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Preface

The model investigation described herein was requested by the US Army
Engineer District, Chicago (NCC), in a letter to the US Army Engineer
Waterways Experiment Station (WES) dated 5 June 1990. Funding
authorization was granted by NCC in Intra-Army Order No. NCC-IA-90-
27E], dated 5 June 1990. Model tests were conducted durmg the period
January-December 1992.

The study was conducted by personnel of the WES Coastal Engineering
Research Center (CERC) under the general direction of Dr. James R.
Houston, Director, CERC, and Mr. Charles C. Calhoun, Jr., Assistant
Director, CERC. Direct guidance was provided by Messrs. C. E. Chatham,
Chief, Wave Dynamics Division (WDD), and D. Donald Davidson, Chief,
Wave Research Branch (CW-R). Tests were conducted by Mr. W. G.
Dubose and Ms. B. J. Wright, WRB, WDD, under the direction of Mr. R. D.
Carver, Principal Investigator, WRB, WDD. This report was prepared by
Messrs. Carver and Dubose and Ms. Wright.

Ms. Heidi Pfeiffer coordinated testing efforts for NCC. During the course
of this study, communication was maintained by monthly progress reports,
conferences, telephone calls, and FAXES.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.




Conversion Factors, Non-SlI
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Non-SI units of measurement used in this report can be converted to SI units

as follows:
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feeot 7 0.3048 metres

miles (U.S. statute) 1.609347 kilometers
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Ii square feet 0.09290304 square meters I
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1 Introduction

The Prototype

Burns Waterway Harbor is a man-made harbor located on the southern tip
of Lake Michigan, about 9 miles' east of Gary Harbor and 14 miles west of
Michigan City Harbor. Burns Harbor was primarily constructed to facilitate
shipping materials to and from steel industries in northern Indiana. The Burns
Harbor structures include a 4,600-ft-long rubble-mound breakwater with an
east-west alignment positioned at the north side of the harbor, a 1,200-ft-long
rubble-mound breakwater with a north-south alignment located at the west side
of the harbor, and a steel sheet-pile cell structure (Figure 1).

The rubble-mound structures use a multi-layered random placement design
with a toe elevation of about 43 ft low water datum (Iwd) and a crest
elevation of +13 ft lwd. Armor stones, cut from Indiana Bedford limestone,
weigh from 10-16 and 16-20 tons on the trunk and head, respectively.

Since completion of construction in 1969, two problem areas have arisen.
Maintenance of the design crest elevation and structure cross section has
required the addition of large amounts of ~ne (an average of 7,640 tons per
year for the first 19 years of operation). . unacceptably large wave
conditions within the harbor (recorded data .ow transmission coefficients as
high as 25 percent) have led to cases of extensive damage to harbor facilities
and moored vessels.

Purposes of Model Investigation

The purposes of the investigation described herein were as follows:

a. Evaluation of stability/transmission using a 1985 condition survey and
February 1987 storm conditions.

b. Evaluation of stability/transmission improvements with a submerged
breakwater placed 75 to 200 ft lakeward of the existing breakwater.

! A table of factors for converting non-SI units of measurement to SI units is presented on
page v.
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¢. Evaluation of stability/transmission improvements with a berm
breakwater attached to the lakeside of existing structure.

d. Evaluation of stability/transmission improvements achieved with
addition of 18-ton angular stone on the lakeside, harbor side, and/or
raising the crest with one layer of 18-ton stone.

e. Evaluation of stability/transmission improvements with existing stone
reworked into special placement at crest.

2 Chapter 1 Introduction




2 The Model

Model-Prototype Scale Relationships

Tests were conducted at a geometrically undistorted scale of 1:36, model to
prototype. Scale selection was based on the sizes of model armor available
compared with the cstimated size of prototype armor required for stability,
minimization of wave transmission scale effects, preclusion of stability scale
effects (Hudson 1975), and capabilities of the available wave tank. Based on
Froude’s model law (Stevens 1942) and the linear scale of 1:36, the following
model-prototype relations were derived. Dimensions are in terms of length
(L) and time (7).

A =12 =1:1,298

V, =3 = 1:46,656

T =12 4160

The specific weight of water used in model tests was assumed to be the
same as the prototype and equal to 62.4 pcf. Also, specifi~ weights of model
breakwater construction materials were the same as their prototype
counterparts. Thus, the weight ratio of individual stones was the same as the
volume ratio, i.e., 1:46,656.

In a hydraulic model investigation of this type, gravitational forces
predominate (Froudian model law), except when energy transmission through
the breakwater is considered (Keulegan 1973, Le Mehaute 1965). If the core
material was geometrically scaled according to Froudian model relationships,
internal Reynolds numbers would be too low, and too much energy would be
dissipated. Therefore, for all plans tested, the core stone and W/10 stone
were geometrically oversized to aid in reproducing wave energy transmission.
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Test Equipment and Facilities

All tests were conducted in a 3-ft-wide segment of a concrete wave flume
11 ft wide and 245 ft long (Figure 2). A 1V on 100H slope, representative of
the existing prototype lake bottom, was molded lakeward of the test section.
Irregular waves were generated by a hydraulically actuated piston-type wave
machine.

Wave data were collected on electrical capacitance wave gages which were
calibrated daily with a computer-controlled procedure incorporating a least
square fit of measurements at 11 steps. This averaging technique, using 21
voltage samples per gage, minimizes the effects of slack in the gear drives and
hysteresis in the sensors. Typical calibration errors are less than 1 percent of
full scale for the capacitance wave gages. Wave signal generation and data
acquisition were controlled using a DEC MicroVax I computer. Wave data
analyses were accomplished using a DEC VAX 3600.

Chapter 2 The Model




3 Tests and Results

Method of Constructing Test Sections

All experimental breakwater sections were constructed to reproduce as
closely as possible results of the usual methods of constructing full-scale
breakwaters. The core material, which was oversized to aid in compensating
for transmission scale effects, was dampened as it was dumped by bucket or
shovel into the flume and was compacted with hand trowels to simulate
natural consolidation resulting from wave action during construction of the
prototype structure. Once the core material was in place, it was sprayed with
a low-velocity water hose to ensure adequate compaction of the material. The
underlayer stone (W/10), which was equal in size to the core (due to core
oversizing for transmission effects), then was added by shovel and smoothed
to grade by hand or with trowels. Limestone blocks used in the cover layers
and sublayer (W/2) were placed in a random manner corresponding to work
performed by a general coastal contractor; i.e., they were individually placed
but were laid down without special orientation or fitting. It was necessary at
the original building and each major rebuilding to readjust the armor blocks in
the cover and sublayer to reproduce the desired prototype wave transmission.
Once the prototype transmission had been reproduced on the existing
stru *ure, it was not rebuilt unless substantial damage was observed or the
plan to be tested called for changes that would purposely affect existing wave
transmission. If slight damage, i.e., a few randomly displaced armor blocks,
did occur to the existing structure during any specified test plan, the displaced
armor blocks were replaced back on the existing structure.

Simulation of Existing Structure (Plans 1, 1A, 1A1,
1A2 and 1A3)

Plan 1 (Figure 3) was constructed to a crown elevation of +13 ft lwd and
used armor slopes of 1V on 1.7H, both lakeside and harbor-side. The lake-
side slope (above -27 ft lwd) and crest were armored with two layers of 10- to
16-ton limestone blocks, whereas the harbor-side slope used one layer of 10-
to 16-ton blocks between +3 and -13 ft lwd. A graded mixture of limestone
blocks was used to form the armor layer and underlayer. The distribution of
individual stone weights within these mixtures was as follows:
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Transmission tests of Plans 1, 1A, and 1A1

Initial tests consisted of checking the transmission response of Plan 1
(Photos 1-3). Three prototype spectra were selected for verification of the
model breakwater. Characteristics of the chosen prototype spectra were as
follows:

T,. sec Hy M.t C,
7.1 9.2 1.4 0.15
9.2 6.6 1.1 0.17
11.6 15.68 3.6 0.23 J

The first attempt to reproduce the desired wave conditions in the model
yielded the following results:

[

0.11

| 90 6.0 0.9 0.15

I 1.8 17.0 3.7 0.22
e

Peak periods of these spectra are in good agreement with the prototype;

however, both the incident and transmitted wave heights are low for the 7-

and 9-sec periods and most importantly, the amount of energy transmitted

through the structure is low for these periods. Therefore, it was decided to

attempt to increase the porosity of the structure by rebuilding the armor in a

more random manner (Plan 1A shown in Photos 4 and 5), increase the energy
levels of the 7- and 9- sec spectra, decrease the energy level of the 11.8-sec
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spectra, and repeat the tests. Results of the initial tests of Plan 1A were as
follows:

C

0.15

0.18

0.30 I

These data show good agreement for the 7- and 9-sec wave periods; however,
energy transmission for the 11-sec period is too high. Finally, the structure
was rebuilt (Plan 1A1) and retested with the following results:

cl
7.2 9.8 1.4 0.14
8.9 6.9 1.1 0.16 ||

|| 11.9 15.8 3.7 0.24 M
e

Figure 4 presents C, as a function of wave period for the prototype data,
Plan 1, Plan 1A, and Plan 1A1, with Plan 1A1 showing excellent agreement
with the prototype.

Stability tests of Plan 1A1

Upon completion of the transmission tests, armor stability was investigated
by subjecting Plan 1A1 to progressively larger wave heights and observing the
number of armor stones displaced from t* 2 structure. Testing with the 7- to
9-sec waves showed these conditions to become steepness limited before
heights sufficient to produce damage could be reached; therefore, stability
tests were concentrated at the 11-sec period. The first testing of Plan 1A1

produced the following results:

0 2
2 17.2 0 2
3 18.6 0 4
4 19.9 0 s
5 8
e 8
7 9
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The structure was rebuilt and retested with the following results:

Cumulative Number of Stones Displaced I

Lakeside Harbor Side I

1 10

1 18

2 25
3 28
4 30
8 33
8 33

A comparison of the tabulated damages and the after-testing photos
(Photos 6 and 7 after the initial test and Photos 8 and 9 after the repeat test)
show the structure exhibited a higher level of movement in the repeat test.
Results of this type are not necessarily unusual and generally reflect random
differences in building that occur from one model structure to another and
from one section to another in the prototype breakwater. Model damage
patterns appear consistent with the prototype, with most of the damage
occurring on the harbor side.

The threshold of instability is generally defined as the point at which
2-3 percent of the armor units are displaced from their original areas. The
3-ft-wide model section required about 450 and 200 armor stones on the
lakeside and harbor side, respectively. Thus, displacement of more than 12
lakeside or more than 6 harbor-side armor units could be considered the onset
of instability. Following this logic, Plan 1A1 would be considered stable for
wave heights through 19.9 ft on the first test and a wave height somewhat less
than 15.6 ft on the second test.

Rationale for Plan 1A2

A review of prototype photos revealed that, in some areas of the structure,
armor stones were placed more randomly than they were in Plan 1A1.
Therefore, it was decided that additional stability tests should be conducted
with this more random configuration to quantify its effects. Thus, Plan 1A2
(Photos 10-12) was conceived. Plan 1A2 was identical to Plan 1A1, except
that the armor was placed in a totally random manner.

Stability tests of Plan 1A2

Stability test results for Plan 1A2 were as follows:
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Cumulative Number of Stones Displaced

Harbor Side

Following completion of the first test, the structure was rebuilt and retested
with the following results:

Cumulative Number of Stones Displaced

Harbor Side

As evidenced above, initial and repeat test results were similar. Photos 13-15
show the structure after the initial test.

Transmission tests of Plan 1A2

Plan 1A2, with its totally random placement, was more porous than the
previous structures. Consequently, one would expect to see an increase in
transmitted wave energy. Tests conducted with the same incident conditions
used on the previously investigated plans yielded the following results:
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These results are depicted graphically in Figure 5. A direct comparison of
transmission coefficients between Plans 1A1 and 1A2 yields the following:

T, sec

7.0

| so
n 1.6

This substantial increase in transmission is consistent with the increase in
stability.

Rationale for Plan 1A3

Further review of available prototype information (photos, soundings,
records) confirmed that Plan 1A2 probably replicated prototype armor
placement; however, it was felt that the W/2 and W/3 stone was probably
more uniformly placed between -7 ft Iwd and its top elevation of +3 ft lwd.
Thus, Plan 1A3 (Photo 16), incorporating this change in the W/2 and W/3
placement, was conceived.

Transmission tests of Plan 1A3

Tests conducted with the same incident conditions used on previously
investigated plans yielded the following results:

These results, along with those obtained from previously investigated plans,
are presented in Figure 6. As shown therein, Plan 1A3 gives transmission
results that are in excellent agreement with the prototype.

Stability tests of Plan 1A3

Stability test results for Plan 1A3 were as follows:
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Cumulative
Number of Stones Displaced

. Lakeside Harbor Side I
1 15.8 1 0
2 17.2 1 1
3 18.6 1 2
4 19.9 1 3
5 210 2 5

ﬂ 8 22.4 4 5 I

I 7 23.1 5 5 n

The structure was rebuilt and an abbreviated repeat test was conducted with
the following results:

Photos 17-19 show the structure after the repeat stability test.

Summary and Development of Stability
Coefficients

As expected, all plans tested reproduced prototype wave energy
transmission to some extent. Plans 1A1 and 1A3 most closely reproduced
prototype wave energy transmission. Wave heights observed just prior to
instability can be used in concert with the Hudson formula to determine
corresponding stability coefficients by rearranging the formula as follows:

y, H®

K= )
W(S,-1)° cot «

and substituting

v, = specific weight of armor unit, 145 pcf
W = weight, 12.4 tons = 24,800 Ib

Clapter 3 Tests and Resuits
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S, = specific gravity of an individual armor unit relative to the water in
which it is placed, S, = v,/v,,
cot a = reciprocal of breakwater slope, 1.7
thus obtaining

K = 0.001495H°

Stability results for the three plans investigated can be summarized as follows:

* Lesser value of initial and repeat tests.

Development of Improvement Plans

A number of plans to improve stability of the existing structure were
considered. Those chosen for model testing included placing a submerged
breakwater 100-200 ft lakeward of the existing structure, attaching a berm
breakwater to the lakeside of the existing structure, and the addition of 18-ton
angular stone to the lakeside and/or harbor-side slope of the structure.

Base Conditions

In order to provide a baseline for comparing various improvement plans,
transmitted wave heights were measured for a range of wave conditions on the
existing structure. Results of these tests were as follows:

I Incident ”E ft

swi! = 0.0 t iwd
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‘ owl = +4.0 ft lwd
i Rt
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Figure 7 presents transmitted wave height as a function of incident wave
height. As would be expected, these data show larger transmitted wave
heights at the higher swl and at the longest wave period.

Reef Breakwaters (Plans 2, 2A, 3, 4, 4A, and 4A1)

This approach would use a reef breakwater of sufficient size to reduce
19-ft incident waves to about 13-ft waves in front of the existing structure.
The first reef structure tested, Plan 2 shown in Figure 8, was constructed to
an elevation of -20 ft lwd. It used a crown width of 72 ft, a stone weight of
5 tons, and was placed 150 ft lakeward of the existing structure. Testing with
various incident conditions produced the following results:

H,po - Tt Measured

Behind Reef Behind Breskwater

7.0

7.0 4.1 3.7 0.7 0.17
ﬁ;lo 6.1 53 0.9 0.15

7.0 7.8 8.6 11 0.14
u 7.0 10.2 8.3 1.4 0.14

7.0 11.7 9.4 1.8 Q.14 J
9.0 2.8 2.7 0.7 0.25
| 9.0 4.8 4.4 1.0 o.21
u 9.0 7.0 6.4 1.3 0.19

9.0 8.2 7.3 1.8 0.18
& 9.0 9.4 8.4 1.7 0.18

11.6 1.8 1.8 0.7 0.39 1
11.6 3.9 3.4 1.1 0.28
11.6 6.3 5.3 1.8 0.25 J
11.6 8.6 8.9 2.0 0.23 :I
|| 11.6 13.1 10.0 2.9 0.22

11.8
11.8
IH.B

The above data show that the chosen structure was successful in reducing a
19-ft incident wave to a height of slightly more than 13; however, maximum
transmitted heights, though somewhat reduced, still exceeded 1 ft at all
periods and 3 ft at the 11.6-sec period. Both the reef (Photo 20) and existing
breakwater (Photo 21) were completely stable.




The second structure tested (Plan 2A shown in Figure 8) was identical to
Plan 2, except the crest width was narrowed to 45 ft. Transmission test
results were as follows:

Hmo

, ft Messured

Behind Reef

2.1

Behind Breakwater
— —

0.5

3.7

0.7

8.1

0.9

8.7 1.4 0.15

10.2 1.7 0.15

2.8 0.7 0.25

4.6 1.0 0.22

8.4 1.3 0.20

7.7 1.5 0.19

9.0 9.2 8.9 1.7 0.18
11.8 1.9 1.9 0.7 0.37
11.6 4.9 4.9 1.3 0.27
11.6 6.6 8.8 1.7 0.28
11.8 9.0 9.0 2.2 0.24
11.8 13.7 13.7 3.2 0.23
11.8 17.5 17.0 4.5 0.26

5.3

As shown above, transmission results were similar to Plan 2. The reef was

8.1

stable (Photo 22); however, several armor stones were displaced from the

harbor-side slope of the existing breakwater (Photo 23).

It was decided to test a third submerged structure that would use about the
same volume of material as Plan 2 and, thus, would have approximately the
same cost as Plan 2. To accomplish this, the crown elevation was raised to

-10 ft Iwd and the crown width was narrowed to 36 ft (Plan 3, Figure 8,

Photo 24). It was hoped that Plan 3 would provide a higher level of
protection with about the same amount of material as Plan 2. Transmission

test results were as follows:

Chapter 3 Tests and Results
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. ft Measured

Behind Breakwater

9.0 104 8.4 1.8 0.17 I
1.6 1.9 1.8 0.7 0.37
11.8 4.1 3.8 1.2 0.29
n 11.6 8.6 8.7 1.7 0.26
9.0 7.6 2.2 0.24
11.4 9.3 2.6 0.23
13.8 10.7 3.0 0.22

17.5 12.9 4.2 0.24 ‘I
19.4 14.2 5.0 0.26

20.3 15.0 5.8 0.29 l

As shown above, the transmission response of Plan 3 is essentially identical to
Plan 2. Both the reef (Photo 25) and the existing breakwater (Photo 26) were
completely stable.

Since raising the crown elevation did not improve performance, it was
decided to test an additional plan with a significantly wider crown. Plan 4
(Figure 8) was constructed to a crown elevation of -20 ft lwd and used a
crown width of 150 ff. Transmission test results were as follows:

16
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H

Imeo ¢ 1t Measured

Bshind Reef Behind Breakwater

0.13

0.23

0.20

0.19

0.18

l

|

1
0.18
0.17
0.37
0.29
0.28
0.23

0.22 I

11.6 19.7 14.1 4.7

11.8 21.4 15.0 5.5

The transmission response of Plan 4 is very similar to Plans 2, 2A, and 3 for
the 7- and 9-sec periods. The only noticeable improvement occurs for the
larger 11.6-sec waves. Photos 27-29 show that both the reef and the existing
breakwater were stable.

Plan 4A (Figure 8) used the same volume of material as Plan 4; however,
the crown elevation was raised to the water surface (+4-ft Iwd) and the crown
width was narrowed to 30 ft. Transmission results were as follows:

17
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H,,o - 1t Messured

Incident Behind Reef Behind Breakwater

2.2 0.4

4.0 1.4 0.6 0.15

6.6 24 0.9 0.14

9.6 3.6 1.2 0.13
13.8 4.9 1.4 0.10

1.9 1.2 0.8 0.32

4.1 2.1 1.1 0.27

8.5 3.3 1.6 0.25

8.9 4.6 2.1 0.24 I
11.4 6.0 2.5 0.22 I
13.6 7.3 3.0 0.22 |
17.5 9.4 4.1 0.23
19.3 10.5 4.9 0.25 H
20.9 11.3 5.8 0.26 I

L L

As shown above, Plan 4A showed slightly improved transmission
performance, relative to Plan 4. The existing breakwater again was
completely stable (Photos 30 and 31). The reef experienced some damage
(Photo 32) with stone from the lakeward edge of the crown being displaced
downslope.

Summary of results (Plans 2, 2A, 3, 4, and 4A)

Figures 9, 10, and 11 present transmitted wave height as a function of
incident wave height for constant wave period. These data show that all plans
produced similar transmission results, with Plans 4 and 4A providing slightly
greater protection. Figure 12 presents wave heights behind the reef and these
data show that all plans (except Plan 2A) reduce 19-ft incident waves to
heights of about 13 ft or less.

All plans except 2A eliminated damage to the existing breakwater. The
S5-ton stone was acceptable for all of the improvement structures; however,
Plan 4A experienced some damage with stone from the lakeward edge of the
crown being displaced downslope.

Plans 2, 3, 4, and 4A varied such parameters as the volume of stone,
structure height, and crown width. However, all tests were conducted with a
150-ft spacing between the reef and the existing breakwater; therefore, it was
decided to test one additional plan (Plan 4A1) with this spacing reduced to
75 ft. Plan 4A1, shown in Photo 33, was identical to Plan 4A except for the
reduced spacing. Transmission test results were as follows:
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H,,, - ft Measured
Incident Behind Roef Behind Breakwater
o e
2.3 1.1 0.3 0.13
4.1 1.8 0.5 0.12
ﬂ 7.0 6.8 3.1 0.8 0.12 1
" 7.0 9.5 4.1 1.1 0.12
7.0 11.4 5.0 1.4 0.12 II
11.8 1.9 1.1 0.5 0.26 II
1.8 4.8 2.4 1.0 0.21 ll
11.8 6.6 3.5 1.5 0.23
11.8 9.0 4.8 2.0 0.22
11.6 114 6.0 2.4 0.21
I 11.8 13.9 7.1 2.9 0.21
FLG 17.8 9.0 4.1 0.23
11.8 20.0 10.0 5.1 0.26
“ 11.8 21.8 1.0 5.9 0.27 ﬂ

Plan 4A1 generally produced similar but slightly reduced transmitted
heights relative to Plan 4A (Figures 13 and 14). Also similar to Plan 4A, the
reef experienced some damage with stone from the lakeward edge of the
crown being displaced downslope. The existing breakwater was completely
stable (Photos 34 and 35).

Attached Berms (Plans 5 and 6)

The first structure tested, Plan 5 (shown in Figure 15 and Photo 36), was
constructed to an elevation of -10 ft Iwd. It used a crown width of 100 ft and
a stone weight of 5 tons. Transmission test results were as follows:

Chepter 3 Tests and Resuits
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(Concluded)

[y = 5 —_— o N -

0.6 0.21

1.0 0.20

9.0 7.0 1.2 0.17

9.0 9.8 1.6 0.17

9.0 10.8 1.8 0.17

I 11.8 2.0 0.7 0.35

11.6 4.2 1.2 0.29
11.8 8.6 1.8 0.24
11.8 9.1 2.1 0.23
11.8 11.4 2.7 0.24
11.6 13.7 3.2 0.23
11.6 17.3 4.3 0.25

|r 11.6 19.2 5.0 0.26

II 1.8 20.4 5.7 0.28 I

Stability of the existing breakwater was improved relative to base conditions
(Photo 37); however, five armor stones were displaced from the harbor side.

A second and final berm was tested. Plan 6 (Figure 16 and Photos 38 and
39) was the same as Plan 5 except the crown elevation was raised to the water
level (+4 ft lwd). Test results were as follows:

I—T_,:oc Incident 4, ft Transmitted 4, , ft C,
7.0 2.3 0.4 0.17
7.0 4.1 0.5 0.12
7.0 8.6 0.8 0.12
7.0 10.0 11 0.1
7.0 11.7 1.4 0.12
9.0 2.8 0.5 0.18
9.0 4.7 0.8 0.17

“ 9.0 6.8 1.1 0.16

II 9.0 8.1 1.2 0.15

II 9.0 9.3 1.4 0.15

l 9.0 10.4 1.6 0.15
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Transmission data from the berm tests are presented in Figures 17, 18, and
19 as a function of incident wave height for constant wave period. These data
show that Plan 6 yielded consistently lower transmitted wave heights for all
conditions investigated.

Photos 40-42 show the structure after wave attack. Some reshaping of the
berm occurred near the water surface as a significant number of the 5-ton
stones were moved under wave attack. However, the existing structure was
stable, with only one harbor-side stone being displaced. Based on observed
movement, S-ton stone appears to be only minimally adequate for the berm
stone if the crown is brought to the water surface.

Overlays (Plans 7, 8, 8A, and 9)
Plan 7 (Figure 20 and Photo 43) consisted of overlaying the lakeside face

of the existing breakwater with a protective covering of 18-ton angular stone,
placed at a 1V on 3H slope. Test results were as follows:
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11.8 1.9 0.7 0.37 1
11.6 4.5 1.1 0.24
11.6 6.9 1.6 0.23
11.6 9.1 2.0 0.22
11.6 11.6 2.4 0.21
ﬂ 11.6 13.8 2.9 0.21
11.6 17.7 3.8 0.21
11.6 19.6 4.5 0.23
11.6 20.8 5.1 0.25

L

Transmission results are depicted graphically in Figure 21. These data
show that the 1-ft transmission criterion is reached for 7-sec, 7-ft; 9-sec, 5-ft;
and 11-sec, 4-ft incident waves. The 3-ft transmission criterion is exceeded

by 15-ft, 11.6-sec waves.

Photos 44-46 show the structure after wave attack. A few of the 18-ton
overlay stones rocked or shifted in the vicinity of the swl as they sought a
more stable orientation; however, none were displaced. One harbor-side

armor unit was displaced from the existing structure.

Plan 8 (Figure 22) consisted of adding one layer of 18-ton stone to the
crest and two layers of 18-ton stone to the lakeward face of the existing
structure. Transmission test results were as follows:
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0.18

9.0 9.2 1.7 0.18

i (Concluded)
§ 9.0 8.1 1.5 ‘

11.8 9.4 2.2 0.23
11.6 11.8 2.5 0.22
11.8 140 2.9 0.21
11.6 17.7 3.9 0.22 I
11.8 19.6 4.6 0.24 I

Transmission results are depicted graphically in Figure 23. These data
show that the 1-ft transmission criteria is reached for 7-sec, 7-ft; 9-sec, 4.5-ft;
and 11-sec, 4-ft incident waves. The 3-ft transmission criterion is exceeded
by 15-ft, 11.6-sec waves.

The stability response of Plan 8 was marginal. As shown in Photos 47-49,
a significant number of armor stones were displaced down the lakeward face
from the vicinity of the swl with six stones being removed from the structure.
Three harbor-side armor units were displaced from the existing structure and
three 18-ton armor stones were displaced from the crest to the harbor side.

Plan 8A (Figure 24 and Photo 50) consisted of adding one layer of 18-ton
stone to the crest and two layers of 10-ton stone to the harbor-side face of the
structure. Also, a 4-ft-thick layer of 1,000-Ib stone was placed beneath the
10-ton, harbor-side stone. Transmission results were as follows:
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9.0 10.7 1.5 0.14

11.6 19 Q0.8 0.26

11.8 5.1 0.9 0.18 I

1.6 6.8 1.3 0.19
1.8 9.4 1.8 0.19
11.6 11.9 2.1 0.18
HH.G 141 2.5 0.18

11.8 18.0 34 0.19

11.8 20.0 4.1 o.21

1.6 21.9 4.8 0.22 H
- e

Transmission results, plotted in Figure 25, show that the 1-ft transmission
criterion is reached for 7-sec, 10-ft; 9-sec, 7-ft; and 11.6-sec, 5-ft incident
waves. The 3-ft transmission criterion is exceeded by 16-ft, 11.6-sec waves.

As shown in Photos 51-53, stability of the structure was marginal. Six
blocks were displaced from the unprotected lakeside slope and a significant
number of 10-ton overlay stones were displaced from the area between the
crest and the water surface. Based on stable response of the 18-ton crest
stone, this weight should probably be continued down the harbor-side slope to
at least the water surface.

Plan 9 (Figure 26 and Photos 54 and 55) was the same as Plan 8 except the
slope of the 18-ton overlay stone was flattened to 1:2.25 in an effort to
improve lakeside stability. Transmission test results were as follows:

Incident 4, . ft Transmitted f‘Lﬂ' ft C,
2.4 0.4 0.18
4.3 0.6 0.14
7.0 6.7 0.8 0.12
7.0 8.3 1.1 0.12 l
7.0 11.7 1.4
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0.18
9.0 6.8 1.2 0.18
9.0 8.2 1.4 0.17
9.0 9.2 1.8 0.17
9.0 10.6 1.7 0.18

11.6 1.9 0.6 0.32
11.6 4.1 1.1 0.27
11.8 6.7 1.6 0.24
11.6 9.3 2.0 0.22
11.6 11.7 2.4 0.21
11.6 13.9 2.8 0.20
11.6 17.6 3.7 0.21
|| 11.6 19.9 4.4 0.22
n 11.6 215 5.0 0.23 I

Transmission results are plotted in Figure 27. These data show that the

1-ft transmission criterion is reached for 7-sec, 8-ft; 9-sec, 5-ft; and 11-sec, 4-
ft incident waves. The 3-ft transmission criteria is exceeded by 15-ft,
11.6-sec waves. As would be expected, results are very similar to those
observed for Plans 7 and 8.

The stability response of Plan 9 was acceptable and intermediate to results
achieved for Plans 7 and 8. As shown in Photos 56-58, several armor stones
were displaced down the lakeward face from the vicinity of the swl; however,
the integrity of the overlay was not jeopardized. Two harbor-side armor
stones were displaced from the existing structure and two 18-ton armor stones
were displaced from the crest to the harbor side.

Summary of Results (Plans 2-9)

The first 12 improvement plans significantly improved stability of the
existing breakwater and reduced transmitted wave heights to some extent. In
order to help quantify performance, average transmission coefficients were
calculated, with the following results:
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Average C, for Indicated Wave Period Average C,
7.0 sec :l 9.0 sec 11.6 sec Al Periods
0.18 0.21 0.30 0.23
0.16 0.20 0.27 0.21
0.17 0.21 0.27 0.22 I
3 0.16 0.19 0.27 0.21 H
4 0.16 0.19 0.28 0.20 ‘n
4A 0.14 -! 0.25 0.20
|I 4A1 0.12 - 0.23 0.18 H
l 5 0.16 0.18 0.26 0.20
] 0.13 0.16 0.22 0.17
7 0.15 0.19 0.24 0.19
8 0.14 0.20 0.25 0.20 II
“ 8A 0.12 0.18 0.20 0.18 H
| 9 0.13 0.17 — 0.24 0.18

I ' Not tested.

The above data, graphically presented in Figures 28-31, show that Plans 6 and
8A yielded the lowest transmitted wave heights of all plans investigated.
Unfortunately, these wave heights were still larger than desired. Therefore, it
was decided to test an additional plan (Plan 10) that would be the same as
Plan 6, except the interface between the existing breakwater and the 5-ton
berm stone was sealed with a sheet of plastic to simulate an impermeable
barrier in the prototype. Plan 6 was selected over Plan 8A because of its

better stability.

Stability of the existing structure, quantified as percent damage (number of
armor units displaced divided by total numer of armor units in that section) to

the lakeside and harbor-side armor, is summarized as follows:

Percent Damage to Existing Structure “

Plan Lakeside armor Harbor-Side Armor
I 1A3 (Existing) 2.5 5
2 0 0
2A 0 2
3 0 0
e 0 0
0 0
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Lakeside and harbor-side damages also are presented in Figures 32 and 33.
These data show that all improvement plans, except Plan 8A, which provided
no protection on the lakeside, eliminated lakeside damage. Also, all plans
reduced harbor-side damage to an acceptable level, i.e., 2 percent or less.

Impermeable Barrier (Plans 10 and 10A)

Plan 10 (Photo 59), tested at both the 0- and +4-ft swl’s, produced the

following results:

incident H::, ft I Transmitted H_mn' ft

swi = 0.0-ft lwd

7.0 9.8 0.9 0.09
7.0 1.7 1.2 0.10
9.0 2.8 0.3 0.11
9.0 4.8 0.5 0.10 u
9.0 6.9 0.8 0.12 I
9.0 8.1 0.9 0.11
9.0 9.4 1.1 0.12
9.0 10.7 1.2 0.11
(Continued)
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{Concluded)

=

[____ swl = +4.0-t Iwd
7.0 2.3 0.3
7.0 4.2 0.4
7.0 8.9 0.7
7.0 9.9 1.1
7.0 11.7 1.4 0.12 I
9.0 2.9 0.4 0.14 I
9.0 5.0 0.7 0.14 4
3.0 6.6 0.9 0.14
9.0 7.7 1.1 0.14 _I
9.0 9.2 1.3 0.14
9.0 10.7 1.4 0.13 <I
11.6 1.9 0.4 0.21
11.8 4.2 0.9 0.21 ﬂ
11.8 8.7 1.3 0.19 ﬂ
11.8 9.0 1.8 0.20 H
11.6 11.5 2.3 0.20
11.6 13.9 2.9 0.21
11.6 18.0 4.2 0.23 I
11.6 19.9 4.9 0.25
11.8 21.7 5.7 0.26

Chapter 3 Tests and Results




Transmission results are plotted for constant wave period and swl in
Figures 34 and 35. These data show that the 0-ft swl produced consistently
lower transmitted heights with the 1-ft transmission criteron being reached for
7-sec, 10-ft and 9-sec, 9-ft incident waves. The +4-ft swl required 7-sec,
9-ft; 9-sec, 7-ft incident waves to produce 1-ft transmitted waves. The 3-ft
transmission criterion is exceeded by 16-ft (0-ft swl) and 14-ft (+4-ft swl),
11.6-sec waves.

The stability response of Plan 10 was acceptable. As shown in Photos 60-
62, some of the 5-ton berm stone moved under wave attack with resultant
reshaping of the berm at its lakeward edge. The existing structure was
reasonably stable, with two harbor-side blocks being displaced downslope.

Plan 10A (Figure 36 and Photo 63) was similar to Plan 10, except the
berm was reduced in width from 100 to 50 ft and the impervious plastic sheet
was replaced with 1,000-1b filter stone. Testing at the +4-ft swl produced the

following results:

)r 88C ident Trlmmm&,ﬁ
7.0 2.3 0.3 0.13
7.0 4.2 0.4 0.10
7.0 6.9 0.7 0.10
7.0 9.9 1.1 0.11
7.0 1.7 1.4 0.12
9.0 2.9 0.4 0.14
9.0 5.0 0.7 0.14
9.0 6.6 0.9 0.14
| so 7.7 1.1 0.14
3.0 9.2 1.3 0.14
3.0 10.7 1.4 0.13
11.6 1.9 0.4 0.21
11.8 4.2 0.9 0.21
11.8 6.7 1.3 0.19
1.8 3.0 1.8 0.20
1.6 11.5 2.3 0.20
11.8 13.9 2.9 0.21
|| 11.8 18.0 4.2 0.23
11.8 19.9 4.9 0.25
H 11.8 217 5.7 0.26
L
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Transmission results are plotted in Figure 37. These data show that the
1-ft transmission criteria was reached for 7-sec, 9-ft and 9-sec, 8-ft incident
waves. The 3-ft transmission criterion is exceeded by 14-ft, 11.6-sec waves.

The stability response of Plan 10A was unacceptable. As shown in Photos
64-67, the single layer of 5-ton berm stone experienced excessive movement
under wave attack with resultant exposure and erosion of the 1,000-Ib filter
stone. The existing structure’s stability was little improved relative to the no
improvement plan, with six harbor-side blocks being displaced downslope.

Restacking Existing Armor (Plan 11)

Plan 11 (Photos 68-70) consisted of restacking the harbor-side armor
blocks in an area bounded by the center line and the -7-ft lwd depth. Armor
units were placed as close together as practical with their long axis generally
perpendicular to the long axis of the breakwater. Transmission test results
were as follows:

[I T!, sec Incident ”g_n' ft Transmitted HE_L,R C,

7.0 2.3 0.4 o.17;“
7.0 4.2 0.5 0.12 1
7.0 6.7 0.8 0.12
7.0 9.7 1.2 0.12 "
7.0 11.7 17 0.15 “
9.0 2.8 0.6 0.21 :l'
9.0 4.7 0.9 0.19
2.0 6.7 1.2 0.18 II
9.0 8.1 1.5 0.19 “
l;s.o 9.4 1.7 0.18
9.0 10.5 1.8 0.17
“ 11.6 1.9 0.6 0.32
11.8 5.0 1.2 0.24
11.8 6.6 1.8 0.24
11.6 9.0 2.2 0.24
11.8 11.2 2.8 o2 |
11.8 14.0 3.6 0.28 —Il
11.8 17.7 5.3 0.30
11.6 19.7 6.2 0.31
11.6 21.8 170 0.32 I
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Transmission results are depicted graphically in Figure 38. These data
show that the 1-ft transmission criterion is reached for 7-sec, 8-ft;
9-sec, 5-ft; and 11-sec, 4-ft incident waves. The 3-ft transmission criteria is
exceeded by 12-ft, 11.6-sec waves.

The stability response of Plan 11 was marginal. As shown in Photos 71-
73, a significant number of armor stones were displaced down the lakeward
face from the vicinity of the swl, with three stones being removed from the
structure. Five harbor-side armor units were displaced.

Summary of Results (All Improvement Plans)

Average transmission coefficients for Plans 10, 10A, and 11 were as
follows:

Average C, for Indicated Wave Period Average C,
Plan 7.0 sec 9.0 sec ==1 1.6 sec Al Periods
10 0.09' 0.11! 0.19! 0.13!
10 0.1 0.14 0.22 0.16
10A 0.12 0.16 0.24 0.17
1 0.14 0.19 0.28 0.20
l;awl =00ftiwd. _ 1

Figures 39-42 summarize transmission test results for the 15 improvement
plans tested. These data show Plans 8A and 10 produced the most
improvement in wave transmission (average C, = 0.16), followed closely by
Plans 6 and 4A1 with average C’s of 0.17 and 0.18, respectively. Also,
these data show that in general the submerged reefs (Plans 2-4A1) and
restacking of the existing armor (Plan 11) were least effective in reducing
wave energy, whereas the toe berms (Plans 5, 6, and 10) and the large-stone
overlays (Plans 7, 8, 8A, and 9) were most effective.

Stability of the existing structure, quantified as percent damage to the
lakeside and harbor-side armor, is summarized as follows:

Percent Damage to Existing Structure

Lakeside Armor Harbor-Side Armor

1 (Existing)

2
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Percent Damage to Existing Structure

Harbor-Side Armor

— 5 S

o
o
o
0
0
0
8A 2 0 1
9 0 15
10 0 1.5 l
l 10A 0 3.5 4
1 5 2
=

Lakeside and harbor-side damages also are presented in Figures 43 and 44.
These data show that all improvement plans, except Plans 8A and 11, which
provided no protection on the lakeside, eliminated lakeside damage. All
plans, except 10A, reduced harbor-side damage to an acceptable level, i.e.,
2 percent or less.
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Conclusions

Based on tests and results reported herein, it is concluded that:

a.

The model was able to accurately replicate prototype wave energy
transmission, as evidenced in test results of Plan 1A3.

Test results for the detached reefs (Plans 2, 2A, 3, 4, 4A, and 4A1)
show that all plans except 2A reduce 19-ft incident waves to heights of
13 ft or less and eliminate damage to the existing breakwater. Also,
major changes can be made in the geometry and size of the reef with
little resultant change in the observed transmission, as shown in Fig-
ures 8-11.

Plans 5 and 6 showed that a 100-ft-wide attached berm constructed of
5-ton stone would also be successful in protecting the existing
structure and reducing wave heights in the harbor.

Test results for Plans 7, 8, and 9 show that 18-ton stone would need to
be placed on no steeper than a 1V on 2.25H slope to be stable on the
lakeside of the breakwater.

Plan 8A, the only harbor-side repair option tested, was one of the most
successful plans in terms of reducing wave energy; however, stability
was marginal.

Plan 10 yielded the largest reduction in wave energy transmission in
concert with acceptable stability.

. Plan 10A, a 50-ft-wide attached berm, was the only improvement plan

that did not show acceptable stability.

. Plan 11, restacking of the existing armor, was not effective in

significantly reducing wave transmission.

Generally, the submerged reefs and restacking of the existing armor were
the least effective approaches to reducing wave transmission, whereas the toe
berms and the large-stone overlays were the most effective. However, the
submerged reefs proved to be the most effective in reducing or eliminating
damage to the existing breakwater.

Chapter 4 Conclusions
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Figure 1. Location and vicinity map
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Figure 30. Average values of C,; 11.6-sec wave peri
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Figure 39. Average values of C, for all plans
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Figure 41. Average values of C, for all plans; 11.6-sec wave period
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Photo 8 Lakeside view of Plan 1A1 after the repeat stability test
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End view of Plan 1A2 before wave attack
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Photo 16. End view of Plan 1A3 before wave attack
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Photo 28. Lakeside view of Plan 4 (existing structure) atter wave attack




Photo 29. Harbor-side view of Plan 4 {existing structure) after wave attach
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Photo 33. Lakeside view of Plan 4A1 before wave attack




< AFTER TESTING
£326-110

Photo 34 {akeside view of Plan 4A1 after wave attack
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Photo 35. Harbor-side view of Plan 4A1 after wave attack
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Lakeside view of Plan 9 after wave attack

Photo 57.
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Photo 58. Harbor-side view of Plan 9 after wave attack
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Photo 61. Lakeside view of Plan 10 after wave attack
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Photo 72. Lakeside view of Plan 11 after wave attack
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Appendix A
Notation

H,,, Zero-moment wave height, ft

Tp Wave period of peak energy density of spectrum, sec
W  Weight, Ib

a Reciprocal of breakwater slope

Yo Specific weight of armor unit, pcf

v Specific weight of water, pcf

Specific gravity of an individual armor unit relative to the water
in which it is placed, S, = v,/7,,

L Length

T Time

L? Area

L’ Volume

H; Incident wave height, ft
H, Transmitted wave height, ft

C, Transmission coefficient (H/H))
K Stability coefficient

Appendix A Notation

A1l
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