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I. INTRODUCTION

Nonorthogonal wavelet transforms play an important role in signal processing by offer-
ing much greater flexibility in the choice of waveform than their orthogonal counterparts.
In particular, they allow adjustment of the relative resolution in time and scale. For ex-
ample, decreasing the parameter 8 in the Morlet wavelet () = e'™ e~ # /2 increases
frequency resolution while decreasing time resolution (cf. [1], [2], Appendix A). We are
cor cerned with discrete transforms, however, and increased resolution does little good
unless it is accompanied by a sufficiently fine output grid. Such output requires an undec-
imated transform and the addition of voices (i.e., suboctave sampling), which is generally
inconsistent with orthogonality.? Moreover, many applications require this finer sampling
ever; when the shape of a relatively broadband mother wavelet is adequate.

The standard inversion procedure for discrete nonorthogonal transforms is a finite
expansion in terms of the analyzing wavelet [1], (3], [4]. Formally, it is based on the
theory of frames and can be thought of as a a discretization of the correspondirg con-
tinuous inversion formula. From this point of view, several approximations are involved:
the wavelet coeflicients themselves, the partial sum, and the use of the analyzing wavelets
rather than their duals. While a partial expansion works quite well for many (sufficiently
oscillatory) signals, it fails to achieve good accuracy or requires an excessive number of
scales for others. Unfortunately, the analyses found in the literature focus on frame bounds
rather than the quality of finite discrete implementations, and generally only treat rela-
tively broadband wavelets (i.e., # about 2/3). In short, there is a clear need for a more
alternative algorithms for inversion of the discrete wavelet transform and compares them
in the case of Morlet wavelets. In the process, both practical and theoretical issues for the
inversion of nonorthogonal discrete wavelet transforms are discussed.

Our ultimate goal is to formulate the problem in an entirely discrete context, unifying
the various inverses under a common filter bank stiucture. The continuous case shall serve
as guide and interpreter. The remainder of the introduction is devoted to elaborating
this point of view. Section II formally introduces our notation, and Section III describes
the dual wavelets in a general setting, providing some results particular to undecimated
transforms. Section IV discretizes the continuous case. Section V begins with a general
treatment of the discrete inverse wavelet transform including a discussion of appropriate
filter constraints. Then, three particularly relevant inverses are presented and analyzed.
Section VI provides a numerical comparison of.the three inverses and the frame approxi-
mation.

IThis statement is no longer true if one admits bases geaerated by more than one mother wavelet.
Wavelet packets also present a means of obtaining higher resolution. These methods suffer various draw-
backs, however, which are outside the scope of this paper.



Let 1(¢) be a square integrable function satisfying the admissibility condition
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Cy & dw < o0 (1.1)

where

Bw) & [ e (1.2)

is the Fourier transform of ¢(t). We define the continuous wavelet transform of a signal

s(t) by
W(a, b) = \/_/s(t ( b) dt | (1.3)

where the bar indicates complex conjugate. For orthonormal wavelets, the following ex-

pansion is valid:
;n w(2',2 n)—\/5 ) (_Qi - n)

é Z Wi,n ¢i,n . (14)

own

s(1)

One might hope for a similar expansion for nonorthogonal wavelets. Let us consider
discretizing the continuous case. If 1(t) is real or analytic and satisfies (1.1), then the

qm'n_n] may he recovered hv the standard inversion formula, ['l] [?]2

Al 111 _OQVET e ALl AT 1} olOIl TOTIINIS

s(t) = —Re J/o°° d“/ b W(a, b)\/_ (t"b> . (1.5)

Setting @ = 2* and b = 2'n in (1.5), we obtain (cf. Section IV)

s(t) = 21“2 Re Z W(2',2in )¢(——-n) , (1.6)

which is essentially the same expansion as (1.4). Unfortunately (1.6) is not, in general,
correct. The theory of frames [3]-[4] tells us that

= Re Y Winpin(t) (1.7)

iwn

215 a(w) = 0 for w < 0, then the formula is valid for complex v provided one takes the real part
as indicated. For all practical purposes, this is the case for Morlet wavelets, :(t) = '™ e=P**/2 which
satisfy 8 < 1/2 (cf. [1]-[3), Appendix A). Note the limits of the integral in definition (1.1). Some references
use ) to 0o. We prefer (1.1) because it results in the same formulae for both real and analytic wavelets.
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where the z,’l:,,, are the so-called duals of the (27"t — n). Nevertheless, under propitious 0 3
circumstances the wavelets themselves offer a good approximation to the duals. One way )
to improve this approximation is to add voices; i.e., discretize a at smaller intervals (a = 4, » ,
where 1 < v < 2) [3]. This technique has been highly successful in many applications [5];
however, as hinted above, it is not sufficient to provide a good inverse for narrowband &

wavelets [6].

L

If we are to study the situation, we must be able to define the duals or at least make
their roles more precise. In this introduction, to simplify the presentation, we avoid defining b
the functions themselves. Rather, we broach the subject from the point of view of matrices
and their pseudo-inverses. There is an additional reason for doing this. Namely, these
concepts are particularly appropriate to discrete, finite implementations. Moreover, as
with the wavelets themselves, there is rarely a need to actually compute the dual functions;
we are only interested in the wavelet coefficients and the inverse algorithm. Let w; , be b
the decimated discrete wavelet transform, that is, the discrete analogue of W(2',2in). It
is defined by

sivi = | (f * si) (1.8a)
»
W, = g * S; (18b)
where [so]n = s(n) is the discrete signal, f and g are discrete filters, and | is the decimation » @
(downsampling) operator
[l h]n = han (19)
One should visualize g, = ¥(—n) as the sampled wavelet and f as a, somewhat arbitrary, »

interpolation filter [2]. We shall not dwell on regularity questions or the choice of the
filters; however, we remark that f must at least satisfy the condition

Y fa=V2. (1.10) ’

The reader is referred to the literature [2]-[3]. The recursion (1.8) is easily implemented
by the filter bank of figure 1. Ultimately our inverses shall be based on the undecimated »
discrete wavelet transform (DWT). It corresponds to W(2',n) and is illustrated in figure
2a. Denoted w!, this transform satisfles w}; = win [2]. It is more appropriate to most
applications of nonorthogonal wavelets where, as we have mentioned, output resolution is
an issue. Moreover, the undecimated transform provides a better basis for recovering the
signal s(n). »
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Figure 1. A wavelet filter bank structure implementing the decimated discrete wavelet trans-
form. The down-arrow indicates decimation. The output of the transform is the family of vectors
wi, forming the two parameter transform w;, in the scale-time plane.

: i : . o .
Sx—l D'f g '§1—1 C) D'f r
Di g Di '5

w w
(a) DWT (L) DWT?

Figure 2. One stage of (a) the undecimated discrete wavelet transform, and (b) of the inverse
discrete wavelet transform. s’ is the input signal and the "initial” stage of DWT ! is determined
by 5™ = s™. D'f is the filter obtained from f by inserting 2' — 1 zeros between its elements.

Suppose there are M stages® to the DWT; i.e., 2 = 0,...,M — 1. Then, the DWT

maps R into RM*!

s 22 {wiii=0,... . M~1;8"} . (1.11)

Under very weak regularity conditions, the norm of s™ goes to zero as M goes to oo (see
Appendix B). However, in order for the transformation to be nonsingular for finite M,
one must inciude the smoothed signal s™ as well as the wavelet coefficients w'. This
transformation is clearly linear (although not time invariant in the decimated case) and
may be represented by a matrix A. If f and g ave finite, the transformation is locally
finite (each row of A is zero except for a section of fixed length); but, the matrix itself

3That is, so-called scales or octaves. In general, one will also have several voices. See Section 1V




is infinite because the convolution acts on arbitrarily long signals. Also, the image of
the transformation is a proper subset of RM*! so that a true inverse does not exist.
Nonetheless, it is generally injective so that A'A is nonsingular, and we may "invert”
objects in the range space RM*! by using the pseudo-inverse

P 2 (AtA) 1Al (1.12)

where [Al];; = Aj,. It is trivial to verify that PA = I. On the other hand, AP # L.
There are many other matrices Q which have the property QA = I. In fact, if B is
any matrix such that BA is nonsingular, then

Q = (BA)™'B (1.13)

satisfies sucn a relation. The pseudo-inverse is unique inasmuch as it is an orthogonal
projection of RM*! onto the image of the DWT. For example, suppose one were to filter
the wavelet transform (possibly stepping outside of its range) and invert. it

dte DWT
w f’—:f h e RMH! 3, r — Ar .

Then, in general, Ar # h, but the pseudo-inverse minimizes the squared error ||h—Ar|E =
lh— AQh||? among all possible @. Note that this holds for non-Euclidean metrics on RY*!
provided Al is replaced by the adjoint transformation relative to the metric. Although
the pseudo-inverse is a natural choice, other issues are involved. Often the error criterion
is not a metric on R¥*!, or computational complexity is an important consideration.
An alternative approach is to invert a single stage of the DWT, thereby inverting the
ertire transform, For the undecimated DWT, it suffices to find filters f and g such that

o~

Frftieg =26, (119)

where [6]m = 8g,m is the Kronecker delta. More precisely, if D* is the operator which

inserts 2' — 1 zeros between the elements of a vector, then Di(f+g) = D' f*D'g. It follows
that (1.14) is equivalent to

(VLY L /T L mmi~
\r ) T\

A4 2 et
= J) T\ y)

g) = & . (1.15)
Thus, under (1.14), the inverse filterbank of figure 2b is a left inverse for the DWT, that
is, for figure 2a.

These three points of view (dual expansions, left or pseudo-inverses, and filter banks)

begin to merge if one considers a more general class of filters than those satisfying (1.14).
The usual inversion procedure for nonorthogonal wavelets is to approximate (1.7) with

s(t) = Rez w,-,,,t,—[:-';(t) A constant -Rez wintin(t) . (1.16)

n,=0,...,,M -1 n,i=0,....M~1

[k, ]

*



The approximations involved in the traditional frame inverse may then be reinterpreted
from a filter bank perspective. The finitc sum (i.e., M < oo) is equivalent to ignoring s™,
while the use of the wavelets instead of their duals is tantamount to setting ATA =1 iy
(1.12). Furthermore, if we choose f and § to be f, = f_, and §,, = §_,,, then the inverse
filter bank of figure 2b computes the adjoint transformation At (c.f. Section V). Thus, the
inverse filterbank provides a unifying framework from which to study the various inverses.
In fact, we shall adopt the terminology inverse discrete wavelet transform or DWT™1! (6]
to refer to any inverse filter bank whether or not the filters satisfy (1.14). To be useful,
the filters should be chosen to provide an approximate left inverse to DWT; however, in
general, an exact left inverse will only be achieved with iteration.

There are, of course, tradeoffs which accompany the various approximations. Some
of the negative aspects are (a) filters satisfying equation (1.14) are usually prohibitively
long (e.g., Morlet wavelets), (b) these filters generally provide inverses which are not the
pseudo-inverse, and (¢) although Atw is readily ccmputed, (ATA)~*Atw is not. We find,
however, in the context of inverse filter banks, that these problems may be successfully
evaded. First, let us note that if a true left inverse is desired, it may be computed at a very
moderate computational cost simply by iterating (so-called Neumann inverse) the forward
and reverse transforms of figure 2.* In fact, computationally, this technique seems much
more effective that than using long filters to achieve comparable accuracy.

Secondly, a number of good approximate i+ verses exist which are sufficient for many
applications without the above iteration. For example, a substantial improvement over
(1.16) is obtained, at essentially no cost, by including s™. Also, just as the inclusion of
voices provides redundancy creating a tighter frame and therefore a better inverse {3}, the
use of undecimated wavelets enables us to find inverses which perform better than (1.16)
with considerably less computation. ®* How do we go about finding these inverses? One
very effective method which also lends considerable insight is te mimic the continuous
case. A more direct approach is to try to invert a single stage; that is, approximate (1.14)
using filters which are not too long or satisfy suitable constraints. One must take care,
however, to insure that the error does not increase unduly as the inverse passes up the
filter bank. It is certainly possible, to find cases in which some degradation of the single
stage approximation actually improves the performance over a cascade of several stages.
It may also be preferable to use a coarse approximation and then iterate. We can argue,
however, that if the inverse is to be applied to an unspecified class of signals and operate
with little or no iteration, then, a single iteration of a one-octave transtorm must give a
good inverse; i.e., the single stage inverse must be acceptable.

4In general, any nonsingular inverse fiiterbank is a linear transformation B which may be iterated in
conjunction with the forward transform to compute a left inverse Q defined by (1.13).

SOne even finds that the duals to the undecimated wavelets may be computed (if for some strange
reason one wishes to do so) more efficiently since they are translation invariant rather than scale invariant
as in the decimated case {cf. Section III).

-@-




II. DEFINITIONS AND NOTATION

A major notational distinction is the use of superscripts for undecimated entities
versus subscripts when they are decimated. We define the standard farnilics of wavclet
functions generated from the mother wavelet ¢ by

Pi(t) & % P (t ;,.n\ (2.1a)

pin(t) = "\715-: Y (% - n) . (2.1b)

The corresponding sampled continuous wavelet transforms are given by

w 2 /s(r)@'n(r) dr = <s, 95> (2.20)

Win & [sr) Bunlr) dr = <> . (2.25)

This notatjon differs slightly from [3] which uses 1""™; however, it enables us to treat the
discrete transforms as vectors; i.e., w! = [w'],. Unless specified to be otherwise, norms
are assumed to be L? for functions, |42 = <, ¢:>, and I2 for vectors, [|w||? = 3, (wn)*.
Finally, let us remark that additional voices are indicated by )’ and ¥y », which are
equivalent to (2.1a) and (2.1b) respectively with 2' replaced by 2* - 2v/L where L is the
number of voices. More formal definitions are postponed to Section 1V where voices will
be treated in detail.

For our purposes, W; and W' serve mainly as an aids in the interpretation of the
carresponding discrete wavelet transforms. These discrete transforms, w;,,, and wi, may
be computed according to the diagrams of figures 1 and 2a respectively. The former is
defined by equations (1.8); the latter is defined as follows: Let D' be the dilation operator
that inserts 2¢ — 1 zeros between each of the elements of a vector; i.e.,

in a | fr, forr=20 .
D" flaigsr = {O, otherwise ' (2.3)

For a given lowpass filter f and highpass filter g, the undecimated DWT is determined by
the following recursion [2] . . _
Sx+1 — sz x5 (24(1)
w' = Digxs' (2.4b)
with [s°], = s(n), the discretized signal. The filter g is generally determined by sampling
the mother wavelet; that is,

g]n £ P(=n) (2.5)

)
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The relationship between the two transforms may be expressed by
Win = w;"n . (26)

We make the standard observation that the 1! are translation invariant

1/),'1 = [¢'i]n a z/)i(t—n) 2 Il)(t ;n) , (2.7a)
while the ¥, , are not .
Yin = ¢ (\% —n) # W(t —n) . (2.7h)

Similarly, let T,, be the operation of translation by m; i.e.,

[Thsln 2 Snm , (2.8)

and introduce a vector argument s to w' to indicate dependence on the signal. It follows
immediately from equations (2.4) that the undecimated wavelet transform is translation
invariant, i.e., ‘ '

Woim(s) = wi(T-ms) . (2.9)

On the other hand, as a consequence of the downsampling in (1.8), the w; ,, are not.
We shall use a tilde to denote the dual wavelets. This operator

Yin = (Fin) (2.10}

depends on the structure of the entire family of {1;m}, not just on the single function
Yin. As a consequence the translates (dilates) of the dual wavelets are not necessarily the
duals of trarslations (dilations) of the wavelets. That is, the dual operator does not always
commute with translation and/or scaling. In particular, although v ,0(t) = (i) = ¥(t),
we have the bizarre effect that

Yoult) # ¥O(t) (2.11)

and, in fact, J)J(t) makes no sense at all. We stretch the notation by also using tilde to
denote the filters of the inverse filter bank, e.g., } sud ¢g. The idea 1s that, just as the
forward filters are associated with the wavelets, the inverse filters are, at least conceptually,
associated with the dual wavelets.
The operator } has several (consistent) interpretations depending on the context. For
matrices, it denotes the adjoint
(A%, = (Al - (2.12¢)

For vectors, it is the complex time reversal

[ & (A (2.12b)

w
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which is consistent with the adjoint of the matrix corresponding to convolution by f ;

that is, with respect to a matrix [F]; , 2 f i—; where fxs = Fs. More generally, A'
represents the adjoint of an operator in a Hilbert space with inner product <-, ->

<Alx x> = <x,Ax>, (2.12¢)

which, under the Euclidean metric, agrees with the matrix adjoint. Finally, we shall have
some occasion to use the z-transform. It is defined, on the unit circle, by

Fow) 2 3 faeTm, (2.13)

which agrees with the Fourier transform defined in (1.2). Note that

(D'f):(w) = f.(2'w) . (2.14)

@

®

S



ITI. PROPLERTIES OF THE DUALS

In this section, we define the dual wavelets, relate them to the pseudo-inverse, and de-
rive their properties under translation and scaling. We demonstrate that, unlike the duals
of the decimated wavelets (cf. [3]), undecimated wavelets have duals which are translation
invariant. The unmathematical reader may, without loss of continuity, shun all but subsec-
tion III.B and simply consider the dual wavelets to be an arbitrary family of functions 1/7,:1
that provide the inverse expansion s(t) = E; n Wi,nﬂn(t) = Zi,n <3, Pin> J;:n(t). With

a little more effort, one might wish to keep in mind the following discrete interpretation (cf.
Appendix C): Let A be a matrix representing the discrete wavelet transformation, and Af
its adjoint. Then, the rows of A correspond to the frame vectors 1; , with k** component,
[thin)k = ¥in(k), and the dual vectors ¥, correspond to the columns of (ATA)~1Af
(cf. the pseudo-inverse of equation (1.12)). Note that A depends on the entire family of
wavelets so that, 1];_,1 has a nonlinear dependence on ; ,. The orthonormal case, where
AT A is the identity so that Yin = {[;;, is an exception.

For continuous signals and real wavelets, the dual wavelets are given by®

{/;;,_;I = [(A;ecAdec)_lw]i,n ) (31)

where the wavelet transform Ag.. is deﬁnenl by [Adecslin = <8, ¥in>. The analogous

expression is used o define the duals 1/)' Different metrics on the image space produce dif-
ferent adjoints and hence different families of duals and different left inverses. In particular,
the standard frame formulation uses a resolution of the identity

= %" <s, hin> Pin (3.2)

i,n

based on the Euclidean mectric for decimated wavelets. That is, it is the pseudo-inverse
(1.12) where At is defined relative to the metric ||wy..||? = i lWinl?, and 12:.1 by
(3.1). This metric corresponds to energy since |wi n|* is power per Hz and the cells at
octave + have area (2° secj(1/2' Hz) == 1 (sce Section IV). Similarly, the cuergy netric for
undecimated wavelets is ||w¥™ec||? = 5=, 27wl |2, so that, for example, if the decimated

|,n
wavelets t;, arc orthonormal, the undecimated dual wavelets satisfy ¥} = Z7'4) in
contrast to ¥in = %in. The cnergy meiric is intuitively pleasing, and for decimated

wavelets its pseudo-inversc is an orthogonal projection, so this left inverse is often the one
of choice. However, one should not, arbitrarily dismiss alternative metrics. First, as we shall

61n the case of complex analytic wavelets, a complete sct for L*(IR) is given by {1/;‘, 1/')‘}. that. is,
strictly speakmg, the frame expansion involves two mother wavelets ¥ and Y. Similarly, the family of

duals s {t,/) } {4]. Alternatively, for rcal signals, one may take the real part as in (1.7). This aspect is

ignored in ihls scd.mn in order to simplity the presentation.

10



see in succeeding sections, other left inverses have considerable computational/numerical
advantages. Furthermore, it is not a priorj clear that alternative metrics may not enhance
one’s signal processing, at least in particular situations. In fact, every inverse of the form
(1.13) corresponds to a pseudo-inverse with respect to an appropriate metric.

We make this more precise. The pseudo-inverse may be characterized as is the unique
left inverse such that its null space is orthogonal to the range of the transform. We note
that, provided BA is nonsingular, Q = (BA)™'B is a left inverse of A. Also, since B A
is nonsingular, the null space of Q coincides with the null space of B, and it is easy to see
that the range of A and the null space of B are disjoint and span the embedding space
(i.e., time-scale space). Thus, any vector w in this space may be written uniquely as the
sum of vectors in these two subspaces. For Q to be the pseudo-inverse, it suffices to chose a
metric for which these two spaces are orthogonal. In fact, such a metric is given explicitly
by

<w,w>p 2 |A(BA)'Bw|? + |I-A(BA) 'B)w|? . (3.3)

A. Invariance

In [3] it is shown that the duals of the decimated wavelets are scale invariant in the
sense that zzh; =27V 21,7);:,(t/2i), but that they are not invariant under translation, i.e.,
m # m(t —n). In this section, we show that for undecimated wavelets the reverse
is true. That is, their duals are translation invariant but not scale invariant. This is of
theoretical interest and also has a certain degree of practical impact. It implies that the
undecimated duals may be all computed by determining one function for each octave and
then translating. Since there are generally many more time points than there are octaves,
this property appears to he more useinj ihan scale invariance.

The forward undecimated wavelet ‘ransformation 4 may be represented by

As]!, = <s, Pi> . (3.4)
We ther: have (with thie energy metric)

<A'As, r> = <As, Ar>

= Y 27 <s, > <y, > (3.5)
in
which implies that
.A1 A = 2: 97« N 1/):1 > 1/):] . (36)

Next, let us define the scale/time translation operator

U (1) 2 —l—.s(t"b) . (3.7)

—_—
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lts adjoint is given by

W = vl (3.8)
which follows from
a LY 1 — — T3
Jueani@a = [Lu(2) Wa = [anmarnvaa . @9
Note, that we also have
v ul® = v, (3.10)
We are particularly concerned with the family
Ul &y (3.11)

If At A commutes with U? then the family of duals is translation invariant; if it commutes
with Uj, then the family is scale invariant. For example, commutation of At A with U,
implies commutation of (A! A)~! with U3, and

Palt) = (AL = (ATTURY = UR (AT = git-n) . (312)
Proposition §.1: Let ¢ be any admissible wavelet. Then,

(1) Under any translation invariant metric, the family of dual wavelets for the undeci-
mated discrete wavelet transform is time invariant but not scale invariant; i.e.,

Yalt) = Yot —n); wa(t) # 27/7R(4/2) . (3.13)
(ii) Under any scale invariant metric, the family of dual wavelets for the decimated discrete
wavelet transform is scale invariant but not time invariant; i.e.,

Pinlt) = 27200 (4/2) Hialt) # diplt—n); (3.14)
We remark that, in I°°, a translation invariant metric <x, y>4 = Zunm zi gyl is one

for which g4, = g:;"+ k,m+k Scale invariance is defined analogously. For notational clarity,
we only prove (i) under the energy metric.
Proof:  From {3.6), we compute

Ul ATA = Zz*‘ < Ulgp> UL ULy = Z <L ULe> UMY g, (3.15)
and

At Arri _ N a-i .
A./-\U,"-—Zé <, U

= 27 <., UZL,;, Usv> Ui
=Y 27 < U] gy ¥ U

=Y o < UL gy > U (3.16)

y !
ion
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Even if we accept translation invariance up to a scalar factor 277, to equate (3.15) and
(3.14) we still need to make the substitution, n' = 277(n — m). This is only possible for
J = 0 since n' must be an integer. In fact, for general 1, equality occurs only for U? | and
not for UJ. Owu the other hand, for decimated wavelets, the operator A;ec.Ad“ takes the
form Ei,n <, Usi 9> U;;nz/), and it 1s easy to confirm that this operator commutes

with U], but not with UJ,.

B. The Neumann Inverse

Often, given a discrete wavelet transform, A and an approximate inverse B (for ex-
ample, an inverse filter bank DWT~1), we would like to compute an exact left inverse, in
particular that of equation (1.13). This may be done by using the Neumann inverse for
linear operators’

St =y i(’f— pS)k (3.17)
k=0

where S is a Hilbert space operator and u is sufficiently small to insure convergence; that
is, (J|(1 = uS)|| <1 (3], [7]. Equation (1.13) may then be written

(BA'B = 4 i(I——pBA)kB : (3.18)

k=0

The summands in (3.18) can be computed by the recursion €x = ex—y — p B Ae;—,. Here,
A and B are the transforms DWT and DWT™?, implemented by filter banks. One may
use the following algorithm to compute a true left inverse as accurately as desired.

Algorithm 8.1
(0) xo = (DWT) 'w
€ = Xo
(1) & = €y —pu DWT™! 0 DWT €,
(2) Xk = X1 + &
(3) leftinverse(k) = uxg
go to (1)

A computational drawback that becomes apparent, up.n applying Algorithm 3.1, is
the huge increase in the signal’s support (length) under the mapping DWT-! o DWT.
In fact, if a filter g has length » then D'g has length (2! = 1)(r — 1) + r, and (D'g) * s*
adds (2' = 1)(r — 1) points to the support of s'. There is an additional effect due to D'f,
#ithough for Morlet wavelets g is much longer than f and, hence, dominates the problem.

"This formula is easily understood, if we replace the linear operator S by a scalar s, let 2 = 1 — us,

and consider the expansion §=! = /(1 —x) =p Z‘:;o z*,

13
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The same comments hold true for DWT ™1, For example, for five octaves and r = 50, the
time series DWT 0 DWT™'w will be about 3000 samples (2 x 31 x 49 ) longer than w.
Each iteration of Algorithm 3.1 adds such an amount to the support of x,. Clearly, this
is unsupportable. Fortunately, the obvious heuristic solution, clipping the support of the
iterations, works and can be justified. Let M, be the operator

; ¢, for (i,n) in the support of w
H ={Im " : 3.1
(M 305 { 0, otherwise (3.19)

We simply replace DWT ™! in step (1) of Algorithm 3.1 by Hy, © DWT™!, That is, we
set DWT ¢ to zero outside of the support of w. This is equivalent to replacing B in (3.18)
by B' = H,, B, and leads to a valid left inverse provided p is small enough and B' A is
nonsingular. Because of the w-dependent clipping, this inverse is actually nonlinear. Of
course, one could always create a similar, but linear, operator by restricting oneself to a
family of signals with fixed support.

14
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IV. APPROXIMATIONS TO CONTINUGUS INVERSES

Of course, (1.5) is not the only continuous inverse. As with the wavelet series, there
is an infinity of left inverses for the continuous wavelet transform. In this section, we
examine two of these. The results shall be used in Section V as guidelines for inversion
where they provide discrete metrics and appropriate filter normalizaticns for the DWT 1.
I the presence of voices these normalizations become nontrivial and exiremely confusing;
however, they are essential for correct implementation of the inverse transforia.

A. Double-integral inverse (resolution of identity)
We begin with (1.5), which for convenience we rewrite as

) 2 da db
()= Re & [ 2w e (4.1)

where

i 2 2ze(20) (4.2)

Recall that s is real, ¥ must be real or analytic ({b\(w) = 0 for w < 0), a is nonnegative, and
Re denotes the real part. The wavelet transforms themselves are general’y complex. For
simplicity, we shall sometimes drop the Re. Also, observe that a factor 1/4/a is included in
the definition of the wavelet 1 (t). As a result the L* norm of ¥¢ is independent of a and
b. It often helps conceptually to normalize the mother wavelet, ||¢]|? = 1. Alternatively,
the norm of ¥ may be absorbed in the constant C'y (cf. equation (1.1)).

Let us discretize the integral and compare it to the sum (1.7). The coefficients W are
given for for all integral values of b in the undecimated case and for & = 2' in the decimated
case. This results in db ~ Ab =1 and db = 2' respectively. When the scales are output by
octaves, a takes on the values a = 2' for integer i. Thus, da/a = d(lna) ~ A(iln2) =1n2.
Substituting these expressions into (4.1) yields

2ln2 ; 1o
s(t) ~ Re z, ;W,, F¥n(t) (4.3a)
for the undecimated wavelets, and
21n2
S(t) ~ Re Cz/: ZWi,n "-pi,n(t) (43b)

for the decimated wavelets since Ab = 2' cancels the factor in the denominator. Comparing
these with (1.7) and its undecimated equivalent, we see that

~— 2In21 .
o e (4.4a)
15




— 2Iln2
in N~ " ¥in - 4.4b
¢' ] C'.b w 3 ( )

Note that (4.4b) agrees with (1.16) and that both the expressions (4.4a) and (4.4b) are
exact when the 1, . form an orthonormal basis [3].

However, we are interested in nonorthogonal wavelets, which, in general, require a
finer output grid, that is, voices. If each octave is divided into L voices, we have

a2 24" 2 oi+(v/L) , (4.5)

where : =0,...M —1;v=0,...L ~1; and

N 2 2UL (4.6)

Substituting (4.5) into (4.2) yields

iv _ 1 t—n
M GDR w0

with a similar expression, ¥, ., = 27/2y~/24(274~% — n), for decimated wavelets.
Voices for the discrete transform are usually computed by replicating the filter bank with

a new mother wavelet
P A (i) (4.8)
vt
for each voice. Although in the undecimated case this remains equivalent to (4.7), in the
decimated case, it implements a DWT corresponding to the hybrid family of wavelels

v LA — 1 t _—l
wi,n - ("(,b ):,n -~ \/21—7;1/) (2'-7” ,7'0) . (4.9)

Decimated voices are rarely implemented, but when they are, one invariably uses 1!,
rather than iy n.

Proceeding on the basis of (4.7) and (4.9), we retain the output grids Ab = 1 for
undecimated wavelets and Ab = 2' for decimated wavelets, while incrementing a in (4.5)

1>

by Av = 1. Nete that o change of v by L is equivalent to an octave; Lo, to Al = 1. Thus,
d(lna) =~ A(i +v/L)In2 = In2/L. Substituting these cxpressions into (4.1) yields
2 In2 v L
S(t) ~ Re E‘;-L— . W;, W’lﬁ; (t) . (4.100)
i,u,n
for the undeciinated wavelets, and
2 In2 1
i,o,n
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for decimated wavelets. The corresponding duals are

—_— 2ln2 1 .

v o —— . v 4(1

" O Ty ¥ (411a)
—— 2][12 1

e _ 4.11b)
)l,n Co,/,L 7 ¢ ( /

It should be emphasized that these expressions for the duals are mainly intended to serve
as conceptual guidelines. For narrowband wavelets, the quality of the approximation is
certainly in question,

The normalizations (4.7)-(4.9) have several advantages. The squares of all three types
of wavelet coefficients represent power per Hz. This follows from the “Plancherel” formula

(cf. Appendix D)
o0 oo
Energy = / Is(E)dt = - / / d“;"’ (W2
c. ), ).

2 In2
C, L : 2-v

iun

Wit (4.12)

~

Equation (4.7), implies that the bandwidth of " is proportional to 1/(2'4%) so that the
measure in the integral (4.12) is in units of seconds - Hz, This, in turn, insplies that the
|W,?|? is essentially power/Hz [2]. The same remains true of W;, » and W, since they are
simply nenuniform samples of the same density funciion; that is, of W**(n). Furthermore,
this normalization may be simply characterized as that which maintains the norms of the
analyzing wavelets:

Il = vl = Nolall = vl - (4.13)

A different density, perhaps more in the spirit of scaling functions, is power/scale
where the units of scale are In(a). This normalization, used for example in [8], results in
analyzing wavelets of the form

_,1, (t‘b (4.14)
\zl /

Another normalization, the symmetric one of [3] approximates self-dual wavelets; i.e.,

’E‘ ~ const - ¢}, where the constant is independent of : and v. This is achieved by

including the square root of the coefficient appearing in (4.11b) in the normalization of }.
Thus, ¥}, gets replaced by v "/21,1:, ., that is, by 27#/24=v4(2=1y =¥t — 4=?n). However,
this syrnmetnc normalization, results in transforms which are not densities, Their squares
are zuergy/cell where the cell size varies with scale and, hence, is difficult to interpret.
As far as the composition DWT™! o DWT is concerned, the normalizing factor may be
arbitrarily split between the wavelets and their duals. However, (a) different choices wil!
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change the appearance/interpretation of the wavelet transform image, (b) each choice
corresponds to a different left inverse,® and (c) the implementations/approximations of the
various inv-tses may exhibit significantly different behavior.

B. Single-integral inverse (Morlet formula)
A seccnd, less frequently used formula, is the so-called Morlet inversion formula ({8],

Appendix D) , > g
a a |
S(t) = Re {—C—.l,/, A —a3/2 Wt } s (415)

where either ¢ is analytic or 12;((4)) is real,

dw | (4.16)

and W2 = W(a,t) defined in equation (1.3). For Morlet wavelets yb,(-(:) 1s real, and, for
practical purposes, 1(t) is analytic. The subscript of C}y is intended to reflect the L!
dependence on ¥ in (4.16) as vpposed to its modulus squared which appears in (1.1). The
computational advantage of a single integraticn is enticing, and we shall find that the
corresponding discrete formula is quite effective when applied to undecimated wavelets.
Discretizing, as in the previous subsection, we obtain
s(t) ~ Re-2-102

Cry L zﬁ‘

The continuous time dependence of the coefficients W;? in (4.17) prevents a direct inter-
pretation as a dual expansion; however, if we discretize the output and define the vector

Wi'xi? where

(4.17)

8" by [6"]m = 6,m, then we may rewriie that expression as s = 5

vn

— n
X = 2 n2 & (4.18)

Ciy L f2iy»
The formulae for the decimated wavelets are essentially the same since there is no integra-
tion over b. However, when we discretize the time by setting wyy, » = W37, we see that not

all octaves are nresent (i.e. not all octaves have rnpmmpnfq\ at each lnfprrra] time n. The

11 octaves are present (i.e, not all octaves have coefficients each integral tin ke
lack of these values can have a crippling effect on the inversion approximation (cf. Section
V).

We remark that both of the inversion formulae that we have presented are special
cases of a more general family of inverses (cf. Appendix D)

0 = o [ %[ e @) TIRD (419

8 That is, the duals are computed under different metrics, cf. Section HI
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where

Can Q— —/'00 ?—MW , (4.20)

—o0 lwl
Equation (4.1) is derived by setting ¥4(t) = ¥P(¢) = ¥(¢), while (4.15) follows from
yB(t) = 6(t). Additional manipulations and restrictions on 3 allow one to replace the
integral over negative a by twice the real part.

C. Reletion to DWT

Let us now relate some of the above approximations to the discrete wavelet transform.
We examine the undecimated DWT of figure 2a invoking the approximation wi &~ Wi. It
is clear that, if there are M stages, then s™ replaces the coefficienis W} for : > M. If
we consider s™ as a discretized signal and take its wavelet transform, (4.12) with a single

voice implies
[o ]

1 2m2 &1,
T e S~ L (4.21)
) Cy 422
where ||w'||? = wt||2. Substituting(4.21) back into (4.12) then yields
n n
M=
9 2ln2 1 ; 1
IslI* =~ Ys(t)]* =~ o > W+ 5 lls*)* - (4.22)
i=0

When its approximations hold, this equation implies a relationship between the normaliza-
tions of the filters f and g. Consider the output of a one-stage (M = 1) filterbank where

the discrete signal is an impulse function s = §. We have |ls]l =1, w? = g, and s! = §
giving
2In2 1
2 2 (
lgll® + SIfI° =~ 1. (4.23)
Cy 2

Multiple voices are easily implemented by making L copies of the filter bank, each

with a different filter ¢*
1 n
n = 1) (——) : 4.24
Y AT (424

Note that as long as (4.24) is a good piecewise approximation to 3, we will also have
iig¥ii = ii¥]j, which we shall always assume to be one. The general expression (4.12) for
the total energy, with voices, takes the form

M-1 L-1
21n2 1 1v~ 1, 1
PP g — . o2 o M2
Isi* ~ = g 3 L2l g I (4.25)
while (4.23) becomes
2In21 1, wuz 1,
Cy LL —letl® + ST~ 1 (4.26)
19
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It is not difficult to show that (Appendix A)

1 1 L
ZTF T 21-21L) T 2In2 (4.27)

so that (4.26) becomes
1 1. ..»
— + = ~ 1. 4.28
&+ gl (4.28)
To be energy preserving, the wavelets must not be too redundant or too sparse. If they
exactly fill the spectrum; that is, if const - 3, 7" *lgh(w)|* + 31f,(w)[* = 1, then the
approximations are exact [9].

D. Ezamplcs

We examine the quality of the above approximations relative to our prototype non-
orthogonal wavelet transform, namely, the DWT with ¢ based on a Morlet wavelet and f
an 3 trous filter (i.e., fan = 6no/v2, [2]). The Morlet wavelet of L? norm one takes the form
hrr(t) = g2 a1 eivte=P /2 Tts ot yoice, y="/24pp (¥~ 7t), has a relative bandwidth of
B/v". Requiring that these voices cover the upper half of the spectrum results in the
following condition, which relates L and § (cf. Appendix A)

3 }:—1— > I (4.294)

or, from (4.27)
In2

" In(1-098) -

We remark that the minimum number of voices satisfying (4.29) is approximated, conser-
vatively, by L = 1/8. Cy is, of course, a function of 3. It takes on the values 2.6, 2.26, and
2.12 for f equal to 0.5, 0.25, and 0.125 respectively. As  approaches 0, Cy, approaches
2.0. That is, the set g¥ acts as a perfect highpass filter (cf. ((4.28)). For L=1, equation
(4.29b) is an equality for # = 0.56. That value of S implies that Cy = 2.76 which results
in 2In2/Cy = .502. For L= 3, we get § = 0.092, Cy = 2.09, and, using ||g”|| = 1 along
with (4.27), we find that the first term in (4.26) has the value 0.499.

Two typical interpolating filters f are the Lagrange & trous filters (1/2, 1, 1/2)/v/2
and (-1/16, 0, 9/16, 1, 9/16, 0, —1/16) / v/2 which have squared norms of 0.75 and 0.82
respectively. Ideally, we would like the lowpass filter f and the set of highpass filters g* to
split the energy spectrum into two equal parts [2]. In reality, f and g are not orthogonal
so that some energy is bound to leak across scales. In fact, one-half of the above values
are 0.375 and 0.41 respectively, so that (1/2)||f]|*> equals 0.5 only very approximately.
This can be interpreted as a need to compensate in the energy expression for the lack

L (4.29b)
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of orthogonality between the lowpass and highpass filters. It would seem reasonable to
correct this discrepancy by actually choosing Cy in (4.26) to satisfy

21021 « 1 1, .,
b Bl . - 43
B I (4.30)

v
where ||g*|| = 1.

As another interesting example, we examine the Haar wavelets. Appropriate DWT
filters are f = (1, 1)/v2 and g = (=1, 1)/V/2, resulting in exact wavelet coefficients (if s°
is in the appropriate subspace) for a continuous transformation with the mother wavelet

1/v2, for0<t<1i - (4.31)
0 otherwise

-1/v2, for -1 €t<0
he(t) = {

We have added the subscript g because the Haar wavelet 1(t) is more commonly taken to be
#4(2t)/v/2. The difference springs from maintaining consistency with the relationship g, =
Po(—n) of the generalized DWT, and is reflected by the fact that the usual erthonormal
filter bank’s first stage output is interpreted as scale 1 rather than scale 0 (see [2]). A
nontrivial computation yields Cy, = 4In2. Consequently, the first coefficient in (4.23) is
(2In2)/(41n2) = 1/2. Since the norms of f and g are 1, (4.23) holds exactly. This exact
result is somewhat surprising inasmuch as Cy, was computed from the continuous wavelet
and the sums in the forinulae were obtained by approximating an integral.
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V. THE DISCRETE INVERSE

A major goal of this section is te develop and redefine previous concepts, such as energy
and the inverse wavelet transform, entirely in discrete terms. We shall find this tantamount
to a specification of filterbank implementations and a description of their properties. In
keeping with this spirit, we reserve the term discrete inverse wavelet transform DWT !
to mean precisely the family of transformations computed by the filter bank of figure
2b. The notation f, g is intended to be suggestive, but these filters are not, even in a
discrete sense, dual vectors. We also remark that the specific implementations considered
are for a real signal s. That is, we seek to recover the signal from the approximation
s = Re®, that is, the real part of the DWT ™! (cf, equation (4.1)). A wide variety of
approximate inverses, several of which are variations on the standard frame approximation
(1.16), are obtained simply by varying these filters. We shall find that the DWT ™! can
achieve better results than (1.16) with comparable or even less computation. (A price is
paid, however, in the forward transformation since we require the undecimated transform.)
Moreover, unlike (1.16), all such inverses are translation invariant. That is, the composition
DWT-! o DWT commutes with translations.

A. Filter Constraints

Clearly, an attempt to treat banks of arbitrary filters would be much too general and
unlikely to produce a very useful theory. In this subsection, we propose some minimal
constraints on the forward and backward filters. At the very least, the DWT should be
interpretable as a time-scale decomposition, should be numerically stable, and should have
a stable inverse. For example, it is standard to require that f, g be a lowpass-highpass
filter pair, that f be real, and that 3 fu = v/2 before considering the forward filter bank
a DWT [2]. An analysis of numerical behavior is beyond the scope of this work; however,
we do present conditions for finite energy and boundedness of the DWT and DWT ™! as
the number of stages M becomes infinite. These properties are important inasmuch as they
reflect directly on the numerical stability of the algorithms themselves [4]. Even though
one never actually computes an infinite number of octaves, the poor numerical behavior
of unbounded transformations tends to persist for finite M.

Although an appropriate expression for the energy of the discrete nonorthogonal trans-
form is somewhat arbitrary, we take one which is consistent with energy preservation in

.............................

require the existence of cg > 0 satisfying (cf. equation (4.26))

1 lg'l2\ | Lyee
s (z 2—7——) + S =1 (5.1)

We then define the energy by

A M-1L-1 1 . 1
B2 3% gmpeelwtl + gl (5:2)

=0 v=0
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This is to be interpreted to mean that (/czw'?, s™) is an energy density for the DWT
and the total energy is given by applying the metric given by the (ML + 1)-dimensional
diagonal matrix with elements {27*y~*L~!,27#}. Although it may seem strange that the
definition of E in equation (5.2) depends on the filters, the offending constant cg is needed
to balance the energy between f and the g¥’s. Alternatively, we could have absorbed ¢p
into the filter g or used a different mother wavelet 17, ~ /cg¥.? Suppose that fisa
lowpass filter in the sense that |f,(w)| < V2 for w # 0 (recall that f,(0) = v/2). Then,
the last term, which represents the energy in the spectral interval [0, 1/2™], goes to zero
as M goes to infinity (cf. Appendix B). Thus, the constant ¢z represents a constant factor
in the non-DC energy .

Perhaps the most significant aspect of the definition (5.2) is the fact that, for M = oo
the discrete transform is bounded and has a bounded inverse if and only if there exist
A, B > 0 such that

Allsl? < E(w) < Bls|® . (53)

We point out that (5.3) is actually a discrete admissibility condition. The following is a
sufficient condition for it to be satisfied [2]

22»1,7 g7 (w)]*

0 <4 T Tfwrp

< B < x foralw. (5.4)

At w =0, (5.4) is also a necessary condition (see Appendix B). Hence, we must have
1 \ .
N <t (5.5)

Note that, since f,(0) = Y, fan = V2, condition (5.4) requires 3~ g2 = 0 for all v, that is,
that all the g¥ be highpass filters. The DWT will be energy preserving (that is, E = ||s]|?)
if and only if (5.4) bolds with A = B =1 [2].

Finitencss of the DWT™1 as M — oo also imposes some constraints. The forward
and inverse transforms include terms containing the filters f and f iterated M times
respectively. We cannot permit these terms to grow without bounds. More precisely, the

output of the DWT ™! is given by (cf., figure 2b)

M-~11-1 M1

(D7) + |9 «wi + ] [F+]s" . (5.6)

1=0 j=0 =0

For iz = 0, the first term on the right is understood to mean g+ w?. Also, equivalent to the
condition that 1)(¢) be real or analytic, we require that either both ¢ and g are real or onec

9This would make some sense, since it makes the role of f more explicit in the relationship of the
continuous and discrete transforms. Each filterbank has a “true” mother wavelet associated to it,which
only approximates the original ¢. See [2], {10].
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of them is analytic (that is has zero z-transform for w < 0). If the inverse is to be bounded
in the metric of equation (5.2), then uniformly bounded inputs w', s* must produce
uniformly bounded outputs. Taking z-transforms, we find this entails that [ |s¥(w)|?/2™
uniformly bounded in M implies that [ ]"[;V:_Ol |f ,(27w))|? |s¥(w)|? is uniformly bounded.
This, in turn, implies

£.0)i < % . (5.7)

Similarly, if the composition of the forward and inverse transforms is to be bounded for
arbitrary M, then we must have

If.(0)f,(0)] < 1. (5.8)

Note that, since we require that f,(0) = V2, (5.8) implies (5.7). Details and conditions
on the inverse filters similar to (5.4) may be found in Appendix B.

Of course, it would be desirable that the DWT ~! be an exact left inverse. As described
in the introduction, this will be true if and only if equation (1.14) holds. For multiple voices
and complex wavelets, this takes the form

Red goxg” + f+f =6 . (5.9)

v

If f and g are filters corresponding to orthonormal wavelets, then (5.9) will hold for

a single voice with :f = f! and § = ¢'. Unfortunately, in the case of Morlet wavelets,
hackward filters g” which satisfy (5.9) are generally much too long for most applications,
In contrast, even in the nonorthogonal case, we shall find that the adjoint filters f t and gt
provide useful approximations. Other backward filters of interest are ? = ¢ and g = cb.
These filters, which are motivated by the continuous inverses (4.1) and (4.15) will prove

extremely effective. The constraint (5.7) takes the form
?= c foimplies ¢ <1/2 (5.10)

and
f=cb implies ¢ < ],/\_/5 .

—~
o {
—
=
~—

B. Adjownt DWT »
We pause, bricfly, to show that the filters f = f! and § = ¢! yield the adjoint DWT.
Let H' and L™ be the linear transformations

o2 ﬁ [(Dz‘})*](nfg) + and LM 2 Nﬁ] [(DJ’]’)*] . (5.12)

3=0 1=0

g
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From figure 2a, the forward transform DW Ty, is given by w' = H's and s = L™s. For
the Euclidean metric we have

<w, DWTs 8> = Z wi [Hisj, + wV [LMs™],
= S H'wl.m + L5

= z <H''w', s> + <L™'s™, s>
i

= <:DY/VTf'.,lg1 W, 8> (5.13)

where the last line follows from (5.6) with ? = f' and g = g'. This implies that DWTf',lg,

is identical to (DW Ty, )T. Our algorithm actually uses ? = f1/2 which also satisfies (5.8).
It is easy to see that this yields the adjoint under the energy metric (5.2).

C. Implementations

In addition to the bafiling number of inverses available for consideration, one of the
most confusing aspects of this subsection is a repeated shifiing between decimated and
undecimated wavelets, The gist of these machinations is that, although our wavelet trans-
forms as well as the inverse filterbanks will always be undecimated, the interpretation of
and distinctions between the various inverses are more properly made by an appeal to the
decimated case. Much of the misery disappears if one keeps in mind that (w?], = [W**]4i,;
that is, the two {ypes of wavelel travsforn are siuply different saxplings of the same
function and that they coincide at their common points. We also remind the reader that
when ¢ is complex, s corresponds to the real part of 8, that is, Res. For notational
sunplicity, in this subsection, we present our derivations using only a single voice and
replacing the constant 2In2/Cy, by ¢. The implementations of three inverses will be dis-
cussed: the double-integral type resembling (4.3a), the adjoint DWT, and a single-integral
type corresponding to (4.17). The first two bear an intimate relationship to the frame
approximation.
C.1. Double-integral type

We begin with f = 6/~/—. and

a = cal. Abhreviatin
4 =4

/2 and Abbreviating the last term of (5.6) by DC, we
have
M=
1 it i
[slo = ¢ ——;[(Dg)*w]o+DC

1=0
M-1

= ¢ “;Zgn“’;'n + DC
=0 n
M-1 1

= c Zg —;Zw,-,ngn + DC
1= n




= ZE\/_W.,,I/) n) + DC

=0 n
=c Z > winthin(0) + DC . (5.14)
i=0 =n

Except for the DC term, this coincides with the standard approximation (1.16) at time
t=0.

We wish to extend this formula to arbitrary times ¢t = m. Let w'(m) 2 w (T -ps)
and w;(m) 2 w;{T_,,s) be the wavelet transforms obtained by first translating the

signal by m points (cf. (2.9)). The idea is that these transforms are computed at (i.e.,
centered about) time m. In this context, the standard approximation

M-1 M-1
sm = s(m) = Rec Z Ew;,nz/),-,n(m) = Rec E Zw;,n(O)dz,—,n(m) (5.15)
i=0 n =0 =n

utilizes wavelet coeflicients “computed” at time 0. For m = 0, equation (5.15) gives
s = Re 3w n(0)9¥:n(0). Also, it is apparent from the form of (5.16) that for m # 0,
the decimated wavelets ¥; ,(m) extrapolate s(t) from time ¢ = 0 to time t = m.'® Since
Wi 2% (0) = Wi (2™ %), the extrapolation is never longer than 2™ — 1. Alternatively, we
could translate the signal by m, compute w;, on the translated signal T_,,s (which by
definition yields w; n(m)), and evaluate the expansion at time 0. This yields

M-1
Sm = [T-—mS]U = Rec Z zwi,n(m)¢i,n(0) ) (516)
t=0 n

thereby avoiding any extrapolation. Note that (5.15) and (5.16) represent two quite dif-
ferent approximations. This is because the deci.nated DWT is not translation invariant;
ie, win(m) # win+m(0). In fact, we would expect (5.16) to be a better approximation
since 1t does not extrapolate. (The tradeoff is that we must compute w;(-) at every point,
which is equivalent to computing the undecimated DWT. )

On the other hanﬂ the undecimated transform and 1

This implies that 5, = [T_ms]o. Substituting this into (5. ) elds

- M-1
= [Tomslo = ¢ Y win(m)$in(V) + DC , (5.17)
i=0 n

10%/e use the word extrapolate to emphasize that the contribution of & single w; n is extrapolated via
¥i,n. On the other hand, since in & sense we are spanning the gap of 2 points between Win and winga,
which in turn depend on the entire signal 8, we are interpolating. This, of course, is a much niore stable
operation than strict extrapolaticn,
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whicli, except for the DC term, coincides with (5.16). In summary, we have considered two
approximations to s(m): (i) the decimated transform computed at time 0 and employed in
the corresponding wavelet expansion to approximate the signal at timne m (equation (5.15)),
and (ii) tie decimated transform computed at time m used in the wavelet expansion to
approxirzste s(m) = [T_,s]p at the same time as the computation (equation (5.16)). As
the numbex of scales M goes to infinity, the latter formula becomes identical to (5.17), that
is to the DWT! (i.e., undecimated inverse filter bank) with f = §/,/v/2, and § = g¢'. In
fact, (5.17) represents an improvement over (5.16) since the DC term replaces the energy
lost in truncating the expansion at i = M — 1.

C.2. Adjoint N

We already know, from (5.13), that the DWT ™! with f = f1/2 and § = g is the
adjoint to the DW'T. It also has a simple interpretation in terms of the frame approximation
but which is a bit difficult to demonstrate. It is an average of approximations of the form
(5.15). More precisely. let fT* D be the operator which acts on vectors x by (ff *D)x =
Fl* (Dx). As discussed in [2], when f is an & trous filter this operator is a dyadic
interpolator. That is, [f1* (Dg")]m & 271/24(m/2) so that

; 1 m
T« D)ol » —=v (=) . 5.
[(f' +D)'g"}m ﬁzb(Q,) (5.18)
Furthermore, it can be shown (Appendix E) that the DWT -1 with 7 = f1/2and § = cg!
yields

M—-12'--1
Bno= o 3 S MDY Gt e wilrDlmor 4 DC (5.10)
=0 r=0
Substituting (5.18) in (5.19), we have
M-1 1 2f—1
Sm = ¢ Z > Z Z Win(r) Yin(m~7r) + DC (5.20)
1=0 n =0

where we have used (E.7). One may rewrite thisasc¢ )_, w;.-n_H 2t Phi iy (m) reflect-

—~-

ing the approximation 1)} =~ e} of (4.4a). We may consider the set of 277"1); (m — 1) =

275 1, (m) as the 27} with k = 2'n 4 r of (4.11a). On the other hand, the dec-
imated interpretation is somewhas; more enlightening. The decimated transform at oc-
tave i 1s invariant under translations of 2*; i.e., w; n(2') = w; n41(0). For each value of
r=0,...,2" — 1, we can usc (5.15) to estimate s,, by extrapolating from time r to time
m, that is, s,, &= Re Eﬁo_l Yo, Win(r) ¥in(m —r). Equation (5.20) is simply an average
of these extrapolations. Since the longer the extrapolation, the less likely we are to have
a good approximation, the quality of this result should lie somewhere in between that of
(5.15) and (5.17). However, since the double-integral type (5.17) not only provides a better
approximation, but also requires much less computation (a scalar muliiplication for §/1/2
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versus a convolution for the filter f1/2), there seems to be little reason to use the adjoint
inverse.

C.3. Single-integral type _

Finally, we examine § = ¢§ with f = §/+/2. This results in an inverse analogous to
the single integration approximation (4.17). More precisely, substituting D/f = §/1/2 and
DG = c§ into (5.6), we have

M
m

M-1
cC : S
Sm = —_—w,, + = . 5.21
Y ot + 521

Essertially the same formula holds for decimated wavelets; i.e., with w!, replaced by w; m.
However, in that case not all octaves are available at each time. More precisely, if we set
m = 29 + 2Mn where 29 < 2™ and Q < M is the largest integer satisfying such an
expression, we have

~

Q
C
Sm = Z_Twi,m/? + [f* SQ]m/ZQ . (522)
im0 V2

If one omits the DC term, this formula will provide very poor results, since at those points
for which @ is small, up to one-half the ¢nergy may be omitted. Since it is common
practice to use only the wavelet coefficients w;, this may explain the reticence of many
people to use the single integration approximation. In contrast, (5.21) yields excellent
resuits, often better than (5.17) or (5.20) (cf. Section VI). Moreover, this DWT ™! does
not increase the temporal support beyond that of the wavelet coefficients, a property which
is extremely helpful for filtering in the wavelet domain. These features, coupled with a
high computational efficiency, make this inverse our choice for most applications.

D. Normalizing g
In Section IV, we related particular realizations of the DWT ™! to discrete approx-
imations to the continuous inverse. This correspondence was determined up to the DC

term and a constant, i.e., 8 & ¢s. In theory, this gives us two constants to adjust; one
rn*uLf'i tho nC "nr:h nnrl tha Athar il “ynvvelal-n MTha sanarnl ~Awoctin

. v ae
nluinge tindine tha n oA
Liliavijiayarip vail &r vOorsis wlia vl Ouvald sddivipailly, wiis WAYOiUuo. 400 gULNAGr YulowuDil Ui

how to pick these constants (or for that matter more general backward filters) is complex,
application dependent, and beyond the scope of this study. Here, we restrict ourselves to
just a few cases. First, to avoid a dependence on M, we determine the constants from
the consideration of a generic single stage of DWT~! o DWT. We shall remark on two
possibilities, both involving approximations to (5.9). The most natural is to minimize the
error in the least squares sense. That is,

min [[cRe Y Gy*g" + ¢ fuxf—6| (5.23)
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where the form of the backward filters is given by one of the 1mplementat10ns in the last
subsection and the subscript U indicates the renormalizations § = cg;;, and f = ¢ f U-
We observe that if the zero*® component of (5.9) holds exactly , then the substitution
Gy =(¢")"/7" and fyy = f1/2 yields ¢ 7, Re[y™"(g")! * ¢*]a + (¢/2) [f* * flo = 1. That
is, ¢ 3, 7" lg"II? + (¢'/2)||fI|* = 1. This is simply {4.26) with ¢ = (2In2)/(CyL) and
¢ =1

A second approach is to require that the energy of the reconstruction match that
of the signal. To do this in a signal independent manner is not generally possible. As
a compromise we apply this reuirement to a specific signal, namely an impulse, which
has a flat spectrum. Setting the energy of the 1mpulse response of a single stage of the
DWT™! o DWT equal to one yields |lcRe Y, g, *g” + ¢'fy * fl|? = 1.0. Note that,
because of the cross-terms, this differs from preserving the energy of the wavelet transform
(cf. equation (5.1)). Rather, it attempts to take into account the nonorthogonality of
?* f and g * g. Contrary to intuition, informal trials indicate that it is a better choice
than (5.23); i.e., ||Res — s||? is smaller. It cannot be better, of course, for the case in
which M = 0 and the signal is impulsive, but it does seem comparable and provides an
improvement for M > 0. Finally, we have found that taking ¢’ = 1 seems to work as well
or better than any other value, so we shall accept that simplification. With the constant
¢ included in the g*’s, this condition then becomes

1) gv*g” + F+fl* = 1. (5.24)

The author postulates that other choices will at best provide a marginal improvement
and that if more accuracy is desired, it is much more efficient to iterate the suggested
implementations by using Algorithm 3.1 than to look for other normalizations of f and g.
Another alternative, which works very well in practice and which will also be evaluated
in Section VI, is to determine c from the continuous epproximations (4.3) and (4.17) by
which g = (2In2)/Cy) gt and g = (21n2)/Ciy )6 respectively.

Let us combine these remarks with the results of subsection V.C to summarize the
various DWT~!’s under consideration. We also shall take advantage of this opportunity
to add voices to our formulation wherever they were previously omitted. There are two
choices of g” under consideration. The double integral type is given by

l’;"’ = —Cl(ﬂv\f' ?:A‘/\@ {5.253\
) Av ¥ S g oy
with c; determined by
L— 1 ~
leaRe Y (g eg" + FofI? = 1. (5.255)
v=0
Alternatively, by analogy to the continuous case, we may set
2ln2
c . 5.25
2 IC, ( c)
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The voice normalization y~" in (5.252) comes from generalizing (5.14) along the lines of
(4.10b).
The single integral type (cf. (4.18)) is given by

~ 1

with ¢; determined by

L-1

1 ~

c1 Re g+ FfxflI* =1 (5.26b)
li &1 ’; 7 AR
or by analogy to the continuous case
2In2
. 5.26

a LCiy ( c)

One might, quite justifiably, wonder about the absence of 1/2' in (5.25) or (5.26)
when comparing them with (4.11) or (4.18). In the case of (5.25), it 1s (4.11b) not (4.11a)
which is relevant. More precisely, the reader is reminded that, aithough the input to the
DWT"! is the undecimated transform w'?, its output (5.17) corresponds to a time-shifted
decimated inverse; that is, to (4.11b) which has no 1/2'. The filter ? = 6/v?2 does supply
a factor of 1/ V2, However, it is absorbed into the normalization of ¥; n as detailed in
equation (5.14). This contrasts with the adjoint DWT~! where ? = f1/2 results in an
additional factor of 1/2 (fy/2 = 273/2 versus 2~%/2) which actually appears in (5.20) so
that the adjoint DWT ~!’s output corresponds to (4.11a). Finally, in the DWT ! specified
by (5.26), }' = §/+/2 is repeated i times producing a factor of 1/v/2* which appears in (5.21)
and corresponds to (4.17). A simple way to normalize ? is to take equality in (5.7); that

iS, znfn = 1/\/5

E. Summary
The following table summarizes the DWT ™! implementations treated in this section.

Table 5.1 DWT!

DwT! ? a s i Interpretation
Adjoint (Ad) % 2@ | 520 adjoint of (1.11)
7

o

Double Integral (DI) :ji )t | (517) | approx (4.3b) to (4.1)

15

\/,W

Single Integral (SI)

&y

é (6.21) approx (4.17) to (4.15)

Sl 8-
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Remarks

(a) The DWT™! is computed using undecimated wavelets w* according to figure 2.

(b) The relationship between () in the referenced equations and the filters g¥ is given
by gn = ¥*(—n) = 7" /%P(—n/7").

(c) In cases Ad and DI, it is assumed that g is real or that it is analytic; i.e., g,(w) = 0
for w < 0.

(d) In case SI, it is assumed that g is analytic or that g*! = g (i.e., g_(w) is real). Note
that neither condition holds for the Daubechies orthonormal wavelets.

(e) The definitions of the constants ¢; and ¢; are found in (5.25) and (5.26) respectively.

(f) The factors 1/2 and ¢z /v" appearing in the filters of the adjoint imply that it is the
adjoint with respect to the energy metric. See equation (5.2).

(g) In the case of an & trous implementation of Morlet wavelets, f = f' is real symmetric
and (g*)! = g is complex Hermitian. In that case, the t's may be omitted in table 5.1.

(h) The equations cited under § involve decimated wavelet coefficients even though 3 is
equal to the output of the undecimated inverse. See the introduction to subsection
V.C.

(1) The abbreviations, which will also be used iu Section VI, are Ad=Adjoint, DI=Double
Integration, SI=Single Integration.
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VI. COMPARATIVE PERFORMANCE OF INVERSES

In this section, we compare the three DWT ™! filter banks featured in table 5.1. To
this we add the standard frame approximation (5.15). Tie task is considerably more
complex than might at first appear. The performance of these algorithms i1s bound to be
both wavelet (including bandwidth, number of octaves and number of voices) and signal
dependent. In addition, there are variations on the algorithms which we would like to
investigate, such as the choice of ¢; and ¢; or the inclusion of the DC term. Also, one
may apply Algorithm 3.1 to these DWT ~!’s resulting in true left inverses. The qualiiy
of the particular DWT ™! then becomes a question of the speed of convergence of the
iterations. One perfectly legitimate question, that of the relative behavior of these inverses
after filtering in the wavelet domain, is beyond the scope of this paper.

In order to put some reasonable bounds on what will be an essentially empirical study,
we restrict ourselves to Morlet wavelets of the form

z/;(t) — ﬂ1/2 r=1/4 eisnt/4e-p’z’/2 (6.1)

and consider only two signals, a discrete impulse and a sinusoid. They are the prototype
examples of two major classes of signals, narrowband and broadband. The former outputs
the transfer function of the linear systeee DWT ™! ¢ DWT which may then be compared to
that of a true left inverse, in this case a delta function. Except to examine the single stage
behavior, we shall fix the number of octaves at three, that is,1 = 0, 1, 2. The frequency
bands of these octaves are [0.25, 0.5], [0.25, 0.125], and [0.125,0.0625]. The sinusoid which
we shall use is sin(0.1t), sampled at At = 1. Consequently, its energy is concentrated in
the last octave. Ollier sinusoids yield sinrl.w results; however, it should be weniloned tlat
the placement of the sinusoid frequency relative to the centers of the voices g¥ does make
a difference. Also, to avoid the effects of the onset and termination of the input (which
resemble impulses and thus are broadband), the sinusoidal signal is generated from 0 to T,
but only data in the interval [T /4, 3T /4] are used for comparing the signal to the wavelet
inverse,

An extremely important aspect of this study is the choice of error criterion. The most
obvious is to take a function of the differerice s — 8. Although this works quite well in the
case of the impulse, problems occur for the sinusoid. The algorithms produce an accurate
sinusoidal inverse, but they do not preserve the amplitude; that is, they reproduce the
signal up to a multiplicative factor. For example, for a sinusoidal signal of unit norm and
one typical DWT ™! o DWT, the root mean square error for the raw inverse was 0.125,
but after the inverse was normalized to have unit norm, the error was only 0.007. Under
the same circumstances, the rms errors for the impulse were 0.33 and 0.34 respectively.
Consequently, in order get a measure of the quality of the inverse exclusive of the amplitude
factor, we shall base our criteria on normalized signals.

A Sn 3Jn
Ay = | — — = | . (6.2)
" sl ilsll
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Qur error function shall be the root mean square error

1
2 ~
s—8
€rms = (E Ai) = _”_WU. . (63)

where 8' = (]|s]|/||sl|)S. Ancther possible choice, for example, would be the maximum
absolute error €., = max, Ap. For convenience and without loss of generality, the signal
will always be chosen such that ||s|| = 1. By alsa displaying the output energy ||$||%, which
for a true left inverse should be 1.0, we keep an eye on the amplitude mismatch. We
emphasize, however, that the discrepancy in the norms |[S]| and |[s]| is signal dependent
and simply renormalizing the inverse does not solve the problem. Clearly, when the signal
consists of a mixture of narrowband and broadband components, the amplitude distortion
introduced by the DWT ™! is more than a simple multiplicative factor.

In order to dispel the visual vacuam, we begin, in figure 3, with plots of three typical
inverses. All three reproduce the impulse, but with noticeable side lobes. The large dip
at zero for the frame approximation (Fr) is due to the lack of a DC term. The only other
obvious qualitative difference is the smaller support of the single integration (SI) formula.
A great deal more may be said from an examination of table 6.1. We are immediately
struck by the high quality of the inverses for narrowband signals. Perhaps this accounts
for the success of the standard approximation in many applications. On the other hand,
the behavior for an impulsive signal are often inadequate. 1his implies that iteration may
well be necessary and cousequenily should be an important counsideration in evaluating the
various inverses. The four inverses appearing in table 6.1 are presented in approximate
order of quality. The SI inverse has the smallest error and is by far 4he most efficient to
implement. Although only a few parameter values are presented here, these inverses seem
to exhibit a similar relative behavior over a large range of values of 5 and of L.

S bete=0.125 L=8 0¥ botow0.125 L=8 Fr bpto=(.129 L=8
ral o vol

o) oar L ] od l

NN PO ST WU AU

-568 -y wy "o 85 -y wr 6» 800 -7 |:1
e ™ ™
(a) (b) (c)

Figure 3. The transfer functions (DWT o DWT 1) of three selected inverses, The signal is an impulse,
and the forward transform is a Morlet wavelet with 8 = 0.125, four octaves, and 8 voices. The inverses

shown are (a) single integration, SI; (b) double integration, DI, (c) and the frame approximation, Fr.
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TABLE 6.1 Comparison of Four Inverses (3 octaves).

impulse sine
bpwT-! B8 L RMS ENERGY RMS ENERGY
SI 0.5 4 0.31 1.00 0.0024 1.19
6.125 8 0.22 1.06 0.039 0.55
DI 0.5 4 0.34 0.88 0.0069 0.77
0.125 8 0.26 0.99 0.044 0.49
Fr 0.5 4 0.50 0.65 0.0072 0.67
0.125 8 0.39 0.87 0.050 0.60
Ad 0.5 4 0.32 0.96 0.0083 0.77
0.125 8 0.54 0.78 0.067 0.31

Figure 4 illustrates the Neumann iterations (cf. Algorithm 3.1) for a DWT of type SI,
and table 6.2 compares the results of such iterations for the four major types of inverses
when the original signal is an impulse. Inasmuch as the energy rarely increased under
DWT o DWT™! and always less than a factor of 2, 4 was nominally set to 0.5. In the
absence of other criteria, SI seems to be by far the best choice. The incredibly slow
convergence for Fr is due to the lack of a DC term. (Optimizing u made little difference.
The iterations of Fr do not converge much faster for larger x and diverge in the region
of 4 = 3.) In fact, the same difficulties occur with the other inverses if the DC term is
omitted. Without it, one must include a sufficient number of octaves to encompass all of
the signal’s energy whether or not a fine scale analysis of the lower frequency energy is of
interest. For an impulse, whose energy covers the entire spectrum, an inverse without the
DC term is particularly poor. Note that a DC term may be added to the Fr inverse by
constructing the scale function ¢(¢) and including the term

1 ,/m

S, L rmo ,
Lnd M,n 1/Q.Mq)KZM ] \

(o}
.
N

in equation (5.15). In view of the other inverses available, this dces not seem to be worth
the effort. It should be mentioned, however, that the frame expansion does provide a
continuous interpolation of the signal (i.e., replace m by t), a property not shared by
the DWT-!. Finally, we remark that the difference between the expressions (5.25b) and
(5.25¢) for ¢y or between (5.26b) and (5.26¢) for ¢; seems to be insignificant.
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Figure 4. The result of performing Neumann iterations on the inverse SI after (a) 5 iterations and (b)
10 iterations. The forward transform had § = 0.125 and L = 8; the iteration factor was u = 0.5,

TABLE 6.2 RMS errors of iterated DWT ! with Morlet wavelets and
implulsive signal; 8 = 0.5, 3 octaves, L =4, p = 0.5.

NUMBER OF ITERATIONS
DWT-! 1 5 10 25 50 100

SI 0.264 0.120 0.048 0.0038 0.000067 2.916°7
DI 0.308 0.190 0.115 0.033 0.0050 0.00016
Fr 0.461 0.371 0.322 0.284 0.273 0.264

Ad 0.283 0.162 6.091 0.020 0.0021 0.00012

The number of voices, which is really a parameter of the forward transform, is par-
ticularly 1elevani to the quality of the inverse. The optimal number of voices (for a given
B) tends to be that given by equation (4.29) with equality, that is, approximately 1/4.
Too few voices greatly degrades the results. Without iteration, additional voices make
little difference. However, a degradation in the speed of convergence of the Neumann it-
erations does seem to take place with additional veices. For example, let § = 0.25, for
which the suggested number of voices is L = 3. Then, the mse errors of SI at iteration
10 for L =1, 2, 3, 8 are, respectively, 0.25, 0.018, 0.0032, and 0.028. This phenomenon
is somewhat surprising inasmuch as adding voices tends to make a tighter frame [3], [4].
However, ultimately, convergence hinges on the specific eigenvalues of the functional itera-
tion, which, in turn, depend on the filter f and on u as well as the number of voices. The
value used, g = 0.5, is well below the point of instability, which for the above range of
parameters occurs between p = 1.0 and u = 3.0. The best convergence seems to occur near
instability (although there is a short interval just before that point where it slows down).
Further study would be needed to fully explain the situation. Note that the minimal values
satisfying (4.29) for f = 0.5 and § = 0.125 are L = 1 and L = 6 respectively. However,
since for visual presentation it is a good idea to use at least four voices, and since it is
convenient to pick I ~ 1/, we have used L = 4 and 8 in the above presentation.
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VII. COCNCLUSION e
®
The standard inversion procedure for discrete nonorthogonal transforms is a finite o
expansion in terms of the analyzing wa.ve.let._ While this so-called wavelet sertes or frame X
approximation works quite well for many signals, it fails to achieve good accuracy or ~

requires an excessive number of scales for others. To remedy the situation, we have pro-
posed an inverse filter bank DWT ™! as a prototype inverse discrete wavelet transform.
It provides a unifying framework under which the various (approximate) lefi, inverses are ®
obtained by varying the filters. For example, it was shown that the adjeint transformation
of the undecimated discrete wavelet transform is computed by using the adjoints of the
filters from the forward transform. More generally, within this context, we have exam-
ined the properties and interrelationships of dual wavelets, metrics, pseudo-inverses, and
discretizations of continuous inverses. In particular, we have found that the absence of o
decimation results in dual wavelets that are time invariant, and that the standard frame
approximation may be interpreted as an interpolation of a DWT~!. Finally, in addition
to the adjoint, we proposed two other discrete left inverses, which use filters based on
continuous integral formulae.
Two major differences stand out between the standard frame approximation and the L
inverses discussed in this paper. They are the use of the undecimated wavelet transform
as input to the DWT! and the inclusion of a DC (low-frequency) term which is lacking
in the frame approximation. Avoiding decimation does provide redundancy and, hence,
a potentially better approximation. However, our preference for not decimating actually ‘*
stems from the forward transform. A desire to achieve finer output resolution coupled L o ’
with time invariance makes the undecimated DWT the natural setting for nonorthogonal 1
{

wavelets. Given this situation, it makes sense to use an inverse that exploits all the numeric

information available, The lack of a DC term in the frame approximation is a more serious

issue. It leads to poor accuracy in the case of broadband signals and even implies that the i

composition of the forward and inverse transforms is singular so that iteration need not L i

converge to a true laft inverse. 1
The best among the inverses studied seems to be the single-integral inverse. This :

inverse is equivalent to simply summing the weighted wavelet coefficients across scale. It is i

by far the most efficient computationally, is generally the most accurate, converges much |

more rapidly than others under iteration, and does not increase the support of the DWT. » !

The latter property is quite useful, inasmuch as it implies that filtering in the wavelet

‘domain is a quasi-local operation in time. That is, the value of the DWT™! at a given

time only depends on the wavelet coefficients at that time.!! A potential drawback is that

the single-integral inverse does not represent an orthogonal projection under the energy

metric. However, to date the author has been unable distinguish any negative impact. »

11We use the qualifier quasi because this does not remain true under iteration. That is, the corre-
<ponding exact left inverse is not a local operator.
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APPENDIX A. MORLET WAVELETS

The generating Morlet wavelet (of L? norm one) takes the form

1/2 .
() = Ty e eI (4.1)

There are two parameters, v and 3; however, in general only the ratio #/v is significant
since the family

1 ,B ivtfa _—p%t/a)?
Pi(t) = 77r1Me te g=F e/ (A.2)

obtained by scaling only depends on #/v. The Fourier transform of (t) is

1:/)\(w) = g/t V2/8 g~ (w28 , (A.3)

and the energy normalization constants Cy and Cyy of equations (1.1) and (4.16) are given
by

cy & /oo _Ilp_(‘i)l_zdw

_—
9 [ lw=n)?/p?
= - ——— dw A4
5 ) T “d

and

Q
<
>

f°° $w)
~oo IWI
6(c‘.r—u) /2p*

We define the half-bandwidth, Aw, and the half-duration, At, to be the point at which
4| and || fall to 1/e of their peak Vd,lue ie.,

= V2p (A.6a)
=2/ . (A.6b)
The area occupied in phase space is thus
(2Aw) (2At) = 8.0 =~ 27 . (4.7)
Note that the ratio ro 5 48
At T '
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reflects the shape of the region. Smaller 3 increases frequency resolution while decreasing
time resolution. Since (A.8) depends on 2%, the shape is fairly sensitive to §. At octave
i relations (A.6) become Aw = 28/2¢ and At = 2' v/2/4. Although the product of
these two remains the same, their ratio is Aw / At = % / 22, Thus, (A.8) is a rather
unsatisfying description of #. A more invariant and intuitively useful description of 8 is
the relative frequency resolution. Since, the center frequency of ¥ is v /2, the ratio of
the bandwidth to the central frequency is (2v28/2') / (v/2') = 2v24 /v, which is
independent of i.

Discrete Case

For convenience, we set the sample rate to be 1. Thus, the highpass filter g is de-
termined by the samples (n). Nyquist, the highest frequency representable, is w = .
Hence, in order to avoid aliasing we must pick

v < m—Vv28 . (A.9)

For f = 0.5, the maximum value of v is about 3n/4. If v is larger, the energy will alias,
and the continuous function corresponding to g will not be the Morlet wavelet 1. That
15, the DW'T will be the wavelet transform with respect to the aliased function. Also, in
order that 3 be admissible, the spectrum must be essentially 0 for w < 0, which holds
sufficiently closely if [2] - [5]

v
"2-;; .

B <

To achieve this, we take # < 0.5 and v = 7 — 0.707.

The bandwidth of the upper half of the spectrum is /2. In order that the transform
retain all the signal energy, and hence invert in a numerically stable fashion, the highpass
filters must cover the spectrum from 7 /2 to 7. That is, we must have enought voices to do
this. If v = 2'/F where L is the number of voices, then voice » has bandwidth 2 V28 /4.
Thus, the total bandwidth covered is

(A.10)

] 1
W ~ 2v3p (14142 L)
AN I !

al—=1
/ /
1
Also,
, 1/L 1 .
Hence,
L
TBW =~ V2= =~ 2Lf . :
y V2fi= Ly (A4.13)
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To cover the spectrum, we must have 2L 3 > n/2; i.e.,

L>wz

1
—_— ﬂ /3 )
which is generally valid for 8 < 0.25. A more precise formula is obtained by setting (A.11)
greater then m/2. That is, # > (7 /2+v/2) (1 — 271/L ) which yields,

(4.14)

In2
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APPENDIX B. CONDITIONS FOR BOUNDED TRANSFORMS

We derive several conditions for uniform boundedness (i.e., as M — 00) of the DWT,
the DWT™!, and their composition. We begin with necessary conditions expressed as
constraints on the filiers at w == 0, and finish with a set of sufficient conditions (analogous to
(5.4)) for boundedness of the composition. For notational clarity, we restrict the treatment
to a single voice.

From figure 2,
0
= (D'g) + [] [(Df)]s (B.1a)

j=i-1

H (D f) + (B.1b)

with the obvious interpretation for « = 0in (B.1a). Using{2.14), we obtain the z-transforms
of (B.1) and (5.6)

-1
wiw) = [ f(20)] g,(20) 5.(w) (B.2a)

=0

M--1
s¥() = [ f.2w)s:(w) (B.2b)
=<0

i—1 M—1

-5 WG Wi + [] Fee) W . (B3

=0 J..—_' J=0

Composing (B.2) and B.3), we have

—

i—1 i~1

- [2 I1 7.2 [] £.2%0) .2%) g,2')

=0 ;=0 7=0
RN N
S § QR § | fz(z'w)J‘ﬁz(w) (B.4)
j=0 J=0
The metric induced by (5.2) is
M-l
' B
o, 0 = 30w + s lisMIE (B5)
i=0

It follows from (B.2) and (B.3) that (5.5) and (5.7) are necessary conditions for the DWT
and DWT™? to be bounded with respect to this metric. Also, from (B.4), equation (5.8)
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is & necessary condition for their composition to be bounded. We demonstrate (5.5): If
the DWT is bounded {as M — o00) there must exist B > 0) such that for all M and s

o7 [l de < B [l do = Bsl? (B.6)

Suppose that |f,(0)] = V2(1 + B) > V2. Then, there exists an € > 0 such that |f,(w)| >
\/i(l. + a) > V2 for |w| € e. Take s such that s,(w) = 0 for |w| > ¢/2¥. Then
[F.(2'%W))? 2 2(1 4 a)? for t < M and |w| < /2™ so that (B.2b) implies that
1 M 2 1 M 2M / 12
-— s, (w z2 —2(1l4+a sz (w)|”
g [l 2 gerarer [ s
= (1+a)™[s:]* , (B.7)
which contradicts (B.6). Thus, for boundedness, we must have |f,(0)] < +/2. The other
proofs utilize g,(0) = g,(0) = 0.

We consider the composition DWT ™! o DWT in more detail. From figure 2a, we
have

s = (D'HFH + (DGW' (B.8)
Taking the z-transform and combining it with that of figure 2b yields
Siw) = L2WET(W) 4 9.(2'w) wi(w)
= f.(20) (W) + §.(2')g,(2w)s}(w) - (B.9)
Lemme Suppose that

If, () F.(w)| + CT} G, (w)g,(w)] < 1 forallw (B.10)
where C > 1. Then, . _
Biw) € Clsiw)! . (B.11)

Proof For i = M, we have 5% (w) = s¥(w). Assume the lemma is true for : and prove it
for i — 1.

W) < 1F.QTIW)E W) + CTHE, (27 w) g, (2 w) CsTY

< £.27w)Osiw)] + €7 G, w) g, (27 w) C's
[£.(271w) £ w) Ot w)] + C7F (2 w) g2 w) C s

< Clst™Hw) . (B.12)

A C 2 1 satisfying (B.10) exists provided |f,(w)f,(w)] < 1 and
l9.(w) g, ()]
1- |fz(w) fz(w)l

(B.11) implies that |3} < C? ||s||®. If g is complex then, a forteriori, ||[Re§||? < C? |is||2.

< oo forallw . (B.13)

Thus, (B.13) is a sufficient condition for DWT™! 0 DWT to be a bounded transformation.
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APPENDIX C., NOTES ON DUALS

The k** column of a matrix represenis the image under the transformation of the k*h
basis vector in the domain. Thus, if A is a matrix representing the forward DWT, its ktk
column Wi = [As]. 4 is the image of [s]a = Skn. But, Win = 3. Sm¥Pin(m) = Pu,n(k).
Thus, the rows of A correspond to the basis vectors ¢, .(-). Under this carrespondence,
we have

(ATA) ANk & S (ATA)TL win(m) = Pin(k) .

In other words, the discrete pseudo-inverse (At A)ATw may be interpreted as an expansion
in terms of dual vectors where the duals ¥, (-) are given by (A'A)—llei,n(-) and ¢; (')
are the columns of Al.
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APPENDIX D. PLANCHEREL RELATIONS AND
CONTINUOUS INVERSION FORMULAE

Let !(t) and 1*() be two admissible wavelet functions and s'(t) and s%(¢) two signals
in L?. Then the inner product of the corresponding wavelet transforms, with respect to

the measure dadb/a?, is equal to the inner product of the two signals up to a constant
dependent on ¢! and ¥?%. That is 3],

o0 d [0 =] a
/ :1; db <s!, Py > <yp?y, P> = Cyry2 <s!, s?> (D.1)
-0o0 —00
where - e
Cpryr & / $1 (W) P2 (w) — . (D.2)
-0 Jw|

If we abuse the requirement that s* be L? (which can be justified if we consider s2 to be
a distribution) and take s?(r) = §(t — 7), then (D.1) yields
1 * da

W= [ G / @< P (D3)

If % = ¢! = ¢, (D.3) becomes the double integration inversion formula
1 [® da [* 4 ia
s(t) = 07/_00 = [ s wiwe (D4)

where Cy = Cyy and W = <s, Yy >. Relation (D.4) differs from (1.5) inasmuch as it
includes negative values of a (see below). Similarly, if $2(¢) = 6(¢) we obtain the single

integration formula. It is clear that (D.2) becowes f % |w| ™! dw = Chy of equation (4.16),

and since ) o
/f(b) ﬁé(_a—-> db = /laf £(t) ,
(D.3) becomes

1 > d
s'(t) = o 'T%: <s', ¥ >
.y L/]q/) J_m |alu/b
1 ®  da
= —— — W°(t) . ‘D.5
Cw‘/_m |a|3/2w() ( )

Formulae for a > 0

We consider formulae for positive a. Let us write LHS,+ for the integral of the left
hand side of (D.1), but with a restricted to [0, co]. The derivation in [3] yields

wisu = [ adw e [ 2 ) () (D.6)
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In order to render the second integral mdependent of w through the substitution a' = aw,

we need to have [ ¢ a)z,bz(a)]al_lda = [ P (-a)1/;2(—a)|a| 'da. This will hold true,
for example, when %! and ¥? are equal and real. In that case, the result is

o0 o0
/o c%g/ db <s', Pf> <y, 2> = %Cw <s', s> withepreal . (D7)
——w “

We observe that (D.7) is & Planchere-type formula stating that the wavelet transformation
s — (2/Cy)"/* W§ preserves inner products.

Let
(v D) —_—— dw
C¢1¢2 = /(; P (w) pHw) |Tu_| ) (D.8a)
0 o d
s 2 /_ PH{w) W(w)'—w‘il : (D.8b)

.o>|

o0
<s!, stst £ / (D.9a)

/ ec (D.9b)

w
!
e

Then (D.6) may be rewritten
LHS,+ = Chy<s', s>% 4+ Cpa<s!, s°>7 . (D.10)

2

If s! or s? is analytic, then < 8!, 2>~ =0 and <!, s? > = < 5!, s >% so that

<.s],

a o0 a a
/ = / db <st, Pl > <ty 7> . (D.11)
,/,1,,, ~o0

If 1! or 12 is analytic then C¢ g2 =0 and Cyry2 = cwﬂ S0

1

2+ 1 * da [ 1,10 20 2
<8, 87> = = db <s', Py > <9, sT> . (D.12)
Yy 0 —00

Finally, if in addition to the analyticity of ' or %2, s' and s* are both real, we have
<!, 82>~ = < g1, 82 >* 50 that (D.12) becomes

*d * a a
<s', s¥> = Re {C,pl.pz ./o. a_(; / db <s', Pty > <yp?,, § >} . (D.13)

Taking 3! = ¥* = ¢ in the above formulae, as well as $%{r) = §(t — 7), we obtain the
inversion formulae
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2 [®da [T o
S(t) C¢/ ;—2‘ Joo db Wba 1/)b (t) real l/) (D.14)
2 ® da [ e ra .
s(t) = o Re — / db W 9p(t) real s, analytic ¢ (D.15)
¥ o a —0o0
1 (*da [* :
s(t) = = - db Wy ¥p(t) analytics . (D.16)
C‘p 0 a ~00

To get the single integration formulae, we take #2(¢) = §(¢) in (D.6) obtaining

/0°° |a|3/2/ db <s', ¢ > $*(3) / dw ' (w) 8*(w) ~¢(au) . (D7)

Defining @
A b a—_—

and C|, v similarly, we have

*®  da o
/0 _—Ialm /_w db < s, g > s%b) = C'w<s s>t 4 Cl—-p<51’ st>= . (D.19)

If either s! or s? is analytic, this yields

1 oo
<s!, s¥> = Z'?';./; |a|3/2 / db <!, 98 > s2(b) with s or s? analytic .

(D.20)
If ¢ is analytic

1 o)
<s', >t = G / |a!3/2 / db <s', 92 > s2(b) with ¢ analytic . (D.21)
1y Jo

If s* and s® are real, and y?(w) is real, then Cf"l, and Cf./; are real so that

LHS + LHS = (C’;"‘p-i- Cry) <s!, ¥ >, (D.22)
This yields
2 o0 -
<sl,32>=61—;Re/0 ||3/2/ db < s, pf > s2(b) withreal s', s%, 9 .
(D.23)
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The corresponding inversion formulae are

2 *  da o ~
s(t) = El—w Re /(; |—a|3—ﬁ <s, Py > real s, real P(w) (D.24) »
(t) = Re{ 2 /m da__§ pes ! Iyt (D.25) |
E] = Cro o a7 s, Py real s, analytic 2
1 ™ da -
) = —— _ a tic s . .
s(t) C:-./,/o‘ B <s, P7 > analytics (D.26) |
Note that in (D.25), Cyy is generally complex. Also, there seems to be no simple single
integration formula for real s(t) with real y(¢).
¢
]
» ¢
»
»
]
»
52
»



APPENDIX E. DERIVATION OF (5.19) and(5.20)

In this appendix, it is convenient as well as enlightening to base our derivations on an
alternative implementation to that found in figure 2; one which, despite appearances, is
more directly related to the decimated transform of figure 1. Since w§ = w; ¢, and since w*
is translation invariant, one may compute the undecimated DWT, w', by translating the
signal by n and then computing w; (cf. (2.9)). This may be efficiently implemented by
the structure pictured in figure 5 [2]. This diagram is most easily visualized as 2% copies
of figure 1. The even and odd branches represent a splitting of the time series into its even
and odd samples. Each horizontal path through the diagram is identical to a decimated
DWT filter bank, and represents a time advance of the signal by 3", 2'¢; where ¢; is 1 for
odd branches and 0 for even branches. A given path gets repeated every 2M samples. If
we index the paths by r, we see that as » goes from 0 to 2' — 1, the paths correspond to
the sets of wavelet coefficients w;(r).

(L™

")

g‘l "% (SZ)O m
o W”m— =N Ei

— e f
*h P
1
(s') | : ,
odd (%) | : l
Figure 5. Implementation of undecimated wavelet transform by multinlexing decimated
transforms.

The implementation of the DWT ™! corresponding to figure 5, is obtained by simply
inverting its data flow. In this direction, the outputs of the filters f and g are summed
while the junctures of even and odd branches are to be interpreted as multiplexing the
two time series. This multiplexing can be represented by inserting 2 zero in between the
samples of each channel, delaying the odd channel by one, and adding the two channels.
The insertions are equivalent to applying the dilation operator ID. This accounts for the
delay difference of one sample between adjacent channels resulting, ultimately, in a delay of
r samples for path r relative to path 0. At octave i, f*D will be repeated ¢ times producing
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a contribution at time m of the form [(? * 1) g * wi(r)lm—r from path r. Adding these
contributions, we find

M-12'-1 2M
Smo= 3 Y (FADY @ Wi mer + Y (FDM (e - (E1)
1=0 r=0 r=0

This is equation (5.19). To prove that it actually computes the DWT ™!, we must demon-
strate its equivalence to (5.6).
Let us take the z-transform of (1.1). We first observe that

201 2t-1

ZWiz—k = Z Zw;;n_l_rz”zl"‘r = Z Zz"'wi,n(r)z_zln , (E.2)
k r=0 n r=0 n
which yields
wiw) = Y 2TTwi(r).(2'w) . (E.3)
r=0
Also, one has, for arbitrary vectors x and y,
(y *Dz), = y.(w) x;(2w) . (E.4)

Repeating this ¢ times, we find

((v+D)'xls = H () xa(20)

= I(Djy)z(w) x,(2'w) . (E.5)
j=0

Substituting g * w;(r) for x, ? for y, and summing over r, we obtain

2V -1 2f—1 i—-1

Y 2T (f + DY@+ wi(r))]: = S“z-mew (w) §,(2'0) wi(r).(2'w)
r=0 r=0 J
= T Pute) D), wite) (E6)

This is the z-transform of the contribution of w! to s (cf., (5.6)). Summing over octaves and
including the DC term, we obtain equation (5.6); that is, the algorithm of figure 2b. This
proves (5.19). To complete the derivation of (5.20), we note that [gt+x]m = 3 p(m—n)z,.
Replacing 1 in (5.18) by ¢'(¢) = 2.0 Zan¥(t —n) and g in (5.18) by ¢’ 2 g’ +x where
[¢')m = ¢'(m), we have

(F * D)(g" + )]~ Z¢7 ;b(—- - f) Zn = Zz/).nt" . (E.7)
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