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1 FOREWORD

In this project, a novel architecture for congestion control in store-and-forward networks
has been developed and design techniques for congestion controllers has been derived. In the
framework of this architecture, each switching node is equiped with a congestion controller which
calculates the throttled source admission rates using only local information available at the node.
Each source receives the throttled admission rates and responds by transmitting with the lowest
one. The design methodology developed in this project leads to the choice of the controller gains

that ensure a stable congestion-free behavior of the network. No similar results are available in

the current literature.
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4 STATEMENT OF THE PROBLEM

Store-and-forward datagram networks consist of switching nodes and communication links
connecting them according to a certain topology. Each link is characterized by its packet trans-
mission capacity (packets per unit time). Each node is characterized by its packet storing capacity
(buffer iength) and its packet processing capacity (packets per unit time). A node which reaches
its maximum storing capacity due to the saturation of its processors or one or more of its outgo-
ing transmission links is called congested. Some of the packets, arriving at a congested node,
cannot be accepted and have to be retransmitted at a later time. This leads to a deterioration
of the network’s throughput (number of packets delivered per unit time). Therefore, congestion
prevention is an important problem of store-and-forward networks management (see [1]-[9] for
several classical and recent publications).

As it follows from the above, congestion is a result of a mismatch between the network
resources (buffer space, processing and transmission capacity) and the amount of traffic admitted
for transmission. Consequently, congestion prevention can be interpreted as the problem of
matching the admitted traffic to the network resources. This, in turn, could be viewed as a
classical problem of feedback control (matching the output to the input of dynamical systems)
and, indeed, has been recognized as such by many researchers {10]-[12]. The literature, however,
does not offer rigorous methods for congestion controllers design. Nevertheless, these methods
are of substantij importance since many designs result in non-decaying oscillation of the traffic
admitted to the network even when the offered traffic is constant [13]-[15]. The main goal of this
report is to describe an analytical method for the design of congestion controllers that ensures
good dynamic characteristics and performance of datagram networks along with some fairness
in resource allocations.

The approach used here is quite standard [16]: The level of network congestion is monitored
through the buffers occupancy. When the occupancy of the buffer at some link reaches a given
threshold z°, the congestion controller associated with this link calculates a traffic admission rate
and supplies all the sources of its traffic with the result of this calculation. In their turn, traffic
sources reduce their transmission rate to the lowest level allowed by intermediate links.

Given this architecture, the main question is how the traffic admission rates should be cal-
culated so that the network performance is sufficiently good. We give here the answer to this
question for a backbone network. Part 1 of this report deals with the case of a single congested
node where the congestion is due to the saturation of one of its outgoing links. The extension to
multiple congested nodes and links is presented in Part 2.




5 SUMMARY OF THE MOST IMPRTANT RESULTS - PART 1:
CASE OF A SINGLE CONGESTED NODE

5.1 THE MODEL
5.1.1 Assumptions
The network

(i). The network employs a store-and-forward datagram (or connectionless) service where users
are serviced without prior reservation.

(ii). The network consists of S switching nodes and N communication links. Let § = {1,2,...,5}
denote the set of nodes and N = {1,2,..., N} denote the set of links. For each node: € S,
let O(z) C NV denote the set of its outgoing links.

(iii). Each link has a transmission capacity of of 1/7, packets/sec, where 7, is the transmission
time of a packet, and a propagation delay of 7, sec. We assume that packets have the same
fixed length.

(iv). Each node has a processing capacity 1/7,, packets/sec, where 7, is the processing time
of a packet. The processing capacity of each node is assumed to be larger than the total
transmission capacity of its incoming links.

(v). The network traffic consists of flows corresponding to each source-destination pair (i5), ¢
and j € S. The pair (i) will be referred to as the (ij)-type traffic or the (ij) connection.
Let C denote the set of all such connections.

(vi). For each (tj) connection, the source at node ¢ sends packets to the destination at node j;
through a sequence of links referred to as the path of the connection and denoted p(ij).
The routing policy which determines the path of each connection is assumed to be static.
Let C(k) be the set of all connections (¢5) which flow through link k.

(vii). Each node has a buffer for storing packets waiting to be transmitted on one of its outgoin,
links. Let z;,j € N, denote the number of packets buffered for transmission on link 7 an
referred to as link j’s buffer.

The control architecture

(viii). Each node i has a congestion controller which computes, for each link j € O(i), a
quenched transmission rate ¢; based on the difference between z; and some threshold

7% and on g¢; at present and in the finite past. This information is local to node .

(ix). Control algorithm updates take place 'every T sec where T is the time to transmit ¢ packets,
i.e., T = c7,. Thus, the controller time is slotted with the slot duration, [n,n + 1),n =
0,1,...,equal to T.

(x). Each node sends the computed control information (g;’s) to the sources along the reverse
direction of the traffic. This control information is serviced with high priority and is carried
either in separate packets or along with data or acknowledgment packets.

The input traffic




(x1).

For each connection (jk), let r), denote the rate (in packets per slot) of its offered traffic.

Let f = Y(xecii) 5. be the total rate of all connections flowing through link . We
assume that the input tiaffic is such that only one link is overloaded, i.e., there exists a
link 7 such that f} > ¢ whereas fR<cforalli#q.

(xii). During the settling time of the system, the input traflic, satisfying (xi), is constant but

otherwise arbitrary and unknown.

Remarks

(1).

(2).

(3).

(4).

(5)-

(6).

(7).

(8).

Assumption (i) means that the sources of the network traffic can be slowed down and do not
need to reserve bandwidth. In integrated service networks, where some traffic types, such as
voice or real-time video, cannot be slowed down and require a guaranteed transmission rate,
we believe that our feedback congestion control scheme can coexist with a traffic admission
algorithm. The latter makes decisions regarding bandwidth assignment to sources that
require a guaranteed transmission rate whereas the former controls the sharing of some
portion of the bandwidth among traffic sources that tolerate a certain level of time delay.
The interaction between these two traffic management procedures needs to be investigated.

Assumption (iii) assumes that the network is homogeneous. A generalization to heteroge-
neous networks, where each link has a different transmission capacity and/or propagation
delay, is straightforward.

Assumption (iv) means that links rather than processors are the bottlenecks. The case
where processing is the bottleneck can be approached similarly. Note that 7,/7, is the
delay bandwidth product and is negligible for a slow speed network. Since 7, 1s constant
for a given transmission line but 7, decreases as the transmission speed increases, the
delay-bandwidth product is significant for high speed networks and represents the number
of packets being propagated on the transmission line (“in-the-pipe” packets). The approach
developed in this work is applicable to both processing and transmission bottlenecks.

According to assumption (v), we distinguish between traffic types on the basis of their
source and destination nodes so that traffic from multiple users at some node : sent to
one or more users at some node j constitutes a single connection between : and j. The
congestion control algorithm proposed here can equally use other definitions of traffic types.

The cardinality of C(k) in (vi) is the maximum number of connections that might simulta-
neously compete for the transmission capacity of link k. The congestion controller has to
evenly share this capacity among the competing connections.

Although with current technology buffers can be made very large, the threshold z° in
assumption (viii) is introduced to insure a desired bound on the time delay in the steady
state and to prevent congestion or underutilization of the transmission capacity during the
transient periods - ¢ control.

A tradeoff is involved in the choice of the update period T, or equivalently of ¢ (since
T = ct,), as will be discussed in Section 4.4. Shorter T’s lead to better responsiveness to
changes in the input traffic but require the processors to devote more time computing the
feedback signals. In this report, we choose T such that it is much less than the typical
duration of a cominunication session so that assumption (xii) holds.

Assumption (xii) could be understood in the sense that the input traffic is piecewise constant
with the jumps occurring seldom enough so that the transients of the system have time to
settle down between two consecutive jumps.
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Figure 5.1: Network delay.

5.1.2 Buffer equations

Although the offered traffic in backbone networks is typically random, we use a deterministic
fluid flow description. The reason is that, under certain assumptions, the stochastic nature of the
offered traf~ can be, in the first approximation, averaged using asymptotic techniques [17]-[18].
The resulting equations coincide wiin the fluid approximation used here. Therefore, to simplify
the presentation and eliminate technical details, we begin directly from the fluid flow description.

Let z;(n) denote the occupancy of the buffer of link i at time n. Let fi(n) denote the total
rate at which traffic, both new and transit, is flowing through link i during the [n,n + 1) slot.
Then, the dynamics of buffer ¢ is described by the following difference equation:

zi(n +1) = sg{zi(n) + filr) =}, 1 €N, (5.1)

where
z ifz>0,

sg(z) = { 0 otherwise.

Since, fi(n) < f? (admitted traffic < offered traffic) and f? < c for i # ip (assumption (xi)),

then
zi(n)=0,n=0,1,..., Vi# 1, (5.2)

assuming that buffers are initially empty. This implies tbat traffic will incur no queueing delay

at buffers of non-overloaded links.
Let r;i(n) denote the rate at which connection {jk) has been admitted to the network during

[n,n + 1). Then, the total amount of traffic arriving at buffer o during [n,n+1) is

foln) = 3 riln —#5i), (5.3)

(5k)€C (50)

where C(3o) is defined in assumption (vi) and 7j;, = 7ji, /T is the delay, measured in time slots,
that the (jk) traffic incurs from its point of entry to the network at node j until it arrives at
buffer iy, while 7;;, is the sum, along the path of (5 I? from j to 1o, of all transmission, propagation
and processing delays. Since the network time is slotted, when 7;;, is not an integer multiple of

T, we rewrite (5.3) as follows (see Figure 5.1):

folr) = Y (1=0ji0) rie(n — djiy) + O5i Tir(n — djsy + 1), (5.4)
(76)€C (io)




where

dji;, = [7ji,] :the smallest integer > 7;,,
Oiic = [Tl = Tiior  0iic € [0,1). (5.5)

Note that dj;, and 0;;, are physical parameters of the network. Along one hop (i.e., through one
link) we have
+=Ts+Tp+Trf=l*TP+TP'éd_0. (5.6)
T, c T,
Therefore, as the network speed increases (7, decreases), d increases and results in an increase
in the dimension of the closed loop equations (see Section 3 below).
Substituting (5.4) in (2.1) we obtain the buffer equation for the overloaded link:

Ti(n+1) =sg {z-'o(n) + > (1 =05i)rie(n — djiy) + 05, Tik(n — djipy +1) — C} . (8.7)
(7k)€C (i)

5.1.3 Controller

Idea of the control law
The idea of the congestion controller employed in this work can be illustrated as follows:
Consider a single-node network with a traffic source of rate r and an outgoing link with
capacity ¢, where r > c. A congestion controller is supposed to quench the offered traffic so that
the steady state buffer occupancy at the node is a given number z°. The quenched source rate
q(t) < r, defines the part of the offered traffic that will be admitted to the network. Assuming,
for simplicity, that all variables are continuous, the dynamics of the buffer occupancy, z(t), can
be described as follows:
T=q-—ec
If the proportional control law is used, the quenched transmission rate obeys the equation
g = —ag(z — 2°).
This results in
T+ apz = aozo,

and both the buffer occupancy, z(t), and the admitted traffic, ¢(t), exhibit non-decaying oscilla-
tions ( if ap > 0; otherwise the system is unstable ).
To eliminate this problem, a proportional-plus-derivative control law can be utilized:

¢ = —ag(z — 2°) — oy 2. (5.8)
Then,
T+ a1z + apr = apz’, (5.9)

and z(t) and g(t) converge to z° and c, respectively (if ap and a; > 0). Moreover, the speed of
the convergence can be assigned arbitrarily by an appropriate choice of ag and ;.

In networks with multiple switching nodes, however, PD-controllers will not work either. The
reason is that, due to delays in information transmission between the nodes, the buffer occupancy
at each node is described by a time-delay equation of the form

z=q(t—7)—c,




where 7 > 0. In this case, the closed loop system may be oscillatory even if the PD controller
(5.8) is employed. The main idea of this work is to combat this difficulty by constructing a
controller of the form

§(t — 1) = —ap(z(t) — 2% — a1 2(2).

In this case, the closed loop behavior is still described by (5.9), and any desired dynamics can be
achieved. The question is whether such a controller cau be constructed for various types of input
traffic patterns that result in different 7’s. It turns out, however, that it is, indeed, possible, and
the equations for such a controller are given below.

Controller equation

The congestion controller includes two parts: the control algorithm and the control protocol.
The control algorithm calculates the quenched source transmission rate and the control protocol
specifies how the traffic sources react to these quenched transmission rates.

The following control protocol is used in this work: Assume that ¢;(n + 1), € A, is the
quenched transmission rate calculated at time n by the node for which link 7 is an outgoing link.
Then, during the time slot [n,n + 1), the (jk)-type traffic is admitted with the rate

rik(n) = min{gm(n + 1 — #n;),m € p(Gk); 3},  (jk) €C, (5.10)

where 7,,; is the delay incurred by the feedback signal ¢,, to reach node j. In compliance with
this expression, the source admission rate is defined by the smallest among all transmission rates
corresponding to the links along the path p(jk) and the desired transmission rate. Since g, is
generated every T', the most recent feedback signal available at node j at time n is g, (n+1—dp;)

where d,,; = [#m;]|. Therefore, equation (5.10) becomes
rik(n) = min{gm(n + 1 — du;), m € p(jk); r3}, (jk) €C. (5.11)

The control algorithm is defined by the following equations:

J K
gi(n + 1) = Satgp {q.-(n) - Za,-[x,-(n -Jj)—2% - Zﬂkq;(n - k)} , tEN, (5.12)

3=0 k=0
where ¢° > ¢, J and K are non-negative integers and

0 ifz<0,
Sate(2) =¢ a if z > a,

z otherwise .

The saturation function Sat(.) in (5.12) is introduced to impose bounds on ¢;’s. The lower bound
zero keeps ¢; > 0 whereas the upper bound ¢° limits the initial sending rate of connections with

uncongested path.
When J =1 and K = 0, (5.12) results in the PD-controller

gi(n + 1) = Sat 0 {gi(n) — a(zi(n) — 2°) — b(zi(r) — zi(n - 1))}, (5.13)

where a = a9 + a; and b = —aq;.
As it is shown below, the control gains, «; and Bx in (5.12), must satisfy, among others, the
following requirements:

J K
da;j>0, > f=0. (5.14)
=0 k=0

10




Since, accordmg to (5.2), ri(n) = 0,n > 0, for : # zo, solving (5. 12) under conditions (5.14) we
obtain ¢;(n) = ¢% n >0, i # 4o (a.ssummg gi(n) = ¢°% n <0, ¢ # i). Therefore, underloaded
links have their buffers at zero and their control s1gnals equal to ¢°. This implies that, for all
connections (jk) € C(7o), equation (5.11) becomes

rie(n) = min{gi,(n + 1 — dig;), 5}, (7k) € C (o). (5.15)

As it follows from (5.12), the control algorithm is defined by J + K +2 control a.ms a; and §;.
In the next section, the analysis of the closed loop behavxor of (5.7), (5.12) and (5.15) for given
a’s and f’s is described and a method for choosing a’s and 3’s that ensure hxgh delay-throughout
characteristics is given.

5.2 ANALYSIS
5.2.1 Closed loop equations

As it follows from the previous section, the closed loop behavior of the network with 7¢ as the
single overloaded link is described by the following equations:

Tis(n+1) =sg {%(n) + D (1=85i0)rin(n — diiy) + O5i,rie(n — djsg + 1) — 6}5-16)

(7k)€C (%)
rik(n) = min{gi,(n + 1 — diy;), 7%},  (§k) € C(io), (5.17)
J K
%io(n + 1) = Satgo {%(n) = ajlzig(n —5) = 2% = ) _ Brgio(n — k)} - (5.18)
=0 k=0
Equation (5.17) can be rewritten as follows:
rik(n) = 6ik(n) gio(n + 1 — digj) + (1 — 6x(n)) 3, (5.19)
where ¢ 0 i)
1 ifry > q,(n+1-d;,;),
Six(n) = { b > o (5.20)

Combining equations (5.16) and (5.19), we obtain

Tip(n+1) = sg {%(ﬂ) + D, [Birln — diig)(1 — 0jig )iy (n + 1 — dj)+

(ik)€C(do)
5is(n — o + DBiiggioln + 1 (d — )] + & (n) = ¢}, (5.21)
where
ra(n) = 3 (1= 6ie(n — dji)))(1 — 05 ) + (1 — Eja(n — djsy +1))85i, 1%,
(7k)€C (io)
dj = d,,o + d"oj . (522)

When 6;¢(n) = 1, the (jk) traffic is being quenched durmg [n,n+1), otherwise (when §;:(n) = 0)
it is admitted w1th its desired transmission rate and r?, is the cumulative rate of all unquenched
flows. We will refer to d; as the round trip delay of connection (jk).

11
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Equation (5.21) can be rewritten as

D
z,(n+1) =sg {a:;o(n) + Zl,-(n) gio(n+1—2)+ r?o(n) - c} , (5.23)
=0
here
n) = 3 bi(n—dix)(1=0ii)+ Y &ir(n —dj, + 1)8ji, (5.24)
(sk)ect (ik)eCi+1
= d;, 5.25
(Jk)EaC)(('o) ? ( )
where

C¢ = {(jk) € Clio) : d; = d},

i.e., C? is the set of all connections flowing through link ¢y with round trip delay equal to d. The
l;’s can be mterpreted as the number of quenched flows with round trip delay equal to ¢ time

slots. Note that | £ Y2, 2(]’6)&0(10) 8,k is the total number of connections being quenched

by link g and is a positive number since link 7, is overloaded and therefore at least one connection
is quenched.
Omitting the index g, the closed loop equations become

D
z(n+1) = sg {z(n) +Y L(n)g(n+1—14)+r°(n) - c} , (5.26)

=0

g(n+1)

J K
Sat g {q(n) =Y aj(z(n—3)—2° = Brg(n — k)} . (5.27)

7=0 =0

Note that since (5.26) involves delayed versions of ¢(r) up to ¢(n — (D — 1)), it is natural to
asmlllme that K > D — 1. Equations (5.26)-(5.27) describe a (J + K + 2)-dimensional system
with the state

Y(n)= [z(n) —-z%z(n-1)-2°...,2(n - J) - 2%¢q(n),q(n - 1),...,q(n - K)]

The steady states and dynamic properties of this system are described below.

5.2.2 Steady states

Let z, and g, be the steady state values corresponding to equations (5.26) and (5.27) under
the assumption that the input traffic is constant. Then,

z, = sg{:c.-l-(Zl )ga + 1 —c}, (5.28)

J
¢ = Satyp {(1 - ?: Br)q, — (Zo a;)(z, — zo)} . (5.29)

Figures 5.2.a and 5.2.b show the solutions to equations (5.28) and (5.29), respectively. The
combined solution is shown in Figure 5.2.c and corresponds to

_ .0
“ = - (5.30)
K
z., = $0—2k=0ﬂkq.
* 2j=0aj ’
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Figure 5.2: Steady state.
In order to ensure that z, = z% we choose ,’s so that
K
Y B=0. (5.31)

k=0
Thus, the steady state Y, = (0,...,0,q,,...,¢,)7 exists if and only if the vector of control

parameters
Q=(a07"'sa.’,ﬂ07--°vﬂK)T (5'32)
satisfies constraint (5.31). Note that g, in (5.30) can be rewritten as follows:

_e=1® ¢ (M-DEF-r°

" M I '
This expression presents the following fairness property: If M connections share a transmission
link, then each gets 1/M of the bandwidth and if (M — [) connections use less than their share

(i.e., only I connections are quenched), then the unused portion ((M — )& ~r°) is equally
distributed among the rest.

5.2.3 Transient analysis

To study the local stability properties, we simplify the dynamic equations for ¥ in the neigh-
borhood of Y, by

(a) removing the saturation-type n-nlinearities (sg(.) and Satg(.)) in (5.26) and (5.27) since
they are not activated for small deviations around Y, ((z,,¢,) is in the interior of [0, 00) x
[0, 4%);
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(b) treating l;(n) and r°(n) as constants since. based on equation (5.20). there exists a ball
around Y, within which 6, is constant (assuming that r?k # q,. (Jk) € Cl10)).

The resulting equations are

D

zn+1) = z(n)+ ) lign+1-1)+r°—c, (5.33)
=0
J K

gln+1) = g¢q(n)- ZO]'(I(TZ -J) - :1'0) - z Bk g(n — k). (3.31)
=0 k=0

Theorem 5.1 For any given lo, l1,...,Ip, the poles of the closed loop system (5.33)-(5.34) can be

placed at will by an appropriate choice of the gains ao,...,a7,8y,...,8x, Tr 0B =0.if J =1
and K = D. In other words, a PD controller with respect to * and a controller of order D with
respect to q are sufficient to ensure any desired dynamics of the closed loop system (5.33)-(5.34).
a

Proof: See Appendix 1.
As it follows from the proof, the characteristic polynomial of the closed loop system can be

represented as
P()) = (=1)°*'APp(2),

where
Pr(A) = AP 4 4 2P 4 0P + L vpsa (5.35)

and the coeficients ;, 1 = 1,2,..., D + 2, are uniquely defined by the control gains
Q = (a01alaﬂ01ﬂh~ .- vﬁD)T .
Therefore, as it follows from (5.35), one of the closed loop poles is at 0 and the remaining D + 2

poles can be chosen at will. It is shown in the Proof of Theorem 5.1 that for any desired set of
coefficients 7,, i = 1,2,..., D + 2, the corresponding control gain Q is

Q = [M(L)]7'T, (5.36)
where
(b 0 1 \ (m+2)
h e -1 1 72— 1
lo 73
lg 11 -1 *. ll . e
M(L) = S E ‘., 1 y L = 3 r = .
D (b - Ip D4
TD+2
\0 o0 1 1 .. 1/ L o )

As it is shown in Appendix 1, expression (5.36) can be rewritten in an alternative form shown

below:
I'= Pﬂ + Wal, (5.37)

14




where
[ B2
[ B, - By +1 ag
T2 By — 5, a1 Ge
= 7:3 ,Tg= B3 — B3, ,Wa=0OoW ... \p) = a;
7 . : Qo
,D“ } Bp — 30—1 Q
TD+2 -8p )

Both of these expressions, (5.35) and (5.37), will be used in Section 4 below for design purposes.

Concluding this section, we note that the sum of the coefficients of Pp(}), 1 + TR, s
equal to (ag+ a;) T2, Ii. Since it is necessary for asymptotic stability that this sum be positive,
ap + a1 has to be positive as stated in (5.14).

5.3 DESIGN
5.3.1 Adaptive vs. robust design

The design of the congestion controller (5.12) involves the computation of the parameters

of the control law, i.e., the vector of control gains Q@ = (aq,01,00,8,...,80)T. As it has
been shown in Section 3, the closed loop dynamics depend on the number of quenched flows
L = (lo,,...,1p)T , where [; is the equivalent number of quenched flows with round trip delay
equal to :. Therefore, if each node can take into account the variations of L when computing
the control law, the resulting design is referred to as adaptive; here Q is updated whenever L
changes. If information about L is not available, a robust design has to be considered; here the
control law is implemented with a fixed Q so that stability and performance requirements are
satisfied for all admissible values of L.

Note that an adaptive design has the advantage of achieving good performance but at the
expense of higher computational requirements (the updating algorithm for Q) whereas a robust
design requires less computations but the achieved performance may be inferior. Also, in order to
be able to implement an adaptive design, the congestion control protocol should be implemented
in such a way that L can be known by the switching nodes. One way of doing so is to stamp
each packet with the identity of the quenching link, if any. In this way, every node can maintain
a table of quenched flows. Each of these design approaches are investigated below.

5.3.2 Adaptive design

Suppose that the desired performance of the conf&stion control system is specified in terms
of closed loop poles that correspond to the vector of characteristic polynomial coeflicients I' =

(Y1972>+ - -s7D4+2)T- Then, as it follows from (5.36), the adaptation of the control gain Q =
(ag, a1, Bo, ..., 8p)" to changes in L takes the following form:

Q) = [M(L(n — 1))]'F, (5.38)
where L(n) = (lo(n), h(n),...,Ip(n))T and T = (7, + 2,7, - 1,7, -- -, Yp42,0)T. Note that Q(n)

depends on L at time n — 1 since at time n only L(n — 1) is available. The performance of the
network utilizing the adaptive control law (5.38) is illustrated in Section 5 below.

15




5.3.3 Robust design

The goal of this subsection is to find a fixed gain Q = (ag.a1.3y. 3;..... 3p)7 that ensures
stability of the closed loop system (5.33)-(5.34) for all values of L belonging to an admissible set
L defined as o

L=(LoxLyx...xLp)~{0},L;=[0,].:=0.1..... D. (539)
where I, is the maximum equivalent number of quenched flows with round trip delay equal to 1.
From (5.24) it is given by )
b= 32 (I=0i)+ 3 65, (5.40)
(Ghrec (jk)EC+1

where

C? = {(jk) € Clip) : d; = d}.

The solution of this problem is given by the following two theorems:

Theorem 5.2 There exists a positive number k*(L) where L = (I, 1;.. ... Ip)T such that the
closed loop system (5.33)-(5.34) is asymptotically stable for any L € L if the control gains are
chosen as
Q = Qx £ (kag, kay, Bo, By, - - -, Bp)T. k € (0.k7),
where
. D+4
® = 0+’
@ = - D+2
2(D+1)’
_ 3D
Po = 2(D+1)’
D-2(i+1) .
B; -——————2(D+1) yt=12,...,D.

Proof: See Appendix 2.
Thus the robust control gain, Qx, is the (D + 3)-dimensional vector with components defined

in Theorem 5.2.
Let Sp be the surface in IRP*? defined by the equations

S, - Eﬂtz Y cos(i0) = -1,
| =242, sin(i6) = 0, 6 € (0, ),

and let the inequality L < L imply the component wise inequalities ; < [;, i = 0,1, ... , D.
Theorem 5.3 The positive number k*, referred to in Theorem 4.1, is defined as
k* = min{kl, kg}.

Here,

p _ 3D +5+(=1)°(D +3)
1= 1D/2] 7
2(D +3)Tip ™ by

Y

16




and ky is the solution of the following optimization problem:

minimize k subject to the constraints (5.41)

k>0,
Fﬂ-{-WaLESo,
0< L<EkL,

where I‘ﬂ and Wy are defined in (5.37). If the solution of this optimization problem does not
exist, kg = +00.

Proof: See Appendix 2.

Thus, the design of the robust congestion controller can be accomplished in two stages. First,
the optimization problem of Theorem 5.3 is solved and k* is determined. At the second stage,
a specific gain @ is chosen from the family defined in Theorem 5.2 so that the performance
requirements are satisfied as much as possible. This design procedure is illustrated in Section 5
below.

For each 0, the optimization problem of Theorem 5.3 is a linear programming problem.
Indeed, we minimize a linear function, k, subject to the following liner equality and inequality
constraints obtained by substituting in (5.41) the expressions of T’ 8 Woa and Sp:

k>0,

0 < Ii' < kin i=0,1""sD,
20 a:(0)l; = 1(6),

2o bi(B)l: = c2(6),

(5.42)

where
a;(0) = aq cos((i + 1)8) + a4 cos((z + 2)9),
b;(0) = aosin((i + 1)8) + o, sin((i + 2)8),
c1(8) = —1 — 2cos(6) + cos(26) + TLo Bi(cos((i + 1)6) — cos((i + 2)6)),
c2(0) = —2sin(0) + sin(20) + T2, B;(sin((i + 1)8) — sin((i + 2)8)).

Therefore, if k2(6) denotes the result of the above minimization, the solution of the optimization
problem (5.41) can be found as
_ k; = inf ky(0).

9€(0,r)
Practically, an approximate solution can be found by discretizing the interval (0,7) as 8; =

ixT ¢ = 1,2,..., N, solving the N resulting LP problems, and choosing the smallest of the N

numbers. This procedure is illustrated below.

To conclude this subsection, we consider an example of calculating k* for a particular network.
Consider a network with 2D + 3 nodes connected according to a bidirectional ring topology with
the minimum-hop routing strategy. If the controller update period T is equal to the delay along

one hop (transmission + propagation + processing), then L is given by

1:2;=D+1-i,
12.'+1 =0, i=0,1,...,D.

Table (5.1) shows k;, k; and k* for different values of D. Note that k* is a decreasing function of
D since, as D increases, the network size increases and therefore the number of flows that might
be active simnultaneously increases and this requires a smaller gain in order to insure stabil. y for
any admissible vector L of quenched flows.
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D 1 2 3 4 5 6 1 8 9

ky || 0.553 | 0.286 | 0.178 | 0.121 | 0.088 | 0.067 | 0.052 | 0.042 | 0.035
kz || 0.640 [ 0.340 | 0.196 | 0.137 | 0.089 | 0.069 | 0.050 | 0.029 | 0.029
k* {1 0.533 | 0.286 | 0.178 | 0.121 | 0.088 | 0.067 | 0.050 | 0.042 | 0.029

Table 5.1: Values of k* for a ring network.

5.3.4 The update period

Both the robust and the adaptive design approaches require the selection of the update period
T for the controller ( see assumption (ix) in Section 2). The value of T affects both the transient
response and the control overhead due to the computation and transmission of the feedback
information.

The settling time and the buffer overshoot are the main characteristics of the transient re-
sponse. The settling time, t,, is the time interval between the start of transmission and the time
when the transmission rate reaches and remains in the 5% neighborhood of its steady state value.
Obviously,

ts > RTD + kT,

where RT' D is the round trip delay and x; > 0 is a constant defined by the control law. If N is
the average number of packets to be transmitted per connection and M is the average number
of connections sharing the link, the ratio of settling time to transmission time of a connection,
tc, can be characterized as

t, . RTD + k,T
- —. )
te. - NMr, (5.43)
The buffer overshoot Az can be evaluated as follows:
Az =z —2° > (RTD + kT ) ke, (5.44)

where z0 is the desired buffer occupancy, k¢ = k/7, is the excess rate beyond the link capacity
¢, and k3 > 0 again depends on the control law . The inequalities in (5.43) and (5.44) are due to
the fact that the control action cannot start before the round trip delay has elapsed and would
require a number (k; or k;) of update periods to reach either the steady state or the maximum
buffer occupancy. From these inequalities we see that faster updates gi].e., smaller T ) lead to
shorter settling time and smaller buffer overshoot which are some of the desirable features for
the network.

On the other hand, the decrease in T leads to an increase in the control overhead. Indeed,
if 7o is the time necessary for the node to compute and transmit the control signals (feedback
information) every update period T, then 79/T is the control overhead. The time 7y is smaller
when the network speed is higher and therefore, it can be assumed proportional to 7, (1o = &37,).

Given these performance criteria, the choice of the update period T can be approached as a
multicriteria optimization problem and an appropriate Pareto set can be calculated. However, if
we assume that there exist penalties v, v;, and v; for settling delay, queueing delay, and control
overhead, respectively, then the following single function of T should be minimized in order to
determine the compromise value of the controller update period:

_ RTD+xT E Kt
J(T) = Vl-——mT‘—- + Vz(RTD + ICQT)T—. + 3 T -

The solution, obviously, is

T V3K3
0=Ts 2 4 vakqk”
NM 202
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Ts T

Figure 5.3: Admissible set of update periods.

This solution assumes that no constraints on the selection of T' are imposed. Often it is the case,
and the minimization of J(T') should take place over some admissible set 7 resulting from the
following requirements:

(a). Ratio of settling time to transmission time of a connection less than some constant é; < 1:

RTD + ki T
—_— <
NMr S 6. (5.45)
(b). Buffer overshoot less than é,:
(RTD + rch)‘r£ < é,. (5.46)
(c). Control overhead less than 83 < 1:
i;? < 6s. (5.47)

From constraints (5.45)-(5.47), we obtain the admissible set 7 as a function of 7, (see Fig-
ure 5.3). This figure is obtained under the assumption

K3 . NM 61 62
% < min {T, kng} . (5.48)
If (5.48) is not satisfied, the set T is empty, otherwise, T = [r,, 73] where
n = 3,
1 - 63 [ 2]

NMé,r, — RTD %r,— RTD }

T2 = min
K1 K2

Let 7; be the value of 7, for which 7, = 7, (see Figure 5.3). Then, if 7, > 7}, the constrained

optimal update period is
{ TOa if TO € [Tl,"'z],
T = T, if To < T1,
T2, if T > .
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Figure 5.4: Network topology.

Section 5 below illustrates the effects of T on the transient behavior of the network using nu-
merical simulations.

5.4 DESIGN EXAMPLE AND NUMERICAL SIMULATIONS

This section presents a design example and simulation results. We start by describing the
network and the input traffic. Then, we carry out both the robust and adaptive designs followed
by an examination of the effects of the update period T and of the randomness in the input
traffic. Finally, we illustrate the recovery of the network from congestion.

5.4.1 The network and the input traffic

Consider a network where links have a delay-bandwidth product of 10 packets, i.e., the
propagation delay over a link corresponds to the time for transmitting 10 packets. This is the
case, for instance, of 45 Mbps channels when 1 kbyte packets are sent over a 340-mile link. Let
7, be the transmission time of a packet and let ¢ be the transmission capacity in packets/slot
where the slot duration is equal to the update period T (T = c7,).

For this design example, we assume that the network topology, and the input traffic, are such
that the following properties are satisfied:

(a). Only one link is overloaded.

(b). The input traffic is such that

no = 4,
n =3,
n2=21
n3=1,
n;=0,t>3,

where n; is the maximum number of connections that can flow through the overloaded link
with the source node located t hops from this link.

These properties are satisfied, for instance, by the network and the traffic shown in Figure 5.4
and Table 5.2, respectively. Figure 5.4 shows only a subset of the network nodes along with
the sources of the five connections labeled according to the first column of Table 5.2. This table
describes the activity of these sources during the 1000 time slots of the experiment where the slot
duration, T}, is defined below. The presence of the other five unlabeled connections as potential
traffic sources is taken into account in the design of the controller. The destination nodes, which
are not shown in Figure 5.4, can be any of the nodes downstream of node A. Note that the input
traffic becomes heavy, i.e., larger than the link capacity, starting from time t = 1007;.
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| Connection # ] # of hops Linitiated at time I terminated at time l input rate (xc) ]

1 0 30 700 0.6
2 0 250 1000 0.7
3 1 100 850 0.6
4 2 400 1000 0.5
) 3 550 1000 0.4

Table 5.2: Input traffic.

5.4.2 Robust design

As it follows from Figure 5.4, the largest round trip propagation delay, RT D, corresponds
to 6 hops: 3 hops in each of the forward and reverse paths of connection 5. Since the delay
bandwidth product is assumed to be 10 and the transmission time of a packet is 7,, this implies
that RTD = 6 x 10T, = 607,. We choose the update period to be equal to the largest round trip
propagation delay, T; = 607,, i.e., ¢ = 60, and choose z° = 30 packets.

Let 7,4 denote the delay, measured in time slots T}, that connections originating : hops from
node A incur until they arrive at node A. Then, neglecting the processing delay, and using
equations (5.6), (5.5) and (5.22) we have, respectively,

‘}OA:O d0A=0100A=0 d0=07
‘;'lAzT’C:::-;—;—;‘-:é—‘l) - d1A=fﬂ]=1’01A=l-_l_1=£ d1=2,
g = 2= da=[B=16u=1-=-8 7) a=2,
+3A=37:1A=§ da=[gl=lLbu=l-g=g dy =2.

Thus, the maximum time delay D, as defined by (5.25) is cqual to 2. Therefore,
Qk = (kao, kal’ ﬁo, ﬂlv ﬂ2)T? ke (07 kl.)? (549)
where, as it follows from Theorem 5.2,

— D+4 _
@ = 3pgy = 1

. D —_
ay = —E;D.%l) = —2/3,
o2l
B, = D+ = —1/3,
—6

B2 = 3tp3ny = —2/3,

and - -
L= (lo, 11712)1,

where, as it follows from (5.40),

io = ngo(1 — boa) = 4,

L= 11014 + n3024 + n3b3s = 4.17,
Iz =ny(1 - 01,4) + ng(l - 02,4) + n3(l —054) = 1.83.

With this L, the solution of the optimization problem of Theorem 5.3 is k* = 0.156 .
The behavior of the network with Q defined by (5.49) for k = 0.15 and k = 0.075 is shown in

Figure 5.5.a and Figure 5.5.b, respectively. These figures were obtained by a numerical solution
of equations (5.16)-(5.18) with corresponding Qx’s. The results can be summarized as follows:
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Figure 5.5: Robust design.
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Figure 5.6: Effect of T
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(a). Smaller values of k result in a slower response and larger buffer overshoot. As it will be
discussed below, faster response and smaller buffer overshoot can be achieved by adopting
smaller update periods. Another way of reducing the buffer overshoot, which is not dis-
cusfsf;rd here, is to impose a slow-start on connections to avoid sharp increases in the input
trafhc.

(b). When the traffic is heavy (starting at time ¢t = 100), the buffer is kept at z° = 30, with
fluctuations whenever a connection is initiated (at t =100, 250, 400 and 550) or terminated
(at t = 700 and 850).

(c). When the input traffic chanc%es, the rate g(n) converges to a new steady state where the
link bandwidth is reallocated in order to accornmodate all incoming traffic in a fair way.

5.4.3 Effect of the update period T

Controller (5.49) was derived for the update period T7 = 607,. As it follows from Figure 5.5,
this T results in quite large overshoot and slow response. It might seem reasonable to decrease
T in order to eliminate these problems. According to the theory developed in Sections 3 and 4,
this, however, is not the case: the utilization of a controller designed for a larger T in a network
with smaller T may bring about an instability. This effect is illustrated in Figure 5.6.a where Qi
of (5.49) with k = 0.15 is used when T is chosen to be T, = 107, instead of 607,. Obviously, the
oscillatory behavior observed is unacceptable in most applications.

The way to improve the speed of the response is not only to reduce T but also to redesign
the controller appropriately (Theorems 5.1, 5.2, and 5.3). Specifically, for T = 107,, repeating
the design steps described above, we obtain

704 =0 r d04=0,00_4=0 do=0,
+1A= TZ';’ =11 = d14=2, 01A=0.9 = d] =4,
Foa = 2714 = 2.2 d2A=37 624 = 0.8 d2 = 6,
Taga = 3714 = 3.3 d3s = 4, 034 = 0.7 dz = 8.

Thus, the maximum time delay D is equal to 8 and therefore

Qi = (kao, kay, By, By, - - -, Bs)T, k € (0,k°), (5.50)

where,

Qg = 2/3, ap = —5/9,

Bo =4/3, B, =2/9, B, =1/9,

,Bs = Oa 34 = _1/9, ﬂs = -2/9’

,HG = _1/33 ﬂ7 = _4/91 ﬂs = —5/9,
and _ - - -

L = (lo, lla cesy lg)T,

where,

io= ‘no(l —00,4) =4, l-l = 0, ig = 0,

13 = nlﬂm = 27, L = ﬂl(l - 01,4) = 03,

ls = n30;4 = 1.6, Is = na(1 — 034) = 0.4,

17 = n303A = 0.7, ig = n3(1 - 03,4) = 03

The solution of the optimization problem gives k* = 0.160.
Equations (5.16)-(5.18) with T = 107, and Q; given in (5.50) with k = 0.15 have been solved
numerically. The results, shown in Figure 5.6.b, lead to the following conclusions:
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(a). Adopting a smaller update period T along with the appropriate controller results in a stable
operation of the network with faster response and smaller buffer overshoot.

(b). When the network operates with a controller designed for larger T', an instability could be
brought about (see Figure 5.6.a where large oscillations take place when connection 3 is
active).

Note that the total simulation time (600073) is the same as in Figure 5.5 (10007 ) since T, = T} /6.
5.4.4 Adaptive design

In this section we design an adaptive controller for both update periods considered above, 7}
and T,.

In the case of Ty, the characteristic polynomial Pp(A) in (5.35) has dimension D +2 = 4 and
therefore, the gains are specified by the choice of 4 desired closed loop poles. For instance, if we
choose the desired characteristic polynomial as

Pr(X) = 22 (A = M)A = A2), A2 = 0.4 503,

then, as it follows from (5.38), the adaptation of the controller gains Q = (ao, a1, By, By, 8;)7 to
changes in L takes the following form

Q(n) = [M(L(n ~ 1))7'T, (5.51)

where -
I'=(1.2, -0.75, 0, 0, 0)T.

In the case 73 = 107,, we choose the desired behavior according to
Pr(A) = 23(A = A)(A = Ag), A2 = 0.4 £50.3.
As a result, Q = (ao, a1, B8y, P15+, Bs)T is given by
Qn) = M(L(n — )T, (5.52)

where

I=(.2 -0.750,0,..., 07T

Networks with controllers (5.51) and (5.52) have been simulated by a numeric solution of
equations (5.26)-(5.27). The results are shown in Figure 5.7.a and Figure 5.7.b, respectively.
From these figures we conclude:

(a). The transient behavior of the network under adaptive control is much better than under
robust control.

(b). Higher updating rates result in faster response and smaller buffer overshoot.

(c). The superior performance exhibited by the adaptive controller justifies its selection for
implementation despite the extra computational time it requires.
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Figure 5.9: Congestion recovery.

5.4.5 Effect of random traffic

We have assumed throughout this report that the input traffic is specified by a constant
rate that may change from time to time in a random manner. In reality, however, the input
traffic is random in the sense that the rate r{ of connection ¢ is a random number r?(n). In
order to investigate the behavior of the control scheme developed in this report, we assume that
rd(n), n = 1,2,..., is a sequence of independent random variables uniformly distributed over the
range [(1 - ¢)r?, (1 + ezr?]. The behavior of the network with controller (5.50) and k = 0.15 is
shofwlxlx in Figure 5.8.a, for ¢ = 0.6, and Figure 5.8.b, for ¢ = 0.3. The results can be summarized
as follows:

(a). Due to the structure of the control protocol in (5.17), the randomness will not appear in
the state trajectories if r??z) remains greater than ¢(n) for all active connections . This
is more likely to happen if more connections are being quenched since, as it follows from
(5.30), the steady state g is inversely proportional to the number ! of quenched flows. This
is the reason why the plots in Figure 5.8 exhibit more fluctuations when smaller number

of connections are active.

(b). During the time intervals when the randomness in the input is reflected in the dynamics,
the state trajectories fluctuate but remain close to the deterministic trajectories shown in
Figure 5.6.b.

(c). As the level of randomness increases, i.e., as ¢ gets larger, the level of fluctuations increases.

5.4.6 Congestion recovery
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The previous simulations dealt with congestion prevention where, starting from an empty
network, the role of the controller is to prevent congestion from taking place. In this final
experiment, we examine how the controller ensures recovery from congestion. Under the same
input traffic pattern described above, we operate the network without the controller. The buffer,
with a capacity of 60 packets, fills up and overflows. When the robust controller (5.50), with slot
duration T = T3 and k = 0.15, is turned on at time t = 200073, we obtain the dynamic behavior
shown in Figure 5.9.a. Figure 5.9.b corresponds to the case where the adaptive controller (5.52)
is utilized. From these figures we conclude that

(a). Both the robust and adaptive controllers are capable of ensuring congestion recovery under
heavy traftic situations.

(L). With the robust controller, the node recovers from congestion in about 80 time slots whereas
a much faster recovery is achieved with the adaptive controller.
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6 SUMMARY OF THE MOST IMPORTANT RESULTS - PART 2:
THE CASE OF MULTIPLE CONGESTED NODES

In this second part or the report we discuss the case of multiple congested nodes. The net-
work, the input traffic and the control architecture, analyzed here, are defined as follows where
most of the assumptions have been introduced in Part 1 and are restated here with a slight
change in notation:

The network

(i). The network employs a store-and-forward datagram service where users are serviced without
prior reservation of resources.

(i1). The network consists of S switching nodes and N communicationlinks. Let § = {1,2,..., 5}
denote the set of nodes and A’ = {1,2,..., N} denote the set of links. For each node a € S,
let O(a) C N denote the set of its outgoing links and for each link i € N, let s; be the
node of which ¢ is an outgoing link, i.e., the origin node of link :.

(iii). Each link ¢ has a transmission capacity of 1/7, packets/sec, where 7, is the transmission
time of a packet, and a propagation delay of 7, sec which depends on the transmission
medium and on the length of the link. We assume that packets have the same fixed size.

(iv). Each node has a processing capacity of 1/7,, packets/sec, where 7,, is the processing time
of a packet. The processing capacity of each node is assumed to be larger than the total
transmission capacity of its incoming links. The case where processing is the bottleneck
can be approached similarly.

(v). The network traffic consists of flows corresponding to each source-destination pair (abz,
where a and b € S. The pair (ab) will be referred to as the (ab)-type traffic or the (ab)
connection. Let C denote the set of all such connections.

(vi). For each (ab) connection, the source at node a sends packets to the destination at node b
through a sequence of links referred to as the path of the connection and denoted p(ab).
The routing policy which determines the path of each connection is assumed to be static.
Let C(i) be the set of all connections (ab) which traverse link i and let e, denote the first
link in the path of connection (ab).

(vii). Each node has a buffer for storing packets waiting to be transmitted on one of its outgoing
links. Let z;,7 € N, denote the number of packets buffered for transmission on link ¢ and
referred to as link ¢’s buffer.

The control architecture

(viii). Each node a has a congestion controller associated with each outgoing link : € O(z). This
controller periodically computes a traffic admission rate ¢; based on a control algorithm
(see below) that uses local information to node a: the difference between z; and some
threshold z° and the control decision g; at present and in the finite past. The threshold z°
is introduced to insure a desired bound on the time delay in the steady state and to prevent
cong&sltion or underutilization of the transmission capacity during the transient periods of
control.
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(ix). The control algorithm updates take place every T sec, where T is the time to transmit
¢ packets (T = cr,), i.e., a new control update is generated after every c packets are
transmitted. Thus, the controller time is slotted with the slot duration, [n,n+ 1), n =
0,1,..., equal to T. Note that a tradeoff is involved in the choice of the update period T
since shorter T’s lead to better responsiveness to changes in the input traffic but require
the processors to devote more time updating the feedback signals.

(x). Each node sends the computed control information (g;’s) to .ue sources along a fixed feed-
back path, usually the reverse direction of the traffic (assuming bidirectional links which is
often the case). This control information is serviced with high priority and is carried either
in separate packets or along with data or acknowledgment packets. The sources respond
to the control information received according to the control protocol defined below.

The input traffic

(xi). The input traffic is viewed as a fluid where packet boundaries are ignored. This fluid
model approximation is a typical assumption in the analysis of dynamic congestion control
mechanisms [15]-[16].

(xii). For each connection (ab), let r%, denote the rate (in packets per slot) of its traffic demand.
We assume that during the settling time of the system, the trafic demand is constant but
otherwise arbitrary and unknown. This assumption could be understood in the sense that
the input traffic is piecewise constant with the jumps occurring seldom enough so that the
transients of the system have time to settle down between two consecutive jumps.

System (i)-(xii) has been introduced and analyzed in Part 1 for the case of a single congested
node. Specifically, Part 1 used the following rate-based control algorithm and control protocol:

The control algorithm

(xiii). The traffic admission rate g;(n + 1) calculated by link 7 at time n is given by

Ji K,
gi(n + 1) = Satp {q;(n) - Ea;,- (x;(n -7)- ;1:0) =Y Birgi(n — k)} , €N, (6.1)
1=0 k=0
where ¢° > ¢, a;; and B, are the controller gains, J; and K; are non-negative integers and
0 ifz<0,
Sats(2)={ a if z > a,

z otherwise .

The control protocol

(xiv). During the time slot [n,n + 1), the (ab)-type traffic is admitted with the rate
ras(n) = min {gn(n +1—d7%,),m € p(ad); r&,}, (ab) €C, (6.2)

where d2, is the feedback delay of connection (ab) with respect to link m. When the
minimum in (6.2) corresponds to the admission rate of link j € p(ab), connection (ab) is
said to be throttled by link ;.
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(xv). Traffic at each link is serviced according to the First-Come-First-Serve (FCFS) priority
discipline.

Unfortunately, the methods developed in Part 1 do not seem to generalize directly to the case
of multiple congested nodes, which is the main topic of this part of the report. Two indirect
generalizations are, however, possible. The first one is based on a modification of the FCFS
priority scheme and the second on the assumption that the control update period is large. This
part of the report is devoted to the former case. Specifically, assume that:

(xv’). Traffic at each link is transmitted according to the Remote-Throttled-First-Serve (RTFS)
priority discipline: Each link : first transmits traffic of connections not throttled by itself
including traffic not throttled at all. When no such traffic is waiting for service, it starts
transmitting traffic of connections throttled by itself. Connections within each of the two
categories (throttled and nonthrottled by link ¢) are serviced on a first-come-first-serve
basis. To implement this strategy, each packet carries a stamp identifying the throttling
link of the connection it belongs to.

Given this discipline, this report presents a method for choosing the gains, a;; and 3, for
each link : € NV, which result in a controller that prevents network congestion. Moreover, we
show by simulations that the same gains ensure a congestion-free stable operation of the network
under the FCFS strategy. This result, however, is not proved analytically.

6.1 EVOLUTION EQUATIONS
6.1.1 Preliminaries

Let z2*(n) denote the amount of (ab)-type traffic at the buffer of link ¢ at time n. Let y2(n)
and 92 (n) denote the rate at which the (ab)-type traffic is transmitted on link i and on the
link that precedes link ¢ along the path of connection (ab), respectively, during the time slot
[n,n +1). Note that, in terms of this notation, ¥2(n) is equal to r,s(n) if link ¢ is the first link
in the path of connection (ab), i.e., 1/):f (n) = rqp(n). Then, the evolution of the system defined

abd
by assumptions (i)-(xiv) is described by the following equations:

zP(n +1) = 2P*(n) + $2(n — 72) — P2¥(n), (6.3)
Ji K,
q.-(n + 1) = Satqo {q;(n) - ;Q.'j (::.-(n bt ]) -— zo) — k}_%ﬂ"k q"(n - k)} ’ (64)

$e2 (n) = rap(n) = min{gn(n +1 - di,),m € p(ab);r,}, i € N, (ab) € C(3), (6.5)

where 72 is the one-hop delay for the link that precedes link ¢ on the path of connection (ab),

d2, is the feedback delay of connection (ab) with respect to link m, and a;; and B;; are, as before,

the controller gains associated with link :. We use the following notations for time delays:
72 : feedback delay from node s; to node a,
-r:,b : forward delay from node a to node s;,
72 : forward delay from node s; to node s;,

T =

iy = [ 'r,-‘:b] + 1':}’ : round trip delay from node s; to node s;,

30




where [z] denotes the smallest integer greater or equal to z. The forward (feedback) delay from
node a; to node a; is equal to the sum of the one-hop delays of all links between node a; and
node @, in the forward (feedback) path of connection (ab). The one-hop delay for link 1 is defined
as the sum of the packet transmission delay at the origin node of link 7, the propagation delay
on link ¢, and the packet processing delay at the destination node of link ¢, all expressed in time
slots T, i.e.,
Ts + T;, + Tpr
= —E—.
T

The feedback delay d2, in (6.5) is equal to T“"] since, due to the fact that ¢,, is generated every

a ma

(6.6)

T, the most recent feedback information available at node @ at time n is gn(n +1 — d2).

Equations (6.3)-(6.5) are not closed with respect to the unknowns since ¥#® is not expressed
in terms of the states z?* and ¢; and the demands r%,. They can be made closed under the FCFS
discipline since, in this case, **(n) can be modeled as

ab n
$2%(n) = min {z?%n), ﬂ—‘—)c} ,

z,-(n)

where z; = T ap)ec(i) z2® is the total occupancy of the buffer of link :. However, the substitution
of this expression in (6.3) results in a system that seems to be impossible to analyze. Even the
linearized form of these equations seem to be too complex for analytical investigation due to its
high dimensionality and linearized dynamics complexity. These difficulties are avoided when the
RTFS discipline, introduced in (xv’), is used. However, under this priority discipline, equations
(6.3)-(6.5) cannot be made closed since ¥?* does not admit a simple representation. Therefore,
we proceed as follows: First, we consider the steady state form of (6.3)-(6.5) which allows us to
determine the steady state values of z; and ¢; irrespective of the priority discipline. Then, we
show that, in some neighborhood of this steady state, the dynamic equations of only a subset
of the network links deviate from the steady state, and the consideration of only this subset is
sufficient for the network analysis. This subset is referred to as the bottleneck subnetwork.
Finally, we show that, under the RTFS discipline, a closed form expression for ¥?* can be
derived and, due to the resulting decoupling of the dynamics, we show that it is sufficient to
consider the dynamic equations for z; and ¢; only, without involving the buffer occupancies z%°.
The bottleneck subnetwork is introduced below followed by the derivation of the local dynamic
equations.

6.1.2 The bottleneck subnetwork
The balance equation for z;(n), derived from (6.3), is
zi(n +1) = zi(n) + fi(n) — ¢i(n), i €N, (6.7)

where

)2 Y ¢R(n-12)

(ad)eC(s)
is the aggregate input flow to link ¢, and

Yin) 2 3 yt(n)

(ab)eC (i)

is the total transmission rate of link ¢ during [n,n 4 1). This rate is equal to the link capacity ¢
as long as the buffer is not empty. Therefore, (6.7) is equivalent to

zi(n +1) = sg{zi(n) + filn) — cL,i € N, (6-8)
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where

(z) = z ifz >0,
SB1TJ =1 0 otherwise.
Let z denote the steady state value of z(n). Then, (6.3)-(6.5) and (6.8) imply, respectively,
=97, (6.9)
g K,
g; = Satg {q,. - (E a.‘j) (i; - IO) - (E B'-k) (j'-} , (6.10)
3=0 k=0
1/—):;6 = Tgp = mMin {tjm,m € p(ab);rgb} . (6.11)
5 =sg{zi+ fi—c}, i € N, (ab) € C(i). (6.12)

Equations (6.9) and (6.11) imply that

1/3?6 = T, (ab) € C, 1 € p(abd).

Therefore,

fi= 2 'Z‘?f= Yo fa= Y min{q,,.,me;;(ab);rg,,}.

(ab)EC(5) (ab)€EC(i) (ab)eC(s)
Let C;,, be the set of connections in C(z) that are throttled by link m and let ;. be its cardinality.
Let Cio be the set of connections in C(z) that are not throttled by any link. Then, if we assume
that
G # Gn # Tasr (ab) € C, m,n € p(ab), m # 1, (6.13)
then Cim, ¢ =1,2,...,N,m =0,1,..., N, are uniquely defined and we have

N
fi=Y limdp +179, (6.14)

m=1

where r? = T(apyecio TS i the cumulative rate of nonthrottled connections in C(i). We adopt
the following assumption about the input traffic which is less conservative than (6.13):

V(ab) € C(i):  if min{g,,m € p(ab),r3,} = Gn, then g, # rdy, dn # I, ™ € p(abd), m # n,
if min{gm,m € p(ab),r3,} = ray, thenry, # gy, m € p(ab). (6.15)

This assumption is used below to linearize the system in the vicinity of its steady state since the
function h(g) = min{g, a} is not differentiable at ¢ = a.

Obviously, the steady state flow f; in (6.14) can be either smaller or larger than the link
capacity c. If f; < c, then (6.12) implies that Z; = 0. In addition, since, as it is shown below,
the controller gains must satisfy, among others, the following requirements:

Ji K
Ea.-,'>0 and Zﬂ,-,,=0, ZGN, (6.16)
k=0

=0

it follows from (6.10) that §; = ¢° Therefore, any link i with steady state flow less than
its capacity (underloaded link) has its buffer at zero and its control signal saturated at ¢°.
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Furthermore, since f; = [;q; + =N, li;g; + 79, §; = ¢° > c, and l;; is a nonnegative integer, we

1%
conclude that [;; = 0 (and as a result I;; = 0,5 € N) for all underloaded links.
On the other hand, if f; > c, then (6.12) implies that f; = c. When f, = c and I;; > 0, the

link is said to be overloaded. There may exist a link : with f; = ¢ but {; = 0. Such a link is
neither overloaded nor underloaded since the steady state flow is equal to the link capacity but
no traffic is throttled. We assume that no link operates in this regime. For overloaded links,

since f; = c and I;; > 0, (6.14) implies that 0 < §; < ¢ < ¢° and therefore, (6.10) gives

o TR B

7=0 Q4

In order to achieve Z; = z° we impose the constraint

K,
> Bu=0. (6.17)

k=0

Let A, and A; denote the sets of overloaded and underloaded links, respectively, with N =
N1 U N,. Assume, without loss of generality, that A’y = {1,2,..., M}, Ny < N. Then, in the

neighborhood of the steady state, fi(n) < ¢,i € N3, since f; < ¢ and fi(n) is a continuous
function of the network state (see Lemma 6.2 below). This implies that, in that neighborhood,
zi(n) and ¢i(n) do not deviate from their steady state values Z; = 0 and §; = ¢°, and as a result,
no queueing delay is experienced at buffers of underloaded iinks. Therefore, for the local analysis,
it suffices to consider the bottleneck subnetwork consisting of all links : € A;.

6.1.3 Local dynamic equations

As it follows from the previous subsection, the steady state flow through an overloaded link
t is given by
f6=z:lijqj+r?71€N1a
ot
or in matrix notation

F=AQ+R", (6.18)

where F, Q, and R° are N;-dimensional vectors with the i-th entry being f;, §;, and r?, re-

spectively, and A is the Ny x Nj-matrix of the [;;’s with positive diagonal entries I;;’s. In this
subsection, we derive an expression of the flow F(n) in the neighborhood of its steady state value

F.

Lemma 6.1 Under the control protocol introduced in assumption (ziv), A is an essentially trian-
gular matriz, i.c., there ezists a relabeling of ¢;,;i = 1,2,..., Ny, that results in A being triangular.
Proof: See Appendix 3.

Assume that the links have been relabeled in such a way that A is a lower triangular matrix.
Therefore,

f.'=tlij‘ij+"?=if.‘j+"?=fii'*‘f??, (6.19)

j=1 =1
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where f-,-j 2 l;;q; is the steady state contribution to the flow of link ¢ by the traffic throttled

by link j and f; & f, — f,; corresponds to traffic which is not throttled by link i. Let the

vector Y;(n) denote the state of link ¢ at time n consisting of the admission rate ¢; and buffer

occupancies z2’s at present and in the finite past. The exact form of Y;(n) will be given below.

Lemma 6.2 Under the RTFS priority discipline introduced in assumption (z/), there erists a
neighborhood B of the steady state where the link flow, fi(n), is given by

filn) = fi(n) + fz(n), i € Ny,

where

fi(n) = Z g{n+1- 'rm) (6.20)

(ad)eCi;

and f=(n) is a function of the states Y;(n) of links j, j = 1,2,....1— 1. Moreover, fi(n), i € N,
depends continuously on the network state. m]

Proof: See Appendix 3.

Since the rates are constant during any time slot [n,n+ 1), when the delay 7 is not an integer,
we rewrite g(n — 7), which represents the rate during [n — 7,n+ 1 —7), as

gln—-1)=(1-0)g(n—-d)+0q(n+1-d), (6.21)

where d = [7], the smallest integer greater or equal to 7, and # = [7] — 7 is in the interval [0,1).
Using transformation (6.21), equation (6.20) becomes

D;
fi(n) =Y lg(n+1-k), (6.22)

k=0

where

¥

Y (-ek)+ X 62,
(ab)eCk, (ab)eCkt?
{(ab) € C" . [ ld‘l] = k}
D.- = (aix)xéacgc(‘) {r,-’;";] . (6.23)

Here, I* is the equivalent number of connections throttled by link ¢ with round trip delay equal
to k satisfying Zf;o I¥ = I;; and D; is the largest round trip delay for all connections having link
¢ in their path. Note that the sets C£ may not remain constant outside the neighborhood B and

therefore I¥ is generally a function of time (lf (n))

Since, as it is shown before, the steady state values of z;(n) and ¢i(n), i € N, satisfy
Z; = z° > 0 and 0 < §; < ¢° the saturation-type nonlinearities in (6.4) and (6.8) are not
activated in the neighborhood B of the steady state where z; > 0 and 0 < ¢; < ¢°. Therefore,
the network dynamics is described in By A8nB by the equations

zi(n +1) = zi(n) + fi(r) — ¢,
Ji
gin+1) = gi(n) = Y (mi(n - j) - 2°) - 5 B giln— B), i € A,

7=0 k=0

34




where f,(n) is given in Lemma 6.2. The analysis of these equations is described in the next
section where a method of choosing the gains a;;’s and 3, ’s is piesented.

6.2 ANALYSIS
6.2.1 The decoupling property

As it follows from the previous section, the local (i.e., in the neighborhood By of the steady
state) closed loop behavior of the network under the RTFS priority scheme is described by the
following equations:

D;
zin+1) =z(n) + Z If‘ giln+1-k)+ fz(n) —c, (6.24)
k=0
J.‘ Kl
Gn+1)=q(n) =Y ayj (zi(n—j) = 2°) = Y By qi(n —k), i €N1.  (6.25)
=0 k=0

Theorem 6.1 Under assumptions (i)-(ziv) and (zv/), equations (6.24)-(6.25) are decoupled in
the following sense: System (6.24)-(6.25) is asymptotically stable if and only if each of the
Jollowing N, independent pairs of equations which corresponds to a separate link is asymptotically
stable:

D;
zin+1) = zi(n)+) Fgn+1-k)-c, (6.26)
k=0
Ji K,
g(n+1) = g(n)-> o (z.-(n -7)- ::o) - :;Z Bix gi(n — k), (6.27)
3=0 =0
Vie Nl . 0

Proof: See Appendix 4.

Note that such a decoupling is not possible under the FCFS priority discipline due to the
interaction among all traffic types queued for transmission. The RTFS disciplne limits such
interaction by giving priority to nonthrottled traffic.

It follows from Theorem 6.1 that the design of the network controller can be accomplished
by designing a controller for each link separately without regard to the others. In other words,
Theorem 6.1 reduces the solution of the .nultiple congested node case to that of the single
congested node case. The problem of analysis and design for the single congested node case has
been carried out in Part 1. The main results will be presented here without proofs and the reader
is referred to Part 1 for the complete derivations.

Note that, since (6.24) involves delayed versions of ¢;(n) up to ¢;(n — (D; — 1)), it is natural
to assume that K; > D; — 1 and, as a result, we choose the network state Y(n) as

Y(r) = (Yi(n) Ya(n) ... Yi,(n))", (6.28)

where
Yi(n) = (zi(n) = 2° 2in = 1) = 2%, ..., ziln = J;) = 2°, @), Gi(n — 1), qi(n — K3)) " .

The steady states and dynamic properties of the network are described below.
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6.2.2 Steady states
_As it follows from the previous section, the steady state flow through any overloaded link 7,
fi =421 li;q; + 17, s equal to the link capacity c and, under constraint (6.17), the steady state

buffer occupancy Z; is equal to z°.
Using the notation in (6.18), the steady state flow can be written in ratrix form as

F=AQ+R=C,

where C is the N;-dimensional vector with entries equal to ¢. Being lower triangular with positive
diagonal elements, A is nonsingular and therefore

Q=A"'(C-R). (6.29)

Thus, under constraint (6.17), the unique steady state is characterized by the steady state buffer

occupancies Z; = z°, ¢ € Ny, and the steady state rates Q = A™! (C — R®). The fairness property
of these steady state rates is presented below.

In allocating the network resources among the competing connections, one of the objectives
is to maximize the network utilization while achieving some fairness in resource allocation. An
intuitive notion of fairness is that any connection is entitled to as much network use as any other
connection, irrespective to the geographical separation of the connection’s origir and destination.
Since connections follow different paths and therefore links are traversed by different numbers of
conrections, this intuitive notion leads to the max-min fairness [24] described below.

We start. by describing some terms. An allocation r is a function that assigns each connection
(ab) a rate r,. The allocation is feasible if it is consistent with the demand 9, and the link
capacities, i.e.,

0 <rep<rd, (ab) €, (6.30)
fi= Y ra<ci€eN. (6.31)
(ab)eC(i)

A feasible allocation r is max-min fair if for each connection (ab and feasible allocation r' for
which gy, > rap, there exists a connection a't! with ran < rap and rgy < rew. In other words,
r is max-min fair if for every connection (ab) € C, ry; cannot be increased, while maintaining
feasibility, without decreasmg r. for some connectlon a't/ for which rqony < rg.

The term “max-min fair allocation” comes from the fact that for such a strategy, the smallest
rate assigned to any connection is as large as possible aud, subject to this constraint, the second
smallest assigned rate is as large as possible, etc. Each of these nested max-min optlmlzatlon
problems can be formulated as a linear programming problem and it can be shown that there
exists a unique allocation that solves them [24].

Theorem 6.2 The allocation resulting from the steady state rates (6.29) is maz-min fair. O
Proof: See Appendix 4.

6.2.3 Transient analysis
As it follows from the decoupling property, the local dynamics of link i is given by

zi(n+1) =zi(n) + ‘Z‘: Fgn+1—k)+ fz(n) — ¢, (6.32)
k=0
Giln +1) z_%a.,(z,(n j) -2 - E b adi(n = §), (6.33)

where the effect of the other links reduces to a disturbance fz{(n).
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Theorem 6.3 For given 19,1}, ... AP the poles of the system (6.32)-(6.33) can be placed ar-
bitrarily by an appropriate choice of the gains ajp, ..., 05, Bigs- - - Bik,> YR Bu=0ifJi=1
and K; = D;. @]

Proof: See Part 1.

Thus, a PD controller with respect to z; and a controller of order D; with respect to ¢; are
sufficient to ensure any desired dynamics or the closed loop system (6.32)-(6.33).

As it follows from the proof in Part 1, the characteristic polynomial of the closed loop system
can be represented as

P()) = (=1)PH AP (V)

where

Pr,(A) = AP¥? 4y AP 4y AP 4 v g (6.34)
and the vector of coeflicients I'; = (7,-1 Yi2 -+ Yi.D. +2)T is related to the controller gains as
follows: .

Iy = M(L;)G;, (6.35)
where
(B0 1
(Y +2) oo -1 1 \
Yi2 — 1 2 1 I.O
_ % li l" -1 ll
=] 7 MI)=]| : . JLi=| 0
: D;  1Di-1 — D,
7‘,D.+2 l' I' Di I 1 IP.
\o 0 1 1 .. 1)

and G; = (a,-o d.-l BB --- ﬁ,-D‘)T. Therefore, as it follows from (6.34), one of the closed loop

poles is at 0 and the remaining D; + 2 poles can be chosen at will. Indeed, for any desired set of
coefficients 7,5, § = 1,2,..., D; + 2, the corresponding control gain G; is obtained from (6.35) as

G; = [M(L))L;, (6.36)
since M(L;) is shown to be a nonsingular matrix with determinant equal to (ZkD._"_o l,l‘)2 = (Iz)%
Expression (6.35) can be rewritten in the following alternative form which is used below for
design purposes:

Iy =T+ Wiali, (6.37)
where

[ Biw=2 )
Bu— B +1 xio
Bz — Ba Qi1 Qo
riﬂ= ﬂm—ﬂ"z ,u’-‘a=(VioV;'1...Vm,-)= a;
: aso
ﬂiD.‘ - :Bi,D;—l ai
\ b,/
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Concluding this section, we note that the sum of the coeflicients of Pr,()), 1 + E?;}” Yis»

is equal to (ajo + 051)2,‘0;0 I¥. Since it is necessary for asymptotic stability that this sum be
positive, a;o + a; has to be positive as stated in (6.16).
The next section presents ways of choosing the vectors of control gains G;, i € N.

6.3 DESIGN
6.3.1 Adaptive vs. robust design

The design of the congestion controller involves the computation of the parameters of the

control law, i.e., the vector of control gains G; = (a.—o i BB - - ﬂ‘.D')T, t € N. Asit
has been shown in Section 3, the closed loop dynamics depend on the number of throttled
connections L; = (I°1} ... IP*)T | where I* is the equivalent number of throttled connections
with round trip delay equal to k. Therefore, if each link ¢ can take into account the variations of
L; when computing the control law, the resulting design is referred to as adaptive; here G; is
updated whenever L; changes. If information about L; is not available, a robust design has to be
considered; here the control law is implemented with a fixed G; so that stability and performance
requirements are satisfied for all admissible values of L;.

Note that an adaptive design has the advantage of achieving good performance but at the
expense of higher computational requirements (the updating algorithm for G;) whereas a robust
design requires less computations but the achieved performance may be inferior. Each of these
design approaches are investigated below.

6.3.2 Adaptive design

Suppose that the desired performance of the congestion control system is specified in terms
of closed loop poles that correspond to the vector of characteristic polynomial coefficients I'; =
(i1 iz -+~ %i,pi+2)T- Then, as it follows from (6.36), the adaptation of the control gain G; to
changes in L; takes the following form:

Gi(n) = [M(Li(n - 1)1, (6.38)

where Li(n) = (I9(n) }(n) ... IP"(n))T and T = (7, +2, 72— 1, ¥iz» - - - +Yi.Di+2> 0)7. Note that
Gi(n) depends on L; at time n — 1 since at time n only L;(n — 1) is available. Also, in order to
be able to implement an adaptive design, the congestion control protocol should be implemented
in such a way that L; can be known to the switching nodes. One way of doing so is to stamp
each packet with the identity of the throttling link, if any. In this way, every node can maintain
a table of throttled connections. The performance of the network utilizing the adaptive control
law (6.38) is illustrated in Section 5 below.

6.3.3 Robust design

The goal of this subsection is to find a fixed gain G; = (a0 i1 By By --- Bip,)T that ensures
stability of the closed loop system (6.32)-(6.33) for all values of L; belonging to an admissible
set L; defined as

L;= ([:.'o X Ly X ... X LiD;) - {0}, Li = [0, i.k], k=0,1,... , Di (6.39)

where I¥ is the maximum equivalent number of throttled connections with round trip delay equal
to k. The solution of this problem is given by the following two theorems:
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Theorem 6.4 There ezists a positive number k?(L;) where L; = (iol lD')T such that the
closed loop system (6.32)-(6.83) is asymptotzcally stable for any L; € £ tf the control gains are

chosen as
G; = (kicio kiaix By Biy - -- Bip,)T, ki € (0,K),
where
_ D; +4
Qo = —Z(D;+l)’
= _Dit?2
t1 2(D, + 1) )
_ 3D;
Bio - m '
D; -2(k+1)
ﬂ'-k = ——2-(—5:—-*_—17—,18—1,2,...,0..

Proof: See Part 1.

Thus the robust control gain, G, is the (D; + 3)-dimensional vector with components defined

in Theorem 6.4.
Let S} be the surface in IRP*? defined by the equatlons

o (B
2_,__1 v; sin(j0) =0, 0 € (0, ),
and let the inequality L; < L; imply the component wise inequalities I¥ < if, k=0,1,...,D;.
Theorem 6.5 The positive number k!, referred to in Theorem §.1, is defined as
k! = min{k}, k?}.

3978

Here,
g 3Di+5+ (=1)°(D; +3)

T D+
and k? is the solution of the following optimization problem:
minimize k subject to the constraints (6.40)
k>0, .
P.‘ﬁ + "V.',,,L,; € S;,
0 < L; <kL;,
where ;s and W;, are defined in (6.37). If the solution of this optimization problem does not
ezist, k? = +o0. D
Proof: See Part 1.

b

Thus, the design of the robust congestion controller can be accomplished in two stages. First,
the optimization problem of Theorem 6.5 is solved and k! is determined. At the second sta.ge,
a specific gain G; is chosen from the family defined in Theorem 6.4 so that the performance
requirements are satisfied as much as possible. This design procedure is illustrated in the next
section.
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Figure 6.1: Network topology.

| Connection # | initiated at time | terminated at time | input rate (xc) |

1 20 3000 0.9
2 50 2500 0.8
3 500 3000 0.9
4 1000 2500 0.9
5 1500 3000 0.9
6 2000 3000 0.8

Table 6.1: Network load.

6.4 DESIGN EXAMPLE AND NUMERICAL SIMULATIONS
6.4.1 Preliminaries

This section presents a design example and simulation results Although the theoretical
results presented in this second part of the report refer exclusively to RTFS priority discipline,
the simulations, described below, have been carried out for both RTFS and FCFS schemes. The
reason for presenting the FCFS results is two fold. First the RTFS priority exhibits, in some
regimes, undesirable oscillations not revealed by the local analysis; therefore, some remedy to
this phenomenon is desirable. Second, although we were unable to investigate the FCFS case
analytically, it turns out that, as it is illustrated by the simulation described below, it does indeed
offer the remedy to the problem at hand. In other words, we show below that the congestion
controller, designed for the RTFS discipline, works well if the FCFS priority is used. Moreover,
the dynamic performance of the latter is better than the former in the sense that FCFS produces
no undesirable nonlinear oscillations.

The robust and adaptive designs for both the RTFS and FCFS disciplines are presented
below. We begin by describing the simulated network and the activity of the input traffic.

6.4.2 The network and the input traffic

Consider a seven-node network shown in Figure 6.1. The links are identical with bidirectional
channels having a delay-bandwidth product of 10 packets, i.e., the propagation delay over a link
corresponds to the time for transmitting 10 packets. This is the case, for instance, of 45 Mbps
channels when 1 kbyte packets are sent over a 340-mile link. The activity of the six labeled
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connections in Figure 6.1 is shown in Table 6.1 for a duration of 3000 time slots T where T is
equal to 10 7, (equal to 1.8 msec for the case of 45 Mbps links with 1 Kbyte packets). This choice
of T corresponds to one control update every 10 transmitted packets. The set point for buffers
is chosen as r° = 30 packets.

The activity of the input traffic, as shown in Table 6.1, is such that only links 1, 2, and 3 (from
node 1 to 2, 2 to 3, and 3 te 4, respectively), will become overloaded and therefore, only the states
of these links need to be monitored during the simulation. Note that, although the simulation
involves only 6 connections, the fact that the network can carry up to 42 connections (one for
each source-destination pair of nodes) is taken into account in the design of the controller.

Assume a balanced minimum-hop routing policy where connections having more than one
minimum-hop route are assigned a route in such a way as to evenly spread (balance) the load
among the routes. Then, the set of potential connections traversing each overloaded link 2, C(z),
is

c(1) ={(1,2), (1,3), (1,4)},
C(2) = {(1,3), (1,4), (2,3), (2,4), (2,5), (7,3)},
C3) = {(1,4), (2,4), (2,5), (3,4), 3,9)},

where (a, b) is the connection from node a to node b. We assume that the feedback information
of connection (a, b) is sent along the path of connection (b,a). Note that

3 3 2
N1= 0 ,N2= 3 ,N3= 2 ,
0 0 1

where N; is the vector having its j-th entry equal to the maximum number of connections that
can traverse link ¢ with the source node located j hops from this link.

In order to obtain more realistic results, we perform the simulation using a discrete-flow
model. In such a model, the traffic flow consists of discrete rather *han infinitesimal packets as
in the fluid model used in the previous sections. Specifically, at the network interface, the number
of packets of every connection (ab) admitted to the network during the timeslot [n,n+1), fa(n),
is given by the following integrator-quantizer equations:

Tab(n) = |8as(n) + ras(n)] ,
sab(n + 1) = sab(n) + rab(n) - f'ub(n)) sab(o) =0,

where r,3(n) is defined by the control protocol (6.2), sqss(n) < 1 is the residual traffic of connection
(ad) at time n, and |z| denotes the integer part of z. In addition, within the network, the buffer
of each link is searched, every 7, sec, and a discrete packet is selected for transmission on each
link according to the service discipline in use (RTFS or FCFS).

6.4.3 Robust design

The data for the robust design, based on Theorem 6.4 and Theorem 6.5, consists of the largest
round trip delay D; and the vector of maximum number of throttled connections L; for each link
i. Let h%® denote the number of hops, along the path of connection (ab), between node a and
the origin node of link :. Then, as it follows from (6.23),

D; = max [1;";':] )
(ab)eC(i)
T= ¥ -6+ Y O

(aB)ECH(5) (ab)eC*+1(3)
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where
riw = [h2tr] + ki,
o0 = [ra] - 7t
CH(i) = {(ab) € C(i) : [r2] = K},

and 7 is the one-hop delay measured in time slots T. Neglecting processing delay, (6.6) gives

_TatT T+ 107,
T= T - " 1om, =1.1.

Carrying out the computations, we obtain

Dl = 07 I‘l = (3))
Dy=4,1,=(3,0,0,2.7,03)7,
D;=6, L3 =(2,0,0,1.8,0.2,0.8,0.2)7.

The values of the D;’s determine the structure of the robust controller according to Theorem 6.4
as follows:

Gi = (kw0 kian)", ki € (0,K), with
ayp =2, an =-1,
Gy = (kaazo kzom B By --- Baa)”» Fa € (0,k3), with
ax =.8,an = =6, 8 =12, 83 =0, B2y =—.2, B3 =—4, Be=—.6,
(ksaso ksas Bag Bay --- Bsg)” » ks € (0,k3), with
Q39 = .71, Q3] = -‘-57, ﬂm = 1.29, ﬂ3l = .14, ﬂaz = 0,
ﬂsa = —.14, ﬂu = —-29, ﬂas = --43, ﬂas = -57. (6.41)

Gs

The values of k! are functions of L; and are determined by solving the optimization problem of

Theorem 6.5 to obtain
ki = 0.444, k3 = 0.178, k3 = 0.264.

Note that the controller gains for the other links can be determined in a similar way but for the
purpose of this simulation any set of gains satisfying (6.16} is appropriate.

The behavior of the network with G; defined by (6.41) for k; = 0.95k, i=1, 2, and 3, is
shown in Figure 6.2.a. Figure 6.2.b corresponds to the case where the service discipline is FCFS
instead of RTFS. Each figure includes simulation traces for the changes over time of the buffer
occfull)lancy and the admission rate for each of the links 1, 2, and 3. The results can be summarized
as follows:

(a). When a link is overloaded (starting at time {=50, 1000, and 1500 for links 2, 3, and 1,

respectively), the buffer is kept in the vicinity of z° = 30, with fluctuations whenever a
new connection is initiated or an established connection is terminated.

(b). As the input traffic to the network changes, the admission rates ¢;(n) converge to a new
steady state in order to maintain max-min fairness or the rate allocation.

(c). The FCFS discipline exhibits stable (non-oscillatory) behavior whereas oscillations are
observed during the time interval [2000,3000) when the RTFS discipline is used. This
better performance justifies the choice of the FCFS discipline although its stable behavior
was shown by simulation and not analytically.
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The reason for the oscillations is the following: During the time interval [2000,3000), the throt-
tling link for connection 1, i.e., the link which has the minimum admission rate ¢ among all links
in the path of connection 1 (links 1, 2, and 3), is not unique since the steady state rates ¢, and
g, are equal (§; = §3 = c¢/3) during [2000,2500) and ¢, = ¢, = ¢35 = ¢/2 during [2500,3000).
These steady states correspond to corner points in the piece-wise linear nonlinearity (6.5). The
oscillations are due to this fact and to the fact that, under the RTFS discipline, connections
are treated differently by the transmission links depending on whether or not they are throttled
by that link. In fact, Figure 6.3.a shows the result of the interaction between the nonlinearity
and the RTFS priority scheme. This figure is a plot of the buffer occupancies of traffic belong-
ing to connections 1 and 5 at the buffer of link 1. During the time interval {2500,3000) when
¢, = §; = q5, connection 1 is either given priority by link 1 and therefore its buffer occupancy
is zero or equally shares the link capacity with connection 2 and therefore both have an occu-
pancy of °/2. Figure 6.3.b shows that no such oscillations take place under the FCFS priority
discipline.

6.4.4 Adaptive design
In this section, we design an adaptive controller and examine its performance for both priority

disciplines considered above, RTFS and FCFS.

The characteristic polynomial Pr,(}) in (6.34) has dimension D; + 2 and therefore the gains
are specified by the choice of D; + 2 desired closed loop poles. For instance, if we choose the
desired characteristic polynomials as

Pr,(A)= (A= )(A=Ag),
Pr‘z(A) = (’\ - A1)3(A - ’\2)3a
Pry(A) = (A = AP (A = A2)®, Ap2 = 0.6 £50.1,

then, as it follows from (6.38), the adaptation of the controller gains

G; = (aio ai1 By By - ﬂ.‘D.-)T
to changes in L; takes the following form:
Gi(n) = [M(Li(n — 1)1y, 1 = 1,2,3, (6.42)
where
I = (0.8, —0.63)T,
I; = (~1.6, 4.43, ~4.39, 2.01, — .49, .05)7
I's = (1.6, 4.43, —4.39, 2.01, —.49, .05, 0, 0)7 .

The simulation results of the network with controller (6.42) and the service disciplines RTFS
and 1FSFS are shown in Figure 6.4.a and Figure 6.4.b, respectively. From these figures we
conclude:

(a). The adaptive approach achieves better transient behavior in terms of speed of the response
and buffer overshoot than the robust approach.

(b). The superior performance of the adaptive controller justifies its selection for implementation
despite the extra computational time it requires.

(c). As in the case with robust design, the network with the RTFS discipline is prone to oscil-
lations whereas stable behavior is achieved with the FCFS discipline.
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6.5 CONCLUSIONS

This report presents a theory for analysis and design of a congestion control system in store-
and-forward networks with multiple congested nodes. Within the framework of the controller
structure and system architecture introduced here, it is shown that the network is decoupled in
the sense that its analysis and design can be carried out for each link separately without regard
to the others. Based on this decoupling property, we show that the design of the congestion
controller for each link is accomplished as follows:

1. Using Theorem 6.3, choose the order of the controller that guarantees the existence of
stabilizing gains.

2. If the adaptive controller is used (i.e., the gains are adapted to the specific input traffic
and network conditions), select the controller gains based on formula (6.38).

3. If the robust controller is used (i.e., the gain ensures stability for all admissible input
traffics and network conditions), select the parameterized controller gain as indicated in
Theorem 6.4 and a specific gain based on Theorem 6.5.

Both the adaptive and the robust designs, with the gains selected appropriately, ensure
asymptotic stability of the network. Numerical simulations show that the network with the
RTFS discipline exhibits, in some regimes, undesirable oscillations that are avoided when the
FCFS discipline is utilized. Moreover, it is shown that the adaptive controller is capable of
insuring much higher performance characteristics as compared with the robust one. This may
justify the additional computation burden necessary for the implementation of the adaptive
approach.
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10 APPENDICES

APPENDIX 1: PROOFS FOR SECTION 5.2

The proof of the Theorem 5.1 is based on the two lemmas that follow. To simplify the
notations, rewrite (5.33) and (5.34) as follows:

Y(n+1)=A(L)Y(n)+ B (Al.1)
where
( 1-— loao —loa1 ..... —IoClJ_l —loaj —bo —bl —bg ..... —bK \
1
1
A(L) = :
- —ayg I —ajy —ag 1-8, =B —-B, ... Bk I’
1
1
\ 1 0 )
[ z(n)—2° )
z(n—-1)—2°
: A lo
— J) —_ ZO 0 ll
Y = z(n ) B = ’ L= y
(=) () : :
Q(n - 1) 0 ID
\ qn-K) )
and
b = lbo(By—1)— b,
b; = lofi =iy, t=1,...,D 1,
b 2 bB,i=D,... K. (A1.2)

Lemma A1.1: The characteristic equation corresponding to equation (Al.1) is

det[A(L) = M) = (1) = 1) + (A - 1)Pg + AK-PH PPy, (A1.3)
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where Pq, P,B’ and P, are polynomials in A given by

Po = agM + M +... +ay,
Pg = B+ BN+ + By,
Po = AP +10P 4. +1p.

O
Proof: Using notations (Al.2), the characteristic polynomial of matrix A(L) can be written
as follows:

det[A(L) — M) £ det(Ak) =

/ 1- loao - —Ioal e —loaj_l —loaj —bo —bl F —bK \
1 -A
det 1 Y
—ap —qy ... —ayy ey 1=fg—X =B, ... =Bk
1 —-A

\ 1 =X
Expanding Ax with respect to the last row, we obtain the following recursive equation
det{Ax) = —Adet(Ak_1) + (-1)Xdet(Dx), (Al.4)

where A; is the matrix obtained by deleting the last K — i rows and the last K — ¢ columns of
matrix A(L), and D;,i = 1,..., K, is the following matrix:

! 1- Ioao -A -loa1 eos —loa,]._l —IoaJ —b,' \
1 -2
D; =
1 -
\ —ap -y ... —ay  —ay =B

The solution of equation (Al.4) is given by
K .
det(Ax) = (=1)¥[A¥det(Ao) + 3 AX~*det(D;)). (A1.5)
=1

Therefore, to complete the proof, we have to calculate det(Ao) and det(D;).
To compute det(D;), we expand D; with respect to the last column and obtain

det(D;) = (—1)"bidet{M;) — B;det(M2),
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where

( 1 -A \ ( 1 - loao hd A -—loal —'Ioa_]_l —loa_] \
1 -

il
s
i

M,

1 -A
\ -Qag —p ... —Qgyg.y3 —Qg / \ 1 -A J
After successive expansions with respect to columns, we obtain

det(Ml) = —(C!()AJ + 01/\.,_1 +...4+ QJ) = —Pa,
det(Mz) = (—I)J".1 [(loao + A—- 1)/\J + loall\"-l +...4 IoaJ],
(-1 [T (A =1) + I Pal.
Therefore,
det(D;) = (=1)"+[b;Po — ﬂ,-X’(/\ ~ 1) = Blo Pa).

The determinant of Ag can be evaluated analogously. Indeed, as it follows from its definition,
Ag is the following matrix:

( 1- loao -A —loal vee —loa_]_l —loaj —'bo \
1 -
1 -
\  —ao —ay ... —ay —ay 1—fy—A )

Notice that this matrix is the same as the matrix corresponding to D; except that the last column
has b instead of b; and B, + A — 1 instead of §;. Therefore,

det(Ag) = (—1)"*'[boPo — (B + A — DAT(A = 1) — (8, + A — DloPal.
As a final step, we carry out the summation in (A1.5) and obtain

K
det(Ax) = (=1)FHEH(A =10 + 2\ = 1D)loPa + Y X (=b;Pa + B:X (A = 1) + Bilo Pa)),
=0

K
= ("'I)K"’J[AK“'J(A - 1)2 + AK(A - 1)10Pa + AJ(A - I)Pﬁ + IOPGPB — Pa ZbiAK-i].
1=0

(A1.6)
The last term in this expression can be rewritten using the definition of 4;’s to give
K .
Pa Y b ™ = PafloPg — ((lo+ W)N + AN 4+ 10572 4 1p)F=PHy),
=0
= PalloPg + 1A (A —1) - AF-PHpy). (AL.7)
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Substituting this expression into (A1.6) and canceling appropriate terms, we, finally, obtain the
statement of the lemma. ]
Let M(L) be the following matrix:

[l 0 1 \
L L -1 1
12 11 -1
M(Ly=1 : : 1
Ip Ipa -1
0 Ip -1
\o0 0 1 1 .. 1)

Lemma A1.2: In the system under consideration,

det[M(L)] = (z 1,-)2.

+=0

|
Proof: Expanding M(L) with respect to the row next to the last, wr >btain the following
expression

det[M(L)] = (=1)Pipdet(B) + det(C), (A1.8)
where
( b 1 [ b 0 1 \
L -1 1 \ L e -1 1
12 -1 l2 ll -1
B = : ,C = 1
lp 1 Ilp-1 Ip-3 -1 1
Ip -11 Ip Ipa -1
Lo 1 1 .. 11 \ o o 1 1 .. 1)

Next, we calculate the determinant of B and C. Expanding B with respect to the row next
to the last, we obtain

det(B) = (—1)Plpdet(B,) — det(B;) — det(Bs), (A1.9)
where

1 ( b 1 \

(—l 1 \ hH -1 1

9 b -1

B B N
1T 2 1 ’
lp—2 -1 1
-1 1 Ip_s -1 0

\ 1 11 111 0 1 11 1 11




b 1
Ig -1
B; = :
Ip_s -1 1
lp-a -1 1
\ 0 1 11 .. 1 11)

Note that B, is a triangular matrix and has a determinant equal to 1. Expanding B; with respect
to the last column and then the first column of the resulting matrix, we obtain

det(By) = Lf(—l)‘l;det(Bé),

where Bi is a block diagonal matrix, Bj=diag{Bj,,B;,}, with B}, and Bj, as (i x i)- and
[(D —1—=1) x (D -1 - t)]-dimensional matrices, respectively, given Ly

-1 1
-1 1 -1
B;l = -1 ’ B;Z = 1
1 -1 1
-1 1 -1
Therefore,
D-1 D-1
det(B;) = Y_ (1) li(-1)P"" = —(-1)’ X &
1=0 i=0
Expanding B3 with respect to the last column, we obtain
det(B3) = det(B}) — det(B3), (A1.10)
where
lo 1 lo 1
( L -1 1 \ ( LHh -1 1 \
ly -1 1 l, -1
B:: = : ) Bg = 1
Ip-3 -1 1 Ip-3 -1 1
lp-2 -1 1 lp-2 -1 1
\ Ip_1 =y \ 0 1 11.. 1 11)

Note that B} has the same determinant as Bj, and B2 has the same structure as B;. Let
bp_1 2 det(Bs) and bp_3 £ det(B?2). Then, (A1.10) results in the recursive equation
D-1
bp-1 = —(=1)P Y L~ bp_a,

=0
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with the initial value 8y = det ( g’ (1) ) = lo. The solution to this equation is
b1 D-2 D-3
bo-r = —(-1)° L L+ (=D)L k= ()P T kit 4+ (-1,
=0 =0 1=0
D-1 j
= ‘(-1)0 Zl.'-
7=0 =0

Therefore, (A1.9) finally becomes
3

det(B) = (-1)Plp+(-1)P DZ-I L+ (-1)P %‘321‘ )

=0 1=0 =0
D-1 D-2 j
= (-)Pihpr+2-DP Y L+ (-1)P X Y i (A1.11)
1=0 =0 i=0

Now we calculate det(C) of (A1.8). Expanding matrix C' with respect to the row next to the
last, we obtain

det(C) = (—1)Pipdet(Cy) — (~1)Plp_,1det(C) + det(Cs), (A1.12)
where
[ 0 1 \ (o 1 }
b -1 1 L -1 1
I -1 I, -1
Cl= 1 ’CZ— 1 )
Ip_a -1 1 Ip_s -1 1
Ip-2 -11 lp—1 -1 1
\ 0 1 11... 1 11) \ 0 1 11 ... 1 11/
( b 0 1 \
L b -1 1
L ~1
Cs= : : 1
Ip-2 lp-a -1 1
Ip-1 lp-2 -1
\ 0 0 11 ... 1 1/

1
Note that det(Cy) = —det(B2) = —~bp_; Sa.fter expanding C; with respect to the first row). In
addition, det(C;) = det(B3) = bp-1 , and finally, matrix C; has the same structure as matrix

C. Let cp 2 det(C) and cp-; 2 det(C3), then from (Al.12) we have the following recursive
equation

J

cp = (—I)DID(-I)D-IDZ-?é’i- (-1)Pipy [‘(‘I)Dbilzli] +cp-1,

D-2 ; D-1
= -—ID E ZI, + lD..] E Eln +¢cp-a,
§=0 =0 3=0 i=0
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with the initial value

b 0 1
v = det 11 Io -1 = (10)2.
0 0 1

After some algebra, the solution of this equation can be known to be

D-2 j D-1 \?
ecp=-lp Y. Y L+ (Z l,-) . (A1.13)
7=0 =0 1=0

Finally, substituting (A1.13) and (Al.11) into (A1.8), we obtain

D-1 D-1 \?
det{M(L)] = (ip)*+2p ) L+ (Z li) ,

1=0 1=0

D-1 \?
= (ID+Zli) ;

Proof of Theorem 5.1: Due to Lemma Al.1, with J = 1 and K = D, equation (Al.3) can
be factored out as follows:

det[A(L) - M] = (=1)°*'ANP(A-1)*+ (A= 1)Pg + PaPi],
= (=1)P*AR(), (A1.14)

where A
B\ S APy APH 4y AP 4t pya

The coefficients of Pr()) are related to Q and L through the following equation:

72 -— 1 Il lo —1 1 esee 0 al
73 12 ll 0 —1 ﬂo :
l l
A I Aol = mwe,
TD4+1 Ip lpa1 1
VD42 0 Ip -1
Lo/ \lo o 1 1 .. 1)\ 8p

where the last row corresponds to constraint (5.31). Due to Lemma A1.2, M(L) is nonsingular
since det(M(L)) = (X2, 5)?, and T2, L > 1 (at least one flow is being quenched). Therefore,
for any given characteristic polynomial coefficients I' = (7,,7,,...,7p42)7, the corresponding
vector of feedback gains exists and is given by

Q= [ML)T,
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= A
wherel‘:('y,+2,72——1,‘73,...,7D+2,0)T. a

APPENDIX 2: PROOFS FOR SECTION 5.3

Consider again polynomial Fr()) defined in (6.34):
Br(A) = AP*2 4y 2P 4 4 AP 4 4 yps. (A2.1)

The closed loop system is asymptotically stable if and only if Pr(A) is Hurwitz, i.e., has all
zeros located in the interior of the unit circle on the complex plane. The coefficients of Pr(1}),

44t =1,2,...,D + 2, depend on the vector of quenched traffics, L = (Io,11,...,1p)T, and on
the controller gain, @ = (ao, a1, B, B15-- > Bp)T. The problem of robust controller design is to

choose Q € IRP*? so that Prg)\) is Hurwitz for all L € £ where £ is defined in (6.39).
Let T’ denote the vector of coefficients of Fr(}), i.e.,

I'= (711 Y23+ 7D+2)T'
Note that the coefficient of the highest power of Fr()) is equal to 1 and therefore is not included
as a component of I'. Let D denote the stability domain in the coefficient space, i.e., a set in
IRP*? such that for all T € D, the resulting polynomial Pp()) is Hurwitz. The nature of the
stability domain has been analyzed in a number of publications (see [19]-[20]). The following
facts are of importance to our analysis:

(i). Every point on the boundary of D corresponds to a polynomial with at least one zero on
the unit circle in the complex plane.

(ii). Let S be the set of all T € IRP+2 guch that the resulting polynomial has at least one zero
on the unit circle. Then S is generated by the equation

D+2
D+ E ;3 P+3=00 — g € [0, 7],
=1

or
D42

1+ )y =0, 6 € [0,7]. (A2.2)

=1

(iii). The set S is composed of three hypersurfaces. The first two are (D + 1)-dimensional
hyperplanes and correspond to 6 =0 and 6 = 7 in (A2.2):

SO : 1+ 21D=+1'2 Y: ='0a
Se: 14 Eg.l’z(-l)"h =0,

and the third surface is generated by the movement of a D-dimensional hyperplane when
the parameter 8 takes its values in (0, 7):

e R T2 cos(i6) = 0,
¢ 24?4, sin(i6) = 0.

58




(iv). The set S partitions IRP*? into (2D + 5) open sets. The stability domain, D, is one of
them, specifically, the one containing the origin.

To utilize these facts, we represent the vector of coefficients, I, as follows:

[=Tg+Tg, (A2.3)
where, as it follows from(6.37),

Bo—2 ( loao \

Br—Bo+1 hao + loay

B2 — By lao + liay

Tg= Bs — B, , TL = WolL = bag + e

Bp — Bp- lpag +lp_1an

\ —Bp ) \ Ipy /

Vector T, depends on L whereas T 5 does not. In addition, since the sum of the coefficients
of Prﬂ(A) is zero, no choice of the 3,’s results in Prﬂ(A) being Hurwitz. Therefore, the idea of

the proof is as follows: First we choose @ = @, so that the resulting Ppﬂ(/\) is as “good” as

possible, i.e., is defined by T’ 8 belonging to the boundary of D. At the second stage, using I'},
we modify this Q; so that T’ g+ TL € D for all L € £. The following two lemmas implement

this idea.
Lemma A2.1: Assume that Q; is given by

D+4

2(D+1)
D+2

“2(D+1)

_ 3D

Po = 2(D+1)’

D-20G+1) . _
ﬂi = 2(D+l')',z"‘

Qg =

a =

1,2,...,D. (A2.4)

Then, T’ 8 belongs to the boundary of the stability domain D. Moreover, I' B8 lies on the part of

the boundary where Sy and S, defined in (iii), intersect. m]

Proof: Every point on the boundary of the domain D corresponds to a polynomial with
zeros being either on or inside the unit circle (at least one is on the unit circle). We will show
that P has two zeros equal to 1 and D zeros inside the unit circle.

The expression of A) can be obtained using the coefficients of I' g in (A2.3):
8 B

rp) = 143 (1) ¥,
= AD(A—1;’+(A—1)Pﬂ(A), (A2.5)
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where

P3N = 3 Bp X

=0
Since Pg(1) = Y2, 8; =0, we can factor out (A —1) in Pg(A) to obtain

D-1 D-1-i .

Ps) = A-DX(T BN,
1=0 3=0
D-1_

= (A=1) ) 8.\, (A2.6)

1=0

where ﬂ Z o~ B;. Substituting (A2.6) in (A2.5), we have

Pry0) - A= 1DP + 3° B,

=0

= (A- l)zPB(/\), (A2.7)

where Pﬂ('\) = AP 4+ P51 B;A'. Equation (A2.7) shows that Pp  has two zeros on the unit

circle, and we now show that the zeros of PB(A) are inside the unit circle. We start by evaluating

-~

B

- D-1-i _ 3D D-—l-—tD_2(j+1)
b= L li=spipt X “2(D+1)

=1

1 D-1-i D—l-i.
= m[3p+ Z (D—2)—2 Z ]] ,

=1 =1

1 , (D—1-i)(D—i)
= m[sp+(p-1-z)(o—2)—2 - ]
1

= m(D+2—i)(1+i).

Therefore,

2(D+1)AP ¢ E(D +2—§)(1 49N,

2D+ 1)Pg(3)

= i(u +2 )1 48N,
al=)0
= Ea.-x', (A2.8)

where a; = (D +2 —1)(1+4¢). To show that the polynomla.l Y2, a;)' has all its zeros inside the
unit circle, we use Raible’s tabular form for Jury’s stability test [21]. It isa (D + 1) x (D + 1)
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triangular table U (u;; is defined for j < D +2—1), where the first row consists of the coefficients
of the polynomial:
u1j=aD+1_J',j= 1,2,...,D+1, (A29)

and the entries of each row 7, t = 2,3,..., D + 1, are defined in terms of the entries of row i1 — 1

as follows: Ui Dasoi
Ujj = Ui-r,j — "'iﬂui-l,D+4-i-j1 ] =1,2,... s D+2-—1. (A2.10)
s-1,1

The stability condition is that all the entries of the first column have the same sign.
With the a;’s as defined in(A2.8), the entries of the table are given by
wij = (D +2)—-,

Vi-1,1

where
vﬁ=(D+&4—ﬂ[u+jﬂﬂ—(F+2ﬁ—6L—w+Qﬂ9+%@¥+mﬁ—gﬁ—1&j+2m+1w-4m

i=0,1,....D+1,j=1,2,...,D+2—i.

Indeed, after some algebraic manipulations, one can show that u;; as defined above satisfies
(A2.9) and (A2.10). The entries of the first column are

Vi1

Uy = (D +2)

,i=1,2,...,D+1.

Vi-1,1

Here

vu==(D+2—4ﬂa+1ﬂﬂ-a?—ﬁ-zﬂL+$P—sﬁ+1u+6ﬂ,
= (D +2- 1)10(1),

where w(i) 2 (i+1)D? - (i2—4i-3)D+ 3(®*—6:2+11i+6). Thesign of viy, i =0,1,...,D+1,
is equal to the sign of w(z) which can be rewritten as follows:

] 1. . 11..
w(z)=ﬁzs—(D+2)zz+(D2+4D+—é-)z+D2+3D+2-

To determine the sign of w(z), we take its derivative:

w'(i) = #-2(D+2)i+D*+4D + %,
= (i —4)(i —1i),
where
] 1
n = D +2-— '——5,

. 1
2 = D+2+$
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rp \\

Figure A2.1: Stability domain in coefficient space.

Therefore, w(z) is increasing for ¢ < D + 1 < #; and since w(0) = D? + 3D + 2 > 0, then
w(t)>0,:=0,1,...,D + 1. Thus, uy,t=1,2,...,D + 1 is positive. Since there is no change
of sign in the first column of the table, PB(/\) has all its roots inside the unit circle.

To complete the proof, we show that T 8 lies on the part of the boundary where Sy and Sp

intersect. Indeed, let S9 denote that part of the boundary, i.e., Sy = limg_o Ss. Then, using first
order approximations of cos § and sin8 (cos8 ~ 1, sind ~ 6), Sy is defined by the equations

Eg“{z B = -1 )
Ei’;’l-z iy; = 0.
It can easily be shown that T’ 8 satisfies these two equations. ]

As it follows from (A2.3), vector T'5 can be represented as

D
PL = Elt‘/t ’
i=0
where
Qo
a oo
(VO‘IIVD)=WQ= ay
Qap
ay

Let Ty be the plane tangent to Sy at the point T’ 8- Then, the two planes, So and T, divide the

space JRP*? into four quadrants (see Figure A2.1).
Lemma A2.2: Points I g+ Vi, i =0,1,..., D belong to the interior of the quadrant that

contains the origin. o
Proof: If Ns and Nt are vectors normal to the hyperplanes Sp and T, respectively, as shown
in Figure A2.1, then we need to show that

(Ns, Vi) > 0,i=0,1,...,D, (A2.11)
(Nr,Vi) > 0,i=0,1,...,D, (A2.12)
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where (U, V) denotes the dot product of the vectors U and V. Inequality (A2.11) can be easily

shown to hold since, from the equation of the hyperplane Sp, we have Ns = (1,1,...,1)T and
therefore

> 0.

1
Ns, V) = =
(Ns,Vi)=ao+ oy D11

To find Nr, we first compute Ny(I') which is a vector normal to Sy at a point I', and then
calculate

Nr = }1_{% Ny(T) F=FB (A2.13)
Since Sy is defined by the equations

8 5D42. cosif 41 =
{fl(F,O)—E.=1 vicosif +1=0, (A2.14)

f(T,0) & T242q;sinif = 0, 0 € (0,7),
the j-th component of Ny(T') is given by [22]

0/19fa _9hoh
dy; 88 80 ov;’
D+2 D+2
= (cosj8)(D_ iy, cosif) — (sin jO)(— 3 iv,sinih),

=1 =1

N;T) =

D+2
= Y iv,(cos jOcosif + sin j8sinif),
=1
D+2
= Y iy;cos(i — 5)d. (A2.15)

i=1

1=1

Since Y P+? i('yﬂ).- = 0, Ny vanishes in the limit § = 0. To avoid this, we factor out the term

—sin® §

(DT and show that N7 can be characterized as follows:

Ny = jim =520 +1)8

6—0 sin® 0 or .
=B

Indeed, from (A2.14) we have

_L24" vsin(D + 2 - i)0 + sin(D + 2)0

no= sin(D + 1)0 ’
_ D1 4 sin(i — 1)0 — sin @
Tpyz = sin(D +1)6

Substituting in (A2.15) we obtain

] -1 D+1
J T enl(D + 100 ) 1 7 ] = ..
Ny = sin(D + l)a(d)J + g 7;¢i1)’ 1=12, yD+2,
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where

Y; = sin(D +2)0cos(j —1)0 — (D +2)sindcos(D +2 — ;)8,
Yi; = sin(D+2—1)8cos(j —1)0+ (D +2)sin(i — 1)8cos(D + 2 — j)8 —isin(D + 1)8 cos(z ~ j)4.

For positive integers a and b, the following identities hold:

=)
. a a—2k—1/ -
sinad = g (-1)* ( % + 1 )(cosB) k=1 (5in §) 2+
4 b bl 12
cosbd = g(—l)‘ ( 9l ) (cos 8)*~%(sin §)¥,
where
n\ nn-1)(n=-2)...(n—(m-1))
m )" m! '
Therefore,
el k+l a b bL{k+0) 2(k+1)+1
sinafcosbld = (—=1)** ( ) ( )(0080)°+ -k+)=1(gin 9)2(5+0+1
k=0 =0 2k +1 2
= a(cos8)***sinf — [( ; ) + b( g )] (cos8)***=35in° 6 + U, sin® 0,
where
=521 13) e b ok 1
U= 2 (-1 ( %+ 1 ) ( ol ) (cos 8)+4-3(+)-1 (gip g)2(k+i-2),
=1 (=1

Using this identity, we obtain

¥; = {(D+2)((cos8)** — (cos8)P**~%)} sin g
—{[( 0;2 ) + (D +2) ( ] —2- 1 )] (cos8)P+~% — (D +2) ( D+22_j ) (coso)D'j}sin:’a
+{Ubs25-1 — (D +2)Uf pys;} sin 6.

The first term can be further factored out since

(cos )P+ — (cos 9)P+?~7 = (cos §)P+?— [(cos 9)26-1) _ 1] :

= (cos8)P*?~7 [(1 - sin? 9y~ 1] ,

= (o n-nt (T3 Yoo,

k=1

= (cos )P+ [—(j ~ 1)sin? 0 + sin* 0 5 (~1)* ( 7t ) (sin o)"*"’] .

k=2
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Therefore,

g% = -(D+2)(J'——1)—-(D;2)-(D+2)(1;1)+(D+2)(D+22—j)’

= %(D +1)(D+2)(D+3-3j)4¢.

For 1;; we have

vy = {(D +2 —i)(cos8)°~** + (D + 2)(i — 1)(cos 0)P+=3 — (D + 1)(cos 0)D+|"j|} sin 6

—{[( Dal-s ) +(D+2-i)(j;1 )] (cos §)P=+i-2

+(D+2) [( igl )+(i—1)( D+22_j )] (cos )P¥—7-2

—i [( bt ) +(D+ 1)( 271 )] (coso)D+"-J'l-2}sin3o

+{Ubszcisor + (D + 20Ul pyani = iUby s} sin® 6.

0—-0 sm3 [/

If i — j > 0, the coefficient of sin @ is equal to
(D+2-1) [(cos 0)D".+’. — (cos 0)D+“5]
= (D +2 —i)(cos )P~ [1 — (cos 8)*~)]

= (D +2—i)(cos 9P~ |~ i( 1)* ( ) sin* o]

[ k=1

k=2

= (D + 2 — i)(cos g)P-++i (z —j)sin*0 —sin* 6 i( 1)k ( =J ) sin?(k-?) 0] )

If : —j <0, it is equal to
(D +2)(i — 1) [(cos 8)°*~F — (cos 9)P—+i]
= (D +2)(i — 1)(cos )P+~ [1 — (cos )6~

= (D +2)(i = 1)(cos8)>+~ [(J §in? 0 — sin0 3~ v (73 ')sanm-no].

Therefore, =
e sxn"o'/’” = (D+2-i)(i—j)izj>o+ (D +2)(i - 1)(j — i) fimj<o
_(D+32—i)_(D+2_i)(j-;1)_(D+2)(,-;1)
—(t--l)(D+2 J)+i(D;1)+i(D+1)(|i;J’I)

>

&'j ’
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where [ is the indicator function. Thus,

. sin(D + 1)0 b+
jim — = Ng=¢§ + g viii- (A2.16)

To obtain N, we need to substitute I' = Fﬂ in (A2.16). Since

-1
= — 4,2,2,...,2,-D -2)T
P’B 2(D+1)(D+ ,2,2, 72, D ) ’
the j-th entry of N7 is given by
i = i 3D+ 1)0 s _e oL RR,
M= fm-—gme M 6T D 5
F—Fﬂ 1=2

After some algebraic manipulations, it can be shown that

D+1 1
Y &= —-ED(D +1)*(D +2)(D + 3 - 2j),

=2
and as a result

N = LADDHED b 15 5j)+ DD +3-2)],

(D +1)(D +2)
12

Finally, the dot product in (A2.12) is
(Nr,Vi) = aoNf' + ayNj*?,
(D +4)Ni*' ~ (D +2)N#]

[(D+3)(D+4)-2(D+6)] .

1
2(D+1)[

b i DA 210D +3)(D+4)—2D+6)(D+4)i+1)— (D+2)(+2)],

D+2

——[(D+3)(D+4)+(D+6)(D~-2)],
2 h(;). (A2.17)
Smce h(&xs a decreasing function of ¢ and k(D) = (D + 2)(D + 12)/12 > 0, then k(z) > 0,: =

Therefore, the set of points {I' € RP¥?:T =T g+ Vi, 1=0,1,..., D} belongs to the interior

of one of the four quadrants determined by Sy and T. Since T’ g+ Z.-—o ; =0, then they belong

to the quadrant containing the origin. [ |
Proof of Theorem 5.2: The vector of control gains Q); defined in (A2.4) guarantees asymp-
totic stability of the network for all L € £ if and only if the set

‘R(Q,)-{I‘eIRD“ r= rﬂ+21v Tg+Wal, VLGL‘.}

=0
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Figure A2.2: Mapping of £ into R;.

lies inside D. The set £, as defined in (6.39), is a rectangle and R, is obtained from £ through
an affine map since for every point I' € R,, there exists L € £ such that I = Fﬂ + Wal.

Therefore, R, is a polytope, i.e., it is the convex hull of 2D+1 polynomials obtained by setting
L to an extreme point in £ (see Figure A2.2). Note that since the extreme point 0 is excluded
from £, the point T’ 8 is excluded from R,.

From the foregoing discussion regarding the characterization of the stability domain D and
the location of T’ 8 (Lemma A2.1) and the V;’s (Lemma A2.2) resulting from the choice of @ = @,

we conclude that there exists k; sufficiently small such that the polytope

D
R(Qu) = {T € RP**:T =T+ kWal =Tg+ Y kkVi VL € £} £ Ry,

=0

is such that Ry, C D and that there exists k; sufficiently large such that the polytope Ry, Z D.
More precisely, there exists k* > 0 such that R;. intersects the boundary of D and for any
k € (0,k*), the polytope Ry is inside D. The number k* is the smallest k for which the polytope
R comes in contact with the boundary of D. That is, Ry. is the largest polytope whose interior
points correspond to stable polynomials. o
Proof of Theorem 5.3: As it follows from the proof of Theorem 5.2, k* in the smallest k
for which the polytope R intersects the boundary of D which consists of the surfaces Sp, S
and S;. The polytope R, does not intersect the hyperplane Sy for any k since, due to (A2.11),
Ry, k € IRy, lies in one of the two half planes generated by So. Therefore, R, can intersect only
Sy or Sy or both. Let k; (kj, respectively) be the smallest k for which R intersects S, (S,
respectively). Then,

k= inf &k,

k>0

I'eR:

e Sy

(A2.18)

and

k2= mf ’C
k>0
I'eR:
I'e S,

If Rx does not intersect Sy (Ss, respectively) we set the solution of (A2.18) ((A2.19), respectively)

(A2.19)
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to +00. From the above, it is clear that
k* = min{k,, k,}.

The optimization problem (A2.18) and (A2.19) can be rewritten in the form used in Theo-
rem 5.3. Indeed, first we rewrite them as

k1= inf k,
k>0
LecF
Fﬂ+WaL€Sr

(A2.20)

and
kg = inf k y

k>0
L ek
I‘ﬂ+WaLeSo

(A2.21)

respectively, where
LF=(L§ x L x...x Lp) = {0}, £ = [0,kL),i=0,1,...,D.

Since for L = 0, T is equal to T’ 8 which does not belong to S, or Sy, we can include L = 0 in
the feasible set without changing the infimum in (A2.20) and (A2.21). Therefore,

k= inf k,
k>0
0<L<kL

(A2.22)

and
k, inf k,
k>0
0<L<kL

r 8 4+ WalL € S
where the constraint 0 < L < kL denotes the component wise inequalities 0 < I; < kl;, i =

0,1,...,D.
The infimum in (A2.22) can be obtained in closed form. Indeed, substituting ' =T B8 + Wal

in the equation of Sy, the constraint I’ 8 4+ Wal € Sy becomes

(A2.23)

‘Z“,l: 3D+5+(-1)°(D+3) o

A2.24
=0 2(D + 3) ( )
The constraint 0 < I; < kl; is equivalent to
i, = ki,-z.-, 0<z;<1. (A2.25)
Combining (A2.24) and (A2.25) and solving for k, (A2.22) becomes
ky 2 (A2.26)

= inof —
oz P Lz,

68




The solution of (A2.26) is obviously

a a

ky = = = —.
TR, L oA

' even

Note that when I;, for all even i, are equal to zero, k; = +00, which means that R; intersects
Sy but not S,. ]

APPENDIX 3: PROOF FOR SECTION 6.1

Proof of Lemma 6.1: Obviously, there exists a permutation o(1),0(2),...,0(N;) of the
set {1,2,..., N1}, not necessarily unique, such that

dop) S o) £ -+ S dony)-

By relabeling go(;) as ¢i,¢ = 1,2,..., N;, A becomes a lower triangular matrix. Indeed, for the
relabeled ¢;’s we have

GBS < qn,-
We need to show that [;; = 0 for i < j. Assume that i < j and therefore §; < g;. If I;; # 0,
then, at the steady state, [;; connections throttled by link j traverse link i. According to (6.11),
this means that ¢; < g; which contradicts the assumption. Therefore, /;; = 0 for i < j and the
statement of the lemma follows. [

N l(%’roof of Lemma 6.2: Let B be the neighborhood of the steady state where the following
olds:

(a). The sets C;;, ¢t =1,2,...,Ny, j =0,1,...,N;, are constant.

(b). The raj{;;: of the remote throttled traffic remains less than the link capacity, i.e., fz(n) <
c,t€E 1-

(c). The rate of traffic traversing underloaded links remains less than the link capacity, i.e.,
f.-(n) <c 1€ N..

We show below that B is not empty. Note that, as it follows from (a), the values of r? and
lij, 1,7 € N1, are constant.

Assume that the network state is in B. Then, according to the RTFS priority discipline
introduced in (xv’), the remote throttled traffic does not incur any queueing delay at the buffer
of link i since it is given priority and it has a rate f; less than the link capacity. Traffic of
throttled connections, on the other hand, might be queued at the buffer of the throttling link
and share the residual capacity c— f;; on a first-come-first-serve basis. Therefore, connections see
a change in their rate only at two points along their path: at their point of entry to the network
and when they traverse the buffer of their throttling link. Thus, during the time slot [n,n + 1),
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since any connection (ab) throttled by link 7 is admitted to the network with rate ¢;(n +1 - deb),
it will reach the buffer of link j with rate

gi(n + 1 — 72%), if the buffer of link j precedes link ¢ on the path of connection (ab),

iaj

. ] _ab aby To(n— 7 ab -
min{ z; (n — 1), —m (c - fi(n—1; )) , otherwise. (A3.1)

Therefore, as it follows from the definition of fii(n), we have

filn)= Y a(n+1-12).

(ab)eCi;

Let 6?}’ be equal to 1 if link  precedes link j on the path of connection (ab) and 0 otherwise.
Then,

faln) = 'i: fis(n) + 17, (A3.2)

1=1
where

z2(n — 1)

Ij(n -_ 1—;.;’ (C - fﬁ(n - Tjaib))} .

il

filn)y= X &qi(n+1—15)+(1-6y)min {I?b(" - ),
(a0)€Cij

Since f;; is a function of f3, f; can be obtained recursively starting from fi7 = 9. It is clear
from (A3.2) that fg it is a function of the states of link j (¢; and z;" at present and in the finite
past), 7 =1,2,...,: — 1.

Now we show that B is a nonempty neighborhood of the steady state, i.e., that there exists a
ball of positive radius around the steady state where (a)-(c) hold true. Due to assumption (6.15),
there exists a neighborhood B, of the steady state where (a) is true. In addition, it follows from
(A3.1) that the rate of any connection through any link depends continuously or the network
state and as a result, f=(n) and f;(n) are continuous functions of the network state. Moreover,
since fz(n) and fi(n) have their steady state values less than c, there exists neighborhoods B
and Bj of the steady state where (b) and (c) hold true, respectively. Therefore, B = B,NB;NB3
is a nonempty neighborhood of the steady state satisfying (a)-(c). ]

APPENDIX 4: PROOFS FOR SECTION 6.2

Proof of Theorem 6.1: Indeed, for each i € N}, the pair of equations (6.24) and (6.25)
represents the dynamics of link ¢ with f;(n) being the only term that depends on the states
of the other links. According to Lemma 6.2, f;r;ﬁ?) is a function of the states Y;(n) of links j,
j =1,2,...,i—1; therefore, the dynamics of link ¢ is not influenced by the state of any link j
with j > i. This means that there can be no dynamic coupling between the links since, for a
coupling to take place, there must exist a set of links 1y,4s,...,1x in Ny such that the state of
link #; affects the dynamics of link ¢;41, j = 1,2,...,k — 1, and the state of link i, affects the
dynamics of link 1. In other words, the linearized form of (6.24)-(6.25) has a block triangular
structure where the i-th diagonal block corresponds to link i and is described by (6.26) and

70




6.27). Therefore, the analysis of the network dynamics reduces to the analysis of (6.24) and
6.25) separately for each i € V| with fz(n) treated as a disturbance to the dynamics of link :.
s

Proof of Theorem 6.2: Obviously, the rate of nonthrottled connections cannot be increased
without violating the feasibility constraint (6.30). To increase the rate of a connection (ab) throt-
tled by link ¢ while maintaining feasibility, we must decrease the rate of some other connection

a't’) traversing link : in order to maintain the feasibility constraint (6.31). But since 745 = §;
by definition of throttling link) and 7, < g; for all connections a'b’ € C(i) (by definition of the
control protocol), the steady state allocation satisfies the requirements for max-min fairness. ®
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