was also chosen by considering the num-
ber of clutter chips that are passed to the discrimina-
tion stage. A higher probability of detection in the
prescreener stage necessarily increases the number of
clutter false alarms passed to the discriminator. Com-
putation time and storage limitations preclude using
a higher percentage value for the prescreener prob-

ability of detection. The data used in the prescreener
algorithm were also processed by using the polarimet-
ric whitening filter (PWF) [1], which combines the
HH, HV, and VV polarization channels together in a
manner that opumally decreases speckle. The HH
polarization results use only the HH polarization SAR
dara, and hence do not use the PWF imagery for the
prescreener algorithm.

The candidates identified by the prescreener (ei-
ther on targets or on clutter false alarms) are then
grouped spatially. The grouping algorithm is a simple
one; all hits within a rarget-sized area are grouped
into a single detection. This grouping operation ex-
ploits some of the spatial information inherent in the
proximity of prescreener hits.

The discrimination algorithm is run on all the
regions of interest selected by the prescreener and the
grouping algorithm. First, all the features described in
the section on discrimination features are computed
for all regions of interest. The features are computed
for the following four combinations of data: (1) 1-ft
resolution and PWF polarization, (2) 1-m resolution
and PWF polarization, (3) 1-ft resolution and HH
polarization, and (4) 1-m resolution and HH polar-
ization. The features were originally tuned (in terms
of the thresholds used in the feature calculations them-
selves) for the 1-ft resolution, PWF case. The features
are used without modification for this case as well as
for the 1-ft resolution, HH polarization case.

Naturally, the polarimetric features cannot be cal-
culated for the HH polarization case because the
polarimetric features use polarizations other than HH.
We therefore use a reduced set of features. For the
1-m resolution cases, we retune the features by com-
puting them for a range of thresholds, and we choose
the threshold that provides the best separation be-
tween targets and clutter false alarms for all datasets.
This retuning is done separately for the PWF case and
the HH polarization case. Therefore, these features
are intended to give best-case results. Any use of these
tuned features in other datasets can only approach the
results shown in the article in general. Certainly, the
1-m resclution tests provide a better indication of the
performance of the discrimination algorithm than is
likely to be obtained in a real situation.

The parameters necessary for a theoretical evalua-
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INTERPRETING PLOTS OF Py VERSUS FA/KM*

THE METHOD OF EVALUATION for
the discrimination algorithm de-
scribed in this paper involves plot-
ting a curve that shows the prob-
ability of detection (P} versus the
number of false alarms per square
kilometer (FA/kml). The measure
of FA/km” scales directly to the
probability of false alarm, which
was theoretically derived for the
discrimination algorithm in the
section entitled “Theoretical Anal-
ysis of the One-Class Quadratic
Discrimination Algorithm.” Such
curves are often referred to as re-
ceiver operating-characteristic
{ROC) curves.

Figure A gives an example of a
simple ROC curve (in red). Bet-
ter performance is indicated in
these types of plots by a curve
moving upward and leftward. A
plot such as this one might be
used to evaluate the prescreener
stage or the discrimination stage
separately. A more complicated
plot is necessary to evaluate the
combination of the prescreener
and discrimination stages.

number of extra lines, or tails.
These extra fines (in blue) repre-
sent the improved performance
provided by the discrimination
stage of the multistage target-de-
tection algorithm. Each extra line
meets the curve of the original
prescreener stage at a certain
point. Each discrimination line
emanating from these points de-
scribes the operating characteris-
tic of the discrimination algorithm

for the particular set of inputs
being provided by the prescreen-
er at that operating point.

As the threshold of the pre-
screener is varied, the set of n-
puts provided to the discrimina-
tion algorithm varies as well. The
evaluation criterion for perfor-
mance in an ROC curve works
here as well; the line moving up-
ward and leftward indicates bet-

ter performance.

1.0 R A R DA DAL TR
08 - Discrimination .
06 —
-1
Q
04 |- —
Prescreener
02 - -
0.0 FREPST BRI BT BRI RN T
0.001 0.01 0.1 1.0 10 100 1000

FA/km?

Figure A also shows an exam-
ple of a plot (blue and red) that
might be used to evaluate both
the prescreener and discrimina-
tion stages combined. Notice that
the original ROC has grown a

stage is operated.

tion of the discrimination performance are computed
in cach case trom a target region-of-interest dataset
and a clutter false-alarm region-of-interest dataset.

Additionally, the assumptions necessary for the theory
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FIGURE A. Example of a P, versus FAIkm2 curve, which is also known as a
receiver operating-characteristic curve, for a multistage target-detection
algorithm. The additional lines represent the performance of the discrimina-
tion stage of the algorithm. Three of these performance lines are shown; in
fact, an infinite number of them are possible, because their intersections
with the prescreener curve are dictated by the level at which the prescreener

to hold are checked in most cases. These checks are
morc fully detailed in the section entitled “Confirm-
ing the Gaussian Assumption.” All combinations ot

the discrimination features are tested by using the




* KREITHEN ET AL.
Discriminating argets from Clutter

theory. Theoretical P, versus Py, plots are produced
tor cach combination, and the best combinations are
chosen for further analysis. The best combinations of
teatures are given in the section entitled “Best Fea-
tures for Discrimination.” The results we get by using
the real data are then generated for the shore list of
good combinations. The real-data results are then
compared with the theoretical resules; chese compari-
sons are given in the section entitled “Real Data ver-
sus Theoretical Performance.”

Performance evaluation is done by plotting the
probability of detection P, versus the number of false
alarms per square kilometer (FA/kml). The measure
of false alarms per square kilometer is merely a rescaling
of the probability of false alarm (P/;:) into an opera-
tionally meaningful measure. This rescaling is per-
formed to remove the effect of sensor resolution (be-
cause a higher resolution image inherently gives more
opportunities for false alarms to occur, the same 7,
value at different resolutions means different num-
bers of false alarms per square kilometer). The inter-

pretation of plots of P, versus FA/km™ is reviewed in
the sidebar entitled “Interpreting Plots of 2, versus

FA/km=.”

Data Used

All the target data used in this study were gichered
with the Lincoln Laboratory MMW SAR in
Stockbridge, New York. The targets consisted of two
datasets of the same rargets in different deployment
conditions. The first dataset, which we use for dis-
crimination algorithm training, is called the target-
training dataset. The second dataset, which we use for
discrimination algorithm testing, is called the target-
testing dartaset. There are three distinct clutter datasets;
two gathered at Stockbridge, New York, and a smaller
clutter dataset gathered in Concord, Massachusetts.
The first clutcer dataset, which consists of mostly
natural clutter, is called the Stockbridge natural-clut-
ter dataset. Figure 13 is an example of this dataset; it
shows a river with treelined banks (the river is the
dark area curving through the middle of the image).

FIGURE 13. SAR image of natural clutter in Stockbridge, New York. The sensor is flying parallel to the top of
the image, and the shadows extend downward in the image. Areas of high radar return are colored in bright
yellow; areas of low radar return are in dark colors. The dark band in the middle of the image is a river with
trees lining each bank. The smooth green areas are open fields.
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The remainder of the image is an open field. Freshly
plowed furrows in the open field can also be seen. The
radar illuminates the area from the top of the image;
therefore, che shadows cast by the trees point down-
ward in the image. The Stockbridge natural-clutter
dataset also includes some man-made objects (which
are impossible to avoid entirely in the Stockbridge
area), including the tarmhouse shown in an carlier
article by Novak [1]. The clutter in this dataset is
considered to be relatively benign.

The second clutter dataset is called the Stockbridge
natural- and cultural-clutter dataset. This dataset was
gathered from a different area of the same Stockbridge
collection site; it includes a farm-supply store that is
shown in Figure 14 both as a SAR image and in an
aerial photograph. The clutter in this dataset is con-
sidered to be moderately difficult.

The third clucter dataset is a small dataset gathered
in Concord, Massachusetts, which is a few miles from
Lincoln Laboratory. This dataset, which we refer to as
the Concord dataset, consists entirely of man-made
clutter, and is considered to be a very difficult dataset.

(a)

Figure 15 shows an example of imagery from this
dataset.

Best Features for Discrimination

The method used to determine the best features for
discrimination is fully described in the earlier section
entitled “Choosing a Feature Set.” For two cases—the
1-ft resolution, PWF darn of the Stockbridge natural-
clutter dataset and the Stockbridge natural- and
cultural-clutter dataset—we found the best features
to be thase given in Table 1. For the case of the
1-ft resolution, PWF, Concord man-made clutter, the
feature set reduced to those features given in Table 2.
As stated earlier, we did not attempt to pick the
best features for the 1-ft resolution, HH-polarization
case. Instead we evaluated performance with the same
features as the best-case features for the PWF data.
For the 1-m resolution, PWE, Stockbridge natural-
clutter, and the natural- and cultural-clutter case, we
found the best features to be those given in Table 3.
The “optional” qualifier given in the table means that
the feature does not increase or decrease any perfor-

(b)

FIGURE 14. (a) An optical photograph and (b) a SAR image of a farm-supply store in Stockbridge, New York. This
store is an example of a man-made clutter discrete. The store parking lot is in the bottom of each image. Although the
photograph and the SAR image were taken at different times, passenger cars can be seen in the parking lot in both
images. The bright spots in the middle right area of the SAR image are caused by various metallic objects in the yard

of the supply store.
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FIGURE 15. (a) A SAR image of man-made clutter in Concord, Massachusetts. The other three photugraphs
illustrate specific objects visible in the SAR image: (b) the church and steeple, (c) a spotlight that illuminates the
church at night, and (d) a house and a telephone wire suspended overhead. Note the bright columns along the
side of the church in the SAR image. These columns clearly correspond in number and placement to the areas
between the windows of the church in the optical photograph. Also notice the bright circular feature—the clock—
on the church steeple.
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Table 1. Best Features for 1-ft, PWF, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

Feature Description

Fractal dimension Lincoln Laboratory

Weighted-rank fill ratin  Lincoln Laboratory

Diameter ERIM size
Mean CFAR or
percent bright CFAR ERIM CFAR

Percent pure ERIM polarimetric

Table 2. Best Features for 1-ft, PWF,
Man-Made Ciutter Dataset

Feature Description

Fractal dimension Lincoln Laboratory

Percent bright CFAR ERIM CFAR

Percent pure ERIM polarimetric

Table 3. Best Features for 1-m, PWF, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

Feature Description

Fractal dimension Lincoln Laboratory

Diameter ERIM size
Percent bright even ERIM polarimetric
ERIM polarimetric

ERIM CFAR (optional)

Percent pure

Mean CFAR

mance ability with these datasets, but it could add or
subtract a certain amount of robustness tor other
datasets. The best features tor the 1-m resolution,
HH-polarization case are given in ‘Table 4. For this

case, however, the discrimination algorithm provides
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Table 4. Best Features for 1-m, HH, Natural-Clutter
Dataset and Natural- and Cultural-Clutter Dataset

Feature Description

Fractal dimension Lincoln Laboratory

Diameter ERIM size

Mean CFAR ERIM CFAR (optional)

litle or no pertormance gain over the presareener

alone.

Feature Choice Guidelines

An examination of the list of best features from the
previous section, along with the scatterplots shown in
the section entditled “Contirming the Gaussian As-
sumption,” reveals some interesting and important
guidelines tor choosing the best teatures. There are
two general criteria for teature choice tor this dis-
criminadion algorithm—separation and orthogonality.
The separation criterion is the common-sense consid-
eration that the feature must adequately separate the
target training (and target testing) daraset from the
clutter false-alarm dataset. The orthogonality crite-
rion is less intuitive, and can be summarized by the
idea chat different features used in the discrimination
algorithm must measure difterent auributes of the
region of interest.

Untortunately, we cannot casily predict exactly
which attribute of a region of interest a feature mea-
sures. Sometimes two features that beforchand would
seem to be highly correlated ultimately exhibic a low
degree of correlation. We show an example of this
tvpe of behavior later in this section.

The best teatures listed in Table 1 are a good ex-
ample of the orthogonality criterion. We see that the
table includes two of the three Lincoln Laboratory
discrimination features, which is not surprising be-
cause the three Lincoln Laboratory features were de-
signed with orthogonality in mind. The first feature
(tfractal dimension) exploits the spatial relationship of
the top Nscacterers in the region of interest. while the

second feature (weighted-rank fill ratio) exploits the
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distribution of reflected power among all the scatter-
ers on the trget. Clearly, these two features were
designed to measure ditterent characteristics of the
region of interest.

The three other features included as best features
in the case shown in Table 1 all come from the ERIM
discrimination features. Interestingly, the three cho-
sen features each come from a different subser of
teatures: the first comes trom the ERIM size teatures,
the sccond comes tfrom the ERIM CFAR features,
and the third comes from the ERIM polarimerric
teatures. Even if the ERIM teaturcs were not designed
with the orthogonality criterion in mind, we tind it
interesting that the choice of best features naturally
selects one teature from each category.

A subset of the features listed in Table 1 works best
in the man-made clutter dataset, as shown in Table 2.

® Stockbridge natural-clutter false alarms
® Stockbridge natural- and cultural-clutter false alarms

The orthogonality criterion holds here as well, except
that the two features not included, which were in-
cluded in Table 1, no longer provide reasonable sepa-
ration between targets and cluteer false alarms.

For the case of 1-m resolution. there is an apparent
exception to the two criteria given above in the best
feature choices. Notice that Table 3 contains o
ERIM polarimetric features. Figure 16 shows a
scatterplot of these two teatures (percent bright even
and percent pure) for the I-m resoluton datasers.
From the scatterplot we can see that these two tea-
tures are, in fact, uncorrelated and are therefore or-
thogonal in some meaningful sense. Apparently, in
the 1-m resolution dataset the thresholding involved
in calculating the percent-bright-even feature causes
this feature 1o measure something other than the

polarimetric properties of the region of interest. The

® Target testing
® Target training
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FIGURE 16. Scatterplot of percent bright even feature versus percent pure feature for 1-m-by-1-m resolution data.
These two features are uncorrelated because the data points do not fall along a straight line.
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five features chosen in Table 3 for the 1-m resolution
case obey both the separation and orthogonality crite-
ria given above. The same holds true for the best
teatures in the HH-polarization case, which are given
in Table 4.

Real Data versus Theoretical Performance

This section gives the real-data presereener and dis-
crimmation results in the torm of plow of 2, versus
FA/km™. These plots are explained in the sidebar
entitled “Interprenng Plots of P2 versus FA/km™.” We
also plot on the same graphs the predictions com-
puted trom the theoretical analysis given in the sec-
ton entitded “Theoretical Analysis of the One-Class
Quadratic Discriminadion Algorithm.”™ In all cases,
the theory and real data coincide closely. This fact
demonstrates that the one-class quadratic discrimina-
ton algorichm is well understood as icis implemented
in the Lincoln Laboratory multistage target-detection
algorithm.

Figure 17 gives the combined prescreencer and dis-
crimination results for the 1-1t resolution, PWFE data
tor the Stockbridge narural-clutter dataset, while Fig-
ure 18 gives the prescreener and discrimination re-
sults for the Stockbridge natural- and cultural-cluteer
dataset, and Figure 19 gives the prescreener and dis-
crimination results for the Concord man-made-clut-
ter dataset. Figures 20 and 21 show the prescreener
and discrimination results for the Stockbridge natu-
ral-clutter dataset and the Stockbridge natural- and
cultural-clutter dataset, respectively. Both results are
tor 1-ft resolution, HH-polarization data.

The remaining results are for the 1-m resolution
case. Figures 22 and 23 show the prescreener and
discrimination results for the Stockbridge natural-
clutter dataset and the Stockbridge natural and cul-
tural-clutter daraset, respectively, for PWF data.
Figures 24 and 25 show the prescreener and discrimi-
nation results for the same two datasets for the

HH-polarization case.

Polarization Comparisons

We can compare the discrimination results from the
PWF data and the HH-polarization data for the same
cases to draw a conclusion regarding the advantage of
using a fully polarimetric radar versus using the more
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FIGURE 11. Comparison of real data and theoretical re-
sults for the 1-ft-by-1-ft resolution, PWF, Stockbridge natu-
ral-clutter case.
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FIGURE 18. Comparison of real data and theor zal re-
sults for the 1-H#-by-1-ft resolution, PWF, Stockbridge natu-
ral- and cultural-clutter case.

o BERERAALLL A LA B S AL L AL BRI R AL B AR ALl
-— — Discrimination
0.8 Prescreener P
----- Theory 7 ‘
06 |- },/, f—'
Q_b /'!‘ f"
T 1
0.2 ’/‘J, r =
o . L
0.0

0.01 0.1 1.0 10 100
FA/km?

FIGURE 19. Comparison of real data and theoretical re-

sults for the 1-ft-by-1-ft resolution, PWF, Concord man-

made clutter case.
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FIGURE 20. Comparison of real data and theoretical re-
sults for the 1-ft-by-1-ft resolution, HH-polarization,
Stockbridge natural-clutter case.
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FIGURE 21. Comparison of rea! data and theoretical re-

sults for the 1-ft-by-1-ft resolution, HH-polarization,
Stockbridge natural- and cultural-clutter case.
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FIGURE 22. Comparison of real data and theoretical re-
sults for the 1-m-by-1-m resolution, PWF, Stockbridge
natural-clutter case.
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FIGURE 23. Comparison of real data and theoretical re-
sults for the 1-m-by-1-m resolution, PWF, Stockbridge
natural- and cultural-clutter case.
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FIGURE 24. Comparison of real data and theoretical re-
sults for the 1-m-by-1-m resolution, HH-polarization,
Stockbridge natural-clutter case.
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FIGURE 25. Comparison of real data and theoretical re-
sults for the 1-m-by-1-m resolution, HH-polarization,
Stockbridge natural- and cuttural-clutter case.
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common HH single-polarizadion radar. We see that

the performance increase is significant (a reduction of

one to two orders of magnitude in talse-alarm rate tor
equal probabilities of detection) in both the 1-ft reso-
lution and the 1-m resolution cases. The performance
ditterence is more pronounced for the higher-resolu-
tion darta.

In general, during the course of this study, we
noticed that the combination of higher-resolution
data and tully polarimetric data provided a significant
increase in performance. Either capability alone is not
nearly as effective as the two capabilities together for
the discrimination features we have studied in this
article. In other words, building radars with both
higher resolution and with fully polarimetric capabil-
ity makes sense.

In the 1-m resolution case, the difference between
the PWF data and the HH-polarization dara is clear.
Using the HH darta alone, the discriminadion algo-
rithm provides little or no performance improvement
over using the prescreencer algorithm alone. The fea-
tures for the 1-m, HH-polarization case were tuned
specifically for these datasets, so this result should be
considered a best case. Clearly, there is no point in
using the discrimination algorithm with these fea-
tures for the I-m resolution, HH-polarization dataset,
because it provides little benefit and it requires addi-
tional computational capacity.

Resolution Comparisons

We can also compare the results from the i-ft resolu-
tion case with the results from the 1-m resolution
case. We see that the higher-resolution data allows a
performance increase of more than an order of mag-
nitude in terms of the false-alarm rate for a given
probability of detection. This performance increase is
approximately constant over the different cases given
in Figures 17 to 25.

Conclusion

In this article, we discuss and evaluate the discrimina-
tion algorithm used in the Lincoln Laboratory multi-
stage target-detection algorithm. This one-class qua-
dratic discriminator uses features calculared from SAR
imagery. The discrimination algorithm uses candidate
regions of interest identified by the prescreener, and
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ideally eliminates all nactural-cluteer talse alarms
trom further consideration, passing only wargets and
man-made clutter false alarms 1o the classification
algorithm.

Fitteen discrimination features were evaluated tor
this study; three of the teatures were developed by
Lincoln Laboratory and the remainder were devel-
oped by the three STAR contractors. These tearures
were modified to account tor the difterent types of
data used in this study, and the best set of features was
chosen for a number of different datasets and a num-
ber of different types of data. The best features re-
mained constant from the natural-clutter dataset o
the natural- and cultural-clutter dacaset. which was a
surprising and pleasing result. For best performance.
we needed ro select different teature sets tor PWF and
HH-polarization data, as well as for 1-ft and 1-m
resolution data, which was not a surprising result.

We evaluated the features by using a cheoretical
expression that accurately predicted the real-dara per-
tormance of the discrimination algorichm. This accu-
racy reflects a good understanding of how the dis-
crimination algorithm functions as a part of the
Lincoln Laboratory multistage target-detection algo-
rithm for SAR dara.
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Improving a Ten;plate—Based
Classifier in a SAR Automatic

Target Recognition System by
Using 3-D "Target Information

Shawn M. Verbout, William W. Irving, and Amanda S. Hanes

B In this article we propose an improved version of a conventional template-
matching classifier that is currently used in an operational automatic target
recognition system for synthetic-aperture radar (SAR) imagery. This classifier
was originally designed to maintain, for each target type of interest, a library of
2-D reference images (or templates) formed at a variety of radar viewing
directions. The classifier accepts an input image of a target of unknown type,
correlates this image with a reference template selected (by matching radar
viewing direction) from each target library, and then classifies this image to the
target category with the highest correlation score. Although this algorithm
seems reasonable, it produces surprisingly poor classification results for some
target types because of differences in SAR geometry between the input image
and the best-matching reference image. Each reference library is indexed solely
by radar viewing direction, and is thus unable to account for radar motion
direction, which is an equally important parameter in specifying SAR imaging
geometry. We correct this deficiency by incorporating a model-based reference
generation procedure into the original classifier. The modification is
implemented by (1) replacing each library of 2-D templates with a library of
3-D templates representing complete 3-D radar-reflectivity models for the target
at each radar viewing direction, and (2) including a mathematical model of the
SAR imaging process so that any 3-D template can be transformed into a 2-D
image corresponding to the appropriate radar motion direction before the
correlation operation is performed. We demonstrate experimentally that the
proposed classifier is a promising alternative to the conventional classifier.

N AUTOMATIC TARGET RECOGNITION (ATR) classifier. The function of the classifier is to take input
system is an integrated collection of 2lgo- measurements that represent detected targets and cat-

rithms designed to process sensor measure- cgorize these inputs according to target type. The

ments so that targets can be efficientdy detected and
identified. The algorithms that comprise an ATR sys-
tem are applied on a computer and are organized so
that human intervention is not required.

An important component of any ATR systemiis ies

classifier is designed with the assumption that cach
input belongs to one and only one category from a
predetermined set (e.g., tank, truck, gun), and that the
input has certain observable characteristics that aid in
its assignment to this category. The classifier output
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Classities
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Classifier —

' v

Rejects natural-clutter
false alarms

Rejects imagery without
potential targets

r

Rejects man-made
clutter

FIGURE 1. Block diagram of the three-stage SAR automatic target recognition system developed by Novak. The input
consists of SAR imagery representing many square kilometers of terrain and potentially containing several targets of
interest; the output consists of locations and classification labels for these targets. This article proposes an improved

version of the classifier stage.

corresponding to cach input is an estimate of the
correct category label, based on the observable char-
acteristios of the inpuat.

Of course, the issues involved in building a classi-
fier vary according o the kinds of sensor measure-
ments being processed. In this ardcle, we are con-
cerned exclusively with a classifier whose inputs are
2-D synthetic-aperture radar (SAR) images. In par-
deular, we analyze and suggest extensions to the serue-
ture of the classifier in the SAR ATR svstem devel-
oped by Leslic M. Novak (see the article entitled
“Performance of a High-Resolution Polarimetric SAR
Automatic Farger Recognition System”™ in this issuc).
This ground-based system has been designed to oper-
ate in an oft-line, experimental setting, Tt has been
rigorously tested over the past five years, and it is one
of the first systems of its kind to process large quanti-
tics o actual SAR dara.

Novak’s SAR ATR system is conveniently decom-
poscd into a sequence of three processors: a detector
(or prescreener), a discriminator, and a classifier (see
Figure 1). The detecror searches through imagery rep-
resenting many square kilometers of terrain, and out-
puts a collection of regions of interest centered ar
possible target locations. (Fach region ot interest is a
subimage extracted from the original SAR daraset;
collectively, all of the regions of interest comprise
only a small fraction of dhis original datasee.) The
discriminator applies further processing to distinguish
between two kinds of regions of interest: those con-
taining man-made objects (i.c., cither targets or man-

made clutter) and those containing nacaral claeeer.

54

All regions of interest that appear to contain natural
clutter are discarded. Finally, the classifier assigns cach
remaining region of interest o a predetined target
category, or to a none-of-the-above category it the re-
gion of interest appears to contain man-made clutier.
Although Novak's ATR svstem is usually applicd to
bal A .
the multichss target identification problem (i.e., the
problem in which two or more kinds of targets must
be distinguished), for convenience we consider only
g \
the one-class problem in this article. In the one-class
problem only one kind of target is of interests there-
tore, the classifier output reduces o a simple ves/no
decision that indicates whether a target of this kind is
present in the region of interest. Figure 2 itHlustrates
£ ¢
che input-output operation of a onc-class classitier.
Novak's classiticr, which we reter 1o as the baseline

classifier, uses a conventional emplate-matching al-

. Target
R_eglon of oresent
interest
P Ciassifier l— Decision
Target
absent

FIGURE 2. lllustration of the input-output operation of the
baseline one-class classifier. The input is a subimage, or
region of interest, extracted from the original SAR dataset;
the output is a decision indicating whether a target of
interest is present.
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gorithm. The one-class version of this classifier is
implemented in the following way. For a particular
target of interest, the classifier has a database of stored
reference images, each formed by using a different
radar viewing direction. The reference image whose
associated radar viewing direction best approximates
that of the incoming test image (i.e., the incoming
region of interest) is called up from the database and
is correlated with the test image to generate a match
score. If this score exceeds a predetermined threshold,
the classifier declares that a targert of interest is present.

The template-matching algorithm is attractive be-
cause it is readily implemented on a computer and it
has an intuitively pleasing structure. For a database
formed by using a typical imaging configuration, how-
ever, the classifier produces poor results for some
target types. This fact is not surprising, because the
system was originally designed to process images
formed with a fixed SAR geometry, whereas in the
most commonly used imaging configurations the SAR
geometry is continually changing. In this article, we
seek to generalize the structure of the classifier to
account for variability in SAR geometry.

SAR geometry can be characterized as a function
of two parameters—radar viewing direction and ra-
dar motion direction. The baseline classifier does not
account for radar motion direction, however, and is
therefore equipped with an incomplete set of refer-
ence images in its database. The baseline classifier was
designed with the assumption that the radar viewing
direction is the only parameter that can be varied to
produce different images of a target.

In reality, the direction of radar motion is an equally
important parameter in defining the SAR imaging
geometry, which implies that two images formed with
the same radar viewing direction, but with different
radar motion directions, will look different. Even
though the same physical target scatterers are illumi-
nated in both cases, the 3-D scatterer positions be-
come mapped to two different 2-D SAR image loca-
tions. Because the baseline classifier ignores the
direction-of-motion parameter, it often correlates a
test image and a reference image that are formed with
different SAR imaging geometries. These differences
in imaging geometry cause the test image and refer-
ence image to have dissimilar characteristics, and con-

sequently to have a low correlation score.

An immediate solution to this problem is o in-
clude in the classifier database additional reference
images formed by using the SAR geometries that are
not currently represented. This solution is undesir-
able, however, because it would require a costly data
collection, and it would also increase the storage re-
quirements for the database by roughly an order of
magnitude.

In this article we describe a more elegant solution
for improving classifier performance than the mere
tenfold augmentation of the reference set described
above. This new solution, which maintins the tradi-
tional template-matching engine, calls for two major
modifications to the baseline classifier: (1} the re-
placement of the present set of 2-D reference images
with a set of 3-D templates, and (2) the incorporation
of a mathematical model of the SAR imaging process
so that any 3-D template can be appropriately trans-
formed to synthesize 2 -D reference image for the
correlation operation. Later in this article we describe
a novel method for creating 3-D templates from cur-
rently existing 2-D target images.

The body of the article is divided into three major
sectic 1s. In the first section we describe in detail how
the baseline classifier works. In the second section we
demonstrate the problem with this classifier and ex-
plain why this problem exists. In the third section we
describe specifically how we can modify the baseline
classifier to improve its overall performance. Finally,
we summarize the key points of the article and sug-
gest directions for future work toward improving clas-
sification performance in a SAR ATR system.

How the Baseline Classifier Works

The algorithm used by the baseline classifier is de-
scribed schematically in Figure 3. As shown in this
figure, the input to the classifier consists of two com-
ponents. The first input component is a 2-D test
image representing a region of interest from the origi-
nal SAR dataset. As mentioned above, this image has
passed through the first two stages of the ATR system
(i.e., the detection and discrimination stages) and
thus contains an object that appears sufficiently
targetlike to be considered for classification. The sec-
ond input component is a pair of angle values that
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Database
Reference
(cx. €1)
Test input
Target
b=t present
— Correlator Threshold

T p<t
T Target
absent

FIGURE 3. Schematic description of the algorithm used by the baseline cne-class classifier. The classifier uses the aspect
angle (¢ and the depression angle 1 to select a 2-D reference image from the database. This reference image is then
correlated with the input test image; if the correlation score p is greater than or equal to the threshold r, the targef present

decision is declared.

define the radar viewing direction with respect to the
imaged object. These values are estimates of the angles
e (the aspect) and 0 (the depression), which are defined
pictorially in Figure 4.

Because the database is conveniendy indexed ac-
cording to these two radar viewing angles, the classi-
fier can readily select the reference image whose as-
pect and depression are closest to che input estimates
of «and 0 computed tor the test image. Onee the
appropriate reference image is selected, it is scaled so
that the sum of che squares of its pixel values is equal
to unirv: the test image is also scaled in this way. Next,
the normalized west and reference images are corre-
lated 1o vield a correlation score p whose value s
between O and 1.

This correlation operation is mathemadically de-
fined in the following wav. et us assume thae the test
and reference images are equal insize, cach having A
cells in the range dimension and NV cells in the cross-

range dimension. Let the funcion 7°(- ) be defined

for integer values ot its arguments such that 7{m.) is
cqual to the amplitude of the test image at the range
£ ¢
and cross-range location () for | = m < M and
1 = < N, and is equal to zero for ali other values of m
and n. Let the tunciion R(+,+) be detined analo-
gously with respect o the reference image. Then the

correlation score p tor the two images is detined by

n= nmx{l i 2 Fnn) RG + i, j + ;1)} .
i |

m=1 n=|

where sis the overall normalizadion factor given by

oN TN X
s = E E[R(m, /1)]~ E E[T(“L 11)]“ .
\ =1 =1 \ =) =

As shown in Figure 3. the classitier declares that a
target is present in the test image onlv it pris greater

than or cqual 1o the preselecied threshold 7.
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FIGURE 4. Pictorial definition of the aspect angle « and
the depression angle 4. These angles specify the radar
viewing direction with respect to the imaged object.

We can more clearly understand the fundamental
problem with the baseline classifier by analyzing how
the target reference images are generated for the clas-
sifier database. Each reference image is formed from
data collected by the Lincoln Laboratory millimeter-
wave airborne radar [1]. Once a target of interest is
deployed in an open area, the data are collected by
using a special mode of the radar known as sporlight
mode, which is illustrated in Figure 5. In this mode,

FIGURES. Imaging configuration for spotlight-mode SAR.
In this mode the airplane moves in a straight line at a
constant aititude, while the antenna is steered continu-
ously so that it always points at a fixed patch of terrain.

the airplane flies in a straight line at constant altitude.
and the radar antenna is steered continuously so that
it always points in the direction of the target.

With the radar beam illuminating the target like a
spotlight throughout the flight, a new image of the
target can be formed approximately every degree of
azimuth. Fach new image can be used as a reference
tor the classitier database. A set of reference images
representing 360° of aspect coverage is created by
flying four such linear paths to view the target from
all sides, as shown in Figure 6.

Although spotight mode is not the only mode that
can be used to generate reference images, it is the
most convenient and efficient mode for imaging a
target at a variety of radar viewing angles. To see why
this statement is true, consider the darabase of spot-
light imagery that can be generated by flying the basic
pattern shown in Figure 6 at a sequence of increasing
altitudes. Clearly, if the difference between successive
flight-path altitudes is small enough, then the data-
base will contain a representative image of the target
that is close to any desired aspect-angle and depres-
sion-angle pair. Moreover, this complete coverage is
obtained withourt ever having to move the target. In
spite of the many advantages to using this kind of
data-collection procedure, there is a serious deficiency
associated with it. This deficiency is analyzed in detail
in the next section.

Why the Baseline Classifier Needs Improvement

Now that we have discussed the method used to
generate target reference images for the database, we
are better equipped to analyze why the baseline classi-
fier can make a gross error in categorizing an input
test image. In chis section we explain how such
misclassifications occur, even though the database is
densely populated with target reference images from
all desired radar viewing directions.

We begin by using Figure 7 to demonstrate what is
wrong with the baseline classifier. Figure 7(a) shows
an optical photograph of an M48 tank, and Figures
7(b), 7(c), and 7(d) show three simulated SAR images
of the tank. The SAR images are color coded with a
scale that makes a gradual transition from black (low
intensity) to green (medium intensity) to white (high
intensity). In each SAR image, the front part of the
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tank is pointing toward the upper left corner of the
image. All three SAR images shown in this figure were
tformed by using the same aspect angle and depression
angle. In other words, the same scatterers on the
target were illuminated by the radar from the same
viewing direction for each image. Note, however, that
the images look dramatically different. This phenom-
enon contradicts the key design assumption that fix-
ing the radar viewing direction uniquely specifies the
SAR image of the rarget.

To understand how the existence of three such
images affects the classifier, let us assume that Figure
7(b) is a stored reference image and that Figure 7(d) is
an incoming test image. Because the two images were
formed by using exactly the same radar viewing direc-
tions, the image in Figure 7(b) would be chosen as the
reference image most likely to match the test image.
But because the two images are so dissimilar, their

correlation score would be low, and consequently the

test image could be erroneously labeled as containing
no target.

The only ditference between the SAR imaging con-
figurations used to generate the images in Figures
7(b), 7(¢c), and 7(d) was the direction in which the
radar was moving with respect to the viewing direc-
tion. This change alone is sufficient to yield SAR
images that look quite ditterent, and yet the direc-
tion-of-motion parameter has been completely ig-
nored in the design of the baseline classitier.

To see how this parameter directly affects the ap-
pearance of a SAR image, we devote much of this
section to the description and application of a widely
used mathematical model of the SAR imaging pro-
cess. In particular, we model the SAR transtormation
as a projection of the 3-D distribution of targer scat-
terers onto a 2-I) image plane, and we demonstrate
the usefulness of this model by a simple example.

The projection model is conceprually important

FIGURE 6. Top view of the flight path used to create a set of target reference images representing 360° of aspect coverage.
A sequence of the generated reference images is shown notionally at right.
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(b)

(d)

FIGURE 7. (a) Photograph of an M48 tank. The computer-generated images in (b), (c), and (d) are simulated SAR images of
an Md8tank, all created with the same aspect and depression angles but with different squint angles ¢, where ¢ specifies the
direction in which the radar is moving with respect to the viewing direction. The SAR images are color coded with a scale
that makes a gradual transition from black (Jow intensity) to green (medium intensity) to white (high intensity). Ineach SAR
image, the front part of the tank is pointing toward the upper left corner of the image. (The SAR images were generated with
the SARTOOL signature simulation software developed by The Analytical Sciences Corporation.)

tor the remainder of the article, particularly in the
final section in which we incorporate this moddl into
an improved version of the bascline classifier. We now
preprre to introduce the projection model with some
fundamental definitions associated with the SAR im-

AgING Process,

Description of SAR Diaging Geometry

Figure 8 illustrates the basic elements that define the
spotlight SAR imaging geometry. In chis figure, we

see the airborne radar as it moves ina straight line

while its antennais steered o illuminate a fixed ground

location known as the aimpoint. We have imposed a
mathematical structure on this geometry by using a
Cartesian coordinate svstem (known as the world co-
ordinate system) whose origin coincides with the
aimpoint, and whose coordinate locations (x, 30 2) are
measured in terms of the unit basis vectors x, y.and
z (shown in blue). In this svstem. we use the conven-
tion that y points in the direction of radar motion.
Also, note that in the vicinity of the aimpoint we
model the local carth sartace as a grownd plane detined
by the equation 2 = 0.

The line that passes through the radar position and
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Ground plane

FIGURE 8. lllu.tranne of the basic elements that define the spothght SAR imaging geometry.
Two coordinate systems are represented that share a common origin coinciding with the
aimpoint. The world coordinate system (in blue) is defined by the umit vectors x. y. and z.
The radar coordinate system (in red) is defined by the unit vectors r, ¢. and n.

\()il\kit{t'\ \\ill\ lhc (“I‘L\li()n Uf-l‘.ld.ll' moton N L.l”k‘d
the fine of flighe while the line that interseats both the
radar position and the radar aimpoint i cadled the
I of sieht The plane detined by dhese two lines s
called the ot plane: the prejeciions of these two
lines downward onto the ground plane are called.
respectivedy, the projected line of flisht and the pro-
jected Tine of siohi.

T hroughout our discussion. we often refer o the
three angles o0 00 and go which are also shown in
Figure 8. The angles ¢ and 0 were introduced carlier
i the tent i Figure 4, bue we detine them more
precisely heres The aspect ais the angle berween the
principal target s inothe ground plane and the
projected radar fine ot sight. The depression s the

angle henween the radar Tine of sight and the ground

6O

planc. The angle g which s known acthe s s
detined as the geomerric complement ot the angle
between the projected line of flight and the projecied
line of sight. Note dhae the two angles «and o derer
mine the radar viewing direction whereas g deter
mines the dirccion of radar motion relative o the
viewing direction.

Fach of these definitions is asetul as we develap
our mathematical abstraction ot the SAR imaging
Process. 5}\'\”1\.\”}‘. we use the above definitions o
Jescribe the SAR cranstormation as a projection ol
3D distibution of wrget saatterers onto the 22D
dant plane. In the sppendin we give a detailed justiby-
cation tor reprosenting the SAR transtormanion this
wav, based on the actaal physical quantities measured

by a SARC I the next subsection. howeva we on
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this justification and merely provide a concise math-
ematical description of our SAR imaging model. Fol-
lowing this description, we give an application of our
SAR imaging model in the form ot a simple visual
example.

A Mathematical Model for SAR Imaging

We begin our description of the SAR transtormation
by introducing the radar coordinate system (shown in
red) in Figure 8. The origin of this Cartesian coordi-
nate system coincides with the aimpoint, and the
coordinate locations are represented in terms of the
unit basis vectors r (the range vector), ¢ (the cross-
range vector), and n (the slant-plane normal vector).
This coordinate system can be defined in terms of the
basic elements of the spotlight SAR geometry defined
above.

We begin with the observation that the range vec-
tor r, which points in the direction of the radar line
of sight, can be expressed in world coordinates as

cos ¢ cos
r=|singcos

—sin(

To check that this expression is correct, the reader can
casily verify the following three properties of r: (1) r
is unit length, (2) the projection of r onto the xy
plane is rotated counterclockwise by the angle ¢ with
respect to the x-axis, and (3) r is tilted downward by
the angle 0 with respect to the x-y plane.

By using the vector r and the world-coordinate
both of which lie in the
slant plane, we can construct the slant-plane normal

basis vector y = [0 1 0 ]

vector n with the cross-product formula

o sin ()
XY _y 0
[ 3|

[‘]:

]

cos ¢ cos )

where £ is the normalizing constant required to make
n a unit-length vector. The value of £ is given by

b= 1

(1

.2 2 2
\SINTH + cos™ ¢ cosT O

Because the cross-range vector ¢ must be perpendicu-
lar to both r and n. it is constructed by using the
formula

. 2

~SINPCOsPCos 0

L. 2 N .2
c=nXr=~FA|lcos @cos @ +sin~ 8

singcos@sing

From this coordinate-system construction, we see that
the vectors r and ¢ form an orthonormal basis for the
slant plane, just as the vectors x and y torm an
orthonormat basis tor the ground plane.

Now we consider imaging a point reflector at loca-
tionp=|[p. p, p.] "'in the world coordinate system.
We can express this point in the radar coordinate
system by using the standard dot product o prouu
the pomt p onto cach of the unic basis vectors r, ¢,
and n. The resulting vector q can be written in radar
coordinates as

q, prr
q=|q.|=|p¢c
q., p'n

According to our basic model for the SAR transtor-
mation, we must now project the 3-D vector q onto
the 2-I) slant plane to obtain its location in the SAR
image. We can do this projection by retaining the first
two components of q and neglecting the third com-
ponent, because the entire third dimension of the
radar coordinate system becomes collapsed in the
projection process. This procedure gives the slant-
plane coordinates of the original point reflector as

rp.\. cosgcosl) + p singcost) — p. sin 0]

. ~kp, sin ¢ cos ¢ cos 0
9. 2 2 :
+ kpvy(cos ¢ Ccos 0 + sin~0)
+ kp, sing cos 0 sin0) J
(2)

We can use the above expression for the range and
cross-range coordinates of a point to show math-
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ematically that when the point is imaged ar a fixed
aspeet angle and depression angle, buc ac difterent
squint angles, it will appear at ditterene SAR image
locations.

To demonstrate dhis concept, we conduct two im-
aging experiments in which we keep the aspect and
depression angles constant but allow the squint angle
to vary. In particular, for the first imaging experiment
we use the values « = 0, ¢ = 1/4, and ¢ = 0; for the
second experiment we use the values « = 0, 0 = 2/4,
and ¢ = a/4. In each experiment, once these angles
have been fixed, we consider imaging a point p that
lies on the principal target axis in the ground plane at
a distance of one unit from the aimpoint. Based on
the diagram in Figure 8, this point must have the

coordinates
P cos ¢
P=|r,|= sing|. (3)
2. 0

For the first imaging experiment (with the angles
a=0,0=nxl4, ¢ = 0), we can readily verify from
Equation 1 that &= 1, and from Fquation 3 that

1
p=10}.
0

We can now compute the slant-planc coordinates of p
by substituting these numerical values into Equation
2. This computation yields the 2-D slant-plane loca-
tion s, associated with the first set of imaging angles;
this location is given by

For the second imaging experiment (with the angles

=0, 0=nl4, p = 7/4), we find that k= 2/\/3 ,and
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As betore, we compure the slane-plane coordinates ot
f

p by substituting these values into Equation 2. This

vields the 2-D) slant-plane location s, given by

O

For the two different squint angles above, the range
coordinate of the imaged point remains constant but
the cross-range coordinate changes dramatically. This
observation is an example of the more general result
that, given a tixed radar viewing direction, a change in
the squint angle causes the cross-range coordinate of a
point to change. Thus the above example provides
quantitative proof that the slant-plane location of a
point is not uniquely determined by the aspect and
depression angles alone.

In the next subsection, we give a simple qualitative
example that visually demonstrates the effects of the
squint angle on the appearance of a SAR image, and
thus demonstrates the importance of incorporating
information about the squint angle into the baseline
classification algorithm.

SAR Imaging Example

Figure 9(a) shows a perspective view of a simple ob-
ject that is being imaged by an airborne SAR. The
object consists of a square grid of point reflectors
(shown in blue) in the ground plane, and one addi-
tional point reflector (shown in red) above the ground
plane and directly over the center of the grid. Figure
9(b) shows a top view of the same imaging configura-
tion. From this top view, we can see that the grid of
point reflectors is perfectly aligned with the projected
radar line of sight; we arbitrarily define this orienta-
tion to correspond to a 0° aspect angle. The object is
also being imaged at a 0° squint angle, because the
radar js Jooking in a direction perpendicular to the
line of flight.

Figure 9(c) shows the same imaging configuration
once again, but from a viewing direction perpendicu-
lar to the slant plane. Thus we sec the projection of
the object onto the slant plane, which (according to
our mathematical SAR model) corresponds directly
to the result produced by the SAR imaging process.
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Because of the projection operation, the grid of point shown in Figure 10(b) we can see that the aspect
reflectors (in blue) appears toreshortened in the verti- angle has not changed (e, the gnd is sull aligned
cal dimension, and the point retlector above the ground with the projected radar line of sight), buc that the
(in red) appears just above the grid. Finally, Figure squint angle has changed from 0° 1o 45°.
9(d) shows an image-sized portion of the slant-plane Figure 10(0) shows the object projected onto the
projection (displayed according to the convention that slant-plane under this new imaging contiguration.
range increases in the downward direction) that rep- The grid of point reflectors (in bluc), which appeared
resents the SAR image of the object at a 07 aspect as a diamond from the top view, now appears as a
angle and a 0° squint angle. toreshortened diamond in the vertical dimension be-
Figure 10(a) shows a perspective view of the same cause of the projection operadion; the additional point
object being imaged with a different SAR geometry. retlector above the ground plane (in red) appears over
For this example, we assume that the slant plane has the upper corner of this diamond because of s height.
been adjusted so that the depression angle matches Figure 10(d) shows an image-sized portion ot the
that of the previous example. From the top view slant-plane projection (again displayed according o

n

(0 (d)

FIGURE 9. lilustration of SAR imaging as a projection (broadside case). The collection of point reflectors being imaged is
shown trom (a) perspective view, (b) top view, and {(c) slant-plane view. (d) The resulting SAR image can be interpreted as
an image-sized portion of the slant-plane projection, as indicated by the orange outline in part c.
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the convention that range increases in the downward
direction) that represents the SAR image of the object
ata 0% aspect angle and a 45° squint angle.

The primary difference berween this SAR image
and the one shown in Figure 9(d) is that the point
reflectors now appear shitted in the cross-range di-
mension. The shift for cach reflector is not, however,
a simple function of the range of the reflector, as it
may appear at first glance. Racher, che shife is a func-
tion of the 3-D location of the reflector, which is
demonstrated by the large shift of the point retlector
above the ground plane. This shift has caused the
retlector to move out of alignment with the middle
column of the grid, which can be seen by comparing

Figures 9(d) and 10(d).

/ o...o.. . ° / /
(a)

(c)
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Sensitiviry of Baseline Classifier to Changes in Squint
The simple geometric examples given in Figures 9
and 10 show that we can produce two ditterent im-
ages of an object by using two ditferent squint angles
for a fixed ser of aspect and depression angles. Fronm a
qualitative standpoint, these differences adversely at-
tect the performance of the baseline classitier, because
the classifier has only one reference image for cach
aspect-angle and depression-angle pair. In this sec-
tion, we¢ describe an experiment that demonstrates
quantitatively chac che classitication statistic used by
the baseline classifier—the correlation score—changes
significandy as a function of squint angle tor a fixed
aspect-angle and depression-angle pair.

(d)

FIGURE 10. iilustration of SAR imaging as a projection (forward-looking case). The sequence of figures—(a) perspective
view, (b) top view, (c) slant-plane view, and (d) resulting SAR image—corresponds directly to the sequence shown in

Figure 9.
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Geometry 1

Geometry 9

N X

Geometry 17

} !

o =45°

0 = 45° 6 = 45°

Image 1

Image 9

Image 17

FIGURE 11. Depiction of the imaging configurations used to quantify the robustness of the baseiine classifier with respect
to variations in squint angle. The test images, which are shown notionally below their respective configuration diagrams,
were all formed by using the same aspect angle (<« = 45") and depression angle (/= 45%), but each had a unique squint angle

¢ (a multiple of 5" in the range from —40° to +407).

We conducted the experiment by using a target-
signature simulation package from The Analvtic Sci-
cnces Corporation known as SARTOOL 2], which
was designed to model the dominant electromagnetic
characteristies of a target. We used the SARTOOL
maodel of an Ma8 tank oriented such that both the
aspect and depression angles were fixed at 457 e
carried out the experiment by using a single reference
imi e, which was created ata 07 squincangle, and 17
tes. images, which were created at squint angles rang-
ing trom -40% to +40” in 37 increments. Figure 11
Hlustrates the imaging configurations we used to gen-

crate these test images. (Note that the aspect angle

and the depressicn angle are the same tor cach con-
figuration.) The experiment consisted of correlating
the reference image with cach of the test images 1o
generate a piot of correlation score versus squint anglle.
This plotis shown as a sohid line in Figure 12.

Ot course. the classitier gave pertect pertormance
(i.c.. correlation score p - 1.0) tor the test image
tormed at a 0% squint angle, because the reference
image was formed at this same squine angle. The
correlation scores progressively decline, however, as
the squint angle tor the test set varies in cither direc-
tion trom 0", At the extremes of —=40° and +40°, the

correlation scores are approximately 0.5, This result
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FIGURE 12. Plots ot correlation score versus squint angle
for the baseline classifier (solid line) and the proposed
classifier (dashed line). The test images used tor the ex-
periments were those described in Figure 11. The 2-D
template used by the baseline classifier and the 3-D tem-
plate used by the proposed classifier both had aspect and
depression angles matching those of the test images.

suggests that the performance of the baseline classifier
is sensitive to changes in squint angle. Thus, to im-
prove the baseline classifier we must account for the
effects of squint (in addition to the already recognized
effects of aspect and depression) on the process of
SAR image formation.

How to Develop a Better Classifier

Our analysis in the previous section suggests that we
can improve the performance of the baseline classifier
by taking into account the cffects of both radar view-
ing direction and radar motion direction on the SAR
imaging process. In this section we propose a new
classifier that maintains the conventional template-
matching engine, but calls for two major modifica-
tions to the baseline classifier: (1) the replacement of
the present set of 2-D reference images with a set of
3-D templates, and (2) the incorporation of our math-
ematical model of SAR imaging as a projection so
that any 3-I) template can be transformed appropri-
ately to synthesize a 2-D reference image for the
correlation operation.

We begin by giving a definition of a 3-D template,
and we then describe how a 3-D template is trans-
formed into a 2-1) reference image. In addition, we
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present a novel technique for creating 3-D templates
from our existing darabase of 2-D) reference images.
Finally, in a contunuation of the experiment discussed
in the previous section, we show that the proposed
classifier is much more robust with respect to changes
in squing angle than the baseline classifier.

Description of 3-D Templates
A 3-D template is a finely sampled 3-ID grid of points
representing the volume occupied by the target of
interest, in which each grid point corresponds 1o a
scatterer on the target. Each 3-1) template is associ-
ated with a distinct radar viewing direction, specified
by the aspect angle « and the depression angle 0. We
thus index the collection of 3-D templates by these
radar viewing angles, and we let 7, denote the tem-
plate corresponding to the particular pair («, 6). The
value stored at each point in the template 7, repre-
sents the radar reflectivity of the scatcerer at that
point, when the target is illuminated from the direc-
tion corresponding to («, #). To prepare for the devel-
opment that follows, we assume that the template 7,
contains K grid points. The location of the jth point
in the 3-D grid is denoted by p;, and the radar-
reflectivity value stored at this point is denoted by 4,
forj=1,.... K

To transtorm 7, into a 2-ID reference image, we
use our projection model of the SAR imaging process.
Specifically, we project the points in the template 7,
onto the slant plane defined by the depression angle 0
and the squint angle ¢. to yield a reference image that
we denote by /. Let 1 4,(m, n) be the value ar the
range/cross-range location (m, ») in this reference
image. The rclation between the values in the tem-
plate 7., and the reference image value 1,,,(m, #) is
given by

(m,n}y = EA],

jgjl,,,w (1,01}

lulhp

where Q gl m. 1) is the set of indices specified by

P, projects to location
Q. (m.n) = 3 j1 (m.n) in the SAR image

corresponding tote, 0, ¢)

e
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Because a SAR image is composed of discrete pix-
els in the range and cross-range dimensions, che loca-
tion (m2, n) actually corresponds to a locus of points in
the slant plane. Let A and A be the range and cross-
range pixel spacing intervals, respectively, associated
with the image. Then any slant plane location (g,, ¢,)
such that

r”)] = l])' < r’)l + A"

€y s q" < €y + A" °
(where 7, and ¢, are appropriate constants) is mapped
to SAR image location (m, n). Thus P projects to the
SAR image location (m, 1) if

Tw SP;E<T, * A,

€, Spjre<e, +A,

where r and ¢ are the unit range and cross-range
vectors in the radar coordinate system that was de-
fined carlier.

Description of Proposed Classifier
Figure 13 illustrates the algorithm used by the pro-
posed version of the baseline classifier (note the simi-
larity between this figure and Figure 3). The classitier
uses the aspect angle « and the depression angle ¢ to
select a 3-D) template from the database. The points
in this 3-D template are projected onto the slant
plane specified by the squint angle ¢ to produce a 2-D
image, which is then correlated with the input test
image. If the correlation score exceeds the threshold 7,
the target of interest is declared to be present.

Note that the new classifier continues to use the
conventional template-matching engine, so that the
overall structure of the algorithm is unchanged. The

¢
Database
(o, 0)
Projection
Reference
—————————
Target
Test input present
pzt //Y
P Threshold
> Correlator —— e p<z
\\
Target
absent

FIGURE 13. Schematic description of the algorithm used by the proposed one-class classifier. The classifier uses the
aspect angle «« and the depression angle ¢ to select a 3-D template from the database. This 3-D template is projected onto
the slant plane specified by the squint angle ¢ to produce a 2-D image, which is then correlated with the input test image. If
the correlation score p is greater than or equal to the threshold 7, the target present decision is declared.
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principal moditication to the proposed classifier is
that che original database of 2-1) reterence images has
been replaced by a database of 3-D templates. In
addition, the proposed classitier is equipped with a
processor that transforms a 3-D template into a 2-D

image.

Creation of 3-D lemplates

Let us now consider how a 3-D) template can be
created from the existing set of 2-D reference images.
For a target of interest, we wish to construct a 3-D
template corresponding to a particular aspect-angle
and depression-angle pair. To perform this construc-
tion we require two or more SAR images of the target,
all formed by using the fixed aspect and depression
angles of the template, but each formed by using a
different squint angle. Recall that each of these SAR
images represents a projection of the 3-D distribution
of target scatterers onto a 2-D slant plane. Our goal is
to use the information contained in these projections
to reconstruct the locations and amplitudes of the
targee scatterers.

We fix the locations of the scatterers py, ..., py so
that they represent a uniform sampling of a parallel-
epiped that is approximately the size of the target.
Once these scatterer locations are fixed, we then solve
for the unknown amplitudes A, corresponding to the
points p;. Mathematically, we formulate the problem
of determining the A; values in the following way. Let
us assume we have L acrual SAR images /,,....],
formed at squint angles ¢,,....¢;, respeciively. Corre-
sponding to this sequence of actual images, we let
f,,....I; be a sequence of synthetic images formed
from the template amplitude values. By using our
projection model for the SAR imaging process, the
value in the ith synthetic image corresponding to the
range/cross-range location (m, ») is computed by

ii(m,rz)= EA}-, ()
JEQ mon)

where Q,(m,n) is the set of indices specified by

J P, projects to location (m, n) in the
Q:(mmn)y =1j|

l SAR image corresponding to ¢,
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Let the total mean-square difference between the set
of synthetic images and the set of actual images be
given by

(A A =
AN

1
Z 2 2[1/(»1 ny =1 (m n)T[

m=1 n=1
(3)

where M and Nare the range and cross-range dimen-
sions, respectively, of the SAR images. (Note that the
dependency of £ on each A enters Equation S implic-
itly through Equation 4.)

We can now cast the template construction prob-
lem as a multivariable minimization problem. Spe-
cifically, we compute the values of A,...., Ay by
solving

Minimize e(A,...., Ay)
such thatd; 2 0, forj = 1,2,.... K.

To determine an optimal solution, we begin by as-
signing to each unknown amplitude 4; an initial am-
plitude that represencs our best a priori estimate of the
actual radar reflectivity at that point. In the absence
of a priori knowledge, we assign a random initial
value to each A;. Figure 14 illustrates the iterative
procedure we use to compute the template amplitude
values.

The points p; are projected onto each of the L slant
planes (each slanc plane corresponds to an actual SAR
image supplied to the algorithm), which results in a
sequence of synthetic images that can be compared to
the actual images. The total squared error is com-
puted from these two sets of images (synthetic and
actual) and the amplitude values are adjusted such
that this total error is reduced. The iteration then
cycles through the stages of synthetic image forma-
tion, error computation, and amplitude adjustment.
The procedure is terminated when the rotal squared
crror is less than some prespecified tolerance.

Many standard gradient-descent techniques are
available for implementing this iterative minimiza-
tion: for more details on these techniques see the

book by D.G. Luenberger [3].
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3-D template of radar-reflectivity amplitude values (A))

\\e
5\0“*‘ o8

\J

Synthetic image 1 Synthetic image 2

' '

Compute Compute
mean-square mean-square
error error

Adjust A, to

Synthetic image L reduce error

i Compute
Compute total squared
mean-square error
error _

Real image 1 Real image 2

Real image L

FIGURE 14. lllustration of the 3-D template-creation procedure. The procedure begins with a random assignment of radar-
reflectivity values at points in the 3-D template; thereafter the procedure becomes an iterative refinement process. The
amplitudes are projected onto L slant planes (each slant plane corresponds to an actual SAR image supplied to the
algorithm), which results in a sequence of synthetic images that can be compared to the actual images. The total squared
error is computed from these two sets of images (synthetic and actual), and the amplitude values are adjusted such that this
total error is reduced. The iteration then cycles through the stages of synthetic image formation, error computation, and
amplitude adjustment. The procedure is terminated when the total squared error is less than some prespecified tolerance.

Sensitivity of Proposed Classifier 1o Changes in Squint
Farlier we described an experiment with che baseline

classitier that provided quantitative proot thac the

correlation score varies significantly as a function of

squint angle for a fixed aspect-angle and depression-
t ¢

angle pair. Because the correlation score is the classifi-

cation statistic used by the bascline classifier, overall

performance is extremely sensitive to (lmngc.\ n squint

angle. This section summarizes a continuation of the
experiment in which we measure the sensitivity of the
proposed classifier to changes in squint angle.

For this experiment we used the same set of 17 test
images described carlier. Recall that these images were
formed by using the SARTOOL model of the M43
tank oriented such that both the aspect angle and
depression angle were fixed at 45 These images were

created wich squint angles ranging from —40° 1o +40°
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in 5° increments. Let us denote the ith image in this
set by /., with the corresponding squint angle ¢, given
by the expression

¢ = -40+5( -1, r=1...,17.

Our 2-D reference image, which was created at a

squint angle of 0°, was replaced by a 3-D template

(a)

(b)

FIGURE 15. (a) Simple solids model of an M48 tank; (b) the
same model of the tank with an overlay of the most signifi-
cant radar-reflectivity information contained in the 3-D tem-
plate for the tank. (The overall intensity of the underlying
solids model has been reduced to give emphasis to the
radar-reflectivity information.) Note that there are signifi-
cant radar returns from the front right fender, the turret,
the track region, and the front left portion of the tank.
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corresponding to an aspect angle of 45° and a depres-
sion angle of 45°. We constructed this 3-D template
by applying the algorithm described in the previous
section to three SARTOOL images tormed at squint
angles of —40°, 0°, and 40°. These three images are
displayed in Figures 7(b), 7(c), and 7(d), respectively.

The result of ¢his 3-1) template construction is
interesting to observe. Recall that the value stored at
each point in the template is the radar reflectivity of
the scatterer at that location, when the target is im-
aged from the given viewing direction. Figure 15(a)
shows a simple solids model that represents the basic
features and dimensions of the M48 tank: Figure
15(b) shows the same model overlaid with the most
significant radar-reflectivity values contained in the
template. Note that there are significant radar returns
from the front right fender, as well as from the turrer,
the track region, and the front left portion of the
tank.

In our previous experiment we correlated the refer-
ence image with each of the 17 test images to generate
a plot (denoted by the solid line in Figure 12) of
correlation score versus squint angle. In this experi-
ment we first transformed the 3-D template into a
sequence of reference images, which we denote by
l],...,l,—,, corresponding to squint angles ¢y.....¢-.
We then correlated 7, with 7, for i = 1,...,17, 1o
obtain the dashed line in Figure 12.

We observe in this plot that the highest correlation
scores occur at the squint angles —40°, 0°, and +40°.
This result is not surprising because the template was
constructed by using images formed at these three
squint angles. The average correlation score obtained
by using the 3-D) template is approximacely 0.85,
which is much higher than the average correlation
score obtained by using the baseline classifier in the
previous experiment. Morcover, the scores do not
change significantly as the squint angle varies in ci-
ther direction from 0°, which suggests that the pro-
posed classifier is more robust with respect to changes
in squint angle than the baseline classifier.

Summary

In this article, we have analyzed and suggested im-
provements to a conventional template-matching clas-
sifier currenty used in an operational ATR system.
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This conventional classifier uses a collection of 2-D

SAR reference images to represent o full range of REFERENCES
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gets. For cach target category, the input imagc is 1. J.C. Henry, “Hhe Lincoln Laboratony 33-GHz Airborne Pola-
. lated with t fi R h: as f d rimetric SAR Tmaging Svstem.” JEEE National  Telesystem
L.()ITL ated with the reterence image that was forme (;””-/", Atlanta, GA, 26-27 Mardl 1991, p. 353
trom the most similar radar viewing direction; the 20N Zabele. S. Bachinsky. B, Myers, A, Stichl, and R. Pinto,
: : a0 : - Signature Prediction Users Manual, version ™ 1 (The Analytic
input is then classitied to the category with the high- et 4 . ‘ -
b . gory & Science Corporation, Reading, MA, 1990).
est correlation score. 3. D.GL Luanberger, Linear and Nonlear Programnimg (Addi-
Although this algorithm seems reasonable, we found son-Wesley. Reading, MA, 1984).

that it produces surprisingly poor classification resules
for some target types. We explained these poor results
by using a simple mathematical model of the SAR
imaging process. As our model reveals, radar motion
direction is as important as radar viewing direction in
specifying SAR imaging geometry. Thus two target
images formed with the same radar viewing direction
but difterent radar motion directions can appear quite
different. Because the conventional classifier does not
explicitly account for radar motion direction, its per-
formance is degraded.

Accordingly, we have proposed and demonstrated
an improved version of the conventional template-
based classifier that accounts for both direction pa-
rameters. In our improved classifier, each 2-D) image
trom the reference library is repiaced by a 3-D tem-
plate so that more targer scattering information is
available at each viewing direction. As in the conven-
tional classitier, the reference image is selected on the
basis of radar viewing direction; by using the math-
ematical SAR imaging model the improved classifier
then transtorms the selected 3-D template to a 2-D
image whose radar motion direction matches that of
the input image.

After comparing the experimental correlation scores
between the original 2-D template-based classifier
and the improved 3-D template-based classifier, we
conclude that the new dlassifier is significantly more
robust with respect to changes in squint angle.
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APPENDIX:

MODELING

THROUGHOUT THE TEXT of this article we modeled
the SAR imaging process as a projection of the 3-D
distribution of rarget scatterers onto a 2-D slant plane.
We relied heavily on this projection model as we
analyzed problems with the baseline classifier and
developed improvements to it. In this appendix we
provide justification for using the projection model,
and we state the conditions under which this model is
valid.

Our strategy for justifying the projection model
consists of four main steps. In the first step, we con-
struct the basis vectors for the radar coordinate sys-
tem and perform the projection operation on a point
reflector to obtain approximate expressions for the
SAR image location of the reflector. In the second
step, we build a foundation for analyzing the projec-
tion approximations by writing the exact nonlinear
expressions for the physical quantities that are mea-
sured by a SAR when imaging the point reflector. In
the third step, we expand these nonlinear expressions
into first-order Taylor series in the vicinity of the
radar aimpoint, and then observe that the resulting
linear approximations are identical to the original
projection approximations. Finally, in the fourth step,
we quantify the accuracy of the projection model by
deriving simple bounds on the approximation error.

We begin by obtaining expressions for the pro-
jected location of a point reflector in the radar slant
plane. In keeping with the notation we established for
Figure 8, we define the position of the point reflector
in world coordinates as

P
p=|2,
?.

In addition, we define the time-dependent sensor
p
position in world coordinates as
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5.(2)
s{t) = x'y(r) .

s, (¢)

Because the sensor is moving at a fixed altitude paral-
lel to the y-axis in Figure 8, we explicitly remove the
time dependency from the first and third coordinates
of s(¢) by setting s (¢} = 5, and s,(r) = 5.

With the sensor and point-reflector positions de-
fined, we can now construct the basis vectors for the
radar coordinate system. Recall from the main text
that we originally expressed the basis vectors t, ¢, and
n in terms of the imaging angles 6 and ¢. In this
section, we reconstruct the same basis vectors r, ¢,
and n, but we express them in a form that is more
convenient and more useful for our derivations. In
particular, rather than using fixed angles from a single
imaging geometry, we express these vectors in a time-
dependent form in terms of the sensor coordinates.

At time ¢, the range vector r(r) can be constructed
by using the formula

Sy

s{t) ~1 s_y(t) .

fs)] ) \ﬂf + Si(t) +52

t(t) = -

S,

F4

Also, as before, the slant-plane normal vector n(¢)
can be constructed by using the formula

t(t) x y 1

R R

n(z)

-5,

(Note that this normal vector is constant, because the
radar slant plane does not change with time.) Finally,
the cross-range vector ¢(¢) is determined by the cross
product of the other two vectors, as given by
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n(t) x z)

c(1)

=55, (1)
1 LI
= SO+ S

=5, (t)s,

The projection of the point p onto each of these basis
vectors yiclds the new vector

q,()
q(t) = |aq.()
4,(1)

in radar coordinates. In particular, the range and cross-
range coordinates of the point p are given by

p- ()

-1
Vi 50 + 5,

q,(t)

and

q.(t) = p- )
1

—
) b
\[5: + 5, \jsf + szy(t) + 522
2,2
X[ = Pusisy (r) + Py (s +57) - pzs.y(t)sz .

Having obtained these projection approximations
for the range and cross-range coordinates of the point
p. we now seek expressions for the actual quantities
measured by a SAR with respect to the location of p.
Specifically, these quantities are (1) the relative range
of the point reflector (i.e., the difference between the
distance from the sensor to the point reflector and the
distance from the sensor to the aimpoint), and (2) a
scaled version of the relative range rate of the point
reflector (i.e., the rate of change of the relative range
with respect to time). We can express the relative
range of the point reflector as

As(e),pl = ls(2) = oll - ||s(2)].

In addition, by differentiating the above expression
with respect to time, we can write the relative range
rate F[s(z), p] of the point reflector as

L {ste). pl
ot

s(z), pl

” s,y = p, 5, 0)
5 - il .
"o el sl

In reality, the relative range rate is rarely used in its
raw form as it appears above, because it is so highly
dependont on both the speed of the sensor and the
distance of the sensor from the aimpoint. Rather,
these undesirable dependencies on the absolute sen-
sor velocity and position are usually removed through
preprocessing, so that the cross-range dimension of
the resulting SAR images is normalized, and SAR
images created under aifferent imaging conditions
can be directly compared. Thus we introduce two
simple time-dependent corrections to 7[s(z), p] (one
correction for the absolute sensor velocity, and the
other correction for the absolute sensor position) to
obtain the compensated relative range rate, which we
denote by 7 [s(z), p].

To compute the correction for sensor motion, we
begin by decomposing the sensor velocity vector into
two velocity components in the slant plane, with one
component along the radar line of sight, and the
other component orthogonal to the radar line of sigh:.
We then note (under the assumption that the sensor
is far from the aimpoint) that the relative range rate is
affected only by the component of the sensor velocity
vector that is orthogonzl to the radar line of sight.
(This statement is truc because the velocity compo-
nent along the radar line of sight, considered sepa-
rately, induces exactly the same range rate on all points
in the imaging area, resulting in a relative range rate
of zero for these points.) The sensor speed in the
direction orthogonal to the radar line of sight can be
expressed as

Loy _ __\/5.3+522 .
ER T
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Because the sensor speed appears in the numerator of

the expression tor relative range rate, the above com-
pensation tor sensor speed will appear in the denomi-
nator of the overall range-rate correction term.

To obtain the correction for sensor position, we
note that the denominator of cach term in the expres-
sion for relative range rate is on the order of Hs(t)”.
Thus a suitable compensation for the distance of the
sensor from the aimpoint is simply this factor Hs(t)!!,
which will appear in the numerator of the overal!
range-rate correction term. By applying both of the
computed corrections to the original expression tor
relative range rate, we can express the compensated
relative range rate as

rs(e). pl s(e). pl

1

_{Is
0

se)]” [5,40 = p, 5,0
vie st o =pl sl |

Having produced explicit expressions tor relative
range and compensated relative range rate, we rewrite
them more suggestively as range and cross-range mea-
surements by using the notation

q,(t) = rs(r).pl
and

q.(t) =7 [s(t).pl.

We now show that these actual radar measurements
g,(t) and ¢, (¢) are well approximated by the previ-
ously computed projections ¢,(¢) and ¢, (2), respec-
tively. We begin by separately expanding the expres-
stons for ¢,(t) and g, () into Taylor series around
the radar aimpoint (i.c., around p = 0), retaining only
the first-order terms. For the range component, this
procedure yields

4,6y = rls).pll_, + p, _arls(e). pl
p= f/l) i
X P=0
! 7 2 ” Al
wpy p=0 ap. b0
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which reduces to

q,(1) =0+ "‘T[/’\& +ps, )+ /{,s;]

ki M
Vot sy 457

=p-r(s).

For the cross-range component, the Taylor series ex-

pansion yields

q.(t) = )i[s(t),p]' WA ﬂ_[s(f_)gl
p= ’,,/)
kS p=0
L7 As(), pl L s(0). pi
¥ , } - ‘
I/p’)’ P=0 d/): on

which reduces to

g,(6) =0+ —

2 L
LI ARy
\ A,\

Ry

2 2
+ 5. () + 57

x[—/:_\_sxx),(t) + /)V(sf + .\‘f) - p‘.s;xl,(l)]

=p- ).

Note that these linear Taylor series expansions are
identical to the original projections ¢, (r) and ¢, (1),
indicating that ¢,(¢) and ¢, (1) are good approxima-
tions to ¢,(t) and g.(¢) in the vicinity of the radar
aimpoint.

Error Analysis

Let us now quantify the error incurred by using these
lincar approximations instead of the actual measare-
ments. To keep the analysis concise, we examine only
the error in the relative range approximation. To sim-
plify notation, we arbitrarily choose a time 7, and
remove the explicit time dependency ot variables by
setting s = s(ty), g, = q,(ty), and ¢, = ¢,(,). In
addition, for convenience we express the length of p
as a fraction o of the length of s (i.c., up” = b”s“ ), and
we define 3 to be the angle between p and s.

With these definitions, we can rewrite the expres-
sion for the true relative range measurement g, by
using the law of cosines to yield
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"= Ysllplcos s - 5]

=
0

"+

\“5

M

]" - 26”5 : cos B - “s”

2 3y
|+0'

\"S |s

||s“(\l + 0% = 2cosp —1).

Also, we can rewrite the expression for the relative
range approximarion ¢, by using the identiry

p-s = [pllscos
to vield
B
, - - bllsle
sl
= —blls“ cos f3.

Because 4, always underestimates g,, we can write
the absolute approximation error e simply as

e=gq, -4,

I

“s” (\:>lv+ o - 72() cosf =1+ dcos /3) .

For a fixed value of 8, the error reaches its maxi-
mum value at the angle g = cos_l(é/Z). Substitut-
ing this angle back into the formula for e yields the
upper bound

2
Crax = %”S” = g”P“

For the specific case of data collection with the Lin-
coln Laboratory millimeter-wave sensor, & is typically
no larger than 0.05, so the error incurred by using the
projection approximation for a given point p is no
more than 2.5% of the distance of p from the
aimpoint,

The derivation of the error bound for the cross-
range approximation is similar in spirit to tne deriva-
tion given above, but it is much more lengthy and
tedious, and hence is omitted.

.
h
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Neural Systems for Automatic
Target Learning and Recognition

Allen M. Waxman, Michael Seibert, Ann Marie Bernardon, and David A. Fay

B We have designed and implemented several computational neural systems for

the automatic learning and recognition of targets in both passive visible and

synthetic-aperture radar (SAR) imagery. Motivated by biological vision systems

(in particular, that of the macaque monkey), our computational neural systems

employ a variety of neural networks. Boundary Contour System (BCS) and

Feature Contour System (FCS) networks are used for image conditioning.

Shunting center-surround networks, Diffusion-Enhancement Bilayer (DEB)

networks, log-polar transforms, and overlapping receptive fields are responsible

for feature extraction and coding. Adaptive Resonance Theory (ART-2)

networks perform aspect categorization and template learning of the targets.

And Aspect networks are used to accumulate evidence/confidence over temporal

sequences of imagery.

In this article we present an overview of our research for the past several

years, highlighting our earlier work on the unsupervised learning of three-

dimensional (3-D) objects as applied to aircraft recognition in the passive visible

domain, the recent modification of this system with application to the learning

and recognition of tactical targets from SAR imagery, the further application of

this system to reentry-vehicle recognition from inverse SAR, or ISAR, imagery,

and the incorporation of this recognition system on a mobile robot called the
Mobile Adaptive Visual Navigator (MAVIN) at Lincoln Laboratory.

ROM THE sTUDY of biological vision systems,

we can learn much that applies to the design

of computational neural systems for target rec-
ognition. These insights are most relevant to passive
vision systems, such as visible and multispectral infra-
red imaging systems, but similar organizing principles
are also uscful in the radar imaging domain. In the
next section, we summarize the primary lessons that
have been learned from the anatomical, physiological,
and psychophysical study of vision systems in the
macaque monkey and man. These insights are then
applied throughout the remaining scctions of this
review. (Note: An introduction to biological vision,
fearning, and memory can be found in the September
1992 special issue of Scientific American, which is

entitled “Mind and Brain.”)

Design Constraints from Biological Vision

The vision systems of primates contain two primary
processing streams: the parvecellular stream, which
processes shape information, and the magnocellular
stream, which processes motion information (see Ref-
erences 1 and 2, and the references cited therein).
Both streams begin in the retina and culminate in the
parictal and temporal lobes of the cercbral cortex.
Our automatic target recognition (ATR) svstems have
focused on the modeling of the parvocellular stream
tor the learning and recognition of three-dimensional
(3-D) objects, although we have utilized image se-
quences to accumulate evidence over time. The image
motion of objects can also be usetul for recogniz-

ing potential targets, and we have developed
£ £
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neurocomputational systems [3] to extract such infor-

mation in real time (30 velocity fields per second) on

the Pipelined Image Processing Engine (PIPE), a video-
rate parallel-processing compurter. The integration of
an object’s image motion with its shape information

can potentially enhance the ATR process, and is a

topic we are currently investigating.

The carly visual processing that takes place in the
retina, lateral geniculate nucleus, geniculo-cortical con-
nections, and visual cortical areas V1, V2, and V4 of
the occipital lobe are responsible for
1. conditioning imagery so as to render it invari-

ant to the prevailing illumination (while pro-

ducing smoothly shaded percepts of objects),

2. localizing fteatures (such as edges, high-curva-
wure points, and high-contrast points) that de-
scribe 2-1D shapes, and

3. transforming the resulting feature pattern so as
to render it invariant to object location, scale,
orientation around the line of sight, and small
detormation due to any foreshortening resulting
from a rotation in depth (i.e., a rotation around
an axis perpendicular to the line of sight), while
still retaining measurements of these spatial at-
tribures.

These invariant representations of 2-D object shapes
make their way to the inferior temporal cortex via
connections between the occipital and temporal lobes,
whereas the location/scale/orientation information is
relayed to the posterior part of the parietal lobe via
connections between the occipital and parietal lobes.
Object-location information is conveyed to the pari-
ctal lobe also via the superior colliculus, which re-
ceives direct connections from the geniculate nucleus
and is intimately involved in attentional processes.
These two cortical pathways—one subserving object
vision (in the temporal lobe) and the other subserv-
ing spatial vision (in the parietal lobe)—have come to
be known as the what and where systems [4]. Fusion
of the what and where information is achieved via
reciprocal connections between the temporal and pa-
rietal lobes, as well as by indirect connections be-
tween other regions of the brain such as the hip-
pocampus, although the details are not yer
understood.

Insight into the later stages of visual processing and
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3-D object representation can be gained by studving
the superior temporal sulcus (STS) in the temporal
lobe of the macuque monkey. This area 1s known o
be the site of cells tuned for the recognition of faces
and other body parts. Of course, the faces that a
monkey recognizes are indicatve of the monkevs
visual experiences, and reflect the visual learning pro-
cess itself. We have learned much trom the work ot
DL Perrere and his colleagues at the University of
St. Andrews in Scotland [35-8].

The notion of cells specifically tuned to the recog-
nition of certain objects (analogous to the orienta-
tionally tuned edge sensitive nenrons in V1 discovered
by D. Hubel and T. Wiesel in 1959) was popularized
by H. Barlow in 1972, and became known as the
grandmother-cell hypothesis, as if 1o emphasize that a
single neuron becomes active to signal the recogni-
tion of one’s grandmother. And. for the past 20 vears,
a debate has raged over this notion of single-cell ver-
sus distributed-network coding of visual objects. In
tact, this seemingly absurd notion of single-cell cod-
ing seems o have much supporting evidence, as illus-
trated in Perretts work below (and confirmed by
other investigators). The strict notion of grandmother
cells, however, must be reinterpreted in light of the
fact that many layers of processing precede the views
specific coding of objects, and a hierarchical pooling
of cells is required to influence the object-specitic cell.
Moreover, many visual objects may activare this cell.
although it is maximally active for a specitic ol
ject, whereas other cells are more active in the case
of the other objects. Hence, a recognition decision
must follow a neural competition between grand-
mother cells, and possibly an evidence-accumulation
phase among multiple views when such views are
available.

Figure 1 (from Reference 5) illustrates the ST area
in the macaque monkey brain. The figure shows the
focations of neurons detected by Perrett that are highly
tuned to the face and profile views of heads, rotations
of heads between specific views, and conjunctions of
face views with up/down/left/right motions. Perrett’s
subsequent work [7] indicates the existence of view-
specific cells, each one tuned for a particular view
around a certain class of heads, and still other cells.
called view-general cells, that respond to any view of a

e
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FIGURE 1. View-based coding of faces in the temporal cortex of the macaque monkey: (a)
lateral view of the monkey brain, (b) coronal cross section with a red box around the
superior temporal sulcus (§TS), and (c) serial sections of the STS area investigated. From
left to right, the sections iliustrate the electrode tracks, cells selective to face views, cells
selective to profile views, cells selective to trarsitions between views during head rotations,
cells selective to faces moving left/right, and cells selective to faces moving up/down.
(Adapted from D.I. Perrett et al. [5], with permission from Trends in Neurosciences. Elsevier
Science Publishers B.V.)

specitic head (as if the view-general cells were con- view. Such cells have apparendy fearned 2-D-invari-
nected to all of the corresponding view-specttic cells). ant shape codes.

View-specitic cells respond to the same face views Figure 2 (from Reterence 6) provides a suriking
with similar activity levels, regardless of the illumina- example of view and identity coding in the macaque
tion strength or color, the size or 2-1) orientation of temporal cortex. In the experiment, a monkey was
the face, and the position of the face in the field of shown ditferent views of the faces of two familiar

-9
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FIGURE 2. View and dentity coding in the macaque temporal cortex for (a) subject 1 and (h) subject 2. In the expenment. a

monkey was shown different views of the faces of two famuhiar people (subjects 1 and 2), and the act.vity of a single STS

neuron i the monkey's bramn was monitored with an electiical probe. The results are plotted 1 spikes:sec rad.ally hom the

"+ symbol: the black solid circle denotes the spontaneous background activity level. The expenmental measurements are

represented by the large red dots with error bars indicating standard deviations over several tepeated trials. Note that the

neuron has a clear preference for the right profile view of subject 1. and no significant response to any view of subject 2

(Adapted trom Perrett et al. [6]. with pernussion from the Journal of Experimental Biology. the Company of Biolo: "sts Ltd)
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Figure 3 provides a conceprual overview ot the
svstem, tn which a wemporal view sequence of an
object leads to the learning of an aspect graph [12]
representation of that 3-1) object. We can divide the
svstem into three main functional stages, the first of
which performs 2-1) view processing to extract fea-
tures (invariant to illuminadon) trom the individual
images, group these teatures to locate object position,
and transtorm the teatures to render the pattern in-
variant to scale, ortentation, and small deformation.
The second stage takes these invariant feature pat-
terns and clusters them into categories of similar views,
or aspects. This 2-D) view classification is done in an
unsupervised ways fe., it is strictly data driven with-
out any category definition by a human. Along with
the learning of these aspect categories, a prototype

¥
i
4
¢

Temporal view sequence

teature-pattern template is established tor cach car-
cgory. The aspect caregories correspond to the nodes
of an aspect-graph representation of the targets they
also play the role of view-specitic cells for aircratt. The
third stage detects the transidons over time between
aspect categories (while the targetis tracked in reladive
motion), learns these transitions, and accumulates
evidence tor possible targets. The learned transitions
are like the ares that connect the nodes in the aspect-
graph concept, and are reminiscent of the STS neu-
rons that are activated by the rotation of the heads
between views in Figure 1. The ability to accumu-
late evidence over time is significant, for there are
otten cases in which a single view of a target is not
sufticient to identity the target unambiguously: more-

over, this fusion of evidence leads to a noton of

”
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Aspect graph
2-D view 2-D view 3-D object
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FIGURE 3. Conceptual approach of ATR neural system for passive visible image sequences: (a) temporal view sequence of
images and corresponding aspect graph, and (b) functional block diagram of system. As a target moves relative to an
observer, qualitatively ditferent views are exposed in a temporal view sequence. The views untold in an orderly tashion that
1s represented in the aspect graph. Each image in the sequence is processed by three stages of networks performing
teature extraction and invariant mappings, classification of feature maps into aspect categories, and 3-D object evidence
accumulation from the recognition of categories and transitions. The learned categories and transitions are analogous to
the nodes and arcs, respectively. of an associated aspect graph.
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confidence in the recognidon decision.

These three processing stages can cach be realized
with multiple neural networks, and together the net-
works comprise a neural system architecture, as shown
in Figure 4. Here, cach module is an individual net-
work that is annotated by the module’s functional
role in the system. Two processing streams are shown:
the gray modules torm a parvocellular stream, and the
red modules form an attentional stream.

In the system, images are captured with a conven-
tonal CCD camera (which could be replaced by an
infrared imaging system) and objects are segmented
trom the background by using a combination of mo-
ton and contrast information. Next, a shunting cen-

ter-surround network enhances the edges of the seg-

mented object, and a Diffusion-Enhancement Bilayer

(DEB) extracts and dynamically groups the feature
points of high edge curvature into a position cen-
rroid, as shown in Figure 5. These networks form
nonlincar dynamical systems in which individual nodes
are governed by (Hodgkin-Huxley-like) cell-mem-
brane equations that resemble the charging dynamics
of coupled resistor-capacitor networks. (See Refer-
ence 13 by S, Grossherg for a review of his pioneering
work on dynamical neural networks, including shunt-

ing center-surround networks. Also, see References

14 and 15 for a retormulation of the DEB 1n terms of

coupled dvnamical layers of astrocye glial-like diftu-
ston cells and neural-like contrast-enhancing celis, all
inspired by biology and applied wo the psychophysical
pereept of long-range apparent motion.)

The centroid determined by the DEB network s
used to track and fixate the object, and seres as the
origin of a log-polar transtorm of the extracted-fea-
tre map. This transformanion is very doselv approxi-
mated by the axonal connections between the lateral
geniculate nudeus and the primary visual cortex V1
[16]. In our system the transformation serves 1o con-
vert changes in 2-D saale and 2-D onientation of the
visual-feature map into a translation along new or-
thogonal axes. These processing steps are illustrated
tor an F-18 silhouctte in Figures 6(a). (b, and (o).
The Tog-polar teature map (periodic in oricntation
angle 03 1s then input 1o a second DEB o determine
a new feature centroid in the tanstformed  coordi-

nates. The spatial pattern of features now represents
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the original view of the F-18 invariant w illumina-
tion, position, scale, and orientation.

The next laver of processing indicated in Figure 4
consists of vverlapping receptive fields: the processing is
aligned with the centroid that was detected on dhe
log-polar wiap, and serves o render the feature pat-
tern somewhat insensitive o nonlinear spatal detor-
mation. In the processing (Figure 7). a small array of
Gaussian-weighted overlapping receprors are excited
by the underlying teatures in the log-polar map. and
the output of the array provides a much compressed
code of the spatial feature pattern. (An individual
receptor is activated by the feature within the recepror’s
field that lies closest to the tield’s center, and the
teature’s distance is coded according to a Gaussian
fallott) This compressed code is illustrated tor the
F-18 in Figure 6(d) for the case of a 5 x 5 array of
overlapping receptors. In the figure, the sizes of the
dots correspond to the receptor activation level: the
larger the dot, the greater the activation. This coarse
coding of spatial teature patterns simultancously pro-
vides tor enormous data reduction from the original
target image (compared, for example, with a direct
template-matching approach), leads to a wlerance for
small detormations due o rotations in depth and
inaccurate teature extraction, and vields an input vee-
tor for the dassification network that torms the next
system module.

The fater stages of vision support the learning and
recognition process. In our system, Ic;lrning and rece-
ognition are realized by two modules consisting ot an
Adaptive Resonance Theory network (cf. several papers
Ga various AR nertworks in Reference 17) and an
Aspect network 110, 111,

Figure 8 illustrates the ART-2 architecture tor un-
supervised category learning and recognition. (Note:
ART-2 is one implementation of Adaptive Resonance
Theory tor patterns consisting of real numbers.) The
ART-2 network takes an Vedimensional input vector
{in our case, the overlapping, recepuive ticld pattern
with dimension of order 10 1o 100) and first pro-
cesses it through circuitry that contrast-enhances and
narmalizes the input as a short-term memory (SN
pattern. ART-2 then passes this pattern through o
bottom-up filter (or template) stored in long-term

memory (EFA) o exaite a fickd of STM category
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» Image capture
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Obhject-backyround Segmentation
separation network

Center-surround

Edge enhancement
g¢ network

Feature extraction Diffuse-enhance
and grouping network

Transient detector
Adaptive linear neurons
Diffuse-enhance network

Orientation and |l Log-pola¥
scaleinvatiance map
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FIGURE 4. Modular system architecture for the learning and recognition of 3-D targets from visible imagery. The systemis
organized nto two streams of neural network modules: the gray parvocellular stream for invariant shape learning and
recognition, and the red altentional stream. The functional role of each module is indicated along with the type of
network.
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FIGURE 5. Diffusion-Enhancement Bilayer (DEB) for feature extraction and grouping: (a) architecture diagram and (b)
evolving map of lugh-curvature points. The first stages of processing are accomphshed by center-surround networks to
edge-enhance the segmented object, and a diffusion-enhancement network to isolate points of high curvature along the
alhouette. These feature points are dynamically grouped into a centroid (providing a focus of attention) by another DEB,
which couples a diftusion layer to a contrast-enhancing layer in a feediorward and feedback configuiation. (For a detailed

descrniption of DEBs, see References 9,14, and 15.)
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(@ (b)

(c) (d)

FIGURE 6. Stages in the processing of a 2-D view of a model F-18 aircraft: (a) the original image, (b) the edge-enhanced
silhouette with DEB features superimposed and the centroid indicated with a “+,” (c) log-polar mapping of the image in
part b, with the new centroid indicated with a “+,” and (d) the resulting output of a5 x 5 array of overlapping receptive fields
(see Figure 7) that forms the pattern fed to the Adaptive Resonance Theory (ART-2) network. In the image in part d, larger
dots represent greater activity in the corresponding receptive fields.

nodes (our view-specitic cells, or aspect nodes). These
category nodes compete among themselves to choose
a maximally activated winner, which in turn activates
top-down feedback of a learned template also stored
in LTM. This feedback represents the network’s ex-
pectation of a specific input pattern. A vigilance pa-
rameter p (in the interval 0 to 1) that is set in advance
by the user mediates the matching of the enhanced
input pattern with the top-down template. Thus,
simply having a best match among already established
categories is not enough; rather, the best match must
satisty the established vigilance. When the match does
satisty the vigilance criterion, the network goes into a
state of resonant oscillations between layers, and the
bottom-up and top-down filters adaprt slightdy for
L. tter representation of the recent input pattern. When
the vigilance criterion has not been met, the network
generates a reset signal that flips the category field,
thus suppressing the recent winner and reactivating
the former losers. In this way, an uncommitted cat-
cgory node can establish a new category and a new
template can be learned. ART-2 has several important
attributes that make i particularly well suited to ATR
applications: it supports on-line, real-time, unsuper-
vised, stable category learning and refinement. We
have utilized ART-2 successtully in a number of
applications.

To present our results for the ART-2 classification
of difterent aircratt, we introduce the concept of a

vicwing sphere, as illustrated in Figure 9. Note that a
A4 i

Output of
3 x 3 array below

3 x 3 array of
overlapping

receptive
fields

Point features

FIGURE 7. Spatial coding of features by overlapping re-
ceptive fields. Each circular field is activated according to
a Gaussian-weighted distance to the point feature that is
closest to the receptor center. (Note: Lighter colors in the
figure represent closer distances.) These receptors pro-
vide enormous data compression, and they code spatial
relations of features robustly with respect to deformations
due to foreshortening. The tields convert a binary feature
map to an analog pattern that is then suited for ART-2
classitication.
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focation on the viewing sphere tor an example aircraty
corresponds 1o the view ot that aircraft as seen from
that partcular dircction. Using, this viewing-sphere
concept, Figure 10 summarizes the resulis of teature
extraction, coding, and ART-2 classification tor an I
18 model aircrate. With 935 input views of the F-18
and a vigilance p ot 0.93, AR1-2 generates 12 catego-
ries of the aircrate. In Figure 10(a), the categories, or
aspects, are shown color coded on an aspect sphere
with 12 different unrelated colors (e, a dark blue
has no relation to a light blue). Note thae the aspects
subtend finite solid angles on the sphere (the targedis
oriented with its nose to the lefr). Because of object
sithouctte symmetry, only one quadrant of the sphere
is shown. We can visualize example sithouettes thae
correspond to the 12 categories by selecting locations
on the aspect sphere falling ac the centers of cach of
the established categories, as shown in Figure 10(b).
The corresponding silhoucttes (numbered 1 through
12 in Figure 10[c]) represent prototype views that the
system has created in an unsupervised manner. No-
tice the variety of sithoucttes selected: some prototype
views capture the wing shapes, some caprure the double
tail fins, some caprure the dual exhausts, while others
emphasize traditional top and side views. Also note
the similarity between sithoucttes 2 and 5, given the
proximity of their corresponding centroids in Figure
10(b). Yet, although similar, sithoucttes 2 and 5 do
exhibit subtle differences, e.g.. the diftering slopes of
the top portion of the visible tail fin. All of the views
in Figure 10(c) were selected automatically. When the
vigilance p was increased from 0,93 o 0.95, the
ART-2 network generated 24 categorices.

In addition to the F-18, we have also investigated

FIGURE 8. ART-2 network: (a) archnecture and (b) circuit
model. ART-2 takes analog input patterns and clusters
them into categories by using unsupervised competitive
learning. ART-2 can be trained on a dataset, then used to
recoanize data patterns in the field while continuing to
refine its learned category representations (i.e., templates)
stored in its adaptive synapses. The vigilance parameter
mediates the matching of the enhanced input pattern stored
in short-term memory (STM) with a learned template from
fong-term memory (LTM). (Adapted from G.A. Carpenter
et al. [17], with permission. This reference also contains a
detailed des\cription of ART))
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FIGURE 9. Example viewing sphere tor a hghter ancraft. Note that a tocation on the sphere conresponds to the vier, of the

arcraft as seen from that particalar direction: Sithouettes of the arrcraft ate shown rom different viecang directions The

sthouettes were obtamed by applying thresholds to imagery that vas captured wath a charge-coupled device (CCD)

camera and frame grabber. (The jagged contours reflect the fimite pixel sizes of the CCD imager )

ART 2 Classitication toran Bl and HIK-T iSpruce

Gooser model atraratts as shown i Figure T Ap-
provimatehy SO0 views of cach aircratt were collecred
and processed with asingle AR T2 module, tThe ne
section, " Tactaal Larget Recognivon in the Svndheic-
Apertare Radar SART Spodighe Mode™ presents an
dernative strategy ot asing one ART-2 module par
carget tor the SAR apphicationa Al dhe views together
restlted moonlv 4T independent categorios at avigi
fance poot 093 INote: bgure 10 imvestizated: the
categortzation of asingle tireet by using views of just
that et Thuse e the same vgilinee setting ot
093 ART 2 generated onlv 12 Categories, in conrast
to the 20 categones of Tieare THa 0 The individual
aspect spheres show the similarins in caregorny Livout
between the twa tighter araate, and dhe obvions
ditterences benween highter and tanspore Tike aircrat,
Fhe spheres also imdicare ow certam views ot the
two tehrers are ambignons, ac least i erms of the

features eneractod by the soseenm, The mdividaadd 3 D

targets e reprosented by roughlv 25 Caregones cach,
Note i Fieure HEothae some ot dthe categonies aie
common to two or more of the trgenss e the heha
vellow i Figure THan corresponds o the same car
cpory that is reprosented by the same ighe vellow i
Frgure 1),

The aspect spheres i Freure T also illuseace the
neighbor relations among Crtegorios as ane rotates o
avplores atarger o 3D These neighbor relations
cortespond 1o permitted nansitions among catego
ries.and e dearned and exploited by our s i
rearks Much Tike the S TS Celis that code view hans
dons. and the hicrardhical pooling of view spaatic
colls o form view general objece speaitic celis o
\spect networhs selt organize o connections among
aspect categons nodes that preferentally channed g
nvit o correspondime 3D object nodes whaen s
cossive aspects ocaur mea permitied sequence, The
Vspect networks fearn these aspect tansinons g

mentath dunne conoolled tramme sessions. o




e WAXMAN ET AL.

Newral Systems for Automatee Larget Learnang wud Recoguutton

(a)

i

s I

dally in the field after the aspect categorization has
stabilized (i.c., after repeated exposures to the training
data yield the same categorization). Then, during the
imaging of a target in motion, multple viewpoints
are experienced, leading to recognition of multiple
aspects by the ART-2 network, followed by evidence

accumulation by the object nodes in the Aspect net-
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FIGURE 10. Results of feature extraction, coding, and ART-2 classification of an F-18 model aircraft alone at a
vigilance 01 0.93: (a) aspect sphere showing the 12 aspects (color coded) generated by ART-2, (b) centroids of
the largest regions of the 12 aspects, or categories, and (c¢) corresponding example silhouettes of the regions in

part b. These views have been selected automatically by the system. (Note: The 12 colors used for the aspect
sphere have been selected arbitrarily; i.e., a dark blue has no relation to a light blue.)

work. Target trajectories are realized as a set of aspect
categories linked together by aspect transitions. Much
more information becomes available when we con-
sider the aspect transitions among ambiguous views.
For example, even it both views of a two-aspect se-
quence are cach ambiguous among potential targets.

the additional aspect-transition information is often
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sutticient for the preterential activation of the correct
target node in the Aspect network.

Figure 12 illustrates an Aspect network for a single
object, along with an enlarged view of the networl:s
aduptive axo-axo-dendritic synapse. This synapse brings
together in close physical proximity projections from
pairs of aspect nodes onto a branch of the dendritic
tree leading to an object node. When ART-2 catego-
ries are excited in temporal succession, the aspect
nodes shown charge or discharge exponentially like
capacitors, and their temporal overlap of activity sup-
ports a Hebbian form of correlational learning on the
connecting synapse (cf. Reference 13 for a discussion

of modified Hebbian learning with gated decay). The

synaptic weights lie in the interval {0,1], and, as cat-
egory transitions are experienced, the weights asymp-
totically approach the extreme values of 0 (implving
no allowed transition between corresponding catego-
ries) and 1 (indicating a permitted transition). These
values correspond to the absence or presence of an arc
in the associated aspect-graph representation. The den-
dritic tree with its synaptic connections resembles the
symmetric state-transition matrices that are commonly
used in systeimn -modeling techniques.

Extending the Aspect-network concepr to muluple
targets leads to the network architecture shown in
Figure 13. In this design we consider all aspect cat-
egories of all targets as belonging to the same AR1-2

(a) (b) (c)

FIGURE 11. Aspect spheres for the (a) F-18, (b) F-16, and (c) HK-1 (Spruce Goose) have been generated from 535, 530, and
423 views, respectively, of each aircraft. Feature extraction, invariant mappings, and ART-2 categorization of all 1488 views
generate a total of 41 aspects, or categories, at a vigilance p 0 0.93. The number of categories generated for the individual
aircraftis 26 for the F-18, 24 for the F-16, and 28 for the HK-1. Note that many categories are common to more than one target;
i.e., the light yellow in part a corresponds to the same category that is represented by the same light yellow in part b. Also
note the resemblance of the aspect spheres for the two fighter aircraft, in contrast to the HK-1 aspect sphere.
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FIGURE 12. Aspect network for the single-object case: (a) network and (b) enlarged view of one synapse of the network. The
aspect nodes (blue) are each coupled to corresponding categories allocated by the ART-2 network; the nodes charge and
decay like capacitors. Axons (wires) emanating from each aspect node cross each other to form a transition matrix, and
each crossing has an associated axo-axo-dendritic synapse (red) onto the dendritic tree (orange) of the object node. When
two aspect nodes are simultaneously active (during view transitions}, they strengthen the synapse (red) via moditied
Hebbian learning, and conduct activity onto the dendrite toward the object node. Object nodes thus pool activity from
aspect nodes, exploiting transition information to amplify this activity, thereby accumi:lating evidence over time. in the
enlarged view, the synapse brings together activity from aspect nodes A, and X, (as well as a background-noise level ; ) and
channels it onto the dendritic tree. (Note: The box "Aspect Network Learning Dynamics” contains a description of the
equations that govern the aspect nodes, object nodes, and synaptic weights. For further details ot Hebhian learning and

Aspect networks, see Reterences 10, 11, and 13.)

network. The aspect categories of the ART-2 network
drive asingle set of aspect nodes that fan out to all the
synaptic arrays of possible targets. Activity (ie., evi-
dence) is then channeled into the object nodes, which
compete to select the arget with the maximum evi-
dence at that moment. The winning object is then
able to modify its own transidon array. Sudden sac-
cadic eve/camera motions to other locations in a scene
initiate a reset of object-node activities to zero; smooth
tracking motions do not cause such resetting.

Figure 14 contains an example of aircrate recogni-
tion by the Aspect network. In the training sequence,
cach of the three model aireraft experiences an identi-
cal trajectory of 2000 views covering one quadrant of’
the viewing sphere. Then a test sequence of 50 F-16
images is generated, and evidence is accumulated for
cach of the three targets as well as tor an unlearned
other target representing a none-of-the-above category.
The graphs shown in the bigure ilustrate the corre-

sponding category (and transition) sequence, the evi-

90 [ T TC NS T T I T A ST TR

dence accumuladon and decay tor cach possible tar-
get, and the winning object with the instantancous
maximum cvidence. Note that iiually the system
begins selecting the “other™ targe until sutficient evi-
dence accumulates 1o declare the F<16 the winner,
and it remains so. Reterence T contains further de-
tails of this experiment.

At this point we have the basic design of a neural
ATR system. The system has a number of definite
strengths, but it also suffers from a few shortcomings.
For example, a dithealty exists in adding new targets
once the system has stabilized, because new data may
modify the existing ART-2 category templates and
lead to the need o retrain the Aspect network. A
more ctticient design is to assign a separate ART-2
network and (much compressed) Aspect network o
cach potential target, but allow the unsupervised as-
signment of aspect categories during the conerolled
exposure in a training session. By doing so, we can

add new targets at a later dme by simply adding new
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ASPECT NETWORK LEARNING DYNAMICS

WE DEVELOPED the Aspect network
(Figures 12 and 13) as a means to
fuse recognition events over time.
The network embodies a hierar-
chical pooling of view-specific as-
pect categories so as to exploit the
additional information associat-
ed with permitted category tran-
These
learned by exploring the object.
The dynamics of Aspect net-

sitions. transitions are

works is in the form of differen-
tial equations (shown below) gov-
erning the short-term memory
activity of the aspect nodes X, and
object nodes ¥, and long-term
memory of the adaptive axo-axo-
dendritic synapses W/,-jk. Aspect
nodes are excited by their corre-
sponding ART-2 category nodes
I; (with rate constant Ky) and pas-
sively decay back to their resting

dX.

1

Aspect nodes :

dt

Object nodes :
dt

Awt

Synaptic weights: !

A

state (with rate constant Ay).

Object nodes accumulate evi-
dence for cach object by sum-
ming the activity (with rate con-
stant K) entering from the aspect
nodes on the dendritic tree. Ac-
tivity riding atop background
noise ¢ enters via the learned syn-
apses corresponding to permitted
transitions, and activity is chan-
neled most effectively by paired
aspect nodes in a permitted se-
quence. The function ®4A) is a
threshold linear function that
passes activity levels when A >
O(B). Similar to the aspect nodes,
the object nodes also decay pas-
sively to their resting state (with
rate constant A).

The synaptic weights learn as-
pect transitions by experiencing
correlated activity from two as-

Kyl; = Ay X,

P>

pect nodes, as long as the object
node activity is changing (i.c.,
Y, = 0) for the winning object
Z, The tunction ©,(C) is a bi-
nary threshold gate that equals
unity when C> O(¢). The weights
approach asymptotes toward the
fixed points of 0 and 1 because of
the quadratic shunting terms that
modulate the rate constant K.
For further details of Aspect net-
works, see References 1 and 2.
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Ky E 2 q),,v[(x,. s eW (X, + g)] — i Y,

dt

ART-2 and Aspect networks, without any moditica-
tion to the existing networks. Morcover, separate ART-
2 networks for cach target better support the ATR
task given only a single view (as opposed to a se-
quence of views), because cach target will have gener-
ated its own set of learned templates within its ART=2
module. This design has been adopted for the next
application—rtarget recognition from SAR spot-

light scquences. For this application we also intro-

l(w,w,f(l - Wf){qz[(x, o)X, + g)] - AW}@, (¥,)8,(Z,)

duce a measure of recognition confidence derived

from the accumulated evidence.

Tactical Target Recognition in the Synthetic-
Aperture Radar (SAR) Spotlight Mode
High-resolution radar imaging ot a scene can be ac-
complished by flving a radar that is transmitting chirp
pulses from many closely spaced look angles (Figure

15). The moving radar thus synthesizes a long aper-
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ture, and the return pulses determine a retlectiviey
image of the scene as projected into the range and
cross-range coordinates of the plane tormed by the
synthetic aperture and the radar line of sight. (This
planc is reterred o as the synthetic-aperture radar [SAR/
stant plane.) The range resolution is propordonal o
the bandwidth of the chirp puise; the cross-range
resofution is proportional o the angle subtended by
the synthetic aperwure. As the radar moves along the
Hight path, it can be “squinted” so as to track a hixed
location on the ground. Hence, the radar beam
spotlights a particular scene, and a sequence of SAR
images is obtained of that scene from muldple

Newral Spveenas for Awtonnaiie Larget [eaniong aud Recagnition

The reader may look ahead w0 bgure 2600 w©
view a typical dutrer scene—an overpass that crosses
the New York State Thruway--—obuined trom the
Lincoln Laboratory Advanced Detecuon Technology
Sensor (ADTS), a millimeter-wave radar, operatng in
the SAR mode. (In our work. onhy single-channcl
vertical-vertical [VV] polarization imagery is used.)
Note that the image - quite speckled, 4 consequence
of the coherent imaging method. Nonetheless, at first
glance this scene has a rather natural appearance.

To illustrate here the appearance of objects such as
ground vehicles, we reter to the inverse SAR, or ISAR.
images shown in Figure 16. Three tactical targets are

VIEWS. shown at a radar depression angle (or slant-plance
/
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FIGURE 13. Aspect network for the multi-object case. Input aspect categories from a single ART-2 network (coding all
aspects of all targets) excite aspect nodes that fan out to all synaptic array= of learned view transiticns, each of which
conducts activity (i.e., evidence) to its corresponding object node. A competition layer (created from self-excitation and
collective inhibition) determines the target of maximum evidence at any moment, and allows the corresponding synaptic
array to be refined. Sudden eye/camera motions can cause the object nodes to reset their evidence to zero. (For a detailed

description of Aspect networks, see References 10 and 11.)
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FIGURE 14. Example of training and recognition by evidence accumulation: (a) view sphere showing the trajectory
from which 2000 views of each aircraft were used for training the system, (b) view sphere showing the trajectory from
which 50 views of an F-16 were selected for testing the system, and (c) graphs showing the recognition test results. In
part ¢, the first graph plots the sequence of aspects that were recognized by the system (note the transitions). The
second graph shows the activity (i.e., evidence) of the aspect node for each aircraft target, including an unlearned
target (referred to as “other”). And the final graph shows the “winning object,” or target of maximum evidence at each
moment. Note that the system first declares the target as “other,” but then generates sufficient evidence to declare it
correctly as an F-16, and that correct recognition response is maintained.

slope) of 15° and three azimuthal angles correspond-
ing to front-on, intermediate, and broadside views.
The images were obtained by rotating each targeton a
turntable in front of a stationary radar. Unlike with
Figure 26(a), the man-made metallic objects in Figure
16 do not yield radar images that resemble their
visible counterparts. The ISAR images are dominated
by strong returns from select scattering centers on the
target, sidelobe responses, and speckle noise. Both
Figures 16 and 26(a) possess 1-ft resolution in range
(oriented vertically) and cross-range (oriented hori-
zontally), with the near-range (closest to the radar)
located at the top of the image.

To build an ATR system that exploits spotlight-

mode SAR sequences, we can utilize many of the
ideas and neural modules developed for the visible
imaging domain, as presented in the preceding sec-
tion. The different sensing modality of radar, how-
ever, provides us with direct range and cross-range
information, and hence object size, which can be
exploited in the grouping process that is used to
detect potential targets. On the other hand, our ear-
lier methods of invariant processing must be altered.
In particular, the log-polar transform must be dis-
carded because the slant-plane image is not an angle-
angle image (as is obtained in passive visible or infra-
red imaging).

Borrowing heavily from our work in the passive
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Ground patch & objects —»

SAR slant ptane

FIGURE 15. lmaging geometry for spothght-mode synthetic-aperture radar (SAR). A radas on board an aiicraft dlunuinates
an area ot interest on the ground by pomting at a depression angle #and squint angle ». As the ancraft fhes along a straight
path ataltitude H. the radar transnuts churp pulses from many closely spaced look angles, and the return pulses determine a
reflectivity image of the ground patch and objects of interest. Progressing along the flight path. the radar 1s steered to

dluminate the same area of interest. and thus obtains a sequence of SAR images from multiple look angles

visible domain, the conceprual approach to SAR -
eet fearning and recognition is summarized in Figure
17 tcompare o Figure 31 Again, cach image ot the
spotheht scanence is processed through three stages.
[he it stage extracts teatares, detects potential tar-
cets by arouping the featuress and estimates the orien-

tation ot cach porential targee. The second stage s

again cosponsible tor the adaptinve categorization of

feature patterns into aspects, or categories Heading o
an aspectsphere representation ot the targets), And
the third stage detects aspect transitions tanalogous
to the ares of 1 corresponding aspect graph), ac-
cumulates evidence over tme, and generates arecog-
nition dedsion as well as a0 dvnamic confidence
Mcastre,

Figure 18 shows the end - to-end neural svatem that
we have developed. A quick inspection of the mod-
ulesowhich are organized into three rows representing
the dhiee stages of processing ot Fieare 170 reveals
many of the same neural networks that sere used for

the passive visible domain. Teis also evident thae we

94

have Tearned trom our work i that arc: we now
utilize aseparate ART-2 network tor cach rarger. and
aseparate Aspeci network connected o cach o these
ART-2 networks, The tollowing figures illustrare the
various processing modules shown in the svvem
diagram.

Fach SAR image of the spotlight sequence is pro
cessed by the endire chaim of nearal modules. There
are, however, several opportunities to explore the em-
poral low ot intormadon inherent i the processed
data. The very tist module uses shunting cener
surround networks: cither inisolation or as part ot
the Boundary Contour Svaem (BOS and Featre
Contour Svstem (FOSE networks tor image condi
toning. (BCS/FOS networks are discussed in the fol
lowing section, "SAR Tmage Conditioning Using BOS
FON Networks™) Figure 19 provides some details on
shunting center-surround networkssas apphed to SAR
imagery tor teature extracion. Indhis application. the
shunting center-surround network converts the slant

planc retlectance e into . locatly normalized con
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FIGURE 16. Examples of inverse SAR. or ISAR, imagery of three tactical ground vehicles: (a) target 1. (b) target 2. and (¢)
target 3. The three targets are shown at three different orientations: the left. middle. and right columns of images are for
azimuth angles of 0 (front-on view), 45 (intermediate view), and 90 (broadside view). respectively. The images are for a
radar depression angle of 15 and vertical-vertical (VV) polarization.

trast image. Thresholds are then applied o the value
atcach pinet ot dhe locally normalized contrast image.
and an AND operation is used to combine the result

mg image with o low-threshold version of the log
retlectance input image o obtain a st of high-con-
trast teature blobs chac can then be projecred from e

slant plane to the ground plane by using the known

radar tmaging ceometny,

I che Tocallv normalized contrasi image. the ocal
contrast is dependent on the choice of spatial scales
tor the exditatory -center and inhibitony sarround ar-
cas of the red L'[\li\ ¢itedd. as shownin I'i:;,lllr 19T hese
saales e chosen soas o caprure the tevaare of sea
tering centers on avehide as compared o the vehidde
ARER| \\Ih)'g’. l\'n(c: | IK’ Ih'(\\()llx &]HL‘\ el Iy e \1\'((\!

briche pisels on the tareet as compared with the s
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rounding clutter, as is typical of constant false-alarm
rate [CFAR] filtering methods.) Another advantage
ot using shunting networks here is that they perform
an automatic gain-control operation, and, as a result,
the large dvnamic range of radar reflecrances collapses
into a predefined range in a locally adaptive fashion.
These nerworks are modeled as dynamic membranes
[13] and resemble bipolar and ganglion receptive fields
in the retina.

Figure 20 illustrates the four steps involved ir: pro-
cessing an ISAR image that contains four targets. The
input image is shown in the upper left quadrant, and
the result of feature-blob extraction is shown in the
upper right. The spatial patterns of the extracted fea-
ture blobs show strong resemblance to the scattering
patterns obrained from SARTOOL simulations of
radar imagery. (SARTOOL decomposes a target ob-
ject into its principal scatterers and then combines the
radar signaiures of those scauercrs.) Note that we

Spotlight sequence

have discarded the original reflectance values of the
feature blobs because, in practice, they can vary
considerably from one instance of a target 1o another.
In the more realistic case of targets in clutter, teature
blobs generated by nontargets will also be extracted
from the clutter. Thus, to simulate clutter, we added

% random noise to the feature-blob image before
proceeding with the processing. (In Figure 20 the
feature-blob image is shown without the superimpo-
sition of any noise so that we could illustrate clearly
the target feature blobs that emerge from the extrac-
tion process.)

Because the image axes are measured in units of
physical size, we can use the images directly to detect
potential targets and discriminate them from clutter
and nontarget objects by grouping the feature blobs
into clusters of approximately the same image size as
the targets of interest. This grouping is performed in
the ground-plane coordinates, first by using an iso-

(a) Aspect sphere Aspect graph
2-D view 2-D view 3-D target
processing categorization hypotheses
* Feature s Pattern * Transition
extraction encoding detection
Spotlight * Target * Aspect T . Target
» p * Transition
sequence detection learning learning recognition
and
* Orientation recognition « Evidence
estimation accumulation
(L)

FIGURE 17. Conceptual approach of ATR neural system for SAR image sequences: (a) spotlight sequence of SAR images
and corresponding aspect sphere and aspect graph, and (b) functional block diagram of system. Note that the approach is
analogous to the approach for passive visual imagery shown in Figure 3.
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Detection and discrimination

Conditioned imagery
\ Oriented
SAR i
: ! Featute Feature _ feature
\mage [ blobs lusters clusters
sequence blobs Cluster e
(Ground plane)
(Stant plane) Feature
points
Feature point clusters in
View classification target frame of reference
Spatial categories Spatial code Spatial pattern
Aspect
sequences Spotlight evidence accumulation
- Target evidence Maximum evidence | Recognized target
g | and confidence
IE

FIGURE 18. Modular system architecture for the learning and recognition of 3-D targets from SAR imagery. The three rows
of modules represent the three stages of processing shown in Figure 17. Each individual module is a neural network that
transforms the imagery as indicated. From a sequence of SAR images the recognized targets generate a dynamic measuie
of confidence.

Normalized Center (5x 5)
contrast image Gaussian

Input SAR image
Surround (21 x 21)
Gaussian

(a) (b)

FIGURE 19. Shunting short-term memory model for feature extraction from SAR imagery: (a) center-surround feedforward
architecture and (b) center-surround receptive field. The model is implemented as a feedforward dynamical system with an
excitatory ccater/inhibitory-surround receptive tield. In equilibrium the resulting image represents locally normalized
contrast. The scales of the receptive field—5 x 5 for the center region and 21 x 21 for the surround region—are chosen to
capture the contrast between scatterers and target objects. (Note: A descriptio.. of the equations that govern shunting
short-term memory and the equilibrium condition are given in the box “Shunting Short-Term Memory™ on page 98. For
turther details, see Reference 13))
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SHUNTING SHORT-TERM

THE FULL DYNAMIC range radar
image / serves as input to a shunt-
ing short-term memory (S1TM)
network (Figure 19), as governed
by the dynamics of a charging
membrane (essentially Ohm’s
law). Excitatory input from a
Gaussian center C, shunted in-

hibitory input from a Gaussian
surround S, and passive decay
(with rate constant 1) yield an
equilibrium contrast measure A,
that is normalized with respect to
the local mean amplitude. The
Gaussian center is weighted by

, and the Gaussian surround

MEMORY

is weighted by G’ . More gener-
al shunting networks are described
in Reference 1.

Reference

1. S. Grossberg, “Nonlincar Neural
Networks: Principles, Mechanisms,
and  Architectures,” Neural Networks
1, 17 (1988).

led
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dA.

Activity dynamics:
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Equilibrium contrast:

tropic receptive field (shown as circular areas in the
lower left quadrant of Figure 20), and then by using
oriented rectangles in the vicinity ot the isotropic
groupings. The rectangles are constructed from in-
hibitory-center/excitatory-surround  receptive fields,
motivated by che scatterer distributions that are tvpi-
cal of the targets of interest. Given a view sequence
in which targets may be considered stationary as com-
pared to the moving and squinting radar, Adaptive
Lincar Neurons (ADALINES) [18] performing a re-
cursive least-squares estimation from the measure-
ments can be used to estimate and refine the target
locations and orientations. After a target has been
detected and localized., it can then be segmented from
the scene, rotated into a reference frame aligned with
the target (with an ambiguity between whether the
target is tacing forward or backward), and processed
by the remaining modules. The oriented feature blobs
tor cach detected target are shown in the lower right
quadranc of Figure 20. Note that sidelobe responses
outside the targets have been discarded.

Figure 21 illustrates the processing ot an individual

98 SRR R R R

7
AA"'EG;A”S]A' Ag+ S
2

target. The input slant-plane imagery ts shown in the
upper lefe quadrant of the tigure, and the localized
target feature blobs are shown in the upper right.
After the features are reoriented in a trame of refer-
ence with respect to the target. a DEB network is used
to reduce the teatures to points, as shown in the lower
feft quadrant. This oriented spatial pattern of teature
points covers an extent of approximately 20 x 30
pixels at 1-ft resolution. Moreover, as the target orien-
tation and radar depression angle change, this pattern
must change quickly. too. Of equal importance is the
deformation of this feature pattern with varving radar
squint angle (given an identical depression angle and
target orientation with respect to the radar). For these
reasons, a template constructed from this feature pat-
tern (no less a template that incorporates the original
reflectance values) is both memory intensive and
fraught with difficulties. Thus we can again utilize the
large overlapping receptive fields (cf. Figure 7) to
reduce this binary feature pattern to a 9 x 9 array of
analog numbers that code the spatial distribution of

features in a compressed menner thar i+ robusr 1o
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FIGURE 20. Multitarget localization and ontentation estimation 1s dlustrated for the case of four tactical targets. The upper
left quadrant shows the mput slant plane imagery for the composite of tour targets at a depression angle of 15 (Note: In
each of the four quadrants, the four targets are ananged vath target T the upper loft target 2 the upper naht, target 3m
the lower feft and a modified version of target Tinthe locor nght)) The apper nght quadrant cantams the foature biobs that
have been extracted and projected i the ground plane. Each target is then qrouped vath a enncular mashk, and the target’s
vrientation s estimated with anmhibitory center excitatory-surround onented roctanagutar mask, as shovnn the lov o eft
quadrant. This processing allovs the detected targets to he reanented i oa target frame of roterence. as has heen done n
thelower nght quadiant. The color bar atthe bottom ot the figure denotes imcreasima (from hlack to ahite) rote:s ot

e the apper left quadeant
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spatial deformation. Such a coding is illustrated in the
lowcr right quadrant of Figure 21.

The 9 x 9 array of 81 numbers forms the input to
an ART-2 network that is dedicated to the learning of
a particular rarget. The targer is learned during a
training session in which the target exposure is con-
trolled. In a testing session, the system is run in
recognition mode, and the 81-member spatial code
vector is fed to all ART-2 networks representing all
targets of interest. Figure 22 illustrates the results of
training independent ART-2 nerworks on each of the
three [SAR rtargets of Figure 16. The resulting aspect
categories that were established are shown color coded
on aspect spheres seen both from the side with the

targets facing left, and from above (compare to Figure

FIGURE 21. Target feature extraction and spatial coding
for a single target. The upper left quadrant shows the
input slant-plane image of a target at a depression angle of
15°. In the upper right quadrant, feature blobs have been
extracted from the input image and projected in the ground
plane. After the feature blobs are reoriented in the target
frame of reference, a DEB network is used to reduce the
blobs to points, as shown in the lower left quadrant. The
feature points are then coarsely coded by a 9 x 9 array of
overlapping receptive fields (cf. Figure 7), as shown in the
lower right quadrant. The color bar at the bottom of the
figure denotes increasing (from black to white) reflectivity
for the upper left image, and increasing receptive-field
activity for the lower right image.

100 CHE VTR Y VABDRATRR. UM RYAL  URLIME B VEMBER b

11). The data consisted of ISAR images created at all
even azimuths 360° around each target, for radar
depression angles between 15° and 32°, comprising
approximately 3000 views of each target. (Note the
missing data at a few intermediate depression angles
tor targets 2 and 3.) The resulting unsupervised classi-
fication generated islands of common caregory that
extended over large azimuthal extents and many de-
pression angles. We purposely changed the vigilance
parameter setting between targets to emphasize the
user’s control over the fineness of categorization. With
a finer categorizaticn, more details survive the learn-
ing process. The roughly 3000 views of cach targer
have been compressed into only 34 categories for
targets 1 and 2, and 75 categories for target 3, for
which we used the highest vigilance setting,
Associated with each category allocated by each
ART-2 network is a template of the prototype 9 x 9
array (contrast enhanced and normalized) that was
learned by the synapses (the adaptive LTM sites) in
the network, as shown in Figure 8. Eight of the prin-
cipal templates for target 1 are illustrated in Figure
23, along with sample slant-plane images from the
corresponding viewing directions. Note that the
learned templates include two broadside views, fron-
tal and end-on views, and the characteristic L-shapes
near the four corner views. These color patterns code

~ prototype spatial feature patterns (not reflectance

patterns).

To complete the learned description of each rarget,
the permitted transitions among aspect categories must
be detected and imposed on the synapses of each
Aspect network. The result of this process is con-
tained in the last row of photographs in Figure 22.
The photographs show the transition matrices for
each target (cf. Figure 13). In the matrices, a red pixel
corresponds to a permitted transition while a green
pixel codes the absence of such a transition.

Figure 24 contains an example of our ATR system
running in recognition mode. We used an ISAR im-
age sequence that consisted of 45 views of targer 1
(only the odd azimuths in the interval 67° to 157°) at
a depression angle of 21°. (Note: Although this dataset
was not part of the original training set, it was admit-
tedly not very different from the training data. This
lack of adequate training and test datasets is a prob-
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FIGURE 22. Aspect spheres and transition matrices for (a) target 1. (b) target 2, and {c) target 3. The spheres wete generated
with independent ART-2 networks. For each target. approximately 3000 views. collected for even azimuths 360 around and
depression angles from 15 to 32 . have been compressed into 34, 34, and 75 categories for targets 1. 2, and 3. respectively,
The categories. or aspects, have been assigned colors and are shown on a viewing sphere from the side with the target
facing left (top row of photographs). and from above (center row of photographs). Note the category islands that emerge
over large viewing extents. particularly for target 1. The fineness of categorization is controlled by the viglance parameter of
the ART -2 network, and can be chosen to be more or less sensitive to vanations in the teature patterns. The vigilance pis
0.97.0.98. and 0.99 for targets 1. 2, and 3. respectively. The last row of photographs shows the category transitions that were
learned for each target by independent Aspect networks coupled to each ART-2 network. Each transition mattix codes
possible category transitions n red. while green denotes the ahsence of such a transition (cf. Figure 13). Note that the
transition patterns are quite different among the targets. Detected transitions hetween categorios contribute to the
evidence accumulation durning the recognition process,
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lem with many ATR studies.) The tese imagery was
passed through the carly modules of our system, and
then to four ART-2 networks (with learning turned
ott) coupled to four Aspect networks corresponding
to the training wargers 1, 2, and 3, in addivon to a
tourth unlearned targer (referred o as “other™) that
was represented by random synapric weights. Each
ART-2 neework determined the best matching aspect
category for the test target, and cach ART-2 network
activated its corresponding, Aspect network o accu-
mulate evidence over the test view sequence. A com-
petition between the object nodes in the different
Aspect networks then selected the arget with the
instantancous maximum cvidence.

In Figure 24, the category sequence recognized by
the ART-2 nerwork for target 1 is illustrated both on

an aspect sphere seen from above, and as a graph ot

category versus view number. The second graph in
Figure 24(b) plots the accumulation of evidence for
cach target, while the third graph indicates the se-
lected rarget with the maximum evidence accumu-
fated ar cach view. Although the selected target is
target 1. we can see that target 3 also accumulates a

signiticant amount of evidence. Thus selecting target
1 solely on the basis of maximum evidence can be
risky because the evidence for target 1 may oxceed
that for target 3 by only aslight amount. This possi-
bilicy suggests looking ac the differentiad cvideice be-
tween the twe cargets of highest accumulated evi-
dence, as illustrated in the fourth graph. The
difterendal evidence may be small for some views, but
it oo can be integrated along the temporal view
sequence, giving rise (o a dynamic confidence measioe.
As shown in the bottom graph of Figure 24, the
confidence measure increases monotonically along the
view sequence in this example. Tt is a mateer of preter-
ence to select the threshold level of confidence that
the svstem should use in declaring @ target as recog-
nized. Clearly, the number of views required o reach
this confidence threshold will depend on the arget

tself, as well as the starting view in a sequence.

SAR Image Conditioning Using

BCS/FCS Networks

We have already noted that single-channel SAR imag-
ery is characterized by a very large dvnamic range and

FIGURE 23. Aspect sphere, example typical views, and corresponding learned templates for
target 1 of Figure 22(a). The learned templates include two broadside views, frontal and
end-on views, and the characteristic L-shapes near the four corner views. Note the ability of
the ART-2 network to quantize the viewing space around a target in an unsupervised
fashion. The learned templates are then used for the recognition process.
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excessive speckle noise, and man-ma de objects possess
rather broken signatures that vary rapidly with small
changes in viewing angle. To a great extent, we can
alleviate these problems by first conditioning the im-
agery with the Boundary Contour System and Feature
Contour System (BCS/FCS) network paradigm devel-
oped by S. Grossberg, E. Mingollh, and D. Todorovi¢,
(see chapters 1 to 4 in Reference 19). This neural
processing architecture is strongly motivated by the
known anatomy and physiology of the early visual
processing stages, including thac of the retina, LGN,
V1, V2, and V4. The architecture, which essentially
incorporates a general theory of preattentive vision,
has also been quite successful in explaining a very

large body of psychophysical perceprual data.

The BCS/FCS networks are shown as an alter-
native first module in the ATR system of Figure
18. Our preliminary work indicates that the initial
processing of SAR imagery with BCS/FCS networks,
in licu of a shunting center-surround neework, im-
proves the target detection (and false-alarm rejection)
process.

Preattentive vision, in its simplest form, is a com-
putational process in which contours are contextually
established and the perceived brightness (and color) is
generated primarily from local-contrast intormation.
In BCS/FCS theory, the role of the BCS network is to
establish such contours in the context of local fields of
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FIGURE 24. Example of target recog- g T
nition by evidence accumulation: (a) c arget )
=g
aspect sphere and (b) recognition re- = Other
sults. The ISAR image sequence p=<
used consists of 45 views of target 1 =
(only the odd azimuths in the inter- = 3 0.5
val 67° to 157°) at a depression angle g _g:o
of 21°. The category sequence rec- £ 5 \/\/_/_,__,_,
ognized by the ART-2 network for © 0.0
target 1 is represented both on an 8 7.0
aspect sphere seen from above in S ‘
part a, and as a plot of category ver- =2
sus view number, as shown in the S 0.0
. U .
T
first graph of part b. The next graph ; View number 45

shows the evidence generated by the
resulting category matches for the

(b)

training targets 1, 2, and 3. The third graph indicates the “winning object,” i.e., the selected target with the maximum
evidence accumulated at each view. The target with the instantaneous maximum evidence is consistently target 1,
although target 3 also has a strong response. The differential evidence between those two targets is plotted in the
tourth graph, and integrated across view numbers in the fifth graph to generate a monotonically increasing confidence

measure.
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edge fragments, or oriented contrast. Alrhogh such
bound.:ry contoursare themselves invisible. they modu-
fate the dynamics of a diffusive rilling-in process in
the FCS network whereby local contrast and bright-
ness information mix and spread within such bound-
aries to create a smoothly shaded figure.

The architecture of the BCS network iy illustrated
in Figure 25(a). Beginning with monocular prepro-
cessing in the form of shunting center-surround re-
ceptive fields, local measures of normalized isotropic
contrast are made. An oriented-contrast filter then
derives cvidence for local edye fragmentss, which are
then used as input to a cooperative-competitive ((.()
feedback loop. The CC loop performs long-range
completion of contours in the coniext of the local
edge statistics. We have found that one pass through
the CC loop is :ypically sufficient for our purposes.
The boundary contours obtained fiom the BCS net-
work provide input to the FCS filling-in network,
along with the center-surround contrast siznals, as
shown in Figure 25(b). Essentially, the contrast sig-
nals try to spread diftusively to neighboring nodes,
but the BCS signals modulate the local diftusivity

FIGURE 25. Architecture of the () Boundary Contour Sys-
tem (BCS) of S. Grossberg and E. Mingolla and the (b)
Feature Contour System (FCS) of Grossberg and D.
Todorovié. The BCS architecture in part a models the
neurodynamics of preattentive visual processing ir. the
LGN, V1, and V2 visual areas of the brain. Shunting cen-
ter-surround receptive fields provide input to oriented-
contrast, or edge, detectors that compete across position
and orientation. The resulting focal edge fragments are
grouped over large distances by oriented bipole receptive
fields that feed back to the orient-d-contrast detectors to
complete broken boundaries comprising the edge frag-
ments. The boundary contours obtained from te BCS
network provide input to the FCS network, which uses the
information to modulate the local diffusivity between com-
partments, as shown in part b. The local diffusivity be-
tween compartments affects the FCS diffusion layer, where
the contrast signals from the shunting center-surro'ind
network spread laterally in two dimensions. In the diffu-
sion layer, strong boundary contours inhibit diffusion
across the boundaries. The FCS architecture models hy-
pothesized filling-in interactions in the V4 visual area of
the brain. (Adapted from Figures 15 and 17 of chapter 1 in
Reference 19, with permission. This reference also con-
tains a detailed description of BCS/FCS networks.)
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such that strong boundary contours inhibic dittusion
across the boundaries. Thus the boundary contours
impede the spreading contrast signals. In the presence
of a dense web ot boundary contours ot varying
strength, the FCS dittusion process resules in smoothly
shaded images while retaining sharp transitions in
brightness.

hu applying BOS'FCS processing to SAR imagery,
various parameters in the governing dvnamical sys-
wem need to be selected so thac the pixel values are not
discounted complertely (because the original SAR im-
age brightnesses are actually reflecrance measures).
We can then preserve the ordering ot the resulting
brightnesses in tairly unitorm areas so as to mimic the
ordering of the initial retlectance values. In nonuni-
torm arcas. however, the resulting signals indicate a
mixture ot reflectance and local contrast. The overall
cttect is SAR imagery with significantdy less speckle
noise. darkened and sharpened shadows, and more
smoothly shaded signatures. Figure 26(a), obtained
with the Lincoln Laboratory ADTS SAR, illustrates a
clutter scene of tiees, mads, and an overpass that
crosses the New York State Thruway. The image was
chuairied with single-channel VV polarization ac 1-ft
resolution. Because of the large dynamic range, the
scene is displayed as a log-amplitude image. Fig-
ure 206(b) shows the same scene alter BCS/FCS
processing ot the tull-dynamic-range SAR image.
Note the dramatic reduction in speckle, the darken-
ing ot shadows, the sharpening of shadow contours,
and the smooth shading of the trectops, roads. and
grass.

Figure 27 illustrates the various stages of process-
ing for the three ISAR targets oriented at a 45° azi-
muth and a 15° radar depression angle. The log-
amplitude ISAR i nagery ts shown in the first column,
the contrast-enhanced output ot the shunting center-
surround nerwork is contained in the second column,
the boundary contours derived from the BCS net-
work are given in the third column, and the smoothly
shaded signatures obtained from the FCS neework are
in the tourth column. An important ateribute of the
FCS filled-in signatures is that they are quite stable
with respect to small changes in target orientation.

For ATR applications involving SAR imagery, BCS/

FC.S Processing 1s a usctul |m;lgc—cnmlmnnmg proce-

FIGURE 26. SAR image conditioning with BCS/FCS net-
works: (a) original SAR image of an overpass that crosses
the New York State Thruway and (b) imaye after BCS/FCS
processing. The original single-channel VV-polarization
image (shown as log amplitude of the reflectance) is cor-
rupted by speckle noise, which results in many faise alarms
making target detection difficult. in the BCS/FCS-pro-
cessed image, note the reduction of speckle noise, the
darkening of shadow areas, and the crispness of the
shadow contours. Such image conditioning improves tar-
get detection while reducing false alarms. The SAR image
was obtained with the Advanced Detection Technology
Sensor (ADTS), a Lincoln Laborato:v millimeter-wave
radar.
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dure. We expect it to improve both the target detec-
tion and recognition stages of our ATR system.

Reentry-Vehicle Recognition
from ISAR Sequences

We have also applied our SAR target-recognition sys-
tem to the identification of reentry vehicles imaged
by a ground radar while the vehicles were spinning
and traveling along a trajectory. The resulting reentry-
vehicle images are thus ISAR imagery, although they
are in general simpler than that obrained with tactical
wargets in clutter. Radar processing is typically done in
the range-Doppler domain to extract peaks corre-
sponding to isolated scattering centers on the vehicle’s
shroud. We can then apply to these data the same
three stages of processing that we applied to the ISAR
tactical-target imagery: the range-Doppler peaks can
be used as point feature patterns, the patterns can be
encoded by overlapping receptive fields followed by
classification with ART-2, and evidence and confi-
dence can be accumulated with the Aspect network.
(Note: An alternative approach to the learning and
recognition of reentry vehicles has recently been re-
ported by A M. Aull et al. [20].)

With this approach in mind, we have constructed
ISAR imagery of point scatterers for three reentry
vehicles over several rotations at a single angle of
attack (i.e., a single depression angle). The vehicles
are designated as RV-1, RV-2, and RV-3. Figure 28
illustrates the result of coding and ART-2 category
learning for vehicle RV-2 at a vigilance setting of
0.95. Aspect categorization over multiple rotations
are shown on an aspect sphere, along with the learned
templates and typical feature patterns for the six cat-
egories that ART-2 established. Figure 29 shows the
results of separate ART-2 categorizations for all three
reentry vehicles over multiple rotations, as well as the
learned transitions among aspect categories used by
the Aspect network. The three vehicles differ in their
complexity, which is reflected by the number of cat-
egories required by ART-2 to cluster the data: 3, 6,
and 16 categories for RV-1, RV-2, and RV-3,
respectively.

The results of a recognition experiment are shown
in Figure 30 (compare to Figure 24). In the experi-
ment, a sequence of views of vehicle RV-3 was input
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to the system. (Note: This sequence was not part of
the data used for training the system.) Again, evi-
dence was accumulated for all three targets in addi-
tion to an unlearned target, the targec of maximum
evidence was chosen, dificicnual evidence was com-
puted from the two targets of highest evidence, and
the difference was integrated along the view sequence
to generate a confidence measure. In Figure 30 we see
an example of the system changing its selection. The
system first (correctly) chooses RV-3 although the
confidence s still relatively low, then the system gets
confused and switches between the other two ve-
hicles. The switching resets the confidence to zero,
and it remains very small due to the small differential
evidence generated. Finally, the system locks back
onto the correct decision, and confidence builds
monotonically.

Table 1 (page 109) summarizes the results of pre-
liminary recognition experiments on these three reen-
try vehicles. In each case the test sequence consisted
of 90 images starting at randomly selected azimuths.
In all cases the correct vehicle was recognized, and
fewer than 25 images were required in each sequence
to converge to a high-confidence correct decision. By
converting this result to the fraction of each vehicles
rotation cycle that is required to achieve such recogni-
tion, we find that fewer than two revolutions were
required in each case.

Learning and Recognition Using
Salient Object Parts

The 3-D object learning and recognition system de-
scribed thus far processes the views of objects as a
whole. But this approach can lead to a decline in
recognition ability when an object is partially oc-
cluded or disguised, or when a part of the object is
articulated or variable (removed or replaced). To
deal with these situations, we return to biology for
guidance.

The brain processes information by using a prin-
ciple of contrast. Many operations seem to be cast in
terms of differences, or in terms of the detection of
novelties or transitions in space, time, or patterns.
Mechanisms exist that detect novel changes, as re-
flected by the peak in EEG measurements that occurs
300 msec after the introduction of an unexpected
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FIGURE 27. BCS/FCS processing applied to the ISAR images of (a) target 1, (L) target 2, and (c) target 3. From left to night,
the columns show different stages of the BCS/FCS processing. The ISAR imagery (first column) is contrast enhanced by a
shunting center-surround network (second column) and boundary contours are extractca (third column). The contrast-
enhanced imagery diffuses within the houndary contours to produce filled-in target signatures (fourth columnj. Atl three
targets are oriented at a45 azimuth and a 15 radar depression angle.

FIGURE 28. Learned categories for reentry vehicle RV-2 are plotted on an aspect sphere over four rotations of the target.
(For convenience, the data for each of the four rotations have been plotted on the aspect sphere at different shifted
depression angles. Note the four rounds of colored dots on the sphere.) During the learning process, ART-2 generated
only six categories (at a vigilance setting of 0.95). The iearned templates along with the representative scatterer patterns for
the six categories are shown. From the upper right corner of the overall figure, the corresponding colors for the learned
templates are dark brown, dark blue, green, light blue, white, and light brown.
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FIGURE 29. Learned categories (aspect spheres) and transition matrices for the (a) RV-1. (b) RV-2. and (c)
RV-3 reentry vehictes over multiple rotation cycles. The vigilance setting is 0.95, 0.95. and 0.96 for the three
reentry vehicles, respectively, and the resulting number of categories established is 3. 6. and 16, respectively.
(The difference in the number of categories reflects ditferences in the complexities of the three vehicles.) In

the transition matrices, the possible category transitions are coded in blue. while red denotes the absence of

such atransition.

new stimulus, Other mechanisms are responsible tor
suppressing intormation that s not changing. For
instance, stabilized retinal images tade away in about
one second. In fact all sensory svstems become ha-

bitwated to constant or repetitive input pateerns. In-

deed. human vigilance decreases atter long periods of

WLk,

¢ and we become bored. This principle of con-
trast has been exploited carlier in our svstem in the
torm ot center-surround receptive fields, edge deted-
tors, competitive Jearning, view-transition detec-
tion. and contidence estimation via ditferential evi-
dences We now use the principle again, this time as
1 toundation tor Saliency Maps. hicrarchical object-
part representations, and caricature-based recognition
D

Viswal attention not only focuses processing, power
on an object i a seene, it often solates onlv a part

of the object for doser inspection. (Noter Faie
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dence for such o finely tuned atenvional mech-
anism has been tound in pavchological studies in
which subjects are demonstrably unaware o stimuli
external o che actended visaal areat A seriad enami-
nation ot the object akes place in which the v
amination s focused on the ditterent parns ot the
stimulic which may or mayv not correspond 1o ditter-
ent parts ot the object. But what actaallv constitues
an object pait:

For a specitic recognition sk, some parts may
carry more information than other paress and deter-
mining those kev parts and the amount of informa
tion they carry depends on the speditic taske For
exvample, human faces topically have two cves, so that
particular piece of mformation is not very useful in
discriminating between ditterent people. although i
would be usetul e ditferentiaring human taces from

cock faces: In o wcdical milicary application we need
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FIGURE 30. Example of recognition =
by evidence accumulation: (a) as- E _§ RV-1
pect sphere and (b) recognition re- § 8 Rv-2 }
sults (cf. Figure 24). The category Other
sequence recognized by the ART-2
network for reentry vehicle RV-3 of 5
Figure 29(c) is represented both on *qE) e 1.0
an aspect sphere seen from abov» 5 _-8
in part a, and as a plot of category 5 F M ]
. . 0.0 P i
versus view number, as shown in
the first graph of part b. The next
graph shows the evidence generated § 4.5
for the three different reentry ve- 2z
hicles, the following graph shows =
the selected target with the maxi- 8 0.0
mum evidence, and the last two 1 View number 90
graphs show the differential evi- (b)

dence between the two highest scor-

ing targets and this differential evi-

dence integrated along the view sequence to give a measure of confidence. In this case, the system initially
identifies the target correctly and confidence grows, although the differential evidence remains small. But the
system then changes its decision, causing the confidence to be reset to zero. Finally, the system reverts to the
correct identification and locks in on that decision, and confidence grows monotonically.

Table 1. Reentry-Vehicle Recognition Results

Test Number of Images Correct Number of Images Fraction of Rotation
Vehicle in Test Sequence Recognition Required for Cycle Required for
Convergence Convergence
RV-1 90 Yes 4 0.15
RV-2 90 Yes 9 0.33
RV-3 90 Yes 23 1.58
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to determine what information is useful in recogniz-
ing the ditterences berween the various types of ve-
hicles that are being sought.

In our research, we use differencing 1o generate
expectation-driven part segmentation cues. As with
the 3-D object learning and recognition system de-
scribed earlier, in Figure 31 the best-match aspect
category for tank 1 can be located on the tank-1
aspect sphere. The category carries wich it a learned
template of the invariant appearance of the object.
For the extension to part-based representacions, the
category must also carry a more complete description
to include characteristic attributes of the object such
as scale, orientation, context, and other information.
(Recall the whar and where visual pathways, and their
interaction, mentioned earlier.) In addition to a de-
scription of specific views of specific objects, the sys-
tem also requires a description of the views of generic
(i.e., average) objects of a class. The generic-object
description is necessary to represent efficiently the
hierarchical descriptions that have been learned, as
well as to navigate quickly through the representation
during the recognition phase, as described befow. A
generic-object description subsumes the descriptions
of all the specific objects that are associated with it.
For instance, a generic cannon-tank side view is the
average of the side views of all tanks that have can-
nons. Thus the generic view is a generalized compos-
ite representation.

After an ART-2 category is activated, the next step
in the object-part process is to compare the descrip-
tion associated with the activated category node of
tank 1 v 1 the corresponding previously learned de-
scription for the generic tank. The differences be-
tween the two descriptions are reported in the form of
a visual map called the Saliency Map. If all tanks have
exactly the same treads, turret, and cannon, then
these parts are not salient to the recognition or dis-
crimination tasks, and they will not appear in the
Saliency Map. On the other hand, if the gun is longer
for tank 1 than for other tanks, then this difference
will be evident in the Saliency Map, and the degree to
which it is highlighted is used to prioritize the serial
attentional examination strategy.

Of course, an input image can activate (to various
degrees) the category nodes in many different tank
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ART-2 networks. Each of these category nodes has a
corresponding view-description template with other
associated information, including its own Saliency
Map. Each ank’s Saliency Map indicates which parts
are most saiient ro discriminating thac particular tank,
and the saliencies predict which parts should be in the
image from that vantage point. if the object in ques-
ton is indeed that particular tank. The predictions
become expectation-driven attentional cues for seg-
menting the most salient parts of the image, as shown
in Figure 32. With Saliency Maps, we not only know
what parts 1o look for, but we also know where to look
for those parts relative to other parts and to the object
as a whole. As each expectation is investigated, it
either confirms or contradicts the hypothesized de-
scription, and evidence is accumulated or dissipated
for each potential model target.

A Saliency Map can be obtained for a particular
object by computing the difference berween the de-
scription of the characteristic view of that object and
the corresponding description of the characteristic
view of the class of objects to which that particular
object belongs, i.c., the generic object. Figure 31 illus-
trates this process. (Note: For simplicity, the Saliency
Map shown in Figure 31 was derived from the origi-
nal gray-scale imagery. In a complete implementa-
tion, however, the Map should be obtained from an
invariant description of a view, such as a log-polar
mapped image with the illuminant discounted in the
case of passive visible sensors.) As an example, we
might have a generic class of objects that are tanks
with cannons, turrets, and treads, and included within
that class we might have M48 and MGO tanks. Then
the Saliency Map for the front view of an M60 tank
represents the differences between the fronc view of
the M60 and the front view of a similar class of tanks
in general. Such differences are referred to as “activ-
ity"—the greater the difference in a particular area of
the Saliency Map, then the greater the activity in that
part. Areas in which there are no differences (i.e., no
activity) are ignored in the scheduling of attentional
shifts.

Using Saliency Maps, we can organize a hierarchi-
cal representation of the learned objects. Figure 33
illustrates an example hierarchy of tanks. Beginning
at the upper left are the descriptions of a generic tank

“
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Generic tank

Generic-tank aspect

Tank-1 caricature

FIGURE 31. Construction of a Saliency Map and corresponding caricature image for the side view of tank 1, an M60 tank. The
Saliency Map is created by taking differences between the side view of tank 1 and the side view of a similar class of tanks in
general. (This class of tanks is collectively called a generic tank). The caricature image emphasizes the salient parts of tank
1 with respect to the generic tank. The salient parts in a Saliency Map are used to generate attentional cues for the
recognition and discrimination of a particular object among similar objects, and the use of caricatures increases the

efficiency of this process.

from various aspects. If all we desire - o discriminate
between tanks and aircraft, then this level of descrip-
tion may be adequate. If, instead, we desire to dis-
criminate between a flamethrower tank and a cannon
tank, then more detailed descriptions indicating the
information-carrying attributes of both types of tanks
are needed. The Saliency Maps described earlier natu-
rally contain this information, so that if an object has
been determined to be a tank, the Saliency Maps
indicate exactly what must be investigated to make a
more refined decision about which specific tank kot
object is. Once the tank has been recognized as a
cannon tank, either an M48 or an MGO in this ex-

ample, additional Saliency Maps indicate the differ-
ences between these two types of tanks and the ge-
neric cannon tank. Although Figure 33 shows only 2-
way branching, the branching often is N-way.
Caricatures of the object descriptions can be used
to increase the efficiency of the recognition process.
For the recognition of human faces, there are many
different possible facial caricatures that can be used,
depending on what qualities are emphasized. A cari-
caturist nught emphasize age, sex, beauty, or simply
the differences evidenced between a particular face
and a corresponding generic age-matched, sex-matched
face. PJ. Benson and D.L Perrett [8] have demon-
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Object-part decomposition

« Salient part discovery and learning
» Class-object-part hierarchy learning

Attentional
priming

Segmented-object

. « Feature extraction
view

—»| « Part segmentation
« Invariance transformations

P « Multi-aspect pooling
» Evidence accumulation

Aspect Part
indexing priming
. 3-D object
= Aspect categorization recognition

2-D view processing

2-D view classification

FIGURE 32. Conceptual approach to the learning and recognition of class-object-part hierarchies. Again, views are
quantized into aspects through the use of unsupervised learning, but objects of a class are averaged together to form
generic-object representations. Differences between specific objects and the generic object of that class are highlighted
on a Saliency Map (Figure 31), which is then used to focus attention on salient parts during the recognition process.
Recognized aspect categories for salient parts generate evidence for targets. In addition, the categories prime the system

with expectations for other parts at certain locations.

strated a reduction in reaction time in the recognition
task for subjects who are shown a caricarured face
versus a non-caricatured face.

Caricaturing occurs naturally in the class-object-
part hierarchical representations of Figure 33. Com-
puting a difference map between a description of an
input target image and a previously learned generic
description leads to the detection of differences be-
tween the two descriptions. With that information,
the differences can then be emphasized, resulting in a
caricature of the input description. Because certain
parts in the caricatured map have been exaggerated,
they stand out even more strongly, and, because the
non-differences have been suppressed, attention can
be focused more quickly on the parts of the input
image description that are most unusual and there-
fore most likely to carry discrimination information.
Figure 31 contains an example caricature image of a
tank.

Visual Navigation by MAVIN

The ATR system design described in the section “Air-
craft Recognition from Visible Image Sequences” has
been implemented at Lincoln Laboratory on a mobile
robot called the Mobile Adaptive Visual Navigator
(MAVIN). Shown in Figure 34, MAVIN can be pro-
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grammed to travel a reconnaissance path, detect and
rrack objects as it moves, and recognize objects it has
learned. Arrays of light bulbs, such as the ones shown
in Figure 34, have been used for the target objects.
Currently, MAVIN is also able to recognize silhou-
ettes of objects that can be segmented easily from the
background. Equipped with binocular cameras, MA-
VIN operates in real time, with feature extraction
running on a PIPE video-rate parallel-processing com-
puter, and all other neural network computations
running on SUN computers. (Capable of 1-billion 8-
bit integer operations per second, PIPE was devel-
oped for robotic vision at the National Institute of
Standards and Technology [NIST] and manufactured
by Aspex Corp. of New York.)

Our past investigations have incorporated the vi-
sual learning and recognition system into a neural
architecture that is capable of supporting various Pav-
lovian behavioral-conditioning paradigms based on
learned associations and expectations, including
excitatory conditioning, inhibitory conditioning, sec-
ondary conditioning, and the extinction of condi-
tioned excitors [22, 23). We have recently extended
the MAVIN system to incorporate the learning and
recognition of environments that are defined by the
layour of visual landmarks observed during explora-
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tion {24, 25]. Associative learning methods similar to
those used for learning 2-D feature patterns have
been applied to spatial patterns of recognized visible
landmarks to establish place cells, which qualitatively
map an environment based on its visual surround-
ings. We are currently incorporating displace cells inta
the architecture to code place field transitions that are
induced by robot motions. (A place field corresponds
to an area in the environment where recognized target
landmarks possess a similar spatial layout.) These con-
cepts for the qualitative mapping and navigation of
space are based on behavioral experiments with rats,
and on the physiological measurements of neurons in
the rat hippocampus.

An important motivation for developing MAVIN

Generic-tank
aspects

Saliency Map

Saliency Map

v

Flamethrower-tank generic aspects

Cannon-tank
generic aspects

has been to demonstrate in the laboratory the system’s
ability to recognize in real time both fixed landmarks
and mobile targets from a sensor platform that can
navigate through, explore, and map an environment,
viewing the scene from a variery of vantage points.
Indeed, MAVIN has proven to be an excellent experi-
mental domain to test the ATR systems that we have

developed.

Conclusion

Our strategy of using the unsupervised learning of
view-based, invariant representations in conjunction
with evidence accumulation that exploits view transi-
tions has proven effective in several sensory domains,
and is relevant to both automatic target recognition

Saliency Map M60 aspects

Saliency Map

M48 aspects

FIGURE 33. Hierarchical object representations are a natural consequence of the Saliency Map approach. The Saliency
Maps direct a branching down from generic object to specific target, which may be unique because of some specific part.
Because of this hierarchy, Saliency Maps can be used in the recognition process to guide a rapid search among learned

categories.
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FIGURE 34. The Mobile Adaptive Visual Navigator (MAVIN) developed at Lin-
coln Laboratory. MAVIN, a mobile robot with binocular cameras, provides a
testbed for a passive-vision ATR system in which the concepts that underlie 3-D
object learning and recognition have been extended to the learning of represen-
tations for environments that are defined by distributions of visual landmarks.
This extension supports the ability for an autonomous sensor platform to ex-
plore, map (in a qualitative fashion), and navigate through environments con-
sisting of fixed landmarks and moving targets. The neural architecture being

developed is based on studies of the rat hippocampus.

(ATR) and environment navigation. Burt perhaps
the most important lesson we have learned is that
many valuable insights can be gained from serious
study of the brain and behavior. Anatomical, physi-
ological, and psychophysical studies have all helped
shape the computational theories and system archi-
tectures used in our work. We believe that such stud-
ies will continue to enable rapid progress in the ATR

tield.
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Multidimensional Automatic

‘Target Recognition System

Evaluation

Paul J. Kolodzy

B We are developing an evaluation facility that includes an electronic terrain

board (ETB) to provide an effective test environment for automatic target
recognition (ATR) systems. The input to the ETB, which is a high-performance
computer graphics workstation, is very high-resolution data (15 ¢cm in 3-D)

taken with pixel registration in the modalities of interest (laser radar, passive IR,

and visible). The ETB contains sensor and target models so that measured

imagery can be modified for sensitivity analyses. In addition. the evaluation
facility contains a reconfigurable suite of ATR algorithms that can be interfaced
to real and synthetic data for developing and testing ATR modules.

A first-generation hybrid-architecture (statistical, model based, and neural

network) ATR system is currently operating on multidimensional (laser radar

range, intensity and passive IR) sensor, synthetic, and hybrid databases to

provide performance and validation results. A recent study determined the

sensor requirements necessary for target classification and identification of eight

vehicles under various view aspects, resolutions, and signal strengths.

This article presents a description of the infrared airborne radar used to

gather sensor data, a discussion of sensor fusion and the hybrid ATR measure-
ment system, and a review of the ATR evaluaticn facility. This article also
discusses the computer manipulation and generation of laser-radar and passive-

IR sensor imagery and the processing modules used for target detection and

recognition. We give results of processing real and synthetic imagery with the

ATR system, with an emphasis on interpreting results with respect to sensor

design.

HE BATTLEFIELD SCENARIO continues to grow

in complexity as the use of high-resolution

sensors and precision strike weapons has forced
the increased use of concezlment and camouflage tech-
nology to improve vehicle survivability. The advent of
multidimensional sensors that trade individual sensor
performance for aggregate system performance and
automatic target recognition (ATR) systems that can
assist in or automatically identify targets also are a
threat to vehicle survivability. The understanding of
multidimensional sensors, the algorithms thac are used

to process their data, and the manner in which they
are evaluated is necessary to determine their suitabil-
ity for military applications.

Unfortunately, the testing and acceptance of ATR
systems for military applications has proven elusive.
On one hand, many researchers are concerned that
not enough information exists in one sensor modality
to build an ATR system that pertorms effectively
against targets in natural and man-made clutter. On
the other hand. the use of multisensor information to
solve this vexing problem is refatively recent, and the
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resules are limited. Although we have strong indica-
tions that several sensor modalities are better than one
for target identitication, no convincing database of
evidence exists.

At Lincoln Laboratory we have constructed a fly-
able muldsensor measurement system to evaluate the
use of single and multiple sensor modalities for search-
and-identification applications. This article describes
the measurement system, which i-cludes a forward-
looking suite of sensors, a down-looking suite of sen-
sors, and an MMW sensor. We also describe an ATR
system for processing laser radar range and intwensity
imagery as well as other senscr modalities.

Testing the ATR system to quantify the perfor-
mance limits of the multisensor measurement system
is an important step in the development of usetul
benchmarks and the definition of radar requirements.
This article examines the performance tests we have
developed and provides a summary of test results for
spatial extent, image quality, and 3-D recognition
requirements. An ATR evaluation facility is currently
under development to provide an effective test envi-

Sensor control panels

Recording devices

ronment tor ATR systems. The inputs to the faciliey,
which is a high-performance computer graphics work-
station and data-processing engine, are very high-
resolution data (15 ¢m in 3-D) taken wich pixel regis-
tration in the modalities of interest (lascr range,
intensity passive IR, and visible) and stored in data-
bases. An electronic terrain board (ETB) combines
the dacabases with sensor and target models to modify
the measured imagery for ATR sensitivity analyses.

The Infrared Airborne Radar
The Infrared Airborne Radar (IRAR} is a ilvable

multiscnsor measurement system that consists of a set
of active and passive infrared (IR) and active millime-
ter-wave (MMW) sensors. This svstem is installed in
a Gulfstream G-1 twin turboprop test aircraft used by
Lincoln Laboratory; Figure 1 illustrates the locations
of these sensors in the aircraft. We are especially inter-
ested in the ability of the multisensor measurement
system to detect targets autonomously (i.e., without
human interaction with the measurement system).

In the forward-looking sensor suite, the active laser

Forward-looking radar
10 & ym active laser radar
8-to-12-um passive IR

0 A8 S, LMD I N A 5/ PP /1S o .~ AT AP AR AL P il 20 4. o0 70 25

85.5-GHz MMW radar #

!

Recording system /

Down-looking radar
10.6-um active laser radar
8-t0-12-ym passive IR
0.8-um active laser radar

FIGURE 1. Schematic diagram of the multisensor measurement system on the Gulfstream G-1
aircraft, showing the location of each individual sensor system. The two sensor suites—forward-
looking and down-looking—are located in the aft section of the aircraft, the recording system and
electronic racks are located in the midsection, and the antenna for the MMW radar is located in the
nose. The forward-looking sensor suite is mounted on an optical table and then relayed through a
pod on the fuselage. The down-looking sensor suite is housed entirely in the pod aft of the torward-

looking sensor system.
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radar sensor measures absolute range with a precision
of I m while the passive-1R sensor measures the ther-
mal intensity of the target and scene in the 8-to0-12-
wm band. The down-looking sensor suite, which is a
multispectral active-passive sensor, has the ability to
measure relative range with a precision of 15 em, as
well as the ability to measure passive-IR thermal in-
tensity. In addition, an MMW real-aperture measure-
ment system developed by General Dynamics of
Pomona, Calitornia, is installed in the aircrate. This
MMW sensor measures absolute range with a resolu-
tion of 0.5 m, and is slaved to cover the same search
area as the torward-looking sensor.

All the IRAR sensors reside on board the aircraft
plattorm. The heart ot the IRAR system s located in
the center section of the aircraft. A radome extends
down from the center of the aireratt, allowing the
laser beam of the torward-looking sensor to exit
through a germanium window on the left side of the
radome. An additional window immediately to che
right of the germanium window is used by the mea-
surement system'’s boresighted color television cam-
cra, which is used o point the laser beam manually
and to record a live sequence of the measured scene.

The radome was moditied so that the down-look-
ing sensor could be placed immediately behind the
torward-looking laser-radar pointing-mirror issermbly
and look straight down: the scan direction of the
down-looking scnsor is therefore always perpendicu-
lar to the longitudinal axis of the aircratt. The MMW
system is sufficiently small so that the 1-ft diameter
radar dish and the gimbal mount are totally enclosed
within the nose cone of the aircraft.

Forward-Looking Laser Radar

The transmitter in the forward-looking sensor is an
RE-excited, water-cooled, CO, waveguide laser oper-
ating at 10.6 ym. In the pulsed mode, the transmitter
laser provides a nominal 25-nsec pulsewidth at ap-
proximately 3-W average power at a pulse-repetition
trequency of 20 kHz. In CW operation, the Irser can
provide power in excess of 30 W.

A 5-in diameter, afocal, Ritchey-Chretien telescope
functions both as the transmit and receive apertu - of
the sensor to produce a 200-urad diameter beam
(100-grad resolution). The sensor uses two linear 12-

clement arravs of HgCdTe photovoltaic detectors:
one array tor the acuve measurements and one tor the
passive measurements. Registration of the active and
passive measurements is always assured because both
arrays share the common telescope.

In the present contiguration, the two arrays are
oriented vertically to provide a 10° azimuchal cover-
age at 2.5 saans/sec in linescan mode. In a separate
framing mode (25.6 mrad by 12.0 mrad). the scan-
ning mirrors operate at 20 trames/sec: whern: the pas-
sive channel is enabled. however, the recording rate is
reduced (o 10 trames/sec becouse of recorder limita-
tions. Television images trom the boresighted TV cam-
era are digitized and stored on computer tapes. Table
1 shows selected system parameters for the torward-
looking sensor.

Figure 2 is an example of a laser radar range image
and a passive-IR image made simulancously by the
torward-looking sensor. Two features in these images
are particularly interesting with respect to data fusion
and scene understanding: (1) the road that traverses
vertically in the center of the scene is clearly visible in
the passive-IR image in Figure 2(b) buc invisible in
the range image in Figure 2(a) because the road is at
the same elevation as the local ground plane, and (2)
although a tank (at the center lett of the scene) has a
negative passive-IR contrast with the background, it
has positive range contrast in the active laser radar

image. We can overcome the measurement limita-

Table 1. Forward-Looking Laser Radar
System Parameters

CO;, laser
Wavelength 10.6 um
Nominal power, CW 0w
Pulsed, average 3w
Number of detecto:s 12
Telescope aperture 13¢cm
Instantaneous field of view 0.2 mrad
Range sampling interval 11m
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FIGURES 2. (a) Passive-IR imagery and (b) laser radar range imagery taken simultaneously ai Stockbridge. New

York. by the forward-looking sensor. The passive-IR 'mage in part a 1s coded by thermal intensity, so that

warmer objects such as vehicles are brighter than cold objects. The range image in part b i1s coded by color to
distinguish objects at different distances from the viewer.

tons of cach individual sensor by fusing the informa-
ton from the two sensors to provide enhanced detee-

ton capability.

Nullimicter-Woaee Radar

To imvestigaie the advantages of combining the out-
pll( Ut- (Wo or mote di\\‘l'\t SUNNOES, WY ‘lddcd llu'
General Dvnamics 85.5-GHy real-aperture MMW
radar to the forward-looking sensor suite. This radar
has Tow cross-range resolution and high Tine-ot=sight
resolution. and operazes av 3.5 mm Table 2 lises the
operating characteristics of this radars The MAMW
antenna is mounted i the nose section ot the aireratt
and is boresighted 1o the IRAR sensor suite during
pointng, mode operation.

Fhe crossrange resolution ot the MNMW radar is
such that o 107 azimuthal field of regard is stored as
15 intensitv-versus-range profiles oncach scan. The
oversampling that occurs in the down-range dimen-
son is then used o enhance the procesing statistics
tor detection. Phe modulation characieristics ot the
sensor are such that the line-otsight range resolation
i 1
this values thus providing the potential tor excellent

rance resolution on the tiget

1.0

frowhile dataare sampled acapprosimacels halt

P

Figure 3 illustrates the range resolution of the
MMW radar in combination with @ passive-1R imag-
ing sensor. Three logging trucks in the passive-1R
image in Figure 3(a) are cach highlighted by a bos.
The environmental conditions ar the time the dawa

were taken are responsible for the fow passive-1R con-

Table 2. Millimeter-Wave Radar
System Parameters

Operating frequency 85.5 GHz
Transmitter power 15 mW
Modulation format FMCW
Antenna diameter 12in

Antenna beamwidth 0.76 . one way

0.57 . two way

Range resolution 1.67 ft

PRF 1600 Hz

Noise tigure 20 dB. including

system losses
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FIGURE 3. (a) Passive-IR imagery and (h) boresighted MMW radar imagery. The MMW radar data are
displayed as a 3-D plot of down-range, cross-range, and thermal-intensity values. The three logging
trucks indicated by boxes in the passive-IR image correspond to four of the five highest MMW radar
intensity peaks. Part b shows two peaks for the one truck in the center of part a because distinct returns
were obtained from both the truck cab and the truck bed.

trast. I the MIMW radar signal is displaved as a 3-D
image (cross-range, down-range, and intensity), how-
ever, as shown i Figure 3(h). then tour of the five
highest intensity: peaks shown in the figure corre-
spond o radar returns from target locations. Two
paaks are determined in Figure 3(b) for the truck in
the center of Figure 3ta) because we obtained strong
distince returns from both the truck cab and the truck

lwd.

Down-Looking Laser Radiar

The multspecral active-passive down-looking sensor
is a compact multiple-channel system that employs
two Liers tor active detection and a single passive
detection channel This sensor is contigured with a
10.6-um amplitude-modulated continuous wave
CAMOW) COL Laser and a 0.8-m AMOCW AIGaAs
diode Laser for the two aciive channeds, which are
u)l'cgi\(\'l't‘d with an Z\'—I(»ll;ﬂﬂ) p.l.\.\i\'c detection
Jrnnel.

Fhe svsternwas designed with T-mirad angular reso-

Ill(i()l] o pron i(lk' al5-om &lllk‘ on IIK‘ l.]l':,',k‘l f.l'()ll] Jan

optimal measurement height of 150 m. The active-
channel lasers are modulated at 15 MH7 w0 provide
an AMOW wavetorm that translates o a 10-m range
ambiguity but provides 15-¢cm precision (i.e.. the range
values are produced from 0 to 10 min 15-cmincre-
ments and they fold over ac the range boundarics).
Thus these measurements are relative range measure-
ments with 15-cm precision, as compared with the
absolute range measurements of the torward-looking
sensor. Table 3 hsts selected parameters of the multi-
spectral active-passive down-looking sensor, and Fig-
ure -+ shows five separate images produced by this
sensor during a tlvover of the USS Connole.

The multispectral down-looking sensor has two
characteristios of interest for the development and
testing of ATR svstemis: (1) the viewing aspect allows
the imaging ot objects in dutter that are not generally
seen by torward-looking sensors, and (2) the highly
precise range imagery gives us the capabilio to trans-
form the observed scene o a varieny of viewing as-
pects. Figare S allustrates this process. Fgure )

contatns 1 photograph of a truck that is camoutlaged
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Table 3. Down-Looking Laser Radar
System Parameters

Angular resolution 0.5 mrad, x and y axes

Range precision 15¢cm
Range ambiguity interval 10m
Altitude range 400 ft to 1300 ft

Ground coverage 2000 ft at 1000 ft

by netting and parked on a dirt road in a forest.
Figure 5(b), which is the down-looking range image,
clearly shows the road and the truck, with the height
of the truck above the road encoded in color. Figure
5(c) is a computer-transformed forward-looking range

0.8-pym laser radar
T

Intensity ————————

8-to-12-um passive IR

image of the camouflaged truck trom a viewpoint
that is just above the road. In this way, a down-
looking view can be used to develop or test algo-
rithms for a forward-looking or near-forward-looking
sensor through the use of coordinate transformations.
A more detailed description of how down-looking
data can be utilized for a variety of ATR evaluation
tasks is given in the section entitled “The ATR Evalu-
ation Facility.”

Sensor Fusion

Figure 3 illustrates the possible benefits of fusing
MMW radar imagery and passive-IR imagery. This
figure demonstrates that the MMW radar image can
be used to indicate areas of interest in a coregistered
passive-IR image. Other techniques that incorporate
the detection lists from both sensors usually fuse the

lists by an OR or AND procedure; i.e., the target

10.6-ym laser radar

FIGURE 4. Example of imagery produced by the multispectral active-passive down-looking sensor during a flyover of the
USS Connole. This sensor produces coregistered laser radar range and laser intensity images for wavelengths of 0.8 um
and 10.6 um, as well as an 8-to-12-um passive-IR thermal-intensity image. Note the parked helicopter near the stern of the
ship in each of the sensor domains as well as the depiction of the ship's wake.
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(a)

(c)

FIGURE 5. {a) Optical photograph of a truck covered with camoutlage netting on a road in a forest. (b) The relative range
image of the truck as determined by the multispectral down-looking sensor. {(c) The 3-D spatial transformed image
lustrates the relative range mage datam part b as viewed from a depression angle similar to that of the optical photograph

m part.n.

st o deteciad an least on one Tist TOR) o on all
ses CANDYL The OR procedure produce. a nigher
m\\'m](md nf.dclu'\linn G (hc C\penege HLI l\lgh tll]\\‘—
alarm tate, O the other Fand the AND procedure
has o fow talse-alavmn rae ac the expense ot a lower
hikehhood of aetecton, The nest secton deseribes an
AND procedure that fuses sensor data o create a
range-passive histogram, and the tollowing section
desaribes a masimum-likelihood fusion estimate tor

nl\iul \lk'lk'kli()!l‘

Rairge-Dassere-IR Histogram

Target cucing and detection can beaccomplished
with range data alones with a range-only histogram,
or with a range passive- 1R histogram: (which is cre-
ated by using an AND operation o fuse range and
passive-TR daca registered ac the pisel level) [T The
range-onhy histogram is a 3-D mapping of the num-
ber of occurrences of a range value plotted ina coor-
dinate svstem of cross-range versus down-range. The
histogram is calenlired by scanning the range mage
pinel by pinel and adding one count to the histogram
bin that corresponds 1o the pisel azimudh and dhe

Pi\&'l \il)\\ n SN \\llllk':

It g = E {tacoely,

W l)g'l'k‘

' [ 1t Rtezoolv = g
{Wazoel) =

l 0 otherwise

and where Rz cofdis the absolute range of thae pisel.
and rig s the spedific range value, Peaks in the 3 D
range-onhy histogram: indicate regions ot signiticai
vertical extent. or ceriealiny, in the image. and the
magnitude of the peak represents the vertiaal surtace
area of an object i the image. The property of vert

cality is eftecuve tor finding targets in open werrain: o
produces a large number ot talse alarms. however,
when applied in wooded arcas.

The passive-IR thermal intensine can be used as
discriminant o separate trees from man-made targets
that have asigniticant positive thermal signature. Pisel-
level tusion of the range image data and the passive-
IR image data is possible because cach pixel of the
range and passive-1R images is collocated. Fach pas-
sive-IR pixel can be registered. according o ies assodi
ated range values o compute what we detine as a
vange-passive-1R histograni,

The range-passive- IR histogram is a4 3-D mapping
ot the sum of the passive-IR intensities plotied in
cross-range versts down-range coordinates derived
from the pivel-registered range image. Figure 6 shows
an example of a range-passive- 1R histogram. In Fieane

Ot a passive TR mensity histogram is calculated ton
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cach column, which corresponds to a particular cross-
range value that uses both the range image to provide
the coordinates for the histogram and the pixel-regis-
tered passive-IR image for the intensity values. An
azimuth value is selected, and then we scan the range
image pixel by pixel along that azimuth column, where
the range value for each pixel selects the histogram
range bin. The corresponding passive-IR intensity
value in Figure 6(b) is then added to that histogram

Range image

[
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IHNEREN
Azimuth
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Passive-IR image

c
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EEEEEN
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Range/passive-IR histogram

B

=

(%)
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[

o

1.2 km Cross range ()

(c)

FIGURE 6. Schematic diagram of how the range image and
passive-IR image are mapped into a range-passive-IR his-
togram. (a) An azimuth value is selected, and the range
image is scanned pixel by pixel along that azimuth column;
the range value for each pixel selects the histogram range
bin. (b) The passive-IR intensity value from the correspond-
ing passive-IR image column is then added to the histo-
gram bin. (c) In this way a three-dimensional range-pas-
sive-IR histogram (cross-range, range, passive-IR inten-
sity) is created.
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bin. In this way, a three-dimensional histogram (cross-
range, range, passive-IR intensity) is created, as shown
in Figure 6(c). Peaks in the histogram indicate objects
with vertical extent (i.e., trees, buildings, and ve-
hicles) and with sufficient thermal contrast with re-
spect to the background (i.c., running engines, heated
buildings).

This calculation is written as

Hyplaz,rng) = z Plaz,el) x Ulaz.el),
ef

where Ul(az, el) is as detined previously and P(az, /)
is its processed passive-IR intensity. Peaks in the range-
passive histogram indicate regions of vertical extent
that have positive thermal contrast.

Figure 7 shows how the range-passive histogram
algorithm was applied o an IRAR linescan scene
taken at Fort Devens, Massachusetts. The linescan
scene contains the passive-IR image and laser radar
range image of three trucks and a motor generator set.
The vehicles were not in operation; their thermal
signature is due entirely to solar heating. Figure 8
shown the resulting range-passive histogram. The three
largest peaks correspond to the three trucks in the
scene. For each peak, the truck position is now local-
ized in cross-range and down-range. This example
clearly shows the value of fusing multiple sensor do-
mains at the pixel level with an AND operation,
which improves the probability of detection and low-
ers the probability of false alarms.

Theoretical Study of Active-Passive Detection
of Multipixel Targets

Research into the development of a quasi-optimal,
single-sensor detection processor for multipixel laser
radar was done by M. Mark [2] and resulted in the
generation of receiver operating-characteristic curves
for this processor. Mark used a generalized-likelihood
ratio test to estimate unknown parameters for a maxi-
mum-likelihood estimate. Computer simulations with
benign synthetic scenes, generated with uniform laser
intensity, range, and passive-IR values for target and
background, were used to provide performance mea-
sures. Recent extensions of this work to multiple sen-
sor modalities (laser radar range and laser intensity,
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(b)

FIGURE 7. A scene containing three trucks and a motor generator as imaged by (a) the
passive-IR sensor and (b) the laser radar range sensor in the forward-looking sensor suite.
The trucks and generator are clearly visible in the center of the passive-IR image. The laser
radar range image depicts the objects as silhouettes standing out of the sloping terrain and
in the same location as in the passive-1R image.

passive-IR thermal intensity) were accomplished by
S. Hannon and ]. Shapiro [3]. The results of these
computer simulations, which were later contirmed by
experimental dara, indicate that for a specitied operat-
ing power such as the probability of detection and the
probability of talse alarm, the required sensor signal-
to-noise ratios were relaxed for a muldsensor mea-
surement svstem over a single sensor system.

Figure 9 depicis the sensor/target requirements for
a 10-pixel target (2 pixels by 5 pixels) ona 1000-pixel
image (20 pixels by S0 pixels). The target size can be

scaled to simulate a tank-sized vehicle at a distance of

PASSIVE WEIGHTED HISTOGRAM

approxinmately 5 km with a sensor field of view (given
. L A S

a 6° depression angle) of 15,000 m~. Figure 9 indi-

cates the sensor requirements for detecting 9900 of

tank-sized vehicles at 5 ki with a talse-alarm rawe of

: . K ) :
10 7. or of 0.1 km ~. Because the simulations were

done on idealized scenes. however, the results are not

FIGURE 8. The result of processing the data in Figure 7
with the range-passive-IR histogram. The down-range val-
ues are color coded in the same manner as the laser radar

directly transterable to a specific sensor design. The
trends still indicate a reduction for cither passive-1R
range image in Figure 7. The four highest peaks corre- signal-to-noise ratios (SNR) or laser radar carricr-to-
cpond to the three trucks in the scene. These peaks would noise ratios (CNR) when a combination of two sen-

cue a classification processor to a region of interest. sors is emploved.
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Sensor/target requirements
Probability of false alarm = 1073
Probability of detection = .99
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FIGURE 9. Sensor/ftarget requirements for multipixel tar-
get detection using the generalized likelihood ratio test for
single and multiple sensor modalities to detect a tank-size
target at 5 km with a probability of detection of 0.99 and a
false-alarm rate of 107 per image or 0.1 km™2 |3]. A 7-db
SNR is required for a passive-only sensor system, and a
12-dB CNRis required for a laser radar range-only sensor
system. The SNR and CNR requirements are relaxed for a
combined passive-range sensor system or a passive-range-
intensity sensor system.

Hybrid ATR System

We have developed ATR processing modules for the
primary sensor groups described previously; these
groups are laser radar intensity, range, passive-1R ther-
mal intensity, and MMW. Although the individual
processing modules can vary among sensor groups,
the general processing structure has the same sequence
of stages: cleanup, detection, segmentation, feature
extraction, invariant mapping, and classification. The
general ATR system was originally developed to oper-
are on laser radar range and intensity imagery, and the
results presented in this article are based on this imag-
ery. Figure 10 illustrates the processing modules for
the range-imagery recognition system; this system is
described in more detail below.

Modular ATR System Concept

The unambiguous range image is first processed by
the cleanup stage to reduce data anomalies and en-
hance the image. The cleanup stage attempts to re-
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construct the most probable input image that would
produce the measured sensor image. This reconstruc-
ton clarifies the image appearance, and makes the
returns from the various objects in the scene appear
more continuous and complete by reducing sensor
and scene artitacts such as dropouts and anomalies.

Next, the enhanced image is processed by the de-
tection stage to identity correctly sized regions of
constant range as potential targets. The detection stage
extracts these regions from .o background cluter
and removes the ground planc. The detected arget at
the output of this stage is a sithouctie consisting of
multiple fragments and rough boundaries.

The multiple fragments are combined by the seg-
mentation stage into a complete, smooth, filled sil-
houctte. The completed silhouctte is then separated
by the feature extraction stage into feature regions
(c.g., barrel, turret, body, and tread for a tank). For
this article, the entire target sithouctte is considered
the single feature. The silhouette is then mapped by
the invariant-mapping stage into an abstract pattern
that is invariant to translation, rotation, and scale
within the sensor field of view. This invariant pattern
is processed by the classification stage, which initially
learns to cluster the invariant maps into groups and
then, after the training cycle, classifies the input data
with respect to its learned categories.

Image Cleanup

To provide adequate recognition performance in a
noisy environment, the cleanup stage must be capable
of using prior knowledge to restore measured images.
We present here an image-restoration model that quan-
titatively incorporates prior knowledge of the mea-
surement process and scene. The model is based on a
Bayesian formulation using Markov random fields, as
introduced by S. Geman and D). Geman [4]. The
processing is massively parallel because the Markov-
random-field assumption allows the image to be
decoupled into a large number of connected local
neighborhoods, cach of which can be processed inde-
pendently. The local-neighbor information is spread
out in time such that a global image restoration s
effected when the image-restoration system reaches a
steady state.

Real-time image restoration is possible by using
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FIGURE 10. The six processing modules of the range imagery-recognition system: cleanup of
sensor artifacts, detection of potential targets, segmenting targets to improve image characteris-
tics, extraction of relevant features, invariant mapping of features to remove translation and rotation
effects, and the classification of features into target categories.

the model with a massively parallel single-instruction
multiple-data (SIMD) computer such as the Connec-
tion Machine or a direct hardware implementation
on a custom microprocessor. A more detailed descrip-
tion of the image-cleanup process is given in this issuce
in the article by Murali M. Menon entitled “An Eth-
cient MRF Image-Restoration Technique Using De-
terministic Scale-Based Optimization.”

We applied the image-cleanup process to a simple
svinthetic image corrupted with noise according to a
measurement model described in the literature [3].
The noise does not have a Gaussian distribution and
is based on realistic sensor measurements. The origi-
nal noise-tree synthetic image has a simple geometric
shape at a constant pixel value. with a background

that lincarly increases in pixel value from the top of

the image to the bottom. Figure 11(a) shows the
uncorrupted image, while Figure 11(h) shows the
image with 70% of the pixels corrupted with noise.

The original image has 256 gray levels, and the noise

spans the entire range of possible pixel values. Except
for a few discrepancies at the boundary, the restora-
tion shown in Figure 11(¢) is nearly perfect. especially
the recovery of the sloping background.

Target Detection

The detection stage of the ATR processing svstem
extracts target-like regions from the enhanced range
image produced in the cleanup stage. The process
occurs in three phases: (1) regions of interest are
sclected, (2) rarget-like objects are detected, and (3)
objects are extracted from the scene. Regions of inter-
est are located by using range-only or range-passive-
IR histograms, as previously described in the article.
The peaks of these histograms indicate regions of
significant vertical extent (i.c.. constant range with
varying clevation), or a signiticant thermal signature
with some vertical extent. The selected regions are
scarched for arcas of constant range that have range

contrast with their neighbors and are similar in size
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(a)

(c)

FIGURE 11. The effect of processing a synthetic laser radar range image of a geometnical object vith the mmage-vieanag

newal network. (@) The onginal noise-free image, (b) the image with 70°. of the pixels corrupted with nose. and (=) the

restoration of the ongrnal image from the corrupted image with anly a few discrepancies at the image boundar,

hoth i absoluee height and widihy o a0 warget ot

mrerest, Fhe targer hike region is then separated trom
the background by selecting onlv the pinels with tha
range values The objece iv then enoracied from this
selected image by computing and removing the ground
plane.

Figure 12040 shows the iminal range inage ot an
MaS ank at 700 moand the subsequent detection
resadt that was formed by using the previously de-
saribed range-only histogram and removing the ground
planc. Figure 12(b) shows the MaS ank atter the

cleanup stage and detection stage of processing,

(a)

Nevictativm

[he segmentation stage of the NER svscem smooths
the boundaries and completes the tragmenis ot the
detected potential targer. The boundan -contour s
eem (BON g subsvstem of avisual processimg theon
developed by S0 Grossberg and o Ningolla 5000
wsed 1o generate the perceived segmentation ot the
potential target, with respect o Hluminance contrases.
The BOS svstem consists of two stages: an oriented-
contrast (OC) filter and a cooperative-competitive

(CC) loop. The OC filter measures local Tuminance

(b)

FIGURE 12. (a) The initial range image of an M48tank; (b) the suhsequent detection result that was
formed by using the range-only histogram and removing the ground plane.
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ditterences, or edges, within an image at a number of
different orientations. This filter models che orienta-
tion-selective cells discovered by D. Hubel and T.
Wiesel [6] in the human visual system. These ori-
ented edge strengths are then allowed to compete and
cooperate with one another in the CC loop to gener-
ate the perceived boundary contours.

The four layers of the CC loop consist of two
competitive layers, one cooperative layer, and a feed-
back layer. The first competitive layer thins and sharp-
ens boundaries within the image by allowing compe-
tition for dominance in the final boundary
segmentation between neighboring edge strengths of
the same orientation. The second competitive layer
straightens jagged or noisy boundaries by allowing
competition between edge-contrast strengths with dif-
fering orientations at the same location. The coopera-
tive layer completes and connects boundaries by al-
lowing edges of like orientation to cooperate over a
distance in the image. The feedback layer introduces
into the system any new boundaries formed by the
cooperative layer.

The OC filter is implemented by convolving a set
of orientationally tuned digital filters with the input
image. The CC loop is modeled by using a set of four
coupled nonlinear differential equations for each ori-
entation and location within an image. Input to the
CC loop is static; therefore, the boundary is com-
plete when the system of differential equations is in
equilibrium.

The BCS algorithm has been previously applied to
laser radar imagery as reported by Kolodzy et al. [7]
and by E. Van Allen [8, 9]. Figure 13 shows an
example of BCS processing on the range image of an
M48 tank. The input range silhouette in the upper
left of the figure is the input to the segmentation
stage. The range-silhouette image is sampled to ob-
tain the oriented contrast strengths by using the OC
filter in each of twelve orientations. These oriented
contrast strengths are then processed by the CC loop
to produce twelve new images, which are compressed
into a single image by using one of two methods: (1)
compute the maximum contrast strength of any ori-
entation at each pixel location (upper right of Figure
13), or (2) sum the contrast strengths across all the
orientations at each pixel location (lower left of Figure

13). The compressed image is then filled o torm a
completed and smoothed silhouette of the potenual
target for classitication. The specific filled image shown
in the lower right of Figure 13 is the result of using
the summing method for compressing the results of

the CC loop.

Feature Extraction

In general, the filled and smoothed image provided
by the segmentation stage of the ATR system is then
used to extract relevant features for classification. Many
different feature domain. “mages or vectors) such as
image geometry, object < oy, fractal dimensions, dis-
tance of hot spots from the central locations, and the
Hough transform can be used and are part of on-
going research.

In particular, model-based systems have been de-
veloped at Lincoln Laboratory to parse images into
geometric features (such as circles, squares, rectangles)
and subsequently classify those features into target
features (such as barrel, hull, turret). These model-
based systems are discussed in the article by J. Verly et
al. entitled “Machine Intelligence Technology for Au-
tomatic Target Recognition™ [10]. The use of model-
based systems for feature extraction in this ATR sys-
tem has been evaluated previously by D. Dudgeon et
al. [11], and they are not discussed further in this
article. For our purposes, the pixel image provided
by the segmentation stage is used as the feature for
classification.

Invariance Mapping

The segmented sithouette is spatially mapped to elimi-
nate translation, rotation, and scale variations prior to
classification. An invariant silhouette is therefore built
directly into the classifier memory to form a single
compact representation for the target. This invariance
reduces the number of stored patterns from one pat-
tern for each of several terrain angles and ranges to a
single stored pattern, which reduces memory require-
ments and search times and improves efficiency. In-
variance can be obtained by using the following pro-
cess: (1) locate the segmented silhouette in the field of
view, (2) detect the silhouette edges, and (3) spatially
map the silhouette edges. The resultant abstract pat-
tern has the desired invariance and is processed di-
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FIGURE 13. Segmentation of a laser tadar image of an M48 tank with the houndary contour system (BCS)
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Table 4. Invariant Mapping of Silhouette Edge Strengths for Translation, Rotation,
and Scale Invariance in the Sensor Field of View

Translation Pixel centroid locates origin for
mapping log radius and polar angie
Polar angle
172
2
Rotation Rotation in field of view is mapped 3
to shift in polar angle 2
-
Scale Scale (or range) is mapped to

shiftin log radius

centroid calculation and log-polar mapping to have
robust behavior.

The log-polar mapping around the centroid of the
target maps rotation in the field of view to a shift in
polar angle, while it maps range to the target as a shift
in log radius. This mapping is insensitive to rotation
and scale variations; cross-correlation with an un-
rotated, unscaled log-polar mapping gives an estimate
of the amount of rotation and scaling present in the
detected silhouette.

Another method for making the log-polar map-
ping invariant to rotation and scale in the field of
view is to calculate the magnitude of its Fourier trans-
form. The sh.it property of the Fourier transform
eliminates the rotation and scaling shifts of the log-
polar mapping by treating the mapping as a periodic
function, as reported for laser radar range imagery by
Kolodzy et al. [7]. While this method has merit, it
will not be discussed further here; it is the subject of
other research [13].

Classification

In the final stage of the ATR system, a neural network
is used to classify the abstract invariant maps into
potential target categories. The adaptive resonance
theory (ART) developed by G. Carpenter and S.

Log radius

Grossberg [14] defines a class of unsupervised neural
network classifiers that cluster an NV-dimensional in-
put vector into a finite number of stable categories.
This clustering is a necessity if large training scts are
to be used.

Supervised networks and/or model-based systems
require exact knowledge of the target, or ground truth,
for each exemplar. For most large systems, thousands
(or millions) of training frames would need to be
ground truthed, which is a daunting if not impracti-
cal task. The ART-2 network, which is illustrated in
Figure 14, is basically a two-level correlation classifier;
this algorithm has been discussed by R. Lippmann
[15] and Menon and Kolodzy [16] to be similar to
the K-means clustering algorithm.

The ART-2 network is different from early ART
structures because it is designed to classify analog,
rather than binary, input patterns [17]. This analog
capability requires a robust structure that pays strict
attention to memory stability. The ART-2 network
classifies and stores patterns in the following manner.
The firse layer (F1) normalizes the input with respect
to the feedback signal from the second layer (F2),
becoming a short-rerm memory (STM) trace. This trace
activates nodes in the second layer proportional to the
magnitude of its correlation with the corresponding
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FIGURE 14. Processing diagram of the ART-2 neural network. The input
image is presented and stabilized by the node-level pracessing in the F1
layer; the result is then correlated with stored long-term memory (LTM)
patterns in the F2 layer. If the resultant correlation is not large enough
with respect to the vigilance parameter, a reset signal is propagated as
teedback down to the F1 layer. If none of the LTM patterns are sufficient,

then 2 new LTM pattern is formed.

stored memory patterns, or long-term memory (LTM)
traces. [f the degree of match between the normalized
input STM trace and the LTM trace associated with
the most highly activated node in F2 passes a vigi-
lance parameter, the STM trace in F1 is learned onto
the L'I'M trace, thus storing the differences between
these memory traces. Should a mismatch occur, a
reset signal causes the input pattern to select another
L'TM category. If no existing LTM category can be
found that matches the input pattern, a new category
is created, which illustrates the ability of the ART-2
network to respond to a novel signal. Generally, simi-
lar patterns are categorized together because of high
interpattern correlation, and these patterns continu-
ally activate the same category node in F2.

The final step of the classifier training is to associ-
ate target labels with LTM traces. Each LTM trace for
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an individual target is provided a label unique to that
target. Multiple LTM traces tor an individual target
are formed because of cither different views or statisti-
cal variability of the target. For example, a tank at a
head-on perspective looks different from a tank at a
broadside perspective, and thus would form two dit-
ferent categories. Also. at a low SNR the signal could
change signiticantly ¢nough to cause the classitier o
form a new category if it is presented with a new noise
structure.

Interpretation of Results

The performance of an ATR system can be indicated
either by the score of cach individual processing mod-
ule or by the overall system score. This article uses the
overall system score as a measure of results, with a

higher concentration on the capabilities of the classi-
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tier. For supervised classitiers, the performance is com-
monly measured by the number of correct responses
ot the system when it is given a test set of input
images. The ATR system presented here incorporates
an unsupervised classifier, which uses a larger variery
of performance measures. This article uses a scoring
method based on the number and population distri-
bution of categories created by the classific: during
rraining,

Unsupervised classifiers are generally clustering al-
gorithms that group input feature vectors into a tinite
number of categories. A user-defined distance metric
is used ro determine whether an input vector is to be
clustered, or muatched, with an existing category. The
number of categories produced (given a specific train-
ing set) indicates the ability of the classitier to genenl-
ize. A classifier responding with more than one cat-
egory for an object is not unreasonable it the features
the ATR is extracting change significandy. For the
ATR system presented here, this change in features
occurs for the log-polar map when the vehicles are
rotated out of plane. A classitier that requires only a
tew categories to perform recognition is desirable.

Two measures ot a classifier’s ability o generalize
are currently being used: (1) the number of categories
required for a given training set, and (2) the number
ot populated categories formed for the same training
set. The differences between these two icasures are
found in the interpretarion of sparsely populated clus-
ters or categories. For example, it 100 inputs produces
five categories populated by 95, 2, 1, 1, and 1 ex-
amples, respectively, then either five separate catego-
ries or one single category with five incorrect re-
SPONSsEs are necessary.

The trade-offs of these measures are identical to
those for fielded ATR systems: performance versus
hardware requirements. If every vehicle needs to be
recognized, then all possible variations, includiag those
categories individually populated, or outliers (those
variations whose characteristics are rarely viewed), are
required to be modeled and retained in the ATR
system. It is possible, as shown by the 100 input
examples above, that a significant reduction in the
hardware requirements (i.e., memory) of the system
can be obtained by allowing a certain reduction in
recognition capability.

Eraluations Using Laser Radar Imagery

We have mvestigated the ability of this ATR svstem o
classity laser radar range imagery of various miliary
targets correctly. This svsten: has been tested on a
limited amount of imagery obrained with ground-
bascd sensors buile by the Opro-Radar Systems group
at Lincoln Laboratory. The results of these tests are
presented below.

The tull capabilities (and deficiencies) of an ATR
svstem, however, must also be determined, and this
determination is possible only through exhaustive test-
ing requiring large amounts of sensor data. Many
conditions can be tested to determine the capabilities
of the ATR svstem; we used three conditions: (1)
CNR, (2) out-of-plane rotation, and (3) number of
pixels on target. Unfortunately, the amount of sensor
data required to test these three conditions theroughly
by using real sensor data is prohibitive in both time
and cost. The use of synthetic imagery to place bounds
on system capabilities is the logical alternative.

Synthetic laser radar range target imagory was gen-
crated by using Environniental Research Institute of
Michigan (ERIM) wire-frame models of a varicty of
military and non-military vehicles. Background im-
agery was generated by using a flac ground plane
projected with the attack angle of the sensor. Perfect
object extraction trom the ground plane was assumed
tor this study. Sensor statistics (e.g.. noise) were added
by using the laser radar range and ntensity models
developed by ¥ Shapiro et al. [18, 3, 4]. This proce-
dure was used 1o generate targets for the three test
conditions listed above.

Ground-Based Sensor Data and Results

In 1981 at Camp Edwards, Massachusetts, the Opto-
Radar Systems group recorded a large database of
laser radar imagery of three vehicles—an M-48 tank,
an M-113 arinured personnel carrier (APC), and an
M-110 howitzer. These vehicles were recorded at five
orientations with fiv range backgrounds by using a
transportable ground-based laser radar sensor that was
the forerunner of the airborne IRAR system. This
ground-based sensoi allowed us 1o create a versatile
database for esting ATR system performance. Each
of the five background scenes consisted of sky, trees,
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Table 5. Classification Results for Three-Target Database of 18 Images

Number of Categories False ART-2
Formed Alarms Vigilance
BCS filled silhouettes 5 1 0.785
BCS maximum edge strengths 5 0 0.694
BCS summed edge strengths 4 0 0.718
Raw extracted target sithouette 3 2 0.790

or hillside, which we created by changing the location
of the ground-based sensor relative to the target.

We selected an 18-frame image subset ot the Camp
Edwards database and processed this image subset
through the ATR system. This image subset consisted
of three frames of three targets at 750 m and 1000 m
in range. The 750-m imagery had a sky background

that provided infinite range contrast between the tar-
get and background. The 1000-m imagery had a
hillside background that had almost no range con-
trast because of the high depression angle between the
sensor and the trarget; many pixels in this imagery
were only one range count different from the targer.

The detection algorithm of the ATR system lo-

RANGE IMAGE PROCLESSING

ART? NETWORK LTI TIACLSY

FIGURE 15. Classification of laser radar range imagery into stable recognition categories by using the ART-2
neural network. The range silhouette is shown for three input images—a tank, armored personnel carrier
(APC), and howitzer—followed by the resultant image from the segmentation stage. The edge image is then
computed, followed by the result of the log-polar mapping. The right side of the figure shows the three LTM
patterns with a red box outlining the matched LTM category for the corresponding input. Note that the LTM
patterns are not identical to the input log-polar patterns, because they are an aggregate of all the inputs
classified with an individual LTM.
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cated and extracted 100% of the targets in the test set.
This result was not unexpected for the 750-m imag-
ery. There was significant range contrast in the scene,
so verticality measurements alone could be used for
detection and the size filter was not required to ex-
tract the target. In the 1000-m imagery, however, the
background was often only one range count different
from the target, which required the size filter to ex-
tract accurately the region of interest defined as the
target. A detection rate of 100% for the 1000-m
targets demonstrated the robust behavior of the de-
tection stage of the ATR system.

The ART-2 neural-network classification stage of
the ATR system properly classified 95% of the targets
into five stable recognition categories, as listed in
Table 5. Sixteen targets formed four categories (spe-
cifically, six tanks, five APCs, three 750-m howitzers
and two 1000-m howitzers), one 1000-m howitzer
formed its own category, and one 1000-m APC was
erroneously classified as a tank and counted as a false
alarm. This performance is acceptable after careful
examination of the imagery. The tanks and APCs
formed relatively consistent invariant patterns for clas-
sification. The detected howitzers, however, were not

classitied consistently because the detection stage ci-
ther included part of the ground plane or it removed
part of the target body.

Figure 15 shows a sample classification result. The
images in the lett column of the figure are the de-
tected silhouettes determined by using the range im-
agery of a tank, APC, and howitzer from the detec-
tion stage of the ATR system. These silhouettes are
processed by the segmentation stage, the edge strengths
are computed, and then the edge-strength images are
transformed into the log-polar domain, as shown in
the next three columns of the figure. The right side of
the figure indicates the three LTM traces created by
the ATR system after processing the nine 750-m im-
age frames. The red-box highlight indicates the LTM
trace with which that particular input image on the
left is matched.

Classification performance was investigated for a
set of variations to the baseline ATR system. The
baseline system uses the edge images computed from
the filled sithouettes produced by the segmentation
stage as the input to the log-polar map. The filled
silhouettes are produced by using the summed-edge
compression method. The variations investigated were

Table 6. The Effect of CNR on the Number of Categories

Formed for ATR System*
CNR (dB) Percent With Without
Anomalies Image Cleanup Image Cleanup

100 0.0 8 8

35 0.2 8 8

30 0.6 8 17

25 1.9 8 26

19 7.3 8

16 139 8

13 25.2 8

10 42.3 8

ki 63.1 26

* Tests included eight vehicles (jeeps, trucks, armored personnel carriers, and tanks)

both with and without image cleanup.

VOLUNT B OSTUBER N2 THE LINGOLY LABORATOR. JOURNY 135




r -

* KOLODZY
Multdimensional Automatic Target Recognition System Evaluation

the use of the maximum-edge image, the summed-
edge image, and the edge image computed from the
target silhouette produced by the detection stage. Each
of the variations is related to a reduction of processing
by cither eliminating part of or the entire segmenta-
tion stage.

We describe the results of these variations to the
baseline system in terms of the number of categories
formed and the number of false alarms (false classifi-
cations) produced. The goal is to reduce both the
number of categories (i.e., produce better generaliza-
tion of the data) and the number of false alarms. The
results given in Table 5 indicate that both the maxi-
mum-edge-strength image and the summed-edge-
strength image eliminate the false alarms while the
summed-edge-strength image also reduces the num-
ber of categories. The target-silhouette image further
reduces the number of categories while sacrificing
false-alarm performance.

These preliminary results indicate that the classifi-
cation results are sensitive to the algorithms used in
the processing stages prior to the classification stage.

Additional results of tests using a larger database are
required before we can conclude that summed edge
strengths should be used exclusively as the inpur to
the log-polar map.

Effect of CNR on Synthetic Broadside
Target Recognition

In the first test we evaluated the effect of CNR on the
recognition of broadside targets. W pediormed two
individual experiments to determine the number of
categories formed without image cleanup and the
number of categories formed with image cleanup.
Table 6 shows the results of recognizing eight broad-
side vehicles (two jeeps, two trucks, two tanks, and
two APCs) that are synthetically generated with a
sensor of 100-urad angular resolution imaged at a
distance of 750 m.

Without image enhancement, a high ART-2 classi-
fier vigilance value was required to separate the eight
vehicles. This high value forced the classifier to form
multiple categories for each vehicle at a CNR value of
30 dB. The same result is obtained when image en-

FIGURE 16. Log-polar maps of tanks and APCs rotated out of plane. The log-polar map of the two tanks are similar
for the broadside and near-broadside views but different for the head-on view. The same similarities and differ-

ences exist between the log-polar maps for the two APCs.
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(a) (b)

(c) (d)

FIGURE 17. Approximate angular extent of each category for recognition of log-polar maps of eight vehicles with out-of-
plane rotation; the vehicles are (a) two jeeps, (b) two trucks, (c) two tanks, and (d) two APCs. A total of 31 categories are
formed. Each category and its angular extent is depicted by the shaded patterns in the figure. Each vehicle requires only a
single category from the broadside view up to 45° of head on or greater. The majority of the categories are in the last 15° from
near head on to head on because the log-polar maps change the greatest in that region.

hancement is included, in the form of the Bayesian
preprocessor, at a CNR value of 7 dB. A typical
operational sensor value of 19 dB at a distance of
1000 m indicates that image cleanup is a necessity.
For further details of the experiment and results, see

the report by S. Rak {19].

Out-of-Plane Rotation Recognition

A second test was performed to provide insight into
the number of independent categories necessary to
distinguish eight vehicles rotated out of plane from
broadside to head on (a 90° rotation) [20]. When
matched filters are used for recognition, we com-
monly create filters for every 5° of arc. This test was to
provide experimental evidence for the number of cat-
egories necessary for recognition. Again, we used the
same ATR system with the log-polar maps that we
used with the ground-based sensor data.

A visual depiction of the information passed to the

classifier indicates that input to the log-polar maps
from broadside to 50° of head on are similar, whereas
the maps near head on change radically. Figure 16
shows the log-polar maps for two ranks and two
APCs at broadside, 50°, and head-on orientations.
Visually, Figure 16 indicates that more categories are
necessary for the near head-on orientations while only
a few categories are needed for the near-broadside
orientations.

The same test was performed with the eight ve-
hicles rotated from broadside to head on in 1° incre-
ments, which crcated 90 inputs per vehicle. The 720
aggregate inputs were then used to train the classifier,
which determined that only 31 categories were neces-
sary to distinguish the cight vehicles at any orienta-
tion from broadside to head on. Figure 17 indicates
the approximate angular extent of cach of the 31
categories. Some vehicles require more categories than
others. A general trend seen in this figure is that only
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one category is necessary for each vehicle to distin-
guish the vchicles from broadside to approximately
45° of head on. This result agrees with the intuitive
understanding we have when viewing the log-polar
maps.

Resolution Requirements and the fohnson Criterion

A final test of the ATR system is the comparison
between the criteria indicated by J. Johnson [20] and
the resolution requirements for recognition and iden-
tification. Johnson’s work focused on determining the
imaging requirements of a sensor to produce a level of
discrimination and recognition for human observers.
The work consisted of psychovisual experiments on
U.S. Army personnel by using image intensifier imag-
ery that is similar in quality to passive-IR imagery.
The personnel were shown images of various vehicles
at various resolutions and asked to identify the ve-
hicles. The Johnson criterion is the number of pixels in
a vehicle’s minimum dimension (usually height) that
is required for a 50% probability of correctly identify-
ing the vehicle.

15
@ Jeep 1
2
o
210 —
©
Q
g Jeep 2
g st .
£
o APC
0
8 23
(0.6) (1.0) (1.4) (1.8)

Object height in pixels
(Johnson criteria ratio)

FIGURE 18. Johnson-criterion test to indicate the number
of pixels necessary for identification of a target. In this
case the targets are two jeeps and an APC. The number of
cumulative categories formed for a set of training patterns
at each object height in pixels is shown for object heights
from 13 to 23 pixels. The increase in the number of catego-
ries from the baseline case height of 23 pixels indicates the
inability of the classifier to generalize the patterns. The
results shown in the figure indicate that the ciassifier per-
forms well up to 20% above the Johnson criterion of 13
pixels, as indicated by the dashed line in the figure.
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We performed an experiment with the spatal ex-
tent of each pixel as the variable; this experiment was
identical to the one on the effect of CNR described
above. Three broadside vehicles were used (two jeeps
and an APC) for the training, and the number of
pixels in the minimum dimension were varied from
13 to 23. Figure 18 indicates the number of catego-
ries formed as a function of the number of pixels in
the minimum dimension. For complex vehicle out-
lines such as the jeeps, the classifier performs well up
10 20% greater than the Johnson criterion for identi-
fication. For a much simpler vehicle such as the APC,
the classifier is more robust and can still identify the
vehicle at the Johnson criterion. For more details on
the methodology and interpretation of results, see the
report by Rak [19].

The ATR Evaluation Facility

Military applications require the use of ATR systems
in both semi-autonomous and autonomous modes
(in a semi-autonomous mode we believe in the recog-
nition capabilities of the ATR system enough for a
user to apply the results, while in autonomous mode
we let the system act on the results on its own). The
testing and acceptance of ATR systems for these mili-
tary applications has proven to be difficult. The re-
sources necessary to provide useful test results are
usually overburdening. Either we must use large
amounts of real sensor imagery, sometimes in mul-
tiple sensor modalities, for each given mission sce-
nario, or we must use synthetically generated data.
The real sensor imagery requires expensive and time-
consuming efforts to gather the data, while the syn-
thetic imagery places an inherent trust in the validity
of the sensor and target models used to generate the
synthetic data. The recent development, however, of
inexpensive computer graphics workstations and data-
processing engines has begun to change the emphasis
from measurement missions to computer-generated
data.

We are currently developing an ATR evaluation
facility (AEF) that exploits the recent developments
in computer graphics and data processing to provide
an effective test environment. This facility merges
high-resolution data, an electronic terrain board (ETB)
that combines sensor data with synthetic targets and
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sensor models, and an ATR system that is under
evaluation. The high-resolution data are taken in the
modalities of interest (laser, passive IR, and visible)
and stored in databases. The ETB uses the databases
along with the sensor and target models to modify the
measured imagery tor ATR-system sensitivity analy-
ses. This section describes the facility as well as cur-
rent rescarch on its devclopment.

Sensor

Description of the ATR Evaluation Facility

The AEF merges existing sensor data in muldple
modalities with synthetic data from sensor and rarget
computer models. Figure 19 shows the conceprual
flow of information in the AEF. The airborne IRAR
sensor suite, which is described earlier in this article,
collects high-resolution imagery in laser intensity,

Databases

MMW

Forward-looking laser radar
(intensity, range)

Passive IR
Down-looking laser radar |
(0.8-um intensity, relative range)
Down-looking laser radar 1l
(10.6-pym intensity, relative range)
Passive IR

Sensor and target modeis

Cleanup

Detection

Segmentation

—»| Feature extraction

Invariant maps

Classification '

ATR algorithms

Tactics, site,
sensors

1

Electronic terrain board

FIGURE 19. The ATR evaluation facility incorporates the down-looking and forward-locking sensor imagery databases,
sensor and target models, the electronic terrain board (ETB), and the ATR algorithm suite. Image databases and sensor
and target modeis are fused within the ETB, which allows us to modify target models and vary the measured backgrounds.
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range, passive IR, and MMW in a variety of wavebands
and view aspects. These data are stored in large data-
bases that are used to refine the synthetic data created
from sensor and target models.

The modeling efforts and the databases are merged
in the ETB. Most false alarms and missed detections
as well as missed classifications of targets are due to
the variability of background clutter signals. Model-
based systems and trainable recognition systems are
developed by using limited target signatures only;
unfortunately, these systems do not develop internal
models for backgrounds as well. Therefore, we must
find a way to merge target signatures, which are pre-
dominantly models, with background clutter.

It is difficult, however, to model background sig-
nals because of their variable and unpredictable na-
ture. The background models are therefore the weak-
est link of a completely synthetic sensor image. The
combination of measured background imagery with
the more well-defined synthetic target models cir-
cumvents this problem.

Terrain Database

The down-looking laser radar sensor described earlier
provides high-resolution range imagery. This imagery
is a 2¥2-D representation of the actual terrain and
precludes the existence of speckle noise indicative of
intensity images. The 2%5-D imagery contains the
range of the first object or part of object that is
interrogated for each pixel. Therefore, any part of an
object at a further range or area occluded is not
represented in the data. The 2%2-D notation indicates
that a full 3-D image is produced, although the way
we view the scene from above appears as if a blanket
were covering the objects in the scene. Only the high-
est point of a pixel that is interrogated is recorded;
any part of an object at a longer range or in an
occluded area is not represented in the data. For
example, a ball in midair viewed from above is repre-
sented as a hemisphere on top of a cylinder because
no information is available on the space below the
ball. Techniques for combining multiple views are
being investigated to alleviate this current limitation.

The down-looking sensor simultaneously measures
range as well as laser intensity and passive IR. The
existence of 2¥2-D range imagery lends each of the
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sensor domains to coordinate transformations. As de-
scribed earlier, the ability to transtorm the range data
and subsequent pixel-registered passive-IR data al-
lows the sensor imagery to be used to train and test
ATR systems with many viewing aspects. The specific
method used for the coordinate transformation can
have a dramatic effect both on the requirements for
computation and, more importantly, on the quality
of the resultant image.

Traditionally, Euler angles have been used 1o repre-
sent coordinate transformations, and these coordinate
transformations can be expressed as 3-by-3 rotation
matrices. Because the computer graphics community
commonly uses rotat’on matrices, most of the special-
ized hardware develr ped to perform coordinate trans-
formations emploss this method. This choice has been
motivated primarily by the fact that translation and
scaling as well as rotation can be represenited by one
matrix. The same transformations, however, that can
be performed by a matrix can be performed with
fewer operations by using quaternions [21]

An important consideration in the choice berween
matrices and quaternions for coordinate transforma-
tions occurs when we interpolate between two orien-
tations. Rotation matrices are not well defined for
interpolations, because rotations are carried out by
three successive rotations about three fixed axes. Be-
cause these successive rotations are not commutative,
changing the order of the rotations produces different
results, which introduces a significant problem known
as gimbal lock. This problem occurs when the interac-
tion of two rotations aligns two of the three rotation
axes and causes a loss in one degree of rotational
freedom. Quaternions are free of this problem be-
cause the cross-product interaction between succes-
sive rotations is preserved [21]. Because of this rota-
tional stability, the aerospace industry for many years
has preferred quaternions over matrices defined by
Euler angles for spacecraft applications.

Because most computer graphics workstations have
hardware that is specifically designed to implement
matrix transformations, we must continue to main-
tain all viewing parameters in matrix form. The AEF
system is designed to perform all interpolations by
using quaternions, which are then converted to ma-
trix form for rendering.
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To illustrate the use of quaternions for interpolat-
ing rotations we must first define what a quaternion is
and how it is used to perform a rotation. A quater-
nion consists of two components—a scalar part and a
vector part. Consider a quaternion g = {5, v|, where s
is a scalar, and v is a vector of three elements. In
quaternion algebra, addition is detined as

g+ g = [(x, +55). (v, + vl)],
and mulrtiplication is defined as
qq, = [(5152 =V Vo) (v + 5V + v X vl)],
where v, - v, is the veccor dot product and v, x v, is
the vector cross product.

Before we can define rotations using quaternions
we need to define the inverse operation

q—] = —‘—2—[5.—v],
l4)
where
o =5 +vev.

To rotate a point p we embed it into a quaternion as
[0,p]. Rotation is then defined as

v' = Rot(v) = qz/q_l .

where gand 47" are unit quaternions.

One consideration associated with the use of quater-
nions for coordinate transformations is that rotations
are performed on the unit four-dimensional hyper-
sphere, so that, as a result, simple linear interpolation
between two orientations gives unequal rotations
through the range of orientation values. The unequal
rotations occur because the great arc of a unit
hypersphere is the spherical equivalent of a line, and
the linear interpolation steps fall on unequal portions
of the line. These unequal rotations must be compen-
sated for to give a smooth set of intermediate trans-
formations. All of the interpolations between speci-
fied positions are performed by using unit quaternions
and spherical linear interpolations, and then compen-

sating for unequal rotations {21].

Figure 20 shows an example of the transformacion
of down-looking range data into various viewing per-
spectives. Starting with the range data shown in Fig-
urc 4, the range darta are transformed and displayed as
sand-colored video data and synthetcally generated
laser radar range data in a viewing sequence typical of
a target interrogation. In effect, this series of transfor-
mations is like an observing eye on a flying carpet; it
begins at a long standoft distance at a high altitude, it
detects a possible targer, it dives to a lower altitude,
and it flies along the road to the target. This series of
transformations demonstrates how down-looking im-
agery can be used to train and test an ATR system
with many viewing aspects.

Synthetic Laser Radar Imagery

An important element in the ETB is the combination
of synthetic imagery and modified sensor imagery.
Synthetic imagery is derived from target and back-
ground models applied with the appropriate sensor
statistics. In some cases, actual sensor imagery can be
modified to degrade the quality of the imagery for
test purposes. Both of these cases provide the addi-
tional flexibility necessary for ATR evaluation. This
section describes the methodology used in creating or
modifying laser radar imagery.

The statistics describing a monostatic pulsed rang-
ing laser radar employing heterodyne detection are
described by Hannon and Shapiro [3], and were used
to develop a model for laser radar range data. This
laser radar model requires that we select the range and
CNR value for every pixel as well as the number of
range bins Q available to the signal processor. The
probabilities of an anomaly (equally distributed across
Q -1 range bins) and for the correct range value are
given by

-
Pro=1-¢ cnrn

and

po=-e ),

where P, and P are the detected intensity prob-
'3 w
abilities from the correct range bins and the wrong
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FIGURE 20. Down-looking laser radar data is transformed into a three-dimensional
terrain-map view. (a) Photographic ground truth of a camouflaged truck, (b) down-
looking laser radar image, and (c) a sequence of frur views that were formed by using
3-D transformed laser radar imagery to “fly over” the target.
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Geometric target models

Sensor image

Synthetic range image
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FIGURE 21. Scene decomposition and synthesis of a laser radar range image. The original sensor image (upper center) is
decomposed into polygonal background (upper left); statistical, chaotic, or fractal background (upper right); facet target
models (lower left); and physical target-background parameters (lower right). A new laser radar image is then synthesized

(lower center).

range bins, respectively. These two probabilities are
used in conjunction with a random-number genera-
tor to provide two random draws. The maximum
value of the two random draws is selected as the
intensity /.

The application of the described statistics can be
demonstrated through an example. Figure 21 depicts
the decomposition of a sensor laser radar range image
into four primary parts. The background and target
models constitute three parts: polygonal background
models for relatively uniform terrain; statistical, cha-
otic, or fractal models for fragmented terrains such as
foliage; and the geometric target models generated
from wireframe or facet libraries (ERIM) or solid

geometry libraries (U.S. Army Ballistic Research Labo-
ratory). The physical target models, which are de-
scribed by the CNR for each pixel, are used to com-
pute the intensity and range value by using the Hannon
laser radar model [3]. In the example shown, a variety
of fractal dimensions were attempted and a best visual
fit was selected for the foliage. A uniform CNR value
of 17 dB (which is a typical value for imaging generic
terrain by the IRAR sensor at 700 m) was used to
generate the synthetic range image. The generated
image is visually similar to the original sensor image.

Summary

A flyable, multisensor system has the ability to mea-
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sure a combination of range, Doppler, laser intensity,
and thermal signatures in both the forward-looking
and down-looking aspects. Statistical advantages for
incorporating multidimensional information exist for
target-detection applications using theoretical analy-
ses and heuristic algorithms. The use of multiple sen-
sor modalities also provides some hope to address the
vexing issues of ATR.

A modular, hybrid ATR system has been described
that fuses statistical, model-based, and neural net-
work processing structures. The system has been tested
on laser radar range imagery as well as synthetic range
imagery incorporating pulsed laser radar statistics.
Results created by using the synthetic imagery indi-
cate that target identification can occur in imagery
with over 50% of the pixels corrupted by noise. Tests
with out-of-plane rotated vehicles indicate that a fi-
nite number of nonuniform angularly spaced projec-
tions can be learned by the system to provide target
identification. The current system can also provide
identification with spatial resolution as low as 20%
above the Johnson criteria.

To continue to test and evaluate complicated ATR
systems, an ATR evaluation facility is being constructed
to provide real, synthetic, and hybrid sensor image
input to a selected ATR. This facility uses the avail-
able high-resolution down-looking laser radar range
imagery and high-fidelity target models to generate
the various operational scenarios.
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Efficient MRF Image-

estoration Technique Usin
eterministic Scale-Based

ptimization
Murali M. Menon

B A method for performing piecewise smooth restorations on images corrupted
with high levels of noise has been developed. Based on a Markov Random Field
(MRF) model, the method uses a neural network sigmoid nonlinearity between
pixels in the image to produce a restoration with sharp boundaries while
providing noise reduction. The model equations are solved with the Gradient
Descent Gain Annealing (GDGA) method—an efficient deterministic search
algorithm that typically requires fewer than 200 iterations for image restoration
when implemented as a digital computer simulation. A novel feature of the
GDGA method is that it automatically develops an annealing schedule by
adaptively selecting the scale step size during iteration. The algorithm is able to
restore images that have up to 71% of their pixels corrupted with non-Gaussian
sensor noise. Results from simulations indicate that the MRF-based restoration

remains useful at signal-to-noise ratios 5 to 6 dB lower than with the more

commonly used median-filtering technique. These results are among, the first

such quantitative results in the literature.

N IMAGE-RESTORATION METHOD that reduces

noise while preserving naturally occurring
boundaries in a scene is presented. The
method is usetul as a preprocessor to enhance the
performance of automatic target-recognition systems.
Targer recognition is a process that can involve
many stages. including measurement, preprocessing,
detection, segmentation, feature extraction, and clas-
sification. For adequate recognition performance in a
noisy environment, it is often important that the
preprocessing stage be capable of restoring measured
images. (We justify this statement in the section *Simu-
lation Results.”) The restoration should reduce the
variability in the scene that results from measurement
noisc and clutter while preserving important features
that make targets separable in the classitication stage.

Both objectives can be accomplished by using prior
statistical knowledge of the measurement process and
the clutter in the scene, or by using an empirical
formulation of the desired restoration. (Details of
using either a statistical or empirical formulation are
contained in the following section.)

Using the latter approach, the work described in
this article is based on an empirical image-restoration
model that requires nearest neighbor pixels to have
similar values (smoothing), without losing fidelity
to the original measurement. The pixel interaction
of the model smooths small pixel differences.
but allows large ditferences to remain as a discontinu-
ity (edge). It detailed statistical information concern-
ing the measurement and scene is available, the infor-
mation can be quantitatively incorporated into the
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image-restoration model.

This article describes an image-restoration model
that is based on a neural network tormulation using
Markov Random Fields (MRF), as desc .wed in the
box, “Markov Random Fields.” In the model, a neu-
ral petwork sigmoid function provides pairwise pixel
interaction potentials. The function behaves quadrati-
cally tor small differences but saturates for large dif-
ferences. The MRF property of the model allows an
image to be, in effect, decoupled into a large number
of connected local neighborhoods, each of which can
be processed independently. The local-neighbor in-
formation is propagated during iteration such that a
global image restoration is effected when the system
reaches a steady state. The restored image can be
found by solving an optimization problem that de-
pends on the pixel interaction potentials. The MRF
property that allows each pixel update to depend only
on a local neighborhood of pixcls eases the computa-
tional burden. For the case of a Gaussian pixel inter-
action, the potential function is quadratic, leading to
a simple optimization problem that involves the solu-
tion of a large set of linear equations. For sigmoid
interaction potentials (the present work), a difficult
high-dimensional nonlinear optimization problem re-
sults. Stochastic methods are commonly used to solve
such problems, but such methods are often very slow
and sensitive to the choice of annealing schedule. We
propose the novel deterministic Gradient Descent
Gain Annealing (GDGA) method for solving high-
dimensional nonlinear optimization problems. This
method is fast and automatically chooses an annealing
schedule. GDGA is used to solve optimization prob-
lems resulting from the neural-network-based MRF
image-restoration model. Previous deterministic an-
nealing work, such as mean field annealing [1, 2],
does not incorporate an automatic annealing sched-
vle.

The utility of the MRF model in restoring images
corrupted with varying levels of non-Gaussian mea-
surement noise has been investigated. Model perfor-
mance has been evaluated quantitatively in terms of
target detection and recognition, and the performance
has been compared.t() that of the commonly used
median-filtering technique. The quantitative results
reported in this article are among the first such resules
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in the literature. Because of prohibitive computa-
tional requirements, few quantitative characterizations
of image restoration algorithms have been performed.
Most work in the literature has compared the restored
imagery qualitatively, rather than determining the ef-
fect of the restoration stage on the overall system
performance.

The same model can be applied to a large number
of sensor measurements (Doppler, intensity, passive
infrared, range, and video) by the adjustment of a
single parameter. This feature is especially relevant for
hardware implementation because it allows a single
chip to be used for processing a wide variety of imag-
ery. The model has a massively parallel architecture
with local neighbor pixel interactions (four nearest
neighbors) and can be implemented on a parallel-
processing computer or a custom analog VLSI chip.
Implementation of the model in analog VLSI would
allow video-rate restoration of 512 x 512 pixel
images.

Background

In this section the Bayesian formulation of image
restoration is reviewed to show the formal connec-
tions to the restoration method that is the subject
of this article. The Bayesian formulation relates the
posterior probability that an estimate of the true
image x' is obtained given a measured image x” and
the prior probabilities:

P(Xm‘ xr)P(xr)

P(Xr| xm ) -
P(Xm)

(1)

The term P(x™|x") incorporates prior knowledge of
the measurement process, and P(x") incorporates prior
knowledge of the scene. The present model finds an
estimate x' that approximately maximizes P(x"|x™
given the measurement x™ and prior knowledge of
the scene in the form of P(x"). In the present model
each pixel depends only on its four surrounding neigh-
bors and the measured pixel as shown in Figure 1.

The probabilistic (Bayesian) formulation is equiva-
lent to a physical system description in terms of an
energy (3]

E x - log P(x). (2)
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MARKOV RANDOM FIELDS

A SERIES OF EVENTS in time
torm a Markov Chain if the prob-
ability of the outcome of an event
attime £ + 1 depends only on the
outcome of the event at time «
This concept can also be ap-
plied to processes on a lattice.
A Markov Random Field (MRF)
defined on a lattice implies
that the update of a pixel at
site ij depends only on the val-
ues of pixels in a local neigh-

borhood of N, (Fig-

ure A). In terms of conditional

sites
probabilities,

Ik € lattice, [k = i)
= P(X;; = x| Xy = xy,

where Xj; is the real-value distri-

FIGURE A. Markov Random Field (MRF) defined
on a lattice. In the figure, the update of a pixel at
site /j depends only on the values of pixels at sites
Ik in aiocal neighborhood of sites N,

bution of a random variable asso-
ciated with lartice site 5 and x;; is
the specific value of the variable
at that site. Thus the definition of
an MRF on a lattice transforms
a global problem into a more
computationally tractable local
problem.

It is also true thar an MRF on
a lattice has the following energy-
based formulation:

-U(x)
P(x) = .
Z

where U is the global potential
function for the entire lattice and
Zis the partition function, which
normalizes the probability P(x) to
a range from 0 to 1.

In the present work the energy
E(x) is defined over all indepen-
dent pairs of sites p on the lattice:

Ulx) = zp E,(x).

IkEN,

/)

The specific energy of inter-
action for a pair of sites is given

by a sigmoid function:
1
E,(x) = —,
1+ eﬁx

where the gain (8 < 0) defines
the scale of the sigmoid, as shown
in Figure B. A small magnitude
of the gain produces a large-scale
(broad) sigmoid, while a large
magnitude of the gain produces a
small-scale (narrow) sigmoid. For
either case, the sigmoid function
has the property that the response
saturates after the input exceeds a
certain level. For a high magni-
tude of the gain, note that the
sigmoid saturates very quickly,
even for small inputs. The gain in
the sigmoid function is inversely
proportional to the temperature
of an energy-based formulation.

E,(x)

FIGURE B. Sigmoid function Ep(x) for different magnitudes
of the gain 8. A small magnitude of the gain produces a
large-scale (broad) sigmoid, while a large magnitude of the

gain produces a small-scale (narrow) sigmoid.

——
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Thus an MRF image processor may be specified by
defining the energy function rather than the prob-
abilides. This empirical approach is used in the present
\\'()fk.

Model Description

Equation 2 indicates that a minimization of the en-
ergy will resule in a maximization of the probability
P(x" [+™). The total system encrgy can be expressed as
the sum ot a field term (which is due to the measured
image) and a surround term (which is due to the

neighbor interactions):
Y A e (3)

The ficld coupling A in Equation 3 is an adjustable
paramcter that determines the importance of the mea-
surement term relative to the surround term: a small
value of 4 produces a highly smoothed image with
little contribution from the measured image, whereas
a large value essentially reproduces the measured im-
age. The sigmoid function is used in both terms. The
ficld term is given by
1

-1
[’ - Z’I 1 lji(\ln).' ? (/l)
+ el

where A'l‘; is the difterence between the restored and

S SR TIA m _ v .m ) b .
measured pixels (i.c., A = x;; - x; ) and B is the
saturation gain term. The sigmoid function is also

used for the surround term:

; ]
=% ——
" )

where A\/,
A‘/} = x;’l - x'/}g,, where p refers to all independent
nearest neighbor pixel pairs in the image, and pl

is the surround pair difterence, ie.,

and p2 refer to the members of a pair). Note that
for an M x N lattice there are (N — DA]
horizontal pairs and (M — 1) N vertical pairs for a total
of 2MN — M~ Nindependent pairs.

The estimate of the original image x" that mini-
mizes the syseem energy is obtained with a determin-
istic scarch procedure. The present work uses the

GDGA dererministic search (described in the subsec-
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Surround interaction
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-4——— Field interaction
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FIGURE 1. Nearest-neighbor architecture used in the
Markov Random Field (MRF) image restoration.

tion “Deterministic Solution™) to decrease the satura-
tion gain term Bin Equations 4 and 5 from -0.001 o
—10.0. (Note that the gain is negative in the present
formulation.)

The saturating aspect of the sigmoid function (from
the neural network literature [4]) in Equation 5 al-
lows the formation of sharp boundarics between dis-
similar regions. The main advantage of using a sig-
moid surround term is that sharp segmentations can
be obtained without a separate “line process™ [3],
which would require solving 2MN — M ~ N extra
equations. Hence the sigmoid term clearly reduces
the computational load. For the same reason, a sig-
moid function is used for the field, or measurement,
term. The sigmoid function solves the problem of
providing smoothing (noise reduction) while preserv-
ing naturally occurring boundary information in the

scene.
Optimization Methods

Stachastic Solution

To solve the nonlinear optimization problem sug-
gested by Equation 3, rescarchers have often attempted
stochastic methods, which do not require the deri-
vative of the energy with respect to the restored
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state and, as a consequence, can be used for a
wide range of optimization problems. Stochastic
methods are also well suited for high-dimensional
problems that are characterized by many acceptable
solutions (restored states) all having approximately
the same energy. Image restoration requires a solution
with low energy, but does not need the global
minimum.

The present work derives a stochastic solution by
relating the statistical description of the problem to
an energy-based representation. By making a cor-
respondence to a physical system at thermal equi-
librium, we can express the formulation in Equa-
tion 1 in terms of minimizing the energy of a
system. The probability that a physical system in
equilibrium with a heat bath at temperature 7'is in
state 7 with energy Eis given by the Boltzmann
distribution:

—7[:jl
i EI(BI
Z(Ty’

where 4 is the Boltzmann constant and Z(T) is

the partition function, which is simply the sum of
the exponential term E/(kyT) over all possible
states £.

[t is assumed that the solutions to the optimization
problem are equivalent to the states of a physical
system and the cost of a solution corresponds to the
energy of a state. Asymptotic convergence to a set of
globally optimal solutions can be obtained provided
that the different states are generated properly and the
appropriate conditions are used to decide whether a
given state should be accepted [5]. Stochastic meth-
ods for solving the optimization problem involve start-
ing at a high temperature and annealing (i.e., re-
ducing) the temperature until the system “freezes” to
the minimum energy state. lIdeally, the proce-
dure would be implemented reversibly such that the
system is always at thermal equilibrium and a true
global minimum is reached rather than a metastable
state.

Stochastic methods for solving nonlinear optimi-
zation problems typically use a simulated annealing
method [6] combined with a Monte Carlo technique
such as the Metropolis algorithm [7] or the Gibbs

sampler [8]. For a comprehensive study that tnvesti-
gates the application of simulated annealing to image
reconstruction, see Reference 3 by S. Geman and
D. Geman. The problem with such stochastic solu-
tion techniques is that a good annealing schedule is
difficult to determine, and the solution time can be
prohibitive in terms of the number of iterations re-
quired because an equilibrium must be reached ar
cach stage of annealing. At high temperatures a large
temperature step is possible because the search covers
a wide range of the state space. As the temperature is
lowered, however, the system often reaches a critical
point below which the srate is “frozen,” analogous
to the phase diagram of real physical systems. If
the critical point on the energy-versus-temperature
curve were known, then large steps could be taken
before the critical point were reached and small steps
afterwards. Unfortunately, the “phase diagram” de-
pends on the initial measurement, or field, term.

In practice a conservative annealing schedule is
often used:

1
log b’

T x

where £ is the iteration number and 7 is the temp-
erature. Such a schedut. can require hundreds of thou-
sands of iterations or more to produce an acceptable
restoration. Automated Local Annealing (ALA) has
been suggested to provide an automatic annealing
schedule for neural networks [9], but the procedure
is not directly applicable to an image-restoration
formulation.

Another problem is that the compurational ex-
pense of the stochastic method also depends on the
number of allowable states per image pixel. An image
with 8-bit pixels requires many more iterations for
the full exploration of the state space as compared to,
for example, a 4-bit image. Indeed, the solution of
such nonlinear optimization problems remains a chal-
lenging research area.

Deterministic Solution

The large number of iterations that the stochastic
approach requires in practice has motivated the use of
a deterministic solution technique to solve the non-
linear image-restoration problem. The deterministic
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approach attempts to minimize the system energy by
iteratively updating pixel values across the lattice unil
a steady state is reached. In the approach, the use of
high gain values tor the iterative solution to Equation
3 produces a restored image with sharp boundaries.
(Note: In the analogy of che physical system discussed
carlier, a high gain value corresponds to a low tem-
peracure, or a small scale in thata small change in the
input to the sigmoid function will produce a large
change in the output.) The use of high gain values,
however, will most likely lead to the procedure’s being
trapped in a local minimum. To remedy this problem
we have developed the GDGA technique, which starts
the solution procedure at a low gain (i.c., a high
temperature, or large scale). The intermediate solu-
tion at low gain is then used as an initial condition to
the problem at a higher gain, and the procedure is
repeated until the final desired gain values are achieved.
Solving a series of problems cach at higher gain values
is equivalent to temperature annealing in the stochas-
tic approach. In addition, we have developed an auto-
maticannealing (gain increase, or scale decrease) sched-
ule that is described below.

An cquation of motion based on the total energy
from Equation 3 is defined by

dx" .
—()7 = —V'\.r[t ’ (6)
where ¢ represents a pseudo-time quantity. If Equa-
tions 4 and 5 are substituted for the total energy term
in Equation 6, then the equation of motion for a
single pixel at a lattice site 7j is

(—):[r/_ _—d A
ot :);j; e\ | 4 @R’
0 |
Iy 4 {4 TS '

where 2, refers to all of che lattice sites in the image
and Z refers to all of the independent pixel pairs in
the lattice. In th present work the MREF is given by
the two horizontal and two vertical pairs associated
with a given lattice site 7, resulting in a neighborhood
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N, given by

NI/ = {xl +, 7 X - xl,‘[i’l ’ xl,/~ l } :
Hence, with this local neighborhood the update
of a pixel at lattice site 7j depends only on the pixel’s
tour nearest neighbors.

The objective is to find the steady-state solution to
Equation 6 that results in a state ¥ that minimizes the
system energy. The particular form of Equation 6, the
equation of motion, guarantees that the steady-state
solution minimizes the energy. This relationship can
be shown by using the identity

o _or o
ot axr ot

(7)

and substituting for dx'/dr from Equation 6 into
Equation 7, resulting in

JE _ (9E Y
dat ()er .

In the present work the GDGA deterministic tech-
nique is used to minimize the energy. This formu-
lation is similar to the Graduated Non Convexity
(GNC) approach of A. Blake and A. Zisserman
[10] and the technique used by Y.G. LeClere [11],
and has some similarity to mean field annealing
[1]. We have found GDGA to be substantially faster
than the stochastic techniques described in the litera-
ture. The GDGA technique iteratively solves Equa-
tion 6 by calculating the gradient of the energy and
updating the state (similar to an Euler solution of a
system of coupled differential equations). In this
approach the magnitude of the gain terms " and
B in Equations 4 and 5 are increased from a value
starting at 0.001. At small gain magnitudes the res-
toration acts to smooth the image because the en-
ergy terms are approximately locally quadratic with
the pixel difference. (An energy term that is quad-
ratic generates a larger penalty for larger pixel dif-
ferences. Hence a smooth image, i.c., an image with
equal pixel values, minimizes this energy.) Also,
at small gain magnitudes all edges in the image
are smoothed, resulting in a blurred image. As
the magnitude of the gain is increased the natural-
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ly occurring boundaries in the measured image
start to appear, and eventually a sharp segmentation
results.

The steady-state solution of Equation 6 at a given
gain value is found by setting the gradient of the
energy to zero and iteratively solving for the new pixel
value. The deterministic technique is implemented
with a fixed-point iteration around each pixel, in
which the pixels are updated with a Jacobi (fully
parallel) scheme [12]. In the technique, the gradient
is updated

of the energy is set to zero, and the term x;

based on the old values of its neighbors:

F_(ncw) - ﬁ\(A) + AﬁFx’;lg;
J ' gy + B°(B)

y

_ S r(old) r(old) S r(oldy
A_gi,j lx] 1 +g1]+1x1]+l *+ &i- lsz Lj

r{old)
+ gl+l i 1+1/‘ and

S S S $
B=yg i+ g/,j+l + gi—l,j *+ L

(8)
In Equation 8 the nonlinear term gj; is given by
o
v (14 eff(A,,)Z)Z | ©

where A, is calculated based on the old pixel values.
At this pomt the lattice could be updated, but a
gain annealing schedule has nor yer been speci-
fied. The GDGA technique automatically selects
an annealing schedule by using feedback from
the total system energy to select the gain step size.
The strategy involves varying the step in 8 in or-
der ‘o maintain constant steps in energy. The f
step - given by

A

IE (10)
B

A =

In Equation 10 a constant energy step AFE is used,

and the derivative is given by

(1 +eﬁ«A,])2) ' (11)

Note that in Equations 10 and 11 the gain
term f refers to both the field and surround
terms.

The GDGA technique starts at a small magni-
tude of gain and repeatedly applies Equation 8 unuil
convergence, which typically requires fewer than
10 updates. Then Equauon 10 is used to update
the gain terms A" and B and, with the new values, the
pixels are again updated. The procedure is terminated
when the magnitude of the gain becomes large—
typically, a value of 10. For both simulated and real
images, the GDGA algorithm is able to complete the
restoration process (i.e., achieve sharp segmentation
with noise removal) by using a total of 100 to 200
applications of the update equation (each application,
or iteration, of Equation 8 updates all the pixels in the
lattice). The restoration of a 128 x 128 pixel, 8-bit
image requires less than 5 min on a SUN-4 work-
station.

Further experiments have revealed that the auto-

FIGURE 2. Original (noise free) image containing a lin-
early sloping background with a target at constant range.
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FIGURE 3. The mmage of Frgure 2 has been synthesized
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FIGURE 7. Average percent anomalies for range imagery as a function of sen-
sor CNR. The results from MRF restoration are compared with median filter-
ing and the case in which no processing has been performed to restore the image.
Each data point represents an average over 10 runs at a given noise level.
For effective target detection, the p2rcent of anomalies must be less than about
10%. Thus the results indicate that MRF restoration is effective up to a CNR of
about 6 dB. At this CNR value the average percent of anomalies is 71% for the
input image, 55% for the median-filtered image, and only 4.5% for the MRF-
restored image. Clearly, MRF restoration provides superior detection performance

in a high-noise environment.

created a unique category for each silhouette. At lower
CNR values (higher noise), however, the clas-
sifier formed extra categories because exemplars of
the same target were sometimes classified into dif-
ferent categories. We repeated the above proce-
dure twice: once using the median-filter technique on
the corrupted images before the detection and seg-
mentation steps, and once using MRF restoration.
Figure 9 compares MRF restoration with iterated
median filtering and with the case in which no
processing had been performed to restore the image.
The performance at each CNR value is defined as
the fraction of the 96 examples that the NNC
has classified correctly. Note that the MRF restora-
tion is able to maintain an acceptable level of perfor-
mance at a CNR that is 5 and 10 dB lower than with
the median-filter and no-preprocessing case, respec-
tively. Thus, with MRF restoration, a sensor can be
operated at roughly 25% the power level required by
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the use of a median filter.

Hardware Implementation

For real-time image restoration, the MRF model can
be implemented either digitally —on custom digital
signal processing (DSP) chips or on a single-instruc-
tion multiple-data (SIMD) computer such as the
Connection machine manufactured by Thinking
Machines Corp.—or in an analog manner on a
custom VLSI chip.

For digital implementation, 72 floating-point
operations are required per pixel update. Typically, a
pixel must be updated about 100 times over the
course of the restoration. Thus a 256 x 256 image
restoration would require 472 million floating-point
operations, and a frame-rate restoration of the same
image would require digital hardware that delivers 14
GFLOPS of performance. This performance level is
at the leading edge of current digital processing tech-
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FIGURE 8. Binary silhouettes of 8 different vehicles that were used to evaluate the effect of
MRF restoration on target recognition. (For the test results, see Figure 9.)
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FIGURE 9. Fraction of correctly classified range slices as a function of sensor
CNR. In the experiment, the binary silhouettes of 8 different vehicles (Figure 8)
were used to create realistic noise-corrupted range measurements. Detection
and segmentation were performed on these simulated range measurements to
obtain noisy binary range slices in which only those pixels with a certain range are
shown. A total of 12 such slices was produced for each of the 8 silhouettes at each
CNR value. The 96 range slices at each CNR value were then used for training a
Nearest Neighbor Classifier (NNC) [15] to separate the 8 different vehicles. Before
being presented to the NNC, some of the range slices were restored by the MRF
model and others by an iterated median filter. The results compare MRF restora-
tion with the median-filter technique and with the case in which no processing
has been performed.
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FIGURE 10. System architecture implemented as a re-
sistive grid (compare with Figure 1). The voltages V™
and V' represent the measured and restored images,
respectively. Note the presence of both field and sur-
round resistors.

nology. The advantage of an all-digital implementa-
tion is that it does not require the hardwiring of any
of the system parameters.

An all-analog implementation requires the imple-
mentation of the energy function as an analog circuit.
In the current example the system architecture can be
represented as a resistive grid (Figure 10). The resis-
tors are nonlinear in that their resistances are voltage

dependent:
2
(l + eﬁ(A/’)zj
R(A,) o< ~—o——,

Py’

where A, refers to the voltage difference between a
pair of adjacent sites. The nonlinear resistor is essen-
tially the inverse of Equation 9, and the circuit con-
sists of separate field and surround resistors, as shown
in Figure 10. At steady state there is a current balance
at every site and the voltages V' correspond to the
intensities in the restored image. The advantage of
this implementation is that there is essentially a “pro-
cessor” at every site, and the processing speed is lim-
ited only by the settling time of the analog circuit.

158 THE LINCOLN LABORATORY JOURNAL  VOLUME 6. NUMBER 1. 1993

The throughput is limited by the input/output onto
and off the analog chip, and not the circuit. With
current technology, images can be restored at a rate in
the thousands of frames per second.

Summary
An efficient Markov Random Field (MRF) based

method for performing piecewise smooth image res-
torations has been demonstrated. The underlying
model uses a neural network sigmoid potential be-
tween pixel pairs to allow the formation of sharp
boundaries between dissimilar regions in the presence
of noise. A novel deterministic method—called
Gradient Descent Gain Annealing (GDGA)—for solv-
ing the nonlinear coupled set of differential equations
that the MRF model introduces was presented. The
GDGA algorithm typically requires fewer than
200 iterations to restore an image, where the number
of iterations is roughly proportional to the level of
noise in the image. Computer simulations on noisy
images have shown that restorations can be performed
for very high noise levels (i.e., images that have up to
71% of their pixels corrupted with non-Gaussian
sensor noise). Simulation results indicate that MRF
restoration provides a 5-dB advantage in the carrier-
to-noise ratio (CNR) over conventional iterated me-
dian filtering. Although the same model is currently
used to restore images from different sensors, arbi-
trary potentials can be incorporated for the pixel in-
teractions so that the system can be tailored to specific
natural scenes and sensors. The system uses a mas-
sively parallel set of local neighborhoods (four nearest
neighboring pixels) for efficient implementation on
a parallel-processing computer or a custom analog

VLSI chip.
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Machine Intelligent

Automatic Recognition o

Ciritical Mobile Targets in
er Radar Imagery

Richard L. Delanoy, Jacques G. Verly, and Dan E. Dudgeon

B A variety of machine intelligence (MI) techniques have been developed at

Lincoln Laboratory to increase the performance reliability of automatic target

recognition (ATR) systems. Useful for recognizing targets that are only

marginally visible (due to sensor limitations or to the intentional concealment

of the targets), these MI techniques have become integral parts of the

Experimental Target Recognition System (XTRS)—a general-purpose system

for model-based ATR. Using laser radar images collected by an airborne sensor,

the prototype system recognized a variety of semi-trailer trucks with high

reliability, even though the trucks were deployed in high-clutter environments.

HE CONSTRUCTION of an automatic target rec-

ognition (ATR) system is a demanding task.

ATR systems must be able to locate and iden-
tify specific targets that can be concealed intention-
ally through obscuration or camoutflage, that are of-
ten designed to be nearly invisible in radar imagery,
and that can be deployed in the midse of distracting
signals. To gain tacrical advantage, it is generally im-
portant that an ATR system be able to find a target
from as far away as possible. Under such conditions,
the selectively indicative signal features (signatures)
associated with a target are otten barely discernible
trom the background. Thus, inevitably, practical ATR
systems must be able to discriminate targets from
background in spite o weak, ambiguous, uncertain,
variable, v even conadictory evidence.

AT'R system development can be pardicularly dith-
cult under certain mission constraints and when the
costs of system error are high. One such ATR applica-
tion is the use of airborne sensors to recognize strate-
gic relocatable targets (SRT) such as the §8-25 ICBM

of the former Soviet Union (Figure 1 {left]). An ATR
system for recognizing SR1s must scarch through
images generated by one or more sensors (laser radars,

real- or synthetic-aperture radars, passive infrared im-

agers, and video cameras), requiring, techniques of
data fusion. The search is for a very small number of

targets in a continent-sized arca. The targets might be
caught in the open, but more likely will be found
along tree lines, perhaps partially occluded by toliage.
Because of the nature of the targets, a high probability
of detection is crucial. And yet the ATR system must
generate few false alarms (FA) due wo mission limits
on the number of weapons that an aircraft can carry
to destroy the SRS, the flying time of the aircraft

over the target area, and the processing capabilities of

human operators wio must decide which detections

to pursue. A closcly related mission is the detection of

Scud launchers, such as those used by Iraq in the
Persian Gulf War. A general term, critical mobile
target (CMT), refers to all mobile missile launchers,
including those used with §8-25 and Scud missiles.
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FIGURE 1. Photographs of {left) mobile missile launcher carrying a strategic $S-25 ICBM of the former Soviet Union, as
shown in a Soviet newspaper, and (right) tank truck used by Lincoln Laboratory as a substitute vehicle to develop and test
an automatic target recognition (ATR) system for detecting critical mobile targets (CMT) such as the $5-25 launcher.

To achieve reliable detection and recognition per-
tormance in such demanding applications, we have
developed several new machine intelligence (M) tech-
niques, including new approaches tor model-based
classitication [1-3], automatic learning of models [4],
knowledge-based signal processing (5, 6], selective
attention [7], and pixel-level data tusion [7]. The
Experimental Target Recognition System (XTRS) de-
veloped at Lincoln Laboratory [8-10] provides a frame-
work for the application of these techniques and for
the rapid prototyping of ATR systems. Though XTRS
and these new M1 techniques were intended specifi-
cally tor ATR, they constitute a general-purpose ap-
proach to object recognition, with many potential
applications. For example, XTRS has been applied
successtully to the detection and tracking of hazard-
ous weather phenomena. as described in the article
“Machine Intelligent Gust Front Detection™ by Rich-
ard L. Delanoy and Seth W Troxel in this issue [11).
In the current article, we apply XTRS to the detection
and recognition of CMTTs, specifically, tank trucks
(Figure 1 [right]) and logging trucks used as substi-
tutes for missile launchers.

Low-Level Machine Lutelligence

Computer vision svstems have traditionally been de-

signed in terms of a hicrarchy of levels. Low-level

162

vision works on a domain of pixel-level data. Because
the associated image processing operations are highly
repetitive and therefore relatively slow, low-level op-
erations tend to be kept simple. And. because a scene
can contain many objects of potential interest, low-
level operations tend to be generic and reiatively de-
void of object-dependent knowledge. A tvpical low-
fevel operation is edge detection. In high-level vision,
the pixel-level data (for the edge-detection example, a
pair of images showing the strength and orientation
of edges) are transtormed into symbolically described
features. Object identification is then performed by
matching these features against prior knowledge of
object characteristics.

This basic organization of computer vision has
often been used in the design of ATR systems. In the
detection process, which is analogous to low-level
vision, a threshold is applied to a set of signals. The
signals can come directly from a sensor or they can be
Mo result of a signal processing operation. For the
threshold to be effective, the signals associated with
targets must form a distribution that is distinguish-
able from the distribution of signals associated with
other objects in the background (i.c., clutter). Figure
2(a) illustrates this point. In any realistic detection
problem, there will exist some targets that have sig-

nals below the detection threshold: those targets will
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not be detecred. There will also exist instances of
clutter associated with signals that are above the de-
tection threshold; such instances will result in FAs.

Developers of ATR systems have generally followed
the strategy of keeping low-level vision devoid of
object-dependent knowledge, and the processing done
in preparation for the application of thresholds is
usually kept simple. As a result, the thresholds must
be set fairly low to maximize the likelihood of detect-
ing targets. The high-level recognition process is then
responsible for suppressing as many FAs as possible.
Usually, FA suppression is acco nplished through the
use of classifiers based on statistical techniques or Ml
techniques, including those involving expert systems,
model-based matching, and neural networks. How-
ever, when a given ATR application involves only one
or at most a tew intended targets or classes of targets,
the use of object-dependent knowledge for the detec-
tion process is teasible. And, in fact, because targets
are often hidden, camouflaged, or otherwise only mar-
ginally visible, object-dependent knowledge can play
an important role in enhancing detectability. In par-
ticular, detection performance can be improved by
separating the distributions of targets and clutter, as
shown in Figure 2(b). Although various techniques
have been developed to increase this separation (see,
for example, Reference 12), the techniques do not
typically involve any detailed object-dependent
knowledge.

Thus, in addition to using MI techniques in the
conventional role of high-level classification and FA
suppression, we have developed a set of new tech-
niques for low-level MI. Thresholds are still an un-
avoidable part of detection but, when low-level Ml is
applied directly to the pixel-level data early in the
detection process, the use of thresholds is in a relative
sense postponed and, as a result, made more effective.

Interest Images

A key to implementing low-level MI in XTRS is the
concept of interestand interest image [7]. By our defi-
nition, interest is a dimensionless quantity indicating
the likelihood that a specific feature, indicative of a
target or class of targets, is present at a given image
pixel. A spatial map of such interest values, each
constrained to the range [0,1], constitutes an 7nterest

image. Clusters of high interest values are used as a
guide to focus compurtational resources on likely tar-
gets. In Figure 2(a), a threshold was applied to the
quantity “signal strength.” For simple ATR systems,
the signal is typically the intensity of returned electro-
magnetic energy or a simple function thereof. Interest
provides an alternative flexible metric to which thresh-
olds can also be applied. The power of this approach
is that the output of any sensor modality or teature
detector can arguably be expressed as an interest im-
age. Furthermore, the use of interest as a common
denominator greatly simplifies the tusion of pixel-
level data. Specifically, interest enables the use of simple
arithmetic or fuzzy logic to tuse spatial evidence from
a variety of sources.

There are three steps in low-level MI as used by
XTRS in the detection process. First, relevant feature
detectors are selected, given knowledge of the situ-
ational context. The context may include the intended
set of targets, various sensor-related parameters, and
identifiable environmental conditions affecting sen-
sor performance and rarget appearance. Often the use
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FIGURE 2. Discrimination of target and clutter signals
through the application of a threshold: (a) typical overlap
of targets and clutter distributions, and (b) illustration of
how signal processing, either conventional or machine
intelligence (M!) based, can improve detection performance
by increasing the separation of the distributions.
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of just one feature detector can accomplish adequate
target-detection pertormance.

In the second step, the selected feature detectors
are applied o the appropriately prepared input imag-
ery. Each detector generates as its output an interest
image that provides spatial evidence for the presence
of particular target teatures. A targeted object may be
represented by more than one detector; cach detector
fooks, for example, for a distinct set of features or for
an alternative target configuration.

The tinal step calls for the tusion of evidence,
which is accomplished with a rule of combination
prescribing how interest values from multiple interest
images are to be combined. The rule of combination
depends on the set of feature detectors selected. In the
case of multiple feature detectors looking tor alterna-
tive target configurations, the rule of combination
could be the maximum (fuzzy-or in fuzzy set theory);
r.e., at a specific pixel location, the maximum of the
interest values across all interest images at that loca-
tion could be used. In the case of several feature
detectors looking for different vehicle features thar are
likely to be present all the time, the fusion of interest
values might be done by an averaging process. Al-

though not fully exercised in the CMT version of

XTRS, the rule of combination could be arbitrarily
complex to reflect knowledge of the variable reliabil-
ity of difterent feature detectors under different view-
ing conditions.

For situations in which only targets return strong
intensity signals, the intensity signal returns might
provide a ready-made interest image. In practice, how-
ever, laser intensity can be an unreliable discriminant
because the energy returned from a rarget surface
depends on the specularity of the surtace and its
orientation relative to the incident faser beam. Also,
high (or low) range values from a laser radar are
usually unreliable predictors of target locations be-
cause targers are not customarily parked at the highest
(or lowest) points in a locality. Thus the effective use
of laser radar imagery requires that objects in the
imagery be identified also on the basis of shape.

Functional Template Correlation

In studying the principal techniques for shape analy-

sis, we found that the basic equations of cross-correla-
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don and mathemadcal morphology (MM) [13] can
be generalized into a single class of operations, which
we have called functional shape matching. Briefly de-
scribed, these shape-analysis wools all use kernels (strue-
turing elements in MM), which are basically subimages
that are looked tor within the image o be probed. For
probing a pixel in an image, the origin of a particular
kernel is positioned over the pixel’s location. A two-
argument function is then applied o cach kernel
value and the corresponding value in the image. (For
cross-correladion, the two-argument function is mul-
dplication. For MM dilation and crosion. the tunc-
tions are addition and subtraction, respectively.) Nexr,
an arbitrary operator is applied to the tunction values
obtained for the set of pixel locations on the kernel.
(For cross-correlation, the operator is summation. For
MM dilation and crosion, the operators are maxi-
mum and minimum, respectively.)

Eventually, we realized chat functional shape match-
ing not only includes the classic shape-analysis tools,
but it also encompasses a variety of signal processing
technigues thar have never been tried before. From
functional shape matching, we implemented a tool
for generalized matched filtering called functional tem-
plate correlation (FTC) [S]. Whereas the kernel of the
classic techniques is a subimage indicating specific
expectations of image values for a successtul match,
the kernel used in FTC is a set of indexes, cach
corresponding to a unique scoring funcrion. Each of
these scoring functions can define arbitrary expecta-
tons for image values at cach pixel location on the
kernel. The outputs of these scoring functions are
scalar values, which are averaged and then “clipped”
to the range {0,1]. (In the clipping process, those
averaged scores which are less than zero are assigned a
value of zero, while those averaged scores which are
greater than one are assigned a value of one.) Compa-
rable in spirit *o the membership functions of fuzzy
set theory, scoring functions provide a means of en-
coding uncertainties. But, in addition, scoring tunc-
tions can be used to encode a surprising amount of
knowledge of the physics of a martching problem.
Using FTC, we can construct customized matching
techniques that are more powertul than the classic
shape-analysis operations. (Note: For a briet intro-
duction to FTC, sec the box, “Functional Template
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Correlation,” in the artidle "Machine Intelligent
Gust Front Detection,” by Delanoy and Troxel in this
issue [11])

Data Used in System Development and Testing

For the development and testing of a CMT version of
XTRS, a large dataset of images in Maine was col-
fected to simulate the detection of CMTs in a high-
clutter, mainly torested environment. Semi-trailer
trucks, which approximate the appearance of missile
launchers, were positioned amidst both natural and
man-made clutter. The simulated targets included the
tank truck shown in Figure 1 (right), the same tank
truck but under camouflage netting, a loaded logging

truck, and an empry logging truck. This variety of
vehicles was used to test X'TRS's ability to discrimi-
nate between targets ot similar shapes and sizes. The
vehicles were positioned on or near roads, both in the
open and along tree lines. The man-made, or cultural,
clutter included residential neighborhoods and a log-
ging camp (Figure 3) that conrained heavy logging
equipment such as other semi-trailer trucks.
Pixel-registered range and intensity images of the
various vehicles were generated with the Hughes-
Danbury GaAs Laser Linescanner carried aboard a
Gulfstream G-1 aircratt (Figure 4). Characterized by
a 0.85-um wavelength, the linescanner has a range
ambiguity of 10 m, a precision of ambiguous-range

FIGURE 3. Aerial photographs of man-made, or cultural, clutter represented in the laser-radar-image dataset. Contained in
the photographs are railroad cars, fuel tanks, stacks of iogs, empty logging trucks, other road vehicles, and heavy logging
machinery. All of these objects, easily confused with the set of targets being sought, are potential sources of false alarms
(FA).
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Electronics racks
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Recording system

0.85-um down-looking laser radar linescanner
10.6-um forward-looking laser radar
8-to-12-um forward-looking passive imager

FIGURE 4. Lincoln Laboratory airborne sensor platform.
The Gulfstream G-1 carries a 0.85-um down-looking laser
radar linescanner, a 10.6-um forward-looking laser radar,
and an 8-to-12-um forward-looking passive imager. The
images used in the experiments described in this article
were collected with the 0.85-um linescanner.

values of 15 cm, and an angular resolution of 1.0
mrad. Images were colicted during the winter and
summer of 1989 with a down-looking sensor plat-
form that was operated at altitudes berween 200 and
300 m by the Opto-Radar Systems Group of Lincoln
Laboratory. The example range and intensity images
shown in Figure 5 reveal the high resolution achieved
with the 0.85-um linescanner. Image widths were
between 64 and 150 m; image lengths could be arbi-
trarily long because of the linescanner used. Long
scans were subdivided into overlapping images rang-
ing in length from 100 to 400 m. In total, the dataset
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collected contained 2303 image pairs (range and in-
tensity) covering 17.13 km~ of ground area un-
der both winter (snow) and summer (dense foliage)
conditions.

System Description

The architecture of the CMT version of XTRS con-
sists of five modules (Figure 6): preprocessing, detec-
tion, extraction, decomposition, and matching. Each
module has a standard structure (Figure 7) that con-
sists of four main elements: (1) a parameter library—
a collection of algorithms, numbers, and/or data scruc-
tures that encode knowledge relevant to the current

stage of processing; (2) a parameter selector—a rule-
based expert, i.¢., a collection of rules, that uses con-
textual information and previous results to choose
parameters from the parameter library; (3) a generic
processing engine; and (4) a rule-based feedback ex-
pert that evaluates the output of the processing en-
gine and decides where control should be directed. In
the complete system, the feedback expert of one mod-
ule and the parameter selector of the subsequent mod-
ule conceprually form a local-control node.

Preprocessing

The Hughes-Danbury GaAs Laser Linescanner pro-
duces pixel-registered range and intensity images that,
in preparation for the detection process, require a
number of data transformations.

First, because an aircraft’s speed with respect to the
ground varies depending on the wind velocity vector,
the aspect ratios of targets that have been imaged by
the linescanner can often become distorted. In an
operational system, these distortions can be avoided
by using an inertial navigation system either to regu-
late the linescan rate or to provide data that would
allow the images to be corrected by interpolation. For
the data used in this article, the interpolation was
performed interactively to obtain the correct target
aspect ratios.

Second, the ambiguous-range values are converted
to absolute altitudes above some arbitrary reference
altitude. Once the absolute altitudes have been deter-
mined, a map of altitudes for the local ground level
can be computed with a technique based on morpho-
logical operations [14-16}. In the technique, only
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those surtace shapes which are wider than the in-
tended targets are retained as part of the local ground
level. (Note: There exist other techniques for estimat-
ing the local ground level; see, for example, Reference
17.) When the altitudes of the local ground level are
subtracted from the absolute altitudes, the resulting
image will contain values that are the heights of small
objects (including rargets) above the local ground
level. In this article, subsequent uses of the term range
image will refer to this image of heights above the
local ground level.

For the last step of preparation, the range and
intensity images are scaled by linear interpolation to a
resolution of 0.25 m per pixel side. Images of lower
resolution (0.5 and 1.0 m per pixel side) are then
generated by a subsampling of the data. The lower-
resolution images are used for detection, while the
high-resolution images are used for extraction and

I

[ T

- —r

il 8

t

(a)

high-level matching.

(Note: During preprocessing, no attempt was made
o clean the linescanner imagery of noise. Such a
procedure was unnecessary due, in part, to both the
high quality of the imagery and the noise-resistant
properties of FTC.)

Detection

In the CMT version of XTRS, three-dimensional
detection is essentially performed by four target de-
tectors (i.c., feature detectors representing whole tar-
gets instead of individual features). The tank truck is
represented by two alternative targer detectors, one in
which the truck is exposed, the other in which the
truck is covered with camouflage netting. The logging
truck is similarly represented by two target detectors,
one in which the truck is empty, the other in which
the truck is loaded with logs.

(b)

FIGURE 5. Example (a) intensity and (b) range images taken during winter with the 0.85-um down-looking laser linescanner
shown in Figure 4. Note the tank truck (lower left), empty logging truck (upper left), and house trailer (upper right) in both
images. The range image has been transformed such that each pixel value represents a height above an arbitrary reference
altitude with lighter pixels indicating a greater height.
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Sensor imagery
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Knowledge
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Detection -—
¢ Functional
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stencils
Matching «¢————— Appearance
models

l

Recognized targets

FIGURE 6. Architecture of Experimental Target Recogni-
tion System (XTRS), showing the five processing mod-
ules as well as the way in which knowledge is represented
at each level.

The target detector for the exposed tank truck
consists of the two functional templates shown in
Figure 8. The first functional template encodes the
expected appearance of the truck in range imagery
(i.e., images of heights above the local ground level).
In scoring function 1, which corresponds to the top
surfaces of the cab and trailer, a maximal score of 1.0
is returned for heights from 2.5 to 3.5 m. The uncer-
tainty comes from signal noise and inaccuracies in
estimating the local ground level. The negative scores
reflect the fact that tank trucks are opaque to laser
illumination; i.e., the presence of ground-level heights
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where the cab or trailer is expected constitutes strong
evidence that a target is not present ar thac location.
On the other hand, heights greater than the expected
interval of 2.5 to 3.5 m result in scores no less than
0.5, the level of ambiguity, because such heights could
potentially indicate the presence of an occluding sur-
face. In other words, the cab ot a tank truck might or
might not be present under an occluding surtace that
is at least 4.0 m high.

The other scoring functions work in the same man-
ner, except that the expected interval of heights tor
the background in scoring function 0 is from 0.0 to
0.5 m, and the expected interval tor the hicch area in
scoring tunction 2 is from around 1.0 to 2.0 m. These
scoring functions are tuned such that, when e tem-
plate is applied to a patch of bare ground (zero heighr),
the negative scores from scoring tunction 1 balance
the positive scores generated by scoring functions 0
and 2, resulting in an overall score near 0.0. And, of
course, an unobscured target should generate a score
near 1.0.

The above functional-template design provides a
simple means of minimizing the eftects ot occlusion.
This capability, not easily obtained with cross-correla-
tion or MM operations, is necessary for finding tar-
gets partially covered by foliage. In the extreme, a
target that is completely occluded should generate a
score of 0.5 (Figure 9).

In Figure 8, the second functional template tor the
exposed rank truck is designed for intensity imagery.
Because the surface of the truck is smooth (specular)
with regard to the laser wavelength, the reflected laser
beam will tend either to miss the sensor (resulting in a
low intensity value) or hit the sensor directy (result-
ing in a high value). Scoring function 4, correspond-
ing to the trailer and cab, encodes these expectations
by returning high scores for very low and very high
intensity values, and low scores for intermediate in-
tensity values. The hitch area returns the laser energy
more diffusely; thus, scoring function 5, which corre-
sponds to the hitch area, returns high scores for inter-
mediate intensity values. The intensity values associ-
ated with surrounding ground areas are highly variable
and unpredictable, except that they are seldom very
low. Scoring function 3 encodes this expectation with
highly negative scores for low intensity values, but nil
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(i.e., no opinion) tor intermediate and high intensity
values.

The two tunctional templates shown in Figure 8
were applied simultancously o the input range and
intensity images, and overall scores were computed as
the average of the scores returned from the six scoring
tunctions. Because the orientations of targets are typi-
cally arbitrary and unknown a priori, an FTC score
was computed tor cach of 36 uniformly spaced tem-
plate rotations (10° increments) at each pixel location
ot the input imagery. For a particular pixel location in
an input image, the score associated with the maxi-
mally scoring orientation was assigned to the corre-
sponding pixel location in the output image. As pre-
viously indicated, cach such output image is treated as
an interest image, indicative of the likelihood of find-
ing a target at any particular pixel.

In a similar way, outpur interest images were also
generated for each of the three other targer detectors,
and the four interest images were combined by raking

the maximal scores at cach pixel location. The result-
ing combined interest image was then scanned tor
pixels having interest scores above a certain threshold
(typically 0.75), and the above-threshold pixels were
grouped into clusters.

Next, a box was placed around cach cluster. The
boxes were used to extract range and intensity
subimages containing the interest cluster and thus the
candidate target. The boxes were square, with sides
50% longer than the longest dimension of the targets
being sought. Up to four boxes with above-threshold
interest scores and a minimum of overlap with cach
other were constructed tor each image. The cluster of
above-threshold interest scores that led to the creation
of a particular box was used to create a list of war-
get hypotheses. At each pixel in a cluster, the incer-
est score is always associated with the highest-scoring
target detector at the highest-scoring orienration. Each
pixel’s hypothesis consisted of the highest-scoring tar-
get detector’s name, pixel coordinates, orientation,
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FIGURE 7. Standard structure of the XTRS processing modules shown in Figure 6. Note that the feedback expert of one
module and the parameter selector of the subsequent moduie conceptually form a local-conrtrol node.
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FIGURE 8. Functional template for the top view of the tank truck. Shown are the index kernels and indexed scoring functions
for (a) range and (b) intensity images. Note that scoring function 3, i.e., the scoring function for the surrounding ground in
intensity imagery, has no opinion above a certain intensity value.

and interest score, which was used to rank the hy-
potheses. For each box generated, information re-
garding the size and location of the box as well as
hypotheses about what might be in the box was placed
in a data structure referred to as a “window.” Because
the CMT version of XTRS uses the function maxi-
mum for the rule of combination of interest scores,
the score achieved at any pixel location by the high-
est-scoring target detector is also the value stored at
that same location in the window.
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Extraction and Decomposition

Windows generated by the detection process are used
as input to extraction. The position and size of cach
window are used to extract full resolution (0.25 m per
pixel side) subimages of range, intensity, and interest.
In the extraction module (Figures 6 and 7), the pa-
rameter selector chooses from the library an extractor
corresponding to the highest-ranking hypothesis in a
window. In the current implementation of our sys-
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tem, a tull-resolution tunctional template is created
tor the extractor by a zooming process that is applied
to the corresponding detection template. The pre-
liminary location and orientation information recorded
in the hyporthesis is then used to probe the window
with the full-resolution template. The window is
probed only ar the pixels immediately surrounding
the hypothesis location and only for orientations
within 10° of the hypothesis orientation. Although
the angular increment for FTC is 10° for detection,
an increment of 1° is used for extraction.

At the location and orientation of the best full-
resolution FTC march, a rectangular mask with out-
side dimensions that approximate the dimensions of
the candidate target is positioned to isolate an image
region. The isolated region then undergoes the appli-
cation of height thresholds followed by a cleaning
with MM, and the resulting region is subdivided with
a stencil consisting of an array of rectangles (six or
eight in our application), each marking the area limits

(a)

of one subregion. For the wnk truck, Figure 10(a)
shows the cight idealized subregions, each of which is
characterized with regard to a number of attributes
such as length and width, and various texture mea-
sures such as a measure of the local variance in the
subregion. The characterized object region and part
subregions together with a list of candidate target
identities extracted trom the window hypotheses serve
as input to the matching process. (Note: If the match-
ing module fails ro make an identification, control is
directed back to the beginning of the extraction mod-
ule. In such a case, the extraction process is repeated
for the hypothesis that has the next highest interest
score. The processing stops either when the targer has
been identified or when all hypotheses have been
examined.)

Marching

Candidate targets are identified by matching the ob-

ject region and part subregions against appearance

(c)

FIGURE 9. The functional template for a tank truck is applied to (a) bare ground, (b) a 100% occluded target, and (c) a fully
exposed target. The corresponding expected scores for the three cases are 0.0, 0.5, and 1.0, respectively.
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FIGURE 10. Appearance models: LENGTH ol / \ and W, | [LENGTH o / \ and W,
(a) top view of an idealized tank- 1 1 Y
truck region decomposed with a WIDTH { ! and W, | | WIDTH { E and W
target stencil into eight charac- R 0 ; . . 0! .
terized subregions, and (b) cor- e M : : ° .
responding appearance model k j ! j
(AM) for the tank truck. Note that Part nodes

each of the eight subregions is
characterized with regard to a
number of attributes such as
length and width, and various tex-
ture measures. In the AM, an ob-
ject node (TANK TRUCK) is bro-
ken into eight part nodes (PART
1 through PART 8) correspond-

ing to the eight subregions. Each mmb

COMBINED !
WIDTH
: 0
SAME 1
object and part node contains a : A
set ot fuzzy predicates that define ’ -

the allowable limits for computed (b)

values of the different attributes

such as length and width. Each predicate has an associated weight W, that is used to hias computed match scores. In a
simitar way, constraints (e.g., COMBINED WIDTH and SAME HEIGHT) specity the limits of the relationships between the
different parts. The AM shown here has been simplified. In practice, the AMs of the modeled trucks have as many as 80
constraints between the different parts. Note, also, that for the sake of simplicity, the existence of constraints between
certain parts (e.g., between PART 2 and PART 4) has not been shown.

172




¢« DEIANOY ET AlL.

models (AM) [1--3]. Figure 10(b) illustrates the gen-
cral construction of an AM tor the wank truck. Note
that the AM consists of an object node (TANK
TRUCK) and a series ot part nodes (e.g., PART 1)
that specity the limits of properties of the ditterent
parts. Attributes of the object region and pare subre-
gions can include lengeh, widdh, aspect radio, circum-
terence, average image value, and texture measure-
ments, among other quantities. Each object and part
node contains a set of tuzzy predicates and associared
weights that define the allowable limits tor the com-
puted values of the ditterenc ateributes. There is typi-
cally one tuzzy predicace for cach attribute. In a simi-
far way, constraints (c.g.. COMBINED WID'TH and
SAME HEIGHTT) specity the limits of the relacions
between parts.

By treating a computed attribute fas the argument
of the corresponding tuzzy predicate f{x), we can
casily obeain a score f(0) tor the computed value 0.
The scores obtained from a set of fuzzy predicates
together with the weights associated with those predi-
cates can then be used to calculate a weighted average
that provides an overall match score for each pare.
Similarly, a match score can be compured for cach
constraint. For example, the sum of the widths of
PART 1 and PART 2 would be the input to the
constraint COMBINED WIDTH shown in Figure
10(b). Match scores for each part and cach constraine
become picces of evidence that can then be combined
with the Dempster-Shafer theory of evidence. The
output is a target identity, which may be none to
indicate an unknown target type. (Note: References ]
through 3 provide a detailed description of matching
based on AMs, including a description of the
Dempster-Shafer theory of evidence.)

Using the above approach, we constructed five
AMs, one cach for the exposed tank truck, the cam-
outlaged tank truck, the loaded logging truck, the
empty logging truck, and the truck cabs. The cabs
were modeled through a separate AM because, in
several cases, the trame boundary of the images
had occluded the trailers.

Through experience, we learned chat the AMs that
were more successtul were generally more compli-
cated. As the size and complexity of the AMs grew,

however, it became apparent that we could not con-
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tnue to construct AMs manually. Thus automatic
construction technigques were needed.

Automatic model building requires example sets of
the decomposed wargets. For cach atribute of cach
part of cach arget, tuzzy predicates can be construceed
trom the population of values tound in the example
set. Figure 11 shows a fuzzy predicate that has been
constructed for the atrribute LENGTH ot the par
node PART 1. The red dots at the wop of the figure
represent the population ot length values from all
PARL Is in the example set. During the construction
of a tuzzy predicate, outlier (i.e., statistically inconsis-
tent) values are discarded, and a cluster analvsis i
pertormed o determine the number of clusters that
might best explain variances in the remaining values.
For cach cluster, the mean and standard deviation are
computed, and an interval of maximum returned
score (1.0) is established berween the minimum and
maximum lengths of cach cluster. Ouside this inter-
val of maximum returned score, the fuzzy-predicate
curve ramps down from 1.0 to 0.0 with a slope that is
proportional to the standard deviation o of the cluster
population. The value of o is multiplied by the cocfti-
cient § called the recognition tolerance, to determine
the width of the ramping interval. For small values of
B. the tuzzy predicate is relatively intolerant of lengths
that are outside the already observed range of values,
while high values of g result in a greaier wlerance
ot such variations. The final fuzzy predicate is the
maximum of the individual functions generated for
cach cluster. The weight associated with cach fuzzy
predicate is initialized to 0.1, a value chosen to allow
an increase (and decrease) by at least an order of
magnitude.

Fuzzy predicates are constructed for cach attribute
of cach part. Not all ateributes, however, are equally
eftective in discriminating targets from cluteer. o
determine which attributes are effective discriminants,
we use a sccond phase of model building called super-
vised discrimination learning. In the process, weights
associated with attributes that are weakly discriminat-
ing are decreased, while weights for attributes thae are
strongly discriminating are increased. Whether an at-
tributc is discriminating or not is determined by indi-
vidually reevaluating cach attribute within the AMs

of targets after an incorrect identification has been
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made. It a fuzzy predicate returned a high score that
contributed to the error, then the associated attribute
is nondiscriminating and the corresponding weight is
decreased. For example, consider the response to an
FA in which some piece of clutter has been incorrectly
identified as a target. In the identification process,
tuzzy predicates were evaluated for the different at-
tributes. If the score from a particular evaluation was
greater than 0.5 (ambiguity), then that attribute con-
tributed to the mistaken identity and is thus not
discriminatory; consequently, the corresponding
weight is decreased. On the other hand, if the score
was less than 0.5, indicating that the attribute had
correctly denied the mistaken identity but was out-
voted by the other fuzzy predicates, then the associ-
ated weight is increased. (Note: Reference 4 contains
specific equations and schedules for the weight ad-
justments, along with a more detailed description of
supervised discrimination learning.)

Results

Much of the innovation of the CMT version of
XTRS is in the development of techniques for low-
level MI. To evaluate the effectiveness of these tech-

niques, this section will present the detection results
first, separate from the results of the overall system
recognition performance.

Detection Performance

Each of the four FTC-based targer detectors was tested
individually for a range of interest thresholds. Figure
12 shows the probability of detection P, plotted as a
function of the false detection (FD) rate for the four
implemented detectors. (Note: FD is distinct from
FA, which is the false-alarm level for the overal!
system.)

For the tank-truck detectors, both exposed and
camouflaged, the detection performance was quite
good. In both cases, P}, was around 0.7 at the thresh-
old level where the first FD occurred. Given the
17.13 km” of ground area covered by the dataser, the
one FD resulted in a rate of 0.058 FD/km®. For a Py
of 1.0, the associated minimum FD rate was approxi-
marely 2.0 FD/km”. The target detector for the loaded
logging truck performed slightly less well. Because the
shape of the vehicle changed wich each load of logs,
the detectors functional template had to be con-
structed with more fuzziness; i.e., the template had to

Cluster 1 Cluster 2 Qutlier
Example values —p»o oo oo csee ° es e o [
T ] T I HE L I
54—— fo -—bs

1.0 — : _
® +<¢— OQutlier region —
S '
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FIGURE 11. Automatic construction of a fuzzy predicate for the attribute LENGTH of the part node PART 1 of Figure 10(b).
The red dots at the top of the figure represent the population of length values from all PART 1s in the example set. During
the construction of a fuzzy predicate, outlier (i.e., statistically inconsistent) values are discarded, and a cluster analysis is
performed to determine the number of clusters that might best explain variances in the remaining values. For each cluster,
an interval of maximum returned score (1.0) is then established between the minimum and maximum lengths of that cluster.
Outside this interval, the fuzzy-predicate curve for the cluster ramps down to 0.0 with a slope that is proportional to the
standard deviation o of the cluster population multinlied by the recognition tolerance B. The final fuzzy predicate is the
maximum of the individual functions generated for each cluster.,
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FIGURE 12. Probability of detection . , plotted as a function of the false-detection rate
for the four target detectors. Each point along any of the curves shown is associated
with a narticular value ot the interest (or detection) threshold.

provide a greater wolerance for variations in shape. But
the most difficult to represent as a functional tem-
plate was the empry logging truck, because of the
small size of the vehicles wrailer. With an elongate
shape such as that of the tank truck, small uncor-
rected distortions in the length of the warget did no
have a serious effect. With the empty logging truck,
however, the rear axles of the vehicle are the only
reliably visible part of the trailer and, because this
portion of the truck is short relative to the overall
truck length, even a small distortion in the truck
length can move the axles ahead or behind the patch
ot the functional template representing the axles. Con-
scquently, the shape and appearance of the empty
logging truck could not be defined as precisely as for
the other targets. Fortunately, scoring functions can
be moditied easily to adjust the degree of tolerance to
variations in shape and appearance. Although the
detection rates tor the two logging-truck configura-
tions were lower for a given FID rate than for the tank
truck, the performance was still respectable.

For a better understanding of the sources of FDs,
the clutter data were divided into natural and man-
made (cultural) clutter. Any image containing a large,
man-made object (c.g.. a building, non-target ve-
hicles, or stacks of logs) was placed in the cultural-
clutter group. Each of the target detectors was then
applied to both divisions of the data. Figure 13 shows

example resules tor the loaded logging truck. The
probability density was computed as the percent of all
dctections tound within cach successive short interval
of Literest scores (0.016 in the range from 0.0 w 1.0).

Most instances of natural clutter (mainly trees and
shrubs) tended to have interest scores around 0.65,
with no interest scores above 0.8. The population of
target interest scores (shown as red dots at the top of
Figure 13) had scores ranging from 0.79 to 0.94.
Thus the detector for the loaded logging, truck achieved
a perfect partition berween targets and natural clutter
(i.c., a threshold of 0.78 resulted in 100% detection
with no FDs). In contrast, man-made objects were a
more troublesome source of FDs because such objects
generated a few interest scores that were as high as
0.9. Included in the high-scoring cultural objects were
other semi-trailer trucks, such as the deploved tank
rruck, and stacks of logs similar in shape to the loads
carried by the logging trucks. The results for the other
rarget detectors were roughly the same as that for the
loaded logging truck with the detectors for the tank
truck providing a slighdy better partiton berween
rargets and clutter, and the detecror for the empty
logging truck a slightly worse partition.

[t can be argued that logging trucks provide more
stressful testing than would arise from an actcal CMT
application. Because missile launchers are large and
nonarticulated, their detection is less vulnerable to
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FIGURE 13. Distributions of interest (or detection) scores for natural and man-made
(cultural) clutter for the loaded-! ,ggirg-truck target detector. The red dots at the top of
the figure indicate the interest scores for instances of the deployed lvaded logging
trucks. At an interest (or detection) threshold of about 0.78, the loaded-logging-truck
target detector achieves perfect discrimination between deployed loaded logging trucks
and natural clutter. There is no threshold, however, that would yield a perfect discrimina-

tion between these targets and cultural clutter.

the eftects of distortion. Also. CM'Ts have only three
sasic shape variadons: missile down for transport,
missile erected tor launch, and without a missile tol-
lowing launch. These three variations have precise
known shapes, in contrast to the amorphous nature

()”()g loads.

Occlusion Experiments

One of the primary motivations for the development
of FTC was to overcome the way in which occlusion
disrupted the more raditional shape-macching tech-
niques. Various attempts to design an MM approach
tor detection and extraction failed with targets thae
had as licde as 3% of their surface arcas occluded
by foliage. With tunctional templates. however,
Al wargers could be detected readily: without much
challenge.

To explore the limitations of FTC in detecting
targets occluded by foliage, we designed experiments
in which targets that were car out trom one image
were positioned along a tree line within another im-
age. Beginning at locations where the arget was com-
pletely unobscured. the target was incrementalle moved

under the toliage. with the vehide's major Gie longi-
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wudinal) axis cither perpendicular or parallel 1o the
tree line. Figure 14 summarizes the results of the
experiment with the targer perpendicular to the tree
line for target occlusions of 2%, 36%, and 66%0.

The left frames in cach row are range images of a
tank truck that has been synthetically placed perpen-
dicular 1o the tree line, The center frames show the
location and orientation of the best match tor the
tank-truck functional template in the images, along
with the corresponding interest scores. The pixels
themselves indicate the scores rerurned from indi-
vidual scoring functions tor cach location on the tem-
plate: black. white, and gray pixcls represent 0.0, 1.0,
and intermediate values, respectively. The right frames
show the results of recognition based on the matching
of the decomposed target with AMs of the targers. It
should be noted that ocduded targets were indluded
in the example set used to build the AML.

The first row of Figure 14 shows that a target that
is almost completely exposed (only 2% ocdusion)
resalts ina strong interest seore and correct recogni-
tion. For a target occlusion of 364, the mterest score
& barcly above the interest threshold of .75, but the

target s recognized correatdy nonetheles. Foran oc-
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FIGURE 14. Summary of foliage occlusion experiment for a tank truck that has been syntheti-
cally positioned perpendicular to a tree line. The top, middle, and bottom rows are for the
target with 2%, 36°%, and 66%, respectively, of its surface area occluded by foliage. The left
frames are range (height above ground) images, the center frames indicate the locations
and orientations corresponding to the highest interest scores (indicated in the frames), and
the right frames show the final AM-based recognition results.
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FIGURE 15. Summary ot fohiage occlusion experniment simiar to that ot Figure 14, except the
tank truck has been positioned parallel to the tree line.
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clusion of 66%, the interest score is only 0.65, which
is below the interest threshold of 0.75. Consequently,
this target is not detected and theretore not processed
by the matching module. (The UNKNOWN identi-
tication in the figure is the result of our dropping the
interese threshold to below 0.63.) And yet, as shown
in the center frame, the best match produced by FTC
correctly determines the location and orientation of
the warget, despite the target’s being more than halt
occluded. We have obtained similar resules for che
case in which the major axis of the tank truck is
parallel to the tree line, as shown in Figure 15.

For the combined data of perpendicular and paral-
lel targer placements, Figure 16 contains a plot of
interest score as a function of percent occlusion. The
figure shows that the decrease in interest score as a
tunction of percent occlusion conforms to an ex-
pected linear relationship: performance degrades
gradually as occlusion increases, without any intervals
of rapid degradation. Atan interest threshold of 0.75,
targets occluded up to around 36% are detected and
recognized. Lowering the threshold would permit the
detection and recognition of targets with an even
higher percent of occlusion, but would also increase
the FD rare.
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FIGURE 16. Summary of results for the experiments de-
scribed in Figures 14 and 15. Note that at the detection
interest threshold of 0.75, the system is able to detect and
recognize targets with up to 36% of their surface areas
occluded by foliage.
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Owverall System Performance

Although FTC can provide high detection rates with
few FDs, the tewer FDs the better. Because FI1C
bases its interest scores solely on how well image
values compare to expectations ac ditterent locations
on the kernel, ic does not exploic the known relation-
ships of target parts. We have relied on the technique
of AMs as a means of modeling such additional intor-
mation and. by so doing, have provided the means for
rejecting FDs and discriminating between multiple,
similarly shaped target classes.

For initial testing, we used an interest threshold of
0.75 to detect clusters of high interest values in the
Maine dataset. A roral of 492 detections resulied,
including all 63 deployed rargets. These detected rar-
gets were then extracted, characterized. and marched
against AMs, as described earlier.

Initally, when we buile the AMs we used 50% ot
the targets as examples and a recognition tolerance f3
of 0.3. The remaining targets that were classified as
UNKNOWN (i.e.. insutficienty like any modcled
target) were subsequently added to the example setas
we refined the models. Eventually, 80% of the targets
were included in the example set to reach a recogni-
tion performance of 100%. No supervised learning of
weights was done for this test. Under these condi-
tions, there were no FAs in all 17.13 km” (2303
image pairs) of data.

The above results include some targets deploved in
the open, but they also include a number of very
difficule cases. Figure 17 shows photographs and a
map of a deployment in which the empry logging
truck and the camoutlaged tank truck were placed on
a nairow dirt road with tall trees on cither side. For
the emipry logging truck, Figure 18 contains the range
and intensity images, an interest image highlighting
pixels having above-threshold interest values and show-
ing the sclected windows, and an image showing the
final recognition results. The truck, visible in the
lower left corner, has been correctly recognized. An
FD. triggered by a collection of shrubs having roughly
the size and spacing of the parts of the empry logging,
truck. was correctly rejected during AM-based macch-
ing. Figure 19 shows the results for the camoutlaged

tank truck of Figure 17, Note that in this case the
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FIGURE 17. Photographs and deployment map of "hidden targets™ used in the Portage, Maine, experiments.

target iy reprosented in the range image mostdly as a

broad tent with only a tew pixels having heighe values

corresponding to the ground. Because the shape of

the camoutlage netting can vary from site to site, the
scoring, tunctions for the range functional template
were constructed to incorporate considerable uncer-
tainty and were thus weakly discriminating. In inten-
sity images. however, the camouflage netting actually
helps make the target stand out againse the back-
ground, probably because of interference ettects caused
by some of the laser energy being reflected by the
netting material and some being retlected by the
ground [17]. The scoring function tor the intensity
functional template tor dhe camoutlaged tank truck

exploits this phenomenon.

Generdalization of AMs

In the course of evaluating the dataser, we discovered
that, in additon to the one logging truck thar Lin-
coln Laboratory personnel had deployed., there were
six other empty logging trucks in the vicinity. Only
two of these six trucks had interest scores greater than
0.75. and ncither of the two was recognized as an
empty logging truck. Figure 20 shows intensity and
range images containing three ot the six non--Lincoln
Laboratory trucks, along with a road-mobile crane
(top center). The ruck in the image that had an
imterest score above threshold was classified as UN-
RNOWN. Tnitallv, we were disappointed with this
restlc unal we realized that the discrimination made
by NTRS was i face reasonable and usetul. Figure 21
(hetor v ange image of the logging truck deploved

by Fincoln Taboratorye and Figure 21 Grigho) s a

range image of one of the six other rucks. Note that
although both vehicles serve the same tunctior and
are called logging trucks., thetr appearances are in tact
distinct. The truck deploved by Lincoln Laboratory
has a tractor with the cab dircady over the engine,
while the other vehicle has a hooded tractor widh the
cab behind the engine. Also, although the overall
lengths of the trailers are the same, the tailer of the
Lincoln Laboratory truck is narrower and lighter in
appearance. H the two vehicles are considered as two
distinct objects, then XTRS did successtully discrimi-
nate between the two variants with 100% accuracy.
Suppose, however, that AMs we built using ex-
amples of one model within a target class were to be
used to recognize a more general class of argets,
including other models not represented in the ex-
ample set. All six of the trucks not deploved by
Lincoln Laboratory were detected by decreasing the
interest threshold from 0.75 o 0.720 And all six

vehicles were recognized as empry logging trucks by
increasing, the recognition tolerance /3 from 0.3 to
1.7. Thus, by using only two wnable parameters, we
could adjust the generality of the recognivion tor the
entire svstem. But the relaxation needed o generalize
the recognition had an associated cost: the FA rate tor
the system as a whole increased trom 0.0 1o 1.7
FAZkm™. OFf course. instead of eeneralizing the AMs
to include similar related wrgets, we could have con-

structed additonal tuncional templates and AMs,

Supervised Discrimination Learning of Model Weights
A common criticism of many rescarch XTR svstems is

that, because of the limited availabiline of data. the
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FIGURE 18. Detection and recognition results for the Lidden empty logging truck of Figure
17. The truck is visible in the lower left corner of the images. A false detection. triggered by
a collection of shrubs, has been correctly rejected as UNKNOWN.

FIGURE 19. Detection and tecognition results for the hidden camoublaged tank truck of
Figure 17
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FIGURE 20. Detection and recognition results tor three empty logging trucks that were not
part of the test deployment. (Note: Theimages also contain other velucles, meluding pickup
tiucks and a road-mohile crane, at the top center. Also note that in the range image the
bulddimg mn the upper left corner has mcorrect height values due to an artifact m estimating
the height of local ground tor large objects)) Twao ot the thyee tracks recewed below
threshold interest scores and were thus not detected. The remaming truck had an imteresi
score above threshold bhut was classified as UNKNOWN. The system failled to detect and
recogmyze the three trucks because of differences between them and the loggig truck
deployed by Lincoln Laboratory (see Figure 21).

FIGURE 21. Enlarged range images for (left)y empty logamag track deployed by Lincoln
Laboratory, and (tight) empty togama track thscoverod m the mmaage dataset. Althouah both
vebncles are called logagimag bucks, thea appeatances areomn fact distinet. The cab tor the
triec ko on the leit s dicectly over the engime, shilo the cab for the other velucle s betand the
v Abco although the averalt ongthes of the tradecs for the beso troe ke ane the o the

trenfer for the troe b i thee ety oarco ey aod bigbter o appearans o
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daraset used to train a system is the same set used for
testing, To a certain exwent, we addressed dhis criu-
cism by dividing our available data into two sets, one
tor training, the other tor twsting. Because at most
only 50% ot the targets were to be used in the ex-
ample training setr, we assumed that a large recogni-
ton tolerance 5 would be required to achieve a 74y of
1.0. With a large recognition tolerance, we also ex-
pected that the FA rate might be high. Consequently,
the supervised learning of weights was used to sup-
press the FAs.

For training, we built the AMs with a high g value
ot 5.0 and an example set consisting of 1165 image
pairs (range and intensity) containing 28 targets. AM
weights were all initialized to 0.1. To establish a baseline
FA rate, we did not use supervised discrimination
learning to process the wraining data. The high g of
5.0 and a low interest threshold ot 0.72 were selected
so that enough FAs would be generated o promote
opportunities for learning. The number of FAs under
these conditions was 37 (4.3 FA/km®). Next, super-
vised discrimination learning was initiated and, with
cach complete pass through the training data, the
number of FAs generated during that pass was re-
corded. Figure 22 shows the results of 14 passes
through the training dara. Note that the number of
FAs dropped from 37 to 21 during the first pass and
stabilized to an average of 19 FAs (2.2 FA/km®) by
the fourth pass.

Atter the completion of training, testing was done
on 27 targets in 1134 image pairs covering 8.4 km? of

ground arca. Using the weights learned from training,
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FIGURE 22. Learning curve showing the decrease in false
alarms with training.
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we built the AMs at progressively larger values of
$ ranging trom 0.1 w 7.0. For cach p value, the
probability of correct recognition Py was plotted as a
function of the FA rate. Figure 23 shows the results.
At the value of g in which the first FA occurs, the Py
was 0.44. For a P of 093, the FA rate was 1.42
FA/km®. Two of the targets were not recognized
(i.e., classificavon UNKNOWN) even with 5 set
to 7.0. At some higher value of i, we do expect 1o
achieve a Py of 1.0, but we did not attempr o find
that particular g value. In this test, as well as in the
previously described tests, no targets were mislabeled
as another target identity.

Out of a total of 63 targets, only 55 were used: 28
tor training and 27 tor testing. The reason tor chis
intentional omission of eight targets was that there
were only four images of the tank truck in the open
and four images of an empy logging truck with the
trailer completely occluded by the frame boundary of
the image. With only two examples of a arget tor
training, the resulting AMs were too restrictive 1o
recognize any targets other than the two training
examples. This tinding highlights how the building of
robust AMs depends on the proper selection of a
training set. As with any learning system, a realistic
and representative sampling of variations ot object

appearance is necessary to achieve robust performance.

Conclusions

The Experimental Target Recognition System (XTRS)
provides a framework for applving machine intelli-
gence (M) techniques to the task of automatic target
recognition (ATR). Based largely on aspects of tuzzy
set theory, these MI techniques enable che represenca-
tion of uncertaintics and known variabilities in target
appearance.

With rule-based experts and libraries of functions
and data structures, XTRS can be organized to adapt
automatically to environmental context and to
reconfigure the scarch for alternative targets. Using
multiple target detectors, XTRS can look simulta-
neowsly tor different variadons in target shape. The
outputs of all target detectors are expressed as interest
images, permitting the fusion of all sources of evi-
dence into asingle spatial map. Despite the apparent

complexity of XTRS, svstem performance can be con-
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FIGURE 23. Probability of correct recognition Pg as a func-
tion of the false-alarm rate. Each point along the curve
corresponds to a particular value of the recognition toler-
ance parameter f3.

trolled effectively with only two tunable parameters:
the interest threshold for controlling the output of
low-level detection and the recognition tolerance for
controlling the output of high-level matching based
on appearance models (AM).

XTRS uses AMs to model how targets and their
constituent parts appear in sensor imagery, thus pro-
viding an alternative to other classifiers, including
those based on neural network, statistical, and other
model-based approaches. Unlike other medel-based
approaches that encode the three-dimensional struc-
ture of an object, AMs define the observable appear-
ance of targets in specific sensor data within the con-
straints of the likely target orientations. AMs provide
a more controllable representation than neural net-
works. Because knowledge is represented in neural
networks as a diffuse population of weights, it is
difficult to identify which image features are being
used. Not only are the attributes and weights of AMs
easy to interpret, they can be modified by a user with
predictable effects on recognition performance. Neu-
ral networks have gained in popularity as classifiers
principally because of their ability to learn and en-
code discriminants automatically. As we have shown
in this article, the automatic learning of class dis-
criminants is also possible with AMs, but in a repre-
sentation that is more amenable to understanding
and selective editing.

Ocher techniques developed for XTRS embody
what we call Tow-level MI. Most existing MI tech-
niques used in computer vision rely on a preliminary
abstraction of raw data into a symbolic form. But the

process of abstra-ton necessarily reduces the amount
of information available for decision making, thus
handicapping an obscrver, no matter how intelligent.
Tools tor knowledge-based signal processing and pixel-
level accumulation of evidence provide the intelligent
means of using object- and context-dependent knowl-
edge 1o guide the extraction of information dirccdly
from raw image data without the need for abstrac-
tion. In pardcular, functional template correlation
(FTC) allows the construction of generalized matched
filters that encode knowledge of the physics of a
detection problem. Customized operations constructed
with FTC are generally more powertul (ie., more
discriminating) than comparable traditional signal
processing operations. In ATR versions of XTRS, we
have used FTC as a one-step three-dimensional rarget
recognizer. For other applications, we have developed
knowledge-based fuzzy variations of standard image
processing operations, including thin-line detection,
smoothing operations, basic mathematical morphol-
ogy (MM) operations, and pattern matching.

The need for FTC arose from a perceived inad-
equacy of the standard techniques of shape analysis.
Although MM worked very well for unobscured tar-
gets, we could not devise a sequence of MM opera-
tions that would reliably detect and extract targets in
high-clutter environments, especially when the target
was partially occluded. We believe that our failure was
due in part to the all-or-nothing nature of MM op-
erations [18]. We have also investigated the use of
normalized cross-correlation, the other commonly used
tool for shape analysis. In its favor, cross-coriclation
does provide a variable degree of match that can be
translated easily to interest values. But the matches
generated by cross-correlation are too literal in that
the interest scores are based on very specific, inflexible
patterns of image values.

The repetitive evaluation of all scoring functions in
a functional template—for all orientations for cach
pixel location—sounds computationally prohibitive.
But the process becomes feasib' » when the input im-
age values are scaled to some integer range (e.g.. 0 to
255) and the scoring functions arc implemented as a
precomputed two-dimensional lookup table that is
indexed by the scoring-funciion numbers and the
integer image values. The use of such a lookup table is
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Table 1. Performance of Prototype System

1
Number of targets 63
Ground area (kmz) 17.13
Detection threshold 0.75
Number of detections 492
Number of targets in 50
AM example set
Recognition tolerance 03
% correct recognition 100%
FAs/km? 0.0

Experiment
2 3
Training Testing
69* 28 27
1713 8.6 84
0.72 0.72 0.75
173 656 342
50 28 —
1.7 5.0 45
100% 100% 93%
1.7 2.2 14

Inciudes six empty logging trucks not intentionally deployed

** After discrimination learning

generally faster than multiplication, making FTC
evaluation quicker than cross-correlation.

Low-level M1 also allows XTRS to delay the appli-
cation of thresholds. Instead of applying thresholds
either to a single image consisting of raw data or to
the output of some simple transformation of the raw
data, we can apply the thresholds to maps of interest
containing evidence that has been extracted from a
variety of sources.

Unlike the AMs, the FTC-based target detectors
were constructed and tuned manually. The develop-
ment of a useful, operational ATR system that is able
to adapt swiftly to different targets and mission sce-
narios requires a mechanism for constructing func-
tional templates automarically. We have developed
methods for building functional templates from sta-
tistics accumulated from example targets, but these
methods have not yet been implemented. Functional
templates might also be constructed by using the
emerging techniques of genetic programming.

The success of our approach to ATR is indicated
by the overall system performance of the prototype
system, as summarized in Table 1. In experiment 1, in
which we used strict tolerances for the automatic
construction of the target AMs, we were able to achieve
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100% correct target recognition in the available data
with no mislabelings and no false alarms. It is impor-
tant to note that the AMs are flexible and can be
generalized to broader classes of vehicles by the ma-
nipulation of a single recognition tolerance. Experi-
ment 2 demonstrates this flexibility and, in particular,
the capability for generalization by increasing the rec-
ognition tolerances. Six empty logging trucks were
found in the dataser that were somewhat different
from the one logging truck that was intentionally
deployed. These six were appropriately rejected as
clutter in experiment 1. Suppose, however. that the
additional six trucks were to be included in a broader
class of empty logging trucks. By changing just the
recognition tolerance from 0.3 to 1.7 in experiment
2, the system was able to recognize the six trucks as
empty logging trucks. Of course, the cost of general-
izing all models in this manner was that the FA rate
increased from 0.0 to 1.7 FA/km”. Experiment 3
shows that AMs constructed from more limited train-
ing sets can be used to recognize targets with reason-
able reliability in a separate test set. The training sets
were limited in size and did not provide a good repre-
sentative sampling of vehicle appearances. Conse-
~uently, AMs were constructed with large recognition
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tolerances in order to achieve high detection rates.
The resulting elevated false-alarm rate was suppressed
by roughly 50% through the use of supervised dis-
crimination learning. Despite these limitations, rea-
sonably good performance was evident in the separate
test dataset.

In contrast, without the techniques of low-level
MI and the automatic construction of complex AMs,
we were unable to construct an ATR system for this
application anywhere near as accurate, flexible, or
robust as the one described in this article [18]. Of
course, some credit for the performance of the system
must go to the quality of the sensor images used. But
images of good quality do not necessarily guarantee
reliable detection performance. Even with an image
of excellent quality, concealment and clutter can make
target detection a challenging problem.

So far, XTRS has been applied to two other ATR
problems: the recognition of armored vehicles both in
forward-looking laser radar images [8] and in fully
polarimetric synthetic-aperture radar images {9]. But
XTRS provides the means of solving a more general
class of object-detection problems. In addition to its
use in recognizing military targets, XTRS has been
applied successtully to the task of detecting and track-
ing hazardous weather phenomena in Doppler
weather radars [11].
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Machine [ntelligent

Gust Front Detection

Richard L. Delanoy and Seth W. Troxel

M Techniques of low-level machine intelligence, originally developed at Lincoln

Laboratory to recognize military ground vehicles obscured by camouflage and

foliage, are being used to detect gust fronts in Doppler weather radar imagery.
This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of
hazardous-weather-detection functions being developed under contract with the
Federal Aviation Administration. Initially developed for use with the latest-
generation Airport Surveillance Radar equipped with a wind shear processor
(ASR-9 WSP), MIGFA was deployed for operational testing in Orlando,
Florida, during the summer of 1992. MIGFA has demonstrated levels of
detection performance that have not only markedly exceeded the capabilities

of existing gust front algorithms, but are competitive with human

interpreters.

ust fronts generated by thunderstorms can

seriously affect the safety and efficiency of

airport operations. Lincoln Laboratory, un-
der contract with the Federal Aviation Administra-
tion (FAA), has had a significant role in the develop-
ment of two Doppler radar systems that are capable
of detecting low-altitude wind shears, including gust
fronts, in the airport terminal control area. These
systems are the Terminal Doppler Weather Radar
(TDWR) and the latest-generation Airport Surveil-
lance Radar enhanced with a wind shear processor
(ASR-9 WSP).

By examining images generated by these radars,
experienced human obscrvers can reliably detect and
track gust fronts. But the development of automared
gust front detection algorithms having sufficiently
high detection rates with few false alarms has been
clusive. The gap between human and computer per-
formance is due to several limitations of the detection
algorithms. These limitations include the lack of means
for handling and maintaining weak, ambiguous, and
contradictory evidence, the use of multiple sequen-
tially applied thresholds for object discrimination (such
thresholds can inadvertently result in the discarding

of important data), a failure to use all of the relevant
information available in the input data, and the in-
effective use of knowledge regarding the behavior
or appearance of gust fronts under different
circumstances.

Given clear, unambiguous radar gust front signa-
tures, existing detection algorithms perform reason-
ably well. The challenge is in constructing algorithms
that can handle the marginally detectable ambiguous
cases. In such cases, various factors must be consid-
ered. For example, gust fronts can be obscured by
large arcas of precipitation, or gust front signatures
can disappear in Doppler velocity images whenever
the Doppler viewing angle is perpendicular to the
direction of motion. Furthermore, gust fronts can be
mimicked by other natural phenomena, such as flocks
of birds, clouds of dust stirred up at construction
sites, low-intensity rain, and ground clutter. And gust
fronts can have very low radar cross-section densitics,
sometimes below the sensitivity of the radar system.

The preceding paragraph should sound familiar to
those involved in the development of automatic tar-
get recognition (ATR) systems, for the issues are basi-
cally the same. In addition to the continual trade-oft
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Gust front
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Downdraft

FIGURE 1. Thunderstorm downdraft and resulting gust
front. The cool outtiow beneath a thunderstorm spreads
out in all directions. The leading edge, where the cool
outflow and the warmer ambient air converge, is called
the gust front.

between detection rates and numbers of false alarms,
the issues tor gust front detection are

1. obscuration and camoutlage,

2. sensor limitations,

3. clutter and decoys, and

4. stealth,

Not surprisingly, the overall design of existing gust
front detection algorithms is similar to that of most
ATR systems. This traditional design is characterized
by a hicrarchy ot modules, typically called detection,
extraction (or discrimination), and classification. The
detection process is essentially the application of some
threshold that has been chosen to maximize the prob-
ability of detection at some acceprable level of false
detections. Where signals are found that are above
threshold, features are extracted, producing an ab-
straction, or symbolic representation, of the raw dara.
Given the set of extracted features, a signal is then
classified as either one of the object types being sought
or as cluteer. In both the existing gust front detection
algorithms and the traditional ATR systems, detec-
tion is generally unsophisticated: the threshold s
applied cither to raw radar data or to a simple trans-
formation (such as a marched filtering) of the raw
data. Sophisticated machine intelligence techniques
are generally applied in the torm of classitiers, ¢.g., by
the use of neural nerwork, stagstical, or model-based

classitiers.
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However, the use of machine intelligence only tor
the classification process leads to a problem. With the
application of a detection threshold, a signiticant
amount of intormation is discarded, including those
object signatures which are weak or ambiguous. Our
beliet s that increased detection « 7 abiliy can be
achieved by applying machine intelligence technigues
prior to the application of detection thresholds.

A tramework for applying machine intelligence
techniques at the carliest levels of signal (image) pro-
cessing is provided by the Experimental Target Recog-
niton System (XTRS) [1], a general-purpose ma-
chine intelligence approach o ATR developed at
Lincoln Laboratory. Specific techniques of knowl-
edge-based signal processing, fuzey set theory, and
pixel-level maps of spatial evidence are all parcof this
approach. Based on XTRS, a Machine Inrelligent
Gust Front Algorithm (MIGFA) has been constructed
for use with both TDWR and ASR-9 WSP imagery.
Of the two radar systems, the ASR-Y presents the
greatest challenge o gust front detection because of
its lower sensirivity and less reliable Doppler measure-
ments in clear air. Thus, this article will tocus on the
ASR-9 WSP version of MIGFA to demonstrate best
the algorithm’s effectivencess.

Gust Fronts

An intense thunderstorm downdraft can arise from
various processes such as evaporative cooling and fric-
tonal drag between water droplets and the air. Upon
impact with the ground, the downdraft is deflected
horizontally (Figure 1), producing a local region of
divergent winds. The downdraft feeds an outflow of
outwardly expanding cool air. At the leading edge of
the outtlow exists a boundary where cool outflow air
collides (converges) with the warmer ambient air.
This leading-edge boundary, called a gust front, can
grow to be many kilometers long and can propagate
far away from the generating storm.,

The wrbulence within a gust front can be severe
cnough to present a danger to aircraft during rakeoft
and landing. And, because the prevailing winds be-
hind a gust front can persist for a long time, the
passage of a gust front over an airport often necessi-
tates a change of active runway. When unanticipated.

a gust front can delay airport operations as aircraft are
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rerouted o a ditferene runway. Aside trom issues of
cost and inconvenience, delays can increase the risk
of potentially taal human errors as the distance
between aircrate that are wking off or landing de-
creases and the work load on air trattic controllers
increases. With sutticient warning, though, control-
lers can incorporate in their plans a change in acdve
runway at the anticipated time of a gust front’s arrival,
thereby minimizing the hazards and costs associated

with delays.

Retlectivity thin-line signature

Gust tronts can be detected in Doppler radar im-
agery on the basis ot three physical properties: veloc-
ity convergence, thin lines, and modon. Figure 2
shows a typical gust tronc in both TDWR and ASR-Y
WSP images.

The air within and behind a guse tront converges
with the ambient air ahead of the gust fronc. In a
Doppler velocity image, this activity is observable as a
boundary between regions of converging velocities.

When viewed along a single radial. the convergence
¢ ¢

Velocity-convergence signature

(b)

Reflectivity thin-line signature

Velocity-variance signature

FIGURE 2. An example gust frontin (a) TDWR and (b) ASR-9 WSP images. The left radar plots are reflectivity images with
units in dBZ. The right radar plots are Doppler images with units in m/sec. The different signatures (see main text) of the

gust front have been indicated by a human interpreter.
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signature is characterized by a reladvely sharp de-
crease in radial Doppler values with distance (Figure
3). Because Doppler radars can measure only the
component of the wind that is directed along the
beam. Doppler velocity measurements can often un-
derestimate the true wind speed. In the extreme, the
convergence signature of a gust front disappears com-
pletely when the direction of motion is perpendicular
to the radar beam azimuch, The TDWR velocity
image shown in Figure 2(a) demonstrates this prob-
lem. In the figure. the portion of the front closest to
the radar site has a direction of motion that is nearly
radially aligned, resulting in a pronounced conver-
gent boundary for that area. However, at the ends of
the gust front, where the direction of motion is more
azimuthal, the boundary is more difficult to detect.

The thin-line signature is generally thought to be
produced by the concentration of scatterers (dust,
insects, rain droplets) along the leading edge of the
thunderstorm outflow. Some gust fronts produce a
distinctive cloud formation along the gust tront, which
can also contribute 10 the thin-line reflectivity. The
thin line varies in width but seldom exceeds 3 km.
Typical maximum reflectivities reported by the ASR-
9 along gust tronts are in the range of 10 to 20 dBZ.
But significant portions of many thin lines can have
reflectivities as low as =5 dBZ, which is near or below
the threshold of detectability for the ASR-9. (Note:
The basic unit of measurement for radar reflectivity is
dBZ. Reflectivities of 50 dBZ or more are typical of
intense chunderstorms with heavy rain. Background
typically has reflectivity values between 15 and 0
dBZ.) Because of ground-clutter obscuration, the qual-
ity of a thin-line signature often degrades at close
range, and the signature can even vanish as the gust
front passes over the radar. As the front moves out of
the cluttered region, the signature often reestablishes
iself. This type of degradation is especially trouble-
some for the ASR-9 because of the radar’s on-airport
location, which makes it more prone to detection loss
when a gust front is attecting the airport.

A final key gust frone signature is motion. When
sequential radar scans are compared, convergence and
thin-line signatures of a gust front will move con-
spicuously in a direction perpendicular to the orienta-
tion of the convergence boundary and reflectivity
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Velccities-convergence zone

Doppler velocity

Range

FIGURE 3. Example velocity-convergence signature asso-
ciated with a gust front.

thin line. Signatures that do not move are either not

gust fronts—e.g., they could be false alarms from
range-ambiguous echoes (discussed in the subsection
“Feature Detection”), edges of storm regions, or ground
clutter—or they are gust fronts thar are not opera-
tionally significant. Within limits, gust fronts tend to
move uniformly as outwardly expanding curved
boundaries: i.e., the propagation speed tends to be
consistent along the fronts length and across time. Of
course, when gust fronts collide, the motion may
become more erratic.

It these signatures were 100% reliable, detecticn
would be a trivial task. For some gust fronts, however,
one or more signatures may be weak, ambiguous, or
entirely absent. For example, convergence signatures
disappear when the radar beam is perpendicular to
the wind velocity. Reflectivity thin lines and thin-line
motion can disappear when a gust front is obscured
by storm regions. To complicate matters further, none
of these signatures are unique to gust fronts. Vertical
shears, often present in severe thunderstorms, can
bias low-altitude velocity estimates, producing appar-
ent convergence signatures. Range-ambiguous ech-
oes, ground clutter, flocks of birds, and clongated
patches of low-intensity precipitation can all appear
as reflectivity thin lines. Motion can be associated
with anything (c.g.. clouds or airborne dust) that
follows the ambient wind. In short, each signature
can be missing and each signature can be mimicked
by other observable phenomena. Consequenty, suc-
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cesstul discrimination requires knowledge of the cir-
cumstances tor which these signatures are reliable as
well as knowledge ot gust front behavior. Only by
weighing the quality of several signatures simulta-
neously can an automated system detect guse fronts
with near human performance.

The task is ditticule enough with TDWR dara.
And yet the TDWR is a pencil-beam radar, designed
tor weather sensing, with enough sensicivity to gener-
ate reliable Doppler values in relatively clear air and
enough resolution in clevation to provide three-
dimensional images ot weather phenomena. In con-
trast, the ASR-9 is a surveillance radar that was
not originally intended tor weather imaging. Wich
a fan-beam design, the ASR-9 vertically integrates
signals into a single two-dimensional representation.
Because the transmitted energy is distributed over a
wider arc of clevation, the energy returned from a
low-alticude, low-reflectivity gust front will be small
relative to the energy filling the remainder of the
sample volume. Wich this reduced sensitivity, gust
front detection is much more difficult. Almosr all
convergence signatures are eliminated for the ASR-9
because the Doppler values are unreliable since the
reflectivity returns from clear air are below the thresh-
old of detectability for the radar. Even for cases in
which gust tronts pass through regions of high
reflectivity, convergence cannot be used reliably for
gust front detection. For example, the signal contri-
bution from overhanging precipitation near the edges
of storms can bias the low-level wind-velocity esti-
mate when there is vertical wind shear. Wichout con-
vergence signatures, thin line and thin-line motion
become the primary signatures for detecting gust fronts
in ASR-9 WSP imagery. In the example ASR-9 WSP
reflectivity image of Figure 2(b). the gust fronc is
visible. But note that while the TDWR thin line is
quite strong, the ASR-9 WSP thin line shows less
contrast, is somewhat more fragmented, and does not
extend as far as is apparent in the TDWR data.

Although a convergence signature is missing from
the ASR-9 WSP velocity image of Figure 2, the gust
front is still visible. The accuracy of velocity estima-
tions degrades markedly over the range of signal-to-
noise values assoctated with low reflectivity returns.
For this reason, gust fronts arc observable in ASR-9

WSP velocity images as bands of low-variance Dop-
pler values, with high variance in the low signal-to-
noise regions ahead and behind the gust front This
velocity-variance thin line is an aleernative signature
used in the ASR-9 WSP version of MIGFA. In addi-
tion, implicit zones of convergence can be identified.
Doppler values within the gust tront thin line are
used to estimate winds behind the gust front. The
environmental low-level wind velocity ahead of the
storm can be measured by some other means—tor
example, trom a network of anemometers at the
airport. A comparison of these two wind-velociry
estimates can be used to contirm that convergence
exists somewhere berween the gust tront and the

anemometer site.

Background

Automated radar gust front detection algorithms have
been under development and evolution for almost ten
years. H. Uyeda and D. Zrnic [2] first described an
automated detection algorithm, developed for the Next
Generation Weather Radar (NEXRAD), that was
based solely on detecting velocity convergence along
radials. The algorithm was successtul in locating and
tracking the strong gust tronts that commonly occur
in Oklahoma during the spring.

An improved version of the initial algorithm re-
duces false alarms by requiring vertical association of
gust front signatures from two different low-altitude
elevation scans. The improved algorithm, known as
the Gust Front Detection Algorithm (GFDA). also
incorporates a technique for estimating horizontal
winds ahead and behind detected gust frones [3. 4).
As with its predecessor, GFDA detects velocity con-
vergence along radials. GFDA is the algorichm cur-
rently intended tor use in the initial operational de-
ployment of TDWR systems.

Brietly described, GFDA begins with a search in
each radial for runs, or segments, of decreasing radial
velocity, indicating convergent shear. Segments in
which the maximum shear exceeds a predetermined
threshold are logically grouped into features on the
basis of end-point-proximity and segment-overlap
tests. The teature attributes are then tested against a
number of thresholds and are kept, discarded, or

combined withi other features. After separately pro-
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cessing each of the two full-circle scans from ditferent
alditudes, the algorithm tests tor vertical continuity of
the teatures between the scans. Features thar exhibit
vertical continuity and that exceed a minimum-length
threshold are declared to be gust fronts. The reported
location of the detecred gust front is determined by
titting a curved line through the peak shear of each
segment in the gust front feature. Sequential detec-
tions are associated over time to build detection histo-
ries for cach gust front upon which propagation speeds
are estimated and forecasts generated.

Lincoln Laboratory, in conjunction with the Na-
tonal Severe Storm Laboratory (NSSL), has since
developed the Advanced Guut Front Algorithm
{AGFA) [5. 6], which contains several enhancements,
including reflectivity thin-line detection. AGFA de-
tects thin lines by finding local maxima of reflectivity
values that are consistent with the widths and intensi-
tics assoctated with gust fronts. Thin-line segments
are generated twice: once by constructing segments
over all range gates along a radial and once by con-
structing segments across radials along arcs of con-
stant range. The final thin-line featurcs consist of lists
of the points connecting the centers of each of the
segments. Convergence and thin-line features are fused
on the basis ot end-point proximity and orientation.
AGFA does not use motion as a signature for detect-
ing gust fronts. Motion is used only in heuristics that
reject false features after they have been extracted.

During field testing in 1990 and 1991, a custom-
ized version of AGFA was used for gust front detec-
tion on an ASR-9 WSP {7, 8]. Because of the lack of
reliable velocity-convergence features, the ASR-9 ver-
sion of AGFA was configured to operate in a thin-
line-only detection mode. Although the algorithm
was successful in detecting gust fronts that had thin-
line signatures of good quality, it had some difficulty
detecting gust fronts when the reflectivity was weak
or fragmented. Lacking convergence signatures to con-
firm the existence of gust fronts, the algorithm was
prone to false alarms triggered by elongated low-
reflectivity weather echoes that are sometimes associ-
ated with stratiform rain. Installing suboptimal detec-
tion thresholds to reduce the false-alarm rate further
reduced the detection probabilities.

In the above study, the scoring was done against
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human interpretations of the same images used as
input to the algorithm. The discrepancy between hu-
man and AGFA performance appears to be pardally
due 1o AGFA’s not making tull use of a variety of
additional information that is available in the ASR-9
WSP data, including velocity thin lines and thin-line
motion. Moreover, both GFDA and AGFA rely on
sequentially applied thresholds to discriminate gust
tronts from background. When the relevant signals
are weak or ambiguous, the use of thresholds in the
early stages of processing can result in the elimination
of potentially relevant information, thus setting un-
necessary limits on detection performance. GFDA
and AGFA also rely on one-dimensional signal pro-
cessing operations to locate gust fronts. The extrac-
tion of chains of points across the second dimension
is done at a higher, heuristic level of processing. In
controst, two-dimensional signal processing opera-
tions can directly establish the shape of gust fronts
without relying on heuristics. Finally, these early gust
tront algorithms have no systematic means of condi-
tionally fusing information from various sources by
taking into account the different reliabilities of the
sources. Different signatures can have varying reliabil-
ity depending on the situational context.

Low-Level Machine Intelligence

The conventional wisdom in computer vision/object
recognition research has been to use general image
processing operations, ideally devoid of object- and
context-dependent knowledge, at the initial stages of
processing. Such operations might include edge de-
tection, segmentation, cleaning, and motion analysis.
And yet the ideal has never really been achieved in
practice. For example, some knowledge of the sensor
and the expected scene contents must be implicitly
encoded in the form of thresholds or other similar
parameters to detect edges effectively.

From the results of such general operations, image
characteristics are extracted and represented symboli-
cally. Machine intelligence is then applied, as if by
definition, only on the symbolic representations at
higher levels of processing.

MIGFA has inherited the development environ-
ment, control structure, knowledge-based signal pro-
cessing, and several other important attributes of
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XTRS. In contrast to more conventional approaches
to object recognition, sensor-, object-, and context-
dependent krowledge is applied in the earliest levels
of processing, i.c., at the image processing stage. As
used in MIGFA, low-level machine intelligence ap-
plies knowledge in three ways.

First, knowledge ot the current environment is
used to choose from a library those feature detectors
which are selectively indicative ot the object being
sought. Using multiple independent feature detec-
tors, MIGFA can adapt to difterent contextual cir-
cumstances. At the beginning of the processing of
cach scan, a rule-based expert examines contextual
intormation to select a set of feature detectors known
through experience to be the most effective tor a
given set of circumstances. In the extreme, this pro-
cess would enable MIGFA to adapt itself dynamically
to changes in the environment. Currently, the only
rule used by MIGFA selects between two fixed alter-
native sets of feature detectors, one set customized for
the TDWR and the other customized for the ASR-9
WSP. Because of the redundancy inherent in the use
ot multiple feature detectors, MIGFA tends to be
robust: the malfunction of a feature detector or even
the absence of one data source does not necessarily
halt processing and may have only minor effects on
detection performance.

Second, knowledge is also incorporated within fea-
ture detectors through the design of matched filters
that are customized to the physical properties of the
sensor, the environment, and the object to be de-
tected. A new technique of knowledge-based signal
processing, called functional template corvelation (FTC),
allows the construction of customized signal process-
ing operations that are more effective than standard
operations (see the box, “Functional Template Corre-
lation™). The output of FTC is a map of numeric
values in the range [0,1] that indicate the degree of
match between the pattern of pixels in an image
region and the feature or object encoded in the func-
tional template.

Finally, knowledge of the varying reliabilities of the
selected feature detectors is used to guide data fusion
and extraction. Conditional data fusion is simplified
by using “interest” as a common denominator [9]. An
interest image is a spatial map ot evidence for the

presence of some teature that is selectively indicadve
ot an object being sought (the output of FTC is an
interest image as long as the functional template en-
codes an indicative feature). Higher pixel values re-
tlect greater confidence that the intended teature is
present at that location. Using interest as a common
denominator, MIGFA tuses data by combining inter-
est images derived from various pixel-registered sen-
sory sources. Using simple or arbitrarily complex rules
of arithmetic, tuzzy logic, or statistics, MIGFA can
assimilate pixel-level evidence from several coregistered
sources into a single combined interest image. Clus-
ters of high values in such combined interest images
are then used to guide selective auention and can
serve as the input for object extraction. If done effec-
tively, the combined interest image provides a better
representation of object shape than is evident in any
single sensor modality. Using these techniques, MIGFA
performs a significant amount of knowledge-based
processing before the application of the first discrimi-
nating threshold. Most traditional perception systems
apply one or several thresholds early in the processing
as a way of quickly reducing the amount of data to be
processed. However, especially with ambiguous data,
each applied threshold closes oft options for detecting
an object. A better strategy—a strategy attempted in
XTRS and MIGFA—is to apply thresholds only after
evidence from many sources of inf.rmation have been
meaningfully fused into a single map of evidence.

MIGFA Design

The system block diagram in Figure 4 is an overview
of MIGFA as configured for ASR-9 WSP data. In
preparation for processing, input images V (Doppler
velocity) and DZ (reflectivity) from the current radar
scan are converted from polar to Cartesian represen-
tation and scaled to a useful resolution. Image SD is a
map of the local standard deviations of V values. The
SD) and DZ images are then passed to multiple simple
independent feature detectors that attempt to localize
those features which are selectively indicative of gust
fronts. The outputs of cach of these feature detectors,
most of which are based on some application of FTC,
are expressed as interest images that specify evidence
indicating where and with what confidence a gust
front may be present. The different interest images
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FUNCTIONAL TEMPLATE CORRELATION

FUNCTIONAL TEMPIATE correla-
don (FTC) [1, 2] is a generalized
matched filter that incorporates
aspects of fuzzy set theory. Con-
sider, as a basis for understand-
ing, the basic image processing
ol autocorrelation. Given some
mmput image /, an output image
Ois generated by matching a ker-
nel K against the local neighbor-
hood centered on each pixel loca-
tion /. The match score assigned
to each pixel O,, is computed by
multiplying each element value
of K by the superimposed ele-
ment value in / and summing
across all products. If the shape
to be matched can vary in orien-
tation, then the pixel / is probed
by Kat multiple orientations. The
score assigned to O, is the maxi-
mum across all orientations.
FTC is fundamentally the same
operation with one important ex-
ception: whereas the kernel used
in autocorrelation is an array of
image values (the array is essen-
tially a subimage of the image to
be probed), the kernel used in
FTC is an array of scoring func-
tions. The scoring functions re-
turn scores that indicate how well
the image values march the ex-
pectations of the values at each
element of the kernel. The set of
all returned scores are averaged
and “clipped” to the continuous
range [0,1}. (In the dipping pro-
cess. those averaged scores which
arc less than zero are assigned a
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value of zero while those aver-
aged scores which are greater than
one are assigned a value of one.)

The output of FTC is a map of

these values, each of which re-
flects the degree that the shape or
object implicitly encoded in the
functional template is present at
that image location.

Consider as an example the
functional template implementa-
tion of a simple matched hilter
designed to detect gust fronts in
reflectivity data (Figure A). Gust
fronts are observed as thin lines
of moderate rcﬂectivity (approxi-
mately 0 to 20 dBZ) that arc
flanked on both sides by low re-
flectivity (approximately -15
to 0 dBZ). Figure A(1) shows
the template kernel consisting
of integers that correspond to the
two scoring functions shown in
Figure A(2). Elements of the
kernel that do not correspond to
either of the scoring functions
form guard regions in which im-
age (ie., reflectivity) values are
ignored and have no effect on
match scores. Scoring function 0,
corresponding to the flanking re-
gions of low reflectivity, returns a
maximal score of 1.0 for image
values in the interval of -20 to
~5 dBZ, a gradually decreasing
score for image values in the in-
terval =5 to 10 dBZ, and a score
of =2.0 for image values larger
than 10 dBZ. Scoring function 1,
corresponding to the center of the

kernel where moderate reflec-
tivity values are expected, returns
maximal scores in the interval
5 to 12.5 dBZ and gradually
decreasing scores for both higher
and lower image values. Note that
although very low image values
can generate scores of ~1.0, a
slower decline in score with a
minimum score of 0.0 is returned
for image values above cthe maxi-
mal scoring interval. This asym-
metry is an attempt to mitigate
the obscuring cffects of storm re-
gions and other patches of high
reflectivity.

In general, by increasing or de-
creasing the intervals over which
affirming scores (i.c., scores > 0.9)
are returned, scoring functions
can encode varying degrees of un-
certainty with regard to which im-
age values are allowable. In addi-
tion, knowledge of how a feature
or object appears in sensor imag-
ery can be encoded in scoring
functions. The interfering effects
of occlusion, distortion, noise, and
clutter can be minimized by the
use of various design strategies [3].
As a consequence, matched filters
customized with FTC for specific
applications are generally more ro-
bust than classical signal process-
ing operations. In the thin-line
matched-filter example shown in
Figure A, the filter does not sim-
ply find thin lines, but selects
those thin lines which have re-
flectivity values within a particu-
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FIGURE A. Example functional template for thin-line feature detection: (1) index kernel and
(2) corresponding scoring functions. By increasing or decreasing the intervals over which affirming
scores (i.e., scores > 0.5) are returned, scoring functions can encode varying degrees of uncertainty
with regard to which image values are allowable. In addition, knowledge of how a feature or object
appears in sensor imagery can he encoded in scoring functions.

lar Furthermore, the
matched filter can display differ-

ential tolerances to image values

range.

that are higher or lower than the
expected range of values. In the
automatic target
(ATR) systems developed at Lin-
coln Laboratory, FTC has been

used primarily as a direct one-

recognition

step means of three-dimensional
object detection and extrac-
tion. In the Machine Intelligent
Gust Front Algorithm (MIGFA),
FTC is used more as a signal pro-
cessing tool for edge detec-

tion, thin-line filtering and
smoothing, shape matching, skel-
etonizing, and erosion.

If FTC were implemented lit-
erally as described here, the com-
putational expense would be pro-
hibitive for most useful tasks. But
FTC is actually faster than auto-
correlation if the input data are
scaled to a fixed integer range (e.g.,
0 to 255) and the scoring func-
tions are implemented as a
precomputed two-dimensional
lookup table that is indexed by

a scoring-function number and
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an image value.
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FIGURE 4. Block diagram of the Machine Intelligent Gust Front Algorithm (MIGFA). For a description of the ditferent
feature detectors, see the subsection "Feature Detection” in the main text.

are fused to form a combined interest image, thus
providing an overall map of evidence indicating the
locations of possible gust fronts.

From the combined interest image. fronts are ex-
tracted as chains of points. The chains extracted from
a radar scan, collectively called an event, arc inte-
grated with prior events by establishing a point-to-
point correspondence. Heuristics are then applied to
reject those chain points which have an apparent
motion that is improbable. The updated history
is used to make predictions of where points along
the front will be located at some future time. Such
predictions are used in the processing of subse-
quent images, specifically in the feature detec-
tor called ANTICIPATION. In the output of
ANTICIPATION, high interest values are placed
wherever fronts are expected to be, thereby selectively
sensitizing the system to detect gust fronts at specif-
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ic locations. ANTICIPATION is tuned so that it
will not automatically trigger a detection by itselt
but, when its output is averaged with other interest
images, it will support weak evidence that would
otherwise be insufficient to trigger a detection. Fig-
ure 5 is a summary of the processing steps for an
example ASR-9 WSP scan.

Image Preparation

As discussed carlier, velocity convergence is an unreli-
able signature for detecting gust fronts in ASR-9 WSP
data. Gust fronts, nevertheless, wre visible in velocity
images. Because of the tendency for high-pass clutter-
filtered pulse-pair Doppler estimates in a velocity im-
age to have high variance in regions of low signal-to-
noise ratios (SNR). the local velocity variance is higher
for an area of clear air than for an area associated with
slightly higher reflectivity values. This information is
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translated into a usable form by transtorming the
velocity image V into a map of local standard devia-
tions (the SD image). At each pixel of V, the standard
deviation was computed in the surrounding 5 x 3
pixel neighborhood and assigned to the correspond-
ing pixel in SD.

Pixel values for all images are scaled to he interval
0 1o 255 to support subsequent FTC operations on
the inpur imagery. Each image is tagged with the
scaling factor and offset necessary to translate scaled
values back to the original physical values.

Finally, the DZ and SD images are converted
trom polar arrays (240 range bins X 256 radials)
Cartesian arrays (130 x 130). Mapping is done by

3 1

INDEXED EVENT

computing tor each element of the Cartesian array
the range bin and radial at which the corresponding
value 1s to be tound in the polar array. During the
mapping process, an implicit subsampling of the data
occurs. From an initial radial resolution of 120 m per
range bin and pixel size in the azimuthal dimension
decreasing from 680 m at 28 km. che tinal Cartesian
image has a pixel resolution of 480 m per pixel.

Feature Detection

Given contextual information of the sensor being
used, the location of that sensor, and the environmen-
tal conditions, a rule-based expert selects an appropri-
ate set of feature detectors for application to the input

INTEREST

PREDICTIONS

ETA AT *
VELGCITY

20:37:28
-12.1 e 281

FIGURE 5. Processed scan summary. In the first row are the DZ (reflectivity) image, SD (standard
deviation of velocity) image, and the combined interest image that has been computed from the DZ
and SD images. The second row begins with the extracted indexed event. White pixels are those
points which have been declared as part of a gust front. Gray pixels are those points which have not
been tracked long enough to establish sufficient confidence. In the history frame, the current chain
is shown in white and the preceding scans are shown in shades of gray (darker shades indicate
more distaint events in time). In the predictions frame, fat gray pixels indicate the 10- and 20-min
forecasts of where the fronts are expected to be. Also shown at the bottom right corner are the
estimated time of arrival of the next gust front to cross the radar site, the speed of the winds
measured inside the front (in m/sec), and the direction (in degrees) from which the front is coming.
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FIGURE 7. Combiming interest images: weak evidence. Thus hgute rs similarn to Figate 6 except that L.

¢ DELANOY AND FRONE T

INTEREST > 8.5

et o austiront

are not clearly visthlein any of the single interest images except for the anticipation image Inthe combimed interost o maae s

however. the aust fronts are much more apparent. iilustrating how the fusion of weak evidence from mutiple saare es

enhances gust ront detectabiiny.

associated with guse frones have low Daoppler velodin
standard-deviation values within the frone and high
values dhead and behind the trone Consequendy. the
scormg tunction for the center surip returns mavinul
scores for Tow values while the scoring tuncrion tor
the tlanking regions returns maximal scores for high
values.

D7 -MOTTON and SD-MOTTON are two thin-
fine moton detecrors thatare very similar to the basic
I|1il] lill( \Ik'lk'k“”\ -/ .IH(] 11 Nh. ”K' dk'IcL—
tion of motion is hased on simple ditterending. For
cvample. in DZ-MOTTION the D7 image from

previous saan produced approvimacely 1 mim betorg
the current scan s subtracted from the carrene 1D/
mage. In the ditterenced /7 images cast trones ap
pear as whize Tines tpositve values at the tronts pos
ton i the carrent scani that are traded by parailed
dark Tines (neganve values at the trones position in
the previous scantc Although tunctonal templates
that can scan tor parallel white and dark thin hnes
simuttancouslv are feasibles these topes ot wemplares
have so tar proven to be oo computationally expen-
sive to operate within the real time constraines ot the

available computer resources, Thus the ovisting
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DZ-MOTION simply looks tor thin lines of positive
values, The tunctional template v d has a kernel chat
is identical to the one shown o Figure A of the box,
“Funcrional Template Correlation,” but the scoring
tunctions are somewhart ditterent because of the con-
sequences ot ditferencing. The teature-detector SD-
MOTION is simifar o DZ-MOTTON in chac SD-
MO ON abso applies o the ditterence ot two
sequential images a thin-line filier with customized
scoring functions. With this approach, thin lines that
do not move are given low interest values, retlecting
the beliet that a stationary chin line is either noca gust
front or is a gust front that may be ignored. Because
the background in difterenced images is reduced o
values near zero, DZ-MOTION and SD-MOTION
tend to be more sensitive than TL-DZ and T1-SD.

One disadvanage of DZ-MOTION and SD-
MOTION is that they tend to produce false alarms
when moving storms are present because the leading,
edge ot the storm may appear in the ditterenced
image as a thin line ot positive values. For reducing
the likelihood of such false alarms, an image of storm
regions is generated with a round tunctional emplace
whose kernel has a diameter of 13 pixels (6.25 km).
Wherever storm regions are detected with this tem-
plate, interest values are decreased in DZ-MOTION
and set to nil (i.c., no opinion) in SD-MOTION.,

A fifth teature detector, OUT-OF-TRIP highlights
range-ambiguous echoes. Range-ambiguous echoes
occur when signals are reflected by weather more
distant than the maximum unambiguous range. Be-
cause the signals have traveled farther, they arrive
back at the radar receiver at the same time as signals
that are transmicted later and reflected from nearer
weather (hence the name QOUT-QF-TRIDP). For these
range-ambiguous echoes, the apparent range extent is
maintained while the azimuchal extent is reduced
proportional to the range: thus the signals have a
distinctive appearance as reflectivity thin lines that are
radially aligned and that are associated with high local
variance in the Doppler data. Because of their thin-
line appearance, range-ambiguous echoes are otten
inappropriately given high interest values by both
TL-D7Z and DZ-MOTION.

The detection of out-of-trip signals is pertormed

by applying two functional templates simultancously.
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One emplate looks for radially aligned thin lines in
the D7 image. while the odher requires that the corre-
sponding SD values are high. The resultis an interest
image that highlights out-ot-tnp signals. Atter the
combination of all other interest images. the out-ot-
trip interest image is subtracted trom the combined
interest image., thus selectively suppressing evidence
for the presence of gust fronts where out-ot-trip sig-
nals are tound. Example outpurs of the OUT-
OF-TRIP tfeature detector are shown in Figures 6
and 7.

The ANTICIPATTION feature detector provides a
mechanism, based on sitwational context, tor spatially
adjusting the detection sensitivity of MIGEA. High
anticipation values get averaged with interest values
trom other teature detectors to increase the likelihood
of detection at specific locations. Similarly, low anticr:
pation values suppress the likelihood of detection.

The most important use of anticipation is as a
replacement for coasting. Simply defined. coasting is
the condnued tracking ot a arget on a radar screen
tor some time interval atter the target has disappeared
(i.c.. after the wargers signal has fallen below some
detection threshold). Coasting assumes that the loss
of a target’s signal is not due to a change in the targets
behavior (e.g.. a change in velocity or perhaps the
disappearance of the target). Gust tronts, however. do
change their behavior, as in cases in which guse tronts
collide. Consequenty. the blind coasting ot a signal
after the signal’s loss is a potential source of false
alarms. As an alternative to blind coasting. anticipa-
tion provides a mechanism for progressively increas-
ing the sensitivity of a detection system, supporting,
weak evidence that would otherwise fall below detec-
tion thresholds.

In MIGFA, prior history of the behavior of a par-
ticular gust front is used to predict where thae front is
expected to be in the current scan. The predictions
are used 1o create a band of elevared interest values,
typically not so high as to trigger a detection by
themselves, but high enough to raise collocated weak
signals above threshold. In general, as the length of
time a gust front has been tracked increases, the an-
ticipation interest values can also be increased. If ab-
solute coasting is desired. interest values can be in-

creased to a level high enough o trigger a detection
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without any other supporting evidence. Examples of

anticipation interest images are shown in Figures 6

and 7.

Anticipation can also be used 1o adjust the sensitiv-
ity of gust tronc detections on the basis of contextual
knowledge. Some examples follow:

1. Many gust tronts are not observable in radar
data when the fronts are directly over the radar
stite because ot obscuration by intense ground
clutter. Even with anticipation of where a gust
tfront iy expected to be, the radar system can
often lose the front as the front crosses over the
radar site. To prevent such aloss, absolute coast-
ing over the radar site can be accomplished by
setang interest values within 2 km of the radar
siee o nil (iie., missing values) tor all interese
images excepr the anticipation image. Conse-
quently, the anticipation interest image will be
the only image allowed to have an opinion of
what exists direcdy over the radar site.

2. Gust front false alarms often occur from thin,
clongated bands of low-reflectivity stratiform
rain. In ceneral Florida ac least, gust fronts are
seldom associated with the stratiform rain chat
often tollows intense storm activity. Hence, un-
der such conditions, the ANTICIPATION fea-
ture detector suppresses the background antici-
pation interest values.

3. False alarms are rare in the absence of any pre-
cipitation. Thus, when no precipitation is vis-
ible on the radar screen, the background antici-
pation interest values may be safely raised.
thereby increasing the likelihood of detecting an
incoming gust front that is generated by a more
distant storm.

Combining Evidence

During the feature-detector selection process, a rule
of combination is also chosen to govern the combining
ot evidence—an example of data fusion. In principle,
the rule of combination can be as simple as the aver-
aging of pixel values across all interest images. How-
ever, for the set of ASR-9 WSP feature detectors
described carlier, a somewhat more complicated rule
has been used.

The tour interest images gencrated by T1L-DZ,

TL-SD, DZ-MOTION, and SD-MOTION are av-
eraged together. During the process, any missing val-
ues are ignored. The resulting averaged interest image
and the anticipation interest image are combined as a
weighted average: the average of the tirst four interest
images is given a weight ot 0.75 while the andcipa-
tion image is given a weight of 0.25. Finallv. clements
ot the out-of-trip interest image are muluplied by
0.25 and subtracted trom the elements ot the weighted
average. The resulting image is called the combined
Interest image.

Figure 6 shows an example ASR-9 WSP D7 im-
age, the outputs of each teature detector, and the final
interest image. In chis case, strong evidence tor the
two fronts is visibie in cach of the component interest
images (except, of course, for the out-of-trip image).
Clearly, any one of the teature detectors acting alone
would have been adequate. Now consider Figure 7
which summarizes the evidence tor the presence of
the two gust fronts in a later scan in which dewection
has become more ditticult as accumulating storm re-
gions have accluded the tronts. Note that although
ditferent parts of the gust fronts are highlighted in
ditferent interest images., the gust fronts are not un-
ambiguously visible in any single interest image (ex-
cept the anticipation image). In the combined inter-
est image, however, the gust fronts are much more
apparent. This example illustrates how evidence de-
rived from multiple feature detectors can be com-
bined so that the various detectors mutually sup.port
and compensate for ene other.

In MIGFA. no one feature detector is meant to
be a perfect, or even necessarily a good. discrimi-
nator of gust fronts and background. When used
together, however, several weakly discriminating
feature detectors can achicve robust performance
depending on how the detector outputs are
combined.

Extraction

Algorithms, such as AGFA, that track gust fronts as
entities must identify gust fronts prior to tracking.
The algorithms rely on the assignment of unique
labels that permit the establishment of correspon-
dence across time. Gust frong statistics, such as propa-
gation speed and location, are computed for the front
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FIGURE 8. The bow-tie functional template used for thin-line smoothing: (a) index kernel and
(b) corresponding scoring functions. (For ar. expianation of functional tempiates, see the box,

“Functional Template Correlation.”)

as a whole. This approach is adequate for simple
cases. Inevitably, however, complex rules are required
to handle the labeling, correspondence, and tracking
for cases in which a single front breaks up into dis-
joint fragments or for cases in which multiple fronts
merge or collide. Given the variable nature of gust
front behavior, the construction of a fully compre-
hensive set of rules that are correct for all possible
circumstances is a difficult task.

The problem is bypassed in MIGFA by making the
goal of extraction the identification of all points (col-
lectively called an evens) that lie in any gust front.
Certainly, some chains of points are spatially segre-
gated or have different velocities. For purposes of
reporting, such chains can be inferred to belong to
separate gust fronts even though there is no concerted
attempt to label or track gust fronts as entities. In-
stead, individual points are tracked across time; that a
point belongs to one gust front or another is irrele-
vant to processing. MIGFA predictions are elastic in
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that the variable velocities of different points along
the gust fronts are each used to make predictions of
what the gust front appearance will be at some time in
the future.

Thin iines in the combined interest image can be
fragmented for gust fronts that intersect with out-of-
trip weather or for fronts obscured by storm regions.
To bridge gaps between collinear fragments and to
suppress random unaligned high-interest values,
MIGFA uses thin-line smoothing of the combined
interest image. Figure 8 shows the bow-tie functional
template used as the basis for thin-line smoothing,
The template, inspired by the receptive field of the
cooperative cell of the Boundary Contour System
developed by S. Grossberg and E. Mingolla {10], has
a bow-tie shape that weights the influence of the end
regions over that of the center by placing more kernel
elements at the ends. Consequently, the template gen-
erates high output interest scores for an image point
between two collinear high-interest segments, even if
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that middle poinc itself has a low input interest value.
Because of the scoring-function design, the bow-tie
filter suppresses those collinear interest values which
are below the level of ambiguity (0.5), and amplifies
those values which are above the level of ambiguity.
With this design, the boundaries between gust fronts
and background are sharpened, resulting in cleaner
shapes for subsequent processing. An example of an
input image of combined interest and an output
smoothed image are shown in Figure 9.

A threshold of 0.5 is then applied to the smoothed
image to create a binary image of candidate fronts.
The lengths of resulting elongated shapes are then
computed, and the elements of those binary shapes
which are too short (<6 km for the ASR-9 WSP) are
set to 0. The result of this process is shown in the
frame labeled “match > 0.5” in Figure 9.

The bow-tie functional template also generates a
map of orientations. In the orientation image, each
element indicates the orientation that is associated
with the highest-scoring bow tie rotated at 10° incre-
ments from 0° to 170°. Black pixels correspond with
best matches at 0°; white pixels correspond with best

COMBINED INTEREST

MARKED THINNED

SNOOTHED INTEREST

EXTENDED

matches at 170°. An example orientation image is
shown in Figure 9.

The elongated binary shapes of the “match > 0.5”
image can be thinned down to a single-pixel-width
skeleton by using an FTC implementation of a modi-
fied version of S. Levialdi’s homotopic thinning [11].
The result of thinning is shown in the frame labeled
“marked thinned” in Figure 9.

The chains of points resulting from chinning are
then extended along ridges of relatively high interest
by using what is essentially a road-following algo-
rithm. At each end point, the pixels immediately
surrounding that point are examined by looking out-
ward from the rest of the chain for the maximum-
interest pixel with an orientation (found in the orien-
tation image) that is within a specified angle from
that of the initial end point. When the maximum
interest score of a new point falls below 0.2 or when
no new point has an orientation consistent with the
initial end point, extending halts. The result of the
extending process is shown in the frame labeled “ex-
tended” in Figure 9.

After the chain-extension process has been com-

MATCH > 8.5

J

SELECTED CHRINS

FIGURE 9. Extraction steps. Candidate gust fronts are extracted from a combined interest image. For a description of the
different steps involved, see the subsection “Extraction” in the main text.
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pleted, the resulting image may be highly branched
and it may contain loops. For further refinement of
the image, chain segments are assigned scores based
on the sum of the corresponding interest values tound
in the smoothed interest image. In each disjoint net-
work of chain segments, the single most interesting
(usually, but not always, the longest) non-looping
combination of chain segments is extracted as the
candidate gust front. Once the most interesting chain
has been extracted, the process is repeated on the
remaining unextracted chain segments to find the
next most interesting combination of chain segments.
The extraction process is repeated uncil the most
interesting remaining chain is below an empirically
determined interest threshold. In Figure 9, the frame
labeled “selected chains” shows the set of above-thresh-
old combined chain segments that were extracted
from the “extended” image.

Tracking/Heuristics

As stated earlier, each point in the extracted event
is tracked individually. The tracking of a particular
point requires that the corresponding point in the
event immediately prior to the current event be found.
Correspondence can be difficult to establish when
several gust fronts collide; in such cases, the point
in the prior event that is closest to a point in the
current event might not necessarily be the correct
corresponding point. Consequently, the correspond-
ing point is chosen to be the closest point in the
immediately prior event for which the orien-
tation and speed are consistent with the given
point in the current event. If no such point in
the prior event is found, then the corresponding point
is assumed to be the closest point. Once cor-
respondence for a point is established, the point
is indexed by creating a pointer linking that point
to the corresponding point in the immediately
prior event. If the distance between the two corre-
sponding points is too large or if the distance is
inconsistent with prior history, then the point is
unindexed (i.e., the link is broken). Through the
index links, a point can be tracked backwards
in time to its first recorded instance. The number
of prior events through which a point can be

tracked is called the point’s depth. (A depth of
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0 means that the point is unindexed.) Once
indexed, each point is assigned the follow-
ing actributes: coordinates, distance moved, di-
rection moved, depth, Doppler value, interest
value, and propagation speed.

After indexing, each extracted chain of points is
edited:

1. If the direction a single point moves is opposite
(approximate difference of 180°) trom its neigh-
bors, the direction of the point is reversed.

2. Single chains may be divided into two subchains
if a persistent discontinuity in velocity or a per-
sistent change in orientation is detected at some
point along the chain.

3. Various parameters such as propagation speed,
Doppler value, and direction of motion are
smoothed along the length of each chain.

4. Heuristics are applied that, when satisfied,
unindex individual points in a chain. If more
than half of any chain’s points become unindexed,
all points in the chain are unindexed.

The heuristics mentioned in item 4 above are based
on knowledge of how false alarms can be distin-
guished from real gust fronts. For example, if the
direction a point moves is inconsistent with the mea-
sured Doppler value, the point is unindexed. Or, if
the point is approaching the radar site ard moving in
the same direction and no faster than the winds mea-
sured by anemometers at the radar site (i.e., there is
no convergence), the point is unindexed.

In the final stage of tracking, a binary decision is
made for each chain as to whether the chain should
be declared a gust front. A chain’s summed interest
score and the depths of its constituent points are used
to make the decision. For chains with high summed
interest scores (reflecting a higher degree of con-
fidence), points with lower depths may be in-
cluded. On the other hand, chains that have low
summed interest scores are less likely to be gust
fronts and are thus required to accumulate
higher depths before being included in the an-
nounced gust front detections. The frame labeled
“indexed event” in Figure 5 shows the set of all
extracted points. White pixels represent those
points which have the sufficient depths and interest
scores to be reported. Gray pixels represent those
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points which will not be reported due to a lack of
confidence. In the frame labeled “history,” the re-
ported points are shown in context with previously
reported events.

Prediction

The current extracted event, indexed into the prior
history, is used to predict the future locations of those
points which have the sufficient depths and interest
scores. Given the direction moved, the propagation
speed, and the current coordinates of a point, a new
coordinate is computed for some specified time in the
future. Gaps can arise between the projected future
coordinates of two adjacent gust front points when
the orientations and velocities of the points are not
identical. In such cases, the zans are filled in. An
example showing the reported chains and their ex-
pected locations after 10 and 20 min is shown in the
frame labeled “predictions” in Figure 5.

Pame s AL/0N S Fibhe Al T degree,

ASR-WSP GUST FRONT DETECTION

Results

The pertormance of MIGFA has been scored against
human interpretations of the same input radar dara.
Implicit in this statement is the assumption that hu-
man interpretations are 100% accurate. As we will see
later, this assumption is not always correc.

The human interpreter had access to both Doppler
and reflectivity images for an entire sequence of ASR-
9 WSP scans, which could be viewed separately or in
sequence as a movie. For each scan, a description of
“truth” (i.e., the interpretation of the scan by a hu-
man) was stored in a table as a list of coordinates
marking the gust front end points and an intermit-
tent sampling of points in between. For categoriza-
tion of results, the estimated maximum wind shear in
the zone of convergence was also stored. This scoring
exercise was intended to measure MIGFA’s detection
performance, not the end-to-end gust front detection

time s 1 00, 0N D0csh Al (SIS LR

ASR-WSP GUST FRONT DETECTION

FIGURE 10. Human versus MIGFA interpretation of ASR-9 WSP data. The 5-km-wide box denotes a region where a hu-
man interpreter has detected a gust front. The single line represents a detection by MIGFA. Note that the human interpreter
did not include the extreme ends of the front because the ends were nearly radially aligned and had weak reflectivity
values—characteristics of out-of-trip weather. However, because the extended thin line moved consistently with the center
of the front and because the variance of Doppler velocity values associated with the thin line was too low to be out-of-trip
weather, MIGFA probably gave the more likely interpretation. The reflectivity is given in dBZ, and the velocity in m/sec.
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capability for the ASR-9 WSP. Consequently, the hu-
man interpreter was restricred to including in the
cruth set only those gust frones which had some vis-
ible signature, however subte. Other data sources,
such as matching TDWR data and anemometer mea-
surements of winds over the radar site, were used to
confirm or deny the existence of gust fronts thar had
an ambiguous appearance in ASR-9 WSP data. The
interpreter, however, did not use these other data
sources to define gust fronts in the absence of visible
ASR-9 WSP signatures. For cases in which MIGFA
detections in ASR-9 WSP data were scored against a
human interpreter looking at TDWR data, the same
procedures were used to generate the TDWR truth
tables.

An automatic scoring procedure, described in de-
wail by D. Klingle-Wilson et al. {12], compares com-
puted gust front detections with human-generated
truth (see Figure 10). Briefly described, the scoring
algorithm draws lines that connect the sequence of
coordinates encoding the human-estimated limits of
a gust front. The lines are then expanded to a 5-km-
wide region that is called, in this article, a truth box.
Compured gust front detections overlapping with some
portion of the truth box are counted as successful
detections while those not overlapping are counted as
false alarms. A probability of detection (POD) is
computed by dividing the number of successfully
detected fronts by the number of fronts identified by
the’ -iman interpreter. The probability of a false alarm
(PFA) is the number of false alarms divided by the
total number of algorithm-generared detections. (Note:

In chis article, POD and PFA values will be expressed

as percentages.) In addition to the hit-or-miss POD
and PFA scores, scoring is also done in terms of the
percent overlap of computer-generated detections and
truth boxes. The percent length detected (PLD) is the
number of points in an algorithm-generated detec-
tion that fall wichin a truth box divided by the length
of that truth box (in pixels). The percent false length
detected (PFD) is the number of points in an algo-
rithm-generated detection that fall outside any truth
box divided by the total uumber of algorithm-gener-
ated gust front points.

One improvement to this method is the use of a
MAYBE category of truth. Often gust fronts or parts
of gust fronts are only marginally detectable, forming
a gray area in which the human observer is un ccided
or uncertain. If an algorithm detects a weak gust front
associated with an ambiguous signature, the detection
should not count as a false alarm. Similarly, if che
algorithm misses a gust front that is too weak to have
any operational significance, the miss should not af-
fect the POD and PLD scores. Radar image features
that are categorized as MAYBE are omitted from
scoring.

Table 1 compares the performance of MIGFA
against the latest version of AGFA, which uses more
conventional methods of signal processing and com-
puter vision. The test set of ASR-9 WSP data col-
fected in Orlando, Florida, during field testing in
1991 contained nine different moderately strong gust
fronts tracked through 15 hours (372 images). A
human interpreter looking at the same data detected
280 instances of the nine gust fronts. The first two
columns of Table 1 indicate that MIGFA increased

Table 1. AGFA and MIGFA Performance* on ASR-32 WSP Data

Gust Fronts

Probability of
Detection (POD)**

Baseline (AGFA) 56.7 4.6
MIGFA 88.1 0.6

* As scored against human interpretations of ASR-9 WSP data

** Expressed as a percent
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Probability of a
False Alarm (PFA)**

Gust Front Length

Percent Length
Detected (PLD)

Percent False Length
Detected (PFD)

38.9 12.9
86.2 3.4
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Table 2. AGFA and MIGFA Performance® on ASR-9 WSP Data

Gust Fronts

Probability of
Detection (POD)**

Baseline (AGFA) 426 3.2
MIGFA 75.1 0.0

Probability of a
False Alarm (PFA)**

Gust Front Length

Percent Length
Detected (PLD)

Percent False Length
Detected (PFD)

21.0 4.2
58.7 6.4

* As scored against human interpretations of matching TDWR data

** Expressed as a percent

by more than 50% the number of fronts detected by
AGFA, while decreasing the false-alarm rate. Simi-
larly, the PLD scores (column 3) indicate an improve-
ment in detection performance. The increase in PFD
(from 12.9% to 33.4%), however, appears to suggest
that MIGFA is not as good as AGFA at discriminat-
ing the extent of individual fronts.

For a better understanding of why MIGFA was
extending fronts beyond what the human interpreter
believed appropriate, we examined several cases in
which the PFD was high. In most of those cases, we
found the extra points that MIGFA included in the
gust front detections were believable. For example,
Figure 10 shows a gust front truth box that overlays a
MIGFA-generated detection. The human interpreter
was reluctant to include the extreme ends of the front
because the ends were nearly radially aligned and had
weak reflectivity values—chara:+eristics of out-of-trip
weather. However, because the extended thin line
moved consistently with the center of the front and
because the variance of Doppler velocity value: asso-
ciated with the thin line was too low to be out-of-trip
weather, MIGFA probably gave the more likely inter-
pretation of the scene.

To substantiate such anecdotal observations, we
took the gust fronts that MIGFA and AGFA had
detected in ASR-9 WSP data and scored the fronts
against human interpretations of TDWR data that
had been taken at the same time. Althoug™ " rec-ile-
ing scores (Table 2) support the general trend of the
first three columns of Table 1, the PFD for MIGFA
(6.4%) is now roughly the same as that for AGFA
(4.29%). Because gust fronts are more readily observ-

able in TDWR imagery, we assume that the TDWR
truth (i.e., the TDWR data as interpreted by a hu-
man) is more accurate than the ASR-9 WSP truth
(i.e., the ASR-9 WSP data as interpreted by a hu-
man). Thus the difference between the PFDs as scored
against ASR-9 WSP and TDWR truths crudely ap-
proximates the percentage of detected gust front points
missed by the human interpreter. For MIGFA, thi-
difference (33% — 6% = 27%) added to the PLiJ
scored against the ASR-9 WSP truth (86%) is 113%;
i.e., MIGFA’s performance was 13% better than that
of the human interpreter. For AGFA, the comparable
result is 13% — 4% + 39% = 48%.

MIGFA was installed at the ASR-9 WSP site at

. Orlando International Airport in the spring of 1992

and was part of a formal operational test from 8 July
to 20 September. During this time, gust front detec-
tions and predictions were relayed to air traffic con-
trollers for their use in planning air traffic operations.
During the early part of the summer, several minor
problems and algorithm deficiencies were identified,
and several fixes and enhancements were added dur-
ing the middle of July. Careful interpretation, or
“truthing,” of the ASR-9 WSP data by a human was
done from 1 August to 20 September.

As with the off-line testing described earlier, the
on-line performance w~s scored against human inter-
pretations of the same data. Table 3 shows the per-
formance statistics for the test period. In general, the
on-line test results substantiate the off-line re-
sults. Not surprisingly, the POD (75%) and PLD
(81%) were somewhat lower than for the off-line
test results shown in Table 1. Most of this differ-
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Table 3. MIGFA Results* on ASR-9 WSP Data

Gust Fronts

Probability of
Detection (POD)**

MIGFA 154 1.8

Probability of a
False Alarm (PFA)**

Gust Front Length

Percent False Length
Detected (PFD)

Percent Length
Detected (PLD)

80.8 211

* Results are scored against human interpretations of the same ASR-9 WSP data

** Expressed as a percent

Note: The data are for the period 1 August to 20 September 1992 in Orlando, Florida

ence can be explained by two problems.

First, several gust tronts had reflectivity values at or
below the sensitivity limits of the ASR-9. Of course,
those fronts with reflectivity values below the ASR-9
limits were missed by both MIGFA and the human
interpreter. But there were a tew cases of marginal
contrast in which the human could detect a gust front
while MIGFA had not accumulated enough confi-
dence to declare an alarm. Note that, unlike MIGFA,
the human interpreter had the opportunity to exam-
ine the sequence of radar images repeatedly and could
use information from scans late in the sequence to
confirm or deny the existence of the gust front in
carly scans. Not much can be done to overcome the
sensitivity limits of the ASR-9. In most (but not all)
cases, however, gust fronts with marginal reflectivity
fevels were associated with weak wind shears. Because
these weak fronts had a minimal impact on airport
operations, a tailure to detect such fronts was not a
significant liability.

The second problem was that several gust tronts
were missed duc to obscuration. In these cases, storm
regions or out-of-trip weather were extensive enough
to hide or fragment the thin-line signatures so that
some gust fronts were detected late, dropped early, or
sometimes missed altogether.

The PFA (1.8%) represents 19 false detections out
of 1080 total detections generated by MIGFA in
more than 14,000 scans processed. The high PFD
(21.1%) is almost entirely the resule of MIGFA' ex-
tending gust fronts beyond the ends delimited by the
human interpreter. With the use of anticipation based
on prior tracking data, MIGFA was able to extend the
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detected gust tront lengths through areas where the
signatures appeared ambiguous. As was scen with the
oft-line testing described carlier, a case-by-case analy-
sts indicates that most of these extensions were in fact
justified even though they were inappropriately scored
as false lengths. Rescoring the results against TDWR
data should improve the PFD score.

Another way to assess detection performance is to
score only those gust fronts which had an impact on
airport operations. From 20 July to 20 September,
14 convergent wind shears of greater than 15 kn were
recorded on the anemomieter neework at the airport.
Two of the wind shears were the result of short-lived
localized winds beneath storm regions that were di-
rectly over the airport. The cause of a third wind shear
could not be determined for certain, but was prob-
ably due to a microburst that was reported ar the
south end of the airport just as the wind shear was
recorded. In none of these three instances could hu-
man interprewers find evidence of gust fronts in the
ASR-9 data.

Of the 11 remaining wind shears, which were all
verified later as gust fronts by human interpreters,
MIGFA correctly tracked eight at least up to (but not
always over) the airport. In the eight cases, air traftic
controllers were given initial warnings from 18 10 79
min prior to the arrival of the front. Of the three
missed gust fronts, one was occluded by fast-moving
storm regions that were trailing the front. The second
missed gust front had a very weak fragmented thin-
line signature that was missed both by MIGFA and
the human operators at the radar site who were log-
ging weather and system activity. The third missed
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case was a young gust front that had been generated
by a large microburst only 5 km away from the run-
ways. Because of its youth, the gust front had not yet
developed a thin-line signature. Human interpreters
who studied the radar scans after the testing was
completed could find no evidence of this particular
gust front in the ASR-9 WSP darta, but could see a
small zone of convergence without a corresponding
thin-line signature in the data from TDWR. In sum-
mary, although MIGFA correctly detected and tracked
(up to the airport) 8 out ot 11, or 73%, of the gust
fronts that had an impact on airport operations (wind
shear > 15 kn), human operators working at the radar
site were able to log 9 out of 11, or 82%, of the same
gust fronts.

False gust front detections that are reported to be
approaching an airport can also adversely affect air-
port operations. If a false alarm were trusted, inappro-
priate changes in airport operations planning might
be made and the resulting delays could be just as bad
as when a gust front is missed. During the test period,
three incoming events—covering a combined time of
24 min (12 scans)—were scored as false alarms. Only
one event generated a false wind-shear hazard alert
(wind shear > 15 kn). All three were probably the
result of thin lines from stratiform rain. None of these
false alarms should have influenced airport operations
planning because in each case tracking was dropped
when the estimated time of arrival at the airport was
more than 40 min.

Evaluation

Using the same input ASR-9 WSP data, we have
shown by direct comparison that MIGFA provides a
substantial improvement over AGFA in detection per-
formance. We have also provided indirect evidence
suggesting that, given the same input data, MIGFA
may be nearly as good as human interpreters. How-
ever, the absolute reported POD scores for MIGFA
(88% when scored against ASR-9 truth and 75%
when scored against TDWR truth) are potentially
misleading and should be regarded with caution be-
cause the dataset used for comparison testing was
relatively small and from only one season at one site.
Thus the off-line test probably did not contain a good
representative sampling of gust fronts. The test did,

however, provide a reasonable basis for comparing
MIGFA against the older algorithm.

The results for the operational test period should
be more representative of MIGFA performance. In
the on-line testing, the POD and PLD scores re-
mained high (in fact, the scores were only somewhat
lower than those reported for the off-line testing), but
an apparent problem in the relatively high PFD score
(21%) persisted. Again, as was shown in the initial
oft-line testing, many of the false detections were in
tact weak gust tronts or parts of gust fronts that the
human interpreter had overlooked. Although these
results have not been rescored against TDWR truth,
the existences of gust fronts were established for sev-
eral cases by the examination of matching TDWR or
anemometer data.

An analysis of results accumulated during the 1992
operational test period has identified three main classes
of failure modes for the ASR-9 WSP version of
MIGFA. The failures within the first class are a direct
result of the limited sensitivity of rhe ASR-9. Some
gust fronts that were visible in TDWR dara and that
had an impact on the Orlando airport with moderate
wind shear had reflectivity returns below the sensitiv-
ity of the ASR-9. Like MIGFA, experienced human
observers using ASR-9 data did not see such gust
fronts, although with the benefit of hindsight the
observers could sometimes detect above-threshold frag-
ments of what must have been the approaching front.
In general, gust fronts with thin-line signatures that
have reflectivity levels at or below the sensitivity limits
of the ASR-9 usually (but not always) exhibit
weak wind shears, making them operationally less
significant.

The second failure mode was due to a lack of
reliable Doppler estimates of velocity in clear air.
Because of the unreliability of these values, the ASR-9
version of MIGFA had to rely on thin-line signatures
for derecting gust fronts. As discussed earlier, how-
ever, not all thin lines are caused by gust fronts. For
example, elongated low-reflectivity storm echoes as-
sociated with extensive areas of stratiform rain mov-
ing with the ambient wind were a source of falsc
alarms in the operational testing. Because the
reflectivity levels of light-rain echoes overlap with the
range of reflectivity levels exhibited by guse fronts, the
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thin-line feature detectors produced high interest val-
ues. In most of these cases, the thin-line features
associated with the straciform rain were transient and
did not accumulate enough confidence through time
for the system to declare a gust front. Some false
alarms could be dismissed because of the lack of
implicit convergent wind shears, which were com-
puted by comparing the radar-measured winds in
incoming candidate gust fronts with the winds mea-
sured by the airport anemometers surrounding the
radar site. In at least one case, however, a false alarm
could not be rejected with this criterion. The winds at
the airport were variable and not representative of the
winds immediately in front of the feature, which was
15 km away from the airport.

The third failure mode was caused by obscuration.
During the 1992 operational test period, several gust
fronts were either detected late, prematurely lost, or
not detected at all due to obscuration by patches of
high reflectivity that were caused by storms, range-
ambiguous echoes, or ground clutter. Even in places
where the thin-line features were visible, such parches
of high reflectivity had sometimes fragmented the
features into short segments. One missed gust front is
known to have had an impact on the airport with a
wind shear greater than 15 kn.

Experience gained from the operational test period
has led to the implementation of a partial solution to
the obscuration problem. The solution uses anticipa-
tion and the system’s ability to detect obscuring weather
patterns. Given a sequence of images, there often
exists some time interval when a significant part of
the gust front is not obscured and tracking can be
initiated. Once sufficient confidence has accumulated,
the system begins to anticipate where the gust front
ought to be in the next scan. In normal operation, the
thin lines of increased interest in the amnticipation
interest image are used to boost weak signals that
would otherwise be below threshold for detection.
(During the operational testing, obscuration sup-
pressed all interest, eliminating any signals for antici-
pation to confirm.) In the modified system, when
obscuring weather is found to overlap the anticipated
gust front locations, the anticipation interest values
can be increased to a level at which detection is trig-
gered regardless of how weak the other evidence is. In
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other words, when obscuration is detected, the antici-
pation interest image becomes absolute, resulting in
spauially restricted coasting,

Summary

The identifying signatures for gust fronts—thin lines
of increased reflectivity, boundaries of converging
Doppler values, and motion perpendicular to the thin
lines and convergence boundaries—are conceprually
easy to define and exploit as the basis of detection
algorithms. And yet, although several research groups
have worked collectively for nearly 10 years to de-
velop reliable automatic gust front algorichms, none
of the algorithms has demonstrated performance com-
parable to the ideal of human performance.

The problem is that automatic gust front detec-
tion, like other applications in computer vision, is
deceptively much more difficult than the task of sim-
ply finding one or more signatures. Human observers
use a variety of perceptual skills that have been noto-
riously and surprisingly difficult to implement in com-
puter-vision systems. For example, humans have a
talent for dealing with uncertain, ambiguous, and
even contradictory evidence. Humans use specitic
knowledge of the object being sought and the context
of observation as well as the object’s spatial and tem-
poral context. Unlike most other computer-vision
and automatic target recognition (ATR) methodolo-
gies, the Experimental Target Recognition System
(XTRS) and the Machine Intelligent Gust Front Al-
gorithm (MIGFA) do not rely on machine intelli-
gence only at the higher symbolic levels of processing.
XTRS provides a framework for applying knowledge
at the level of raw dara by using specialized techniques
for knowledge-based signal processing and pixel-level
processing of evidence. The fact that MIGFA perfor-
mance is competitive with that of human observers is
at least partially due to this use of low-level machine
intelligence.
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Extracting Target Features
from Angle-Angle and
Range-Doppler Images

Su May Hsu

B For diffuse targets, features such as shape, size, and motion can be

determined from a time series of images from either angle-angle passive

telescopes or range-Doppler radars. The extracted target features can then be

used for automated target recognition and identification.

An algorithm that uses scene-analysis techniques has been developed to
perform the feature extraction. The algorithm first processes the images to
suppress noise, then applies a two-dimensional slope operation for edge
detection to determine the target boundaries. Next, Hough transforms are used
on the target edges to detect straight lines and curves, which are subsequently
refined with line and curve fits. Groups of the fitted lines are then examined to

form cylinders and cones representing typical target components. After these

shapes have been identified, the target configuration, size, location, and attitude

can be estimated. The target motion can then be inferred from a time series of

attitudes that have been extracted from a sequence of images.

OR A TARGET with rough surfaces, electromag-

netic signals are reflected and returned from

scatterers that are distributed over the entire
target surface. The resulting imagery, whether angle-
angle (passive telescopes) or range-Doppler (radar),
will show a diffuse object with surface returns that
became apparent along the sensor line of sight (LOS).
From such images, the target shape, size, and orienta-
tion can be determined from pattern recognition and
identification techniques. And, with a time sequence
of images, the motion of the target can be estimated
from its orientation history.

In the feature-extraction algorithm developed at
Lincoln Laboratory, the images are first processed to
suppress noise and to smooth the image surface. Edge
detection is then performed to determine the target
boundaries, and the detected edge points are inte-
grated into line segments to form target shapes. Next,
target dimensions and orientations are measured from

the line representation of the target, which is assumed
to be axisymmetric.

In this article, examples of target feature extraction
are demonstrated for both angle-angle and range-
Doppler images. For angle-angle images, target orien-
tation is obtained from the projected elliptical shape
of circular components and the projected length of a
symmetric body axis. For range-Doppler images, tar-
get dimensions are first determined from a sequence
of range and Doppler extents that have been extracted
from the images. The target aspect-angle history can
then be derived from that same sequence of range and
Doppler extents (as for angle-angle images) by using
the estimated target dimensions.

Image Scene Analysis

The goal of target feature extraction is to obtain shape
information. From such information, the size, orien-
tation, and position of a target can be estimated.
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FIGURE 1. Feature-extraction process.

Shapes are composed of lines and curves that are
collections of boundary edge points. Such edge points
can be located with edge-detection techniques. The
detected edge points can then be associated with lines
and curves by using predetermined fitting constraints.
For the current application, cylindrical and conical
shapes are considered, and Hough transforms are used
1o detect the presence of lines and curves [1].

Figure 1 illustrates the feature-extraction process.
First, image processing is performed to enhance the
edge-detection process. The image processing includes
the application of median filters to remove isolated

214

noise, the averaging of multiple image frames to en-
hance the image signals, and the spatial smoothing of
the image surtace. Thresholds are then applied to
remove the image background. Next, a lincar Hough
transform is used to detect and collect lines, which are
later examined to form the boundaries of cvlinders
and cones. The position and orientation of the axis
of symmetry of cach detected shape are then deter-
mined. For angle-angle imagery, an elliptical Hough
transform is geaerally used to detect and fir the rar-
get-base curve to allow for the subsequent calculation
of the target aspect angle. For range-Doppler imagery.
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an clliptical Hough transtorm is used to determine
the target dimensions, and, hence, to obtam the tar-
get aspect angle.

The three main steps ot scene analysis tor che
extraction of target features are edge detection, line
idendtication, and curve extraction. These three steps

are described in the tollowing subscctions.

['_'//gv Detection
The boundaries ot objects in an image exist at loca-
tions where the image values change abruptly. These
abruprt changes can be detected by a spatial ditterence
operator [2]. The design of such an operator depends
closely on the quality and complexity ot the image,
and on the desired level of feature extraction. The
current application uses spatial gradient operators [3].
The operator center is placed acan image location,
and the result of the convolution operation on the
image values represents the local gradient ac that im-
age location and in the operator’s direction. The edge
value at the image location / (x, y) can be expressed as

Al bl
(:[/(.\"_y)] \ (r: + (11- s
where (/ and G are the image gradients in the hori-
zontal and vertical directions, respectively. The edge is

in the gradient direction, which can be obtained as

G
-1 20y
1 = tan .

’ x

where 01is measured with respect to the x-axis.

Gradient operators of size 5, as shown in Table 1,
are used. In general, the operator size should be de-
creased tor coarser image resolutions because, as the
resolution becomes coarser, the object boundaries be-
come closer to cach other.

The calcuiated edge values are small tor a smooth
image surtace and large tor a discontinuous surface.
Thus edge points can be detected by applving a thresh-
old to the edge values. The threshold can be varied.
depending on the level of detail desired tor edge
extraction. The examples presented i this article use
a threshold equal to 10% of the dvnamic range of the
+ ()10((/ (1‘ ) .l‘ht.‘

I”H” maN - man’*
choice of the threshold. by wever, can be optimized

edge values, ie. (€
with respect 1o the histogram of the edge values.
Because of the spatial extent of the operator, the edge
values obtained after the application of a threshold
generally are thickly populated near or at target
discontinuities. Thus a procedure for non-maxima
suppression can be applied tor the turther thinning ot
these edges (4]. In the procedure, the edge value ata
point is set to zero if the value is not the local maxi-
mum in the direction perpendicular to the edge direc-
tion. Figure 2 shows an example of the detected edge
points superimposed over a gray-scaled image. The
edge points include the outline of the cones and the
silhouette of the cylinder against the background.

Line ldentification

After the edge points have been detected, they must
be associated with lines and curves. For simple closed
contours, the edge points can be chain coded [5]. and

Table 1. 5 x 5 Gradient Operators

x-Direction

2 2 2 2 -2
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1

2 2 2 2 2

y-Direction

-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
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FIGURE 2. Gray-scaled image with detected edge points.

the shape description can be performed with syntactic
pattern grammars [6]. The current application con-
siders images of complex objects comprising a combi-
nation of shapes, from which broken edges and edges
inside other object boundaries are permitted. Thus a
layered approach for shape formation is required.

Hough transforms can be used to detect the lines
and curves in an image. In Figure 3(a), a line in two-
dimensional (2-D) space is represented by the di-
rected orthogonal distance 4 to the origin and the
angle 0 that 4 forms with the x-axis. Any point (x, )
on the line will satisfy the following equation:

h=xcost + ysin@.

The set of lines passing through a given point (x, 3)
can be plotted in 40 space. The result will be a
sinusoidal curve, as shown in Figure 3(b). Note that
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the 4 curves of two points in x-y space will intersect
periodically in A0 space, and the points of intersec-
tion (spaced a radians apart) will correspond to the
hine defined by the two points in x-y space. Thus, if
the 4 curves of all edge points in an image are plotted
in /-0 space, the points at which the 4 curves intersect
will correspond to prominent lines in the image.

In practice, the -0 space is divided into accumula-
tor cells, and the cell value of a particular cell is
increased by 1 cach time a curve passes the cell’s
location. Because the direction of each edge point is
known from the edge-detection process (discussed
carlier), only the portion of the 4 curve for angles
around thac direction needs to be searched. A thresh-
old is chosen at the half-length (in pixels) of the
shortest line expected to be extracted from the image.
Only those accumulator cells whose cell values are
greater than the threshold are selected for further
investigation. The selected cells represent a set of lines
detected from the image.

For each detected line, a collection of points that
lie on the line is gathered from the edge points. To
represent the location of a line in the overall image,
the mean of the collected points, i.e., the mean (x, )
value, is used. For cases in which several line segments
from different image locations happen to be collinear,
the line segments will be represented by just single
line values of #and 0. In such cases, additional lines—
with the same line values # and 6 but with different
mean (x, y) values—are added to the line set to repre-
sent the different line segments. The line set is exam-
ined further to eliminate those lines which have mean
(x, y) values and 4 and 6 values that are close to ocher
lines. The line set is then used as a set of seeds for
growing connected line segments with a relaxation
process, as shown in Figure 4.

During each iteration of the relaxation process,
each edge point in the image is classified in associa-
tion with one of the detected lines. The edge point is
then added to the point collection of the associated
line. When a point is not close enough to any of the
lines (the allowable orthogonal distance for point clas-
sification should be less than half the distance of the
closest distinctive feature lines in the image) or when
the edge direction does not agree with the line direc-
tion (the allowable angular deviation should be less
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FIGURE 3. Hough transform for straight lines: (a) line defined in x-y coordinates and (b) Hough transform in h-# space. A
line in two-dimensional (2-D) space can be represented by the directed orthogonal distance h to the origin and the angle 8
that h forms with the x-axis, as shown in parta. For any given point, the set of lines passing through that point can be plotted
in h-0 space. The result will be a sinusoidal curve, as shown in part b. Note that the h curves of two points in x-y space wil!
intersect periodically in h-8space. The points of intersection (spaced x radians apart) correspond to the line defined by the

two points in x-y space.

than half the smallest angle formed by intersecting
lines in the image), the point is not classified. At the
end of each iteration, the current classification is com-
pared with the results of the previous iteration. If any
difference exists, the line set is recalculated from the
current point collection and, with the updated line
set, the point classification is reiterated. The relax-
ation process stops when the current classification has
not changed from the previous iteration. After the
relaxation process ceases, the lines are identified from
the edge points, and the position and orientation of
each line are calculated from the point collection with
a least-squares-error fit. This information is then used
for simple shape formation: parallel lines are identi-
fied for cylinders, and intersecting lines are chosen for
cones. Finally, the axis of symmetry is determined for
the position and projected orientation of each chosen

shape.

Curve Extraction

The circular base of a cylinder or cone generally ap-
pears elliptical in angle-angle imagery because the
aspect angle between the object body axis and the

receiver LOS is usually nonzero. From geometry, the
ratio of the minor and major axes of the projected
ellipse is the cosine of the aspect angle. The aspect
angle, together with the projected body-axis orienta-
tion, can be used to determine the body attitude with
respect to the sensor in 3-D space. In extracting the
elliptical base, it is assumed that the straight bound-
aries have already been identified. Thus the ellipse
center will lie on the axis of symmetry of the shape.
For cylinders, the major axis of the base ellipse will be
half the distance between the two parallel edges that
define the shape. For cones, the major axis will be the
distance from one conical edge to the ellipse center.
Thus the ellipse-extraction scheme first determines
the base center along the axis of symmetry of the
shape and then fits an elliptical curve at the base
region to estimate the minor axis.

Figure 5(a) depicts a cone shape with an clliptical
base. The ellipse function with a coordinate rotation
p, is expressed by
(c-x)i =y _,

a’ b*

, (1)
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FIGURE 4. Relaxation process for line identification.

where (x, y,) represents the ellipse center on the axis
of symmetry having orientation g, and .7 and b are
the minor and major axes of the ellipse, respectively.
Equation [ can be rewritten for the minor axis #-

‘(-\' - x())r'

1 - (,V - }'())5
\ b

The above equation indicates that the minor axis of
the ellipse is a function of the location of the ellipse
center (X, y,) along the axis of symmetry, as shown
in Figure 5(b). Thus the Hough transform space
[a. (x5, )] can be used for ellipse detection in which
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values of « are plotted tor all edge points in the base
region. The maximally accumulated cell in Hough
transtorm space will then determine 7 and the loca-
tion of {x,, y)-

In addition, the edge detection of a point on the
cllipse curve should be consistent with the curve aan-
gent derived by ditterentiating Equation 1, as follows:

)

tan 0 = -(i(—\—;—\ﬂ <9 (S

dly = w) by = ),

Thus cach edge point is checked with respect to loca-
tion and edge orientation before being added o the
collection of points for an extracted curve. The mi-
nor-axis value is then refined from the best curve ficof
the collected points. The results of line and curve
identification are shown and discussed in the follow-
ing section.

Feature Extraction for Angle-Angle Images

For angle-angle imagery, targets are projected from
3-D space to a plane perpendicular to the sensor
LOS, as shown in Figure 6. Thus spheres are pro-
jected as circles, and the circular bases of cones and
cylinders become ellipses. In the images, the physical
radii of the circular forms of targets are generally
preserved without transformations: the major and
minor axes of the elliptical projection are respectively
the circular radius itself and the radius with a cosa
tactor, « being the aspect angle (i.c., the angle be-
tween the target body axis and the sensor 1.OS). The
boundary lines of targets are projected into lines in
images, but their dimensions are generally transformed
with a factor of sina. With the use of such projection
relationships between target 3-D space and image
2-D) space, the size, shape, and orientation of a target
can be inferred from its image features.

Two examples of simulated angle-angle images have
been analyzed to demonstrate the extraction of target
features from such imagery. First, a simulated image
of a complex object is used for size and shape estima-
tion. Then a sequence of cone images is employed for
motion extraction.

Size and Shape Fstimation

The model used in the example has a cylindrical main

e ——————————EEee
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FIGURE 5. Elliptical Hough transform: (a) cone shape with elliptical base in x-y coordinates after a coordinate rotation g,
and (b) Hough transform in which a, the minor axis of the ellipse, is plotted on the vertical axis and the location of the ellipse
center (xg, yo) along the axis of symmetry is plotted on the horizontal axis. For a detailed description of the mathematics

involved, see the main text.

body with three cones mounted art the forward end.
Figure 7(a) shows a simulated angle-angle image of
the object at a 50° aspect angle, and Figures 7(b), (),
and (d) show the results of a scene analysis that was
performed with pixel sizes of 2, 8, and 20 cm, respec-
tively. For each of the scene-analysis images, the edge
points have been detected and lines identified. (Note:
The different lines are coded in different colors.)
Ideally, two major parallel lines would be selected for
the cylindrical body, and three pairs of intersecting
lines would be chosen for the cones. Then an ellipti-
cal curve could be fitted for the cylindrical base to
determine the aspect angle. Because the cylindrical
body is large compared to all three of the pixel sizes
used, the two parallel lines representing the shape are
easily discernible in Figures 7(b), (c), and (d). But the
cones, because of their smaller size, appear distorted
in the images, particularly in Figure 7(d). Nonethe-
less, the cones are recognizable at pixel sizes of 2 and
8 cm.

Figure 8 shows the quantitative results. For all pixel
sizes, the estimated cylinder radius (Figure 8[a]) agrees
well with the model. Estimations for the cone radius
(Figure 8[b]) and projected cone angle (Figure 8|c])

are good for pixels smaller than 8 cm, and the aspect

Sensorline & Invisible
of sight (occluded)
(LOS) portion of D

object

cos a

Lsina

o, S

Angle

Angle

FIGURE 6. Geometry of angle-angle imagery of a cone.
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Linear
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(d)
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FIGURE 7. Size and shape extraction for a simulated object consisting of a cylindrical main body

with three cones .
(b) line classificatinn
(d) line classification at a pixel size of 20 cm.

angle obtained from the elliptical-curve fic (Figure
8ld}) is also in agreement with the model for pixels
smaller than 8 cm.

In general, curve fitting requires finer image qual-
ity than line fitting. Lines can usually be detected
within one pixel to the true edge. The pixel size,
which represents the sampling size at the image focal
plane, is determined by the type of focal plane and
the angular resolution, the diffraction or resolution
limit of the imaging system, and the signal-to-noise

220 DIE CNGOLY LABDRATOR . JOHRYAL  vOLUME 0 MUMRER T 0

cunted at the forward end: (a) angle-angle input image after edge detection,
at a pixel size of 2 cm, (c) line classification at a pixel size ot 8 cm, and

ratio for the target at the receiver.

Motion Extraction

Target motion can be used to aid the target-classifica-
tion process, as has been demonstrated in range-Dop-
pler imagery from millimeter-wave (MMW) and other
microwave radars. With a time series of rarget atti-
tudes extracted from such imagery, target motion can
be infterred. The observation generally is more straight-
forward in a time series of high-resolution images.
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FIGURE 8. Feature-extraction performance at various pixel sizes for the simulated model of
Figure 7: (a) calculated base radius of the model, (b) calculated base radius of a cone, (c) calcuiated
half-cone angle of a cone, and (d) calculated aspect angle of the model. (Note: For comparison, the
input values used in the simulation are indicated with straight lines.)

For purposes of demonstration, a free-body spin-
precession motion is considered. Figure 9 shows a
coordinate system with a spinning target and the
body axis of the target precessing around the z-axis.
The parameters Or Bpe and p represent the precession
half-cone angle, the precessing azimuthal angle, and
the angle between the LOS and the z-axis, respec-
tively. Suppose that p and 6, are constant during an
observation. Then the aspect angle « between the
body axis and the LOS will be a function of ¢,,. For p
in the z-x plane,

(2)

If cosa can be estimated for different values of B

cosa = sin psin 8, cos ¢, + cos p cos b, .

then Equation 2 can be used to solve for the coefhi-
cients sinp sinf, and cosp cosf,. The sum and dif-
ference of these coefficients are cos(p — HP) and
cos(p + ()p), respectively, and, from these two quanti-
ties, p and ), can be obtained.

The rarget projected orientation 6, in angle-angle
images is also a function of ¢,;

Sensor line z
of sight [ |

(LOS)/_

S

/ Target body axis

Target

|
<

P e e o s e e - ————

Ld

FIGURE 9. Geometry of atarget that is spinning (about the
target body axis) and precessing (about the z-axis) simul-
taneously. The parameters gy and ¢, represent the preces-
sion halt-cone angle and the precessing azimuthai angle,
respectively, and « and p represent the aspect angle and
mean aspect angle, respectively.
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FIGURE 10. Feature extraction for angle-angle images of a simulated spinning triconic body undergoing precessional
motion: (a) input images, (b) edge extraction, (c) fitted data for cos«, and (d) fitted data for tan ¢,. The rotation rate chosen
was 80°/sec, 8, was 16°, the precession rate for ¢, was 10°/sec, and p was 90°. The images were simulated with a 2-cm pixel
size and a 2-sec frame time (i.e., a 2-sec interval between frames), with 19 frames generated over a complete precessional

cycle.
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FIGURE 11. Geometry of range-Doppler radar imagery of a spinning cone.
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sin b, sin g,

and, = - - - (3)
€os p sin Hp cos <pp = SIn p cos ()p

At broadside viewing (p = 90°), Equation 3 reduces to
tant, = —tand, sing,. Similar to the case of aspect-
angle data, the orientation data can also be fitted with
Equation 3 to determine p and Op-

As an example, a series of simulated angle-angle
images has been generated for a spinning triconic
body undergoing precessional motion (Figure 10(al).
The rotation rate chosen was 80°/sec, 6, was 16°, the
precession rate for ¢, was 10°/sec, and p was 90°.
(Note: The LOS was assumed to be outside the pre-
cession conc.) The images were simulated with a
2-cm pixel size and a 2-sec frame time (i.e., a 2-sec
interval between frames), with 19 frames generated
over a complete precessional cycle. The triconic bound-
aries were identified by computer for each image
frame (Figure 10[b]) so that the aspect angle « and
orientation 6, could be determined. Fitting these angles
to Equations 2 and 3 then allows p and 6, to be
obtained. For the aspect-angle history, Figure 10(c)
shows that the best fit occurs for p = 91.4° and
8, = 15.4°. For the image-plane body-axis orientation
(given p = 90°), Figure 10(d) shows that the best fit

occurs for 6, = 16°.

Feature Extraction for Range-Doppler Images

For range-Doppler radars, targets with angular dy-
namics are imaged along the radar LOS in the two
dimensions of range and Doppler. The projection of
L, the length of a target measured along its body axis,
onto the LOS is Lcosa in the range dimension,
with a being the aspect angle, as shown in Figure 11.
In the case of a rotating target, the rotational angular
velocity Vprojected onto the LOS is measuted in the
Doppler dimension as Vsina [7]. With these rela-
tionships, the dimensions of a target can be derived
from its image range and Doppler extents.
Application of this technique is demonstrated in
this section with an example of simulated range-Dop-
pler images of a diffuse cone. In the example, image
processing and scene analysis are applied, as has been
demonstrated earlier for angle-angle imagery. A target
line model is th n used to guide the formation of a
target line represzntation in the imagery. Target di-

mensions and orientations are then determined from
the range and Doppler extents of a sequence of the
images.

Estimation of Target Dimensions

For the cone-shaped target of Figure 11, the range
and Doppler extents are related to the target aspect
angle « and the rotation rate f by

R -dr =L cosa (4)

and

Vdv =41Df sina. 5)

where R and Vare the range and Doppler extents
(number of image pixels), drand 4 are the range and
Doppler cell sizes, and L and D are the target physical
length and base diameter, respectively. Combining
the two equations to eliminate functions of the aspect
angle gives the following ellipse equation for a rigid
target undergoing steady rotation with constant L, D,

and f:

(ﬂ) R + (L) Ve o=1. (6)
L 4nDf,

The major and minor axes of the above ellipse can
be estimated for a dataset of (R, V') pairs by the least-
squares-error method. The physical length L and the
Doppler velocity car thus be calculated by

I‘h - h) h] 2
RV (R-v~)

L= dr

\JR2V4 _ v RW?
and

R4

j RV Z (szz)*

4aDf, = V do.

RV ~ R RV

For cases in which the rotation frequency £ is
known, the base diameter D can also be determined
from the Doppler velocity. Theoretically, the above
derivation can be performed for any dataset with
more than two pairs of (R, V) measurements, pro-
vided that the data noise or measurement errors are
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FIGURE 12. Simulated range-Doppler image of a cone: (top) before process-
ing and (bottom) after edge points have been detected and lines fitted. The
color bar indicates increasing (from black to white) radar cross section.
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much less than the true data difference corresponding
o different aspect angles. For a large dataset, the
measurements of range and Doppler extents can be
median filtered separately to remove noise (while still
retaining the temporal trend resulting from changing
aspect angles).

With both L and Df, derived from a given dataser,
the target aspect-angle history can be obtained from
either Equation 4 or 5, or from the ratio of the two
equations. It should not matter which equation is
used to obtain the aspect angle because both of the
equations were used to derive Equation 6, which was
used to estimate both L and Df. More precise results,
however, may be obrained by using the equation cor-
responding to better cell resolution.

Motion Extraction for a Simulated Cone

For purposes of demonstration, range-Doppler im-
ages have been simulated for a cone (length of 150 cm
and a base radius of 19.7 ¢cm) having a diffuse target
surface. A total of 280 images was generated over
28 sec with the cone undergoing spin (spin period of
4.5 sec) and precession [8]. Each image was 53 x 53
pixels, with a range cell representing 5 cm and a
Doppler cell representing 2.93 cm/sec. Figure 12 (top)
shows one of the range-Doppler image frames.

Image processing, edge detection, and line fitting
were then performed on the images. For the simple
known target shapes in the current application, the
line fitting was simplified with a piecewise linear fit-
ting of the target boundaries: the edges at the base
were collected and fitted linearly, and the cone was
defined by two lines fitting the cone edges and the
base line. Range and Doppler extents of the target
could then be estimated from the target line model.
Figure 12 (bottom) shows a frame of the image with
the edge points detected and the lines fitted. For such
figures, the bisection line of the cone is the target-
body centerline, the distance from the nose to the
base center in range is the target range extent, and the
Doppler spread between the intersections of the base
line and the cone’s left and right sides is the Doppler
extent.

Figure 13 contains plots of the extracted range and
Doppler extents from the image sequence. Note that,
in spite of the considerable amount of local noise
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FIGURE 13. The extracted (a) range and (b) Doppler ex-
tents from a sequence of simulated images (see Figure
12).

30

present in the imagery, the range and Doppler histo-
ries show functions of cosa and sina, respectively, for
the aspect angle a, which changes because of the
precession of the target. Target dimensions can be
obtained by the elliptical fitting of the range and
Doppler data, as described earlier in the subsection
“Estimation of Target Dimensions.” With such tech-
niques, a value of 153.5 cm was calculated for the
target length, and 17.3 cm for the base radius. Note
that the derived target dimensions agree well with the
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FIGURE 14. Aspect-angle history derived from the Doppler
extents (see Figure 13[b]).

corresponding input model dimensions of 150 ¢m
and 19.7 ¢em. Both image-resolution-related noise and
target-surface-scattering noise could have centributed
to the ditterences in the derived and inpur target
dimensions. The quantitative impacts of such noise
are currently under evaluation.

Figure 14 shows the aspect-angle history that was
derived from the Doppler extents. A running averag-
ing of 4.5 sec was applicd to smooth the aspect-angle
curve, which changes from 38° to 47° with a period
of about 28 sec. With the assumption that the radar
LOS was outside the target precession cone, the target
precession half-cone angle can be calculated as 4.5°,
which is comparable to the input angle of 5°.

Summary

The extraction of target features—shape, size, orien-
tation, and dynamics—from both angle-angle and
range-Doppler images has been demonstrated. The
target shape, size and orientation can be determined
from single-frame angle-angle images, and the target
angular dynamics can be estimated from a time series
of such images. For the case of range-Doppler imag-
ery, multiple frames of images are required to obrain
multiple measurements of range and Doppler extents
to enable the derivation of the target dimensions. A
time series of range-Doppler images can also be used
to estimate the target angular dynamics.
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For simple known wrgets, the feature-extraction
process can be simplitied gready by obtaining the
rarget image description with a piecewise lincar ap-
proximation of the target boundanies. For cases in
which some size/shape parameters such as cone halt-
angle, lengch, and/or base diameter are available, the
target size and aspect angle can be estimated from
data extracted tor cach frame of range-Doppler im-
ages. Convergence of such estimations over multiple
frames of images can then be used to evaluate the
algorithm performance and to verify measurements
for the known target.

The algorithm is undergoing extensive testing with
simulated and field data, and both the precision and
efficiency of the algorithm are expected to improve
over time. Preparation for real-time implementation
of the range-Doppler algorithm is currently in progress.
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