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Abstract 

This paper describes the design of a protocol stack implemented in Standard ML. Standard ML's 
signatures are a language construct which can be used to specify or constrain the interface of a 
module. The design includes both a generic signature which generalizes all the protocol modules, 
and individual signatures specific to each protocol module. The specific signatures all inherit from 
the generic signature. The implementation of each protocol is parametrized, so protocols can be 
composed into custom protocol stacks. The parameter to each protocol is constrained only by the 
generic signature, and this lets any protocol instance satisfying a specific signature be used as the 
parameter to any other protocol. As a result, the design and implementation are highly modular, 
and syntactic compatibility between modules is checked by the compiler. To provide some context 
for the discussion of the signatures, some of the details of the implementation are also presented. 
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1 Introduction 

Network communication protocols are designed to be reliable and efficient, transmitting large vol- 
umes of data with high throughput and low volumes of data with low delay, and to correctly handle 
errors introduced by the network. The implementation of network protocols involves programming 
at both a low level, for example the hardware and interrupts of the machine, and at a high level, for 
example error detection and retransmission of lost packets. The complexity of the protocols and 
the complexity and concurrent nature of the system both contribute to making the implementation 
of network protocols a very complex task. 

Careful design and structuring techniques are extremely important in programming complex 
systems. Besides increasing the reliability of the system by reducing the number of errors and 
allowing them to be detected earlier, good structure also reduces maintenance costs. Structured 
design also helps reduce the occurrence of those programming errors that are especially hard to 
detect and correct, particularly errors in defining and implementing the appropriate performance 
tradeoffs between latency, bandwidth, and cost that are required of network protocols [7]. 

In spite of the use of structured programming techniques, the organization of many implemen- 
tations of networking protocols is still quite poor. There are many reasons for this, but we see the 
use of the C programming language as a major factor. C, and its descendant C++, are popular in 
part because they make the programming of low-level operations and data manipulation easy and 
somewhat portable between different architectures, and because the performance of the compiled 
code is easily predicted. C however offers only minimal facilities for expressing module structure 
and completely lacks facilities for enforcing abstraction boundaries. Furthermore, much of the 
efficiency of C programs is obtained by the use of unsafe low-level operations such as pointer arith- 
metic. The combination of missing support for abstraction with the presence of unsafe operations 
makes it possible for many kinds of hard-to-find errors to occur, including type errors, allocafon 
errors, and bad pointers. These errors are seen much less frequently, if at all, when using more 
advanced languages, 

This paper reports on initial progress in implementing network communications in an advanced 
programming language that offers considerably more support for structured programming, type 
checking, and enforcement of abstractions than is provided by C or C+ + . We present some details 
of an implementation of the TCP/IP suite of network protocols, written in a programming language 
based on Standard ML (SML) [4]. This pilot study is part of the Fox project which, using modern 
language design based on formal semantics, seeks better understanding of language design issues 
and the development of language design principles for real-world programming ['2]. 

The remainder of this paper first summarizes the terminology and concepts used to describe the 
design and implementation of network communications software. The next section recasts these 
concepts in terms of ML language structures, followed by a presentation of our system, particularly 
the high-level design choices we have made. The paper then presents some ideas that can only 
be applied to our design because we have a structured design in an advanced language, including 
automatic program transformations to produce more efficient code. We conclude by summarizing 
both the related work in the field and our own results. 

2 Network Communications Systems 

The terminology used for network communications systems often depends on the specific type 
of network communications system being discussed, and is not always used consistently. To fix 
terminology we give definitions of the terms layer, protocol, protocol stack, and instance, which will 
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be used in the remainder of this paper. 
A network communications system can be viewed as an implementation of an abstract machine. 

Apphcation programs (clients) communicate through an interface represented by this abstract *' 
machine.   A client may use this interface as a building block in building further abstractions. * 
The technique of using one abstraction in defining another abstraction is so useful and common in 
networking that it has been given a name, layering. The term layer refers to a network abstraction. 

In keeping with conventional usage, we use protocol to refer to an implementation of a layer, 
that is, an algorithm that reahzes a network abstraction. A protocol stack is an implementation of 
a communication system that is described in terms of a set of protocols, in which each protocol im- • 
plements the corresponding abstraction in terms of another abstraction upon which it is "layered". 
If a protocol is layered on top of multiple lower-level abstractions, or conversely if an abstraction 
supports multiple higher-level protocols, the protocol stack is more properly known as a protocol 
graph, though we do not use the term in this paper. 

We understand an instance of a protocol to be the execution of a program implementing a _ 
particular protocol on a particular system; there could potentially be several instances of the same 
protocol within the same system at the same time. In practice, the state of an instance is sufficient 
for representing the instance. Finally, the peer of a given instance A is the instance B with which A 
is communicating; whenever A communicates with itself, A is its own peer. 

We sav that an implementation of a network communication svstem is well-structured if: 

• it has a distinct protocol for each layer 

• all the peers of each instance of a protocol are other instances of the same protocol, 

• the layered structure is realized using modules and explicit interfaces. 
• 

The standard example is the TCP/IP protocol stack. The IP layer supports unreliable trans- 
mission of data. The TCP layer supports reliable delivery of "'correct" data. TCP is built on top of 
IP. IP itself is layered on top of hardware-specific protocols such as Ethernet or ATM. Data handed 
by TCP to IP may or may not be delivered to the intended destination, may be corrupted, or may 
be delivered multiple times. TCP attaches a unique identifier and check bits to each message sent. g 
and exchanges messages with its peers to retransmit any messages that have been lost or corrupted. 

It is a simple observation that many implementations of network communication systems are 
not well-structured according to our definition. One of the explanations we see for this situation is 
that network software is usually implemented in C, and C fails to support and enforce the concept 
of modmes with clean interfaces, as it fails to support and enforce many of the typing mechanisms 
that reduce the occurrences of type errors. 

Another explanation for this lack of structure is that some optimizations are only possible if 
layer boundaries are violated. For example, a particularly clean, but inefficient, implementation 
of a layered protocol would copy the daia and perform a context switch every time the data had 
to cross the boundary between two layers. A more optimized implementation would rmly copy 
the data when absolutely necessary, and avoid context switches between layers by usinj; .he same • 
thread (where possible) to execute the code for all the layers. Taking this to an extreme means 
removing all the boundaries between layers. This merging of layers is similar to the loop fusion done 
by Fortran compilers and to the deforestation techniques used by functional language compilers: 
it reduces intermediate storage and the operations required to store and retrieve the data, and 
therefore sav^    time and space.   Unlike these compiler techniques, the layers of communication f 
software are typically merged by hand and optimized at the source code level, in a technique called 

'     !•.>    4 '•■ 



Integrated Layer Processing or ILP. The disadvantage of using ILP at the source code level is that 
it completely destroys the structure of the protocol implementation. %j 

Finally, the definition of protocols developed prior to the standardization of the ISO reference f 
model [8] sometimes fails to satisfy our criteria for being well-structured.  This is most blatant in 
the definition of the TCP protocol, which makes use of some fields from the IP header. This means ff) 
TCP is actually receiving information from a different layer's peer, which violates the layering 
principle. As a result of this violation, TCP has to be modified before it can be used on top of a 
protocol other than IP. 

One recent and notable exception to these poorly structured network implementations is the 
software produced by the x-kernel project [5], which has developed implementations of protocol 
stacks that are well-structured and highly modular. In the x-kernel, all layers provide the same 
set of procedures each with the same set of arguments. As a result, a protocol need not know 
which other layer it is running on top of, and protocols can be layered almost arbitrarily to build 
custom protocol stacks that can provide the different performance tradeoffs required by different • 
applications. 

The x-kernei does not use ILP. As pointed out by Clark and others [1], many of the costs of 
traditional protocol implementations are due to inefficient implementation of many of the operations 
required for protocol processing, not to layered structure. By concentrating on avoiding unnecessary 
context switches and data copying, the x-kernel achieves efficient data transmission and reception 9 
while retaining a clean design whose structure is the same as that of the protocol stack [5]. This 
shows that while integrated layer processing may provide improvements in performance, a well- 
structured design can achieve good performance even without ILP. 

Our work has been inspired by and has taken many ideas from the x-kerners structured design. 
Unlike the x-kernel, we have developed formal interfaces for our protocols and expressed them in Ä 

SML. The next two sections explain the general principles we followed in developing the formal 
interfaces and the details of the interfaces, and explain how the interfaces fit in our implementation 
of the TCP/IP protocol suite. 

3    Structuring Communication Systems in Standard ML I 

■Ar have develo* I a well-structured implementation of a simplified version of the TCP/IP protocol 
suite1 in a langua^.; based on Standard ML. Our implementation is known as the FoxNet. This 
section gives aa overview of the FoxNet, omitting details in the interest of giving a feel for the 
overall structure and how it is realized in SML. 

In our overview we present SML signatures, structures, and functors. An SML signature spec- I 
ifies an interface to a module; a module may implement multiple, different signatures, of which 
exactly one is the most specific signature. Conversely, a signature is a collection of conditions a 
candidate implementation of the interface must satisfy. An implementation of an interface specified 
by a signature is an SML structure; the structure must have a concrete type for every type specified 
by the signature and a value for every value specified by the signature. A functor is a parametrized | 
structure; the parameters of a functor may themselves be structures. A functor may be instantiated 
multiple times, with the same or different parameters, to produce different structures. 

'Our simplified implementation would be a full TCP/IP if it implemented TCP and IP options and IP frag- 
mentation. The TCP and IP standards specify not only headers that accompany every packet, but also optional 
sub-headers known as options. Since options are not required for normal operation, nnd since most implementations 
never use them, we have chosen not to support them for now. For the same reasons we do no,, yet support reassembly 
of IP fragments. 
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Figure 1: Standard TCP/IP Protocol Stack 

3.1    Protocol Building Blocks 

Our protocol stack is built by instantiating functors. Each functor takes as an argument the 
instantiated functor(s) implementing the layers below it. For example, the typical stack containing 
TCP, IP, Ethernet, and a device interface is built as follows. 

functor Tcp  (structure Lower:  PROTOCOL):  TCP_PK0T0C0L =  ... 
functor Ip  (structure Lower:  PROTOCOL):  IP-PROTOCOL =  ... 
functor Ethernet  (structure Lower:  PROTOCOL):  ETHERNET-PROTOCOL =   ... 
functor Ethernet-Device 0 :  DEVICE-PROTOCOL =  . .. 

structure Device-Instance = Ethernet-Device  () 
structure Ethernet.Instance = Ethernet  (Device-Instance) 
structure Ip-Instance = Ip  (Ethernet-Instance) 
structure Tcp-Instance = Tcp  (Ip-Instance) 

val connection = Tcp-Instance.active-open  (...) 

The protocol stack built by these statements is shown in Figure 1. 
Each of the protocol functors is parametrized by a structure which must satisfy a particular 

signature called PROTOCOL. This parameter implements the lower layer protocol. At the same 
time, each individual functor has an interface defined by a different signature, such as IP-PROTOCOL 
or TCP .PROTOCOL. These specific signatures each define the interface for one particular protocol. 
The PROTOCOL signature is gemric and defines the minimal set of features that every protocol 
should satisfy. By only using PROTOCOL to constrain the parameter, the various functors agree to 
use only this minimal set of features from whatever protocol is provided as a parameter. 

All of the specific signatures are derived from the generic signature: 



• 

signature PROTOCOL = sig ... end 
signature TCP .PROTOCOL = sig ^ 

include PROTOCOL 
sharing type ... + 

end 

By including the generic signature in their definition, each of the specific signatures inherits ail * 
the types and values declared in the PROTOCOL signature; sharing constraints bind types declared 
in PROTOCOL to types that are declared in the specialized signature. Because the specialized sig- 
natures inherit all the types and values of PROTOCOL, they are enriched descendants of the same 
signature. Any functor that satisfies a specialized signature also satisfies the PROTOCOL signature, 
and any instantiation of such a functor can be used as a parameter to other protocol functors. • 

Because the specific signatures are derived from the generic signature, and because the compiler 
strictly enforces adherence to signatures, the design of the generic signature is of central importance 
and affects the implementation of all the protocols. The generic signature is similar to the concept of 
abstract data type, and the specific signatures then correspond to concrete data types implementing 
the abstract data types. _ 

Our PROTOCOL signature is analogous to the x-kernel's meta-protocol, which describes the set of 
operations that are supported by individual protocols. 

One of the principles in our design is that all the types in the generic signature are left un- 
specified, and the types in the specific signatures are more specified and unique for each instance. 
Another feature of our design is that the generic signature specifies the arguments and return values 
of every function, so the caller of a function knows what arguments to provide and what results " 
to expect even without knowing which specific signature a protocol satisfies. Finally, the sharing 
constraints in the specific signature bind the types defined in the generic signature to the local 
types which the specific signature defines. 

To show the modularity of our functors, we can build a non-standard protocol stack with TCP 
running directly over Ethernet. # 

structure Tcp_Over_Ethernet ■ Tcp  (Ethernet-Instance) 

This is a special-purpose protocol that reliably sends arbitrary-length packets, but only between 
hosts that are on the same Ethernet. With such a protoco., it might be desirable to turn off TCP 
checksums, which are expensive to compute and not as strong as the Ethernet's Cyclic Redundancy 
Check.2 By adding to the TCP functor a new parameter that specifies whether TCP should compute 
checksums, we can specify different behavior for different instances of TCP. 

functor Tcp  (structure Lower:  PROTOCOL 
val compute.checksum: bool): TCP-PROTOCOL =  ... § 

structure Tcp-Instance ■ Tcp (Ip-Instance 
val compute-checksums = true) 

structure Tcp-Over-Ethemet = Tcp (Ethernet-Instance 
val compute .checksums ■ false) 

2That is, the probability of an undetected error is higher when using only the TCP checksum than when using 
only the Ethernet's CRC. 



In practice, each functor has several parameters, as can be seen in Figures 5-7. 
With functors, we thus have truly modular building blocks; the "glue" that holds them together *v 

are the functors' parameters.  This achieves code reuse, one of the goals of software engineering, I 
and makes it easy to build specialised protocol stacks for higher performance without sacrificing 
modularity and type safety. The example of a non-checksumming TCP over Ethernet describes a 
protocol stack that is potentially much faster than the regular TCP/IP and therefore very attractive 
for applications that only need to communicate across a single Ethernet. 

3.2    Signature PROTOCOL 

In Section 2 we defined a network communications system as an implementation of the "layer" 
abstraction. The PROTOCOL signature, shown in Figure 2, defines a standard interface for such layers. 
Note that this signature is a closed specification, that is, completely self-contained. This signature 
is a formal definition of an interface, and syntactic conformance of each protocol implementation 
with this signature is enforced automatically at compile time. 

The types defined in PROTOCOL are all unspecified; they must either be bound (by sharing) in 
the specific protocol signatures, or be declared by the functors. 

The type address is used to identify a peer of the protocol or application layered above the 
protocol represented by this signature; an address-pattern is a specification of a set of possible 
peers from which a connection request will be accepted; and a connection is a handle used to 
send data and to close or abort a connection. The type of incoming messages is the same across 
all FoxNet protocols, and bound to the abstract data type Receive_Packet .T; this abstract data 
type provides efficient access to the data and to the message's headers and trailers. The same is 
true for the Send_Packet. T abstract data type, to which the type of incoming messages is bound. 
The control and info types are discussed below. 

The values specified by PROTOCOL are all functions. 
A protocol may need to acquire system resources before it can operate. The lowest layer of the 

FoxNet, for example, needs to acquire Mach ports so it can communicate with the Mach device 
driver. These resources must be explicitly released once the application no longer needs them, 
because the resources include hardware devices or operating system resources that will not be 
released by the SML garbage collector; the finalize call releases all resources held by the protocol. 
The corresponding initialize call allocates the resources. Both functions may be called multiple 
times; resources are only allocated on the first initialize and released on the matching finalize. 
The count of unmatched initialize calls is returned by both functions. 

A connection can be opened either by active_open or passive_open; both of these functions 
take as one of their arguments a packet handler function that will be called when a packet is 
received. The connection value returned by either of the open calls can be used to send any 
number of packets, and finally to close or abort the connection. The difference between close 
and abort is that the latter will terminate even if the peer is no longer reachable. 

There is no receive function corresponding to send; data is received when the protocol im- 
plementation calls the handler that was given as a parameter to one of the open functions. Since 
the lower layer protocol calls handlers provided by the higher layer, this method of receiving data 
is known as an upcall. Upcalls for receive have the advantages of simplicity, since the protocol 
implementations do not need to deal with suspending a function call and waking it up again once 
the data arrives, and of high performance, since in normal cases it is possible to get a packet in 
at the lowest level of the protocol stack and transfer it up to the top of the stack with no context 
switches and no buffering. For these reasons, we use upcalls for receive in all our protocols. 

• 
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signature PROTOCOL = 

sig 

eqtype address 

eqtype address-pattern 

eqtype connection 

type incoming-message 

type outgoing-message 

val initialize: unit -> int 

val finalize: unit -> int 

val active-open: address • (incomingjnessage -> unit) -> connection 

val passive_open: address-pattern * (incoming-message -> unit) 

-> (connection * address) 

val close: connection -> unit 

val abort: connection -> unit 

val send: connection -> outgoing-message -> unit 

type control 

type info 

val control: control -> unit 

val query: unit -> info 

exception Initialization-Failed of string 

exception Protocol_Not-Initialized of string 

exception Invalid-Connection of connection * address option * string 

exception Bad-Address of address * string 

exception Open-Failed of address *  string 
exception Packet-Size of int 

end (* sig *) 

Figure 2: Signature PROTOCOL 
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The control and query functions are used to provide custom information or operations for each 
protocol. For example, IP must be configured to use a specific address as a default gateway, whereas 's~' 
TCP needs to be told when a packet has been consumed and more packets can be accepted from the 
network. Likewise, each protocol has information it can return, information that may be different 
from that of every other protocol. By binding the generic control and info types to appropriate 
specific types in the specific signatures, we specify a different set of operations for each protocol. If 
such an operation is needed by a higher-level protocol, we pass an encapsulation of that function 
as one of the parameters to the higher-level protocol functor; when building custom protocols, only • 
the encapsulation of the lower-level protocol function as a parameter to the higher-level functor 
needs to be re-implemented. 

All the functions are designed to return to their caller in the course of normal operations. When 
an unusual event is detected, however, we raise an exception. The protocol signature defines six 
generic exceptions that may be raised by any protocol implementation. Protocol implementations ^ 
only raise exceptions from this group, and in fact each function has a specific set of exceptions it 
may raise. 

3.3    A Specific Protocol Signature 

As an example of a specific protocol signature we use the signature for the IP protocol, shown • 
in Figure 3. This signature binds the four types address, address_pattern, control, and info 
to types meaningful for IP, and the two types incomingjnessage and outgoingjnessage to the 
two types that we use for protocols generally. 

The IP address and address pattern are declared as record-valued datatypes: the datatype 
declaration makes the types unique for each structure matching this signature, and the records ^ A 

make the structured values self-documenting. We use record-valued datatypes extensively in our 
signatures. 

The IP protocol definition [3] specifies a 4-byte IP number which identifies a host, and a 1-byte 
field which identifies the particular layer above IP to which packets will be given. Our IP address 
type specifies both values: this combination uniquely identifies the peer of the protocol which uses 
IP to send data. Note that the types Bytel and Byte4 are not part of Standard ML; they are 
extensions we have identified as useful for systems programming. 

The IP address pattern always specifies a field to identify the layer above IP, and optionally 
specifies the remote host by its IP number. This flexibility is used to passively wait for packets for 
a specific protocol; the packets can be either from a specific remote host, or from any host. Once 
a packet matching the pattern is received, the passive open completes and the packet is delivered I 
to the specified handler. 

The control type offers four control operations. Two allow the enabling and disabling of a 
specific interface; the local address for the interface must be specified when enabling an interface. 
The other two control operations provide for the specification of a gateway (also known as router) 
for IP packets that must be forwarded for other networks. The gateway can be set either for all | 
packets that can't otherwise be routed, or specifically for a particular destination address. This 
control operation can be used when an ICMP redirect packet is sent by a gateway currently in use 
specifying a better gateway for a particular remote IP address. 

The info type returns a variety of information used both by the layers above IP and for moni- 
toring the system. In the first category are the maximum packet size and the local address, which 
are used by TCP and UDP (via functor parameters; Ethernet exports corresponding functions, 
which can be used for Tcp.Over.Ethernet). The other values retunwd are useful for monitoring 
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signature IP_PROTOCOL = 

sig • 
datatype ip.address = 

Address of {ip: Byte4.U.ubytes, proto: Bytel.U.ubytes} 

datatype ip-address_pattern = 

Pattern of {protocol: Bytel.U.ubytes, 

source_ip: Byte4.U.ubytes option} 

datatype ip.control * 

Set_Default_Gateway of {gateway: Byte4.U.ubytes} 

I Set_Specific.Gateway of {destination: Byte4.U.ubytes, 

gateway: Byte4.U.ubytes} 

I Set_Interface_Address of string * Byte4.U.ubytes * 

I Disable_Interface of string 

datatype ip-info = 

Info of {max_packet-size: ip.address -> int. 

interfaces: (string * Byte4.U.ubytes option), 

local-address: Byte4.U.ubytes •   # 

-> (string * Byte4.U.ubytes), 

packet s ^ ent: int, 

packets-received: int, 

packets-discarded: int} 

include PROTOCOL 
■ 

sharing type address = ip.address 
and type address-pattern = ip-address-pattern 
and type incoming-message = Receive-Packet.T 
and type outgoing-message = Send-Packet.T 
and type control = ip-control • 
and type info * ip-info 

end (* sig ♦) 

Figure 3: Signature for the IP Protocol Layer m 
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the system. Note that some of the values returned are functions. In general, it would be either too 
expensive or outright imrossible for every call to query to compute all the values which may be of 
interest. Returning a funtftion is a form of lazy evaluation (call by need) that allows the caller to # 

ask for exactly the data required. 

4    Protocol Implementations 

4.1    A Sample Protocol Implementation • 

In the FoxNet, we define a functor for each protocol and instantiate the functors to generate 
implementations of protocol signatures. Figure 4 shov s an example of such an implementation. 
The purpose of the Check functor is to implement the check protocol,3 which discards packets that 
have been corrupted in transit. To detect which packets have been corrupted, the protocol adds a 
two-byte header to every outgoing packet and places in this header the two-byte checksum of the » 
racket's data. The checksum is recomputed by the receiver, and packets with incorrect checksum 
are discarded. The checksum is computed ;n 16-bit one's complement arithmetic, and the value 
of +0 (which is 16 zero-valued bits) is sent -0 (which is 16 one-valued bits). Any error in the 
network that causes the packet to be rando , ly cc-rrrptsd , likely4 to cause the checksum to no 
longer match the data, and the packet will be discarded. Packets set to all zeroes by the network % 

are also discarded. 
In the x-kernel, small protocols such as the Check protocol and their implementations are 

referred to as micro-protocols. 
The implementation of the send function is complex in the interest of high performance. The 

function takes two arguments. Unhke other functions, e.g. active-open, in which multiple argu- 
ments are specified as a single formal argument which is a tuple, send takes two formal arguments 
(cf. Figure 2). Formally, the function is applied to its arguments one at a time; applying the 
function to the first argument returns a function that will consume the remainder of the arguments 

and return the value. 
The computations that send must perform can be divided into those that do not depend on the 

packet being sent and those that do. Our implementation, and in fact any optimizing implementa- » 
tion, completes the computations that only depend on the connection argument before returning 
a function in which only the computations that depend on the packet being sent are performed. 
The returned function is a special-purpose send that is optimized for this connection. In our case 
the only computation that does not depend on the second argument is the evaluation of a send 
for the lower layer that is optimized for the lower-layer connection; this can be a very substantial , 
optimization if the lower layer's send function does substantial computation given only its first 
argument, and if the function returned by send is caUed more than once. If the function is caSed 
multiple times, we have effectively moved the initial computation out of the loop and amortized 
its cost over all caUs of the returned function; the advantage of doing this as we have is that we 
have been able to specify this without affecting the program's modular structure, and in fact this ^ 
functor is a completely modular building block. This kind of optimization is very natural in SML. 
and would at best be very awkward to program in a traditional imperative language. 

In a FoxNet protocol stack, each functor has as one of its parameters a structure representing 
an unspecified implementation of the next lower level protocol in the stack, and builds the protocol 

3This is not a standard protocol. 
4With probability approximately 1 - 2"16 
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functor Check (structure Lower: PROTOCOL 
sharing Lower.incoming-message = ReceiveJ'acket.T 

and Lower.outgoing_message = Send-Packet.T): PROTOCOL = 
struct 
datatype address = Address of Lower.address ^ 
datatype address-pattern = Pattern of Lower.address_pattern 
type connection ■ Connection of Lower.connection 
type incoming-message = Receive-Packet.T 
type outgoing-message = Send_Packet.T • 

val initialize = Lower.initialize connection 
val finalize s Lower.abort connection 

fun send_packet lower-seri packet = 9 
let val size = Send_Packet.size packet 

val raw.check 3 Send-Packet.checksum packet (0, size) 
val checksum ■ if raw.check = 2u0 then 2uxffff else raw-check 
val extended = Send_Packet. extend_header packet 2 
val final = Send_Packet.set_byte2 extended raw-check 

in lower.send final end 
fun send (Connection connection) = send-packet (Lower.send connection) 

fun receive handler packet = 
let val packet-sum ■ Receive-Packet .byte2 packet 0 

val data = Receive_Packet.hide-header (packet, 2, "check") •   • 
val size ■ Receive-Packet.size data 
val raw.check = Receive.Packet. checksum data (0, size) 
val checksum ■ if raw.check = 2u0 then 2uxffff else raw.check 

in if checksum = packet.sum then handler data 
else () (* bad checksum, discard packet *) % 

end 

fun active-open (Address address, handler) ■ 
Connection (Lower.active.open (address, receive handler) 

fun passive.open (Pattern pattern, handler) = 
let val (c, address) ■ Lower.passive.open (pattern, receive handler) 
in (Connection c. Address address) end 

fun close (Connection connection) s Lower.close connection 
fun abort (Connection connection) = Lower.abort connection 

type control = unit 
type info = unit 
fun control 0 = 0 
fun query 0 = () 

end (* struct *) 0 

Figure 4: The Implementation of a Modular Checksum Protocol 

II 
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4.2    The Parameters of the TCP Functor 

The functor implementing TCP has not one but eight parameters, in addition to the structure 
implementing the lower-level protocol. The last two parameters are used for debugging and will 
not be discussed here. The three parameters before that are structures that are used by the 
implementation of TCP and are usually defined as general library utilities outside of TCP. The two 
parameters before these are configuration parameters to control the behavior of this implementation 
of TCP. Finally, the Aux structure implements all the functions which TCP requires of its lower 
levels. 

The functions of the Aux structure are defined in the TCP_AUX signature, shown in Figure 6. TCP 
needs to hash on lower-layer addresses and convert addresses to strings (the latter for debugging). 
TCP also needs a default pattern so it can passively open connections with the lower layer and 
thereby receive any packets that come in with the correct protocol identifier. This identifier is a 
constant the single-byte value when we run TCP over IP, but may be different if we are running 
a non-standard protocol stack. The info function returns all the information that TCP needs 
from the lo"er layer protocol's header of any incoming packet, and the check function returns the 
pseudo-checksum required for an outgoing packet. For non-standard protocols, the value of the 
checksum could conceivably be always the same (always zero) and independent of the packet and 
destination. Finally, the maximum size of a packet, the maxjntu, is also available so TCP can 
properly segment the data it is sending. This size may depend on the interface over which the 
packet will be sent, which is why the function takes the remote address as an argument. 

Note that in the TCP functor we share all the types of Aux with the corresponding types of 
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functor Tcp (structure Lower:  PROTOCOL 
structure Aux:  TCP_AUX n, 
sharing type Lower, outgoing-mess age ■ Send Jacket .T Q 

and type Lower.address ■ Aux.address 
and type Lower.address_pattern = Aux.address_pattern i4p) 
and type Lower.incoming-message = Aux.incoming-message 

val initial-window:   int 
val compute-chacksums:  bool 
structure Scheduler:  COROUTINE 
structure Event-Queue:  EVENT-QUEUE 
structure B:  F0X_BASIS 
val do-prints: bool 
val do-traces:  bool):  TCP-PROTOCOL = 

struct * 

Figure 5: The TCP Functor's Parameters 

using as a basis the types and values implemented by the structure. The Check is a perfect 
example of this strategy. Besides expecting the lower level to satisfy the PROTOCOL signature, the 
Check functor also requires that the incoming and outgoing message types be the specified ones; a 
sharing constraint lets the compiler verify this assertion. Since the Check protocol is very simple, 
this functor needs no parameters besides the structure implementing the lower-layer protocol; the 
more realistic protocols we present below need several additional parameters. • 

• 
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signature TCPJIUX = 

sig 

type address 

type address-pattern 

type incoming_mossage 

val hash: address -> int 

val makestring: address -> string 

val default-pattern: address.pattern 

val info: incoming-message 

-> src: address, checksum: Byte2.U.ubytes> data: Receive_Packet.T 

val check: address -> Byte2.U.ubytes 

val max-mtu: address -> int 

end (* sig *) 

* 

Figure 6: The Signature for the TCP Auxiliary Structure 

Lower. This allows TCP to use values from one structures as arguments to functions from the 
other, and therefore allows the two structures to work together. The compiler is responsible for 
ensuring that the sharing constraints are actually met by the two structures provided as arguments. 

TCP has two Jevels of flow control. The lowest and most drastic level is implemented by 
withholding acknowledgements from the peer if TCP is overloaded. The more refined level uses 
a mechanism called a sliding window. In each acknowledgement packet TCP indicates how many 
bytes it is ready to receive; the peer is not supposed to send more than specified by this value. The 
initial-window parameter controls the window specified by this TCP at connection setup time: 
4096 is a common value, though 65,000 is often used to achieve higher performance. When data is 
received, it is the responsibility of the data handler (by way of a control operation) to make sure 
that TCP is told when it may accept more data and therefore increase the window. 

We have mentioned in an earlier example the function of tlK compute_checksum parameter. 
TCP specifies a number events that should execute after timers have expired and concur- 

rently with other events: the retransmission of unacknowledged packets and the transmission of 
acknowledgements are both controlled by timers. The Scheduler provides convenient functions 
such as fork and sleep that TCP can use as primitives to avoid having to explicitly schedule 
these events. The Event-Queue structure provides synchronization primitives for those cases where 
synchronization is needed, and the structure B5 gives access to other structures which form the 
standard library for the FoxNet code. 

• • 

4.3    The Parameters of the IP Functor 

The first IP functor parameter is the lower-level protocol inr.,ance, as is common to all protocols. 
This structure is constrained to have the incoming and outgoing message types bound to particular 
types, as for the Check functor. 

The resolve function parameter would normally be a function which uses the Address Res- 
olution Protocol [6] to discover the lower-layer address for the given higher-layer address. Since 
IP knows which interface it is going to use to send the packet, it provides that information to the 

5We have used a short name because the structure is used very frequently. 
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functor Ip (structure Lower: PROTOCOL 

sharing type Lower.incoming-message = Receive_Packet.T 

and type Lower.outgoing-message = Send_Packet.T 

val resolve: wanted: Byte4.U.ubytes, 

local.addr: Byte4.U.ubytes, 

interface: string 

-> Lower.address option 

val lower-hash: Lower.address -> int 

val lower.default-pattern: Lower.address-pattern 

val lower-max_packet_size: unit -> int 

val lower-min-packet_size: unit -> int 

val hide_received_header: bool 

structure Event-Queue: EVENT-QUEUE 

structure Scheduler: COROUTINE 

structure B: FOX-BASIS 

val do-prints: bool): IPJ'ROTOCOL = 

struct 

■4P) 

Figure 7: The IP Functor's Parameters 

resolve function. 
The lowerJiash and lower.def ault-pattern are equivalent to the corresponding TCP param- 

eters. 
The packet size parameters are used by IP to make sure the packets it is sending are legal for 

the lower layer. When we add fragmentation, IP will be able to fragment packets that are too large. 
For now, IP raises the Packet-Size exception if handed a packet which is too large. Packets that 
are too small are handled correctly by adding bytes to the end of the packet to make it be at least 
as large as the minimum size. On receipt, the peer removes any bytes inserted by the remote IP 
or by the operating system (Mach also inserts pad bytes to make the packet size a multiple of 4 
bytes) to reproduce the original packet. 

The hide_header parameter is similar to the TCP's compute-checksum parameter. If the 
protocol above IP does not need to take a look at IP's header, the parameter should be set to true. 
In the more normal case of TCP and UDP, the higher-layer protocol does need to access the IP 
protocol's header; for TCP specifically, the Aux structure actually accesses the header, extracts the 
values needed by TCP, then hides the header before handing the remainder of the data to TCP. 
This keeps the code for both TCP and IP independent of the layer below and above, respectively, 
and concentrates all protocol stack dependencies in the much smaller and simpler Aux structure. 

The last four parameters of the IP functor are similar to the corresponding parameters of the 
TCP functor. 

The parameters for the Ethernet functor are a subset of those for the TCP and IP functors. 

• 

4.4    Initial Results 

We have completed an initial implementation of the TCP/IP protocol stack. This includes imple- 
mentations of the TCP, IP, ARP, and Ethernet protocols, and the implementation of an Ethernet 
device interface.  The implementation is built on top of the Mach 3.0 microkernel, and is coded 
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entirely in an extension of Standard ML with primitives to provide access to the mach-msg primitive 
of the Mach kernel which provides most of the services traditionally provided by system calls. 

To date, we have tested the entire protocol stack on a simulator. We have also successfully run ™ 
preliminary tests of most of the protocol stack between Ethernet-connected hosts. 

We have also run performance benchmarks that involve sending and receiving data on a minimal 
protocol stack consisting only of the lowest layer of the stack, the Ethernet device interface. The 
results indicate that we can send more quickly than we can receive, and that we can correctly 
receive data at speeds above 3 megabits/second on a DECstation 5000/125 host. We fully expect 
to improve this performance in the future, though of course the Ethernet will be saturated at 10 
Megabit/second. A thorough analysis of the performance of the entire protocol stack and individual 
layers is planned, with the results to be presented in a future report. 

5 Concluding Remarks 

We have designed and built a modular implementation of a standard and widely used network 
communications protocol. The structure of the system into independent modules with a well-defined 
interface between protocols ensures that protocols are composable into a variety of configurations 
without sacrificing type security. The design hinges on a generic protocol signature which contains 
exactly those types and values that we expect every protocol implementation to support. This 
signature is enriched and specialized to produce the specific signatures for the individual protocols. 
Protocol implementations which satisfy a specific signature also satisfy the generic signature. Our 
protocol implementations are parametrized to run on top of any protocol that satisfies the generic 
signature, and can therefore be easily composed to form different special-purpose protocols. 

The TCP/IP implementation is a first step towards establishing the feasibility and usefulness 
of advanced programming languages for developing real-world systems, in particular network com- 
munications systems. While the performance of our implementation in SML does not yet match 
that of the most highly tuned C implementation, we are encouraged to have already achieved rea- 
sonable throughput, with only preliminary tuning or performance analysis. Clearly, with respect 
to performance, much work and analysis is still required, and it is our plan to carry out this work 
now. 

Besides performance, software quality considerations are also important. Here, we can already 
claim to have implemented a system with important reliability benefits. In particular, the language 
guarantees that many common bugs are not possible; our system will not "dump core". Although 
we have not taken steps to measure such software-engineering aspects such as reliability and main- 
tainability of the system, we are also convinced that our choice of language provides substantial 
benefits here as well. In order to provide some evidence of this, we have been maintaining de- 
velopment logs, in an attempt to record the nature and frequency of bugs that occur during the 
development and maintenance of the system. We are able to report that the log, thus far, is rather 
thin. 
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