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Stimulated Raman Scattering: The Nonlinear Theory

D.J. Kaup
Clarkson University
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Abstract
We give a simple review of some of the theoretical aspects of Stimulated Raman Scattering

with particular emphasis on those features which would be of experimestal interest.

Ever since Chu and Scott! first demonstrated that the Stimulated Raman Scattering (SRS)
equations were integrable, these equations have proven themselves to be quite interesting from a
theoretical point of view. These equations have been intensely studied?~? theoretically and numeri-
cally. We shall discuss here some of th- more elementary and interesting aspects of these equations,
with particular emphasis on those simple features that would be observed experimentially. We shall
avoid as much as possible, the complexities of the Inverse Scattering Transform (IST) and restrict
our discussions to those points that experimentalists would be interested in.

There are two forms of these equations. The first is the more general case where it is possible
for the ground state of the molecules ~ould become depleted®¢. This case, at the present, cannot
be achieved experimeutally, so we shall not consider or discuss it here. The usual experimential
situation is where only a very small fraction of the available molecules can be excited. This is
the case originally studied by Scott and Chu! and is the only case that we shall consider here.
These reduced equations are what one usually calls the SRS equations. There have been some very
enlightening numerical studies®® of these equations in addition to all the analytical studies. And
there have been very interesting analytical and experimental studies of SRS soliton evolution in the

presence of damping®?. The standard form of the reduced SRS equations are

BXAI = —XAz (la)
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8, A2 = X' A (1b)

8, X +1X = A A} (1¢)

where we have allowed for a phenomenological molecular damping factor, 4. For pulses with a
sufficiently short width, one can neglect this damping factor. We shall need to do this when we
discuss the soliton solutions but for now, we shall retain this term. This damping factor will be used
only in the first part of ou: discussions, after which we shall set it equal to zero. In (1), A;,(A;) is
the envelope of the pump (Stokes) wave and X is the material excitation. x and 7 are the comoving

coordinates

X=z (2a)

T=t—z/u (2b)

where 2z is the spatial coordinate, t is the laboratory time and u is the common group velocity of
the pump and Stokes envelopes.

The nonlinearities in (1) are quadratic nonlinearities and there is no linear dispersion. Thus
these equations are identical in form to the standard 3-wave parametric equations, called the 3-
wave resonant interaction!? (3WRI). However the SRS equations are a degenerate case of these
equations since the group velocities of the pump and the Stokes are usually taken to be equal.
Because of this, the SRS equations do not fit into the standard classification scheme!® of the 3WRI
equation, but rather they fall between two of the 3WRI cases. The classification scheme for the
3WRI cases depends on the ordering of the group velocities of the three waves and whether the
pump wave (the high frequency wave) lies between the other two group velocities or not. If it does
lie between them, then we have the the soltion decay case and if it does not, then we have the
stimulated backscatter case. With the above, it is rather easy to see that the SRS equations are a
degenerate case. Just note that if the group velocity of the Stokes wave were slightly higher than
that of the pump, then the pump would have the middle group velocity and the SRS equations
could then be classified as the soliton decay case. However if we just slightly shifted the group
velocity of the Stokes pulse to be just below that of the pump, then we would have the other case

of stimulated backscatter. Of course, in actuality, any experiment would fit into one or the other of




these case. But also in any experiment, the interaction length would never be long enough for the
extremely small difference in the group velocities to have any effect. Thus in effect what we have
is really a hybrid of the features of both of these two fundamental three-wave interactions. This
demonstrates itself in that we see decay of the pump into daughter waves (the dominate feature
of soliton decay) and also growth of nonlinear oscillations (the dominate feature of the stimulated
backscatter case). On the other hand, some of the standard features of the standard cases will be
absent. For example, the soliton decay case always has a threshhold area in order for decay to
occur. However due to the approximate equality of the group velocities, there is no threshhold area
for decay of the pump in SRS because the envelopes copropagate and never separate. (In soliton
decay, the threshhold area can be interpreted as the width necessary in order for the interaction to
build up before the envelopes separate.)

One of the main features of the SRS equations is the decay of the pump into a Stokes wave.
This starts as a linear Raman instability and can best be seen by considering (1) in the limit of very
slowly varying (in time) envelopes. In this case, we can ignore the time derivative in (1c) since the
damping term dominates. Then we can then solve directly for X, obtaining X = A;A}/y. From
(1a) and (1b) we obtain

1
3)(‘41 + ;(A;A;;)A; =0 (30.)

1
Oyflz — (4141 Az = 0 (3b)

Clearly (3a) is decaying while (3b) is growing. Consequently, the Stokes wave will grown from any
noise at the expense of the pump.

In general, the stable configuration will always be a Stokes wave with no pump wave remaining.
It is interesting to note also that it is only on such a background that one can have a soliton solution.
Of course, solitons do not generally exist in the presence of any damping, so let us now assume

that the time derivative will be so large (short pulse widths) that the damping constant, v, can be

neglected. Then a soliton solution of (1) is S U
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_ 2ne*
X= cosh Z (4¢)

where the arguement of the hyperbolic functions is

Z =2nx — Lr A%(s)ds (5)
27] -0c

In the above, A(7) is a real function of 7 (otherwise arbitrary) and n and ¢ are real constants. This
solution represents a localized disturbance on a Stokes background wherein the Stokes amplitude

passes through zero and changes sign. This solution also has the feature that

Ai Ay + A3hy = A¥(r) (6)

which is nothing more than the conservation of photon number. (From the derivation of (1), one
can determine that the squared magnitude of the scaled amplitudes A,, are indeed photon numbers
fluxes.) For every pump photon that is lost, a Stokes photon is created and vice versa. One can
then interpret A%(7) as the total photon number flux as a function of the retarded time. If we fix
X, then A%(7) is simply the total flux of photons seen at x as a function of t. And as the pump
and Stokes envelopes copropagate through the medium, this profile of A%(7) never changes simply
because for every photon lost in one envelope, another one has appeared in the other.

Another feature of these soliton solutions is that they are in general transient solutions. Given
any pulse of finite duration, eventually any soliton solution will vanish. To see this, let us take an
initial pulse profile where A(7)? has a finite area and also has some knid of a slowly decaying tail
structure. The exact structure is not important, only that it eventually vanishes. Then as we shall
now show, any soliton solution will move toward the back of the pulse, eventually falling into the
tail region of A%(7) and vanishing. To show this, just look at the motion of the center of the soliton,

which is at Z = 0. From (2) and (5), upon setting Z = 0 and differentiating, one obtains

dt—uA2+'rFu (7)

Note that this velocity is always less than u, the group velocity of the electromagnetic waves. Thus
the center of the soliton always moves slower than the wave envelopes which move at the group
velocity, u. Consequently the soliton will always move to the back of the pulse and must eventually
fall into the tail region of the pulse. In the tail region, A(7) becomes smaller, and the soltion

therefore also moves even slower. If A(7) vanishes, then the soliton becomes stationary and by (4),




the envelope amplitudes of the soliton become zero. However, note that even if the field amplitudes
vanish, one still will have the medium excitation {see Eq. (4c)] nonzero. What has happened is that
the energy of the soliton has been deposited in the medium by leaving some of the molecules excited
(X # 0). And the position of these excited molecules will become stationary. As long as A(7) is
nonzero, by (5), we have that the SRS soliton (and the material excitations) will travel forward,
albeit slower than the pump and Stokes. However as one approaches the tail region of A(7) where
A(7) is approaching zero, the soliton slows down [see Eq. (7)], eventually becoming stationary in the
laboratory frame when 7 is such that A(7) = 0. At the same time the electromagnetic components
of the soliton, A; and A,, have vanished.

Of course this brings to mind another way to create SRS solitons. Namely, create an excitation
in the medium where the area of X is at least /2. Now before this excitation can decay, inject
the pump and/or a Stokes pulse. One will then see this soliton emerging on the background of the
Stokes. This is also easily predicted from the analogy between SRS and SIT, presented by Dr. H.
Steudel!! in these same proceedings.

Let us now consider some more of the consequences of (1). As we have already remarked, the

total photon number

AP = A4, + 434, (8)

is conserved, not only for the soliton, but also for the general solution. ;From (1a), (1b) and (8), it

follows that

8,A=0- A= A(r) (9)

and A will be only a function of 7. Then interpretating A? as the total photon number gives us the
conservation of photon number as the pulses propagate through a Raman active medium.

Another point is that the evolution rate scales as the total photon number. Thus is we double
the number of photons, the interaction proceeds twice as fast. This foliows directly from (1c). In
general we may scale A; and A; by A(7). In Egs. (1a) and (1b), since 8, A = 0, these factors of

A(T) just factor out, leaving the equations form invariant. However in (1c) they give (for v = 0)

8. X = A%(7)[(A1/A)(A2/A)’] (10)

Now define a new (nonlinear) time, T by




T = /_ A%(1)dr (11)

then (10) becomes

BrX = (A1/A)(A2/A)* (12)

which is now independent of the total photon number. So the only effect of A(7) is to scale the
evolution rate in (10). It has no effect on (1a) or (1b). And if we use the nonlinear time T to
"clock” the evolution as in (12), then all effects except two become independent of A(7). (Let’s
also note that back in Eq. (5), the last term in Z is exactly this nonlinear time, T.) Now these two
effects that are dependent on A(7) are i) the "clock” rate as discussed above and ii) how "long” the

interaction will continue. To see this latter, first note that there is an upper limit to T given by

T, = / ~ A%(s)ds (13)

Now let us only consider the case where the pulse profiles are finite in extent and contain a finite
number of photons. Consider the soliton solution, (4), when this T is finite. Then there will be
a finite value of x(= 2), beyond which the soliton will not be found. This value is dependent on
the total number of photons. If we double the number of photons, then T, is doubled and the
soliton will double the distance that it will propagate before stopping. The value of T.. (along
with the amplitude 7) determines the "clock” limit of the interaction. As soon as the nonlinear
time T reaches this limit of T\, the interaction simply ceases even though the laboratory time is

continuing. This is true of the general solution as well. Let us represent the pulse components by

A; = A(1)e™® cos(%ﬂ) (14a)
Ay = A(1)e*e™ sin(%ﬁ) (14b)
Then (1) becomes

ta 1 sa —i6 _: 1
O le cos(iﬁ)] = —Xe*e sm(-2-ﬂ) (15a)

i(a—0) . 1 — . _ia 1
dle 51n(§ﬂ)] = X'e cos(-z-ﬁ) (15b)
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orX = %e“’ sin 8 (15¢)

Now the equations are clearly independent of A(7) except through the nonlinear time T. The
initial value problem to be solved in SRS is given a, 5 and § at x = 0 and X for 1 = —o0, construct
the solution for A;, A; and X. Integration of (15) will give this solution. Note that this solution
will be the same for any profile A(7) as long as these initial values are the same. The only manner
in which A(7) affects the solution is i) how fast the "ticks” of the nonlinear clock are compared to
"ticks” of the laboratory clock [AT = A?(7)At] and ii) the maximum time that the nonlinear clock
is to run (T < T..).

The decomposition in (14) also illustrates that the dynamical part of SRS is simply the dynamics
of the phases; a, 5 and 6. The overall amplitude A(7) scales out and simply serves as a background
on which the phases evolve. Of course, it is necessary to measure A2 to determine the nonlinear
clock rate and limit. But outside of this, there is no other need of A2. Of these phases, the most
important one appears to be 5 which determines the relative ratio of the Stokes to the pump. In
most experiments, initially 3 is very small and as the pump converts into the Stokes, 3 rotates to
either +7 or —m. The other two phases, a and 6, seem to play a lesser role and tend to be slaved
to the major phase, 5. However it is also more difficult to measure these phases, since one must
measure the actual phase of the envelopes in order to obtain these. The most that we can say at
the moment about these phases is that the presence of gradients in these phases probably will make
it more difficult for SRS solitons to form.

Lastly, let me make a general remark in regard to the inverse scattering solution for the SRS
equations, Eq. (1) with ¥ = 0 and try to explain simply how the IST works for any integrable
system. To do this it may be simplest to take the original forms of Scott and Chu!, which are

vy, + iV = Xv (16a)

Vg, — vy = = X"y, (16b)

v, = -;;C(A;Al — AJ Ay — %A,A;vg (17a)
Vg, = -;—;A;Agvl - ZiZ(A;Al — AJ A, (17b)




*——

where ( is called the spectral parameter. Note that (16) and (17) are an overdetermined set of
equations. One may use (16) to construct the solutions for v; and v,, given appropriate boundary
values. Of course, one may use (17) to do the same thing. Now the key question is can one find a
common solution to both (16) and (17). This now is a question of integrability. The way that it is
answered is to cross-differentiation these two sets of equations, requiring that 8,0, v, — 8,0,v, = 0
for n = 1 and 2. In other words, a common solution to (16) and (17) will exist if and only if this
cross-differentiation does give zero. (A simple example of this is that a force field can be given as
a gradient of a potential if and only if the curl of the force field vanishes.) A simple exercise that
anyone may do is to cross-differentiate (16) and (17). What you will find is that a common solution
will exist, for arbitrary (, if and only if the SRS equations, (1), are true. This has a very simple
and important consequence. If by some means we can construct a common solution for v; and v,
which satisfies both (16) and (17), for arbitrary {, then the potentials in (16) and (17) must and
will satisfy the SRS equations. Let us restate this as follows: We solve the SRS equations by not

solving the SRS equations. Instead, we solve the linear equations (16) and (17). If we find any
solution for v; and v, which satisfies both (16) and (17), then we are guarenteed that A;, A, and
X will satisfy (1) for 4 = 0. If there is any secret or mystery about the IST, it is contained in this
above statement.

A brief outline of how this method of solution is executed is as follows. One first chooses one
of the above pair of equations to be the "eigenvaue problem”. For SRS we choose (17) to be this
eigenvalue problem. Since this problem is linear, we can use superposition and all the other known
techniques for constructing solutions to this linear problem. In particular, we find it very useful to
use scattering data to represent the general solution of (17), for arbitrary A; and A;. Note that
there is a "spectral parameter”, (. This parameter serves as a "label” or "index” of the scattering
data. Thus we express the general solution of (17) in terms of scattering data.

Now the last trick is to determine how the general scattering data will evolve in x by using
(16). Once this is done, then one has a general solution for v; and v, which satisfies both linear
equations (16) and (17). Now one can reconstruct the potentials from the scattering data. We do
that. Since both (16) and (17) are true, it therefore follows that the potentials will satisfy (1) and
one has then constructed the solution of the nonlinear SRS equations (and done so by not solving
the nonlinear equations). Of course, this has been only a simple description of how it is done. There
are many technical details in do such and I shall simply refer you to the quoted literature for the

mathematical details.
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