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ABSTRACT

During the three-year period of this project, we conducted research on the develop-
ment, analysis, and application of serial and parallel adaptive computational strategies for
solving transient and steady partial differential systems. Concentrating on high-order
methods and adaptive approaches that combine mesh refinement and coarsening (h-
refinement), order variation (p-refinement), and, occasionally, mesh motion (r-refinement),
we addressed problems in combustion, materials science, and compressible fluid mechan-
ics. Special spatially-discrete finite element Galerkin methods were considered for the
parallel and adaptive solution of hyperbolic conservation laws. Improved solution-limiting
and error-estimation strategies increased the accuracy and efficiency of these methods
which are being applied to two- and three-dimensional compressible flow problems.
Adaptive techniques for dissipati'v systems are being applied to problems m the manufac-
ture of ceramic composite media.
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1. Research Status and Key Results.

Research on this project involved the development, analysis, and application of adap-
tive finite element methods for the numerical solution of transient and steady partial
differential systems. As a point of reference, consider th vector partial differential system

Mu, + f(x,t,u,Vu) = V'd(x,t,uVu), x E Q, t > 0. (1)

where t denotes time, x denotes spatial position, V is the spatial gradient or divergence
operator, Q) is a bounded one-, two-, or three-dimensional region, M is a positive semi-
definite mass matrix, and the functions f and d describe the effects of reaction, convection,
and diffusion. Specific techniques aim to solve parabolic, elliptic, and hyperbolic prob-
lems that are obtained from (1) by suitable restrictions of M and d.

Our concentration involved high-order methods and adaptive approaches that com-
bined mesh refinement or coarsening (h-refinement), order variation (p-refinement), and,
occasionally, mesh motion (r-refinement). The particular combination of h- and p-
refinement typically produces (hp-refinement) schemes with exponential convergence rates.
Temporal integration relied on either a method of lines (MOL) framework where local
spatial enrichment is combined with global temporal enrichment or a local refinement
method (LRM) which features local spatial and temporal enrichment. Our work on paral-
lel adaptive strategies also concentrated on high-order techniques with the goal of develop-
ing parallel hp-refinement strategies. Given their superior performance on serial comput-
ers, consideration of other sub-optimal strategies would be dubious.

1.1. Method of Lines Techniques.

Adaptive MOL procedures utilize the power of sophisticated ordinary differential
equations software and avoid the need to develop special techniques for time integration.
Using the differential-algebraic systems software DASSL developed by Petzold and the
DASSL implementation within the SPRINT package,1 we studied adaptive finite element
strategies and developed software for parabolic systems that combined h-, p-, and, in one
dimension, r-refinement [8, 11, 12, 16, 191.2 The two-dimensional software uses a finite
quadtree structure to manage both mesh generation and refinement. An initial unstructured
mesh of triangular and/or quadrilateral elements, created from terminal quadrants of the
tree structure, may be further refined or coarsened by adding or deleting quadrants to or
from the tree using solution-based h-refinement indicators. By modifying quadrants
instead of the mesh, we maintain an underlying uniform structure while performing

I M. Berzins and R.M. Furzeland, "A User's Manual for SPRINT - A Versatile Software Package for
Solving Systems of Algebraic, Ordinary and Partial Differential Equations: Part I - Algebraic and Ordinary
Differential Equations," Shell Research Ltd., Thornton Research Centre, Amsterdam, 1985.

2 Citations correspond to the publications and manuscripts listed in Section 3.
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computations on an unstructured mesh.

Estimates of spatial discretization errors are obtained by a p-refinement technique

using piecewise polynomial approximations of one degree higher than those used for the

solution to solve local problems with forcing proportional to elemental or edge residuals.

Errors of odd-degree finite element solutions are approximated using edge residuals while
neglecting elemental residuals. Those of even degree solutions follow the opposite course.
Error estimates computed in this manner converge in energy at the correct rate to the
actual finite element spatial errors under h-refinement [11]. Our results show that this
edge or elemental "superconvergence" is robust in time; hence, temporal variation of spa-

tial errors may be neglected [11, 12]. This enables us to determine error estimates by

solving local elliptic instead of local parabolic problems. The advantage of this approach
is that error estimates may be computed only when needed and not at every time step

selected by the ordinary differential equations software. In typical applications (8, 11, 121,
this reduces the time required to obtain an error estimate by approximately thirty percent.

1.1.1. Case Study: Boundary Resonance.

The problem

ut +XUX =eux, -1 < X 1, t >0, (2a)

u(-1j)=3, u(1,) = 5, t >0, (2b)

u(x,0)=x +4, -1 <x < 1. (2c)

is an example of boundary resonance 3 in the singularly-perturbed limit 0 < e -c 1. As t
increases, the smooth initial data evolves to the steady state

u(V) = xe 2/2M(1-, 2'2-) + 4 (2d)
'2' 2e

where M(ab,c) is Kummer's function. This steady solution has boundary layers of
width 0 ('N") at both endpoints. The problem (2), connected with exit-time probability

determination, is challenging because (i) singular-perturbation theory does not suffice to
determine the interior solution (i.e., the solution on -1 < x < 1) and (ii) the transient solu-
tion evolves to a steady state at an exponentially slow rate (i.e., in 0 (e -/E) time).

Adjerid et al. [12, 19] computed solutions of (2) using adaptive h-, hr-, and hp-
refinement with £ = 0.001 and several error tolerances in H 1. Integration, starting with a

3 C. Holland, Personal communication, 1989.
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ten-element mesh, was continued to t = 20, which was taken as steady state. The solution
generated by adaptive hp-refinement with an error tolerance of 0.03 relative to Iu lit is

shown at t- 0 and 20 in Figure 1.
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Figure 1. Finite element solution of (2) at t = 0 and 20 using adaptive hp-
refinement with a relative tolerance of 0.03 on a 10-element initial mesh (left).
Relative error as a function of work o using adaptive h-, hr-, and hp-refinement
(right).

The discretization error is shown as a function of the total work [121 co for solutions
computed by adaptive h-, hr-, and hp-refinement at the right of Figure 1. Accuracy of all
methods are comparable for the larger errors, but hp-refinement is much more efficient at
higher accuracy. A "warm restarting" procedure (8] enables the backward difference
software within DASSL to resume the temporal integration at a high order whenever h-
refinement has been performed and this has improved the performance of the h- and hp-
refinement schemes and has reduced the need for mesh motion.

Consider a related two-dimensional problem 4

4 C. Holland, Personal communication, 1991.
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ut + f(x,y).Vu = EAu, (x,y)r Q, t > 0, (3a)

with

f(x,v) = [-v -x(l - r2 ). x -Y(l - r2 )lr. (3b)

O= ((x,yv)1-2 <x < 1.5,-3<<y <3), and r2 =x + y 2 . With this resonance problem.

the solution in the interior of the domain is determined by the data at the point(s) on the
boundary that is (are) closest to the origin.

The solution shown in Figure 2 was obtained by integrating the transient parabolic
problem with e = 0.01 to steady state using hp-refinement with a relative error tolerance of
0.02 in H 1. Mesh refinement with relatively low-order methods occurs in boundary layers
near y = ±3 and x = 2. The smooth solution in the interior and near x = 1.5 was
obtained on a coarser mesh principally with p-refinement. Standard numerical techniques
for solving this problem would produce non-physical oscillations unless the mesh was
sufficiently fine within the boundary layers but, with hp-refinement, the solution has been
captured correctly in near optimal fashion.

As a final example of resonance, consider the elliptic problem5

xuX + yuy = EAu, (xy) e 0, (4a)

with Q= 1(x,y) -2 < x < 1,-3 < y < 3 ).6 Problems (2) and (3) were solved using
adaptive techniques with standard finite element-Galerkin methods. In order to reduce the
dependence on proper mesh placement or sophisticated temporal embedding, we have
developed special quadrature rules that produce stable numerical strategies for a variety of
singularly-perturbed problems. This technique will be described in a forthcoming
manuscript; 7 however, for the moment, we note that these rules are approximately Radau
quadrature for this example. The solution of (4) shown in Figure 3 was obtained with
e = 0.001 using adaptive h-refinement on a 20x 20 initial mesh with piecewise-linear
approximations and the special quadrature rules. Boundary layers on the three edges that
are farthest from the origin are sharp, no spurious oscillations are present, and the correct
interior solution is obtained.

These resonance problems are extremely difficult. Convergence to steady state at an
exponentially slow rate implies that discrete versions of steady problems, such as (4), are
extremely ill conditioned. Standard and adaptive techniques must fail when e is
sufficiently small. The adaptive h- and hp-refinement strategies have enabled us to

5 C. Holland, Personal communication, 1989.
7 S. Adjerid, M. Aiffa, and L.E. Flaherty, "Adaptive Numerical Procedures for Singularly-Petmubed Par-

tial Differential Equations," Workshop on Perturbation Methods in Physical Mathematics, Rensselaer Po-
lytechnic Institute, Troy, June 23-26, 1993. Manuscript in preparation.
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/

Figure 2. Mesh (left) and steady solution (right) of (3) with E = 0.01 using
adaptive hp-refinement.

produce solutions at smaller values of E than would otherwise be possible. The special
quadrature rules eliminate all oscillations. However, additional problem-dependent infor-
mation8 would be necessary in order to obtain solutions for very small values of E.

1.1.2. Case Study: Materials Processing.

Working with Rensselaer Materials Scientists William Hillig, John Hudson, and Nag
Patibandla, we have been using our adaptive software to study fabrication problems

8 cf., e.g., M. Ward, "On Exponentially Slow Internal Layer Motion." Workshop on Perturbation
Methods in Physical Mathematics, Rensselaer Polytechnic Institute, Troy, June 23-26, 1993.
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0"

Figure 3. Mesh (left) and solution (right) of (4) with £ = 0.001 using adaptive
h-refinement with piecewise-linear approximations on a 20 x 20 initial mesh and

special quadrature rules.

associated with ceramic composites. The goal is to manufacture high-temperature compo-
sites having alumina (A120 3) fibers and a molybdenum di-silicide (M'o~i,,) matrix. As a
preliminary study, we have been modeling the molybdenum di-silicide fabrication by a
"reactive vapor infiltration" (RVI) process developed by Hillig and Patibandla. Using
this process, molybdenum powder is pressed (to 45% porosity) into a pellet which is
exposed at approximately 12000 C to a SiCl4 and H2 flow. Silicon gas is produced on
the pellet's surface. It infiltrates the pellet and reacts with the molybdenum to form silt-
cide layers of MoS~i 3 and MoSi2. Pores between particles are filled by volume expansion
as the silicides are produced and, as an initial approximation, we assumed that solid-state
diffusion is the dominant means of infiltration. With this assumption, considerations of
mass conservation imply

JTTT d
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N NZYi = I, O[i = 0. (5b)
i=1 i~1

where ', J,, and Pi are, respectively, the mass fraction, flux, and production rate of
speL*_ i, i = 1, 2, -- , N, and p is the mixture density. Assuming Fickian diffusion and
first-order reactions yields the dimensionless system for the silicon-molybdenum reaction

aut - V'DIVu1 = -(3w + 71'w2), aUt - V'D2Vu2 5 M2 "1w2, (6a,b)

au3 - V 3 =M3 (K.a4 4VU 4 5M4
--atM W - KW 2), at D 4Vu 4 = I w1  (6c,d)Ot VD3u3= M _" _

4
i = P. W I =- UlU 4 , W 2 = UlIU3 , (6e.fg)

i=1

The volume fraction ui, diffusivity Di, and molar mass Mi of species i, i = 1, 2. 3, 4,
respectively, correspond to those of Si, MoSi2 , Mo 5Si3, and Mo. The variable K
identifies the ratio of the production rate of MoSi 2 to that of Mo 5Si 3 and P is the dimen-
sionless mixture density.

We used this model with our adaptive software to solve several one- and two-
dimensional problems. Results using adaptive h-refinement shown in Figures 4 and 5,
respectively, exhibit the thickness of the MoSi 2 layer at three times and the concentrations

of Si, MoSi2, Mo5 Si3 , and Mo after 3.5 hours of reaction. In each drawing, high concen-
trations are colored red and low ones are colored blue. The mesh used for the computa-
tion at the indicated time has been superimposed. The bottom and right edges of each
figure are lines of symmetry. The silicide layers progress inward from the top and left
edges to build the MOSi 2 and Mo5Si 3 layers. Reaction fronts are sharp and the mesh is
concentrated in and following these regions. The Mo5Si 3 layer is a narrow zone that pre-
cedes the MoSi 2 layer into the unreacted molybdenum.

The model and its adaptive solution correctly predicted the thickness and growth rate
of the MoSi 2 layer to approximately 5% of measured values. Volume expansion also
agreed with experimental observations. The generality of our software makes it easy to
change models and include more complex and realistic effects. Recently, we were able to
show that the production times of MoSi 2 could be reduced (potentially halved) by starting
with a powder composed of a mixture of Mo, MoSi 2, and/or Mo5 Si3 . Hillig's and
Patibandla's initial experiments are confirming these computational predictions. Since pro-
duction times are approximately one day for realistic layer thicknesses, a factor of two
reduction is very significant.
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1.2. Local Refinement Methods.

1.2.1. Parabolic Systems.

While MOL procedures greatly simplify temporal integration, there ar. many situa-
tions where they would have sub-optimal performance and, for this reason, we have also

been studying LRMs. A posteriori error estimates may be used to schedule different tem-
poral and spatial enrichment strategies in different regions of the spatial domain with the
possibility of providing large efficiency improvements. Given the need to interrupt the
temporal integration for h-refinement more often than with a MOL procedure, one-step
integration methods may be preferable to the backward difference methods that are com-

monly used with MOLs [2, 4]. With this possibility, we have developed a variant of the
singly implicit Runge-Kutta (SIRK) method that offers several advantages when used in
conjunction with hp-refinement methods for parabolic problems [181. SIRKs have high-

stage order, A-stability for orders one through eight, efficiencies close to those of back-
ward difference software, embedded error estimates, and a locality that is suitable for
parallel computation. Temporal error estimates of each SIRK stage may be computed for
the cost of one additional function evaluation [18]. This permits the acceptance of solu-
tions at partial time steps whenever accuracy is not satisfactory at the final time (251. An
adaptive hp-refinement strategy based on SIRKs and hierarchical finite element approxima-
tions is, to our knowledge, the first instance where hp-refinement has been used in both
space and time [251. Several enrichment strategies were developed and the most success-
ful of these are being used to develop a three-dimensional solution package.

1.2.2. Hyperbolic Systems.

While hp-refinement is reasonably well understood for elliptic problems, this is far
from true for time-dependent problems, particularly hyperbolic systems. Extensions of
finite difference methods to higher order involve enlarging their computational stencils,
which would be unsuitable for both parallel and unstructured-mesh computation. Cock-

burn and Shu (cf., e.g., [14, 15, 22, 24]) combine a local basis of Legendre polynomials
with a solution limiting scheme to create a method that has both high order and a compact

stencil. In his Rensselaer dissertation, Biswas 9 used this scheme to develop adaptive h-
refinement methods for one- and two-dimensional problems. Subsequent extensions

include improved projection limiting schemes near discontinuities, spatial a posteriori error
estimation schemes based on p-refinement, adaptive p-refinement, and parallel solution
strategies [15, 22, 241. Spatial error estimates were computed using Radau quadrature
points as described in Section I.1.1.

9 Cf. the list of dissertations in Section 4.
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1.3. Parallel Computation.

The Construction of parallel adaptive techniques is a challenge since parallelism and
adaptivity are at odds. Adaptivity employs complex heuristic decision processes that
introduce serial bottlenecks and, hence, complicate parallelization. This situation is further
exacerbated when unstructured grids are used as part of the computation. Nevertheless, as
noted. parallelization of these most efficient techniques must be explored since paralleliz-
ing sub-optimal strategies will result in lower performance.

1.3.1. Elliptic Systems.

The need for synchronization on shared-memory computers can be reduced by con-
structing a list of elements that have independent basis support that may be assembled and

solved in parallel. The task of separating or "coloring" the elements should be (i) com-
putationally efficient and (ii) employ a small number of colors to maintain granularity.
Algorithms to color arbitrary finite element meshes with a minimum number of colors are
data and manipulation intensive; however, meshes produced by finite quadtree and finite
octree procedures have a regular quadrant or octant structure that may be used to advan-
tage. Thus, we color the quadrants or octants of the tree structure instead of the finite ele-
ments and thereby simplify the coloring process at the expense of creating a minor load
imbalance due to the variation in the number of elements per puadrant or octant.

Benantar et al. [3, 6, 7, 9, 10, 171 described a six-color procedure for coloring quad-
tree structures that was used to solve elliptic problems with a piecewise-linear basis. Con
jugate gradient iteration with element-by-element and symmetric successive over relaxation
(SSOR) preconditionings were used to solve the resulting linear algebraic systems. The
procedures worked well with the SSOR preconditioner providing the best performance;
however, performance degraded when high-order approximations and adaptive p-
refinement were added to the solution process. Since hierarchical bases of degree greater
than unity involve edge- and element-level interactions, an edge coloring procedure should
improve parallel performance.

Benantar, in his Rensselaer dissertation, considered edge coloring procedures for
two-dimensional meshes of triangular elements. Creating a new discrete structure, called a
triangle graph, he showed that mesh edges could be colored using a maximum of three
colors by a procedure that had at most quadratic time complexity [17, 21]. Contrary to
the quadrant-coloring procedure, performance impro'-es with increasing polynomial degree;
thus, this is an effective procedure for parallel p-refinement.

1.3.2. Hyperbolic Systems.

We are using the spatially discontinuous Galerkin-finite element procedure described
in Section 1.2.2 to construct parallel h- and p-refinement techniques on MIMD systems for
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two- and three-dimensional conservation laws. The two-dimensional p-refinement
software uses a tiling strategy developed by Wheat [241 to appraise neighborhood work-
loads and migrate elements to nearby processors as appropriate. Migration is far more
efficient with adaptive computation than global optimization methods. Computational
experiments using a ten-dimensional NCube 2 hypercube at Sandia National Laboratories
indicated a 52 percent increase. in performance with this tiling algorithm relative to no
migration. We expect further performance improvements to occur by predicting future
workload changes using solution and error information.

Extending the spatially discontinuous Galerkin procedure to three dimensions, we
consider parallel adaptive h-refinement on octree-structured grids. An example involving
the supersonic (Mach two) flow over a cone is shown in Figures 6 and 7. In Figure 6, we
show the initial and final meshes used for this computation. Refined meshes were created
by introducing additional octants into the tree structure and generating a new mesh locally.
Steady solutions were obtained by integrating the transient Euler equations to steady state
with local time steps proportional to tree level. Load balancing on a CM-5 Connection
Machine was performed by a traversal of the octree structure using a work metric at each
tree node. Pressure contours and the shock surface, shown in Figure 7, indicate that the
mesh is being refined in the vicinity of the leading bow shock. Higher-order methods and
p-refinement will be added to the method shortly.



FiTure 6. Coarse (top) and fine (bottom) meshes used to comnpute the M[ach
tvwo Eow past - cone having a half angle of 10'.
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Figyure -1. Shock surface and pressure contours- found when coim-puting- the
Mach two Hlow past a cone having a hialf angle of 10'.
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2. Interactions.

Key invited lectures by J. E. Flaherty on material connected with the research sup-
ported by this grant are listed below. (Invited university colloquia are only presented for
the last twelve months.)

1. "Adaptive Methods and Parallel Computation for Partial Differential Equations,"
Special Session on Adaptive Methods at the Eighth Army Conference on Applied
Mathematics and Computing, Cornell University, Ithaca, June 19-22, 1990.

2. "Symbolic and Parallel Adaptive Methods for Partial Differential Equations,"
Workshop on the Integration of Numerical and Symbolic Computing Methods, Sara-
toga Springs, July 8-11, 1990.

3. "Advances in Parallel Processing for Electromagnetic Field Applications." Fourth
Biennial IEEE Conference on Electromagnetic Field Computation, Toronto, October
22-24, 1990.

4. "Adaptive Finite Element Schemes for Parabolic Partial Differential Systems with
H-, P-, and R-Refinement," AICHE Annual Meeting, Chicago, November 12-16,
1990.

5. "Combined Symbolic and Numerical Adaptive Methods for Partial Differential Equa-
tions," Workshop on Problem Solving Environments, National Science Foundation,
Washington, April 11-12, 1991.

6. "Adaptive Methods for PDEs," Conference on Experimental Mathematics: Computa-
tional Issues in Nonlinear Science, Los Alamos National Laboratory, Los Alamos,
May 20-24, 1991.

7. "Adaptive h- and p-Refinement Finite Element Methods for Singularly Perturbed
Parabolic Systems," ICIAM 91, Minisymposium on "Numerical Methods for
Singularly-Perturbed Problems," Washington, July 8-12, 1991.

8. "A Posteriori Error Estimation for Parabolic Systems" and "High-Order Adaptive
Methods for Parabolic Systems," First U. S. National Congress on Computational
Mechanics, Chicago, July 21-24, 1991.

9. "Parallel Adaptive Methods for Partial Differential Equations," Workshop on Paral-
lel Scientific Computation, Rensselaer Polytechnic Institute, Troy October 31,

- November 1, 1991.

10. "Adaptive Method-of-Lines Techniques for Parabolic Systems," First International
Symposium on Method of Lines, Surfaces and Dimensional Reduction in Computa-
tional Mathematics and Mechanics, Athens, November 12-16, 1991.
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11. "'High-Order Adaptive Methods for parabolic and Elliptic Systems," New Jersey
Institute of Technology, Newark, April 20, 1992.

12. "Parallel Adaptive Techniques," Workshop on Adaptive Methods for Partial
Differential Equations, Rensselaer Polytechnic Institute, Troy, May 17-20, 1992.

13. "Parallel High-Order Finite Element Methods for Conservation Laws," IMACS
Seventh Internation Conference on Computer Methods for Partial Differential Equa-
tiorv, " New Brunswick, June 22-24, 1992.

14. "Adaptive Methods for Time-Dependent Partial Differential Equations," SIAM 4Orb
Anniversary Meeting, Los Angeles, July 20-24 1992.

15. "Adaptive Methods for Time-Dependent Partial Differential Equations," ICASE,
NASA Langley Research Center, Hampton, July 23, 1992.

16. "Adaptive Methods for T~me-Dependent partial Differential Equations. Part I: Basic
Strategies and Error Estimation" and "Part 1I: High-Order Methods and Parallel
Computation," Dutch Numerical Analysis Seminar, Woudschoten Conference Center,
Zeist, October 5-7, 1992.

17. "High-Order Adaptive Methods for Time-Dependent Partial Differential Equations,"
Washington University, St. Louis, October 29, 1992.

18. "Coloring Procedures for Finite Element Computation on Shared-Memory Comput-
ers," Symposium on Adaptive, Multilevel, and Hierarchical Computational Stra-
tegies, ASME Winter Annual Meeting, Anaheim, November 8-13, 1992.

19 "Adaptive and Parallel High-Order Methods for Conservation Laws," Mississippi
State University, Mississippi State, January 22, 1993.

20. "Adaptive and Parallel High-Order Methods for Conservation Laws," University of
Texas, Austin, March 13-22, 1993.

21. "Adaptive and Parallel High-Order Methods for Conservation Laws," University of
Kentucky, Lexington, April 21, 1993.

22. "Adaptive hp-Refinement Methods for Parabolic Partial Differential Equations,"
1993 AFOSR Workshop on Computational Mathematics, Washington University, St.
Louis, May 19-21, 1993.

Other interactions follow.

1. J. E. Flaherty and B. K. Szymanski organized a workshop on Parallel Scientific Com-
putation which was held at the Rensselaer Polytechnic Institute, October 31 and
November 1, 1991.
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2. J. E. Flaherty and M. S. Shephard, organized the Workshop on Adaptive Methods for

Partial Differential Equations which was held at the Rensselaer Polytechnic Institute.

Troy, May 17-20, 1992.

3. J. E. Flaherty organized a special session on Adaptive Methods for Time-Dependent
and Nonlinear Partial Differential Systems which was held at the IMACS Seventh
Internation Conference on Computer Methods for Partial Differential Equations,"
New Brunswick, June 22-24, 1992.

4. Lenart Johnson of Thinking Machines Corporation visited J. E. Flaherty at Rensselaer
on September 10, 1992. Flaherty and graduate student Raymond Loy visited John-
son, Zdenek Johann, et al. at Thinking Machines on March 3, 1993. Both visits
involved discussions of parallel adaptive techniques for partial differential equations.

5. L. R. Petzold of the University of Minnesota visited J. E. Flaherty on September 30,
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1. Raymond Schmidt, Adaptive Quadtree Discretization for Fluid Flow Problems, 1991.
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