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ABSTRACT .. !L
We have designed a cubic spline wavelet decomposition for the Sobolev space IIt(I) where

I is a bounded interval. Based on a special "point-wise orthogonality" of the wavelet basis

functions, a fast Discrete Wavelet Transform (DWT) is constructed. This D\" F transform

will map discrete samples of a function to its wavelet expansion coefficients in O(N log N)

operations. Using this transform, we propose a collocation method for the initial value

boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform

and apply the collocation method to solve linear and nonlinear PDE's.
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1 Introduction

Wavelet approximations have attracted much attention as a potential efficient numerical

technique for the solutions of partial differential equations (11 - (6]. Because of their advan-

tageous properties of localizations in both space and frequency domains [81 - [101, wavelets

seem to be a great candidate for adaptive schemes for solutions which vary dramatically

both in space and time and develop singularities. However, in order to take advantage of the

nice properties of wavelet approximations, we have to find an efficient way to deal with tie

nonlinearity and general boundary conditions in the PDE's. After all, most of the problems

of fluid dynamics and electromagnetics, which involve solutions with quite different scales,

are governed by nonlinear PDE's with complicated boundary conditions. Therefore, it is our

objective here to address these issues when designing wavelet approximnations and numerical

schemes for nonlinear PDE's.

We will present a new wavelet collocation method designed to solve nonlinear time evo-

lution problems. The key component in this collocation method is a so-called "Discrete

Wavelet Transform" (DWT) which maps a solution between the physical space and the

wavelet coefficient space. The wavelet decomposition is based on a new cubic spline wavelet

for HO'(I) where I is a bounded interval [11]. In order to treat the boundary conditions an ex-

tra boundary scaling function $b(x) and a boundary wavelet ib(x) have been used. A special

"pointwise orthogonality" ( see(3.7)) of the wavelet functions j,~k(X) results in O(NlogN)

operations for the DWT transform where N is the total number of unkncwns. Therefore, the

nonlinear term in the PDE can be easily treated in the physical space, and the derivatives of

those nonlinear terms then computed in the wavelet space. As a result, collocation methods

will provide the flexibility of handling nonlinearity (and, also the implementation of various

boundary conditions) which usually are not shared by Galerkin type wavelet methods and

finite element methods.

The rest of this paper is divided into the following five sections. In section 2, we introduce

the cubic scaling functions ¢(x), 0b6z) and their wavelet functions V,(x), v/,b(X). A multires-
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olution analysis (MRA) and its corresponding wavelet decomposition of the Sobolhv space

1/0'(]) are constructed using O(x), Ob(x) and 4',(x),ý /,b(x). Then, we show how to construct

a wavelet approximation for function in Sobolev space 112(1) which the solutions 'if PDE's

will belong to. In Section 3, we discuss the fast discrete wavelet transform (DWT) between

functions and their wavelet coefficients. In Section 4, we discuss the derivative matrix D) asso-

ciated with wavelet interpolations. In Section 5, we present the wavelet collocation methods

for nonlinear time evolution PDE's. In Se:tion 6, we give the ("PIT time performance of the

DWT transforms and the numerical results of the wavelet collocation methods fur linear and

nonlinear PDE's, and a conclusion is given in Section 7.

2 Scaling functions O(X), qb(X) and wavelet functions

Let I denote any finite interval, say I = [0, L] and L is a positive integer (for the sake of

simplicity, we assume that L > 4), and H'2(1) and H'(I) denote the following two Sobolev

spaces with finite L2 norm for up to the second derivatives, i.e.

H2 (1) = {f(x),x E II iJfP)1 12 < oo, i = 0, 1,2} (2.1)

Hg(J) = {f(x) E H2 (1)1 f(0) = f'(0) = f(L) = f'(L) = 0}. (2.2)

It can be easily checked [7] that H2(() is a Hilbert space with the inner product

< f,g >= j f"(x)g"(x)dx, (2.3)

thus,

IIIf lI-= V/< f,f > (2.4)

provides a norm for HIo(I).

In order to generate a multiresolution for Sobolev space H'(I), we consider two scaling

functions, an interior scaling function O(x) and a boundary scaling function 6b(x) (see Figure
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1) 4
O(x) = N4(X) F, ). +~ -)( ) (2.5)

3x2 _ 11 3 3 3 3
06(x) = + 12 1)+ - -(x 2 ) (2.6)

where V,4 (z) is the 4th order B-spline [13] and for any real number n

{xL ifx>0
+ = 0 otherwise.

In a pair they satisfy the following two-scale relationship,

Lemma 1

4 34

6(j7) E 2 13 ()0(2x -A-)

k=O

2

Ob(X) = 3;_,6(2x) + E/hIo(2x - k) (2.7)

:3 ~ 3: 17 13
here ; -1 = = 31= 30,- = 13

We summarize some properties of 0(x) and 6b(x) in the following lemma.

Lemma 2 Let 6(x) and 6b(x) be defined as in (2.5) and (2.6), then we have

(1) supp(p(x))= [0,4]; (2.8)

(2) Supp(6b(X))- [0,3]; (2.9)

(3) O(x), 6h(x) E Ho2() (2.10)

111
(4) 0'(1) = 0-'(3) = 0, €'(2) = 0, d'(1) = (-,6•(2)=- (2.11)

1 2 7 1(5) 0(1) -- 0(3) = 6, ¢() 3 ' 1-2 =6
(5) 0()(b3(2) - b b(1I) = 60 b() = (2.12)

For any j, k E Z, we define

j,k(x)= ¢(2Jx - k), 6b,3(x) = eb( 2 jx). (2.13)

And for each j, let V, be the closure under norm Ilfl!l in (2.4) of the linear span of

{ij,k(x),O < k < 2'L - 4 , 6,(x).b.j(L - x)}, namely

s = .pan{f6,k.(X),0 _< k < 2JL - 4,6,b(x),ob,%(L - x)}. (2.14)
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Theorem I Let V.j Z+ be the linear span of (2.14), then V forms a inidnit ,oluition

analysis (NIRA) for H'(I) equipped with norm (2.1) in the following sense

(i) Vo C V, C V2 C ...

(0i CloU,ý,(UIEz+ Vj) H2 H(I);

(iii) n'lEz+ V', G- ; and

(iv) for each j, {f N,k(x) = 0(2:z' - k), 3bb.(.x) = Ob(2J.r), )b,3 ( L - -))} is an ituconidtit ion al

basis of V-.

Proof. The proof for (iii) and (iv) is straightforward and omitted here. The proof for

(i) follows from (2.7) in Lemma 1. In order to prove (ii), we recall a familiar result on

interpolation cubic spline approximation for smooth functions taken from [14] and rewritten

for the proof of our theorem.

Lemma 3 Let ir be the partition) given by .ri = ih, 0 < I n, h and .;(.r) be the cubic

spline interpolating f(x) E (74[a, b] at all points in 7r,

s(xi) - f(.c), 0 < i < 7,

and satisfying the following boundary conditions:

.,'(a) = f'(a), -s'(b)= f'(b). (2.15)

Then s(x) uniquely exists and

II,() - f(r) I I < '1f(4 h -, r ---- 0, 1,2. 3 (2.16)

where 0 (1 3 = 1.

Proof of (10 of horcn 1 Let h -, a = 0 and b = L. Consider f(.r) 6 ('4'(O. L), Since

(70 (0, L) C (74[0, L] n HO (0, L), by Lem ma 3, there is an unique cubic spline corresponding
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the partition 7r interpolating f(x). From the fact that f(0) = f(L) = f'(O) = f'(L) 0, we

have s(x) in Vj and then

L' -4

s(x) = C-l6b,j(x) + E ck.j,k(x) + CL-306,j(L - x) (2.17)
k=O

such that

s(xi) = f(xi), 0 < i ' 2< L (2.18)

where L' = 2jL, xi = -.

Finally, from (2.16) in Lemma :3 with r = 2 we have

111s - fifl - ihs()- f( 2)!1 _< E2ii/f )i1/2'j.

Therefore, as j oc, Ills - fill 0. This proves that C•(O, L) C closH2(UEz+ V,).

Then, Theorem 1 (ii) follows from the fact that CO(0, L) is dense in H2(0, L).

0

To construct a wavelet decomposition of Sobolev space H•(I) under the inner product

(2.3), we consider the following two wavelet functions O(x), V'b(x) (see Figure 2)

3 121 - - 30(xI1(.9
(x) = - 7€(2x) + 70(2 x - 1) - _(2x - 2) E Vi (2.19)

24 6
2Pb(X) = yj0b(2 x) - -0(2x) E V1. (2.20)1/)b.X -- 31

It can be verified that

00(n) = Ob7(n) = 0, for all I E Z. (2.21)

Equation (2.21) will be important in the construction of the fast DWT transform later. And,

equations (2.19) and (2.20) imply that Vi,(x) and ?kb(x) both belong to V1. As usual, we define

the dilation and translation of these two functions

,1'j,,.( ) = ,;,(2'x - k), j _0, k = 0,. 3, (2.22)



6 1'~2i) ix . 4 2( I 2.23)

Where 1., 2' L. For the sake of simnlicity, we will adlopt tle followilig iHJtathitls

(I (x (2.2-1)

So when k= -1,7n1 - 2, C.,(x) will denote the two boundary wavelet fiuct iolls, )lot the

usual translation and dilation of •"(.r).

Finally, for each j > 0, we define

'Vi = CloH"2 < k,'(x), k n-l..,, -2 > . (2.25)

Theorem 2 The WVj > 0 defined in (2.25) is the orthogonal compliment of V, in V§+l

under the inner produ( t (2.3), i.e.

(1) Vj+1 = Vj + Wj for j E Z+. Here + stands for Vk-IW 3 under the inner product (2.3)

and V•+j = Vj + Wj. Therefore,

(2) WjWj+,,j e z+;

(3) H2(I) = VO jEZ+ WJ.

Proof. (1) We only have to prove Vj + Wj for j = 0, namely, for 0 < 1 < L - 4, 0 < k < L -:3,

< ¢(x - 1), (x- k) > = 0 (2.26)

< (X - l), b(x) > = 0 (2.27)

< b(X), (X-k)> = 0 (2.28)

< Ob(X), Ob(X) > = 0. (2.29)

Integrating by parts twice in (226) and using the fact that ',(x)4 (x) E H(W) , we have

IL
< q(x - l), V/(x - k) > < 0(x - l)i/i"(x - k) (,x

1  (X - )(x -k) dx

_ 0(3)X - 1),'(x - k)Lo + L <ý(
4
)(.r - 1)7,'(.r - k) dxj 

dL

oL €p4)(x - 1)7/'(x - k) dx.
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U sing equation (2.21) and the identity

o(4)(X= 34 (-i3•z -)

4=0

v.-here 6(x) is the Dirac-6 function, so we have

<o (, - 1). .,(x - k) >= 4 ( 0.
3=0

Equations (2.27) - (2.29) can be shown similarly to be true. So (1) follows from (2.19)

and (2.20) and the fact that dim 2J L - 3 and diinlV = "23L and dim V 1+, = 2++1 L - 3

(2J L - :3) + 21L = diin V + diinW,;

(2) follows from (1);

(3) follows directly from Theorem 1 (ii).

As a conseqpiencr of Theorem 2, any function f(.r) E H('(I) can be approximiated as

closel]% as possible by a function f,(.r) E V/3 = Vo -i 10 + Wy... -I, for a sufficiently large

j, and fj(x) has an unique orthogonal decomposition

f,(x) = fo 4- go + g, +" + g (2.30)

where fo E Vo, gi E Wi, 0 < i.
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Approximation for function in /1/(I)

(Consider the following two f tir iOd S

,/I(x) 2xL,+ - 3x; +-•.+ (2.3 1

For any fniiction f((x) C1 /2(1). bv t le Sohlev ru•ledd hiig t• luern we have,.(. & ('l(/

and. therefore, we call detirie thhe followinrig 1olnldarv iliterpolat ioll L'' fix).

I 1 ,1f(x) 7= olI( 2 1.x') + o2?,,(2'x,) + o ,,l(2'( L - .')) +o n ,l(2'j x ) (2.33)

such that

I••f O)= f(O), I,.,/(L) = f(L) (2.:3,1

lh,Jf'(0) = f'(0). Ih,,.f'( L ) - f'(L . (2.3 .7)

It can be easily verified that, it order to have Ib.h.f salisfv coniditions (2.3-1)- (2.35), we

have to take

__f'(O) :1_
o, - :I hf(O). 2 = f(()) (2.36)

f'(L) 30•:3 0 2~ (L) 4 = .(L)

III mally situations we (to rot have the values of ehrivativyes f'(0). .f'(L)- .lowever. th lv

call be ap)proximated byv tini, differences using only tiw values of f(xr). To tprs(erve the

correct, order of accuracy for a cut:)ic sptli ie aplproximation. wC suggestI isi.. r t re following

dp)pcoXi rI dt jOli5s

fP(O) 'k- ( kf(h) + 0(!/I) (12.37)
hk=0

1 7)

f'(L) =-h ; ('k.f(L - kit) + O(WS).
k=0

where h > 0 and p > 3. For p = 3, if we take

II
C' -- - . cI = 3

6'
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2 C3

then) s~ =3 ini (2.37), anid thus. equn' ý,a (2.35) is satis-fied( witlimi anl error of ( h3 C (orre-

spotiditi gly. t he coefficienits o, - k < I for Lj (x£) become

01 (02 - P01)
kt)

o: - Zc J'.L -kh), 014- f( L)
k. o

w~here

2)+i h 2 j1

Now we have (.r)-L, f(lr ) III) an'1 t he decoinpusit lonl (2.30) can be app1 ied for

it. Thierefore. wet call tjliid all alpIrioxilliatloillf (x ) for aliv full1( Ijlon f (x 112 II it' clo,e

I~slll- Iprox'Ided I hat j Is I arle t'iio igli in thle form of

ff0) = Vj J o +- go + Yi + !b .3

where fo(xr) E Vo*. IV,.11 0 < I< J.

3 Discrete Wavelet Transform (DWT)

III thils sectionl. we will nlit rodiice a fast D)iscrete WVavelet Tranisform JAV)T ) which maj's

(lis.crete samplIje values of a functioni to its wavelet Hiterpolanit exl~alisioiis. Such exp~ansionl

with the wavelet (lecomlpositioni wvilii ealle uts to compulte ani ap~proximation of the derivatives

of the funictionl.

Interpolant Operator Itvo in X'o

( onsider auxN fumct ioni f( ,r ) E II,'(I) rind) deno~te tie in~terior kn~ots for I') hY

(- 1 A., A- = I..L.!- 1 (3.1)

anii the valuies of f(,r) oni {xk x7)k}l~b

PK-1. k = 1, L - 1. (3-2)



Hit 1tih6, itcl1ImiIaiit It j*f x .1 ()f 'lttai '{i hcs li r'xf!c'-..'9 t) ftdhm)\9'ý

,I I I I I. It x)Iit rp-I.ý llti

T

[.) Bc

wh Iere'

B

III 1i lilt (-w th ic li2 I _ - I\ c ! , % (

In~terp~olat ion Operak~r I. fin 11"

-I <). k -2

where ui', - 1
1bt11' = 2-1L.

It (-;li be casil'y chieckedt that the Initerpotlat ion p1)1111 ix.r_ 1 I for 1") 111 (3.11) allo ijký

for Hi,.j '> 0 in (35.6) sat sfYa pii t -Woise-l~ ort 1mo2llaIlilyV coiitlit iOl.

Point Orthoýqonality of {xk2'-))I for j> 1. 1 < < ~ii - 2.
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This ort hogonality condIiti., will Ibe crucial it obttaining a fast I)iscrt e \Vavelet Trrais-

form (D\VT).

The interpolation I, f(o) of a funiction f( x) e tlo(1)in 11'.j > 0 can hbe expressed as a

linear comhbiiatioil of 1.'.1.k(.r) k - ii, , - 2, namely

h) -- 2

k=-I

anld

,,.(kP)= -1 < A- < 2.

If we denote M. as the nj -th order matrix which relates (j-l. , )T and

f(=) (f( I/) f (XI, 2) )T then

f(U) = Mj U) (3.9)

where
14

1 1 1
13 14

14 14

14 14
14 1
14 13

14

The solution of the coefficients fj,k, -1 _< k < n• -2 again involves solving tridiagonal system

(3.9) which costs (5nj) operations.

Now let us assume that the values of a function f(x) E H'(I) are given on all the inter-

polation points {jxj)} defined in (3.1) and (3.6), we intend to find the wavelet interpolation

Pijf(x) E Vo C W1o e 141 ... (T-4 W for J > 0, i.e.

L-4

PTjf(x) = I-_,-_6b(x)+ 1± f-l,kkk(X) + f-l,L- 3 b(L -r)

k=O

J n7 -2

+ E[ E
J

- .f_,.r) +5•f,(.r) (3.10)
3=

11



Where
I,-2

f- 1 (.1) =Ivtjf (d.~lu ) E 0 j J"ýkI.'j, k (X d ;. >

and

P'jf (x U') (aj-0). 1 0.-K k < I j 2.1

k.~~~t  k~~j ). --

Let us denote f (Pf0 V)fO), P..t) ) thle values of f (x ) onl all i nterpolat ion points. I.(,.

fL) ý - If.4)}~j j >_ 0,

and f-(l)fO) ) the wavelet coefficients inl the exlpansion (3.10)

1W {Jkk-2' J 0.

'I'le following- algorithinn provides at recu rsivxe way to compuit e all Ole wavelet coefficients

f. ard also I lie waxvelet expansion (3.10) canl he e'xpanded as neceded to Includle hr'i~hel. level

WaVOcet spatces II i,. J + I < < Y ).1%.L adding' old~ iermls from11 the 11ighir w;lvelet lnce.c..

DWT transform

Thiis di rection of transform is, st raigl t forward hv ev(all iallmin thIe e'xpanisioni (3.1(J) at all

the~~~~ ~ clotin oit{jt}j > -1I to oAtain f. 'FThe "PoinI -wise Orthlogonafitv (3.7)

of the initerp~olat ion ploints and thle collipact ness of .~~p.,k z)Cani he ulsed( to redu1ce lieC

in nil )er of evallhat iOl5.

Nub(. of O;.ra flfjlsl

Let XV he the total wndirihrof (oflocat ionl points anld N.\ (1 - I )+T±/Z=( 2.1+11, 1. Ill

lie evahnuat ion of Tjf(A t ),. vahles of' c.(x.) and O(x ) at 'Ivadic poinlts, 0 < A- < 2L..1 > 0

aleC nee(l'ed anid I heY call lbe coriiflit ed onece for all for flit lire use.

12



Recalling (3.10) and the "orthogonality condition" (3.7) of the interpolation points, we

h ave
pjf~x -1) f 1 l(x•-'), I _< k _< L - 1

which needs 7(L - 1) (flops).

For each 0 < j < J, to compute Pjf(x'j)), -1 < k < nj -2, it needs (5j+ 12)*, 3 (flops).

Thus, it takes 7(L - 1) + Ej 0 (5j + 12)nj = 2j+IL(5J + 7) + 5L - 7 < 7NlogN(flops) to

compute the vector f.

Recalling that f = (f(-1), f(O),... f(J))T, we proceed to construction of Pjf(x) in the

following steps.

Step I

Define

fI(x)-= Iv f(-) =I-_ _/Jb(X) + E/ _,,k~k(x) + fi-,L-.3b(L-- x),
k=O

so f-I(x) interpolates f(x) at. the interpolation points x(-1),-1 -< k < L - 1, namely

f-1 = f(x ); (3.12)

Step 2

Define no --2

fo(x) = I, 0 (f(°) - (Ivof)(°)) = O fo•LIV'o(x) (3.13)

where (Iv0f)(° = {Ivof(X. }k=-

As a result of the •"point-wise orthogonality" conditions (3.7) of the interpolation points,

we have Oot(x(- 1)) = 0, -1 < I < no - 2, 1 < k < L - 1. thus

fo(x•k-)) = 0 1 < k < L -1.

13



So we have

f-,(xk-)+ fo(x=-')) f_,(x-')) =Ivof(x(-'))- f(x(-')) I < k < L- I

fI(XU0 ) + fo(xC)) Ivof(x0 O)) + (fCO) - (IvOf)ko)) = f(o) = f(40 )). (3.!4)

Equation (3.14) implies that function f..(x) + fo(x) actually interpolates f(x) on both

interpolation points {x-' 1 } for Vo and the interpolation points {fx(°} for W0.

Step 3

Generally, we define for I <j < J

fj(x) =- (j _,'P f)(j)) (3.15)

= f]i,kj,k(X). (3.16)
k=-]

where (P7j_,f)(j) = Pj_,f(x4j)), -1 < k < nji- 2.

Again, as in step 2 we can verify that function f_1 (x) + fo(x) + .. " + fj(x) interpolates

function f(x) on all interpolation points f x-')} . {xi)}. Especially, for j = J we have

'Pjf(x) = f.I (x)+ fo(x)+.'. + fj(x), which will satisfy the required interpolation condition

(3.11).

Number of Operations.

For j = -1, the number of operations to invert (3.9) using Thomas algorithm to obtain

{f-1)} is 5L(flops). For 0 < j _< J, the cost of computing the coefficients f•J)in f,(x) =

I, (f(j) -(P-, 1f)(J)) = Z-l<k<n,-2fj,kIkjLk(X) consists of three parts: (1) evaluation of

(TPjif)(j) = {fpjlf(X))} -(5j + 7)nj(flops); (2) calculating the difference f(j)- (T-2 f)(i)

- nj(flops); (3) inverting the matrix Mj in (3.9) - 5n 2(flops), totaling (5j + 13)nj(f/op.s).

So the total cost of finding "= 5L + j 0 (5' + 13)nj = TZj= 0(5J •+ 13)2jL < 6N log N where

again N = 2j+IL - 1.

Now let us go back to (3.10) to see the meaning of the wavelet coefficient {.j,.k} in the

finite wavelet decomposition of space H2(I) for function f(x). For this purpose, we first take

14



a look at the wavelet coefficient inI the finite wavelet deconmposition of space L"(I), i.e. inI

the decomtposition 1V = j , l= J It' .. 11 '. The orthogonalitv here is in tlie sense of L'

norm net of H'o(1) norm. For simplicity . we A ill use the notation o(x) and A,'(,x) to denote

the scaling function an(l the wavelet function for this decomposition. while keeping in mind

that they have different definitions from those of 1t'(1) . Then, we can write the wavelet

coefficient fjk in the finite decomposition as,

f j f(-);b(X)da

where {QA.k} is the dual wavelet basis of {li',j} in 1,`17. i.e.{;',k} is such a basis of W, that

J %k.(x)~jidx) dx =61k

where 6•k is the Kronecker symbol.

Using a similar method in [12], we can prove that

7L1

S= • Cg)V,'JJ (3.17)
k=i

where a() satisfies the estimate

kig -l _ (3.18)

with 0 < A < 1 and K a constant.

In order to es imate f fV,, we quote the following theorem from Meyer's book [9].

Theorem A Let g(x) be compactly supported, ni times continuously differentiable and have

n + 1 vanishing moments:

JxPg(x)dx = 0, for 0 <p < n.

Let a, 0 < a < n, be a real number that is not an integer and f(x) E L2. Then f(x) is

uniformly Lipschitz of order a over a finite interval [a, b] if and only if for any k E Z and

DG Z such that 2--'k E (a, b),

IIf(x)g(2jx - k) dxj - O(2-`•+')j) as j -+ 0. (3.19)
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From Theorem A, we can claim that the absolute value of the wavelet cottici,-nt Ifk.

depends upon the local regularity of f(x) in the neighborhood of the abscissa 2--k'. More

precisely, if 2-Jk E (a,b), the decay of lfjkf depends upon the Lipschitz regularity of f(x)

over the interval [a, b], as the resolution 2- increases. This property of the wavelet coeffi-

cients allow us to detect the location of the singularity of the function and, then, provide a

general knowledge of the distribution of wavelet basis functions whose coefficients are larger

in magnitude than a given threshold. The detail can be referred to [11]. In the framework

of L', the wavelet function V'(x) has at least 1 vanishing moment. Hence the property of the

wavelet coefficients mentioned above is always valid.

Now we return to the wavelet coefficients {jjk} in (3.10). It can be easily checked that

7 sin ý -3-
(w - (2 - COSL,)( 4 ) e 2

3 4

Hence 0(0) which implies that zP has no vanishing moment at all (see Figure 3) . Since7'

the wavelet decomposition we considered here is in the space H•(I), therefore, the decay

property for the wavelet coefficients fik ought to be related to the vanishing moments of the

second derivative of O(x) (seee Figure 4), not to those of ik(x). We shall illustrate this more

precisely.

Let {Ik}j be the dual basis of {4`jkj in WI' (recalling that the space we consider here is

H') . It can be proven that for %P'k, (3.17) and (3.18) still hold. Then we have

= j,11(X)('P;k)"(x) dx. (3.20)

Notice that spline wavelets 7p(.r) and 7/,b(x) defý:t-d by (2.19) and (2.20) are continuous

and their second derivatives have 2 vanishing moments. Then applying Theorem A to the

secon(d derivatives of i/,(x) and V',b(s) (namely, by taking g(x) in Theorem A to be (/'(.r) and

1b"'(X) respectively), we can prove the following.

Lemma 4 Let 0 < a < I and .f G tI'(I). If thc lSeCOndl ,h(rivati ve of the ftutitin f is lloI~her

continuous with exponent (r, at .r0 E I, i.e.

If"(.r) - f"(.ro)I < ('I. - x,)", x E (x., - b..1-o + ,S) C I
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for some 6 > 0, then for any k E Z,j E Z+ such that 2-3k E (x0 - ý/2, xo + b/2).

If,,kI - Q(9-@+l),) as j -O C. ( 3.2 1)

Proof. We have , since i•y and •i'b defined by (2.19) and (2.20) are continuous and their

second derivatives have 2 vanishing moments, by Theorem A.

--k ,Oj ý E I 'kil II < f, ! oi > I + I)l < f, tPAl > I

"2-'E(xo-6,xo+6) 2-)I(xo-6,xo+6)

<•-- Z A'k-1 O(2-(%+l)j) + Z lAl-k(C = 0(2-(=+l)J)
2-JIE(xo-6,xo+6) 11-kl>2J A.

where C in the first but last equation is a constant which depends on the second derivative

of f(x).

0

Lemma 4 implies that the wavelet coefficients fJk, J _> 0, still reflect the singularity of the

function to be approximated. In practice, when we solve PDE's using collocation methods,

we often use the values of the functions, not their derivatives. Therefore, in order to use the

wavelet coefficients to adjust the choice of wavelet basis functions, we have to establish a

relation between the magnitude of the wavelet coefficients fik,j _ 0 and f(x). Let us first

state the following result on the inverse of tridiagonal matrix from [15].

Lemma 5 Let A be a n xn tridiagonal matrix with elements a2, a3 ," , a,, on the subdiagonal,

bi, b2,".. , b,, on the diagonal and c2, c.3 ,, c,, on the superdiagonal, where c,, ci € 0. Define

the two sequence {uln }, {vm } as follows:

Uo = 0, U= 1 U71 = - I-(a?..,I U,••2 + b,,_,- u,,-_,) ?n > 2 (3.22)
CM

VL+l = 0, v,1 = 1, V,7 = - (b,,•+ 1 l,, + C,n+2V,,n+l) I K n - 1 (3.23)

where aL and c,,+, are arbitrary nonzero constants. Then A 1 = (aj) is given by

(I __I.o a - (3.24)
a I VO (

1
k
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Corollary. Let AIJ be tile interlpolation matrix in (3.9), then we hart, t hIe illowinig

estimates oil = (ai.j),

,,I < (3.25)

where K = 1.1726 and a = 7 + V9-- 13.928.

We delay the proof of (3.25) to the Appendix.

Theorem 3 Let f(x) E H'(O,L) and M = ?,axjIf(x)I and I,,,J(x) t e its interpolation in

Wj defined in (3.8) and if for t > 0, -1 < k < k2 < ni - 2

If(x '))[ < for k, < k < k2.

then define

1, f(x) = j,kgj,k(x), (3.26)
-1 <_k<n, -2,kC:[k| +I,k2-1]

where I = 1(f) = rnin( 2, -•)" We have

li,,f(x) - I,,f(x)I < C(M)f (3.27)

where C(M) = (a + M), K = 1.1726 and a = 7 + v - 13.928.

Proof. From (3.9), we have
j'U) = M•-If(j)

where 2i) = , " f,, 2 )T, f(j) = (f(x..),. .. , f(xn... 2 ))T, thus

j,,k = E ak,if(xj-)2 ), -1 < k < nj- 2.
t=1

So we have
n-,

"IfjkI • K 1 I ff(j)2)1. (3.28)I],,kl <_K lk - ZIl

For any given c > 0, we take f = rain(ni/2, - log e/ log a). For k E [k, + f, k2 - [], using

(3.28) we have

Ilf,kl <ý K[ E If lif(P)_ )I+ • •& if(xlj_) )1]
fI Ik-lf ak- 1 Z(2)I k-il> k (2I
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Ik-, e a Ik-il>f

< 2Kc4l + + 1. 1 + 1 _

= 2K( + 2MK(-
C 1V

<K+ 21 +2)IfK- -1 a-I

=C'

where C' 2K( + M).

Finally, we have

)I,,f(x) - I,,f(x)l = I jI f3,kV'.,•()I

kE(kl +f,k 2 -f]

< Ij,kjjV j,k(x)j <ý C f _ I pj~k (X) I
kE[k 1+I,k 2 -f] kE[kl+I,k2 -fl

Note that ;n the last slmmation, only three terms will be nonezero for any fixed x, so

we have

I,,f(x) - Iw, f(x)I < 3C'F = C E

where C 'K (a + M). This concludes the proof of the Theorem.
0-11

0

Remark. As a consequence of Theorem 3, the coefficients fjk of the wavelet interpolation
operator I,,, f (x) can be ignored -If E +, xx -] where the function f(x) is less than

some given error tolerance f. This procedure will only result in an error of O(f). For

S= 10-1°, = 9,( = 10-s,f = 7. In the wavelet interpolation expansion (3.10), I,,, is

used to interpolate the difference between a lower level interpolation T'j_•f(x) and f(x),

i.e. T'hjf(x) - f(x). Thus, the situation mentioned here will occur in larger region of the

solution domain as j becomes larger, avoiding adding unnecessary expansion terms ,/.Qk(x).

This fact will be used in the later section to achieve adaptivity for the solution of PDE's.

The idea of decomposing numerical approximations into different scales has been previously
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used successfully ili the shcok wave com plitat los with lli i forin high order St'(( [Il alB 1tho•ds.

where ENO finite difference methods and spectral methods are conihilned to resolve tie

shocks and the high frequencey components in the solution, respectively 117].

We conclude this section with the following result which shows how to use wavelet coef-

ficient to estimate the data interpolated by I,,,.

Theorem 4 Let If(x) and f(.r) as in Theorem 4. And if for ( > 0, -1 < k < A,2 :K 7I -2

fikf <( for k, < k < k2,

then

if(x<j)) I :] for k, + 3 < k < k2 - :3. (3.29)

Proof. The proof follows from the definition of I•,f(x).

0

4 Derivative Matrix E

The operation of differentiation of functions , which are given in terms of the wavelet ex-

pansion of (2.39), can be represented by a finite dimension matrix P. Such matcix has been

investigated in [16] for wavelet approximation based on Daubechie's compactly supported

wavelets for periodic functions. The properties of matrix D, especially of its eigenvalues,

affect very much the efficiency and stability of the numerical methods for the solution of

PDE's to be discussed in the next section.

We consider the derivative matrix which approximates the first differential operator

,C1 = Ui (4.1)

with the boundary coinditioll

n(L' - 0. (4.2)
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Because of the multiresolution struct ure of spaces I,, i.e. V, C t±+ and t 0 W lO +

Vi = i. We can rewrite the wavelet interpolation Ia( x) of (2.39) for function a(r) as a

linear combination of Ibj+lf(x) and basis in V'+j, namely

L'-4

uJ(X) = IbJ+1lt(x) + f-101,j+I(x) + Z akQI.,k(X) + UL'-30,,J+I(L - x) (4.3)
k=O

where L' = 2j+' L and IbJ+11(x) is defined in (2.33).

With the transformation = 2"'+lx, equation (4.3) becomes

L'-4

uj(A) := uA(x) = Ib,oU(ý) + fU-]Ob(f) + 1 ýikOk(ý) + LV-306(L'- •). (4.4)
k=O

Using the notations

U'= (u(1), u(2),.. , (/' - I))T E RtL-I,

u = (11(o),(u')T, u(L'))T E RL'+,

fl (fl_;, Lo<", UL,-3)T E RL'-1,

and equation (3.5), we have

=B-i (' - Ub) (4.5)

where vector ub is defined by

Ub = (Ib,oU(1),0,- ,0, Ibou(L'- 1 ))r E RL'-

and

Ib,oU(1) = C c, ' " ,O)u' = . 1u', E R -

Ib,ou(L'- 1) = (0,..., 0,-c , U, -y2 E RL'1.
6 0,3,-C2 , -c 1 , -co)-~~

Therefore,
oII
0

S= B-'(I - )u' = B-'ru' (4.6)

0

½ ]
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where I is the (L' - 1) x (L' - 1) itheittY matrix.

To obtain approxi mation to the detrivatives of ui( C), wve ,if[eeritiate e(iia ieq u (1. %%) 'it II

respect to ý and evalute at • k,0 < 4k < L'. i.e.

V•-4
It(&) (lb.011)(G.) + ý1 -,() + Oh (0 + E 1- k

= ,('k,) + 11'(&) 0 < kK <I. (1.7)

where uW (,G ) denotes the first. term it the first equation and ut ( C-) tlw heet . ReCall i g l-W

definition of Ib,ou(f) in (2.33) anld coefficients Ok Ii (2.38S) wit 1i h I a d = . + I1. L = 1.',

we have

E'="- c' '/,k) -3it(0) 61,
U1' (0) F'=o c( it(k) 62

u,(1) 0 0
• = ! U= AU (4.g)

0 0
2 '= c' u(L' - k)b

2 =O - k) + 3t(L') 64

with the four L' + 1 dimension vectors

62 (2% ,2c'• ",' 0"' , L+

0 1 ,

3-2 -(0 , c, C 30 , 0 ) 0)

2 12 3,cc,~
,5. = (0 1 1c lI, g c • c ',O .. ,) cR

•(~ ~ ~ ' 1 L+
64 = - 0,.-.--, 0, 2c3, 2c', 2c, 2c'))

On the other hand, using (3.5) we have

0 0 0 0 ... 0 0
1 0
4 2( I ) _ I ) 0-
2 2

11(LV) 1

2 2

0 0 0 ... 0 02 0

=Hf 2
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= ttB-'ru'

- (O. 1tB-'F.O)u It.fl

Finally, combining equations ( 1., ) ald (4.9), we have

u - D'u (4.10)

where the derivative matrix Y' is defined hv

TV = AX + (0, H B-F. 0). 11

Converting to the x-derivatives, we have

SD-u~ j(,rX) .2D+ ij (0)

U, j (4.12)

D. u.1 (x 1,,) D u (

where r, = - 0 < i < L.

Let D be the upper left L' x L' snbmatrix of 'D, 7YjPD will be the wavelet derivative

matrix to differential operator (4.1) with boundary condition (4.2), namely, E will maps the

function values u( x0 ), u( .r ),.. , 1(.rL:_ ) to its derivatives u'( Xo), {(a' ), . u'(1' ,-u),

j /'( XI) 11(10)I u'(l )J+ID u(il) (4.13:

In Figure 15, we plot the eigenvalues of P for L = 8, J = 0, 1,2,3 which corresponds to

N = 8, 16, 32, 64. The eigenvalues come in conjugate pairs with two pure real eigenvalues.

The real part of all the eigenvalues are negative and except one eigenvalues, all the rest are

close thi imaginary axis.

5 Adaptive Wavelet Collocation Methods for PDE's

In this section we consider a collocation method based on the DW I transform given in

Section 3 for time dependent PDE's. Let u = u(x, t) be the solution of the following initial
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lit + j1 .(u) u,-.-+-y( 1). x. C [0,.L]. t ->1

t( . ) g , '( f )( 5 1

11 (x.,0) f (x)

w~here onily )i reclilet b omi i (ary co11(1 t ion are, Considered. however. thle ini iehod s preseiite I

hecre (-all alsoJ he modflhiedC to trea~dt \oii Nelimiriai typet or IRolili tvjte )olludar \ (olitlit 1011i1..

\e list- the Idea of liietliot of hueis where only tlle Spat ial eiv I" i discrlis zedi/t by li"

wwaxtlet decomi positloll. Thie iiiime1rical sýohlt oio uj(x. t) will be relccit edt('i hyl all IIIII(jpit

It (.1',t) Ih~ju(X, t) + it- I,-.Il(t )Q)(X) + >1-1 U,k(t)0k(X1) + UI-l,L-3(I06t(L - .6)

+ E[ 1 &j~k(t)u',,k(.r)],
j=0 k-=-I

J=

where Ij,,jua( .r, t) given In (2.3:3) consists tie nonhioniogenimitv of u (x, t ) on both boundaries,

and~ the coefficients %i,k(t ) are all funictions of t. Using the [)WT transform, we (-ali also

ident ify thle numerical solution uj (x. ) by its point wtalies on all collocat ion ( prex-ioisly

namledl Initerpola~tion ) points, I.e. { r( } in (3.1I) and (3.6), we put all thiese %-alis llt~ iiV'cctor

u =u(t), i.e.

11 - u(t) (u 1), ut. . ,uP)j

where u(1)t {n(.ik t)}0 . I <A L - Iforj I1:I < k < 11 -2. forj Ž0.

10 solve for thle uinknown solutit on vector t4 I). we collocate thle [PlF (".1 oil all colloca-

ionl p(Jiuits. thenl we hiaxe the following" SeinII-discret ized waý;iv('le collocal oil nillhot1 .

Serni-Discretized Wavelet Collocation Metbods{ + J -f . -y") __r ii•.

u,( U /) 05 3
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Equation (5.3) involves total (2 J+l - I)L + 2 unknowns in u two of which will be de-

termined by the boundary conditions and the rest are the solutions of the ODE system

subject to their initial conditions. In order to implement the time marching scheme for the

ODE's system (for example Runge-Kutta type time integrator), we have to compute the

derivative term in (5.3) f)) an1 ux ) in an efficient way. Let us only discuss

the first derivative which involves the computation of the nonlinear function f(uj(x, t)). For

this purpose we first find a similar wavelet decomposition as (5.2) for f(uj). For a general

nonlinear function f(u), this can be done quite straightforward using the DWT transform

in Section 3.

Computation of f 1 ((x~j)) = fx(uj(X.j))

Step 1 Given u = (u(-'),u(0 ),... ,u u))L compute f) {f(u•J)}, j 0) -1 and define

f = (f(- ),f(0),. . .,f(J))T;

Step 2 Compute the wavelet interpolation expansion using DWT transform for f,

L-4

fJ(x,t) = IbJf + f1,-,1(t)ib(X) + 1 j-$,(t)(ýk(X) + f-.L- 3 (t)Ob(L - x)
k=O

j nj -2

+ E[ S fj,k(t)iPj,k(x)]; (5.4)
j=O k=-I

Step :3 Differentiate (5.4) and evaluate at all collocation points {k)},j > -1

L-4

f-(Uj)1X=X0, (IbJf)'(xk ) + f-I,-I (t)O'(X4)) + Y , fl,k(t)O )) - .f-,L-(t)b L i)

J ?L,-2

i=O l=-I

Cost of Computing thc Denrvatircs.

For each single collocation point, it takes 7 + 5(.J + 1) = 5. + 12(flops) to compute

fj(.r(a)). Therefore, the total cost of computing all derivatives is (5,I + 12).N < 5N log N.
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Again, ','(x) and (ý'(x) at the dydic points . 0 < k A 21L can bw precomt)ute, l o1 e and

for all.

Assuming that Euler forwdrd is used to discretize the time derivative in (5.3), we obtain

a fully discretized wavelet collocation method.

Fully discretized Wavelet Collocation Method

uI- - Uj" + At[-f:(tj) + u +x + g(0JOI 1='o -I < <_ J

U '= 4(0) = g(0(t")Ju"(L) = g, (r")(.

where 1 < k < L- 1 forj = -1;-1 < k < nj -2, forj '> 0 and t" = nAt is the time

station and At is the time step.

Adaptive Choice of Collocation Points

In equations (5.2) and (5.4), uj(x) and f(uj(x)) are expressed using the full set of

collocation points {x•)}. As discussed in the remark after Theorem 3 of Section 3, most

of the wavelet expansion coefficients f1jk for large j can be ignored within a given tolerance

e. So we can dynamically adjust the number and locations of the collocation points used in

the wavelet expansions, thus reducing significantly the cost of the scheme while providing

enough resolution in the regions where solution varies much. We can achieve this adaptivity

in the following two ways.

Deleting Collocation Points

Let ( > 0 be a prescribed tolerance and j > 0, f= t(c) •in(22, - log e/ log a).

Step 1. First we locate the range for the index k,

(k', l), (k,, l ),m = in(j, ) (5.6)

such that

Jfj,kI < c, V < k < 1', 1,- . (5.7)
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Step 2. Following Theorem :3 and 4, we can ignore .k in u3 (x) ii, (5.2) for k1 _ k <

li, ki = ,k' + f + 3, li = 1-ll f - :-, namely we redefine u1(x) as

,u3(x) : _ ,,0,•
-1 <k<n, -2,kýk,

where k3j = U0<i<,, [ki, li].

Step 3. The new collocation points and unknowns will be

{*.)},uj (X ), k = 1,.. L- 1 if ji = f1;k E 1, , - - 2) \,K

Increasing Level of Wavelet Space.

Let E > 0 again be some prescribed tolerance, and if

"maxuJkI > 'E (5.8)

where subscript n indicating the solution at time t = tVL, then we can increase the number

of wavelet spaces Wj in the expansion for the numerical solution uJ(x) in (5.2), say, up to

wjJ, > J.

Step 1 At t = t' if condition (5.8) is satisfied, let J' > J and define a new solution vector

f , : = (u (- I), u ( °) ,... , u ( a), u (J+ l) ,... , u (J ') )T

where for J + I • j < J', u() - ju(j)-2

Step 2 Use 16l", on the right hand side of scheme (5.5) to advance the solution to time

step t'+' and obtain solution uW'. Then, u'J'1 (x) = Pjuj, E Vo E Wo (D . Wj, will be

the new numerical solution which yields better approximation to the exact solution of (5.1).

6 Numerical Results

CPU Performance of DWT transform

The theoretical estimates of operations for performing the DWT transform in both di-

rection and the computation of derivatives at all collocation points are O(N log N) where N

is the total number of terms in the wavelet expansion (3.10).
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We take the function in (6.1) and define its wavelet interpolation expansion (3.10) for

L = 10, J = 2,3, , 9. the total number of terms (or collocation points) N = 2+ L - I

are between 79 and 10240. Ill Figure 5 we plot the ('PU time for the performance of D\'T

back and forth ill both directions ('o' in the Figure) and the computations of derivatives on

all collocation points ('+' in the Figure). Also drawn in the Figure is a straight line which

indicates a almost linear growth of the CPU timing up to 10k points.

Adaptive Approximation of Wavelct Interpolation Expansion

We consider function-

h1 (x + 1,0.3) if - 1 < x < -0.7
0 if-0.7<x_<-0.5-6

SW h (x + 0.5, 6) if - 0.5 - K < x < -0.5 + 6  (6.1)
0 if -0.5+6< x<0
sin(57rx)hi(x - 0.25,0, 25) if 0 < x < 0.5
h2 1,-0.5 if 0.5 < x < 1

where 6 = 0.01 and hi (x, a) is an exponential hat function and h 2(x) is a step-like function

and they are defined as

Sexp(-- if IxI < a
hi(x) = 0 a-X otherwise (6.2)

and
0 if x <0

h2(x) =V 2 fort0(1-t)sdt if0_<x_< 1 (6.3)
I otherwise

First we construct the full wavelet interpolation expansion (3.10) Pjf(x) for J = 6, L =

40, the total number of wavelet functions (or the collocation points N ) N + 4 = ( 2 J+' L -

1) + 4 = 2 +lL + 3 = 512:3 (including four boundary functions ill Ib,Jf(X)). Ill Figure 6, on

the top we plot the f(x) (solid line) and Pjf(x) at non-interpolation points, at the bottom

we have the absolute error in logarithm scale. In Figure 7, we plot the components fo E Vo

and gj(x) E Wj, 0 5 J < 6 in 'Pjf(x) = Ib,Jf(x) + fo + go + ""- + gJ. We call see that only

higher frequency part is retained in higher wavelet spaces l1", (notice that the scales varies

in different pictures).
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Then, we use the procedure at the end of Section 5 to filter out those coefficients, thus

deleting the corresponding collocation points, f3 ,k which are less than t inI magnitude. In

Figure 8, we take ( = 10-' and the number of wavelet functions fj,. reduced to 289 with the

accuracy of the approximation (bottom curves) within order of . In Figure 9, we plot the

solution at the remaining interpolation points and the expected clustering of the interpolation

points is seen at locations where the function changes more dramatically. In Figure 10, we

plot the magnitude of tile wavelet coefficients fJ,kj > -1 one level above another. High

density of the wavelet coefficients reflects the existence of high gradients of the approximated

function. In Figure 11, we take ( = 10' and the number of wavelet functions fj,k reduced

to 206 with the accuracy of the approximation (bottom curves) within order of •.

Linear Hyperbolic PDEs

We consider the IVB problem of linear hyperbolic partial differential equation

luit+±u=-0, 0 <x<l{ i(0,t) 0 (6.4)

where 6 = 0.05 and h.2(x) is defined in (6.3).

We apply the collocation method with adaptive choice of the collocation points L =

20,]J = 4. Second order Runge-Kutta method is usd for the time derivative. With every

10 iterations we chauge the number andi locations of the collocation points according to the

criteria, proposed at the end of Section 5. The cut-off tolerance ( = 10-. The number of

collocation points involved fluctuates ar ,uiwd 200 in contrast to the full set collocation count

which is 640 ill this case. II Figure 12. we plot the numerical solution ('+') against the exact

solution ("o') at timeI = 0. 1. 1Ii Figure 1:1, we plot the errors inI loga rithmi scale (notice tlhe

v-scale starts at -2 which correspondJs to an error of 10-2). Again, we see the automatically

clulst ering of the collocation points.

In viscid Burq r Equatlion
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Finally, we consider the IVB problem of nonlinear hyperbolic partial differential equation

2-1<x<2

u(O,t) = given (6.5)
u(XO) = fX)

where
PX 7.s I n(7rx) if < 1 _r < I

f(0) { 0 r otherwise

In this case, we take L = 10, J = 6. Second order Runge-Kutta method is used for

the time derivative. With every 10 iterations we change the number and locations of the

collocation points according to the criteria proposed at the end of Section 5. The number

of collocation points involved fluctuates around 100 in contrast to the full set collocation

count which is 1280 in this case. The cut-off tolerance c = 10'. In Figure 14, we plot the

numerical solutions at time t = 0.05, 1 1. The numerical scheme automatically puts more

collocation points near the high gradient (x=0) and the derivative discontinuity (x= I).

7 Conclusion

In this paper, we have constructed a fast Discrete Wavelet Transform (DWT) which enables

us to study collocation methods for nonlinear PDE's. The adaptivity of wavelet approxima-

tion is conveniently implemented through the examination of the wavelet coefficients. The

preliminary tests on the solution of PDE's indicates such an approach will be important

in large scale computation where the solution develops extremely high gradients in isolated

regions, and uniform mesh is not practical. Such investigations are actually being done for

reacting flows, the results will be reported in a separate paper.
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Appendix

Proof of (3.25). The proof is a straightforward application of Lemma 5. For MA in

(3.9), we have (a 2, a3 , .. -,a,,) = ( -L -1- ,4 •L ), (bi,b 2,...,b,,) l= (, ,..,1)and
(c.2 ,c 3 ,'., *C,) =(. -- I) where it = n = 2jL. Therefore, the sequence

14' 14' • 14 13

{u,,. } in (:3.22) satisfies the following relations,

2534
u0 = 0, u, = 1, u2 = 14, U3- 134 (A.])

1:3'(AI

and for 4 < m _<

u,= -u,,_.2 + 14u,,-I) (A.2)

where e 14' if in = n, 6,,, = I otherwise.

Recursive relation (A.2) is a finite difference of order 2 whose general solution is of the

following form

Un = i,,,(cla'- + c 2 ''- 3 ) (A.3)

where a = 7 + V/9/2, /3 = 7 - V/T-92/2 are the two distinct roots of the quadratic equation

x2- 14x+I =0,

and constant c, and c2 are chosen so equation (A.3) is valid for m = 2,3.

Therefore,

UO = O,u1 = 1

U,, = e,, 1(P1  '-3 + #U2 /?"-3), 2 < m < n (A.4)

we - 14/3) >0 ( - >

Similarly, we can show that

',,+1 = 0, v,7 = 1, (A.5)

v,,, = c,-,+I (,UI+# 0 2,n + 112-20-2-71), for I _< in < n- 1 (A.6)
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a "cd

- 6 = - -( ,n•-
4  + 6 2 .37 4).

CL 1

where 6i - (13a-41); I > 0, 6.2 = (I314-I)4 2 < 0.

Finally, following (:3.24) in Lemma 5, we have the following estimates on the inverse of

Mi.

Denote e3 , 1 < j < n as

I ifj=1
13 if 2

14if=1 jif3<j<n-1
14  ifj n.T3

Case 1: i_<j and 1 <J <_n-1,i= 1

(Oj = -ejcf , (p 1an-2-i + 1/3,L-2-4) (A.7)Oi, = -e~n~+1(blOn-4 + b2 on-4)

So we have

14 a'--'p. +/ An-2-'

a, 1  13 an-"(3( - 62 z'- 4 )

14a(jzi + P 2/z) 1S--

- 13 (61 - 62) a.-

alu-il

where z = I < 1 and K, 1.1666.

Case 2: i <j and 1 <J _<n-1,2<i<n

- - (liai- 3 + #U'j3i-1)(,tlan-l-j + P2 ["-2)- (A.8)ai~ = -ecn-~l~ " (61 ,n_4 +• 62 On_4)

Case 3: i <j and j=n, i = I
1

03 = --ei (A.9)
( 61Ct -4 + 6.2,3n -)

Case 4: i <j and j=n. 2 < i <n

- (,,cW- 3 + P 2 / i-3)
li,j = -eici (61 o,•4 + 5•3,•4) (A. 10)
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Case5: i >j and j = 1,1 < i <u- I

•,.j = -e)C-i,_+I (61a"-4 + 62 13f&,-4) (A. 11)

Case 6: i >j andj = 1,i=n

S= -ej (b1 &,_4 + 42l,_4) (A. 12)

Case 7: i >j and 2 <j < n - < I <iKn- 1

ni,j = -ejL_+l (pa3,+_4 + P2/I))(A. 13)

Case 8: i >j and 2<1 K <n- l,i=n

(j0'j- 3 +J2/P-3) (A./14)
a,, = - ( 4a,_4 + (._44).

For Cases 2 - 8, we can similarly obtain

aij _< :5-ýýil' 2 < i < 8

where K2 - 1.1726, K3 -" 1.1607, K4 - 1.1666, Ks : 1.1666, K6  1.1607, K7  1.1722 and

K 8 - 1.1666.

Finally, if we choose K = 1.1726, then

KIa,11 - K- 1 < i,j < n. (A.15)

This concludes the proof.

0
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Figure 1.Interior scaling functions O(x) (top) and boundary scaling function Ob(x).
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Figure 2.Interior wavelet functions O(z) (top) and boundary wavelet function ?kb(X).
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Figure 3. Fourier Transformations of Ob(x)
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Figure 5. CPU timing for Performing DWT (both directions) transformation ('o') and

computation of derivatives ('+'), solid line - Linear fitting.
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Figure 6. Wavelet approximation of function (6.1) with L = 40, J = 6. Top - Exact

solution (solid line) and approximation ('o'); Bottom - absolute error in logarithm scale.

Total number of jj,, is 5123.
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(f)qo(x) - g4(x). Notice that the y-scales are different.
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Figure 8. Same as Figure 6, but with deletion of wavelet coefficient f,,k whose magnitude
less that e = 10-. Total number of f1 ,k left is 289.
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Figure 9. Close up of top part of Figure 8, numerical solutions ('+') at remaining collo-
cation points against exact solutions ('o').
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Figure 12. Adaptive collocation solution of linear PDE (6.4) at t = 0.1 with L = 20, J 4
and error tolerance c = 10'. Total number of collocation points is around 200.
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Figure 13. Error of numerical solution in Figure 12 in logarithm scale.
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Figure 14. Adaptive collocation solution of non-linear PDE (6.5) at t = 0.05,0.1 with

L = 10, J = 6 and error tolerance e = 10-. Total number of collocation points is around

100.
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Figure 15 Eigenvalues for the first derivative V for L = 8, J = 0, 1,2,3 whose sizes are

2JL = 8,16,32, and 64, respectively.
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