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Abstract

Paired comparison experiments involve comparisons among a set of objects, treatments,

or competitors in blocks of size two to determine relative merits among the objects.

Applications to tournament chess competition or team sports differ from the usual paired

comparison framework in that competitors' abilities may change over time. A dynamic

model is developed for the usual paired comparison experiment in which only a binary

indicator of the preferred object is available (or trinary, if ties are allowed), and for

alternative paired comparison experiments in which more information (perhaps the score)

is available. Posterior distributions of the rating parameters and posterior prediction

intervals for the results of future comparisons are obtained using methods that are closely

related to the Kalman filter. The methodology is applied to the analysis of professional

football game outcomes and to chess tournament results from the 1988-1989 World Cup.
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model is developed for the usual paired comparison experiment in which only a binary

indicator of the preferred object is available (or trinary, if ties are allowed), and for

alternative paired comparison experiments in which more information (perhaps the score)

is available. Posterior distributions of the rating parameters and posterior prediction

intervals for the results of future comparisons are obtained using methods that are closely

related to the Kalman filter. The methodology is applied to the analysis of professional
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Chapter 1

Introduction

Accurate estimation of a tournament chess competitor's playing strength is an important
goal of tournament chess organizers like the U. S. Chess Federation (USCF), and is also
of interest to players, as they would like to have their strength quantified. Suppose the
results of tournament chess games over many years are observed. One approach to rating
chess players' strengths is to use the results from the most recent competitions only and
rank players based on these game outcomes. This may not be the most desirable approach
because it ignores potentially useful information from earlier competitions. Another ap-
proach is to combine all the data and rank players based on the aggregated data. This
seems unsatisfactory as well because previous competition data are given as much weight
as current data in ranking players. The best approach seems to be a compromise between
these two methods, so that earlier competition data is given some weight in estimating
current ability, but not as much as the most recent competition data. Ideally, the degree of
compromise should be determined from the data itself. This thesis formalizes the degree
of compromise, and explores an approach to estimating the abilities of competitors from
game outcomes observed over time using dynamic paired comparison models.

Paired comparison models are used to analyze data from experiments in which a set
of p objects or competitors are compared in blocks of size 2. Applications of paired com-
parison models include studies in choice behavior, preference testing, sports, and sensory
discrimination. The inferential goals of paired comparison analyses include ranking ob-
jects based on the results of comparisons, and predicting the results of future comparisons.
Most work on paired comparison modeling assumes the outcome is a binary variable in-
dicating which of two objects is preferred. This thesis examines binary outcome models,
but also examines models for comparisons with a continuous outcome measure. Two of
the most commonly used paired comparison models are the Bradley-Terry model (Bradley
and Terry 1952) and the Thurstone-Mosteller model (Mosteller 1951; Thurstone 1927).
David (1988) provides a thorough introduction and an extensive bibliography on topics
in paired comparison modeling.
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The thesis examines paired comparison models in which the merits or abilities of
objects being compared may change over time. Competitive sports and games, including
chess, football, hockey, and basketball, involve teams or players whose abilities change
over time due to effects such as player trades, coaching staff changes, and aging of players.
The Bradley-Terry and Thurstone-Mosteller models assume that paired comparison data
occur simultaneously or within a short period of time, or that objects' merits do not
change over time, so that blind use of these models is not appropriate. The models
developed here assign a rating parameter to each object or competitor which describes
the object's strength or merit, and the rating parameter may change over time. Methods
are developed for paired comparisons where the outcome variable is -her a difference
in measurements between the two objects, or where the outcome is a binary indicator of
which object is preferred (or trinary, if ties are allowed).

The models developed in this thesis have strong connections to the discrete-time
Kalman filter (Kalman 1960; Kalman and Bucy 1961), and to Bayesian dynamic models
(West and Harrison 1990). Our models assume an "observation equation," which is the
probability model for an outcome of a comparison at time t, and a "system equation"
which describes the stochastic evolution of parameters from time t to time t + 1. The
foundational assumptions for this model are that when objects are compared or players
compete, information is obtained about their rating parameters, but between competi-
tions, changes may occur that affect the merits of the objects or the abilities of players.
so that the distribution of the rating parameters becomes less certain due to the passage
of time without comparisons. This uncertainty is reflected in a greater variance of the
posterior distribution of the rating parameters.

The system variance, describing the magnitude of the parameter changes over time,
is an unknown parameter, and this poses some difficulties in the analyses of the dynamic
paired comparison models. To facilitate the analyses, the posterior distribution of the
system variance parameter is approximated by a discrete distribution. Two methods for
carrying out the approximation are examined. In one analysis, iterative simulation via the
Gibbs sampler (Geman and Geman 1984) is employed to obtain samples from the posterior
distribution of parameters of interest. A second approach involves approximating the prior
distribution of the system variance by a discrete distribution, and performing a conditional
analysis ;)r each value of the system variance. The proposed models in this thesis differ
in an important respect from the usual dynamic models of West and Harrison (1990) in
the assumption that the system variance is unknown a priori. Previous uses of models
like this typically assume the variance is known or can be well estimated in advance. In
this respect the models developed in this thesis are less restrictive than the usual models.
Placing probability distributions on all rating and variance parameters allows for a flexible
approach to modeling paired comparison data.

While the thesis specifically focuses on paired comparison models, the approach to
analyzing dynamic models has a wide range of applicability. For example, the methods
developed for - ::alyzing paired comparison models with continuous outcomes can be gen-
eralized to n..•rmal linear dynamic models of West and Harrison (1990), so that these
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more general models can be utilized without assuming the system variance is known. Fur-
thermore, methodology developed to analyze paired comparison models with indicator
outcomes can be applied to a wide class of non-linear dynamic models, including dynamic
versions of generalized linear models (McCullagh and Nelder 1989). Thus, the combina-
tion of dynamic probability models and Bayesian calculations that are feasible in modern
computing environments offers a powerful tool in analyzing experimental time series data.

This paper is organized into two main parts. The first part, which includes Chapters 2
and 3, discusses paired comparison models with a normally distributed outcome variable.
while the second part, which includes Chapters 4 and 5, considers paired comparison moa-
els with indicator outcomes. In particular, Chapter 2 develops the methodology for paired
comparison models where the outcome variable is the difference between measurements or
scores. Chapter 3 applies the methodology of Chapter 2 to the analysis of NFL football
game results. Chapter 4 examines the Bradley-Terry model and its dynamic extensions,
and discusses the methodology to analyze data using such models. In Chapter 5, the
methodology of Chapter 4 is applied to analyzing the results of chess tournament games
from the 1988-9 World Cup Chess events and some simulated data. Chapter 6 concludes
the thesis with a discussion of the utility of the models and possible extensions for more
complex paired comparison experiments.



Chapter 2

Paired Comparisons with
Measured Outcomes

In this chapter, we consider several models for paired comparison data in which the
outcome variable is the difference between measurements of the objects or teams. Our
approach assumes that the measurements or scores of each object are from independent
normal distributions. The analysis of the normal model is described in Section 2.1, first
assuming that the variances from the normal distributions are identical, and then consid-
ering unrestricted variances. For the remainder of the development in this chapter, we
assume that the variances are identical. We examine the Bayesian analysis of the normal
model in Section 2.2 using a conjugate prior distribution. In Section 2.3, we introduce the
dynamic model which assumes that the means of the normally distributed measurements
can change over time. The magnitude of the changes is reflected by a variance param-
eter of the dynamic component in the model. We develop the analysis of the dynamic
model in Sections 2.4 and 2.5. Because the analysis of the dynamic model is intractable
in closed form, we examine two methods to facilitate the analysis. Each method involves
an approximation of the posterior distribution for the variance parameter of the dyn?.mic
component. One approach uses the Gibbs sampler to draw a random sample from the
marginal posterior distribution of the variance parameter. A second approach, incorpo-
rating a non-iterative technique, approximates the continuous prior distribution on the
variance parameter by a discrete distribution. Extending the model to allow for the in-
clusion of covariate information is discussed in Section 2.6. We then show in Section 2.7
how to obtain approximate marginal posterior distributions for parameters of interest,
and describe how to obtain the forecast distribution. Sequential updating of the posterior
distribution of parameters when new data becomes available is discussed in Section 2.8.
For developing of the models, we use language that assumes paired comparison data are
scores resulting from team competitions, but the models are understood to have more
general applicability.
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2.1 A Normal Model

Suppose a set of p teams participate in a series of competitions, and let Skj. be the
random variable corresponding to the score of the k-th game produced by team ik. We
consider models appropriate when only Ykhjik = S,k - S,,k can be observed, or when
the only relevant information concerning mean team scores is the difference in the scores.
This latter situation occurs, for example, in experiments with paired designs. The only
information about the treatments that is not confounded with blocks are the differences
in measurements within blocks. We assume that the Si•6 come from independent normal
distributions. We consider a model that assumes equal variances in Section 2.1.1, and
then examine a model with unrestricted variances in Section 2.1.2.

2.1.1 Equal Variances

The normal model with equal variances assumes team i produces scores that are indepen-
dently distributed

(Sil,,r2) - N(e,, r 2 ),

with possibly different means, but equal variances

Suppose a total of n comparisons among the p teams are observed. As before, denote
by Sikk the score produced by team ik on the k-th comparison, k = 1..., n, where iS can
take on values 1,..., p. We have under the assumptions above, given 0il, 9j and 72,

.j.k = S•lk - Sj.k - N(0.l - 6j.,2r 2 ), (2.1)

where Yijk6 is the score difference of the k-th competition between teams iA and jk. We
assume that the result of competitions are independent from each other, so that the Yj,,l6
are independent random variables.

This model for score differences can be derived from a slightly different set of assump-
tions. If we assume that for the k-th competition,

Silk = oil + ak + E,•k

Sjkk = 9jk + Qk + 'Ejk, (2.2)

where -ik& and E, k are normally distributed uncorrelated random variables with mean
0 and variance r 2 , then we obtain the model in (2.1) above. We can think of ak as a
nuisance parameter particular to competition k. For instance, the weather conditions for
a competition or other external factors may affect both teams' final scores, and it is not
unreasonable to assert that the effect will be equal for both teams. The model in (2.2)
is common for incomplete block designs with blocks of size 2. The block effects are not
of much interest, and the analysis of such models can proceed by taking differences of
observations within blocks to remove the block effects.
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The model can be represented in matrix form as follows. Let y be the vector of the
n score differences, and let 0 be the vector of the p team parameters (91 .... ,eOP)T. We
introduce an n x p design matrix, X. Suppose that the k-th element of V is the score
difference between teams ik and jk. Then the k-th row of X is given by Xkt' = 1.
Xkj, = -1, and Xkj = 0 for 1 ik and I $ . We can now restate our model in the
more compact form

(VI9, r2 ) - N(Xe, 2r 2 I'), (2.3)

where L,• is the n x n identity matrix.

In the next section, we propose a complete probability model for 0 and describe
approaches to posterior inference. We begin our discussion of the model by considering
maximum likelihood estimation. It is straightforward to compute maximum likelihood
estimates (MLL's) for 0 as long as the singularities in the design matrix X are removed.
Because the data only supply information on score differences, we can only estimate the
8, uniquely up to an additive constant. We impose a single constraint to identify 0. One
possibility is the linear constraint, ZF=I Oi = 0. We incorporate this into the design matrix
by augmenting X with the row (1, 1 .... 1) and y with the extra observation 0 with 0
variance. Singularities will arise if teams can be partitioned into two subsets in which
none of the teams in one subset competes against any team in the other subset. In such a
situation, team parameters can be estimated within subsets, but not between subsets. No
information is provided in the data to simultaneously estimate all of the parameters. This
suggests that an important consideration in designing a paired comparison experiment
is to prevent such a situation from occurring. Necessary and sufficient conditions are
discussed in Ford (1957).

If we call the augmented matrix X and the augmented ore difference vector •i, then
the maximum likelihood estimates of 0 and r 2 are given by the ordinary linear model
estimates

S= (. T~X)-1..,i (2.4)

XO _ xb)T(y_ X0). (2.5)

Estimated variances and covariances of the parameter es:'mates are given by

Var(- ) = 2f 2 (XTX)-l. (2.6)

Extensions to include linear covariates are straightforward. Covariate information can
be appended as columns to the design matrix X, and the formulas in (2.4), (2.5), and
(2.6) still hold, as long as X remains nonsingular.

2.1.2 Unrestricted Variances

We now explore a model where team scores are not necessarily homoskedastic. Let

S-
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so that

Yikjkk = Silk- jk - N(O,. - 6i. Tri + -rn2).

The likelihood for this model can be written as

1_( (Y,.•kk - k- + 19.,)2
Lobs oC "I - exp •"r 3 )

k Vr+T+ ,

where Lobs denotes the likelihood given the observed data.

Maximum likelihood estimates can be found using the EM algorithm (Dempster, Laird
and Rubin 1977). The Newton-Raphson algorithm may also be used, but the ease of
implementation of the EM algorithm encourages its use in this case. We now briefly
describe the procedure for obtaining maximum likelihood estimates using EM.

We note that the observed data are the score differences, Yijiak, and that the score of
team ik from game k, which we denote Sik, can be thought of as missing data. Therefore
the result of the k-th comparison is a score Sihk for team ik, and a score sjk - Y,,jk for
team Jk, with Sihk unobserved. To carry out the M-step of the EM algorithm, notice that
the complete-data likelihood can be expressed as the product of 2n independent normal
densities, that is,

Lcom C •Ik{ /• xp (-• ( 0,")- i 2) } )•eXp (--1-'-k( (ik ,,-- Yi,j,k) '- Ok )2)
Lcom od ' {+-eXP \ 2 ri2, Sikk 2 i)) ~ ~~ r2r~ik - t 3 )

The maximum likelihood estimates of the 9, and the 7,2 conditional on the missing data
are easy to compute. The maximum likelihood estimates of the 8i are the sample means of
the complete data observations that correspond to 9i in the likelihood, and the maximum
likelihood estimates of the rj2 are the sample variances of the complete data.

The E-step of the EM algorithm requires finding expressions for the expected sufficient
statistics, which in this case is equivalent to finding

E ( Si,,k II9 , .... ...r1 , - Y )

and
E(*i5tlk k •.., r1,..,y)

We can derive E(SSLkIO,,... 71, Y
by first obtaining

var(Si,•lOl|,...,I rl I..., 7 )

These expressions can be shown to be equal to

9~, r 2 ! , - 9kI~ ~ + ( Ojk + 7Jk Jkk)/ TjE( ,, ,..,, r,... , , ) /=r21 -.+ 1/72;

mm n mm mlll~lll• J
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Var(SI Ol, . , 9,r 1
2 ,..•,/,y) = + - + + )

SE(sgkk0.... 19P, T1..., lir 4 +l/ 2  (I 1/+ + /Irr2 +
+ 1/T/

The EM algorithm proceeds as follows. Pick a set of p starting values for the 9i and for
the r?. Denote these 09(),...,09(p) and r1 ,..., . At the t-th iteration, the E-step
requires

". E(,+')(si,.k) 9,/r(�) i r + lO k J&

1 + (E)t+1)(s)kk))A
117 2() (t + 1 tE"t+l)(-Sk) - lm+ll] + (E('+')(,s,,, ))2,

which are the expected values and expected squared values of the missing data given
the parameter estimates after the t-th iteration. The M-step then replaces the current
parameter estimates with the maximum likelihood estimates from the "complete" data:

0 t+ -- Sample mean of expected data involving team, i

r(t+) Sample mean of expected squared data involving team i, minus (0 ))

In the M-step, we choose to force the 9, to have mean 0 by subtracting off the mean of the
Oi at every iteration. This guarantees that the 8i will be centered around 0. Otherwise, the
EM algorithm will produce estimates that may be translated from the estimates obtained
by centering around 0, and the translation will depend on the starting values.

This iteration is continued until convergence. Depending on the size of the problem,
the algorithm may converge slowly because the problem assumes that one-half of the
complete data is missing. Asymptotic variances and covariances of the the parameters
may be found using SEM (Meng and Rubin 1991) in conjunction with the EM algorithm.
An alternative would be to use gradient methods which may converge more quickly, but
require specification of the Hessian matrix which may be cumbersome.

2.2 A Bayesian Formulation

A complete Bayesian formulation of the normal model incorporates prior distributions on
team abilities, as well as on r2. For the following discussion, we now let 72 be the variance
of the score difference, and let = 1/r'2 be the precision of score differences. We assume
a normal-gamma prior distribution on (0, 0) with density

f(0, ) 4/ _(9 - U)TR(G - } /p)
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which we write as
(o,4) NG(, v).

This representation is used by Raiffa and Schlaifer (1961, Section 13.5). The normal-
gamma distribution, besides accommodating a wide range of prior beliefs, is the conjugate
distribution for normal regression models. The distribution acquires its name from the
factorization

4 ~ Gamma(v/2,vf2)

(01.0) N(I,(OR)-').

In the normal-gamma distribution, the parameter p is the mean of 0, the matrix R is the
information matrix for 0 in units of 0, the parameter f is the harmonic mean of T2

, and
v is equivalent to the number of degrees of freedom associated with 4?.

Suppose we observe n score differences, y, along with the n x p design matrix X. We

assume as in 2.3), suppressing the conditioning on X,

(ylO, 4,) - N(X0, 1/40).

Then following Raiffa and Schlalfer (1961), the posterior distribution for (0,4?) is
(8, 01y) - NG(IA', C', k, V')

where

V= R+XTX

p1 = R'-(RP + XTY)

V =~

,= [(Vf + PTRIP) + T -- PLRIpl (2.7)
Raiffa and Schlaifer (1961) also show that the posterior distribution of 0 marginalized

over 0 is a multivariate t-distribution on v' degrees of freedom,

f(Oiy) mc IRI112(v' + (0 - IA)TrR(O - ,,)/f,)(v,+P)/2

with mean vector u' and scale matrix •'R' --. Inference on 0 can be obtained from the
multivariate t marginal posterior.

Typically, information about teams' abilities is available prior to competition, and this
information can be incorporated into the prior distribution of the parameters. If no prior
information exists, a multivariate normal prior with large variances can reflect this lack
of information, and the analysis proceeds without difficulty. Note that in the Bayesian
model it is not necessary to add a constraint on the 6i in order to obtain a unique posterior
mean $L'. However, it is necessary to require the prior parameter R to be of full rank so
that k is invertible.

The inclusion of linear covariate information is accompanied by a trivial extension to
the Bayesian model. We place a normal-gamma prior on the regression parameters as
before, and (2.7) again describes the posterior distribution.
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2.3 A Dynamic Model

In many paired comparison situations, teams will compete against each other over time,
and during this time it is reasonable to believe that team abilities may change. For
example, between seasons of professional sports, team abilities may change' -amatically
as a result of player trades, training, changes in coaching staff, and so on. ,O'e want to
reflect this possibility in modeling the paired comparison data.

The Bayesian model of the previous section is not appropriate for paired comparisons
where team abilities may change over time. It would not be reasonable, for example, to
continually update the posterior distribution using (2.7) as new data is observed, because
such an analysis treats the observations as time-exchangeable. Instead, an appropriate
model should give greater importance to more recent results.

We define a tournament (or season) as a collection of paired comparisons that are
made simultaneously, or close enough in time to treat the observations as exchangeable.
For simplicity, assume that occurrences of tournaments are separated by equal amounts
of time. We use superscript (t) to index tournaments, t = 1,2,....T. Let y(t) be the
vector of n() score differences resulting from tournament t, and let X(t) be the design

matrix, or tournament schedule, associated with tournament t, as defined in Section 2.1.
Also, let O(t) be the vector of team parameters associated with tournament t. The model
for observations is

(y (tIX(t)' 0(t), r2) , N(X(t)9W,.r2I",,t)). (2.8)

Notice that r 2 does not depend on time. We now introduce a probability model that
describes the evolution of the parameter 0,

(t) -= 0(t-1) + m,(t), (2.9)

where 0t) is the amount by which team abilities change between tournaments t - I and
t. The parameter W,(t) is assumed to be stochastically independent of 0 (t-1). We further
assume

(V(t)jO2) - N(at, a 21,), (2.10)

where the vector parameter at is the mean amount by which teams change between
tournaments t - 1 and t, and o 2 is the between-season variance for a team's ability. The
parameter at may be a function of covariate information.

We specify an initial prior distribution

(0(1}, 0) ,- NG(;&('), ý(O), R O), 0()), (2.11)

where I(), f(1), R( 1),and v(1) are the hyperparameters for the prior distribution. A vague
prior on 0(1) is obtained,13y choosing parameters R(') and f(l) such that the diagonal

L 04ý elements of Var(O)) - "Ji" 'L2 (R(1 ))-1 are large. A prior mean of 40 is set by choosing
an appropriate value of i e uncertainty in 0 is captured by the value of v().
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Lower values of v(1) connote less certainty about 4. The off-diagonal elements of R(1)
describe the prior correlation believed to exist between the ratings of teams. If no known
similarities between teams exist a priori, we set the covariances of teams ratings, and
therefore the off-diagonal elements of R), to 0.

We also assume a prior distribution on w = 1/a2 having density

f(w) C (2.12)

which, for ao > 0, b0 > 0, gives the Gamma density. Proper inferences are possible with
other values of a0 and b0, however, and even an improper prior distribution with b0 = 0
may be a sensible choice. Without much prior knowledge concerning w, we may choose
ao small to reflect the initial uncertainty of w. For proper prior distributions, the value of
b0 can be chosen so that bo/ao is an initial guess (the prior harmonic mean) of a2.

West and Harrison (1990) define a normal dynamic linear model as consisting of the
sequence of quadruples H = {F(t , G , V(t), W(')} where

(y(t)IG(t),H) , N(F(t).(t),v(T)),

(( 1t0e(0-1), H) , N(G(t)O(t- 1), W()).

The model defined in (2.8)-(2.12) is an example of a dynamic linear model with FMt ) -

X( t ), G(t) = I,, V(t) = r2I.(,), and W(t) = 0,21. Note that in our model r2 is unknown,
so we impose a joint prior on (0(0), 0 - 1/r2) to account for our uncertainty.

Equation (2.8) is the so-called "observation equation" of the dynamic model, and
defines the sampling distribution of the score differences. Equation (2.9), along with
the distributional specification of (2.10) is often called the "system equation" or "state
equation" of the dynamic model. The assumption underlying these equations is that
team's abilities change on average by at from tournament t - 1 to t. The parameter at
may be known a priori, or it may involve estimable parameters. We assume at may depend
on characteristics of the teams that relate to the evolution of their abilities over time, such
as age of the r,3.:yers on the team. However, we assume for purposes of developing our
model that at =- 0 for all t, meaning that teams' abilities are expected to remain the same
relative to other teams. This assumption defines a random walk model for the parameter
a.

2.4 Analysis with a2 known

This section illustrates the analysis of the model when o2 is assumed to be known. It is
often unrealistic to make this assumption in p-actice, although much of the literature on
dynamic models treats a2 as either known (see, for example, Meinhold and Singpurwalla
1983), or well estimated, L -•-- the analysis of the model can be performed conditional
on the estimate. We develop here the methodology for analyzing data under the dynamic
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model with ianown or2, and apply these methods in Section 2.5 where we assume o2 is an
unknown parameter.

Let

dt = {Observed data for season t}

Dt = (did2,..-,dt)

= {Observed data through season t}

By convention, we let Do be the state of the dynamic system before data is observed.

For this section, we are primarily interested in obtaining the distribution of (0(T)IDD),
the posterior distribution of 0 (T) marginalized over all other parameters, and (dT+I DT),
the forecast distribution of score differences. The posterior distribution (o(T)IDT) may be
of interest in ranking teams after a season, making use of previous seasons' results. The
forecast distribution for next season's results may be used to find

Pr(yl+') > OIDT) = Pr(i defeats j in season (T + 1) given available data).

In this section, we obtain these results conditional on a2 .

The full posterior distribution given a,2 can be written as

f(g(,),. .. , &(T), 0172 , DT)

C {f(Ilc 2 , Do)} x {f(0(1)0, 02 ,Do))
x f{f(d, 100), 0, )2, D.O))

T
x 2( , ., ), ,,0p2, D,_}))

t=2

We re riariy iteestd i otaiin th',•e distributio of, (G(, D,_ T,)})}s e ne

or eqtivalently under the probability model as

f O1, .. , (T,•D•,,DT)

X{f ep(--•(9(1) -- ;(I))T R(1)(0(I) -- AM)))}

{€f( M/2 exp(_±(3r(l) - X(1)0(1))- Ny(1) - X(1)0(1)))}

T lexp. I Ot - 1)T(') _ 0(t-'))
t=2 2

X f e01)2 eXp(- (y(t)-_ X(t)O(t)lT(y(t) _ X(t)e(t)))}} (2.13)

We axe primarily interested in obtaining the distribution of (O(T), 01tT2, DT), so we inte-
grate the full posterior distribution in (2.13) over the parameters 0(1),...,0(T-1 ). This
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is accomplished through a recursive updating and forecasting operation. An updat-
ing operation is the Bayesian calculation that obtains the distribution of (0 (, 0•r'2, Dt)
from (0 ('),O 2, Dt_1 ) after acquiring data at time t. A forecasting operation is the
Bayesian calculation that obtains the distribution of (8(t+1),010,2 Dt) from the distri-
bution ( 0 (t), OkIG 2, Dt), reflecting the additional uncertainty due to the passage of time.
Repeated application of updating and forecasting operations results in the distribution of
(O(T), '1a2, DT) from that of (0(1),.010 2 , Do).

2.4.1 Updating and Forecasting Recursions

We demonstrate the updating and forecasting recursions by considering the state of the
dynamic system prior to tournament t. The prior distribution on (0(1), &2, D•- 1 ) is

(0G(), &k2 , Dr-1.) - NG(p('), f(t), R(), v(0))

as in (2.11). We now observe dt, consisting of the 0(t) outcomes of paired comparisons of
tournament t, and by the methodology of Section 2.2 we obtain

(0(t), 010,2 , Dt) " NG(ol(t), CMt, le(t), 0,(0) (2.14)

where

kR(t) = - (t) + x(tTx(t
A ,(t) = Rk(t) -I(R(t)/,U(t) +r X(t)TV(t))

01) = 0) + n(t)

00(t = 1 [(V(t)f(t) + p(t)TR(t)p(t)) + -(t)TY(t) _ p,(t)TR,(t),&,(t)] (2.15)

This completes an updating calculation.

To demonstrate the forecasting calculation, we assume the distribution in (2.14) has
been obtained. The conditional distribution of 0(t+') is specified as

(9(t4-1)10(t), 0, O.2 , Dr) - N(0(, 0, 21P),

which can be interpreted as incorporating the additional uncertainty in the team's abilities
at time t + 1. The joint distribution of parameters before observing paired comparison
data at time t + I is

f(e( t +1 ), 0 (t), &ko2, Dt) = f(O(t), 010 2, Dt) x f(O9 (+1) 1 (00), , f 2 , Dt)
oC eXp{-t(0(t) _ ll'(t))Tle(t)(O(t) -- 11'(t))},Jp/2

"x exp(- v'(t)fI(O)¢V'(g)12-1
2" e,( 1 (0(t+l) _ O0())T(o(t+I)_ t).

ep--•2o,2 (o)
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Marginalizing over 0 (0) yields

f(90+1), &)02, Dt) = Jf(8(0+), O(t), )102, Dt) dO(0t

c exp{-2(e(t+i) - 4(t+I))TR(t+I)(e(t+I) - (t+l))}O/2

x exp(- +

where

R(t+')= (Rje(-1 + -I()-,
-~c = s(t

v(t+1) - I(t)
V(t+l) =VIM,)

This marginalization gives the distribution of (6 (4+1), 4)) given Dt, that is,

(O(t+1), O•br2 , Dt) -, NG(oz(t+'), C(t+'), R(t+'), vtl)

This defines a single iteration of the forecasting calculation. Note that the only difference
between the distributions of (9(t), 010,2, Dt) and (O(t+1), •4102, Dt) is that the conditional
variance of the rating parameters in the latter distribution has been increased by ao21p.

2.4.2 Predictive distribution of (d+ 10,2, Dt)

The forecast distribution (dt+1i0.2 , Dt), t = 0,...,T for the n(t+i) observations to be
observed during season t + 1 can be obtained in the foilowing manner. We have

(dt+l IX(t+l), 0(t+I), O, Or2 , Dt) - N(X(t+')O(t+'), 1,.(,+I))

(0(t+l) 10, 0,2, Dt) ", N(."(t+'), (OR(t+'))-')
(0a2, Dt) "' Gaamm(v(t+')/2. v(t+1)ý(t+4)/2).

The conditional distribution of dt+1 given 4, but marginal over 0(0+1), is normal, and has
mean and variance given by

F_•dt÷1 IX(1+l), 14(t~el), 0, 0,2, Dt)

= E(F,(dt+IOq(t+I), 4), 02, Dt))

= E(X(t+')e(t+')I;&(t+'),O, 2 2, Dt) = X(+1)L(t+1)

Va=(dt EIX(V-1),a•(td l), R(t-), o,2 2, Dt)
-E(Var(dt+j j0(t+'),R(t+I)00,2 , • Dt)) + Var(E(dt+al10(t'+), R(t+'), 0, a2 , Dt))
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= E(-I,,(.+,)) + Var(X~t+')0It+1))

= ;((.I•+) + X(t+I)R(t+l)-IX~t+I)T).

This implies

(dt+i, &2 2, Dt) - NG(X(t+l)p(t+l), f(t+i), I.(,+,) + Xi(t+)R(t+') -1X(t+I)T, v(t+l)),

from which we obtain the standard result that the distribution marginal over 0 is given
by the t-distribution

(dt+1 02, Dt) - Tt,+l)(X(t+l)pU(t+l), f(t+i)(I(,+l) + X(t+I)R(9+1) -1 X(t+1)T)). (2.16)

The univariate predictive distribution for (t+1) i

S(tjl Dt)2-T(,+•,)((t+')- (t+I~) +(~l( .•(,(t+l))•I- +•(•tl)l_(•tt)l)

From this distribution, it is straightforward to calculate Pr(z4+l) > 01a 2, Dt) numerically.

2.5 Analysis with ar2 unknown

In most paired comparison experiments the extra variance, a 2, describing the magnitude
of changes in the rating parameters between successive competitions is unknown, and
should realistically be treated as an unknown parameter in the analysis of the model.
Furthermore, it is often of direct interest to learn from the data what are plausible values
of 0o2. In this section, we explore two approaches to analyzing the model with unknown

2.2

To motivate our two approaches, suppose we assume the dynamic model of (2.8)-
(2.12). We observe T tournaments, and are interested in the morginal posterior distri-
bution (O(T), ObIDT). To obtain this distribution, we can marginalize over the conditional
distribution given w = 1/12,

f( 0 (T), 4'IDT) - f f(g(T), 01w, DT) f(WIDT)dw.

The first density in the integrand is normal-gamma, and is calculated by the updating
and forecasting recursions for known a2 of Section 2.4. The second density is difficult to
obtain in closed form. We propose, therefore, two approaches to the analysis. One ap-
proach involves drawing a large random sample from the marginal distribution of (&IDT)
and uses the sample as an approximation to the exact distribution. This is accomplished
using the Gibbs sampler as described in Section 2.5.1. Alternatively, we can approximate
the prior distribution of w by a discrete distribution, so that the posterior probability
distribution of (wIDT) is easily calculated. This approach, a non-iterative analysis, is de-
scribed in Section 2.5.2. In either case, to compute the marginal posterior distribution of
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(O(T), OIDT), the first conditional density in the integrand is integrated over the approxi-

mate distribution of (wIDT), and the computation of marginal posterior distributions of
9 (T) or dT+l becomes a more tractable problem. Section 2.7 discusses how to obtain these
marginal posterior distributions.

2.5.1 Analysis using Iterative Simulation

The Gibbs sampler, an iterative simulation technique for drawing samples and summariz-
ing parameters of distributions that would otherwise be difficult to examine, is a compu-
tational approach that is being used increasingly in the analysis of Bayesian models. The
algorithm was first described in detail in Geman and Geman (1984), though many of the
ideas underlying the Gibbs sampler have been developed in previous work (Besag 1974;
Hastings 1970; Metropolis et al. 1953). More recently, Gelfand and Smith (1990) develop
the Gibbs sampler methodology in a general framework and discuss the properties of the
algorithm. The flexibility of the iterative simulation approach has enabled the analysis of
Bayesian models in which dosed form posterior distributions are difficult or impossible to
obtain.

To describe the use of the Gibbs sampler, suppose we have m random variables
Zi,. .-., Z,,,, and we are able to specify and generate random samples from the condi-
tional distributions (Z,1Z 1,...,.. Zi, Zi+i,..., Zm), i = 1,...,m, that is, the distribution
of each of the Zi conditional on the rest. The Gibbs sampler begins with an arbitrary set
of starting values Z(°),..., An). Then at iteration q, we draw

-.~

Under regularity condition, specified in Geman and Geman (19M4), the distribution of

(Z(",..., Z,)) converges to the joint distribution of (Z,,..., Zm) as I -- oc.

Assessing convergence of the algorithm is still under investigation (see, for example,
Gelman and Rubin 1992a; Geyer 1992). The approach used throughout this paper, pro-
posed by Gelman and Rubin (1992a), involves running multiple Gibbs samplers with
overdispersed starting values, and monitors convergence by comparing the within-sample
variance of single samplers to the between-sample variance. Other approaches to moui-
toring convergence are mentioned in Gelfand et al. (1990) and Zeger and Karim (1991).

We use the Gibbs sampler in the analysis of the dynamic paired comparison model to
approximate the marginal posterior distribution of (WIDT). This is done by alternately
sampling from the conditional posterior distribution of (0(1),..., 0(T), 4jjw, DT) and the
conditional posterior distribution of (w00(),...,0(T), •,, DT). Liu (1992) notes that the
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Gibbs sampler will converge more quickly if parameters can be combined, as in this case,
so that rather than alternating among a total of T + 2 conditional distributions, we only
alternate between two conditional distributions. After the Gibbs sampler converges, we
continue the iterative simulation to obtain a random sample from the marginal posterior
distribution of (wIDT). We now describe the methods used to draw samples from each of
the conditional distributions.

Steps of the Gibbs Sampler

The Gibbs sampler, which we describe in detail below, proceeds as follows (the subscript
c is used to indicate parameters part of the current Gibbs draw):

1. Pick a starting value, we, for the innovation precision.

2. Obtain the normal-gamma distribution for (O(T), 46'wc, DT) via the updating and
forecasting operations of Section 2.4.

3. Draw 0, from
(0lwc, DT ) -" Gxmma~v•(T)/2, vi(T)ýi(T) /2 ).

4. Draw O(T) from
(O(T)I, wc, DT) - N(Izi(T), 0' {T)l)

5. For t = T - 1,..., 1, successively draw 60t) from

(), ID) .. + vj0ODt,1)), (r(t))

where VWt) = (OR'() + weIp)-. This completes the first half of a Gibbs sampler
iteration, that is, a draw from the distribution of (O(1),..., -(0), 1w, DT).

6. Draw wc from

(0(ul,I M -. OcT),&,DT)-•Gamma(ao~p(T-1)/2,b04-1-•'(O~t+l)--O~t))T(o(t+l)--O~t))).
• , c2 t=l

This completes the second half of a Gibbs sampler iteration.

Repeat steps (2) through (6) until convergence.

Sampling from (0().,..., 0 (), 01w, DT)

In Section 2.4, we describe how to obtain the posterior distribution of (0(M), 01w, DT)
by the updating and forecasting recursions (steps (2)-(4)). Now we are interested in the
posterior distribution of the remaining parameters conditional on w.

Let w, be the current draw of w in the Gibbs sampler. To draw from the joint distribu-
tion of (0(i),..., 0(T), 01w, DT), we invoke the following argument. Suppose we want to
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draw from the joint distribution of random variables (XI, X2 ,. X,). To do so, we can
first draw from the marginal distribution of X,., and then draw from the conditional distri-
bution of (X"_ 1-IX"), (X.-21X.-JX.), and so on, until we draw from (XIIX 2.  X•).
This process gives a single draw from the joint distribution of all variables.

For the current problem, we can rewrite the joint posterior of (0(1),.. 0 (T). 1  DT)

as a product of conditionally independent densities,

1 •., 9 (T), 01c, DT) = f(O(T) , DT) x f(O(T-1);e(T), 0.wc, DT)

x ... x fIO(9(1)(2),...,O(T),0 wC, DT). (2.17)

This factorization suggests that to draw from the joint distribution of T + 1 parameters
on the left-hand side of (2. : 7), we can successively draw from each of the conditional
distributions on the right-hand side. Given a particular value, wc, of the system precision.
we can compute the distribution of (O(T), 01w, DT) using the updating methodology of
Section 2.4.

To understand how to draw from the distribution of ( 1 t+).... D(T),we DT),

t 1.... , T- 1, it is helpful to write down the joint posterior distribution of all parameters.
Conditioning now on w•, we have

f(0(M ..... OMT, Op[, DT)

cX {f(O'wc, Do)}
"x I{f(s8') 1,0, , Do)}

"× {f(d (t100), ), w), Do)}
T

x nI 0{((i'')-•-0),01w, Dt-I)}

t=2

x{f(dtf9Q)..

which we can write as

1(0{) .... 0T)',Olc, DT)
(x Jexp(_v(1)C(')0/2) 01P)/2-1}

X{exp(--(6(1) -- /iI))TR(1)(O(l) -

2X {n()/2exp(•-,y() - X(1)O(i))T(,(1) _-~ ~~))

Tf
xII {exp(_-(GQ - O(t-1))T(9(t) - 9(t-)))

t=2

X {e')/2eXp(-t(3 (t) - X(t)(t)))T(Y(t) - X(t)Ot)))}}

We now compute the joint posterior distribution marginalized over 0(0).... , 6 (t-1). This
is accomplished by performing the updating and forecasting computations of Section 2.4
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to obtain the marginal distribution of (0(1), iw, Dr). This results in

f(OM(),..., 0(T), Ojwc, DT)
cx f(9(l), •Jwc, Dt) x f(O(t+1),. , O(T) O(t), .,"c, DT)

ca {exp(_v,(0)t,(t)0/2) v 0(/ 2-i}

x{exp(-_(0(t) - I,(t))Tj,(t)(ott) -

{f On(e+')/2eXp(-
4
-(y(t+1) - ltt+l)O(t+l))T(Y(t+l) _ X(t+)(t+l)))}2

X {exp(- 2(0(+2) - O(t+1))T(o(t+2) - O(t+l)))}
2

x{exp(--L(0(T) - O(T-1))T(o(T) _ O(T-1)))j

{ 1 (T)/2 eXp(--•(•/(r) _ X(T)o(T))T(y(T) _ X(T)o(T)))}. (2.18)
2

The conditional distribution of (O(t) 9 (1t+I),.. ., (T), 0, wc, DT) is proportional to the marginal
posterior distribution in (2.18) treating the parameters O(i+l),...,O(T), 4j, w as constants.
This is simplified by neglecting the terms that are constant with respect to 0(t), which
yields

f (O(t) O(t+I),..., O(T), 0, wc 9 DT)

Mx eXp(---(O(t) _- &(1))Tje(t)(e(t) -

X{exp(-2C((t+I) - o(t))T(o(t+j) - O(t)))).

Thus, conditional on 0(t+1), O(t) is independent of the data dt+ 1,..., dT. We therefore
have

(0(0) 10(+1), ... • O(T), 1, w, DT) -" N(V(t)(4OR,(t)p'(?) + w ) v(t)), (2.19)

where V(0) = (,OR'(t) + wi)0-.

So to perform the iterative sampling procedure for drawing from (0(1),.. 0 O(r), 46Iwc, Dr),
we first draw 0OT) and 46, given wc and DT as in steps (3) and (4). In obtaining the
normal-gamma parameters for (0(T), Owc, DT), we retain during the updating and fore-

casting operations the normal-gamma parameters for (0(0), 401Wc, Dt), t = 1,..., T. These
parameters are computed in the intermediate steps as in Section 2.4. Now from (2.19),
we can draw 0 (T-1) from (0(T-1) 1 0(T), Oc, w, DT), and recursively, we can draw 0(t) from
(0(t)10(t+1),...,6•T), 0C,wC, DT). This process gives us a complete single draw from the
conditional distribution of (01w),...,#(T), . DT), which completes the first half of a
single Gibbs sampler iteration (step 5).

Sampling from (wj(T)), 0 )c, D)
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To perform the second half of one ite7a-,ion of the Gibbs sampler, assuming we have
draws 61C,... , CT), c, we now want to draw w, from the conditional distribution of
(w0I),-.-,O(T), 0, DT). Suppressing t conditioning on hyperparameters, we have

f(0(1),..., 0(T), O,wjDT)

c .aO_-e-'bow
x f{exp(- 0))•0)0/2) 0 v()/2-1}

x{exp(-(O((1) -p(1i))TR(i)(8(1) -

2

x10n()/2 exp(- ý(Y(1) - X(1)O(i))T(y(1) -

T2

Tl {{Wp/2 e~(W(9(1)- _0(-1))T( 6 () -_Q(-i))))
t=2f

X jfnM/2eXp(_±(VQ) - X(t)o())T( 1(t)_ x()o(t-))}

The conditional posterior density, f(wjOPl),. .. , CT, VOC DT), is proportional to the above
density. Ignoring terms that are constant with respect to w, we have

f(W19(1),...', O(T),O, DT)

Oc {fW'-'e-bO'}

× { fWp/2 exp( 2' (0(1 ) _ 0(6))T (O 't) _1))) )}

t=2 I

so ha x~j(T)/exp( 2. Z(O(t~l) _ 6 (t))T( 9 Qt+1) - O(O)))
so that

T-i

(We(1)..... O(T), 0, DT) -. Gamma(ao+p(T- 1)/2, bo+ 1 Z (9(t' 1 )--o(t))T(O(t+1)--(t))).
t1

(2.20)

Therefore, to complete the second half of one iteration of the Gibbs sampler (step 6), we
randomly draw w, from a Gamma distribution conditional on the parameters drawn from
the first half of the Gibbs sampler iteration. When the successive 0(t) and 0(t+') are close
to one another, the sum of squared deviations in (2.20) will be small, so the distribution of
w has large mean. This indicates that the amount of variability between competitions is
small, which seems consistent with the successive 0(t) and 0 (t+l) being dose. Conversely,
when the sum in (2.20) is large, the value of w drawn from the distribution is likely to be

small, corresponding to a large system variance, a 2.

Carlin, Polson and Stoffer (1992) develop a methodology for modeling a large class
of state-space models using the Gibbs sampler to approximate the posterior distribution
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of parameters. Their approach, which can be used to analyze the normal dynamic linear
models of the form (2.8)-(2.11) as a special case, involves constructing a Gibbs sampler
that alternately draws from many conditional distributions. However, as demonstrated
in Liu (1992), if some parameters can be "grouped" into joint distributions (conditional
on the rest), then the resulting Gibbs sampler is a more efficient procedure in the sense
of faster convergence to the unconditional posterior distribution. While Carlin, Polson
and Stoffer (1992) iterate among many conditional distributions, our approach involves
iterating between exactly two, so that our Gibbs sampler will converge at least as quickly.

2.5.2 Analysis using a Discretized Prior on w

An alternative approach to obtaining the marginal posterior distribution of 0(t) involves
using a discrete approximation to the prior distribution of w. This approximation may
be done in any of several reasonable ways. First, we may draw a random sample of size
m from a continuous prior distribution, in which case the empirical distribution of the
sample approximates the true prior distribution. Another possibility is to partition the
range of w into m intervals, compute the probability associated with each interval, and
compute the centroid of each interval. A third approach, which seems the most reasonable
to use in practice, is to select m grid values of w that are overdispersed for the distribution
of w, and assign probabilities for each value corresponding to prior beliefs.

Suppose we have selected a set of m values of w, {wl,. . . ,w,,}, and assume we have
approximated the prior distribution by the probability function

lDo)= 74{ oif W Wtf~wD° = 0 if W {u, .. ,}

where we assume f(wIDo) has mass only on the set .-- ,,. . For any season t, we
have by Bayes' theorem

f(wlDt) = f(ddIDt-,,w)f(dtIDt-1).fw t-)

The marginal distribution of w given data through season t has a simple relationship to
the distribution of w given data through season t - 1. Continuing the recursion, we have
for all t

IIDt) = 1 -_, f(di IDj_,,w)

t

C f(wIDo) I- f(diIDj-ri,).

Thus the marginal density of (wIDT) is proportional to the product of the prior density
of (wfDo) and a reweighting factor, which is the product of conditional likelihoods of the
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form f(dtlDt-.,w). The reweighting factor for a specific value of w is a measure of how
likely the data were to occur given the previouz data and the specific value of w. When the
reweighting factor is small for a given value of w (relative to other values of w), the data
is not well predicted frorr the given value of w, so the posterior probability of that specific
value of w is small. From Section 2.4. (dtlDt-..w) has a multivariate t-distribution with
density

f(dtlw, Dt- 1 ) az 1 v(0 +(d -X(O/•(O)TC(t -I(dt-X(Ol•(t))/f(t)-(v(g)÷"(0)/2
IC(t) 11/2 +

with C(t) = (I,(,) + X(OR(t) -. X(t)T). Therefore, the posterior distribution of w is ob-
tained by reweighting the prior distribution of w by a product of multivariate t-densities,
so that

(rýT) 7r!" n.71 f&iwi, Dj-,)
F,__I1_(0) nT If (dTlwj, DTI)"

It is therefore a straightforward procedure to approximate the posterior distrib',: - on of W.

The attractiveness to this approach over the iterative simulation approach is its lower
computational cost. In performing iterative simulation, let N denote the number of
iterations performed in a single Gibbs sampler, and let g be the number of parallel Gibbs
samplers run to assess convergence. We must perform Ng forward filters, that is, the
computation that produces the parameters for the distribution of (M(T), 01w, DT) from
(0(1), 01w, Do). In addition, we must run Ng back filters, that is, the computation that
produces the distributions of (0(t)I0(t+1),...,0(r),•,&,DT), t = T - 1,...,1. In the
non-iterative analysis, we only need to run m forward filters and no back filters. If we
set m = 150, g = 6 and N = 500, all reasonable parameter values, then the iterative
approach is 20 times slower than the non-iterative simulation approach of this section,
and 40 times slower if back filtering is considered as expensive as forward filtering.

The main disadvantage of the non-iterative approach relative to the Gibbs sampler
stems from choosing the initial set of values of w. If the data show that the support of
(wIDT) is not well represented by the set fwl,...,..,W} so that the prior distribution on W
is misspecified, the posterior distribution of (wIDT) will not be approximated accurately.

2.6 Inclusion of Non-dynamic Linear Covariates

Paired comparison experiments often include data which might be usefui predictors of the
outcome of future comparisons. The model stipulated in Section 2.3 can be extended to
include linear covariates whose distribution does not change due to the passage of time.
In this section, we describe a model that includes linear non-dynamic covariates into the
dynamic model, and show how to modify the analyses of Sections 2.4 and 2.5 in the
prezonce of these covariates.
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Suppose we observe with each paired comparison a set of q variables. Let W() to
be the 0() x q covariate data matrix, and let 0 be the vector of q parameters associated
with the variables where f is assumed to remain constant over time. The model for score
differences at time t is now given by

yV) .M-•Y(at• , -(XI(,))

where X(.t is the n x (p+q) concatenation of X() and W(), and e(9 is the (p+ q)-vector
(G(t), 3). The probability model that describes the evolution of the parameters, 0.', is
given by o9.' = o(.'-1) + I,(0.'

The parameters 3, the last q components of Olt), are assumed to remain constant over
time, so we assume

(V(.) 1 2) ~ N(a.t,a 2jPIq)1

where a.j = (at,0,0,...,0), that i., the vector at followed by q zeroes, and Jp,q is the
p + q dimensional square matrix consisting of zeroes everywhere, except that the first p
diagonal elements are equal to one. This formulation of the model specifies that the first
p components of 0( t are dynamic and are allowed to change over time according to the
model in (2.9). The last q elements of 4.t) remain fixed over time, and as more data are
accumulated these parameters axe estimated with greater precision.

Analysis conditional on a2

The analysis of Section 2.4 where a.2 is known remains essentially the same with a few
modifications in the updating and forecasting formulas. The formulas in (2.15), which
update the normal-gamma parameters upon observing new data, do not change with the
addition of non-dynamic parameters,

k. =) + X)T"X( )

.) + +(t)
et) 1-R(v(((t) + +;()TR•)•(0t)) + (t)T (i -_ :(Ot)T(t)•.Ljt)] (2.21)

The forecasting equations change slightly because the non-dynamic parameters do not
increase in variance due to the passage of time. We therefore have

+ - (jet -1 2j(1+j) ,-)

v(t+ ) = v'(t)
.(t+1) CIO). (2.22)



2.6 Inclusion of Non-dynamic Linear Covariates 24

This demonstrates how to calculate the marginal distribution of O(T) given a2 through an
updating and forecasting recursion.

Gibbs Sampler analysis

The use of iterative simulation in Section 2.5.1 undergoes several important changes in
the presence of non-dynamic parameters. The goal of the Gibbs sampler is to sample alter-
nately between the distribution of (0(), ... , 9(T),6, 0w, DT) and (..(),... , T) 3, ,, DT).
The difficulty in this analysis is that drawing 0(') is affected by the presence of the
non-dynamic parameter P. The strategy we employ is to factor the distribution of
(0(i),..., (T), 0, ••w, DT) into a product of conditional densities,

f (ft, 01w, D)T) x f(G(1), .... ,,0GT)1, 0, w,, DT)

To perform the sampling, we obtain the normal-gamma distribution for (0(T) = (0(T), 3), 01w, DT)
via the updating and forecasting formulas described above. We next sample 0, from its
gamma distribution, and then sample 0c conditional on 0, from its normal distribution.
To sample the 0(t), t =- 1 ... T, we need to recompute the conditional normal distribu-
tions of (0 (i) 1 30, 0c, dr). This can easily be shown (see, for example, Dillon and Goldstein
1984, pg. 546) to have the distribution

(00 1,.,t.)- N A' t)+ F ) F M -I ('U' EIM) -- I) t) - (t) It(t) -1 -t)•

where

The matrix E,) and the vector P,(t) are indexed by 0 and / to denote the respective
subsets corresponding to these parameters. Once these conditional distributions have
been obtained, we need to perform a recursion analysis similar to the conjugate normal-
gamma updating and forecasting equations of Section 2.4. This analysis is conditione on
-0, so that updating and forecasting corresponds to calculating parameters for posterior
normal distributions rather than normal-gamma distributions. This needs to be carried
out in order to calculate the parameters of the distributions of ((00) 10,,,c, w, Dt) for all t,
from which we will obtain the desired joint posterior distribution.

The norm3 'Aased updating and forecasting recursions are straightforward. Suppose
we have (0(0)• w,, Dt-1) ~ N..,(t) C--(t))

Then upon observing new data, dt, the updating recursion obtains the distribution

(O(t) w,:O,,,, Dt) ~ N(,Yn(t), &,(t))

where

- C0 = + : +

i 1 . .... = CI..)(C.t) -1m.(t) + V 0 nmnun)n
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where EM and #P() are the conditional means and variances for the t-th competition
conditional on #c and 0c.

The forecasting recursion which obtains the distribution of parameters before the t + 1-
th competition is given by

~ /(t+I), C(t+l))•(O(1+1) 1CP, 0, W:,Dt) -',' ,'•o .

where

M(t+1) = 1(t)

(-1 C'IM~

These two recursions are performed alternately in succession to obtain the posterior dis-
tribution of (8(T) Ic, fc, wc, DT).

To obtain a sample of draws of the 0(t), t = T - 1,..., 1, we first draw 8(T) from the
distribution of (8(T)Ic, /3 , wc, DT). Then for t = T - 1,..., 1, we successively draw from

('(~0t1)..0 ,0#wcDr)N(~) ~'t)_1M +W '~)) t),

where V(0) = (C0 (t) -1 + wip)_1 . The result of this process is a single draw from the
distribution of (0(1),.. , 0, 01w, DT).

Drawing from the distribution of (wI0(1),..., e(T), #, 4, DT) is identical to (2.20) in
Section 2.5. Only the p dynamic parameters of 0(t) are used to compute the parameters
of the gamma distribution because the conditional distribution of w does not depend on
the non-dynamic components.

Non-iterative analysis

The addition of non-dynamic parameters to the analysis of Section 2.5.2 presents no
obstacles. Here the non-iterative analysis requires the computation of f(dtlDt-j,W), for
all t, in order to obtain the posterior distribution ofW. This is accomplished by computing

the normal-gamma parameters for the distribution of (49, 01, DA- 1 ) using the updating
and forecasting equations (2.21) and (2.22), and calculating the values of the t-densities
given these parameter values for each wi and each season t. No other modifications are
necessary to the analysis of Section 2.5.2.

2.7 Marginal and Forecast Distributions

In practice, we are primarily interested in making inferences on O(T) and on y(T+i). This
involves marginalizing the distribution of (0(T), wIDT) or (y(T+I), wIDT) over the nuisance
parameter w. In this section, we describe an approach using the results of Section 2.5 to
marginalize over w.
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2.7.1 Marginal Distribution of (aIDT)

The methods of Sections 2.5.1 and 2.5.2 provide an approximate posterior distribution for
(wIDT), and therefore for (aIDT), as a discrete distribution. In the case of Section 2.5.1,
the Gibbs sampler results in a random sample of m draws from the posterior distribution
of (wIDT), whereas Section 2.5.2 results in a discrete probability distribution on the m
values of w which approximates the true continuous distribution oi (wIDT). In both cases,
we have a discrete distribution on a set of values of w which approximates the continuous
distribution of (wlDT). We assume, therefore, that

-(T) for w =
f(WIDT) = f W =Wi (2.23)

When {wj,.-., .. } axe drawn from the Gibbc sampler, we assume that 7r !T) = 1/M for
all i. The approximate mean and variance of (aIDT), where ar, = 1/1/r, are given by

pM
E(o'IDT) = J f(ojDT.)du = Tff)i

f j=1

Var(ulDT) = (a- E(aIDT))2 f(aIDT) do

= E(j, - E(aoDT))2rZ
T ).

i=1

Higher order moments can be calculated analogously.

2.7.2 Marginal Distribution of 0 (T)

In order to make inferences on the distribution of (O(T)IDT), we need to marginalize over
w. After tournament T,

(O(T), 01w, DT) ~ NG(A,'•T), ý'•T)',WR(T) , V'i(T)).

Marginalizing over 0 gives

(O(T) 1w. DT) _ T,•T) (Lt'(T), ft(T)k'(T) -i ).

Therefore,
f(e(T) IDT)= J f(q(T)Iw, DT) f(wIDT)dw

7r! T)f9(T)j DT),

which is a mixture of multivariate t densities.
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The mean of this mixture distribution is computed as

E(0(T)IDT) = E(E(O(T)[w, DT))

E~(T)) Ir!T) A(7)

it=

where jT) is the mean of (O(T)1 wi, DT). To compute the variance, we first note that for
multivariate t distributions,

V,(T) e T & T i
Var(O(T)Iwi, DT) = '-(T)j(T -1,

where •(T) and R(T) are indexed to show the dependence on Wi. We therefore have

Var(O(T)IDT7 )

= E(Var(O( T )1w, DT)) + Var(E((T) 1w, DT))

= r(T)Var(O( T ) •i, DT) + Var(pA(T ))

7r(T)Var(O(T)wi •VT) + I ,T)(,(T) - E(e(T)IDT))(I4T) - E(o(T)IDT))T

(2.24)

These computations allow us to summarize the first and second moments of the marginal
distribution of (O(T)IDT).

Posterior inferences on (6(T )IDT) from the mixture distribution are difficult to per-
form analytically. Instead, we simulate draws from the mixture distribution, and make
inferences empirically from the obtained sample. To simulate draws from the mixture, we
can draw from (wJDT) first, and then given this value of w we can draw from the exact
multivariate t distribution of (O(T)1w, DT). This gives us a single draw from the marginal
distribution of (o( T )IDT). To draw from a multivariate t-distribution, we can first draw
from the gamma distribution of (01w, DT), and then draw from the multivariate normal
distribution of (e(T) 1., w, DT). In either case, this process is repeated until we obtain a
sample large enough so that empirical inferences, such as credible intervals for parameters,
can be obtained.

2.7.3 Forecast Distribution for dT+l

We now show how to obtain forecast means and variances, and prediction intervals for
unobserved data dT+I of length n(T+1). We first note that from (2.16) in Section 2.4,

(dT+1 1w, DT) -" TST+I) (X(T+I);p(T+,), f(T+1)(In(T+I) + X(T+i)R(T+l) - 1 X(T+I)T))
(2.25)
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so that the predictive distribution for dT+1
f(dT+IIDT) f(dT+i1w, DT)f(wIDT) dw

£1jTf(dT+l i',DT) (2.26)

is again a mixture of t distributions. The mean is computed as

E(dT+IIDT)

= E(E(dT+l w, DT))
iin

Y T(T)X(T+1)(UT+1) =XTI (T ) (T+I))
i=1 ifIl

where X(T+l) is the design matrix for the new data, and R(T+I) is the mean of the normal-

gamma distribution that forecasts q(T+1) from data through time T. For computin.g the
variance, we first note that

" (T+I) __(T+l)(r (T+1)(T+I) -IX(T+I)T)

Var(dT+hlwi, DT) = V(T+I) - 2 ) T+.) + X/Ri

so that
Var(dT+lIDT)

= E(Var(dT+l w, DT)) + Var(E(dT4.lw, DT))

= F.X!T)Var(d(T+l)wi, DT) + Var(X(T+l)'L(T+i))

= 7r T)Var(d(T+l)lj, DT) + X(T 4 I)Var('(T+1))X(T+1) T

it1

- ~ (T)Var(d(T+l)jwi DT)

+X(T+ _) (T)( 4T+I) _ E(9(T) DT))(AiT+l) _ E(6(T)IDT))T X(T+l) T7xT * i A S - E D T 9 0( ) D

(2.27)

Thus calculations for the estimated mean and variance are straightforward from these
formulas.

We obtain inferences from the predictive distribution in (2.26) by drawing random

samples of V(T+I) and reporting empirically based predictive intervals. We draw from
(wIDT), and then given this value we can draw from the exact multivariate t distribution

of f(dT+liw, DT) as given in (2.25). This results in a single draw from the marginal
distribution. Repeated applications of this process yield a sample on which to perform
empirically based inferences.
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It should be noted that treating w, and therefore or2 , as an unknown parameter ap-
propriately increases the estimated variability in both (9(T)IDT) and (dT+IIDT). This
is reflected by the inclusion in (2.24) and (2.27) of the second term, the variance of the
conditional mean. If w were treated as known, this second term would vanish, and the
variability of the forecasts would be underestimated.

2.8 Sequential Updating with New Data

In this section we consider the situation in which we have observed T tournaments of
paired comparison data and have performed one of the anal ses of this chapter thereby
obtaining the distribution of (0(T), 4w, DT) and the distribution of (wIDT). We now
observe data at tournament T + 1 and want updated distributions of (0(T+1), ,DT+)

and (wIDr+I).

Naturally, one method that gives the desired result is to apply the Gibbs sampler
methodology of Section 2.5.1 by performing the entire Gibbs sampler analysis on all
T + 1 tournaments. This will give the desired posterior distributions, but it is extremely
inefficient in that it does not make use of the analysis of the first T tournaments.

A more efficient approach is based on a non-iterative updating algorithm similar tu
the method of Section 2.5.2. In the analysis of Section 2.5.2, we update the distribution of
(wlDo) to (wIDT) by reweighting the initial probabilities, °), by the product of marginal

likelihoods of the data to obtain the posterior probabilities, zr) The analysis here is
similar, as we want to update the distribution of (wIDT) to (WTDr+I) from data observed
at tournament T + 1.

We have at time T
(O(T), 01wo, DT) , NG(/&'(T), ý,(T), A~cr), t,(T)),

and we also have a sample of m values, w 1 ,... , for which
r (T) if W Wi•.f (woDT) = 1 i

Obtaining the distribution of (0(T+1), 01w, DT+I) is a simple application of the forecasting
and updating formulas given in Section 2.4. To calculate the posterior probabilities,
7r+, for the distribution of (wIDT+l), we have

f(wIDT+1) = f(dT+IIDT,W) f(wiDT)
f(dT+IIDT)

oc f(dT+1IDT,W) f(wIDT).

The posterior distribution of (wIDT+I) is given by

(o +T +I) if w =i

0 ifw {w1 ,....wn
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with

!(T+1) ir(Tl)f(dT+lj,,DT)
_(TTI

Thus the updating of the discrete posterior distribution from 1 !T) to wT+l) is obtained
by reweighting by the relative likelihoods of the new data, which have a multivariate i
density. This approach appears to be an efficient way to obtain the approximate posterior
distribution of (wIDT+l) as it makes use of the previous computation that resulted in
the posterior distribution of (wIDT). The methods of Section 2.7 can be used to obtain
the marginal posterior distribution of (O(T?')IDT+I) as well as forecast distributions for
subsequent tournaments.



Chapter 3

Analysis of NFL Football Game
Scores

Using the methodology described in Chapter 2, we analyze in this chapter National Foot-
ball League (NFL) game outcomes from 1981-1991. As a result of our analysis, we obtain
rankings of teams at the end of the 1991 season and game predictions for the 1992 season.
In Section 3.1 we describe a probability model for football scores that incorporates changes
in team abilities over time, and the implementation of both the Gibbs sampler analysis
and non-iterative analysis of the data under the model. Section 3.2 reports the results
of the analyses of the model. We obtain the posterior distribution of the between-season
variance, the parameter describing the magnitude of the team ability changes from season
to season. We also compute posterior distribution summaries and inferences for team
ratings, and obtain prediction intervals for 1992 NFL games. To test the adequacy of the
model, we perform diagnostic checks on the forecast residuals. In Section 3.3, we compare
the results of analyses based on different amounts of data. We demonstrate in Section 3.4
how to update the distribution of the model parameters to account for new data (the first
four weeks of 1992 NFL game results). We conclude the chapter in Section 3.5 with a
discussion of the utility of the model.

The data used in the analysis consists of the complete regular season results of NFL
football games for the years 1981, 1983-1986, 1988-1991. We did not include games for
the years 1982 and 1987 because these were years in which strikes occurred; games played
during these years may not be representative of how teams would perform under usual
conditions. The NFL is comprised of 28 teams, and during the regular season each team
plays 16 games, resulting in a total of 224 games played per season. For each game,
we recorded the final score for each team, and the site of the game. Use of covariate
information could likely improve the predictive power of the model (game statistics, for
example), but no additional information was recorded.
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3.1 A Model for NFL Score Differences

The probability model that we assume for differences in final scores during season t,
t = 1981,...,1991, is given by

Y (t) ,N(G - + 6() T2), (3.1)

i'kjkk ik ikk i (hfa)'(.1
where, at time t,

3(t) = the score difference of game k3 1 kjkk

,(t) = rating parameter for team i

0(hfa) = home field advantage parameter

ik,jk= indices of teams involved in the k-th game

6(t) - 1 if team ik plays on their home field
-1 if team jk plays on their home field

2- variance of (t conditional on the mean

The team parameters, 8!t, i -- 1,...,28, indicate the relative scoring abilities of the
teams during season t. The difference 6(t) - e•t) is the score difference expected to occur

between teams ik and j* during season t, not accounting for the si of the game. The
parameter 0 hfa), the home-field advantage (HFA) parameter, specifies the amount on
average the home team will outscore the visiting team, and is assumed constant for all
teams and seasons. The variance of the score difference about the mean, 7-2, is also
assumed independent of teams involved in a game and of season.

The model in (3.1) is intended only as an approximation. NFL games scores can take
on only integer values, so the assumption of normality conditional on the parameter values
cannot be considered exact. Modeling football game score differences as discrete outcomes
may be more realistic, but the analysis of such a model may prove to be intractable. An
example of such an analysis appears in Rosner (1976). The normal approximation allows
for the use of the methodology developed in Chapter 2.

For the NFL data, we assume a model fo- the evolution of the parameters given by

0(t) = 00-1) + ,(O)

where 00) and 0(t-1) denote the vectors of 28 team parameters for seasons t and t - 1,
respectively, and 04t) is the amount of change incurred in the parameter values between
seasons t - 1 and t. We assume for the analysis of NFL game scores that

0)O , N(O, a 21).

The model assumes that team abilities change independently from season to season, the
expected change being 0, and the variance constant for all teams. The HFA parameter is
assumed to remain constant over time.
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The model we choose for the evolution of team parameters suggests that teams with
low abilities undergo roughly the same amount of change in ability from season t - 1 to
t as teams with higher abilities. This assumption is probably not quite right because
poorly performing teams at the end of season t - 1 have greater chance for improvement.
for example, by obtaining better players in the player selection draft before the following
season. Thus the mean change from season to season may bc, a function of the team
parameter values or records of the previous season. Furthermore, the mean change from
season to season may be a function of other covariates that are difficult to quantify, such
as player trades and coaching staff changes. The model as postulated also assumes that
teams do not undergo ability changes during a season, but instead only change between
seasons. While team abilities do change during a season, the magnitude of the change will
likely be smal relative to the innovations occurring between seasons, so the simplifying
assumption of constant ability within a season is not unreasonable.

3.1.1 Prior Parameters

We use a vague prior distribution on the parameters to reflect our initial uncertainty. This
choice allows the likelihood of the data to determine the distribution of the parameters.
The normal-gamma parameters for the distribution of (00960), (hfa)) are

/(I1 9 1) = (0,...,0,3)
f(1961) = 100

R(1981) = 129

V (1981) = .5.S

The prior means for the team parameters are all zero, that is, no team is assumed a
priori better than another, and the mean of the HFA parameter equivalent to a 3 point
advantage for the home team. The variance of the prior means is assumed to be 100, which
corresponds to a large amount of uncertainty. The initial uncertainty of the observation
variance estimate of I00 is reflected by only .5 degrees of freedom. The harmonic mean
variance of a score difference is assumed to be 100.

We assumed a vague prior for the distributio,. of w = 1/1 2 with improper density

1
f(w) =--.

which corresponds to a prior distribution of 1/1 on a. This choice gives greater weight a
priori to smaller values of or2 . This prior distribution on w is sufficiently vague to allow
the likelihood to strongly dominate.
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3.1.2 Model Implementation

In this section, we describe the implementation of the iterative and non-iterative analyses.

The model accounts for the lack of 1982 and 1987 NFL data by assuming the parameter
means do not change for these years, while the team parameter variances increase by
a 

2
. When performing the recursive iterations of updating and forecasting as described

in Sec-.on 2.4, the updating computation is omitted for 1982 and 1987. Otherwise, the
comput.:tion proceeds as usual.

Gibbs Sampler Implementation

We performed an analysis of the model for NFL data using the Gibbs sampler tech-
niques of Section 2.5.1 with the extension for non-dynamic covariate information described
in Section 2.6. We ran three parallel Gibbs samplers with overdispersed starting values
of W: 1/1002, 1/52, and 1/.22. Each Gibbs sampler proceeds by drawing the parameters
8(hfa), 0(1981),... 0(1991), ,r2, given the initial value of w, then drawing w conditional on
these parameter values, and so on. This was continued for 450 iterations for eadh sampler.
Convergence of the algorithm was checked by examining the potential scale reduction of
w, as described in Gelwin and Rubin (1992a). The potential scale reduction for w' is
an estimate of the factor by which the variance of the current distribution of w in the
Gibbs sampler will decrease with continued iterations. Values of the potential scale re-
duction near I are indicative of convergence. For the NFL model, it suffices to examine
the potential scale reduction for the parameter w, because once the Gibbs sampler has
reached the stationary distribution for w, the distribution of the remaining parameters is
completely specified. Transforming w by taking logarithms to make the distribution less
skewed, the potential scale reduction for w is computed to be 1.027. This value indicates
that continued iterative simulation would not lead to improved inferences. We therefore
conclude 450 iterations is sufficient to reach the target distribution. Each of the samplers
were continued 50 more iterations to produce 150 more draws of w, and then a random
subsample of 100 of these were chosen to be the final sample drawn from the marginal
posterior distribution of w. The sample values are then reexpressed as values from the
posterior distri'ution a by setting a = 1/vlw.

Non-iterative Analysis

We also analyzed the model using the non-iterative methods of Section 2.5.2, allowing
for the inclusion of a non-dynamic covariate as described in Section 2.6. We approximated
the prior distribution of a to be

1
f(09 ,c I

where a has been discretized and takes only the 20 equally spaced values (2.0, 2.16,..., 5.0).
This set of values appears to be overdispersed for the posterior distribution of a, as in-
dicated by the Gibbs sampler analysis. In the absence of such information, a wider
range of values would be required. Thus we have comparable prior distributions for the
Gibbs sampler and non-iterative analyses. We obtain the approximate posterior distri-
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bution of a using the techniques of Section 2.5.2 by computing the reweighting factors,
f.(y(199 2)lwi, D1 1)"... f(y(I"Sl)jw1 , Disso).

3.2 Results

We discuss in this section the results of the iterative simulation analysis and the non-
iterative analysis. We examine the marginal posterior distributions of a and of 0('99')

along with 0(hfa), and compute forecast distributions of 1992 results. We also perform
model diagnostics to assess the validity of the model.

3.2.1 Marginal Posterior Distribution of a

Figure 3.1 displays the distribution of a, the system standard deviation, for both the
iterative simulation analysis and the non-iterative analysis. The top histogram shows the
posterior distribution based on the sample of 100 draws from the Gibbs sampler, while
the bottom histogram shows the posterior distribution calculated from the grid of 20
equally spaced values. The similarity of the distributions indicates general agreement of
the methodologies in producing comparable results. As we show in subsequent analyses,
the slight difference in the approximated distributions for or does not appear to have large
effect on the marginal distribution of the team parameters or on predictive distributions.

The estimated posterior mean and standard deviation of a, the system standard devi-
ation of the model, calculated from the iterative analysis are 3.24 and 0.304, respectively.
From the non-iterative analysis, the mean is estimated to be 3.16 and the standard de-
viation is 0.307. Thus the results are consistent. An interpretation of this estimate is
that, between seasons, changes in teams' scoring capabilities relative to other teams have
a standard deviation of about 3 points. Teams that have ratings within a few points of
one another at the end of one season are not unlikely to switch positions in the following
season.

3.2.2 Marginal Posterior Distribution of Ratings and HFA parameters

To obtain the marginal posterior distribution of 0(191) and O(hfa), we used the techniques

discussed in Section 2.7. Marginal posterior means and standard errors of 9(l"") are with

•• = 1/100 for all i = 1,..., 100 in the Gibbs sampler analysis, and with iri equal to the
posterior probabilities given in the bottom histogram in Figure 3.1. We also compute
estimated 95% credible intervals by drawing 3000 samples from the posterior distribution
of 0(1991) and reporting the approximate 2.5% and 97.5% percentiles for each parameter.
These values for the Gibbs sampler analysis are summarized in Table 3.1 and for the
non-iterative analysis in Table 3.2.
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Parameter Jj Mean j Std Iev 95% Credible Interval

Washingtun Redskins 11.45 4.04 (3.81, 19.54)
San Francisco 49ers 9.47 4.01 ( 1.01, 17.47)

Houston Oilers 6.15 4.02 (-1.79, 14.08)
New Orleans Saints 5.85 4.02 (-2.04, 13.70)

Buffalo Bills 5.66 4.02 (-2.34, 13.59)
Kansas City Chiefs 5.29 4.02 (-2.88, 13.26)
Philadelphia Eagles 4.02 4.02 (-3.88, 12.05)

New York Giants 2.57 4.02 ( -5.55, 10.45)
Denver Broncos 2.47 4.02 (-5.47, 10.15)

Los Angeles Raiders 2.24 4.02 (-5.74, 10.15)
Chicago Bears 2.01 4.02 (-6.16, 10.17)

Seattle Seahawks 1.07 4.02 (-6.58, 9.03)
Atlanta Falcons 0.52 4.02 (-7.35, 8.61)

Detroit Lions 0.11 4.02 (-7.80, 8.07)
Dallas Cowboys 0.08 4.03 (-7.83, 8.18)

Minnesota Vikings 0.02 4.03 (-7.97, 8.43)
Miami Dolphins -1.28 4.02 (-9.43, 6.61)

San Diego Chargers -1.51 4.02 (-9.34, 6.69)
Pittsburgh Steelers -1.82 4.01 (-9.77, 6.46)

Cleveland Browns -2.84 4.01 (-10.63, 5.30)
New York Jets -2.87 4.02 (-10.85, 5.42)

Green Bay Packers -3.77 4.02 (-11.59, 4.06)
Los Angeles Rams -4.27 4.02 (-12.42, 3.47)

Cincinnati Bengals -4.89 4.03 (-12.97, 2.80)
Phoenix Cardinals -6.59 4.02 (-14.59, 1.46)

Tampa Bay Buccaneers -8.88 4.02 (-16.82, -0.89)
New England Patriots -8.96 4.02 (-16.86, -0.64)

Indianapolis Colts -11.29 4.05 (-19.13, -3.40)

Home Field Advantage 2.96 0.29 (2.41, 3.53)

Table 3.1: r.stribution of 0(199') from Gibbs Sampler Analysis
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Parameter II e Std Dev 95% Credible Interval
Washington Redskins 11.33 4.02 (3.41, 19.38)

San Francisco 49ers 9.45 3.98 ( 1.61, 17.19)
Houston Oilers 6.07 4.00 ( -1.89, 13.87)

New Orleans Saints 5.79 3.99 (-2.21, 13.69)
Buffalo Bills 5.66 3.99 (-2.34, 13.72)

Kansas City Chiefs 5.25 4.00 (-2.51, 13.31)
Philadelphia Eagles 4.01 3.99 (-3.64, 12.11)

New York Giants 2.61 4.00 (-5.34, 10.57)
Denver Broncos 2.46 3.99 (-5.53, 10.29)

Los Angeles Raiders 2.24 3.99 (-5.69, 9.98)
Chicago Bears 2.02 3.99 (-5.99, 9.65)

Seattle Seahawks 1.06 3.99 (-6.43, 9.24)
Atlanta Falcons 0.45 3.99 (-7.39, 8.41)

Minnesota Vikings 0.08 4.00 (-7.94, 7.97)
Detroit Lions 0.06 3.99 (-7.99, 7.56)

Dallas Cowboys 0.00 4.01 (-7.91, 7.99)
Miami Dolphins -1.25 3.99 (-9.18, 6.54)

San Diego Chargers -1.50 3.99 (-9.20, 6.78)
Pittsburgh Steelers -1.80 3.98 (-9.95, 6.29)

Cleveland Browns -2.84 3.98 (-11.01, 4.87)
New York Jets -2.89 3.99 (-10.67, 4.85)

Green Bay Packers -3.76 3.99 (-11.92, 3.89)
Los Angeles Rams -4.19 4.00 (-11.95, 3.80)

Cincinnati Bengals -4.78 4.01 (-12.74, 3.57)
Phoenix Cardinals -6.58 3.99 (-14.37, 1.35)

Tampa Bay Buccaneers -8.85 3.99 (-16.73, -1.06)
New England Patriots -8.93 3.99 (-17.18, -1.22)

Indianapolis Colts -11.17 4.03 (-19.68, -3.43)

Home Field Advantage 11 2.961 0.291 (2.38, 3.53)

Table 3.2: Distribution of 0(1'91) from Non-Iterative Analysis



3.2 Results 38

Distribution of a from Gibbs Sampler

C4

2.0 2.5 3.0 &S 4.0 4.5 5.0

Values of a

Distribution of a from Non-Iterative Analysis

C

2.

0

Values ofa

Figure 3.1: Posterior Distribution of a

Tables 3.1 and 3.2 rank the teams in order of the posterior mean of 0('99'). Both
analyses produce the same rankings, with the exception of the Vikings, the Lions and the
Cowboys. In the Gibbs sampler analysis, the Vikings are ranked below the Lions and
the Cowboys, while in the non-iterative analysis the Vikings are ranked higher. In both
analyses, these three teams have posterior means estimated to be within 0.1 points of
each other. the resulzs still appear consistent in spite of the reorering of the teams. The
means of the team parameters for each analysis are within 0.2 points of each other and
the standard deviations match even more closely. The standard deviations in the Gibbs
sampler analysis are consistently larger than those in the non-iterative analysis, but size
of the difference suggests that the cause may be attributed extreme values of the posterior
distribution not being represented in the small sample obtained in the Gibbs sampler.

The means can be best interpreted as differences. For example, from Table 3.1, the
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value of the means suggest that we would expect at the end of the 1991 season the Redskins
to beat the 49ers by about 2 points, excluding the effect of home field. A more extreme
example would be that we would expect the Redskins to outscore the Colts by about 23
points on average.

The standard deviations of the rating parameters are dose to 4, indicating substantial
variability in the parameter distributions. Posterior correlations among the rating param-
eters are about 0.6, so that the standard deviation for differences in rating parameters is
close to 3.7. The data therefore provide more evidence about differences in parameters
than the individual team ratings.

The HFA parameter has a posterior mean of about 2.96 with a small standard error.
This can be interpreted as giving the home team approximately a 3-point advantage. The
standard error for the HFA parameter is small because it is assumed to remain constant
over time, and all of the data is used to estimate the posterior distribution of O(hfa), so
that unlike the team parameters there is no extra uncertainty incurred over time.

3.2.3 Forecast Distribution of Score Differences

To illustrate the techniques described in Section 2.7, we obtain the forecast distribution
of selected game outcomes for the 1992 season. For the first 20 games of the season, we
computed the predicted score differences and standard errors. In addition, we simulated
3000 draws from the approximate predictive distribution of V (1992) to obtain 50% predic-
tion intervals for game score differences, and estimates for the probability of the first team
in a pair winning. Winning probabilities were computed by counting the fraction of the
3000 simulated game outcomes that produced score differences greater than 0.

Tables 3.3 and 3.4 show the resulting analysis. Again, the comparison between the
two analyses lead to very similar results. For all 20 games, the predicted score results
are within 0.2 between analyses. The 50% prediction intervals, which are produced by
simulation, match reasonably closely suggesting that the different distributions of a do
not have a large impact on the resulting predictions.

It is worth noting that the 50% prediction intervals are quite wide. We also computed
95% intervals (not shown) which spanned about eight touchdowns. Despite the widths, the
intervals appear to be honest, as 8 observed score differences fall in the intervals for both
the Gibbs sampler analysis and for the non-iterative analysis. The probabilities computed
from simulations of the predictive distribution do not seem to predict substantially better
than guessing at random in this small sample; from the non-iterative analysis, the log-
likelihood (base 10) for the predictive probabilities is -5.91, whereas the corresponding
log-likelihood of guessing at random is log(.52) = -6.02. A more thorough analysis of
this model indicates that the model predictions are significantly better than chance, and
better than competing models (Stern 1992a).
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1992 Predicted Actual J 50% Prediction flProbability
Games Score Difference Score Difference Interval Win

PHA vs. NO 1.14 2 (-7.88, 11.65) 0.55
BUF vs. LAN 12.89 33 (3.59, 23.14) 0.82
CHI vs. DET 4.86 3 (-4.24, 14.14) 0.64
ATL vs. NYJ 6.35 3 (-2.54, 16.14) 0.69

HOU vs. PIT 10.93 -5 ( 1.43, 20.20) 0.78
MIN vs. GB 0.84 3 (-8.70, 10.24) 0.51
CLE vs. IND 5.49 -11 (-3.86, 14.93) 0.65

SF vs. NYG 3.94 17 (-5.50, 14.16) 0.61
KC vs. SD 3.84 14 (-6.12, 13.20) 0.60

SEA vs. CIN 8.92 -18 (-0.35, 18.48) 0.74
TB vs. PHX 0.66 16 (-9.11, 10.68) 0.52

DEN vs. LAA 3.19 4 (-6.38, 12.41) 0.60
WAS vs. DAL 8.40 -13 (-1.24, 18.26) 0.72
LAN vs. NE 7.65 14 (-2.54, 17.15) 0.69
WAS vs. ATL 13.89 7 (4.46, 23.19) 0.84
DAL vs. NYG -5.45 6 (-14.90, 4.06) 0.34

NO vs. CHI 6.80 22 (-2.46, 16.86) 0.70
LAA vs. CIN 4.17 -3 (-5.54, 13.48) 0.62
DET vs. MIN 3.04 14 (-6.71, 12.78) 0.59

KC vs. SEA 7.18 19 (-2.09, 16.97) 0.70

Table 3.3: Forecasts of 1992 Games from Gibbs Sampler Analysis
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1992 Predicted Actual 50% Prediction Probability
Games Score Difference Score Difference Interval Win

PHA vs. NO 1.19 2 (-7.89, 10.68) 0.53
BUF vs. LAN 12.81 33 (3.12, 22.03) 0.81
CHI vs. DET 4.92 3 (-4.98, 14.78) 0.64
ATL vs. NYJ 6.30 3 (-3.16, 15.95) 0.68

HOU vs. PIT 10.84 -5 ( 1.78, 20.69) 0.78
MIN vs. GB 0.88 3 (-8.81, 9.64) 0.51
CLE vs. IND 5.36 -11 (-3.94, 15.14) 0.65

SF vs. NYG 3.87 17 (-5.82, 13.37) 0.60
KC vs. SD 3.79 14 (-5.79, 13.23) 0.61

SEA vs. CIN 8.80 -18 (-0.97, 18.24) 0.73
TB vs. PHX 0.70 16 (-9.18, 9.87) 0.51

DEN vs. LAA 3.19 4 (-6.20, 12.84) 0.59
WAS vs. DAL 8.37 -13 (-1.84, 17.87) 0.72
LAN vs. NE 7.70 14 (-1.81, 17.60) 0.70
WAS vs. ATL 13.84 7 (3.69, 23.45) 0.82
DAL vs. NYG -5.58 6 (-14.94, 3.80) 0.35

NO vs. CHI 6.72 22 (-2.56, 16.86) 0.68
LAA vs. CIN 4.06 -3 (-5.71, 13.96) 0.61
DET vs. MIN 2.95 14 (-6.50, 12.28) 0.58

KC vs. SEA 7.15 19 (-2.57, 16.80) 0.70

Table 3.4: Forecasts of 1992 Games from Non-Iterative Analysis
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Figure 3.2: Distribution of r from Non-Iterative Analysis

3.2.4 Distribution of the Observation Variance

The distribution of r, the observation standard deviation, can be found from the non-
iterative analysis by drawing from the posterior distribution of w, and then subsequently
drawing 4) = 1/r 2, the observation precision, from the gamma distribution conditional on
w. We simulated 10000 draws from the posterior distribution of r and show the resulting
distribution in Figure 3.2. The distribution of Ur appears to be symmetric with mean and
standard deviation are 13.0 and 0.218 points, respectively. With such a small standard
deviation, the parameter r is well estimated.
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3.2.5 Diagnostics

We examined the forecast residuals of games played in the 1992 season using the results
from the non-iterative analysis. Figure 3.3 shows a plot of residuals against absolute values
of predicted score differences for the first 181 games of the 1992 season (those available at
the time of the analysis). The ordering of teams is arbitrary, so the sign of the residuals
are not meaningful. The plot shows random scatter with no clearly emerging pattern.
The plot suggests the assumption of constant variance with respect to predicted values
seems appropriate. A plot of the absolute residuals against the sum of team scores for
the 181 games is shown in Figure 3.4. We might expect that the residuals would increase
in variability with larger sums of scores but Figure 3.4 shows no substantial increase in
variability in the residuals.
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Figure 3.4: Forecast Residuals against Sum of Scores

We checked the assumption of normality by examining the absolute value of residuals
from the 1991 game results. A half-normal probability plot of the residuals is shown
in Figure 3.5. From this plot, the residuals appear to be slightly light-tailed, although
it is difficult to argue that the distribution differs for practical purposes from a normal
distribution.

3.3 The Effect of Additional Seasons

We compare the variability of the parameters when different amounts of data are incor-
porated into the analysis. We consider three analyses; the first using data through 1984,
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Figure 3.5: Normal Probability Plot of 1991 Residuals

the second using data through 1988, and finally the complete analysis using data through
1991. Figure 3.6 shows the distribution of a, the innovation standard deviation, computed
from the non-iterative analysis in each case. The figure shows dearly that the distribu-
tion of or becomes less variable as a greater amount of data is used in the analysis. The
approximate means and standard deviations, respectively, for each of the distributions are
3.56 and 0.601 for data through 1984, 3.17 and 0.386 for data through 1988, and 3.16 and
0.307 for data through 1991.

The variability of predictions using the three different distributions of a are compa-
rable. Table 3.5 shows the approximate 95% prediction intervals for hypothetical games
taking place at the beginning of the 1985, 1989 and 1992 seasons, respectively, using the
three posterior distributions of a shown in Figure 3.6. The teams are those involved in
the first 20 games of the 1992 season. We computed the approximate prediction intervals



3.3 The Effect of Additional Seasons 46

Widths of Approximate
95% Prediction Intervals

1992 Data through Data through Data through
Games 1984 19881 1991

PHA vs. NO 54.63 57.11 54.09

BUF vs. LAN 56.54 57.36 55.93
CHI vs. DET 53.52 54.95 56.62
ATL vs. NYJ 55.91 55.26 53.64

HOU vs. PIT 55.76 55.40 55.69
MIN vs. GB 55.40 54.72 55.10
CLE vs. IND 55.67 56.54 55.58

SF vs. NYG 5.5.27 55.99 53.82

KC vs. S5D 55.40 56.46 55.12
SEA vs. CIN 55.43 56.15 55.38
TB vs. PHX $55.64 55.90 55.33

DEN vs. LAA 54.82 56.62 56.47
WAS vs. DAL 55.53 56.39 55.00

LAN vs. NE 53.52 56.16 57.19
WAS vs. ATL 55.95 56.34 57.12
DAL vs. NYG 54.66 55.62 54.58

NO vs. CHI 54.65 56.69 56.24
LAA vs. CIN 55.88 55.52 57.46
DET vs. MIN 55.17 55.99 57.09

KC vs. SEA 54.70 57.62 54.18

Table 3.5: 95% Prediction Interval Widths for Three Sets of Data
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Figure 3.6: Distribution of a over three sets of data

by generating 3000 random draws of the predictive distribution for score differences for
each analysis, and computing the difference between the 2.5% and 97.5% quantiles for
each game. The table shows that the prediction intervals do not vary much by year. This
suggests that greater precision in a does not appear to lead to noticeably greater precision
of the forecasts.
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3.4 Updating the Posterior Distribution for 1992 NFL Game
Results

An important aspect of the model is the ability to update the parameter distributions
as new data is acquired. We computed parameter updates incorporating the first four
weeks of NFL game scores (56 observations) into the analysis using the non-iterative
techniques of Secticn 2.5.2. The distribution of a changed very little; the mean and
standard deviation of o after incorporating the four weeks of data from 1992 were 3.19
and 0.306, respectively. The mean changed by 0.03 from the end of the 1991 season,
and the change in standard deviation was negligible. We also computed the posterior
mean and standard deviation for the team parameters and for the home field advantage,
shown in Table 3.6. Even early in the 1992 season, some teams appear to have changed
appreciably as measured by the mean of 0(1992). This can be seen by comparing to
Table 3.2. For example, the Redskins dropped 2.7 points in mean point scoring ability
whereas Buffalo increased by about the same amount. The Dallas Cowboys, the eventual
league champions, have improved from 16th to 9th best after just four weeks. The standard
deviations are larger than those in Table 3.2 because under the assumptions of the model
there is greater uncertainty in the team parameters towards the beginning of the season.
This is also reflected in the reported approximate 95% credible intervals, which are wider
when the 1992 results from the beginning of the season are incorporated into the analysis.
The posterior mean of the home field advantage parameter changes from 2.96 to 2.94.

3.5 Discussion

The analysis of the NFL data using the methodology of Chapter 2 appears to be a rea-
sonable and flexible approach to forecasting NFL game outcomes. For the 1991 season,
the team with the highest expected ability as measured by the posterior means was the
winner of the superbowl. Furthermore, the model seems to provide honest posterior pre-
diction intervals, the 14 point posterior predictive standard deviation matching the result
obtained by Stern (1991) in an analysis of NFL scores.

An issue which may affect the validity of the results is the non-normality of the data.
Because the scoring system in football enables certain scores to be more likely to occur
than others, treating score differences as continuous may be too approximate. A more
accurate approach might attempt to model the response as a discrete variable.

The normal model for football scores may also be inappropriate for describing the
behavior of large score differences. Because the object of the game is merely to outscore
an opponent, and not maximize the amount by which a team outscores another, there is
no strong incentive to "blow out" an opponent.

Other work on modeling professional football scores have incorporated a variety of
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Parameter II Mean j Std Dev 95% Credible Interval
San Francisco 49ers 10.60 4.63 ( 1.52, 19.92)

Washington Redskins 8.65 4.75 (-0.37, 17.87)
Buffalo Bills 8.20 4.56 (-0.77, 17.26)

Kansas City Chiefs 6.83 4.66 (-2.21, 15.89)
New Orleans Saints 6.58 4.65 (-2.28, 15.94)
Philadelphia Eagles 6.57 4.73 (-2.52, 16.16)

Houston Oilers 5.88 4.64 (-3.16, 15.37)
Mfiami Dolphins 2.77 4.64 (-6.44, 11.75)
Dallas Cowboys 2.23 4.76 (-7.18, 11.67)

New York Giants 2.16 4.74 (-7.18, 11.54)
Minnesota Vikings 1.40 4.57 ( -7.32, 10.38)

Denver Broncos 0.88 4.65 ( -8.06, 10.13)
Detroit Lions 0.84 4.65 (-8.11, 9.85)

Chicago Bears 0.59 4.57 (-8.31, 9.49)
Atlanta Falcons 0.29 4.56 (-8.27, 9.20)

Pittsburgh Steelers 0.19 4.63 (-9.08, 9.43)
Los Angeles Raiders -0.93 4.65 (-10.31, 8.40)

Seattle Seahawks -2.31 4.64 (-11.28, 7.08)
Cleveland Browns -3.58 4.63 (-12.44, 5.63)

New York Jets -4.29 4.63 (-13.24, 4.95)
San Diego Chargers -4.90 4.65 (-14.25, 4.41)
Cincinnati Bengals -4.96 4.64 (-13.93, 4.22)
Green Bay Packers -5.00 4.56 (-14.01, 3.88)

Tampa Bay Buccaneers -5.24 4.57 (-13.98, 3.67)
Los Angeles Rams -5.25 4.64 (-13.94, 3.81)
Phoenix Cardinals -7.86 4.74 (-17.06, 1.20)
Indianapolis Colts -9.47 4.65 (-18.28, -0.45)

New England Patriots -10.84 4.73 (-20.04, -1.48)

Home Field Advantage D 2.94 0.29 (2.38, 3.49)

Table 3.6: Distribution of 9(1992) after 4 weeks of 1992 NFL Game Scores
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approaches. Harville (1980) constructed linear models for football scores where the pa-
rameters follow an autoregressive process, and the parameters are estimated by restricted
maximum likelihood estimation. Sallas and Harville (1988) propose a Bayesian dynamic
linear model for football scores, but unlike our model, they estimate the system variance
parameter a priori. Some least squares approaches to predicting football outcomes are
developed in Stefani (1977) and Stefani (1980), while maximum likelihood methods for
rating football teams are proposed in Thompson (1975). Stern (1992a) compares some of
these different methods for rating NFL football teams and find that the Bayesian dynamic
model (with v2 fixed) performs better than single season or non-dynamic approaches.



Chapter 4

Paired Comparison Models with
Indicator Outcomes

In Chapter 2, we considered a series of models for paired comparison experiments where
the response was the final score difference of a competition. This chapter treats the paired
comparison setting in which the only available information on the result of a comparison
is the identity of the winning team or preferred object. The response variables for the
models considered here are binary indicator variables - ither than continuous variables. In
the following sections, we examine the Bradley-Terry paired comparison model along with
a Bayesian extension, and demonstrate the construction of a dynamic paired comparison
model that allows parameters to change over time. The methodology in this chapter is
similar to that of Chapter 2. We show how to analyze the data under the model using
both an iterative simulation approach and a non-iterative method. We also consider
an extension of the model to accommodate paired comparison experiments in which the
outcome may be a tie or an indication of no preference. In such cases, the response
variable is trinary rather than binary.

4.1 The Bradley-Terry Model

The paired comparison model that we consider as the basis for the development of the
methodology in this chapter is thE Bradley-Terry model(Bradley and Terry 1952). Al-
though the model appeared prior to their 1952 paper (see, for example, Zermelo 1929),
the model is connected with their names due to the scope of their work on the subject.

Suppose p teams engage in competition. Assume that each team i has an associated
parameter iri. This parameter, the so-called worth parameter, can be interpreted as the
relative ability or strength of the competing team. In conventional paired comparison
settings, 7ri is interpreted as the "merit" of the i-th object that is to be judged. The
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Bradley-Terry model represents the probability one team defeats another as
Iri

pi, = Pr(i defeats j) + . (4.1)

Note that pij + pii = 1 so that the model as stated applies only to paired comparisons
without ties. Also, since the values of ri are unique only up to a multiplicative constant
in determining the win probabilities, a constraint is usually imposed on the ri's, typically

ri = 1. The simple formulation of the Bradley-Terry model has made it one of the
most popular paired comparison models.

The Bradley-Terry model can be derived in a number of ways. One derivation, useful
for showing the connection to the models in Chapter 2, assumes that when team i com-
petes, it produces an unobserved score Si independently of the opposing team with the
cumulative distribution function

Si - F,(s) = exp(-e-4`-=")).

Thus team i draws a random score from an extreme-value distribution (Gumbel 1961)
with location parameter log wr. It directly follows that the distribution of the difference
Si - Si follows a logistic distribution with mean log ri - log ri, that is,

1
S- 

Si - Fii(s) =
1 + e-(80r,-log",)

which in turn implies

Pr(Si > S,) = Pr(S - Si > 0) = 1 - I---

as in (4.1). Alternative motivations for the Bradley-Terry model include Yellott (1977),
who derives the Bradley-Terry model from Luce's Choice Axiom (Luce 1959), and Henery
(1986) and Joe (1988), who provide a maximum entropy derivation of the Bradley-Terry
model.

A comparison can be made here between the above derivation of the Bradley-Terry
model and the normal model in of Chapter 2. The normal model postulates that score
differences follow a normal distribution, while the Bradley-Terry model postulates that
latent score differences follow a standard logistic distribution. One feature of our ver-
sion of the Bradley-Terry model is the lack of a corresponding parameter to r 2 in the
normal model. This is not a critical issue because the Bradley-Terry model assumes
that scores are not observed, so that any observation variance parameter would not be
identifiable simultaneously with the worth parameters. Many paired comparison mod-
els allow for a latent observation variance parameter, and possibly different variances for
different objects. The Bradley-Terry model, for example, can be extended to allow for
separate variances for each object. Another popular model is the Thurstone-Mosteller
model (Mosteller 1951; Thurstone 1927) which assumes that preference probabilities can
be specified as pii = 0(-(-yi - -yi)/• + o2), where #(-) is the cumulative distribution
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function of a standard normal random variable. Stern (1992b) has shown that the choice
among popular paired comparison models, induding the Bradley-Terry model and the
Thurstone-Mosteller model, is somewhat arbitrary in the sense that the models tend to
fit paired comparison data equally well or poorly.

In analyzing paired comparison data under the model, suppose that teams i and
j compete nij times, with team i winning yij times and losing nj - yij = yj, times.
Then, letting w = (rp, ... , irp) be the Bradley-Terry worth parameters, the distribution of
y = (yij, i, j = 1,2,...,p) is

i (i )r + "rj , + Wr,

The likelihood for w" can be expressed as

Lik(wly) oc fl.._,+I'1.<j(jr, + r n

where y• = Zip=, y.j, the total number of wins for team i.

Maximum likelihood estimates of ;r can be obtained by the Newton-Raphson airo-
rithm in the usual way, incorporating the restriction on the sum of the 7r's. Ford (1957)
shows that the maximum likelihood estimate is unique as long as in every partition of
teams into two non-empty subsets, some team in the second has beaten some team in
the first. This condition implies that maximum likelihood estimates cannot be found if
any team went undefeated, or if any team lost every game. It follows from the likeli-
hood that, given n~j, the y, are sufficient statistics for the jr, so that only teams' total
scores are needed to perform the estimation. Biihlmann and Huber (1963) show that the
Bradley-Terry model is the only linear paired comparison model for which this is true.

4.2 The Bayesian Formulation

The Bayesian model we adopt here is due to Leonard (1977). For a p-team population,
we assume that the probability team i defeats team j is given by (4.1). We impose a
multivariate normal prior distribution on the logri. Notice that it is not appropriate to
consider a multivariate normal distribution on the 7ri because wr ranges only over values
greater than zero, Reparametrizing the model in terms of -yi = log;i, we have

7ri elr•

Pi ri + -rj =el-, + el. '

where -/i is the i-th team's "rating," we can assume a multivariate normal prior on -y -

(-I,. ...... y,) with mean vector 1L = (14,.. .,,m) and non-singular covariance matrix C.
Naturally, under these assumptions, we release the constraint that F-!n1 •r = 1.
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If we view -yi as representing the relative playing strength of team i, imposing a mul-
tivariate normal distribution on -y has a nice interpretation. Recalling that the Bradley-
Terry model can be derived from the assumption that team scores are drawn from extreme-
value distributions with location parameters log w,, the multivariate normal prior distri-
bution on -y gives information on the location of each individual team's performance
distribution. The mean component, Ai, of the prior distribution represents the location of
the distribution describing, on average, team i's performances. The larger the value of 4,,
the greater ability of the team. The diagonal elements, cii, of the covariance matrix, C,
indicate the variability about the means pi of teams' rating distributions. The greater the
variance of -j', the less certainty exists about a team's ability. The off-diagonal elements,
cii, are the covariances between -i and -Ii. When ci approaches zero, the location pa-
rameters -t and -yj vary independently of one another, so that locations of ratings of two
competing teams are independent. When the correlation between -I and -yj approaches 1,
then (f,,yj) has a degenerate bivariate normal distribution. This suggests that once we
know the location of team i's performance distribution, we then know exactly the location
of team j's performance distribution. A perfect correlation and equal variances implies
that the difference -y, - -ti is constant.

Given a multivariate normal prior distribution on the parameters -y, and suppressing
the conditioning on the prior parameters, we have

1

f()a exp(- (7 - p)T c`(Y -

The Bayesian analysis proceeds by computing a posterior distribution for -Y given the
tournament results, y. The likelihood after reparametrizing is given by

Lik(jvly) cx ],: (e (4.2)~)P
.< e.e )~'(4.2)Lik( iy) .c (el. + elr•)i,,

The posterior distribution for -y is proportional to the product of the prior and the likeli-

hood, which can be written as

f(tly) cx f(-y)Lik('iy)
c - ,) -( - (el, + e-' )P'.

Leonard (1977) suggests approximating the posterior distribution by a multivariate normal
distribution, thereby making the parameter updating nearly conjugate. To do this, the
posterior mode is obtained by performing the Newton-Raphson algorithm on the log-
posterior distribution for -f. The posterior covariance matrix is estimated by the inverse
of the non-singular Hessian matrix used in the last iteration.

Alternatively, if the likelihood is approximately normal, the posterior distribution can
be approximated in the following manner. The maximum likelihood estimate, -j, and
estimated singular informatior natri:.. R, of y from the likelihood in (4.2) can be found



4.3 A Dynamic Bradley-Terry Model 55

using the Newton-Raphson algorithm. We can then approximate the distribution of -f as
a multivariate normal distribution with mean jy and singular precision matrix R. Then
the posterior density for -y is the product of a normal prior density and an approximately
normal likelihood, and therefore results in an approximately normal posterior distribution.
This method for approximating the posterior by a multivariate normal is equivalent to
first expanding the log-likelihood in a Taylor Series around 4, dropping the cubic and
higher order terms, and combining the remaining expression with the prior distribution
to form a multivariate normal density. The approximate posterior distribution for -f is
attained in the usual manner,

f(-ly) cc exp(- i(-/- ') T iC' -- l(.7 - A,))

where

(C-= (C 1 + R)'(C p+Rj)

C' = (C- + R)- 1

are the posterior parameters. As can be seen from the above equation, the posterior mean
can be interpreted as a weighted average of the prior mean and the estimated mean from
the data. This posterior distribution can then be used as the prior distribution when
additional data becomes available.

The implementation of this model is straightforward. Before a tournament or season of
competitions begins, a normally distributed prior distribution is assumed on the ratings.
The tournament is played, and then using one of the procedures described, we compute
posterior estimates of the mean and covariance matrix for ratings and use these updated
parameters as the prior parameters for the next tournament. If a team has never competed
in tournaments, the model allows for the assignment of a large prior variance to describe
the uncertainty in the location of the team's performance distribution.

Other Bayesian formulations of the Bradley-Terry model have been suggested. The
first Bayesian approach was developed by Davidson and Solomon (1973). They introduce
a conjugate prior for the Bradley-Terry likelihood, and the worth parameters can then
be estimated by finding the mode of the posterior distribution. Chen and Smith (1984)
consider a Dirichlet prior on the worth parameters. For their model, estimates are found
by taking weighted averages of posterior means.

4.3 A Dynamic Bradley-Terry Model

We consider in this section a dynamic extension to the Bradley-Terry model analogous to
the dynamic extension of the normal model in Section 2.3. The model in Section 4.2 is
not appropriate for the situation in which teams' abilities may change over time because
it treats the data as time exchangeable.
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Let y(t) _ (s9, ij = 1,2 ... ,p,i j) be the matrix of preference outcomes where
Yt) is the number of times i defeats j in tournament t, with t = 1,... ,T. We assume the

Bradley-Terry model as before, with

(t) - Pr(i defeats j in tournament t) exp p(7)) (4.3)
P exp(-y~t)) +exp(-4)

We now assume a probability model for team ratings over time with

It(t) = ,7(t-1) + V(t) (4.4)

where v(t) is the amount team abilities change from tournament t - 1 to t. As in the
normal model, we assume that P(") is stochastically independent of 7 Q-1), though more
general formulations are possible. We assume that, in general,

(0) la') - N(a,, a4,), (4.5)

where at is the mean amount by which teams change between tournaments t - 1 and t,
and a2 is the variance of the innovation that occurs between tournaments. We also specify
an initial prior distribution on -ym,

70) - N(js(1 ), C(M))

and a prior distribution on w = 1/c.,

f(wiao, bo, Do) oc c -e-bOW (4.6)

where the hyperparameters p#(),C(l),ao and b0 are specified in advance, and can be chosen

to represent prior beliefs.

The model in (4.3)-(4.6) show unmistakable similarity to the dynamic normal model
of (2.8)-(2.12). The Bradley-Terry model in (4.3) models the outcomes of comparisons at
a specific point in time. The system equation of the dynamic model in (4.4), shows how
the Bradley-Terry ratings change over time. The parameter at in (4.5), which may be a
known function of time or an estimable parameter, indicates how teams' abilities evolve
over time. As in the normal dynamic model of Chapter 2, of may incorporate information
about factors that might influence the outcome of comparisons, like age, preparation, and
so on. However, as in Chapter 2, we set at = 0 for all t in developing the dynamic model.
This defines a random walk model for the parameter -Y(').

4.4 Non-iterative Analysis of the Dynamic Bradley-Terry
Model

We consider in this and the next section two possible methods for analyzing data under
the dynamic Bradley-Terry model. These two sections parallel Sections 2.5.1 and 2.5.2
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in describing a non-iterative approach and a Gibbs sampler approach. The analyses are
made more complex because the likelihood for each paired comparison experiment is no
longer a normal density.

This section demonstrates the methods used to analyze data under the dynamic
Bradley-Terry model using a non-iterative approach. As with the normal dynamic model,
the analysis of the joint posterior distribution of parameters is intractable analytically,
so we resort to similar techniques employed in Section 2.5.2. The non-iterative approach
involves approximating the distribution of w by a discrete distribution. Furthermore,
we make use of the normal approximation to the Bradley-Terry likelihoods at time t, as
described in Section 4.2, in order to facilitate the analysis.

To motivate the non-iterative approach, we assume the full dynamic Bradley-Terry
model described in Section 4.3. We are primarily interested in the marginal posterior
distribution of (-y(T)IDT). The distribution can be expressed as

f(-((T)IDT) = f( 7 (T' 1w, DT) f(wIoDT) d&. (4.7)

The first density in the integrand can be approximated analytically using the methodology
described in Section 4.4.1. The second density, however, has no convenient closed-form
representation. We consider an approach in Section 4.4.2 that provides a discrete ap-
proximation to f(wIDT). In Section 4.4.3 we consider approximations to the integral in
(4.7) in order to examine the posterior distribution of the vy(T). Techniques for updating
the distributions of the parameters to include new data at time T + 1 are described in
Section 4.4.4.

4.4.1 Analysis conditional on w

We develop in this section a methodology that allows us to approximate the posterior
distribution of -y(T) conditional on w by a multivariate normal distribution. Once we find
the distribution of w, perhaps using the techniques of Section 4.4.2, we can then obtain
the posterior distribution of -,(T) marginal over w. The analysis here is similar to the
analysis of Section 2.4 for normal scores.

The full posterior posterior distribution of all parameters, given w, can be written as

Of( ().... ý / 1w, DT)

0 If o(')(1wJ~, Do)) x I{f(d, 1-y(l), w, Do)}

X I{f('7(2)1"/(l), w,.Dl)} X ff(d2J")'(1), -f(2), w, DI))

X If (-fr[Y ),.,,(-, w, DT-0)1 X {f(dr[f(l).. ,.(), W DT-1)),
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or in more detail as
I(• 1 ... , (T) P, D 7-)
cx exp(- (-Y(I) - JA i))TC(l) -i(.y(i) ;_1)

x rE p ,!9)expj' (1))

<j (exp(7, 1) + exp( -T)))"It)

x J- exp(-"'(.( ) - 1(t-))T( 7 (t) _ Y(t-1)))
t=2- 2

I, ex(,y.() 1)exp(-(t). 0)

s• (exp(-fY)) + exp( (')))''

Normal Approximation

We now approximate each of the Bradley-Terry likelihoods by a multivariate normal
distribution using the technique of Section 4.2. For tournament t, we obtain the maximum

likelihood estimate, j(t), and the estimated information matrix R(t) of the parameter -y(t),
and approximate the t-th likelihood by

1 e (-- t- ) _ i(t))TR (9)(-r(C -
Lik(-y(t)Idt) x ex l(-(t-))

We therefore approximate the full posterior distribution of all parameters by

A-( 1), ..- .'7(T)Ito, DT)

cc exp(- (- (1) A/(1))TC(1) - -/• -(1)

x exp(- (-1(' - j(l))TR(l)(.Y(2) -j()))

2

X e3{,×t) - ft))TR'(t)( -()) -

Thus the posterior density is approximated by the product of normal densities, and is
itself, therefore, an approximately normal density. Note that the information matrices,
R(t), are singular due to the constraint used in defining the maximum likelihood estimates.
This does not present any problems here.

Updating and Forecasting Recursions

To obtain the marginal distribution of (7Q()I w, DT) conditional on w, we demonstrate a
recursion analogous to that of Section 2.4 for the normal model. This is the Bayesian cal-
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culation that updates the distribution of (-y(t)P, Dt- 1) to the distribution of (-y Dt).
and then, via a forecast step, obtains the distribution of (Y-y(+1)Iw, Dt).

Suppose before observing tournament t the prior distribution on -(t) is

(-Y(*)Iw, Dt-1) - .N(j,(O, C(O)).

We now observe tournament outcomes, d,, and update the distribution of -y(t) as in Sec-
tion 4.2 to obtain

(-Y(') 1, Dt) - N (ju), C'(t),

where

•'(t) = (CM) -1 + R(t)-i(C(t) -1(t) + R(t)j(t))
C'(t = (CM) -1 + R(t))-l.

These are the updating equations to modify the distribution of parameters with observed
data. Now time passes between tournaments t and t + 1, and to incorporate the extra
uncertainty due to the passage of time we have

I
(-Y(t+')l-f('),w, D,) - N(-f('), I.

The joint posterior distribution of -y(t+l) and y(') is therefore

ky (-(+I), 17(t) 1w, Dt)

= f(-y(')w, D) xf(-y0(+i)l-y(0t•, Dt)

oc exp(-I(-Y() -'A'0))Tct(0-1(-f(t) _ A,(t)))
2

x exp(-(y(t+1) _ (t))T(.Y(,+l) _ -(t)).

2

Marginalizing over (At) yields

f (.(t+ 1) 1w, Dt)

= J f(-(t+l), y(t)Jw, Dt) dy0t )

oc exp(-!1 (-" (t+1) - P(t+l))'C(t+l) -l(,(t+l) _ (t+l))),

2

where

A(t+]) = - '(t

C(t+1) = C'(t)+ llP. (4.8)

These are the forecasting equations to account for the extra uncertainty in the parameters
due to the passage of time. The interpretation of (4.8) is that the mean rating of players



4.4 Non-iterative Analysis of the Dynamic Bradley-Terry Model 60

remains constant over time under the random walk assumption for the innovations, but
the variances increase by ca2 = 1/w. We now have the approximate desired distribution,

(-Y('+') 1w, Dt) - N(jP+'), C('+')).

This defines one complete iteration of the updating and forecasting recursion for the
dynamic Bradley-Terry model conditional on w.

Predictive Distribution of dt+l given w

Predictive distributions for the preference probý,&oility p•5+l) at time T + I given•w can

be obtained by marginalizing over "1,(T+l). From the Bayesian updating and forecasting
recursions, we have the distribution

(-Y( T +)I}w, DT) -" N(P(T+I), C(T+1)).

We also have the probability i is preferred to j at time T + 1 conditional on -Y T +l) and

"y 1  given the available data,

p(T+l)(f(T+1 4j,, DT) exp(-! T +,))
P~j (T+1)) + eXp( (T +1 ))

Then the expected probability marginalized over 7(T+I) is given by

p(F+')(, DT)

= (T+),i (T+I) , w,,DT) f((T+)1w, DT) dY (T+I)

= f exp(_ffT+I))

exp((I Wy (+1) •(. T+1) 1;(T+1), C(7+1)) d-y(+'),

where o(9/(T +1)1p( T +i), C(T+I)) is the multivariate normal density function with mean
A (T+1) and variance C(T+1). The first factor of the integrand only depends on -yT+) and

so that the integral reduces to

DT) exp(Qy+.)) y( T+1) .(T+1) C•(T+I)) d-f !T+)d- (T+4 )
P a, DT)=_e((7T+,)) + exp(( Tr+)) W(,.(ij) I,(i,.) I ( ao)

(4.9)
where (T+1) = (T+I) , T +'))T that is, the subset vector of y(T+1) that contains com-

,(T+i) C(T+I)
ponentE i and j. The parameters ,.(i,) and (ij) are the corresponding mean vector

and variance matrix of -f(T) . The first factor of the integrand can be expressed as

1/(1 + exp(-('-y T +1 ) - (+) and then a change of variables allows us to express the
integral as

Pi iD2= (1 + exp(-u) 'p(ulpuCu)du,
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where

u J(+i) _ (T+i)

E!T+ 1) (7T+1))

a(T+l) (T+i)
c" =var(N -7j'b

While no dosed-form solution exists, numerical methods can be employed to calculate
this integral. Gelman and King (1990) obtain the same integral in a different context,
and they approximate i+!J-T by a third degree polynomial to obtain an approximate
value of the integral. An alternative approach is to perform Monte Carlo integration by
drawing a large random sample of values Uk from the normal distribution with mean p
and variance Cu, and using the sample mean of 1/2(1 + exp(-uk)) as an estimate of

(T+I)
Pi

4.4.2 Analysis to obtain the distribution of (wIDT)

In Section 2.5.2, we introduced the method of approximating the prior distribution on W by
a discrete distribution, and showed how to obtain an approximate posterior distribution
on (wIDT). Here we apply this method to the analysis of the dynamic Bradley-Terry
model. As in the normal model, we assume here that we have obtained a sample from the
prior distribution on w, or that we have selected overdispertl ý values for w and chosen
probabilities over these values to reflect our prior beliefs.

Suppose, in particular, we have selected a set of m values of w, {WI, . . .,WM}, and
assume we have approximated the prior distribution by the probability function

f(wIDo)={I0 if W

so that f(wIDo) has mass only on the set {":1,...,Wm}. For any season t, we have by
Bayes theorem

f(wIDt) = f(dtjDt-jw) f(w, Dt-)).
f(dtlDt-.)

Thus the marginal distribution of w given data through season t has a simple relationship
to the distribution of w given data through season t - 1. Continuing the recursion, we
have for all t

f(w'Dt) = ri=1 f(dijD-I., w) .....

t

c .f(wjlDo) II .f(d.D.-,,).
j=l
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Thus the marginal density of (wIDT) is proportional to the product of the prior density
of (wlDo) with a reweighting factor, which is the product of conditional probabilities of
the form f(dtIDt-.,w). A single term in this product can be written as

f(dtlDt. )= / f(dtJy(t),W)f(AY(t)J(t), C(t),,)d-t(t), (4.10)

where f(dtI1y(t),w ) is the product of Bradley-Terry probabilities at tournament t given the
parameters •y(t), and f(-y(t)JW, C(t),w) is the multivariate normal density that is obtained
from the updating and forecasting recursions of Section 4.4.1. The integral in (4.10) cannot
be evaluated in dosed form, so we use Laplace's method (see, for example, Thisted 1988)
to obtain an approximate evaluation of the integral. To apply Laplace's method, we find
the mode, -y" = j(t), of f(dtlh( t),w) and the Hessian matrix, R(t), evaluated at the mode.
The approximate mode of the entire integrand is therefore (R(') + C(t) -1)-1(R(t)i(t) +
C(t) -1AL(t)), and the Hessian matrix of the integrand is R* = R(t) + C(') -1. Laplace's
method then obtains

f(dtIDr-i,w) ý f(dlgy(t) = .yS)f(-
7 

Wjp(t), C(t ),W)).2rY/2 1Rol-1/2. (4.11)

This approximation is justified by performing a Taylor series expansion of the logarithm
of the integrand arounc its mode, and dropping the cubic and higher order terms. The
method works best when the log of the integrand is well approximated by a quadratic
form.

The approximate posterior distribution of w can be obtained by reweighting the prior
distribution by a product of terms of the form given in (4.11),

4°) f]7' fAdjwi, Di-1)
EMT) I T(O) .T I f(dijwkD3.. ) (4.12)

In summary, to calculate the approximate posterior distribution of w, we begin by choosing
m overdispersed values w. ... ,wm of w and set corresponding prior probabilities to be

(0)
7r. .. Then for each value in the set {1. ,... ,?W,}, compute the approximate
normal parameters assoc:ated with f(-y(')•wi, Dt-1 ), for all t, and calculate via Laplace's
method f(dilwi,Dt_1) as given by (4.11). The posterior updates, lrýT), for 7r•°), are the
reweightings given by (4.12).

4.4.3 Marginal and Forecasting Distributions

Inferences on -y(t), or prdictions of future outcomes, can be obtained by integrating
out the nuisance parameter w. We discuss in this section methods of performing such
inferences or predictions.

Marginal Distribution of (I(T) IDT)
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From the analysis of the dynamic Bradley-Terry model, we obtain a discretized poste-
rior distribution of w. Suppose the posterior distribution of W has positive mass only on
the set {w1... ,Wn} and that

f(AwIDT) = { if(T w {i

Moments of w or a2 = 1/1w can be calculated relative to this distribution.

Making inferences on the distribution of (-,(T)IDr) requires marginalizing over w. We

can obtain the marginalized posterior density of -y(T) as

f( 7 (T)IDT) = J y (T'Iw, DT) f(wIDT)dw

= E~rT2 A_(T1 ~j1 j,DT),

which is a mixture of approximately normal densities. Inferences on (yf( T )IDT) can be
made, therefore, by drawing a large sample from the mixture of normal distributions
and using the sample to obtain empirical confidence intervals. A single draw from the
distribution of (-y(T)IDT) is obtained by first drawing w from the discrete distribution of
(wtIDr), and subsequently drawing -y(T) from the approximately normal distribution of
(-f(T)) w, DT). This process is repeated until the sample drawn is large enough to make
inferences at the desired level.

Forecasts of Game Outcomes

A predictive estimate of the probability i is preferred to j at time T + 1, given data
through time T, is

p(T+')(T)r

fexp(T+I)) + exp( (T+')) ( il')

PJ (T+i)u, DT)f(WIDT)

where p•T+1)(w, Dr) is defined in (4.9), and computed as described in Section 4.4.1. There-

fore the integral above can be computed as a weighted average of p,, (w, DT),

P~f ')(DT) = p ( w,(DT)li
t=h

This gives a posterior estimate of the preference probability.
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4.4.4 Sequential Updating

This section assumes that we have already observed data through time T and have ob-
tained both the conditional posterior distribution of (-y(T),w, DT) and the posterior dis-
tribution of (wIDT), and now we need to update the distributions of the parameters to
incorporate information available at time T + 1.

At time T, we have
(YO)1w, DT) - N(jul•t, C'*)),

and we also have a sample of m values, ... ,&,, for which

WIDT) JT) if W-
0 ifS {W •,...,Wm}

Using the methodology of Section 4.4.1, we can update the distribution of (-Y(T)1w, DT)
employing the updating and forecasting equations. To update the distribution of (WIDT)
to the distribution of (wiDT+i), we apply Bayes rule to obtain

f(wIDT+i) = f(dT+lIIDT, W) f(wIDT)
f(dT+IIDT)

f D f(dT+1IDTW) f(wIDT).

Laplace's method gives

f(dT+ I DT, W) -- f(dT+l I-Y (T) - -t°)f('s [(T), C(T))(2r)p/ 2jR 1-1/2,

where -y* and R* are defined in Section 4.4.2. Therefore, to obtain the updated distribu-
tion of w given the new data at time T + 1, we reweight the distribution of (WIDT) by the
marginal likelihood f(dT+l w, DT) at time T + 1,

(rT+1) = i(T)f(dr+l 1I, DT)
,j=l =T) f(dT+1lyiJ, DT)"

From this updated distribution of w, we can make inferences on (y(T+) IDDT+I) or compute
forecast estimates using the methods of Section 4.4.3.

4.5 Iterative Simulation Analysis of the Dynamic Bradley-
Terry Model

A drawback of the non-iterative analysis described in Section 4.4 is that the Bradley-
Terry likelihood for each tournament is approximated by a Gaussian density. It is this
approximation that allows the marginal posterior distribution of player parameters to be
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obtained in closed-form in a manner analogous to the normal models of Chapter 2. How-
ever, if the tournaments involve a small number of games then the normal approximation
may not be satisfactory. In this section, we consider an analysis using the Gibbs sampler
to draw from the exact joint posterior distribution of all parameters. A description of
the Gibbs sampler is found in Section 2.5.1. In the current problem, a draw from each
of the conditional distributions is accomplished via a Metropolis step (Metropolis et al.
1953) at each iteration of the Gibbs sampler. The Gibbs Sampler with a Metropolis step
is described in Section 4.5.1. We then describe the implementation of the Gibbs sampler
for the dynamic Bradley-Terry model in Section 4.5.2. In Section 4.5.3 we demonstrate
methods for obtaining an approximate marginal posterior distribution of -Y(T) and pre-
dictive distributions for future games, as well as methods for updating the parameters to
incorporate new data using the technique of sequential imputation (Kong, Liu and Wong
1991).

4.5.1 The Gibbs Sampler in Conjunction with the Metropolis Algorithm

The Gibbs sampler, as described in Section 2.5.1, draws samples iteratively from a se-
quence of conditional distributions. After sufficiently many draws, continued application
of iterative sampling produces samples from the full joint distribution of the parameters.
In some cases, even though the conditional densities may be specified exactly, it is not pos-
sible to draw a sample from these densities directly. The Metropolis-Hastings algorithm
(Hastings 1970) provides a remedy to this problem.

Suppose we would like to draw a random sample from a distribution F with density
function f(x), and we know how to draw a sample from a distribution G with density g(z)
both defined on the same space X. The Metropolis algorithm is a Monte Carlo Markov
chain method that sequentially draws values X1 , Z2,.., in a manner described below that
eventually produces a random sample from F. Denote z0 E X an arbitrary initial draw,
and let zi be the i-th draw of sequence. To obtain the (i + 1)-th draw of the sequence, we
draw a trial value y from G, and let

= { y w.p. min(1, M ),

where w(.) = f(.)/g(.), the importance ratio. Upon convergence, this algorithm will
produce a random sample from the target distribution F (Hastings 1970).

The Metropolis-Hastings algorithm can be incorporated into the Gibbs sampler in a
variety of ways. The approach we consider is to implement one Metropolis step, that
is, one iteration of the Metropolis-Hastings algorithm, at each draw of a conditional dis-
tribution in the Gibbs sampler. To be more precise, suppose we have m random vari-
ables Z1,..., Zm, and we are able to specify the densities of the conditional distributions
(ZtIZi,..., Z.-. , Zi+i,...,Z.), i = 1....m. Without loss of generality, we restrict our
attention to the distribution of (Z1 IZ2 , .... Z,). At iteration q, we want to draw from the
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exact density
-() , . . ,

Suppose drawing from f(-) is difficult, but we can draw z from g(Z1 lIZ- ) Z•-l)).

Then the Metropolis step w: i.Jn the Gibbs sampler involves assigning

Sw .p. 1 -m in(l, )

where w(.) = f(.)/g('). In general, one Metropolis step is performed for every conditional
distribution in the Gibbs sampler for which drawing a sample value is difficult. It is

possible to perform several Metropolis steps when sampling from a particular conditional
distribution, but the tradeoff between the improved convergence properties and increaseL
computational costs is still an open question.

4.5.2 Gibbs Sampler Analysis of the Dynamic Bradley-Terry Model

The goal of our analysis in this section is to describe a method of drawing a random
sample of parameter values from the joint posterior distribution (7(1),.. .,(T),wJDT).

We will base our inferences about the parameters on the sample.

Unlike the Gibbs sampler of Section 2.5.1, we cannot rely on the conjugacy of the likeli-
hoods and the prior r -tributions to simplify our analysis. Consequently, we do not sample

alternately between two conditional distributions, but rather among all T + 1 conditional
distributions. We describe now the sampling strategy for alternately drawing from the dis-
tributions (-y( 0',y(-),w, DT), for t - 1,..., T, where y(-t) = (,(1),... ,"Y(t-1), 7(t+1) ... , ,(T)),

and (w,( 1),. ...., 7 (T),DT).

Steps of the Gibbs Sampler

The Gibbs sampler proceeds as follows:

1. Pick a starting value, wc, for the system precision.

2. For t = 1,...,T,

a. Let -y(o' be the current value of -(O).

b. Find the conditional density (up to a scalar constant), L, of ,(00 given the re-

maining parameters.

c. Compute the approximate mean, Mt, and approximate variance, Vt, of the con-
ditionai distribution.

d. Draw a candidate value -" from a normal distribution with mean Mt and variance
Vt. Let the normal density be given by g.
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e. Accept -y' as the new current value -y~t) with probability rin(1, and keep

N, as the current value otherwise, where w(.) =

3. Draw w. from

(I-YCl) I ,7f(),DT) - Gamma(a0+p(T- 1)/2, b0+l "() (-)t() •-l

2t=2

Repeat steps (2) and (3) until convergence.

Sampling from (-yt)I0y(-'),w,DT)

This section describes step 2 of Gibbs sampler procedure outlined above. To draw from
the conditional distributions, we first note that the joint distribution of all parameters
can be expressed as

/(.tl)....r ') IDT)

×c ff (4j(2)} xf(-(), 1w, D o) ) x f{f(d 1-y, ('), w, Do)}

X I (- (T)1_1(1),..... ,(-1l-), w, DT-I)} x {f(drl-Y'), ..... -t(r), w, DT- 1)),

(4.13)

where the conditional densities of -y(t) are normal densities, and the likelihoods are prod-
ucts of Bradley-Terry probabilities.

The conditional posterior distribution for -y() given the rest of the parameters has a
density proportional to that in (4.13). Let wc and ,-y) be the current draws of w and
Y(-0t), and let 70(t) be the most recent draw of -(t). We consider the case where 1 < t < T.
Neglecting terms constant with respect to y€(t) yields

fw, DT)

oc lf(-Y(t)l-t~t-'),&j, Dt-,)) x f(dtl-,(t),wc, Dt-l)}x {f(-y(t+')I-Y(t),wc, Dt}.

(4.14)

The conditional distribution of -y(t) is proportional to the product of a normal density
with mean -4t-) and variance -LI, a Bradley-Terry likelihood, and a normal density,

where -y(t) has mean yC 1) and variance -LI. When t = 1, the first term in (4.14) is the

normal prior density for -y(1), and when t = T, the last term in (4.14) vanishes. Let i(t)
be the mode of the likelihood for tournament t and let R(O) be the information matrix
evaluated at the mode. The variance and mean of the distribution defined by the product
of these three densities is given by

Vt = Var(7(t)l7(-t),wc,DT) = (R( t ) + 2wcI)-'

i~ = E("7(t)I•-t),�w, DT) = Vt(R(t)-() t ) + (( + 7-(+I))). (4.15)
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Again, when t = 1 or t = T these expressions change to reflect the appropriate condi-

tional density. Letting g(-y(t1•,( -t0,wc, DT) be the normal density of -y(t) with mean Mt
and variance Vt, and letting w(-) = f(.)fg(-), we draw -y, from the multivariate normal
distribution g. The Metropolis step gives the current draw

,to w.p. m - rin(l,-!•*)

This completes step 2 for a single t of the Gibbs sampler.

Sampling from (wl-y(1 ,... , y(T), DT)

This section discusses step 3 of the Gibbs sampler outlined above. The conditional
posterior distribution of w given the rest of the parameters does not require a Metropolis
step. Suppose we have current draws -y"),...,'c T) and we would like to draw w from the

conditional distribution of (wl-y)l 1 ,... -(CT), DT). The conditional posterior distribution
of w is proportional to the density in (4.13). Neglecting terms that are constant with
respect to w and substituting in the exact densities yields

( ,) -(T), DT)
fOUJ.C I ...lye- w

Ti { exp/2exp(- _/C,,-p1M - t1))T(. (t) _ (t-1)))

01 W a-I e-bow
T

X W(T-1)/2 exp(_" E(_yAt) _ _f (t-i))T(_f(t)-
2 t=2

so that
T T

(Wj.l) ..... ~.yT),DT)- Gamma(ao+p(T- 1)/2,bo+ ! (,) --- ,(-1))T(.(t) -

2 =2
(4.16)

At step 3 of the Gibbs sampler, we draw we according to the gamma distribution in (4.16).

4.5.3 Sequential Imputation for Parameter and Predictive Inferences

The result of performing the Gibbs sampler is a large sample of draws from the joint
posterior distribution of (7,(1),...,'I(T),w[DT). We show in this section how to make
inferences on parameters of interest based on these samples. We also demonstrate using
sequential imputation a method for forecasting future performances and for updating the
parameter distributions when new data is observed.
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Suppose the Gibbs sampler provides m samples of parameter values which can be
considered drawn at random from the joint posterior distribution of the parameters. The
collection of these samples can be listed as

(-Y(1 ..... 'W .. '(Y.... I7 M
where the subscripts index samples rather than players. We can approximate the exact
joint continuous posterior distribution by a discrete distribution assigning posterior prob-
abilities of f(T) = 1/m to each of the m samples. In the following discussion, we refer to

the posterior probabilities as ir.T) to retain flexibility.

Obtaining approximate inferences about parameters is trivial in this framework. To
estimate the marginal mean and variance of the most recent player parameters, .y(T), it
suffices to find the expectation over W(T). Thus the mean and variance for Y(T) are given
by

M

E(- (T)IT) :j f T

Vax•(rl~r • _r-T)I(T)^ k -E'()D)(•7T) -- ('(T) JDT))T,
f (T) ()IT)-

i=1
Var(-y (T) IDT) E~-y E(

which are, of course, just the sample mean and sample variance-covariance matrix. Pos-
terior intervals for -y(T) can be computed from the empirical distribution as well.

Inferences about (o21DT) can be performed analogously. The marginal posterior dis-
tribution on (a 2 IDT) is approximated by the discrete distribution on m values, a2 = 1/w,,
with probabilities ir(T) = 1/rn. Moments of the true distribution can be approximated by
the moments of the discrete approximating distribution as before. Confidence intervals
for (a 2 IDT) can be estimated from the empirical distribution.

To obtain predictive distributions for the team ratings at time T + 1, we make use
of sequential imputation (Kong, Liu and Wong 1991). In the context of the dynamic

Bradley-Terry model, we impute m values for _T+i). We have from our Gibbs sampler

pseirdas(T) (T) of IT) nposteriord ,., ('7(T)IDT), and r2 ,. .,orf of (O 2 IDT). We can then
approximate the distribution of ('7(T+i)IDT) by drawing m sample values from

,Y(T+i) (T)

thereby obtaining m draws from the maxginal distribution of (-,(T+I)IDT).

To estimate the prior probability that player j defeats player k at time T + 1, we need
to find the value of the

(•T+1)z (,, /pT+I)(,,Y(T+l),DT)f(,[(T+I)JDT)df(T+1)
pk (DT) P=

eXp( •,T+=))

--- feT•)7i ef(_,(T+1) DT)d'7(T+l).

ex(4T+i)) + eXp( (4T+'))
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From the imputed -(T+,i : = 1,..., m, this integral can be approximated by
!,n (T+I))

exp( xps V(rT)
(T+, (T+I)

where -j!T+') is the i-th component of the vector _J!T+i). Thus for each i, we compute the
Bradley-Terry probability, and compute its expectation over the empirical distribution
ir(T) of the m values.

Updating ir(T) to r(T+I) to incorporate tournament data at time T + I requires the
application of sequential imputation in a manner similar to that of Section 2.8. From
Bayes rule, we have

/(.(1)...?(T I), IDT I) - (dr+1JDT,-Y(') .... _ ,-(T+I), W) (.l,.,r(r+1),wJDr)
"f(dT+IIDT)

oc f(dr+1JDT,-y('),...,-rTY , W) f(-Y(,),... ' wJ~),•DT)

= f(dT+hli(T+1)) f((•i),..... (r+1),wJDT)"

This last equality holds because the distribution of game outcomes at time T + 1 given

.y(T+1) is independent of the other parameters and the previous data. Thus the joint

posterior distribution given DT+1 is a reweighting of the joint posterior distribution by a

factor of f(dT+iJ/y(T+i)), which can be computed exactly. To obtain rT+i) we reweight
by the exact densities, that is,

7.(T+1) KýT) f(dT+ll1'(T4.1))

M= S 7; (4.17)
,=, jturi7 J

From this new set of values of ir T+i) we can compute posterior credible intervals for
parameters of interest, such as -Y(!+') or &2 conditional on DT+1.

4.5.4 Summary of Iterative Simulation Analysis

A typical analysis of tournament data will therefore proceed in the following manner.

1. We observe T tournaments of game outcomes, and perform a Gibbs sampler analysis
to obtain m draws from the joinz posterior distribution of (y('),.. .,y(T), w DT), and
set 7J) = 1/m for i m.

2. We sequentially impute -J" for each of the m draws of (T... ,'YW.DT) by;(7(T,.III %

randomly sampling from N(STP ,Z;,I).

3. We now observe tournament data at time T + 1, and update the weights associated

with our m samples, W(T), according to (4.17) to obtain V(T+i)
.17 tootIn
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An interesting aspect of this analysis is that we are always using the same m draws
obtained from the Gibbs sampler at time T. A possible problem with this analysis is
that continued sequential updating may reveal that the original sample of parameters do
not represent the true distribution accurately. For example, after updating the posterior
distributions to incorporate several new tournament results, we may find that the values
of w obtained from the original sample of the Gibbs sampler do not include a wide enough
range of values. This may be diagnosed by a skewed distribution on any of the parameters
after several sequential updates, or alternatively by noting that few Gibbs samples receive
increasing weight in imputation. In this case, it may be necessary to reperform the Gibbs
sampler in its entirety to obtain a more representative sample of draws from the posterior
distribution.

4.6 Ties

In many situations, a paired comparison can result in neither object being preferred. The
models considered to this point assume that a comparison results in a binary outcome.
Here we develop a model where a third outcome, no preference, is possible.

4.6.1 A Model for Ties

The probability model we consider here is proposed by Davidson (1970). The model

postulates

Pii = Pr(i defeats j) = e'y, + e-f + e-\+(-y,+-y)/2

pii = Pr(j defeats i) = e+ V
els• + e'fj + eA+(Ii+'4"•)l2

Pij.O = Pr(i ties j) - e + e'T + e +,,/ 2 ' (4.18)

where the parameter A is an index of discrimination. Large positive values of \ indicate
higher probabilities of a tie. Equation 4.18 assumes that one additional parameter is suf-
ficient for modeling the occurrences of ties. One generalization that has been examined
incorporates a separate parameter A\j for each pair being compared (Singh and Gupta
1975; Singh and Gupta 1978). Another possible generalization is to allow one tie param-
eter, Ai, per player. This possibility is discussed in Section 5.7. A further attempt at
extending the Bradley-Terry model to incorporate ties refers back to the extreme value
score distribution as a motivation for the Bradley-Terry model. Rao and Kupper (1967)
proposed a model that postulates a tie is declared when the difference between two scores
is less than a certain threshold parameter.

The Bayesian analysis of the Davidson model proceeds in a manner analogous to
Section 4.2. We impose a multivariate normal prior distribution on the parameters
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x..., 'p.- A.The analysis approximates the distribution of the parameters by a mul-
tivariate normal distribution centered at the maximum likelihood estimates. The approx-
imate multivariate normal posterior distribution is obtained by the usual averaging of the
normal prior distribution with the approximate normal likelihood. Again, this procedure
obtains the exact posterior distribution only if the likelihood is, in fact. approximately
normal.

We propose a dynamic generalization to the Davidson model. Let -y(t) = (,(t) ... 7(t))
be the vector of player ratings at time t, and let the tie parameter, A, be constant over
time. Then the probability model for observations at time t is given by

) Pr(i defeats j)+ +e , + 0;+e

p = Pr(j defeats i) =
el~t + e-y +

p!9 = Pr(i ties j) e (4.19)e ,f~t + eY t + e A+(•'Y +-y,')/2

The probability model for the evolution of the parameters -y(t) is given by

ly(M = _f(0-1) + A(M

and as in Section 4.3 we let
(z()j1a 2) ~ N(at, 01),

where ag is the mean amount by which team abilities change between tournaments t - 1
and t, and a!2 is the variance that reflects the increased uncertainty in -Y(') with the passage
of time.

We place a prior distribution on (-(l), A),

((), A N(t&('), CM•),

where m(l) and C(1) are (p + 1)-dimensional. The prior distribution on w = 1/1 2 is

fw ocwO-le-b.

The hyperparameters jM), CO), ao, and bo are assumed to be specified in advance.

It is worth noting the similarities and differences between the dynamic Bradley-Terry
models with and without ties. The model for the evolution of parameters treats the y(t)

as time varying in both models, and the amount of change over time is governed by the
variance parameter or2. The model also assumes that the prior distribution of -y(1) is
multivariate normal, and both models assume an identical prior distribution for a 2 . A
noteworthy difference between the models, besides the allowance for a third outcome of
the paired comparison, is that the parameter A is treated as constant over time. In the
next section, we discuss the implications of this difference on the analysis of the model.
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4.6.2 Analysis of the Model

The analysis of the dynamic paired comparison model with ties requires only minor
changes to the analyses described in Sections 4.4 and 4.5. We describe the required
modifications to the non-iterative and Gibbs sampler analyses here.

As in the paired comparison models with binary outcomes, the non-iterative analysis of
the model with ties involves approximating the likelihood at each time t by a multivariate
normal density. For the Davidson model, Bradley and Gart (1962) show how to obtain the
maximum likelihood estimates and the estimated information matrix for each tournament.
The likelihood can be approximated by a multivariate normal density by setting the mean
to be the vector of maximum likelihood estimates, and the inverse of the variance to be
the estimated information matrix. We let -y! 0 be the (p + 1)-vector (y(t), A), and let •(.t)

be the maximum likelihood estimate of -,ý from the data at time t and let e).0 be the
(p + 1)-dimensional information matrix.

The analysis of the model conditional on o2 = 1/w requires the respecification of the
updating and forecasting calculations. Suppose before observing tournament at time t,
the prior distribution on the parameters is

(7 (.t) It2, Dt- 1 ) - N(IP(), C(')).

Upon observing data at time t, dt, we can update the distribution above to obtain the
posterior distribution

(-f(.0l02, Dt) - N(;&*), C€(O)

where

' (C(t)- + ea.))-1(C(t) -i() + Pjt) (.0))

Cj(t)= (C( t )-i + ))-.

The forecasting calculation, which computes the distribution of the parameters reflecting
the uncertainty due to the passage of time, is given by

(_y'+('+) 1I,2, Dt) - N(.P('+), C(t'+)),

where

•(t+1)= ,(

C(t+l) =C'() + 02J ,,,.

Here, Jp,1 is the (p + 1)-dimensional matrix consisting of 1 in the first p diagonal ele-
ments, and 0 elsewhere. The forecasting formula for the variance-covariance matrix has
the interpretation that the variance increases over time for 7f(), but the variance of the
non-dynamic parameter, A, does not change due to the passage of time. These forecast-
ing formulas, along with the updating formulas, can be used successively to obtain the
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marginal distribution of -yi T) from the prior distribution on the parameters conditional
on a2.

Obtaining the distribution of (wID 7 ) is identical to the analysis described in Sec-
tion 4.4.2. We assume, as before, a discrete prior distribution on (wiDo). To obtain
the posterior distribution on (wjDT), we compute the rewei!-. zing factors as products of
marginal likelihoods which can be approximated using Lapiace's method. Once the ap-
proximate distribution of (wIDT) is found, posterior moments and confidence intervals can
be found using the approximating discrete distribution. Prediction probabilities can be
found via Monte Carlo simulation by generating samples from the approximately normal
('y(,T+1)IDT), and then computing the preference probabilities for each of the generated
samples.

The Gibbs sampler methodology for the model with ties is similar to the analysis
considered in Section 4.5. The main difference is now that at each iteration of the Gibbs
sampler, draws from T + 2 conditional distributions are required; drawing from the distri-
bution of (wh'(1), ... ,,(T), A, DT), from each of the (-r(t)-y(-), A,w, DT) for t = T,
and from (AI -(1),... ,-},(T),w, DT). We briefly describe here the sampling strategy for this
Gibbs sampler.

Drawing from the distribution of (')(1-y((-'), Aw, DT) is similar to Section 4.5.2 with
the Bradley-Terry likelihoods replaced by the Davidson likelihoods. In particular, a mul-
tivariate normal distribution is constructed from which a candidate vector for -,(I) will
be sampled. The parameters of this multivariate normal distribution are obtained in a
manner identical to the procedure of Section 4.5.2; a single draw is sampled, and the
ratio of importance weights is computed by calculating the densities of both the normal
distribution from which the draw was sampled, and the density corresponding to the
exact conditional posterior distribution (the target distribution). The Metropolis step
then either accept the candidate vector -f(') or retains the previous vaiue. In this entire
computation, A is treated as fixed and known.

To draw from the distribution of (T), w,),..., ) DT), we also make use of a
Metropolis step. First, before performing the Gibbs sampler, we construct a normal
distribution from which to sample a candidate value of A. To do this, we make a rough
guess at the mean and variance of the marginal posterior distribution of A by averaging the
posterior means and the posterior variances obtained by considering the T tournaments
individually. We then inflate this variance by a positive value greater than 1 to ensure
that the candidate samples are dispersed relative to the true posterior distribution of A.
This same normal approximation is used to generate candidate values of A throughout the
Gibbs sampler. Sampling A conditional on the remaining parameters involves drawing a
candidate value of A from the overdispersed normal distribution, and then invoking the
Metropolis step by computing the ratio of importance weights and accepting the candidate
value with the appropriate probability.
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To sample from (IIy 1),., A, (T),,DT), the conditional distribution is given by
IT-1(wlY').. (T• A, DT) Gamma(ao+p(T- 1)/2, 1+ 2 E

t=1

Note that the distribution of w does not involve A, as the tie parameter is assumed to
remain constant over time. This completes a single draw from the Gibbs sampler. The
algorithm continues until the Gibbs sampler converges, after which a random sample
from the marginal posterior distribution of all parameters may be drawn, and techniques
presented in Section 4.5.3 may then be employed to find marginal inferences and predictive
probabilities. The approach described here can be used to include more than one non-
dynamic covariate. In fact, in Chapter 5 we allow for an order effect (p,, depend on the
order in which i and j are compared) in addition to allowing for ties.

4.7 Inclusion -)f Covariates

In both the Bradley-Terry model and the Davidson mzdel, extensions can be made to
incorporate covariate information. We assume covariates can be modeled as l linear
combination of parameters, and that these parameters are non-dynamic. Generalizing to
dynamic parameters is also straightforward, although we do not consider that case here.

Suppose the q-dimensional vector, P, contains the parameters for the q covariates.
Let zk be a data vector corresponding to the k-th individual paired comparison, and
suppose the k-th comparison involves players ik and jk. The vector zk is the set of
covariates associated with the k-th game. We then consider the following generalizations
of the Bradley-Terry and Davidson models for paired comparisons. For the Bradley-Terry
model, we let

exp(-Y,. + z00)

exp(-fi,, + Zxkf) + exp(-yi)
exp(-Y,, - Yj, + XkO)

eXP(N. - 'Yj. + XOt) + 1"

For the Davidson model, we postulate

=ia `exp(-y,. + zk#)

exp(-y, + zXk) + exp('Yjk) + exp(A + (NV.h + 7,h)/2)

Pikik =exp(eyj,)
exp(-Yi- + zk,/) + exp(-Jk) + exp(A + (-Y + 73k)/2)

= exp(A + (74 + yk)/2)
exp(Tyk + Xk/3 ) + exp(-fjy) + exp(A + ('Y-• + 7-j )/2)"

These models can be fit by performing maximum likelihood estimation in the usual way.
Critchiow and Fligner (1991) demonstrate that these paired comparison models can be
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reparametrized as generalized linear models; they take advantage of this structure in order
to analyze the models using standard statistical packages. Estimates of -y and 3 along
with the singular covariance matrix can be obtained by recognizing and implementing the
paired comparison model as a generalized linear model.

The Bayesian extension to these models is analogous to the Bayesian extension of the
ordinary Bradley-Terry model in Section 4.2. A multivariate normal prior distribution is
placed on all the parameters, and the likelihood is approximated by a normal density in
order to carry out an analysis that is approximateiv conjugate. We can then report the
posterior distribution of parameters as approximately normal.

The Bayesia3 model can be further extended to a dynamic model in analogy with
Section 4.3. It is assumed here that the 6 remain constant over time. The analysis of
such a model is identical to the analysis of the dynamic Davidson paired comparison
model of Section 4.6.2. Once again the parameters can be partitioned into those that are
dynamic (the -+(t)) and those that are non-dynamic (A,03). Both the iterative and non-
iterative analyses of Section 4.6.2 can be extended trivially by allowing for the greater
number of non-dynamic parameters.



Chapter 5

Analysis of Chess Game
Outcomes

In this chapter, we apply the methodology developed in Chapter 4 to chess tournament
outcomes collected over a period of time. The model developed here is an extension of
the Bradley-Terry model with ties that incorporates an order effect. The model also
incorporates a dynamic component that specifies the evolution of chess players' abilities
over time. We describe the World Cup chess tournament data set that is used in our
analysis in Section 5.1. In Section 5.2, the model for chess game outcomes is described,
and in Section 5.3 we describe the implementation of the model for the World Cup dta.
We present the results of the analysis and posterior inferences for the rating parameters
in Section 5.4, and also show how the model can be used for predictive inferences. This is
followed in Section 5.5 by an examination of model diagnostics using posterior predictive
checks (Rubin 1984). We report the Gibbs sampler analysis of simulated data with a
greater number of games between players in Section 5.6. Section 5.7 presents possible
computational improvements, and suggests modifications of the model for chess game
outcomes.

5.1 World Cup Chess

To demonstrate the methodology and techniques developed in Chapter 4, we consider a
model for chess performance applied to the chess World Cup of 1988-1989. The World
Cup consisted of six tournaments and was comprised of 29 of the world's top chess players.
Information on the World Cup tournaments was obtained from Kavalek (1990). Table 5.1
lists the dates and sites of each of the six tournaments, and the number of competitors
who participated in each tournament. Of the 29 players, 22 players competed in 4 of the 6
tournaments, 3 players competed in 3 of the tournaments, and 4 players only competed in
1 tournament. The World Cup participants who competed in 3 or more tournaments were
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Tournament I Dates (Numoer of Competitors

Brussels, Belgium April 1, 1988 - April 22, 1988 18
Belfort, France June 14, 1988 - July 3, 1988 16

Reykjavik, Iceland October 3, 1988 - October 24, 1988 18
Barcelona, Spain March 30, 1989 - April 20, 1989 17

Rotterdam, Netherlands June 3, 1989 - June 24, 1989 16
Skelleftei, Sweden August 12, 1989 - September 3, 1989 16

Table 5.1: World Cup Chess Tournaments, 1988-1989

contenders for monetary prizes. Table 5.2 lists the players and indicates the tournaments
in which each player competed.

For each game in the World Cup, the data consists of the players involved in the game,
the outcome of the game (win, loss or draw), an indication of which player played the
white pieces (the player with the white pieces moves first), and the tournament in which

the game occurred. Each tournament is a single round-robin (i.e., each player plays every
other player exactly once), except the first tournament in which one player withdrew after
playing four games. The data consists of a total of 789 games spanning 17 months.

5.2 A Model for Chess Game Outcomes

The probability model that we assume for chess game outcomes is an extension of the
Bradley-Terry model. The extension, due to Davidson and Beaver (1977), includes a tie
as a possible outcome of a comparison, and also incorporates a parameter for a within-pair

order effect. We would like to model an order effect because the player with the first move
in a chess game is commonly believed to have an advantage. The probabilities of the three
game outcomes for tournament t, given that player i moves first, are specified as

Pr(i defeats j) = +e -yi e)V' + e` •( + e)'+(-.'),+-Y(' )/2

(••) = Pr(j defeats i) =
p1 i (1) (0)

St+ e") +

p(i~o = Pr(i ties j) =e+(,•' -+ ,) , ,•(0.o e•e",+ e ,+e* ' t

where the parenthesized subscript (i) indicates that player i moved first.

The model in (5.1) extends the Davidson model of Section 4.6.1 by including the order
effect parameter, q. If q takes on a positive value, then the probability of winning for
the the player with the first move is lower than for his opponent, whereas when v7 takes
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Player jjBrussels JBelfort JReykjavik JBarcelona JR~otterdam JSkelleftei&
Andersson X X xX
Belyavsky X X _____ X ________

_ _ _ _ _t x i x _ _ _ _

Hjartarson __ _ __ _ _ __ __ X _ _

Hubner __ _ X X _ ___ X

Mlescas X
Karpov X X X X

Kasparov ___ X XX x
Korchnoi X X X _ ___ X

Ljubojevic X X _____ XX ____

Nikolic X X X _ ___ X
Noguieras X X __ __ XX __

Nunin X X X X
Petursson X

Portisch X ___ X XX
Ribli __ _ X X X I__ _

Salov X __ ___ XXX
Sax X __ X __ _ XX

Seirawan X ____ X XX
Short ____ X __ _ _ XXX

Sokolov X X X _ ____ X ____

Spassky ___ X XX
Speelman X X X X ___

Tal X __ X _ _X

Timman X X X ____ X
Vaganian X ___ ____ XXX

Vanderwiel I_ _ _ __ _ _ X

Winants X I__ _ _ _

Yusupov I X X xX

Table 5.2: World Cup Chess Participants, 1988-1989
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on a negative value, the player with the first move has a higher probability of winning.
In chess, we would anticipate that q7 is negative. When q is 0, the model indicates no
advantage or disadvantage to moving first, and the model reduces to the Davidson model.

We assume the evolution of the player strength parameters is governed by

) =(t-1) + V}

with
st) N(O, k(t)0 2 ), (5.2)

where -y(t) and Y(t-1) are the vectors of rating parameters for tournaments t and t - 1,
respectively. Because tournaments are not separated by equal amounts of time., we define
a2 to be the variance per month and let k0) be the number of months between tournaments
t and t - 1. We assume a prior distribution on the parameters

(. riA ) -. N(Is(l), C(l)).

As before, 0(t) is the change incurred in the player parameters from tournament to tour-
nament. The factor 0) in (5.2) is justified by treating the amount of variability from
month to month as independent, so that k(t) months passing between tournaments corre-
sponds to summing k0') independent random variables with mean 0 and variance a 2 . For
our analysis, the k0) are known and observed quantities, not necessarily integers. Notice
that the variation per month in player abilities is assumed constant over time, and the
same for all players. We assume that the draw parameter X and the color parameter i1

remain constant over time.

We choose a vague prior distribution for the parameters of our model to reflect our
initial uncertainty. The prior parameters are

A(') = (0,...,0,1,-.25)

C(l) = 10. I.

These prior parameters assign the same mean to each player's rating parameter, but assign
a large variance as an indication of our uncertainty. The prior mean of 1.0 for A and the
prior mean of -. 25 for 7 imply that players of equal ability will draw games slightly over
60% of the time and that the player who moves first will win 56% of the games that do
not result in draws.

The prior distribution on w = 1/a2, the precision per month, is also vague, with
improper density

S= 
-3/2

which corresponds to a uniform prior distribution on a. The values of 0), t = 2,... ,6,
for the World Cup data are 1.7, 3.0, 5.2, 1.4, and 1.6. These are the number of months
between successive tournaments, and are treated as fixed in the analysis.

Our model for chess game outcomes has strong connections with the Elo chess rating
system (Elo 1978) that is used, in two different forms, by the U.S. Chess Federation and
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the World Chess Federation, as well as other national chess federations. The Elo system
assumes that the expected score of a game played between players i and j, where the
score is a random variable taking the value 1 for a win, 0 for a loss, and 2 for a draw, is
the Bradley- Terry probability e' /(e-' + e".'). The "Elo rating" of a player, R,, is related40o0 h odli
to the rating parameter -yi of the Bradley-Terry model as R1 = G The model in
(5.1) improves on some of the drawbacks of Elo's system in that we directly model the
probability of a draw as a third outcome, and we include a parameter for an order effect.
Also, although Elo's model recognizes that players' abilities may change over time, the
updating algorithm does not distinguish between varying amounts of player inactivity.

Many variations of paired comparison models have been proposed for rating chess
players. Batchelder and Bershad (1979) propose an extension of the Thurstone-Mosteller
model that incorporates ties and updates players' abilities by taking weighted averages of
past performances. Joe (1990) examines the world's best chess players of all time by with
a model that splits players' careers into "peak" periods and "off-peak" periods. Henery
(1992) analyzes the same data set as Joe using an extension of the Thurstone-Mosteller
model that allows for draws, and proposes using the length of a game as a covariate for the
analysis of a larger chess game data set. In a more developmental approach, Joe (1991)
derives axiomatically a general framework for a rating system, and shows how the Elo
system is a special case.

5.3 Model Implementation

We describe in this section the implementation of the non-iterative analysis and the Gibbs

sampler analysis in order to obtain posterior inferences of parameters for the model of
Section 5.2. We indicate below how different tilae intervals affect the analyses.

5.3.1 Gibbs Sampler Implementation

The implementation of the Gibbs sampler here parallels that of Section 3.1.2. We ran three
parallel Gibbs samplers with overdispersed starting values of w: 1/52, 1/.12, and 1/.0012.
We believe that a = 5 and a = .001 are towards the extremes of the posterior distribution

of a, so that our choice of starting values is overdispersed for the target distribution.
The starting values for -,(t) were obtained by first setting -,(1) to 0, and then adding
Gaussian noise with standard deviation Vki/o to y(') to obtain -y(t+1). The initial values
in the Gibbs sampler for the 77 and A for all t were 0. Each Gibbs sampler proceeds by
drawing in sequence from each of the conditional distributions of ,(1), given the remaining
parameters, followed by a draw from their conditional distribution of (A, 77), followed by a

draw from the conditional distribution of w. Because the time between tournaments vary,
drawing from the conditional posterior distribution of '(t) involves the inter-tournament
intervals k(t ) via their contribution to the between-tournament variances. This does not
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cause any difficulty in the Gibbs sampler analysis, as the term w is replaced by d/k(t ) in
the conditional densities. The conditional posterior distribution of W is

(,•}Y1) .... ,-/(T), DT) -- Gamma(ao+p(T-1)/2,bo+ 1 1(0- ( ( (t - 1,,

where -yc refers to the current draw of the player rating parameters in the Gibbs sampler.
This gives the appropriate distrit -ion of the precision parameter when tournaments are
separated by known but varying numbers of months.

Convergence of the three series was assessed by computing the potential scale reduction
as in Gelman and Rubin (1992a). After 500 iterations of the Gibbs sampler for each
series, we obtained a potential scale reduction of 195.33 computed on loglw. This value
provides strong evidence that the Gibbs sampler has not yet sampled from the target
distribution. Figure 5.1 shows the values of loglow at each iteration in the three series,
and clearly indicates that many more iterations of the Gibbs sampler are necessary before
convergence.

Several possible reasons exist for the slow, or perhaps lack of, convergence of the Gibbs
sampler for the World Cup Chess data. First, the Gibbs sampler for the World Cup data
alternates among T + 2 = 8 conditional distributions, whereas the Gibbs sampler for
the NFL data alternates between only two conditional distributions. It is suggested in
Liu (1992) that a Gibbs sampler that collapses over parameters (i.e., draws from the
conditional distribution of several parameters are made simultaneously rather than in
sequence) will converge more quickly than one that does not. Additionally, if the joint
post-:-ior distribution has parameters that are highly correlated, as is probably the case
with the World Cup data due to the time-dependence of the -Y(t), the Gibbs sampler
may take many iterations to move from arbitrary regions of the parameter space to the
high likelihood regions under the target distribution. Another explanation for the slow
convergence concerns the implementation of the Metropolis step within the Gibbs sampler.
In the Gibbs sampler for the NFL data, every trial draw is accepted because we sample
dirc:-tly from the exact conditional distributions. The Gibbs sampler with the Metropolis
step for the World Cup data results in acceptable draws 60.7% of the time. This suggests
that without accounting for the dependence among the parameters, the World Cup chess
analysis would be expected to require about 1/.607 = 1.65 times as many iterations as the
NFL analysis in order to produce the same movement about the parameter space. A third
possible reason for the slow convergence is that the information contained in the data is
not strong enough to cause the Gibbs sampler to move quickly to regions of the parameter
space of high likelihood. Whereas the NFL game score data give a better indication of
differences in team abilities, the World Cup data only indicate a player who wins a game
(or whether a game ends in a draw).

Because the Gibbs sampler does not appear to converge within 500 iterations, we do
not base our analyses of the World Cup data on the results of the Gibbs sampler. We
illustrate the Gibbs sampler in Section 5.6 with simulated tournament data consisting of
10 games per player pair within each tournament.
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Figure 5.1: Three parallel Gibbs sampler series of loglow

5.3.2 Non-iterative Analysis

The non-iterative analysis of Section 4.4 can also be applied to the World Cup model. The
distributions of parameters at time t are approximated by multivariate normal distribu-
tions centered at the maximum likelihood estimates. The maximum likelihood estimates
are obtained by fitting an appropriate GLIM model as described in Critchlow and Fligner
(1991). Approximate variance-covariance matrices are obtained according to Palmgren
(1981), who describes methodology to obtain asymptotic variances for multinomial re-
gression models. The prior distribution of a' is approximated according to f(') = 1/51
for a = 1/V/• E {0, •50•-,2 ... , a}. This set of values 4- chosen to span the posterior
distribution of a. The inclusion of the time intervals, (0, requires onily minor modifi-
cations of the non-iterative analysis. Forecasting between tournaments t and t + 1 now
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becomes
&(t+l) = C-(t) + k(t)02Jp,2,

where Jp,2 is the identity matrix with the last two diagonal elements (corresponding to
the variance of the change in the 3 raw and order parameters) set to 0. The reweighting
factors, f(dtjDt_1 ,w,), are computed by the methods of Section 4.4.2, after noting that
the forecasting equations involves the addition of k qc 2 J,, 2 rather than 0 'Jp,-.

5.4 Results of World Cup Analysis

In this section, we show the results of the non-iterative analysis of the World Cup chess
data. We examine the posterior distribution of the system standard ueviation, a, and
obtain the approximate marginal posterior distributions of -r(s), A, and 17. The players
might be ranked according to the marginal posterior mean vector, p1(T).

5.4.1 Marginal Posterior Distribution of a

Figure 5.2 displays the approximate posterior distribution of a, the system standard
deviation, from the non-iterative analysis. The figure shows a right-skewed distribution
with values of a near 0 having most support. With the uniform prior, this indicates that
the data do not give strong evidence that players' abilities change substantially for the
period of the World Cup tournaments. This result makes sense, in light of the long careers
of the World Cup competitors, 17 months may not be much time for players' abilities to
improve or decline. The approximate posterior mean and standard deviation of a are
0.115 and 0.0812, respectively. Using the posterior mean of a as a summary, players'
abilities change from month to month by an amount with a standard deviation of roughly
0.115, which corresponds to a 20 point rating change on the Elo scale.

5.4.2 Marginal Posterior Distribution of -(6)

For the non-iterative analysis, we compute the posterior distribution of (7(6)ID6, a) for
each 01 E {0, 1 , ., so}. From the previous section, we have the approximate100' 100" 100
posterior distribution on (oJD6), so we can compute the approximate posterior means and
standard deviations of-y( 6 ) marginalized over a. Table 5.3 displays these values, along with
approximate 95% credible intervals for .-y(s). The 95% credible intervals were computed
by generating 3000 values from the marginal distribution of -y(s) and computing the 2.5
and 97.5 percentiles empirically. The players are ranked in decreasing order according to
the posterior mean of -y(6).

The non-iterative analysis indicates that the posterior means range from -3.50 to
1.94, with the current world champion having the highest posterior mean. The standard
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Parameter 11 Mean t Std Dev 195% Credible Interval

Kasparov 1.94 0.78 (0.37, 3.52)
Karpov 1.82 0.78 ( 024., 3.37)

Salov 0.94 0.76 (-0.56, 2.43)
Timman 0.62 0.84 (-0.96, 2.38)

Short 0.57 0.76 (-0.91, 2.09)

Nunn 0.56 0.76 (-0.95, 2.05)
Vanderwiel 0.53 1.03 (-1.46, 2.50)

Ljubojevic 0.51 0.78 (-1.05, 2.04)

Ehlvest 0.46 0.77 (-1.07, 2.01)
Hubner 0.42 0.81 (-1.19, 2.00)

Belyavsky 0.35 0.81 (-1.27, 1.90)

Tal 0.27 0.82 (-1.33, 1.86)
Sokolov 0.23 0.80 (-1.34, 1.81)

Andersson 0.20 0.79 (-1.29, 1.80)
Portisch 0.00 0.76 (-1.54, 1.49)

Seirawan -0.06 0.76 (-1.51, 1.45)
Vaganian -0.07 0.78 (-1.61, 1.43)

Ribli -0.10 0.77 (-1.61, 1.42)
Sax -0.11 0.77 (-1.62, 1.39)

Speelman -0.15 0.81 (-1.83, 1.43)
Spassky -0.25 0.83 (-1.93, 1.33)
Nikolic -0.25 0.77 (-1.74, 1.24)

Yusupov -0.28 0.77 (-1.82, 1.21)

Korchnoi -0.30 0.77 (-1.79, 1.18)
Hjartarson -0.77 0.78 (-2.29, 0.81)
Noguieras -0.79 0.78 (-2.30, 0.73)
Petursson -1.32 1.08 (-3.43, 0.82)

Ilescas -1.47 1.04 (-3.54, 0.60)
Winants -3.50 1.26 (-6.03, -1.06)

Draw JJ 0.95 0.09 (0.76, 1.14)
Color -0.48 0.13 (-0.73, -0.23)

Table 5.3: Posterior nMIstribution of •f(6 )
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Figure 5.2: Distribution of System Standard Deviation

deviations of the components of -(6) indicate large variability of the posterior distribu-
tions. The variation in standard deviations may be explained by the different number of
games in which players were involved. For example, Vanderwiel, who played in only one
tournament, has a standard deviation of 1.03, whereas players like Kasparov and Karpov
who played in four tournaments have a lower standard deviation. The 95% credible in-
tervals show a wide range of values for the player parameters, although the correlations
among the -y(6) are about 0.5 (not shown on table) so that while the individual standard
deviations axe large, the standard deviation of the differences in rating parameters are
substantially reduced. This makes sense because the data provide information about the
difference between the 7yt) and 't), and not about absolute levels. In fact, if the innova-
tion variance for the model were 0, indicating the rating parameters do not change over
time, the posterior correlation among the ratings could be expected to be near 1. The
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Number of Approximate 95% Approximate
Player with Months after Credible Interval for Median Probability

White World Cup Probability of Winning of Kasparov Winning

Kasparov 1 (0.254, 0.572) 0.408
Kasparov 6 (0.21 8 , 0.609) 0.404
Kasparov 12 (0.203, 0.635) 0.407
K asparov 60 (0.089, 0.807) 0.408

Short 1 (0.166, 0.434) 0.286
Short 6 (0.160, 0.430) 0.282

Short 12 (0.159, 0.433) 0.283
Short 60 (0.124, 0.431) 0.276

Table 5.4: Winning probability estimates for Kasparov against Short

credible intervals for the -y(6) appear roughly symmetric around the means, with the 95%
intervals spanning about 4 standard deviations, so that a normal distribution may be a
reasonable approximation to the marginal posterior distribution of -Y8)

The draw and color parameters have posterior means close to their prior parameters.

Both the draw and color parameters have small standard deviations, as the model assumes
these parameters do not vary over time. The credible interval for the color parameter
spanning only negative values indicates a significant advantage to the player with the
white pieces. For players of equal rating, the value of A = .95 implies that games will be
drawn 56.4% of the time, not accounting for an order effect. A value of q = -. 48 implies
that a player with the white pieces will win about 61.8% of the games that result in either
a win or loss. This corresponds to an 83 point advantage for white on the Elo rating scale.

5.4.3 Forecasting

To demonstrate how the model can be used for forecasting future outcomes, we com-
pute predictive probabilities for games played between Kasparov and Short during future
competitions. Table 5.4 shows approximate 95% credible intervals along with the median
estimate of the probability that Kasparov will win if the two play 1 month, 6 months, 1
year and 5 years after the World Cup events. The top four lines are computed assuming
Kasparov is white and the last four assume Short is white. To compute a given proba-
bility, we draw 5000 values from the distribution of (wID6), and then for each value of
L we compute the approximate prior normal mean and variance of (-Y(7) D6 ) as 14(6) and
C(6) + k(7 )1I, respectively. Here, k(7 ) takes on values 1, 5, 12, and 60 depending on the
number of months beyond the completion of the World Cup that we are interested in
forecasting.

Table 5.4 shows a large amount of variability in the credible intervals for predicting a
Kasparov victory. As more time passes after the World Cup events, the credible intervals
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become substantially wider. This reflects the increasing uncertainty in game results due to
the passage of time. The approximate credible interval when Kasparov plays white after 60
months have passed is exceptionally large, suggesting that the model is a poor forecaster
for Kasparov's performance against Short as white. Curiously, however, the increase in
the credible inte- width when Short plays white is not nearly as not dramatic. This
may be due to t: easonable advantage conveyed by playing white.

5.5 Model Adequacy

In this section, we diagnose the adequacy of the model fit in the previous section using
the posterior distribution of carefully chosen diagnostic statistics (Rubin 1984). The idea
behind posterior predictive model checks is as follows. First, a model is fit to observed
data. Given the posterior distribution of the parameters, replications or simulated data
sets are generated by drawing "likely" sets of parameters, and then generating simulated
data conditional on these parameters. Informative statistics are constructed to test the
adequacy of the model against reasonable alternatives. The distribution of the diagnostic
statistics over the simulated data can be used as a reference distribution for the value of
the diagnostic computed on the observed data. If the statistic for the observed data is an
extreme value relative to the distribution of the statistic over the simulated data, then
the adequacy of the model is called into question. We examine the adequacy of our model
using posterior predictive checks in Section 5.5.1. The posterior checks indicate problems
in either the computational precision of the analysis or in the model specification. Ac-
cordingly, in Section 5.5.2 we simulate tournament data and perform posterior predictive

checks to examine whether the computational approximations used in the analysis are too
inaccurate for a moderate sized data set like the World Cup.

5.5.1 Posterior Predictive Checks for the Model

Posterior predictive checks were performed by simulating tournament data according to
the posterior distribution of the parameters. To simulate a single sequence of six tourna-
ments, we first draw from the joint posterior distribution of all parameters. This is done
by carrying out the following steps.

1. Draw w from the approximate (discrete) posterior distribution of (WIDs).

2. Draw (A, 77lw) from their normal posterior distribution. Section 4.4.1 describes the
procedure for obtaining the approximate normal distribution of the parameters after
the last tournament.

3. Conditional on w and (A, 17), compute the parameters of the approximately normal
conditional likelihood of (-y(t)IA, 17,w, dt) for each single tournament at time t. Using
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the procedure described in Section 4.6.2 for the analysis of the Gibbs sampler, com-
pute the parameters for the distribution of (-y( 6 )JA,i7,w,D 6 ), and then draw once
from this distribution.

4. For t = 5,..., 1, draw -y(' from the approximately normal conditional distribu-
tion given the previous draws of 7(t+1),.. ., 7i , A, qw. This is accomplished using
the procedure in Section 4.6.2 for drawing from the joint posterior distribution of
parameters given w in the Gibbs sampler.

For each of the six tournaments, we generate simulated game outcomes according to
the actual tournament design, conditioned on the parameters drawn from the posterior
distribution. The game outcomes are generated according to the outcome probabilities
of the extended Davidson-Beaver model according to Section 5.2. This process was per-
formed 500 times to generate a sample of 500 collections of 6 simulated World Cup tourna-
ments. For each collection of 6 tournaments, Ci, i = 1,..., 500, we compute the diagnostic
statistic T(Ci) relevant for detecting model failures.

We performed two tests of adequacy of the model. The first diagnostic statistic is the
maximum proportion of wins per player out of games that result in either a win or loss. An
unusually large or small value would indicate that the model does not capture the player
to player variability. To check whether a single tie parameter sufficiently describes the
variation in drawn games across players, the second diagnostic computes the maximum
across players of the proportion of drawn games. Figure 5.3 shows the distribution of each
of the two diagnostic statistics for the collection of 500 simulated World Cup matches along
with a vertical line representing the statistic computed from the actual data. The first
plot shows that the maximum proportion of wins for any player from the actual data is
well within the range of values for the simulated tournaments. This suggests that the
model parametrization sufficiently captures the strength of the players by a single rating
parameter per player varying over time. The second plot, on the other hand, indicates
a possible problem with the model. The maximum proportion of draws across players
for the actual data is at the right extreme of the distribution for simulated data. The
model does not generate data sets with as much variability in draws as the observed data
indicates. This implies that a single tie parameter may not be adequately describing
the frequency with which players draw games. If a single tie parameter were a sufficient
description, the plot shows that the player with the greatest percentage of draws would
be expected to draw about 70-75% of the time, whereas the actual data yields a player
(Ribli) who draws 86% of his games.

While the preceding analysis suggests that alternative models be explored for describ-
ing chess game outcomes for the World Cup tournaments, the problem may stem from
difficulties with the computational approximations. The posterior distribution of parame-
ters is obtained by approximating each of the likelihoods by a multivariate normal density,
and as each tournament consists of one comparison for each pair, the likelihood may not
be adequately approximated by a normal density. Furthermore, in updating parameters
to include a new tournament, the posterior distribution of parameters is not approximated
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Figure 5.3: Distribution of test statistics for model adequacy

at the exact posterior mode, but at a parameter value that is close to the posterior mode
only if the likelihood is approximately normal (see Section 4.2). To illustrate how the
normal approximation for the World Cup data may contribute to the inadequacy of the
model, Table 5.5 displays the posterior means of (-y(l), A, q1) in two situations. The first
column of means is computed using the approximately conjugate updating of Section 4.4
given a = 0 with the prior distribution specified in Section 5.2, except that the prior vari-
ances are 100 rather than 10 to allow the data to dominate the distribution of parameters.
This column assumes that each of the six likelihoods can be reasonably approximated by
a multivariate normal density. The second column of means is computed by treating all
six World Cup tournaments as a single large tournament, and finding the posterior means
by updating the nrior parameters exactly once. Because a = 0, the two columns will be
similar if the normal approximations are satisfactory. The parameter means in the second
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Posterior Mean Posterior Mean
Parameter Sequential Updates Single Update

Andersson 0.20 0.19
Belyavsky 0.44 0.46

Ehlvest 0.55 0.62
Hjartarson -0.68 -0.75

Hubner 0.47 0.51
Illescas -1.54 -1.67
Karpov 1.90 2.10

Kasparov 2.02 2.24
Korchnoi -0.36 -0.44

Ljubojevic 0.55 0.55
Nikolic -0.23 -0.27

Noguieras -0.77 -0.81
Nunn 0.59 0.62

Petursson -1.39 -1.51
Portisch -0.01 0.03

Ribli -0.09 -0.05
Salov 1.00 1.08

Sax -0.18 -0.17
Seirawan -0.09 -0.05

Short 0.58 0.64
Sokolov 0.21 0.24
Spassky -0.22 -0.19

Speelman -0.08 -0.07
Tal 0.28 0.29

Timman 0.39 0.33
Vaganian -0.02 -0.09

Vanderwiel 0.57 0.61
Winants -3.82 -4.08
Yusupov -0.27 -0.34

Draw D 0.95 1.06
Color -0.47 -0.51

Table 5.5: Posterior means of (7(6), ,, 17) with a = 0
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column reflect the data more accurately because the computation only relies on a single
normal approximation. While the parameter means for individual parameters are dose,
some are far enough apart to be of some concern. For example, the posterior mean for
A differs by over 0.1, which, according to Table 5.3, is more than one posterior standard
deviation. So the analyses that produce Figure 5.3 may indicate that the computational
approximations are too coarse.

5.5.2 Evaluating the Effect of the Normal Approximation

Model monitoring via predictive checks in Section 5.5.1 raise doubts about whether the
proposed model for chess game outcomes of Section 5.2 is appropriate. The preceding
section suggests that the failure may occur because the normal approximations to the
Davidson-Beaver likelihoods are not accurate enough. We provide evidence in this section
that when players compete a moderate number of times in each tournament, the normal
approximation of the likelihoods does not disturb the predictive checks.

The data used for the analysis in this section was obtained by simulating the World
Cup tournaments with the exact same tournament schedule, except players would compete
against each other four times (twice with each color) instead of just once. This resulted
in a single simulated World Cup consisting of 4 x 789 = 3156 game outcomes.

Game outcomes are generated as follows. Strength parameters, -y(1), for the first
tournament were generated from N(O, 1). For successive tournaments, -f(') was obtained
by adding Gaussian noise with a variance of .25k0), where k(0 is the number of months
between tournaments t - 1 and t, given in Section 5.2. This is equivalent to setting a = .5.
Also, we set A = 1 and 17 = -. 5. From these parameters, we generated data for the t-th
tournament according to the World Cup tournament schedule with four games per pair
rather than just one.

Using the non-iterative methodology of Section 4.4, the posterior distribution of the
parameters was computed from the simulated data. Predictive checks on the data were
performed by generating 150 sets of tournaments consisting of 3156 games each. Figure 5.4
displays the distribution of the diagnostic statistics used in Section 5.5.1 for the simulated
data. As in Figure 5.3, the vertical line on the plots represents the initial simulated
World Cup data, and the histogram represents the 150 replicated sets of tournaments. In
contrast to Figure 5.3, both the observed statistics fall within the body of the simulated
reference data. These two predictive checks indicate that it may be appropriate to use the
normal approximation of the likelihoods and the approximate parameter updates when
the number of games per player pair is as few as four.
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Figure 5.4: Distribution of test statistics for simulated data

5.6 Examination of the Gibbs sampler on Simulated Chess
Outcomes

Section 5.3.1 has shown that the Gibbs sampler failed to converge in 500 iterations for the
analysis of the World Cup chess data, possibly because the data from single round-robin
tournaments does not contain a great deal of information about the innovation variance,

0r2. In this section, we generate simulated tournament data with known innovation vari-
ance and perform the Gibbs sampler at dispersed starting values for w to explore the effect
of increasing the amount of data into the analysis.

The data are generated as follows. Seven players are assigned values of -y(l) by making
random draws from a standard normal distribution. For t =- 2,..., 6, we obtain -y(0) by
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adding independent random draws from a standard normal distribution to -,t(-'). This
process results in known values of y(t) for 7 players over 6 equally spaced time periods.
Although the -y(t) are generated using '2 

- 1, due to sampling variability the mean squared
difference among the -y(t) and .- ('-l) is 0.548 for the sample. We assign 7 = -0.25 and
A = 1.0. We then generated game outcomes for ten round-robin tournaments for each t
according to the model of Section 5.2 using the ratings -,(t) and the values of j7 and A. At
each t, each competitor played every other ten times; five times as white and five times
as black.

The Gibbs sampler with a Metropolis step was performed as described in Section 5.3.1.
Four parallel samplers were run with starting values for w of 1/52, 1/22, 1/.52 and 1/.012.
The initial values of -y(1) were set to 0, and values of -y(t) for t = 2,..., 6 were obtained
by adding Gaussian noise with variance 1/w to 7 (t-1). The Metropolis step accepted new
draws at a rate of approximately 82%.

Figure 5.5 shows the value of w drawn at each iteration for all four samplers. The
sampler series corresponding to starting values w - 1/22, 1/.52,1/.012, appear to move
towards the correct stationary distribution for this parameter. The sampler series starting
at w = 1/52 shows a lack of convergence to the correct distribution. To examine whether
the difficulty at w - 1/52 is a result of the likelihood of the simulated data not containing
sufficient information, the sampler was rerun with 100 replications of the simulated data
(1000 comparisons per player pair). In this case the series moved quickly towards the
correct stationary distribution.

Several possibilities exist for explaining the problems associated with the Gibbs sam-
pler analysis on the simulated data. The information contained in the simulated data,
which consists of 10 game outcomes per player pair, may still not be sufficient to guar-
antee convergence for the dynamic paired comparison model. With 100 times as many
observations, the data appear to have enough of an effect to make the Gibbs sampler
converge quickly. A possibility that may explain Figure 5.5 is that the Gibbs sampler is
at a minor mode in the posterior distribution of w. If the distribution is reasonably fiat in
a neighborhood of this mode, the Gibbs sampler may take many iterations to jump out of
this region of the parameter space to find the highest likelihooc regions. This phenomenon
is discussed in Gelman and Rubin (1992b).

5.7 Discussion

Analyzing paired comparison data using the techniques of Chapter 4 appears to be feasible
when the paired comparison model is correct and a reasonable number of games are played
between pairs of players. We find, however, that when the number of games in the data
set is small relative to the number of parameters, the analysis of game outcomes using
the methodology of Chapter 4 may not provide accurate inferences. Diagnostic checks
of the proposed model for the World Cup indicate that improvements are needed, either
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Figure 5.5: Values of logl0w for Gibbs sampler on simulated data

in computing the posterior distribution or in the model specification. In this section, we
discuss approaches to improving the analysis of the World Cup data set.

One feature of the World Cup data set and of other sports competitions is that within
each tournament players compete against each other at most once. For a p-player system,
a single round-robin tournament involves p(p - 1)/2 comparisons and p + 2 parameters.
Portnoy (1988) shows that for exponential families with p parameters and n observations,
if p2/n is not small, the likelihood may not be well approximated by a normal density. In
the case of single round-robin tournaments, this ratio can be viewed as large. The updating
of parameters described in Section 4.4.1 requires the likelihood to be approximately normal
in order to justify the conjugate analysis. Because the likelihoods in the World Cup data
set may not be reasonably approximated by normal densities, more accurate methods to
fit the model seem necessary.
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The computation can be made more accurate for the small sample analysis by com-
puting the exact posterior mode before making the normal approximation as well as
computing the Hessian matrix evaluated at the exact mode at each updating. In Sec-
tion 4.4.1 we just approximate the likelihoods by a normal distribution centered at the
maximum likelihood estimate, and then combining this normal approximation with the
normal prior distribution. When the likelihood is normal, this gives the exact posterior
mean; otherwise, the result is an approximation which is coarse if the likelihood is not
well approximated by a normal density. Instead, the exact posterior mode can be found
by performing the Newton-Raphson algorithm on the product of the prior density and the
exact likelihood. Then the normal approximation can be used directly on the posterior
distribution, centered around the posterior mode. The difference in computational cost
of using this approach in place of the approach of Section 4.4.1 is that for every w, in
the discrete space {Jw,. . .,wW), the Newton-RaDhson algorithm is invoked T times (once
for each tourn.u ent) to obtain the posterior distribution of parameters after each tour-
nament. Thus, .,nT Newton-Raphson calculations are performed. The approach taken in
Sertion 4.4.1 requires the maximum likelihood estimates to be found only once for each
tournament, resulting in a total of T Newton-Raphson analyses. It should be noted that
even finding the correct posterior mode after each update and approximating the likeli-
hoods by normal densities at this true mode may not be an adequate approximation if
the likelihood is substantially non-normal. In such a case. accurate inferences may be
obtained using iterative simulation such as through the G. Zbs sampler.

The problem using the Gibbs sampler is clearly the computational burden. For the
World Cup data, the Gibbs sampler did not converge within 500 iterations. The rate
of convergence has been shown to be related to the dependence among the parameter
distributions (Liu 1992), and with a small, the dependence of the -(t) across t is large so
that the convergence can be expected to be slow. Using the Gibbs sampler for analyzing
actual paired comparison data sets, therefore, may not be computationally feasible.

Putting aside computational issues, the probability model for chess game outcomes
may be further extended. The most likely misspecification of the model is that a single
tie parameter, A, is not sufficient for describing players' tendencies to draw games. An
alternative model replaces A by (Ai + Aj)/2 when players i and j compete, where Ai is
an individual tie parameter for player i. This model may more realistically reflect the
notion that some players are more likely to draw games than others. The probability
of a draw is now a function of the average of the draw parameters for the two players
involved in a game, and the larger the average, the more likely the outcome of the game
will be a draw. Glickman (1991) proposes this parametrization for the draw parameters,
substituting the average of draw parameters in the context of a model proposed by Rao
and Kupper (1967). Joe and White (1992) examine a model for chess players that replaces
exp((Ai + Aj)/2) in the Glickman model by exp(Ai) + exp(Aj).

Another class of alternative models involve treating either A or q (or both) as varying
over time. As chess theory develops, the understanding of the game may change such
that the frequency of draws among top players may change, and the advantage conferred
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to white may also change. For the World Cup data set, the playing conditions at certain
tournaments may have been such that the players choose to end their games in quick draws.
Another possibility is that if a player is not feeling well at a particular tournament, he
may attempt to draw games more often than usual. A model with time varying A and
Y would require an evolution variance parameter for the time-varying parameters which
would need to be estimated.



Chapter 6

Conclusions

This thesis presents paired comparison models in which the merits of the objects being
compared may change over time. Chapters 2 and 3 address paired comparison experiments
with a continuous outcome variable, while chapters 4 and 5 address paired comparison
experiments with indicator outcome variables. The models developed in this thesis have
strong connections to the Bayesian dynamic models of West and Harrison (1990). In the
models we consider, every object involved in a comparison has an associated rating pa-
rameter which measures the relative performance or ability of the object. The observation
equation of the model relates the outcome of a comparison to the rating parameter, and
the system equation describes the evolution of the rating parameters over time. This
thesis demonstrates methods for obtaining posterior inferences for the ratings under the
model and forecasts for future comparisons.

Two approaches to the data analysis are examined. One approach bases inferences
on samples drawn from the posterior distribution of parameters using the Gibbs sampler.
The other approach approximates the prior distribution of the system variance, or2, by a
discrete distribution on a grid of values. This approximation results in a more tractable
analysis when marginalizing over the posterior distribution of a2. This second approach
proves to be the more successful of the two in practice. The analyses of NFL football
game outcomes by the Gibbs sampler and by the non-iterative approach result in similar
inferences, suggesting that the discrete approximation to the prior distribution of o2

was entirely satisfactory. In the analysis of the World Cup chess game outcomes, the
Gibbs sampler does not converge in a computationally feasible amount of time. While
the computational approximations for the non-iterative analysis of the World Cup data
present some difficulties, these can be improved at only a moderate computational cost.

The approach we present in this paper provides a flexible means to modeling paired
comparison data. The framework is quite general and extensions to these models, such
as incorporating non-dynamic parameters or specifying alternative tie parameters, can be
incorporated without changing the underlying structure of the basic models.
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