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OPTICAL SIGNAL PROCESSING

1.0 Introduction

As the bandwidth of signals increase and as the electromagnetic environment becomes
increasingly dense, processing operations such as convolution, spectrum analysis, correlation,
ambiguity function generation and adaptive filtering become computationally intensive
operations. Optical processing provides high-speed, parallel computations so that digital post-
processing techniques can be used for lower-speed, serial computations. One objective of this
study is to investigate methods for performing quasi-realtime adaptive processing with primary
emphasis on the equalization of high speed communication channels. These techniques are also
applicable for adaptively setting notches in a signal excisor to remove the effects of signal
distorting jammers. Such operations are useful when the adaptation rate is fairly slow so that
continuous closed loop operation is not needed. A second objective is to investigate the time-
variant and frequency-variant properties of the Fresnel transform to make better use of optical
processing capabilities, and to develop generalized methods for analyzing these systems so that
new architectures and processing algorithms can be developed. In particular, we investigate the
application of these techniques to detecting signals such as short pulses, spread spectrum, and
other low-probability-of-intercept signals. The third objective is to develop models to analyze
and experimentally verify the performance of acousto-optic switches. Diffraction pattern
modeling and determination of crosstalk levels are needed for various combinations of switch
size, longitudinal and lateral output channel placement, reconfiguration time, and detector size.
Signal losses, distortion, and noise introduced by the switching element determine the bit error
ratio. A prototype to demonstrate performance levels has been built and tested.

The research work descried in this report covers the period from 5 February 1990 to
30 June 1993. The research effort has resulted in several innovative optical processing
techniques for improved performance. The major accomplishment can be divided into
three areas: (1) studies relating to adaptive optical signal processing, (2) studies relating to the
time-variant and frequency-variant properties of the Fresnel transform, and (3) the analysis and
experimental work relating to an acousto-optic switch. In the following paragraphs, we
summarize the key results in each area; further details can be found in the referenced journal
articles that have been published and are included in the Appendices.




Optical Signal Processing 4

2.0 Adaptive Optical Signal Processing

One part of this study was to develop architectures for quasi-realtime adaptive processing.
Closed loop adaptive processing was studied as a part of a previous contact (under DAAG-29-
80-C-0149) and demonstrated the implementation of 30dB notches in a SOMHz bandwidth.!?
Such systems are very sensitive to slight phase changes caused by vibrations or thermals drifts,
particularly when the loop bandwidth is fairly wide. There are many applications, however, in
which systems can be updated incrementally in what we call a quasi-realtime adaptive fashion.
These systems behave more like those in which the filters are updated slowly to maintain the
desired steady state condition of the system.

T.P. Karnowski developed methods for constructing a general spatial filtering operation.
Since the required impulse response is one-dimensional when we processes time signals, we
obtain a continuous amplitude response from a binary two-dimensional light modulator by using
an area modulation technique. Karnowski used area modulation to produce the required positive
amplitudes, and a half-wave plate to produce the required negative amplitudes in a conventional
Mach-Zehnder interferometeric system. Although area modulation eliminates the nonlinearities
normally associated with amplitude recordings, certain imperfections in the system such as
aberrations and a Gaussian illumination profile cause what are, in effect, amplitude
nonlinearities. Fortunately, these nonlinearities are not signal dependent and we found ways that
they can be compensated by using a look-up table that is generated when the system is
calibrated. Experiments using photographic film produced excellent results, while those using a
computer controlled liquid crystal display were less satisfactory due to the low contrast of the
particular display used. Nevertheless, as better spatial light modulators become available, this
techniques should prove useful for generating adaptive impulse responses. He completed work
on this topic for his Master's Thesis “Area Modulation Filter in an Interferometric Acousto-Optic
Signal Processor” and published it in Applied Optics?; it is included in Appendix A.

C. S. Anderson developed optical methods for digital radio channel equalization. An
adaptive acousto-optic equalizer has been constructed which corrects the multipath distortion
found in digital radios for telecommunications. A multipath channel emulator was constructed
with RF electronics to distort test signals that are then corrected by the optical processor. The
optical system uses an acousto-optic power spectrum analyzer to measure the power spectral
density of the input, distorted signal. A gradient search algorithm determines both the magnitude
and phase characteristics of the distortion. The channel estimator then adaptively selects one of
eight equalization filters recorded onto an area modulated mask. These filters are designed to
equalize any possible channel with less than 3 dB of residual magnitude distortion remaining.
Since the magnitude distortion of the channel can be as high as 25 dB, this represents at least a
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22 dB improvement in performance. Both the channel estimation and filtering sections of the
processor were tested and showed that the channel estimator selected the correct equalization
filter 95% of the time; the other 5% occurred for distortions that were in the transition regions
between two filters. Selectinn of the incorrect filter in these regions increases the residual
distortion by only 0.75 dB. The frequency response of the eight equalization filters was also
tested and found to be in good agreement with the theoretical response. The channel estimation
and the channel filtering portions of the processor were then conibined and allowed to adapt
automatically. Tests of the adaptive processor showed that the equalizer could maintain the
residual distortion to less than 3.6 dB even when the most severe channel distortion was present.
This work has received supplemental funding from BellSouth Enterprises and his thesis “Hybrid
Acousto-Optic and Digital Channel Equalization for Microwave Digital Radios” has been
accepted in partial fulfillment of the PhD degree. One paper has been published on this research
effort® and a second paper has been accepted for publication; these papers are included in
Appendix B and Appendix C.

R. N. Ward investigated a related form of a quasi-realtime adaptive system for signal
excision. Frequency plane excision is one method for removing narrowband interference from
wideband signals. He modified an acousto-optic system, which uses frequency plane excision, to
provide control signals to the spatial light modulators which perform the notching of the jammer.
The major system modification was to add a CCD photodetector array to determine the
magnitude and frequency of the jammers. The experiments involve modulating a baseband pulse
to an intermediate frequency, excising various frequency components, demodulating the pulse,
and then characterizing the residual distortion on the pulse. He studied the distortion of short
pulses produced by the removal of various frequency components of pulses having various
widths and analyzed the resulting distortion at baseband. These experiments showed that the
distortion is most severe when the excision is performed in the mainlobe of the sinc function
spectrum of the pulse, while the distortion decreases rapicly when the excision is in the sidelobes
of the pulse. The results of his work was the topic for his Master's Thesis “The Excision of
Narrowband Interference from Wideband Signals using an Open-Loop Adaptive Technique in an
Acousto-Optical Signal Processor,” and published the results in Applied Optics’ as shown in
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3.0 Acousto-Optic Crossbar Switch

As the need increases for switching systems that serve large numbers of high
capacity terminals, the limitations of electronic switching techniques become more evident.
D.O.Harris performed an extensive analysis on a free space propagating optical switch, based on
acousto-optic cell technology. He carried out computer analyses of the Fresnel transform for the
most likely configurations and used these results to predict the level of crosstalk expected. One
critical issue is to evaluate possible methods to control the RF frequency of the channels of the
cell. The best approach, based on current technology, is to use frequency synthesizers that can be
set to within £1Hz of the desired frequency with an settling time of about 100 nanoseconds; both
figures exceed the requirements established for the switch. He also performed analyses and
conducted experiments to verify insertion loss, worst-case optical crosstalk, and acousto-optic
cell reconfiguration time predictions for a 1x4 Fourier domain switch in a multimode fiber-optic
system. Insertion loss for the switch ranges from 2 to 4 dB, worst-case signal-to-crosstalk ratio is
better than 25 dB, and the reconfiguration time is 880 nsec. These measured values are in good
agreement with the theory, and support our claims concerning the high performance level of our
acousto-optic architecture. He studied the question of output power combining in single mode
fibers and proved that no passive power combining scheme can be better than 1/N efficient,
where N is the number of output ports. Active combiners, such as ones based on acousto-optic
deflection, can be completely efficient, but only with a significant increase in hardware
complexity. He also performed analyses and conducted experiments to verify insertion loss,
worst-case optical crosstalk, and acousto-optic cell reconfiguration time predictions for an 8x8
switch. The measured values are in good agreement with the theory. He used Close network
theory to show how multiple switches can be concatenated to produce larger switches. Finally,
he developed several useful methods to provide multicasting and broadcasting capabilities for the
switch. Supplemental funds has been obtained from BellSouth Enterprises in support of this
work. Harris included the results of this research in his PhD Thesis “Acousto-Optic Photonic
Switch”; this effort has been published®’ and is included in Appendices E and F.

4.0 Fresnel Transform Studies

A. VanderLugt recognized the opportunity to process signals in domains other than the time
or frequency domains arises naturally in optical Fourier transform systems. It is easy to show that
the Fourier plane can be added to the list, since all the information must pass thorough a
restricted aperture if the object is bandlimited. In this study, he showed that N samples are
sufficient to sample a signal in any Fresnel plane as well, provided that a specified nonuniform
sampling distribution is followed. He showed that the highest spatial frequencies in any Fresnel
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transform is concentrated near the optical axis so that the samples must be most closely spaced in

this region. This nonuniform sampling is similar to the the visual system in which the region of
greatest acuity for the eye is at the optical axis. It may have application to showing how to
properly dilute arrays in other wavelength region such as discrete element, phased arrays in the
microwave region. He showed that the highcst possible spatial frequency may occur in one or
more of four planes in a generalized imaging system: the object plane, the Fourier plane, the
second crossover plane, or the image plane. The optimum sampling procedure reduces the
required number of samples by up to a factor of four, for the two-dimensional case, leading to
less computations in applications such as image restoration. This work has been published®® and
is included as Appendices G and H.

A. VanderLugt also studied a new method for detecting shert pulses. Isolated pulses of short
duration are particularly difficult to detect. The energy per pulse is typically low and, because the
pulse duration is short, the energy is spread over a wide band of frequencies in the Fourier
domain so that direct spectrum analysis often is useless. There may be many pulses received per
unit time from different sources, each with a unique signature. The issue is how to detect these
short pulses and related low probability of intercept signals. The key idea is to use a Fresnel
transform to disperse a short pulse and its time delayed replica into longer time duration signals.
These two signals interfere after dispersion to produce a Fresnel diffraction pattern having a
strong sinusoidal component whose frequency is directly related to the time difference of arrival.
A photodetector element detects the light at specially chosen positions and the output is directed
to a spectrum analyzer that displays the frequency content of the new signal. The time-of-arrival
and frequency content are now directly related. One of the nice features of this approach is that
the pulse shape is not very important and that the time-of-arrival can be accurately measured
even if there are no easily identifying characteristics on the pulse. This work was published!® and
included in Appendix I. An expanded continuation of this theoretical work has been published in
Applied Optics!! and is included in Appendix J.

M. J. Wardlaw performed experimental work on the detection of short pulses by Fresnel
preprocessing. In the experimental system, the data acquisition and control is centralized within a
Macintosh FX computer. Two specialized I/O cards are used; one card provides an IEEE-488
interface capability while the other provides both digital and analog I/O capability. The IEEE-
488 interface is connected to an arbitrary function generator, a spectrum analyzer, and a
programmable oscilloscope. Using this equipment and the Fresnel preprocessor and optical
spectrum analyzer he constructed, Wardlaw could detect pulses as short as the theoretical limit of
20 nanoseconds for this system and separated by as little as 60 nanoseconds or by as much as 17
microseconds. He distinguish short pulse signals from cw signals by taking measurements at two
different Fresnel planes and subtracting the spectrum of one measurement from that of the other.
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Since spectral contributions from the cw signals are essentially the same for the two cases, they
are removed by the subtraction process. The spectral contribution from the pulses is retained,
however, because there is a known shift in the frequency of the sinusoidal interference pattern.
To remove the cw signals, we implemented a frequency-variant operation on the output of the
spectrum analyzer in which the frequency difference between the elements of a positive/negative
doublet frequency response is a linear function of the frequency. Multiple sets of pulses may be
present within the acousto-optic cell at the same time. To test the performance of the system
under this condition, we generated five pulses within a time interval equal to about 40% of the
cell transit time. By recognizing that fringe patterns will be generated from each pulse pair, we
can predict that the number of combinations, or pulse pairs, available to generate frequencies at
the output of the Fresnel preprocessor and, therefore, at the output of the spectrum analyzer. For
our scenario, five pulses, taken two at a time, yield 10 possible frequencies. The experimental
results nicely confirmed the theoretical calculations and formed the basis for his MS thesis
entitied “Detection of Short Duration Pulses by Fresnel and Fourier Transformations.” A paper
detailing the results of this work has been accepted by Applied Optics for publication!? and is
included in Appendix K.

5.0 Other Studies

Acousto-optic devices use wideband chirp signals to scan light beams at very high scan
rates. The rich variety of conditions under which an acousto-optic scanner can be implemented
and the interlocking nature of the performance parameters often leads to ad hoc solutions in
which conflicts arise among the required performance specifications. A. VanderLugt has
considered ail possible scanuing configurauons and classificd them into four basic types. A
consistent set of design relationships for each of the scanning configurations has been developed
and presented in both tabular and graphic forms from which a preliminary design is obtained.
Exammples are given for how these design relationships are used. A paper covering this work has
been published in Applied Optics'? and is included in Appendix L.

A surprising number of traditional topics, such as the Rayleigh resolution criterion, spatial
filtering, bandlimited signals, the sampling theorem, phase contrast microscopy, and white light
holography can be explained using simple interference theory. These basic results are then easily
extended to the N-source case to introduce diffraction theory, and facilitates the teaching of the
elements of modern optics to junior and senior level students. This work has been published™
and is included in Appendix M. An algorithm for efficiently and accurately calculating Fresnel
transforms has been accepted by Optical Engineering and is included in Appendix N.

The detection of femtosecond pulses is generally accomplished indirectly through an
indirect method using the autocorrelation function; that is, the pulse is used to measure its own




Optical Signal Processing 9

duration. A. VanderLLugt and T.W. Powell began to look at the possibility of measunng the
duration of femtosecond pulses by creating a simple spatial interference pattern from the Fresnel
transforms of two sources; the pulse length is found by counting the number of fringes in the
resulting spatial interference pattern. Several optical implementations for generating the spatial
interference patterns were evaluated and several signal representations were considered to help in
the evaluation, but some issues arose relating to the validity of the usual notions of geometrical
and physical optics when applied to short pulses. These issues are currently under evaluation. An
optical breadboard system capable of detecting the spatial/temporal charactenistics of pulses has
been built and is being tested using the femtosecond lasers being built by Dr. B. D. Guenther and
his students at Duke University.

6.0 Miscellany

A. VanderLugt presented a paper on "Sampling of Fresnel transforms" at the Technical
Symposium on Advances in Optical Information Processing IV, held in Orlando, FL, 18-20
April, 1990 .

A. VanderLugt presented a paper on "Short pulse detection by acousto-optic processing” at
the Technical Symposium on Advances in Optical Information Processing V, held in Orlando,
FL, 21-24 April, 1992 .

A. VanderLugt served as Chairman of a Foreign Applied Sciences Assessment Center panel
on Soviet Research Related to Optical Processing. The major activity of the panel, all of whom
are experts in this field, is their review of published Soviet literature, to assess their capabilities,
and to recommend possible changes in US policy.

At the request of the Director of Physics, U.S. Army Research Office, A. VanderLugt
helped review the progress made at the Photonics Center at West Point. This visit was on
April 30-May 1, 1992 to evaluate their progress against their objectives.

A. VanderLugt finished a 604 page text Optical Signal Processing which is the first text that
covers the full range of topics from pattern recognition and target identification to wideband
signal processing. This text, published by Wiley Interscience, is used both as a reference book
for researchers in optical signal processing and as a textbook for senior level undergraduate and
graduate level courses.

The participating personnel on this research study were Dr. A. VanderLugt, Principal
Investigator, D.O. Harris, T.P. Karnowski, R.S. Ward, and C.S. Anderson, M.J. Wardlaw, S.M.
Devonshire, T. W. Powell, Jr, and H-S. Wu:

D.O. Harris received his Doctor of Philosophy degree in December, 1990, with a thesis
entitled "Acousto-Optic Photonic Switch,” partially fulfilling the requirements for the PhD
degree.
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T.P. Karnowski receive.’ .iis Masters of Science degree in December, 1990, with a thesis
entitled "Area Modula‘ic . rilter in an Interferometric Acousto-Optic Signal Processor,” partially
fulfilling the requirements for the MSc degree.

R.S. Waid received his Masters of Science degree in May, 1991, with a thesis entitled "The
Excisicn of Narrowband Interference from Wideband Signals using an Open-Loop Adaptive
Tec..nmque in an Acousto-Optical Signal Processor,” partially fulfilling the requirements for the
MSc degree.

C.S. Anderson received his Doctor of Philosophy degree in December, 1991, with a thesis
entitled "Hybrid Acousto-Optic and Digital Channel Equalization for Microwave Digital
Radios," partially fulfilling the requirements for the PhD degree.

M.J. Wardlaw received his Masters of Science degree in December, 1992, with a thesis
entitled "*‘Detection of Short Duration Pulses by Fresnel and Fourier Transformations,” partially
fulfilling the requirements for the MSc degree.
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Generalized filtering in acoustooptic systems using area

modulation

T. P. Kamowski and Anthony Vanderlugt

We report on a technique for implementing general filtering operations in acoustooptic signal processing
systems. We use a binary recording method called area modulation to reduce linearity problems associated
with spatial light modulators that operate by controlling the amplitude of liznt. We present an analysis of
this method. we report on experiments with an acoustooptic system to verify the analysis, using photographic
film and a liquid crystal display to implement the area modulation masks, and we discuss the limitations of the

technique.

. Introduction

Acoustooptic signal processors perform operations
such as spatial filtering, spectrum analysis, correla-
tion, and adaptive filtering. Some processing applica-
tions need spatial filters whose phase and amplitude
responses are changed frequently or controlled adap-
tively in real time. These filter functions are often
difficult to implement with accurate response charac-
teristics. We describe an acoustooptic processing ar-
chitecture which uses the second spatial dimension of
the optical system to accommodate an auxiliary 2-D
spatial light modulator to implement a generalized
filtering operation.

Area modulation has been applied to spectral analy-
sis, optical computing, point spread function synthe-
sis, and correlator applications! and reduces the ef-
fects of amplitude nonlinearities associated with
conventional amplitude spatial modulation tech-
niques. In an acoustooptic processor, the input signal
is moving through space so that implementing the
desired filter as a stationary impulse response is partic-
ularly attractive. We generate the impulse response
with a real time spatial light modulator, such as a
liquid crystal display, whose response can be changed
adaptively through computer control.

The authors are with North Carolina State University, Electrical

& Computer Engineering Department, Raleigh, North Carolina
27695-7911.

Received 8 August 1990.
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© 1991 Optical Society of America.
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In Sec. II we introduce the area modulation tech-
nique and give a heuristic description of the operation
of the processor. In Sec. III we develop the processor
transfer function, and in Sec. IV we discuss the effects
of quantization, aberrations, beam apodization, photo-
detector size, and phase errors on the operation. We
report the results of filtering experiments in Sec. V.

. Background

Figure 1 shows a modified Mach-Zehnder interfer-
ometer in which the signal branch contains a slow
shear TeQ, acoustooptic cell of length L, driven by f(t)
= 5(t) cos(2xf.t), where s(¢) is a baseband signal and /.
is a carrier frequency. The optical signal correspond-
ing to the positive diffracted order is represented by

T =x . T =x
f(x,t) = a(x)s(t - 3 - 3) exx{ﬂtfc(t -3 - ;)], (1)

where a(x) is the aperture weighting function, T'= L/v
is the length of the time signal within the acoustooptic
cell, and v is the acoustic velocity. Lens L, produces
the Fourier transform of f(x,t) at plane P,:

Flat) = exp[jsz,(c - 7?')] ]_'. a(,,s(, - % _ %)

X explj2x(c ~ a )x}dz, (2)

where the spatial frequency variable in Fourier space is
identified by a. The transform F(a,t) is centered at a
spatial carrier frequency a. = f./v, in plane P;, because
of the temporal carrier frequency f..

A generalized filtering operation can be implement-
ed as an impulse response A(x,t) in plane P,, where the
time dependence of the impulse response is assumed to
be slowly varying relative to the signal s(¢t). Lens L,
produces the optical Fourier transform of h(x,t) at
plane P;:
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Fig. 1. Optical svstem for implementing generalized filters.

H(a.) = J h(z.t) expl(j2raz)ds. 3)

The intensity at plane P; is the squared magnitude of
the sum of F(a,t) and H(a,t):

Ha.t) = |Fla,t) + Hla,t)2 4)

We use a large photodetector to collect all the light at
plane P;, expand I(a,t) into its component parts, and
find that the photocurrent is proportional to

gt = }" IH(@,0F + [F(at)? + 2 RelH* (.t} F(at)ida.  (5)

We are generally interested only in the cross-product
term in the integrand. The first two terms of Eq. (5)
are at baseband, where they are rejected by a bandpass
filter that accepts the cross-product term. The band-
pass filter has a center frequency f. and a bandwidth
equal to twice that of the baseband signal s(t). By
proper choice of the function h(x,t), we implement an
arbitrary filter as shown by the third term of Eq. (5).

Although the amplitude of the impulse response
could be implemented by a transmittance function, it
is difficult to obtain the desired degree of linearity or
the required negative values. Because the signals in
this acoustooptic system are basically 1-D, we can use
the second dimension to implement area modulation
techniques for generating the impulse response. In
the area modulation technique, we create a 2-D func-
tion t/(x,y.t), using a spatial light modulator such as a
liquid crystal display, whose transmittance is a func-
tion of both space and time. The transmittance of the
spatial light modulator is either zero or one, so that
when the transmittance is integrated in the vertical
direction, we create an analog signal h(x,t) that has, in
principle, no amplitude distoertion. The area of the
spatial light modulator is partitioned into an upper
half, producing the positive values, and a lower half,
producing the negative values through a = phase shift.
Since the liquid crystal display is controlled electroni-
cally, we can adaptively change the impulse response
as needed.

An arbitrary filtering operation, such as one in which
the filter is asymmetric about its central frequency,
requires that the impulse response be complex valued.
Such filters can be realized, however, with real valued
impulse response functions if we first induce symme-
try in the frequency domain by reflecting the desired
filter function about its highest frequency. To pro-
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Fig. 2. Unbiased phase plate area modulation function.

duce the desired fiiter, we center the spectrum of the
signal to be processed on that half of the filter function
produced by h(x,.t) that has the required asymmetric
response; the other half of the filter function is not
used.

Felstead described four types of area modulation.!
For our purposes we consider only the unbiased phase
plate technique shownin Fig. 2. The height of the area
modulation window above the x-axis is proportional to
h(x,t). The transparent plate has an optical path dif-
ference of A/2 which imparts a » pliase shift in the light
transmitted below the x-axis, shown in Fig. 2 as the
crosshatched region. The transmittance for this mod-
ulation technique is represented by

h(x,t)
x YT
tlzy,t) = rect(z) rect | — sgn(y), 6)
where
+1 20,
senm-[_l z <o )

The first rect function in Eq. (6) bounds the functionin
the horizontal direction. The second rect function
specifies the vertical aperture height by the term in the
denominator, while the numerator specifies the verti-
cal displacement or center of the aperture. In the
remainder of the paper we use the term sgn plate to
identify the optical element that creates the » phase
shift needed to produce the negative values for the
impulse response.

The normal mode of operation is to place the area
modulator function ¢/{x,y,t), as given by Eq. (6), in
plane P;. The phase response of typical area modula-
tors, however, is not well controlied and produces er-
rors in the realized filter function. We make an impor-
tant modification to our system by moving the
magnitude portion of the area modulator t;(x,y.t) to
plane P;, while keeping only the sgn plate inside the
interferometer. This method has the advantage that,
since both the reference and signal beams pass through
the spatial light modulator, path differences that cause
unwanted phase modulation are eliminated. Since
the transmittance of the area modulator has only bina-
ry values, the desired amplitude modulation is pre-
served as shown in Sec. III. The only optical element
required in the reference beam is therefore the sgn
plate which can be made by coating a high quality
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optical flat with a A/2 coating over half of its surface to
produce the required negative values of h(x,t).

iit. Processor Analysis

In Fig. 1 we show that the acoustooptic cell is imaged
by lens L, at plane Pj, where it passes through the area
mo ‘ilator mask t(x,y,t). The sgn plate in plane P, is
als maged at plane P; by lens L, to form the complete
ar¢  modulator mask. The signal beam at plane P;,
after we remove all but the positive diffracted order by
a spatial filter in plane P, is

T
flxt) = o,(xy)s(c -3 %)

x ex:{erf‘(t - g - 3)},(”,:) explio(x ). (8)

where a,{x,y) is the amplitude profile function of the
illumination beam, ¢;(x,y,t) is the transmittance of the
spatial light modulator as a funciion of time, ¢(x,y) isa
quadratic phase term caused by the imaging operation,
and we ignore the coordinate reversal in passing from
plane P, to plane P;. Similarly, the reference beam at
plane Py is
r(x.t) = a,(xy)t,(x.y.t) sgn(y)¥(z.y)
X exp(—/2rax) expljo(x,y)], (9)

where a,(x,y) is the amplitude profile of the illumina-
tion beam, exp(—j2ra.x) is a linear phase shift impart-
ad to the reference beam by rotating the beam combin-
er, the sgn(y) function represents the phase shifting
element, and y(x,y) is a term included to represent the
aberrations in the interferometer.

Although the detection could be performed by an
area photodetector in plane Pj, the required detector
must be as large as the spatial light modulator. Such
large photodetectors typically have large capacitances,
which limit the bandwidth of the system. We there-
fore prefer to detect in a Fourier plane where the
required photodetector area is much less. Lens L,
produces the Fourier transforms of Eqs. (8) and (9),
which are summed at plane P, square-law detected,
and integrated over a and 8 by the photodetector; 8 is
the spatial frequency variable normal to a in plane P,
The two terms resulting from the squared magnitude
of the signal beam and the reference beam alone are
baseband components that are removed by a bandpass
filter as discussed before. The third term is the infor-
mation bearing signal, given by the cross-product term

Iy(e,8,t) = 2 R{ﬂ{a,(x.y)a(t - g - 1:;-)
x exp{ﬂtf,(t - %' -~ i—)}i(x‘y,t)}

X F*la,(xy)t,(x,y.t) sgn(y)¥(z.y) exp(-ﬂra,x)l]. (10

where ¥ denotes the 2-D spatial Fourier transform.

We represent the photodetector area as rect(a/2a.,)
X rect(8/28.,), where a., and 8., are the spatial fre-
quencies at the edges of the photodetector. We ex-
pand the Fourier transform operation in integral form
to show that the output current i3(¢), produced by
I 3(a’ﬂvt)’ is
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Gt = | | rect(a/2a,) rect(8/23. )
. T
x Re | i a,(u.w)s(l -5 Li)
! - v
. T u 5 . .
X expd j2xf |t ~ 375 e, (uaw.t) exply2xtau + Jud|dudu
v

x , , al(x.y)e (x.y.t) sga(y)¥ (zy)

X exp(j2xas) exp[—j2r(az + 3v)|dxdydad3. tl1)

where we ignore unessential scaling factors. Next, we
combine the integrals to obtain

i(t) = Re J j j [ [ J rect(a/2a,,)
X rect(ﬂ/ZB,,)a,(u.w)s(t -I. 5) exp[ﬂrf,(t I g)]
2 v 2 v

X t(uw,t)a, (x ¥}t (x.y.t) sgniyW*(x.y)
X exp{j2xa,x) expli2rialu - 1) + Alw ~ y)|idxdydudwdadB. (12)

We recognize that the integration over « and B8 pro-
duces a sinc function, so the output becomes

iy(t) = Re[ JJ jsinc[Zaw(u - x)]sinc{28(w = y)]

X 0,(“,(0)5(2 - %" %) exp[in/c(t - %— -:—)]

X t,(uw,t)a, (x.y)¢;(x.y.t) sgn(y)¥*(x.y)
X exp(j2xax)dxdydudw. (13)

Since the photodetector collects all the light from
plane P,, no information at the Fourier plane is lost
and we can therefore treat the sinc functions as delta
functions. We use the sifting property of the deita
function to find that

i) = ne{j [ a,(xa; (x )t (x 30 sgn¥*(xy)

X s(t T i) ex;{ﬂtfr(t I f—)] exp(j2za,.t)dxdy}. (14)
2 v 2 w

Finally, we assume that apodization a(x;y) of the signal
and reference beams is generally identical, because of
the common light source, so that

i(e) = Be{exp[jzrf,(t - -12-)] ] f la(z )Ptz .00 (x.)

X sgn(y)s(t - % - %) exp(i2x(a, - a,)z]dydx}. s

The central result {Eq. (15)] is a convolution integral,
with x/v being the displacement variable, and with y
available as an extra dimension used in realizing the
magnitude of the desired filter function through area
modulation. For a binary function, lti(x,y.t)2 =
ti(x,y,t) and Eq. (15) confirms that any aberrations
caused by the spatial light modulator are eliminated as
claimed in Sec. IL

We illustrate that Eq. (15) represents an arbitrary
filtering operation, since the value of ¢;(x,y,t) is under
our control, with a simple filtering operation. Sup-




L ——

pose that the apodization function a(x,y) is separable
into the product a(x)a(y). We incorporate the area
moduletion function in the limits of the integration
over y, an operation justified by the nature of the area
modulator:

iyie) = Rb{exp[ﬂrf,(t - %')] j |a(x)l’s(t - g - 5)

Atg
0

)
x explj2ria, — a )x] [ la(y)? ‘(xJ)dydx}, (16)

where A(x,t) is the height of the area modulation func-
tion. For an aberration-free system, Y(x,y) is unity.
Furthermore, we use a uniform apodization function so
that the output current becomes

PRVAE WS

X expli2x{a, ~ a‘)x]dx}, un

which, for a, = a., clearly shows the desired convolu-
tion. For illustrative purposes, we examine the inte-
gral when the applied signal s(¢) is a constant so that
Eq. (17) becomes the Fourier transform

ia(e) = Re{ex;{ﬂrf,(t - %')] f hix.)explj2r(a, — a,)x]dx}.

18}
and the output becomes

i(t) = Hla, - a‘.t)t:@[hf,(t - %')} (19)

If the carrier frequency «. is set equal to o, we see that
the envelope of the output of the system is equal to
H(0,t); that is, it is the filter response for an input
signal at zero frequency, as expected, because s(t) is a
constant whose temporal frequency is zero. We probe
the frequency response of the filter by scanning the
carrier frequen -; nver the full frequency range of the
syatem.

IV. Nonideal Performance

Several factors limit the performance of the system.
The issues we analyze are the effects of quantization,
undesired phase modulation, beam apodization, pho-
todetector size, and the effect of errors in the phase
inverting element. As we shall see, although the area
modulation technique intrinsically avoids the nonlin-
earities associated with amplitude spatial modulators,
some nonlinearities are generated by nonideal proper-
ties of the process.

A. Quantization

A liquid crystal display has a pixel structure in the x-
and y-directions that sets the resolution limit of the
device. In the x-direction, a pixel is equivalent to a
sample so that we satisfy the Nyquist sampling theo-
rem if we assign two samples to a period of the highest
spatial frequency in the signal. In the y-direction, the
total number N of samples affects the accuracy to
which we can approximate the desired value of A(x,t).
If, for example, the liquid crystal display has N = 256

samples in the vertical direction, the amplitude of
h(x,t) has a quantizing error of one part in 512 for the
largest signal value. Smaller signal values have corre-
spondingly larger percentage errors. The value of N
also sets the limit on the dynamic range of the impulse
function because it sets the ratio of the largest to the
smallest value.

B. Abermations

The aberration function y(x,y), as incorporated in
Eq. (9), is of the form

vizy) = ex;{j Z;: l(xd)], (20)

where 0(x,y) is the function describing the aberrations
caused by all the elements of the interferometer. Note
that aberrations contributed by any element outside
the interferometer are common to both signal and
reference beams and do not contribute to the output,
as shown by Eq. (15). To illustrate the effects of
aberrations in the x- and y-directions, we separate
8(x,y) into 8(z) + 6(y). We set la(x)I? = rect(x/L),
while the limits of integration on y range from 0 to
hmax(x,t); we fix the impulse response h(x,t) in time by
ignoring its adaptive qualities for the moment. We
bring the 6(x) term out of the integration over y in Eq.
{16) to yield

R e i

h(x)
xexp[-jo‘o(x)]L exp[—jz—:-oo) ydx}, @1

where we set a, = a, 8o that the reference and signal
beams are centered at the same spatial frequency. We
define the inphase and quadrature components of the
impulse response as

Az}

hz) = L u{%z O(y)}i , 22)
h{x)

hy(x) = L( sin[z—;- O(y)]dy. (23)

With these definitions, we express Eq. (21) as

X

. Ln T
iy(t) = Re { ] h.(x) - jh,(x)]s(t -T —)
BYX, 3 2 v

X ex:{jz’r/‘(t - %-)] ex;{-j 25 ﬂ(x)}dx}. (24)

We take the real part of Eq. (24) and find that the
resulting signal becomes

. /2 T 2
i(t) = Lm s(t -3° -E)‘l,(x) ca{2r/,(t - %.) - —f— D(x)}dx
L T = . 2r
- [_m s(t -1 ;).,(x) su{zﬁ,(z 15_) : 0(1)}1:. (25)

The impulse response h(x) includes a newly generated,
undesired quadrature component h,(x), caused by
phase modulation in the y-direction, in addition to the
desired part h (x) that would result if 8(y) = 0. We
also note that the aberrations in the x-direction cause a
phase modulation of the carrier frequency.
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Fig. 3. System output after synchronous demodulation.

The result of these aberrations is a distortion of the
desired system impulse response. To gain further in-
sight into the nature of the distortion, we let s(¢) be-
come a delta function, so that the essential form of h(x)
is revealed. Using the sifting theorem and a trigono-
metric identity, we find that

(e = \/hf(uc - "—21-) + hf(ut - %')

2 h‘("' - U?T)
X cos 2:/,(t —l)—lﬂx(ut - )-tan' 22— 21 (26)
2 2 v
h‘(ut - ?T)

where 8:(vt — vT/2) denotes the x-component of the
aberration and the argument vt — v'T/2 shows that the
delta function traces out the impulse response func-
tion and converts the spatial impulse response h(x)
into a temporal impulse response h(vt — vT/2). The
result of a synchronous demodulation of Eq. (26) gives
the result

v4(t) = \/ hf(uc - '%) + h;-’(ut - %')

2x v h,(vt B %')
X cos Tﬂ,(ut~?‘r)+vn'l~———— 27
y

Since the scanning of the impulse response function
causes h(x) — h(vt — vT/2), this result indicates that
the impulse response is distorted in amplitude.

To illustrate the worst-case signal degradation, we
assign h(x) its maximum value. For analytical pur-
poses, we model the aberrations with a polynomial
function whose first nonlinear term is given by

2
8(y) = ‘:7 (27’) : @8)

This function shows that the maximum pha~¢ *-ror at
y = L/2 is \/M, where an allowable value of M is tv ce
found. InFig. 3we plotthe ideal response, normalized
to unity, as a constant for all values of time. The effect
of phase errors in the y-direction for any value of M is
found from Eq. (21) to simply reduce the magnitude of
the output which does not affect the accuracy of the
implemented filter function. If M 2 4, the attenua-
tion is not more than 1 dB. The more serious impact,
as shown in Fig. 3, is caused by phase errors in the x-
direction. In all cases we assume that the thickness
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Fig. 4. Compression due to spodization in the y-direction.

function 8(vt — vT/2) in Eq. (27) is positive, to repre-
sent worst-case performance.

We therefore find that, while the linearity of the
spatial light modulator should not be an issue in area
modulation, aberrations introduce a constraint on the
linearity of the impulse response functions. Fortu-
nately, these nonlinearities are not signal dependent.
They are functions purely of spatial positions in the
optical system and may be partially corrected, wher.
the system is calibrated, by the use of a lookup table to
compensate the height of the area modulator. The
number of resolution elements N of a spatial light
modulator sets the limit on the degree to which distor-
tions in the values of h(x) are corrected, while still
producing the required dynamic range for the impulse
response function. An alternative method is to con-
trol the amplitude of each pixel position, through a
lookup table, to compensate the nonlinearity. This
fixed pattern, which can be used in conjunction with
control over the height of the area modulator, is also
not signal dependent so that no new nonlinearities are
introduced.

C. Beam Apodization

Another possible detrimental effect on the perfor-
mance of the system performance is the effect of the
beam apodization a(x,y). The effects of this term on
the x-integration are an easily predicted multiplicative
distortion, since Eq. (16) shows that the desired im-
pulse response h(x,t) is replaced by la(x)I2 h(x,t). This
weightirg also can be corrected, if neceasary, by using a
lookup table because the distortion is a function only
of the geometry of the system. If the illumination
profile is Gaussian, the height of the area modulator
near the edges must be proportionally increased rela-
tive to those at the center.

The apodization effect in the y-direction, however,
is less clear because the signal is integrated in this
direction. Since laser beams naturally have a Gauss-
ian profile, a commoniy used aperture function is

a(y) = recl(%) exp[-ZA({-)z]. (29)

We integrated la(y)I2 from 0 to the desired value of h(x)
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to obtain the effective h(x) value. Figure 4 shows the
resulting curves for apodizations of A = 0,0.5, 1, 2, and
3. The plots show a compression effect which also
affects the linearity of the area modulation technique.
Obviously, the best apodization in the y-directionis a
small value for A; too small a value for A, however,
leads to poor optical power usage.

D. Photodetector Size

The next nonideal situation involves the size of the
photodetector. All area modulators have limited spa-
tial resolution as set by tha pixel size. The highest
frequency in the a-direction is limited to a., = 1/2d,,
where dj is the minimum resolvable sample size of the
spatial light modulator. If the photodetector has an
insufficient width to collect all the diffracted light, the
result is equivalent to low pass filtering the signal.

The effect of a limited photodetector size in the
vertical direction is not as obvious, We first calculate
the Fourier transform of a positive area modulation
signal in the vertical direction:

- . hiz)
Po) = [ ttey) explizepyidy = [ explizetnidy, (30
- 0
where the apodization function la,(y)I> has been set
equal to unity. We perform the integration with re-
‘spect to y to obtain

P(p.x) = SERLZBRG) — L 31
] ,
which reduces to
P(B,x) = h(z) exp{j2xBh(x)] sinc[Bh(x)]. (32)

If the value of k(x) is small, the sinc function is broad,
with a wide main lobe. If the photodetector is too
small to collect all the sidelobes, the output signal is
reduced somewhat. In Fig. 5 we show the relative
output as a function of the number of sidelobes collect-
ed. To avoid amplitude distortion of the signal, we
ensure that the photodetector collects light to at least
the fourth sidelobe of the sinc function produced by a
single pixel. Such a detector therefore collects light to
at least the eighth sidelobe for any other signal level,
producing a negligible impact on signal quality. The

net effect is .thatf a signal level represented by a one
pixel height is slightly distarted, but the distortion is
well within the quantizing error limits.

E. Nonideal sgn Plate Responses

A nonideal sgn plate may have an error in the thick-
ness of the coating used to produce the negative values
for h(x). Suppose that the plate has a phase of 0 rad
above the x-axis and a phase of » + Ae rad below the
axis. Such an error causes a distortion in the impulse
response because the plate does not produce the prop-
er balance between the positive and negative values.
This error is moset easily detected by measuring the
residual average value, |H(0)l, in the Fourier plane
when s(¢) = 1 and the area modulator is a clear aper-
ture.

We determine the suppression of the average value
of h(x) as a function of Ae. By integrating over y, we
find that the contribution to H(0) from the region
above the x-axis is

JLI! L

dy ==, 33
oyz (33)

The contribution from the region below the axis is

0
f  expliCe + delldy = % [cos(x + Ae) + jsin(x + Ae)].  (34)

The normalized magnitude of the sum of Egs. (33) and
(34) yields

{H)f = Y% {1 + cos(x + Ae)]T + sin™(r + Ae) = sin(Ae/2). (35)

If the plate were perfect, the average value |H(0)
would be zero. From Eq. (35) we find that an error of
only 10° results in [H(0)| = 0.087 instead of the desired
value of 0. The thickness of the plate must therefore
be controlled, to within a value established by the
quantization limit, to produce accurate impulse re-
sponse functions.

V. Experimental Results

We implemented impulse responses with two types
of spatial light modulator: photographic film and a
liquid crystal display. Film provides an ideal method
to establish the ultimate performance of the system for
comparison purposes. Although the liquid crystal dis-
play has not been used in this type of application
before, several authors have explored the use of liquid
crystal displays in other optical processing applica-
tions.>7

Before the optical system was constructed, we modi-
fied an inexpensive liquid crystal TV display, follow-
ing the procedure given in Ref. 6. We removed the
hinge on the TV screen to allow the liquid crystal
display to open to 90°. We removed the plastic diffus-
er plate and the internal polarizers and cleaned the
remaining glue from the screen with acetone. We did
not apply index matching windows to the liquid crystal
display because we placed it outside the interferome-
ter, where its phase errors are not important.
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A. System Measuwement Without the sgn Plate

We used a network analyzer to calibrate the acous-
tooptic system response without a spatial light modu-
lator or the sgn plate. The network analyzer generates
a single frequency reference signal that is swept over
the frequency band to probe the response of the sys-
tem. The output from the photodetector is compared
to the reference signal to determine the amplitude and
phase response of the systermn. To account for the time
delay between the center of the iliuminating beam and
the edge of the transducer in the acoustooptic cell, we
placed an equivalent delay in the reference signal from
the network analyzer. The phase response is therefore
more easily assessed because the steep linear phase
shift across the frequency band, due to a long time
delay, is eliminated.

For the system test, the aperture function a(x) is a
rectangular function whose width is 2 mm, correspond-
ing to a time window of T = 3.2¢4 us. The tracein Fig.
6(a) shows the main lobe of the system response and
part of the first sidelobes. This result shows that the
width-of the main lobe is 600 kHz, consistent with the
acoustooptic aperture of 7 = 3.24 us. The x-direction
apodization for our experiments was approximately A
= (.15, which is nearly uniform illumination. Thus,
we expect the system response to be a sinc function,
with sidelobe peaks of —13 dB relative to the peak
main lobe level, as confirmed by the experimental re-
sults given in Fig. 6(a).

The system phase response over a 1-MHz band is
shown in Fig. 6(b). The network analyzer sweep time
is ~40 ms. Since the exposure time of the network
analyzer display was set to 100 ms, Fig. 6(b) reveals a
second trace that shows the effects of vibrations, which
caused the system response to change slightly from
sweep to sweep. A linear phase component of ~225°/
MHz is present due to a small mismatch in compensat-
ing the time delay between the center of the illuminat-
ing beam and the transducer of the acoustooptic cell.
The trace shows a sharp transition at three divisions
from the center of the display, which indicates the 180°
phase shift at the sidelobe nulls located at 59.7 and 60.3
MHz. Someripple is also noticeable in the trace in the
linear region of the response. This feature appeared
in all the phase traces and is probably due to feed-
through in the delay line used to cancel the long time
delay caused by the acoustooptic cell. Figure 6(c)
shows the magnitude response of the system over an
expanded bandwidth of 10 MHz. The overall re-
sponse is the expected sinc function; the system noise
level is evident at the higher sidelobe positions where
the signal spectrum is small.

B. System Measurement with the sgn Plate

We positioned the sgn plate in the reference beam
and adjusted the vertical position of the plate until the
network analyzer indicated the minimum value of the
spectrum at the center frequency of 60 MHz, which is
equivalent to the location of H(0). Figure 7(a) shows
the magnitude response with the sgn plate placed in
the system, from which we deduce that |H(0)| = 0.2 s0
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Fig. 6. System response without the sgn plate: (a) magnitude

response over 1 MHz; vertical scale, 10 dB/division; horizontal acale,

100 kHz/division; (b) phase response over 1 MHz; vertical scale, 90°/

division; horizontal scale, 10 dB/division; (c) magnitude response

over 10 MHz; vertical acale, 10 dB/division; horizontal scale, 1 MHz/
division.

that Ae = 23°, which is outside the manufacturers
specification that the coating thickness was 180 & 10°.
A comparison of the system phase response with the
sgn plate, shown in Fig. 7(b), with the phase response
of Fig. 6(b) shows that the aberrations induced by the
sgn plate are small.
C. Photographic Spatial Light Modulator Results

To test the system with an ideal spatial light modu-
lator, we used photographic film to introduce some
impulse responses whose frequency resporses can be
analytically predicted. These functions are a sinusoi-
dal impulse response and a sinc function impulse re-
sponse.




Fig. 7.

System resvonse with the sgn plate: (a) magnitude re-
sponse of the whole plate over 10 MHz; vertical scale, 10 dB/division;
horizontal scale, 1 MHz/division; (b) phase response of the whole
plate over 1 MHz; vertical scale. 90°/division; horizontal scale, 100
kHz2/division.

1. Sinusoidal Impulse Response

We implemented a sinusoidal impulse response of
0.36-cycles/mm spatial frequency, corresponding to a
temporal frequency of 0.8 MHz. We used two versions
of this signal. The first version has a peak-to-peak
aperture height of 8 mm, for which the beam apodiza-
tion at the maximum height is exp(~0.012). The re-
sulting spectrum is shown in Fig. 8(a}, and the expect-
ed frequency components at 59.2 and 60.8 MHz are
evident. The center frequency, representing the aver-
age value of the sinusoid, is low as expected.

To illustrate the effects of nonlinearities introduced
by aberrations and beam apodization, we implemented
the same sinusoidal function, but increased the peak-
to-peak amplitude to 28 mm, for which the beam apo-
dization at the maximum height is exp(~0.15). The
resulting spectrum, shown in Fig. 8(b), still shows the
desired frequency content at 59.2 and 60.8 MHz, but
the central component at 60 MHz is only 4 dB below
the level without the impulse response mask. Fur-
thermore, we see considerable frequency content at the
harmonics of 0.80 MHz, particularly at the third and
fifth harmonics of 60 + 2.4 and 60 = 4 MHz.

Harmonics are evidence of nonlinearities that may
be due to one or more of the sources discussed in Sec.
IV. For the larger amplitude impulse response, we
observed wavefront distortion at the output planc of

Fig. 8. Response of the sinusoidal filter of 0.36-cycles/mm spatial
frequency: (a) magnitude response of the sinusoid with a peak-to-
peak aperture of 8 mm over 10 MHz; vertical scale, 10 dB/division;
horizontal scale, 1| MHz/division; (b) magritude response of the
sinusoid with s peak-to-pesk aperture of 28 mm over 10 MHz;
vertical scale, 10 dB/division; horizontal scale, 1 MHz/division.

the order of A/2, particularly at the edges of the lower
section of the interference pattern. Using a computer
program, we determined the predicted sizes of the
third and fifth harmonics using the A/2 observed wave-
front distortion and the apodization of exp(—0.15) at
the maximum height of h{x). The predicted third and
fifth harmonic sizes were —16 and —33 dB below the
first harmonic, which agrees reasonably well with the
observed values, given the roughness of the distortion
measurement and the simplicity of the model. From
the calculations, we find that most of the distortion is
due to the phase errors.

2. Sinc Impulse Responses

The next impulse response was a sinc function repre-
senting an equivalent temporal impulse response
sinc(t/0.57 us). The frequency response is a rectangu-
lar function whose width is 1.76 MHz, as shown in Fig.
9(a); the sidelobes beyond the edges of the rectangular
function are consistent with those caused by a trunca-
tion of the sinc function by the finite aperture of the
acoustooptic cell. Figure 9(b) shows the experimental
results produced by a sinc impulse response whose
peak amplitude is 5 mm high. The resuits show a
passband of 1.8-MHz width, which agrees well with th.
theoretical value of 1.76 MHz. The sidelobe nulls are
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Fig. 9. Response to the sinc filter of 2.5-mm main lobe width: (a)

expected magnitude output; (b) magnitude response of the fiiter 5

mm high over 10 MHz; vertical scaling, 10 dB/division; horizontal

scaling, 1 MHz/division; (c) phase response of the filter 5 mm high

over 5 MHz; vertical scaling, 90°/division; horizontal scaling, 500
kHz/division.

not as well defined in this result as those in Fig. 9(a)
because of the system noise level, but the sidelobe
envelope follows the expected form. The passband
shows a ripple of ~2 dB caused by the truncation of the
sinc function. The phase response, shown in Fig. 9(c)
over a 5-MHz band, has a slowly varying ripple compo-
nent at one division on either side of the central axis of
the display.

O. Liquid Crysta: Display Results

We used a computer to write a square-wave grating
on the liquid crystal display, at a spatial frequency of
1.35 cycles/mm, to show the diffraction capability of
the display. We expect the output to be a sampled
sinc function with the first diffracted component at 3
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Fig. 10. Response with grating of 1.35-cycles/mm spstial frequency
written to a LCTV over 10-MHz band width; vertical scaling, 10 dB/
division; horizontal scaling, | MHz/division.

MHz, as confirmed by the experimental result shown
in Fig. 10. The diffracted orders 3 MHz from the
central order are clearly shown.

If the ON transmittance is equal to one and the OFF
transmittance is equal to zero, so that the contrast
ratio of the display is equal to one, we expect the
magnitude of the first diffracted order of the grating to
be down by ~4 dB relative to the main lobe. In the
case of the liquid crystal display, however, additional
attenuation of the diffracted orders is encountered
because the ON transmittance was measured as only
0.056 and the OFF transmittance was measured as
0.021; the contrast ratio of the display is therefore
rather low. Theresultsgivenin Fig. 10show responses
that are 16 and 18 dB below the central order, partly
because of the low contrast levels and partly because of
the higher than desired OFF transmittance.

We wrote sinc functione on the liquid crystal display
to further shape the output spectrum. Unfortunately,
these experiments were less successful. The resulting
output traces show evidence of some modulation, but
the spectra are difficult to measure accurately. The
performance of the liquid crystal display was disap-
pointing for two main reasons. The first problem was
that the low contrast ratio of the unit, coupled with the
available signal-to-noise ratio in our wide bandwidth
experimental system, made the liquid crystal display
results difficult to measure. An additional problem
was the fact that the OFF regions of the liquid crystal
light modulator allowed toc much of the incident illu-
mination to pass, producing errors in the output signal.
If the area modulation mask is high contrast, the back-
ground illumination represents a much smaller devi-
ation from the desired output.

V1. Conclusions

Acoustooptic processors are useful for applications
where computationally intensive integral operations
must be performed at rapid speeds. The extension of
the acoustooptic processor to arbitrary filtering opera-
tions can expand the capability of these architectures.




Area modulation is a particularly useful technique for
implementing arbitrary filter operations in acoustoop-
tic systems. The feasibility of the technique was sug-
gested by the analysis we performed and verified by
the experimental results. The photographic spatial
light modulator results were particularly encouraging.
While the liquid crystal display results were not as
successful, other spatial light modulators are available
which could offer better performance in a more sophis-
ticated system. A particularly important perfor-
mance parameter is that the transmittance in the OFF
state be low. These systems could operate as pro-
prammable filters at frequencies and bandwidths lim-
ited only by the detection circuitry and by acoustoop-
tic cell technology.

We thank C. S. Anderson, D. O. Harris, and R. N.
Ward for helpful discussions and advice. This work
was supported by the U.S. Army Research Office.
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Digital radio transmission systems use complex modulation schemes that require powerful signal-processing
techniques to correct channeli distortions and to minimize bit error rates. We propose combining the computation
power of acousto-optic processing and the accuracy of digital processing to produce a hybrid channel equalizer that

exceeds the performance of digital equalization alone.

Analysis shows that a hybrid equalizer for 256-level

quadrature amplitude modulation (QAM) performs better than a digital equalizer for 64-level QAM.

Microwave digital radios currently use 64-level quad-
rature amplitude modulation (64-QAM) signals to
achieve data rates of as much as 140 Mbits/sec. Im-
provements in the performance of the next generation
of radios require excellent channel control to increase
further the number of amplitude levels, as well as the
data rates, while maintaining bit error rates. With
digital equalizers the amount of improvement is limit-
ed by the adaptation algorithm and the number of
equalizer taps.! To achieve a significant increase in
data rates, other equalization techniques are needed
that are not restricted by digital hardware speed. We
propose combining the computation power of acousto-
optic processing and the accuracy of available digital
processing to produce a hybrid channel equalizer that
satisfies these goals.

The concept of hybrid channel equalization is illus-
trated in Fig. 1, which is a block diagram of a digital
radio. An optical equalizer operates at the intermedi-
ate frequency (IF) to correct channel distortion par-
tially prior to a final digital equalization of residual
errors. Since the digital postprocessor must correct
only residual distortion, better overall equalization is
achieved without increasing the number of taps.

Channel distortion is primarily caused by multiple
transmission paths due either to atmospheric refrac-
tion or to ground reflections. The frequency response
of the channel distortion can be written as

N
Hp = Z w, exp(—j2xfr,), (1)

im]

where w; and r; are the amplitude and delay of each
path and NN is the total number of paths. Rummler
claimed that no more than three separate paths were
present on a line-of-sight radio link?3; experimental
verification has shown this to be true for 99% of all
measured distortions.* Rummler also showed that
delay differences between two of the three paths could
be adequately represented by a fixed delay of 6.3 nsec,
even though the actual delays range from 2 to 15 nsec.?

With these simplifications, the modeled frequency
response of the distorted channel becomes

0146-9592/90/211182-03$2.00/0

H(f) = all ~ b exp[—j2x(f — f))7]}, (2)

where a, b, and f; are all complex functions of the
original values of w; and r. In this relation r = 6.3
nsec is the fixed delay difference chosen by Rummler.
From Eq. (2), we find that the magnitude and phase
characteristics are

IH()| = afl + b% = 2b cos[2x(f — fo)7]}? 3)
and
- b sin[2x(f ~ fo)f]
= 1
¥ = tan {1 ~b cosl2r(f — fo)fl}' )

where a is a gain factor, fo determines the notch loca-
tion of H(f), and b is the ratio of the power in the longer
delay path relative to that in the direct path. Magni-
tude and phase plots shown in Fig. 2 illustrate the
effect of varying b and f; for a 20-MHz channel. At
the receiver, the optimum linear filter for correcting
channel distortion in the presence of noise is®

-1
Hoil) = —2EOT ®)

R, (DIH(OE

where R,,(f) is the spectral density of the noise, R,,(f)
is the spectral density of the signal, and A is a com-
plex-valued constant that accounts for both gain and

Sample.
Digitai Equalizer.
Carrier and
Channel . Timing
Puise Distortion Optical Recovery

Shaping Equalizer

Carrier Carrier

Fig. 1. Schematic of the digital radio, showing the trans-
mitter (T'x) and the receiver (Rcv), with hybrid equalization.

© 1990 Optical Society of America

N RN————————




November 1, 1990 / Vol 15, No.21 / OPTICS LETTERS 1183

5 1 { 1 ‘
= DY e ——
= 07 I PR
3 ~—7/ 2
z 59 £ 0r
& i = m
2 0 50}
= 1

130 65 70 75 80 A0 65 0 15 80

Frequency(MHz) Frequency(MHz)

Fig. 2. Magnitude and phase plots for Rummier’s channel
model: casel,b=0.5and fy =62 MHz; casell,b=09andf,
= 50 MHz; case [II, b = 1.1 and f; = 70 MHz.

time delay. This filter ensures that the noise is not
too highly amplified when the value of |H(f)| is small.
On the other hand, if the spectral density of the dis-
torted signal R,,(f)lH(f)l2 is :auch larger than R,,(f),
the result in Eq. (5) is closely approximated by the
inverse filter [H()]~1. Since this condition is general-
ly met in digital radios, even for notch depths of 20 dB,
Ehe ai:o;mto-optic equalizer is designed to implement
H(HL.

To adapt the equalizer to varying channel condi-
tions, we first estimate the unknown channel parame-
ters without interrupting the communication system.
We use power spectral measurements of the received
signal to solve Eq. (3) for the maximum-likelihood
estimates of b and f;. An ambiguity in the estimation
of b arises, however, because the shapes of the power
spectra for b, = b and by = 1/b are identical, with the
only difference occurring in the phase characteristics
that are complex conjugates. For example, an estima-
tion using the power spectrum for case 1, as shown in
Fig. 2, results in the two estimates of b, = 0.5 and b, =
2, and we must determine which of these two distor-
tions is present. A particularly useful solution is to
process the received signal with equalizers based on
both b, and b; and choose the data that are best cor-
rected. This dual processing approach is convenient-
ly implemented in optical systems, since both equaliz-
ers are obtained from a single filter owing to the conju-
gate relationship between the diffracted orders of the
filter.

We want to decide which filtered signal is best with-
out coherently demodulating both data streams. If
the estimates of by, b,, and f; are accurate, one filter
output will be equalized, while the other will experi-
ence twice the channel phase distortion. To decide
which is best, we square-law detect each IF signal and
low-pass filter the result to produce a baseband signal
described by

s(t) = i¥(¢t) + g*(¢), (6)

where i(t) and q(t) are the baseband in-phase and
quadrature data signals, respectively. If i(t) and q(t)
are well-corrected QAM signals, s(t) will contain dis-
crete amplitude levels when measured at the peak
sampling instants. For example, a 16-QAM signal has
=3, =1, 1, and 3 as the possible amplitude levels of
each channel, so that every output sample of Eq. (6)
will have an amplitude of 2, 10, or 18. On the other
hand, if the QAM signal is distorted, the output sam-

pie values will be more broadly distributed. To deter-
mine which equalizer output to select, we count a large
number of samples around one of the expected ampli-
tude levels. The equalizer with the largest count is
deemed best, and its signal is converted to baseband
and demodulated.

We simulated this hybrid approach by using a 16-
QAM signal (20-dB carrier-to-noise ratio) that was
corrupted with the distortion shown in Fig. 2, case 11,
and then filtered with both candidate equalizers. The
output of each was processed according to Eq. (6) and
sampled at the proper instants. Figure 3 shows a
histogram of the samples after 1000 data points were
collected. As expected, the histogram of the equal-
ized signal is localized at levels 2, 10, and 18, but the
histogram of the signal from the other filter shows that
the amplitudes are more uniformly distributed. The
correct equalizer was sclected in 95% of all trials, and
the incorrect selection of 5% occurs only when the
difference between the two distortions is small.

The acousto-optic processor shown in Fig. 4 esti-
mates the channel conditions and selects the best cor-
rection filter. Power spectral measurements are ob-
tained by detecting the Fourier transform of the re-
ceived signal in an auxiliary frequency plane P,’. The
output of the photodetector array in plane P, is digi-
tized and processed to implement the estimation algo-
vithms for b and f;.

To realize complex filter functions with real-valued,
nonnegative photographic masks, we encode the am-
plitude and phase of the equalizers onto a spatial carri-
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Fig. 3. Histogram of data samples for matched (solid
curve) and mismatched (dotted curve) equalizers.

Filter
Acousto- Librarv
Optic (P.)

Photo-
detectors
(Py)

Device Beam
Splmcr
v 8 1 /s\______, To
Ll _ Demod-
Optical T vlator

Beam Photo- / = Switch
detectors i Select
F (R') Power
Inpwt Spectum
Esumauon

Fig. 4. Dual-frequency-domain equalizer with channel es-
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Tablel. Comparison of Minimum Mean-Square
Error for the Digital and Hybrid Equalizers

Normalized Mean-Square Error

Digital Hybrid

QAM No. Equalization Equalization
64 0.0089 0.0011
256 0.0361 0.0045
1024 0.1445 0.0181

er frequency. The distorted signal is simultaneously
processed with both the equalizer and its conjugate as
seen by writing the amplitude transmittance of the
mask as

t(x) = 1 + == cos[2mrax + 8(x)]

IH( )]

IH( )| exp[jo(x)]lexp(j2ra.x)

!H( T exp[—jf(x)]exp(—j2ra.x), (7)
where o, is the spatial carrier frequency, H(x) and 8(x)
are given by Eqs. (3) and (4), and we have ignored
scaling factors. The last two terms of Eq. (7) repre-
sent the equalization filters that have conjugate phase
relationships. After being Fourier transformed by
lens Ly, the two filtered signals are spatially separated
because the spatial carrier frequency a. produces dif-
ferent linear phase components for each term. By
placing a photodetector at each output location, both
equalizers operate in parallel. A separate digital pro-
cessor compates the squared output of both equalizers
to set the switch position that feeds the correct data to
the demodulator.

The number of filters required to equalize the chan-
nel over the expected ranges of b and fj is estimated by
specifying the amount of residual IF spectral distor-
tion that is tolerable at the output of the acousto-optic
equalizer. Since the system contains both optical and
digital equalizers, the requirements on each can be
slightly relaxed. Suppose that a 3-dB residual ampli-
tude error can be readily corrected by a digital equaliz-
er and that we store a finite number of filters in the
library to cover the range of b values. After optical
equalization, the residual amplitude error in decibels
can be written as

el‘t!

1+ b% — 2b cos [2x(f — f)7]
= (10 log
1+ (b + Ab)2 — 2(b + Ab)cos[27(f ~ f,)r]

(8

where Ab is the difference between the value of b for a
given filter and its true value for the channel. Givena
value for b, the maximum allowable Ab is found by
requiring that e.,(f) is less than 3 dB over the filter
bandwidth. We found that eight filters are sufficient
to equalize the full range of channel distortions. No
additional filters are needed to cover the range of val-
ues of fy since the cenier frequency of the IF data

signal can be changed to compensate for the notch
position.

The number of samples needed to represent accu-
rately each filter function in frequency is determined
by comparing the actual frequency response to a series
of samples smoothed by an interpolation function.
We found that the filter is accurately represented with
25 samples across the 20-MHz bandwidth. To equal-
ize all possible notch positions, we must record the
filter over a 40-MHz bandwidth so that the total num-
ber of samples is Ny = 2 X 25. In addition, the com-
plex filters require a spatial carrier frequency so that
they can be recorded onto a material that supports
only nonnegative values.” Suppose that the carrier
frequency is six times the maximum frequency of the
equalizer frequency response, so that the total number
of samples needed to record a single filteris N, = 6 X 2
X 25 = 300. Multiplying the number of samples by
the number of filters to handle the range of b values
leads one to the requirement of 2400 samples, which is
low compared with that of most optical holograms.®
Computer-generated holograms are practical for use
in this application because the required filter func-
tions are easily calculated using Eqs. (3) and (4), and
the small number of samples can be produced with
available computer printers.

Finally, we compare the minimum mean-square er-
ror of an 11-tap digital equalizer with and without
optical preprocessing. The optical equalizer was se-
lected from one of the eight library filters and included
some additive amplitude and phase ripple. For both
receivers we calculated the minimurmn mean-square er-
ror for 64-, 256-, and 1024-QAM signals and normal-
ized the error relative to the power at the minimum
modulation level. From the results listed in Table 1,
we see that a hybrid equalizer for 256-QAM has a
minimum mean-square error of 0.0045, which is ap-
proximately half the minimum mean-square error of
0.0089 for a digital equalizer, operating alone, for 64-
QAM. This eightfold increase in performance can be
used in one of several ways: to increase the symbol
rate, to increase the number of QAM levels, or to
decrease the bit error rate. Experimental research to
validate the calculations presented here is in progress.

This research was supported by the U.S. Army Re-
search Office.
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ABSTRACT

Digital radio transmission systems use complex modulation schemes that require
powerful signal-processing techniques to correct channel distortions and to minimize bit
error rates. In this paper, acousto-optic processors are used, in conjunction with adaptive
digital equalizers, to reduce the bit error rate of the digital radio receiver. The acousto-optic
processor implements an inverse channel filter that is rapidly adaptable to time varying
distortions. A specific architecture is identified and a laboratory system is tested to verify
the ability of the processor to track and correct time-varying channels. Computer
simulations are used to show that the hybrid acousto-optic and digital equalizer allows a
four-fold increase in the modulation capacity of radio, relative to all digital equalization,

while improving the bit error rate performance.
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I. Introducticn
Microwave digital radios are an important transmission medium for

telecommunications, partly because of their compatibility with digital switching and routing

' technologies L To support the increasing demand for high quality digital service, the data

capacity of the radio links must be increased, which requires excellent control over channel
characteristics. Digital equalizers are used in the radio receiver to combat channel distortion
but they do not support the high level modulaton formats anticipated for future systems.

Recently we proposed a receiver technique that uses a combination of analog
acousto-optic processing in the intermediate frequency portion of the radio along with
digital processing at baseband?. While combined analog and digital processing is
commonly performed in digital radios, it has not been fully exploited as a channel
equalization technique. Examples of hybrid receivers include the combination of a digital
equalizer with a square-root of Nyquist filter’, with an intermediate frequency slope
equalizer®, or with a resonant circuit that is the inverse channel filter for minimum phase
distortion®. Each of these approaches performs well for some channel types but cannot
correct for all expecter distortions. Using the adaptive, acousto-optic processor, we are
able to track and correct rur all channel types after which a digital equalizer further reduces
the effect of channel distortion. Using the synergetic effect of the analog and digital filter,
the receiver bit error rate is lowered.

In this paper, we describe the acousto-optic processor and quantify its benefit to the
digital radio. We begin in Section II by introducing the basic features of microwave digital
radios and identifying a hybrid acousto-optic and digital processor that optimizes their
performance. In Section III, we analyze an acousto-optic architecture that implements the
analog portion of the hybrid equalizer and in Section IV, we develop a channel estimation
technique that adapts the optical processor to time varying distortions. Experimental testing

of the acousto-optic system is described in Section V and the results of a computer




simulation are used, in Section VI, to measure the performance of a hybrid equalized digital

radio.

II. Microwave Digital Radios

The major components of a microwave digital radio link are a transmitter, an
atmospheric transmission channel and a receiver as illustrated in Figure 1. Input into the
transmitter are multiple channels of digital telecommunication data, which may contain
information from voice, video or data signals. The incoming digital signal is converted to a
train of narrow analog pulses, spaced T seconds apart. This analog signal has a high
frequency content which must be reduced by pulse shaping filters to match the allotted
bandwidth. The output of the pulse shaping filter is modulated in quadrature and radiated
from an antenna.

At the receiver, the signal is mixed to an intermediate frequency of either 70 or
140 MHz, depending on the particular radio. The signal is gain controlled, to compensate
for attenuation, and may be partially corrected for distortion by an analog channel equalizer
such as the acousto-optic processor. After analog filtering, the signal is coherently
demodulated to baseband and processed with a matched filter that maximizes the signal-to-
noise ratio. The incoming waveform is sampled and digitized at the symbol rate T,
equalized with an adaptive digital filter, and decision thresholded to recover the message
signal.
A. Multipath Channel Distortion

The received signal can be affected by the atmospheric channel in three ways: it
can be time delayed, attenuated, and distorted. Time delay is expected because the signal
propagates over an average distance of 25 miles. Signal attenuation occurs because the

entire radio wave is not collected by the receiving antenna and because atmospheric




scattering reduces the signal strength. The most important atmospheric effect is multi-path

channel distortion, which corrupts the shape of the ransmitted pulse and causes bit errors.
Multipath distortion occurs when multiple portions of the radio wave are refracted,

by the atmosphere, into the collecting antenna®. The frequency response for N, separate

multipaths can be written as’

. |
H(f) = Y wie 27 )

i=1

where w; and 7; are the attenuation and time delay of each path respectively. Testing of
line-of-sight radio links has shown that the number of paths is less than or equal to three
for more than 99% of all measured distortions’. By reducing N, to three and assuming

that the time delays between two paths are nearly equal, Rummler® showed that the channel

distortion is given by

H(f) = a(l - be 2H(FHo)7), @)

where a, b, and f{ are all complex functions of the original w; and #; and ¢ = 6.3 ns is the
fixed delay difference chosen by Rummler. From Eq. (2), we find that the magnitude and

phase characteristics are

1
[H()| = a(1+ b? - 2bcas2a(f - £)7))2, 3)
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Magnitude and phase plots are shown in Fig. 2 and illustrate the effect of varying b, which
controls the notch depth, and fj, which controls the notch location. Since 7 is on the order
of 6 ns, the muitiple notches predicted by Eq. (3) are spaced by 166.67 MHz so that at
most one notch corrupts the 20 MHz bandwidth signal. As b approaches one, the notch
becomes infinitely deep at f=f.

An interesting complex conjugate relationship exists between channel distorstions
having b values that are reciprocally related; i.e.,b;=1/by. Physically, a b value larger than
one corresponds to the longer delay multipath having a larger amplitude at the receiver than
the shorter delay path. This type of distortion, known as non-minimum phase distortion, is
known to occur in approximately 50% of all observed channels’. Since the minimum and
non-minimum distortions are effectively a complex conjugate pair, their magnitude
distortions are identical but their phase distortions have opposite sign. It is, therefore,
counterproductive to equalize a channel distortion with the wrong equalizer type since a
doubling of the phase distortion will occur. Most analog equalizers produced to date have
either have been designed for minimum distortions or they do not produce phase correction
atall. As we show in Section III, it is straightforward to produce an equalizer for both
distortion types using the acousto-optic approach.

B. Hybrid Acousto-Optic and Digital Receivers
The acousto-optic processor uses a bank of eight filters that are designed to reduce

the channel distortion prior to digital equalization; five filters are for minimum phase




distortion and three are for non-minimum distortion. For eight different b values, we

implement a near optimum linear filter described by9

_H*(f)
(P

_FU)
lH (f )|2 (3)

CV(f) TR*(f)

where TR(f) is the frequency response of the transmit filter. Equation (5) represents the
inverse channel filter multiplied by the transmit filter. Although inverse filters enhance the
noise when used for deep notches, the subsequent digital equalizer compensates to
minimize the expected error between the transmitted and received waveform 10

Figure 3 shows the expected error for an 11-tap digital equalizer with and without
the acousto-optic processor; 11-taps are used in current digital radios. The error is plotted
for both receivers as a function of channel notch depth and for a fj) value of 4 MHz. When
the acousto-optic processor is not used, the short tap length digital equalizer cannot
adequately correct the distortion and produces large amounts of error. The reason for this
poor performance is that the 11-tap equalizer does not have the degrees of freedom (taps) to
correct the deep notch in the magnitude response. As designed, the acousto-optic equalizer
uses the equivalent of 70 taps (time-bandwidth product) and can correct the severe notch.
When used after the acousto-optic equalizer, the digital processor must correct for only
small amounts of residual distortion and noise.

Also shown in Fig. 3 is the mean square error produced by an optimum linear
receiver. Although the acousto-optic processor uses only eight filters, the hybrid

equalized receiver performs very well relative to this bound. As we show in SectionIV,




the error reduction relative to the digital equalizer significantly lowers the bit error rate of
the hybrid equalized radio. As the ransmitted waveform becomes more complex in order
to increase data rates, this improved equalization will become critical to maintain acceptable
bit error rates.

III. Channel Filtering

We now identify an acousto-optic processor that implements the required filters
described by Eq. (5). To select the best architecture, we consider issues such as filtering in
the time or frequency domain, heterodyne versus homodyne detection, and the practical
effect of optical aberrations. Once the architecture is selected, we analyze the output signal
as a function of the input and an area modulated mask containing the inverse filters;
practical implementation of these masks is discussed in this section.

A. Architecture Selection

Several acousto-optic architectures are available for filtering electrical signals with a
fixed photographic mask!!"13. These include time domain architectures where the mask is
located in the image plane of the acousto-optic cell, and Fourier domain architectures where
the mask is located at the Fourier plane. Another important architecture choice is the
generation of the reference beam which is necessary for recovering the filtered signal on the
original intermediate carrier frequency f, 15,

Figure 4 shows both the time and frequency domain architectures. In the time
domain system, lenses L, and L, image the acousto-optic signal onto the impulse response
mask. Lens L integrates and places the mask output onto a high speed photodetector,
which then produces the desired filtered signal. A more commonly used architecture is the
Fourier domain system shown in Fig. 4b. This architecture filters the signal by altering its
spectral characteristics with the mask, after which the optical signal is Fourier transformed
and detected. Theoretically, the outputs of these two systems can be made identical with

appropriately selected mask functions.

\




In practice, two primary differences exist between the architectures which makes
the time domain system more attractive for our application. First, the time domain
processor uses a spatial carrier frequency, recorded onto the mask, to make the diffracted
and undiffracted acousto-optic signals collinear; this is necessary for homodyne
detection!?. In the Fourier domain processor, however, the diffracted and undiffracted
beams are spatially separated at the mask and cannot be made collinear by the addition of a
carrier frequency. As Fig. 4b shows, an additional grating is required for collinearity
thereby increasing the number of components. The second advantage of the time domain
system is that mask phase errors, caused by spatial nonuniformities in the mask substrate,
do not effect the processor output. This beneficial result arises because both signal and
undiffracted beams pass through the same optical non-uniformities and after square-law
detection, the phase error cancels from the homodyne signal. In the Fourier system, the
diffracted and undiffracted beams are separated at the mask and suffer different phase
distortion. When square-law detected, the two unequal distortions do not cancel and
directly effect the output.

The final architecture choice is between homodyne and heterodyne detection'?.
As Fig. 4 shows, the homodyne system uses the undiffracted acousto-optic beam as the
photodetector reference. Since normal acousto-optic diffraction angles are small, the
diffracted and the undiffracted beam travel nearly the same path, allowing both beams to be
processed with the same optical components. Because this almost common path
architecture minimizes the sensitivity to thermal and vibrational instabilities, the homodyne
detection scheme was selected.

To address one of the eight impulse responses recorded onto the mask, we use a
galvonometer mirror in the back focal plane of lens L; to fold the optical path and to change
the beamn angle in the vertical direction; this mirror is also located in the front focal plane of

L. Once the channel conditions are determined and the best filter selected, the angle of the




mirror is set to address the appropriate mask element. This mirror angle is held constant

until the channel conditions require a different mask element, after which the mirror angle s
switched; a more complete architecture schematic is shown in Section V.

The eight inverse filters are chosen to implement Eq. (5) for different b values but
for a fixed notch location f. To account for the range of expected noich locations, the
incoming electrical signal is frequency shifted with a mixer to align the center of the notch
and the peak of the filter response. After the acousto-optic filter, the electrical signal is
mixed back to the intermediate frequency of the radio with the same local oscillator used in
the first mixer.

B. Input/Output Relationship

The selected acousto-optic architecture is a space integrating correlator and has been
extensively analyzed in the literature . In this section, we modify existing analyses to
account for binary, area modulated masks. The optical signal incident on the mask can be

written as15

fo(xy) =1+ jmog(t - T, /2 + x/v)ejznf‘[t—r“/z”/"']. ©

where my is the modulation index, g(t) is the baseband input signal, T, is the acoustic time
aperture, and v is the acoustic velocity. To produce a homodyne photodetector output, the
diffracted and undiffracted beams are made collinear and overlapping by a grating in the

mask. For area modulation, we write the binary mask transmittance as

m(q,p) = k{(q, p)grat(q.p), ™)
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where ¢ and p are the spatial coordinates, A(p,q) encodes the filter impulse response, and
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A few cycles of this grating are shown in Fig. 5. A shifted grating is used in Eq. (8) so
that light incident on the bottom half of the mask is diffracted with a & phase shift relative to
the light diffracted from the top half; this technique is similar to the sgn plate used by
Karnowski 6. By encoding the height of the grating in the upper and lower portions of the
mask, we can produce bipolar filters.

Suppose that the mask filter function is split into two sections given by

9

where 4., is for regions over the top half of the grating and 4_ is for the bottom half.
After multiplying the mask in Eq. (7) by the optical signal in Eq. (6) and collecting all

collinear terms, we find that the detector output current is proportional to

P M{J-l'"‘“"‘"' Tlrsncard — mo, Cadlals — 773 = 2 et }.

(10)




where some unimportant factors have been neglected and the equvalent filter function is

defined as

(%) ﬂh (&.7)dr:

(11)

the same definition is used for h,q by replacing f, in Eq. (11) with & Even though the

individual filter functions in Eq. (11) are positive, Eq. (10) shows that the total impulse

response can be bipolar. If all functions are real-valued, Eq. (10) reduces to

oo =020 0e - 7720+ £) [[1 () - e (0)ete - 772+ 20
e (12)

which is the envelope of the input signal filtered with the impulse response given in
Eq. (5).
C. Mask Production

The area modulated impulse responses were produced using photo-lithography
masks for VLSI circuits. Several companies manufacture these components based on a
computer mask description. Our mask functions were converted into forms accessible by
AUTOCAD, which is a high precision graphics program. The completed AUTOCAD
graphic was used to produce a chromium mask, where the dark grating bars are made
opaque with a chrome coating and the clear areas are left uncoated. The measured

attenuation of the opaque bars is greater than 50 dB relative to the clear apertures. Other




masks, such as those using film absorption, are available but the attenuation is not as large
allowing some light leakage that alters the impulse response of the filter.
IV. Channel Estimation
To select the best filter from the eight element library, we must rapidly identify the

channel distortion parameters g, b, and f; and then set the mirror angle in the optical
processor to address the appropriate filter. If the value of these parameters are known, the
complete magnitude and phase response of the channel is characterized and the best mask
element can be determined. Fortunately, these channel parameters can be determined from
the power spectral density of the communication signal which, in turn, can be measured by
time averaging the output of an acousto-optic power spectrum analyzer. In this section, we
show that this operation produces an unbiased an consistent estimate of the power spectral
density and then determine the three channel parameters from this estimate. In addition, we
introduce a technique for differentiating between minimum and non-minimum phase
distortion.
A. Acousto-Optic Power Spectral Density Estimation

The acousto-optic power spectrum analyzer shown in Fig. 6 is a well developed
system for measuring the frequency content of a si gnal”. Unfortunately, the power
spectrum of a random signal is a poor estimate of the statistical power spectral density and
leads to erroneous estimates of the channel parametersls. By temporally integrating the

output of the spectrumn analyzer, however, an estimate of the power spectral density is
obtained, from which a, b, and fj) are determined.

To show this result, we write the optical signal at the photodetector array as!d

7 |
Gla.n= [g(t=T,/2+x/v)el* ™ dx,

% (13)




where L is the acousto-optic cell length and a is proportional to the spatial position along

the detector array. The CCD detector array square-law detects the instantaneous power

spectrum and, at any instant in time, the incremental charge added to the detector is

proportional to
%% o
Gla,0f = | { gt =T, /2+x/V)g*(t ~T [ 2+y[v)el2 ™ e /27D dxdy,
~h (14)

where some unimportant scaling factors are neglected. Since the input signal is random,
this power spectrum is random and its instantaneous value does not adequately estimate the
power spectral density.

The expected value of the instantaneous power spectrum or, equivalently, its

ensemble average, is given by

[/2 % . .
E{lGanf} = | [E{ge-T, 12+ xpmg* =T, 12+ ym)}e ™= e > dxay,
-7 -

(15)
where E{} is the expectation operator. If g(t) is stationary, which is a valid assumption in

digital radios, the expectation in Eq. (15) is the statistical autocorrelation function Rg, and

allows Eq. (15) to be rewritten as!?
Y %
E 2] _ R )"1) jamax - j2ney g, o
It} = | { gg(——v 270 =27 g gy
b4 -4 (16)




The time dependance is dropped in this equation because of the stationary assumption for
the signal statistics. To further simplify Eq. (16), we make the variable transformation

& =(y—x)/v on the integral over x and reverse the order of integration. By integrating

with respect to y first, Eq. (16) can be evaluated as two separate integrals, produc:ing20

0 v T, | %
E{|G<a,:)|2} =v [ Reg(&)e™ [ ayde+v[ Rey(£)e>™  [apat.
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After performing the integrals over y and rearranging terms, we obtain

E{IG(a t)|2}=-1-} R, (&) 1_|_€_| o276
s T_T 88 T ’ (18)

which shows that the expected vaiue of the instantaneous power spectrum is the Fourier
transform of the autocorrelation function multiplied by a triangular window. Since, by
definition, the power spectral density is the Fourier transform of the autocorrelation
function, Eq. (18) is equal to the convolution of the true spectral density with sinc(Tay).
By choosing the appropriate time aperture of the acousto-optic cell, the convolution with
sincz(Toc) has little effect on the shape of the power spectral density; we use a 1.25 ps time
aperture.

Although a single power spectrum is an unbiased estimate, it may have little
resemblance to the actual spectral density. Stated differently, the error between the

instantaneous power spectrum and the power spectral density is, on average, zero but the
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error variance may be quite large. To reduce the error vanance, we introduce the time

integrated power spectrum of

T,
IG(oz){2 =1 IG(a. o) ar,
et g { (19)

where Tj is the detector integration time. In Reference 8, we show that this unbiased
estimate of the power spectral density is also consistent.
B. Parameter Estimation

With the power spectral samples digitized from the acousto-optic system, the
channel parameters a, b and fj are estimated and used to select the best inverse channel
filter. First, thé spectral samples are normalized by the known response of the pulse
shaping filters so that the resulting data is samples of |H (f)lz. Next, an error function,

given by

=105 log(a4;) - g |

=1
2

;[log : —10g 2[1+—b2..2bcos(27t[f fo]z')])] 0

is defined and minimized with respect to @, b and fj. In Eq. (20), M; and f; are the spectral
measurements and their frequency locations respectively. The parameter values that
produce the smallest error in Eq. (20) are the desired channel estimates and are found by

using a steepest descent algorithmg. After the channel parameter are found, a look-up table
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is used to select the best filter from the eight element library and to set the mixer frequency
to align the channel notch. Since digital radio channel conditions change on the order of
10-100 milliseconds, these operations need only be performed a few times a second.

C. Minimum/Non-Minimum Determination

Using only power spectral measurements, we cannot distinguish between
minimum (b<1) and non-minimum (b>1) phase distortion, since these two channels differ
only in their frequency domain phase. A blind digital equalization technique to identify the
appropriate phase condition when the channel passes through a severe notch that causes the
adaptive digital equalizer to diverge from the optimum solution. As an example, suppose
that radio operation begins when little or no distortion is present. Initially, all distortions
are assumed to have minimum phase. The acousto-optic processor applies only minimum
phase filters aad the digital equalizer acquires lock. During normal operat.on, the hybrid
equalizer tracks the minimum phase channel until a catastrophic distortion event causes the
digital processor to lose lock.

Once the digital tap weights diverge from the optimum solution, the filter must be
retrained by again using blind equalization. Unfortunately, we are unsure of the distortion
phase type so the acousto-optic processor must switch between two filters which are the
complex conjugates of one another; i.e., one is for minimum phase fades and the other is
for non-minimum phase. One thousand symbols are processed for the minimum phase
filter and if the digital equalizer re-acquires lock, the acousto-optic processor uses only
those filter types. If the blind equalization algorithm does not converge, however, the
non-minimum phase filter is applied and another 1000 symbols are processed. Filter
switching continues until channel conditions improve to the point that the hybrid equalizer

converges to the minimum mean square error solution.




Even with this switching algorithm, the hybrid equalizer recovers more quickly
from catastrophic distortion than the all digital equalizer. The digital equalizer, without
acousto-optic filtering, must wait until conditions improve substantally before re-acquiring
lock. The acousto-optic processor in the hybrid equalizer, however, reduces the channel
distortion processed by the digital equalizer and allows much faster convergence.

V. Experimental Results

In this section, we experimentally verify that the acousto-optic processor estimates
and corrects for channel distortion described by Eq. (2). Our experiments are subdivided
into three areas and include 1) frequency response measurements of the inverse filters, 2)
channel estimation measurements, and 3) channel tracking and equalization tests. When the
results of these experiments are combined, they prove that the acousto-optic processor
provides the necessary adaptive analog filtering needed for the hybrid equalizer.

Figure 7 shows the laboratory acousto-optic processor that combines both the
filtering and channel estimation branches discussed in Sections III and IV. Our first tests
measured the frequency response recorded onto the mask and verified that inverse channel
filters could be produced. Frequency responses were measured with a HP 8654A network

analyzer, digitized, and then transferred to a Macintosh computer. Figure 8 shows the
measured and theoretical frequency responses for three of the eight inverse filters; the other
five responses perform similarly. The error between the measured and the theoretical
magnitude response, which is caused by slight imperfections in the mask and optical
system, is small. Measured phase responses are in excellent agreement with theory, even
as the phase transition becomes very sharp. Notice that for the b=b=1.047(1/0.955)
equalizer, the phase slope is opposite from the minimum phase filters thus verifying the
non-minimum phase equalizer. This frequency response data is also used in Section VI to

simulate the acousto-optic processor in a hybrid equalized digital radio.




The second test verified that the channel estimator could select the appropriate filter
from the library. A muitipath channel distortion circuit was developed that emulates the
frequency response given in Eq. (2). Figure 9 shows a plot of the estimated notch depth
versus the actual notch depth for two notch locations. The horizontal axis is subdivided
into filter regions within which the listed filter is best. For example, the third filter, which
is a exact inverse filter for a b value of 0.92, is the best filter when the notch depth is
between 18.7 dB (b=.88) and 25 dB (b=.944). The vertical axis is also subdivided into
regions within which a notch depth estimate causes the listed filter to be selected. Shaded
regions indicate areas where the best filter is selected while the unshaded regions are where
a sub-optimum filter is chosen.

From Fig. 9, we see that estimator chose the best filter in 37 out of the 39 test
cases, or approximately 95% of the time; we believe that this number of trials provides a
good estimate of performance if the test cases are selected uniformly along the notch depth
axis. The two incorrectly chosen filters occurred at transition regions between filters,
which is not surprising since the margin of error is small at these points. Incorrectly
choosing the filter at the transition region increases the distortion out of the acousto-optic
filter by around 1 dB, which is small relative to the unfiltered channel.

The last experiment verified that the adaptive acousto-optic processor tracks time
varying channels. Test signals were input into the acousto-optic processor after being
distorted by the channel emulator. The output of the spectrum analyzer was digitized and
the channel estimation algorithms were performed using a Macintosh computer. To begin
the experiment, the channel emulator was set to provide no distortion, after which the notch
depth was gradually increased. The acousto-optic processor estimates channel conditions
and automatically applies the best filter. To quantify the performance, the root mean square

distortion, remaining after acousto-optic filtering, was calculated and found to be below




1.5 dB. This result shows that the acousto-optic processor accurately corrects the channel
leaving only small amounts of residual distortion.
VI. Simulatior Resuits

We now test the performance of the hybrid and all digital equalizers in a digital
radio by measuring their bit error rates via a simulation. To accurately model the hybrid
equalizer in the simulation, the frequency response data for the acousto-optic processor is
used as the analog filtering response. The digital radio can use either 64, 256, or 1024-
level quadrature amplitude modulation; as the number of modulation levels doubles, so too
does the amount of data transmitted per pulse. Figure 10 shows the bit error rate of the all
digital radio and of the hybrid equalized radio as a function of the channel notch depth. As
expected from the mean square errors presented earlier, the hybrid bit error rate is
considerably lower than for the receiver using a pulse shaping filter. For example, a 31 dB
notch, centered at fp=0, produces a bit error rate 27.5 dB higher in the conventional 256-
level system as compared to its hybrid counterpart. Other simulation results showed that
the hybrid acousto-optic and digital equalizer allows a four-fold increase in the modulation
capacity of radio, relative to all digital equalization, while improving the bit error rate
performance.
VII Conclusions

We have identified a hybrid acousto-optic and digital equalizer and quantified its
benefits as compared to conventional equalization. An adaptive acousto-optic processor
was developed that tracks time varying channels and applies an inverse channel filter to
remove the distortion. The processor corrects notches while producing less than 1.5 dB or
root-mean-square residual distortion. Both conventional and hybrid equalized radios were

simulated and the latter was found to support a four-fold increase in data capacity while
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maintaining equivalent bit error rate performance. This large improvement can be used to
increase the number of telecommunication channels or to reduce bit error rates.
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1 introduction

As the spectral environment becomes more congested. wide-
bandwidth signals are frequently corrupted by narrowband
interference. Because an optically generated Fourier trans-
form is physically accessible. we can use spatial light mod-
ulators (SLMs) to block the energy from the interference
signals while allowing the spectral energy from the wide-
band signals to pass through the system, thereby improving
the signal-to-noise ratio (SNR) at the output.

In the early 1980s Erickson'* performed analyses and
expenmems dealing with signal excision usmg spatial filters
in the spanal frequency plane. Lee et al.? reported on ex-
periments in which they used a threshold detector array to
control SLMs in the spatial frequency plane. Roth* reported
on the use of a photodetector array to remove mterfenng
signals and Anderson et al. 5 demonstrated excision usmg a
GaAs photodetector array. Brandstetter and Grieve® built
an optical notching filter that uses a recursive technique to
obtain increased notch depths.

In this paper we describe an adaptive system in which
the response time of the feedback loop is fast enough to
track changes in the rf environment for many applications
and show how the shapes of short pulses are distorted when
narrowband interferers are excised. In Sec. 2 we describe
a signal excision system using SLMs in the spatial frequency
domain to notch the energy caused by narrowband inter-
ferers. In Sec. 3 we describe the physical layout of a signal
excision system and discuss the optical modifications im-
plemented to monitor the noise spectrum. In Secs. 4 and 5
we present experimental results produced by the system,
including the distortion effects of the excision process on
short pulses.

*Current affiliation: Harris Government Systems Sector. Melboume. Florida
32901.
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2 Background for Signal Excision

The spectra of wideband signals are spread over a large
region of the spatial frequency domain. The spectra of
narrowband interference signals. on the other hand. occupy
only isolated, small regions of the spatial frequency domain.
A spatial filter that removes the energy associated with the
narrowband interference signal improves the SNR at the
output of the optical system, significantly aiding in the re-
covery of the signal. The signal waveform may, however,
become distorted in the process, depending on the frequency
of the narrowband interferer and the spectral content of the
signal.

Figure 1 shows an interferometer in which an acousto-
optic cell at plane P3, driven by an electrical signal f(1),
modulates light in both space and time. Although the signal
to be processed is usually an rf signal that is translated into
the bandpass of the acousto-optic cell, we elect to discuss
the basic concepts in terms of baseband signals and inter-
ferers that are modulated onto a carrier frequency f;; this
analysis more nearly para:lels that needed to describe the
experimental results. The drive signal to the cell is f (1) =q(1)
cos(2mf.1), where

N
g(n)=s(r)+ ElAj cos(2nfit+d;) M)
=

is the sum of the desired baseband signal s(z) and N
narrowband-interference signals that have arbitrary mag-
nitudes, frequencies, and phases.

The positive diffracted order produced by the acousto-
optic cell is represented by

T «x ) T x
f+(.t.t)=a(x)q<t—;j—;) exp[;Zwrj}(l—z —;)] . (2)

where a(x) is the aperture weighting function, T is the time
duration of the acousto-optic cell, and v is the acoustic

———— ]
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A9 combiner Spastal light
modulator

Fig. 1 Heterodyne acousto-optic system for notched filtering.

velocity. The Fourier transform of the signal beam is located
at plane Py:

* T x
F+(a.r)—f_=a(x)q(r—-2-— ;)

X

X exp[ﬁwfc(t—%——)] exp( jmox) dx , (3)

v

where the time-dependent Fourier transform is expressed in
terms of a spatial frequency . We remove the factors that
are not a function of x from the integral to find that

T\ (" T x
F"‘(a”)_exp[jzwfc(t-i)]J’_zﬂ(X)q(l-‘i—;)

X exp{j2m(a—ac)x] dx . )

This result shows that F . (a,f) is the Fourier transform of
the aperture-weighted baseband signal, centered at a spatial
frequency a..

Light in the upper branch of the interferometer passes
through lens L3 and becomes a point source at plane P2. A
point source located a distance xo from the optical axis at
plane P; is represented by r(x) = sinc[(x — xq)/do}, where dy
is the distance from the centroid of the sinc function to its
first zero. The Fourier transform of the reference signal,
after a small rotation of the beam combiner to center the
light at a., becomes

R(a) = rect[(a — a.)dp) exp( j2mwaxg) , 3

where the exponential term is generated by the off-axis
position of the source.

Heterodyne detection can be achieved by using a pho-
todetector immediately after the SLM at plane P4 to integrate
the intensity due to the sum of the Fourier transforms of the
signal and reference beams:

g(n= J[F+(u,t)+R(a)|2|H(a)|2P(a) da | (6)

where H(a) is the spatial frequency response of the SLM
used to notch the narrowband interference signals and P(a)
is the response of the photodetector. An alternative method
< of detection is to use a photodetector at the image plane of

the reference and signal functions. as shown in Fig. 1. The
filtered signal beam at plane Ps is

f+un= Ja(.r)f,(x.t)h(x-—u)d.r . (7)

where u is the spatial coordinate at plane Ps and h(u) is the
impulse response of the filter function H(a). The reference
beam also passes through the filter function H(a) and. at
plant Ps, becomes

r(u)= Jr(x)h(x—u) dx . (8)

—x

For image plane detection, the output signal is

glt)= f U+ (u.t) +rGof plu) du 9

—-x

where p(u) is the response of the photodetector at plane Ps.
We expand the integrand of Eq. (9) and find that the output
photocurrent consists of three terms:

gi(n= f Ir)p(u) du (10)
gAr)= f If+unfplu) du an
gi(t)=2 Re [ J’f+(u,l)r’(u)p(u) du] . (12)

-t

Since g;(t) is not a function of time, its spectrum is con-
centrated at zero temporal frequency. It is relatively straight-
forward to show that the spectral content of ga(7) is also
concentrated at zero frequency. Since the temporal spectrum
of g3(1) is centered at £, the baseband terms can be removed
by a bandpass filter, leaving only the cross-product term as
given by Eq. (12). We substitute Eqs. (7) and (8) into Eq. (12)
to find that

@ x

gxn=2 Re{ J’ [ fa(x)f+(x,t)h(x—-u) dx]
X[ J’r*(.")h*(y—u)dy]p(u)du} . (13)

-—=

where y is a dummy variable.

The general result from Eq. (13) cannot be reduced fur-
ther without specifying the factors in the integrand. Sup-
pose, as an example, that we consider the simple case for
which H(a)=1 over the range of spatial frequencies oc-
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cupied by the signal. Since this hlter in no way alters the
signal or its spectrum. we can replace () by a delta func-
tion so that Eq. (13) reduces to

x

=2 Re[ J'a(u)f*.(u.t)r*(u)p(u)du] . (14)

-

We substitute r*(u) into Eq. (14) to find that

x

gi(n=2 Rc{ f a(u)f+(u,t)

-

X sinc{u — xo)/dolp(u) du} . 15

Since the reference function r{«) is a stationary probe at
plane Ps, the integral is in the form of a temporal convo-
lution. Furthermore, since the value of dy was set so that
R(ax) is uniform, the probe behaves as a delta function so
that Eq. (15) becomes

23(0) = 2a(xo)p(xg)s(t—1) cos(2nmfe(t—1)] , (16)

where T=T/2+xy/v. Equation (16) shows that the input
signal is completely recovered except for a time delay 7
when the filter function is uniform over all frequencies. For
the general case where H(a)# |, the signal may be distorted
as we show in Sec. 5.

3 The Presort Processor

The presort processor, located at the Photonics Center at
Rome Air Development Center, is an optical signal pro-
cessor which excises narrowband interference from wide-
band signals. This system, made available to us for imple-
menting certain modifications and for subsequent experimental
work, is diagrammed in Fig. 2. The presort processor uses
a prism to expand light in the direction of acoustic propa-
gation and illuminates the acousto-optic cell with a Gaussian
aperture weighting function. The time-bandwidth product
and the Gaussian weighting of the TeO2 acousto-optic cell
provides 200 resolvable frequencies at the spatial frequency
plane. The acousto-optic cell receives the electrical signal
A1), which includes the signal s(¢z) and narrowband inter-
ferers. Light in the upper branch of the interferoraeter passes
through lens L; to create a point source located at plane P»
whose distance from the beam combiner is equal to the
distance between the acousto-optic cell at plane P3 and the
beam combiner.

Ideally, a single SLM would be used in the spatial fre-
quency plane to excise unwanted signals. A wide variety
of devices, such as those based on liquid-crystal technology,
magneto-optic technology, or deformable-mirror technoi-
ogy. could be used. The requirements for the presort pro-
cessor were that the SLM must provide switching times of
less than 1 ws and extinction ratios of at least 30 dB. Multi-
channel acousto-optic devices were chosen to satisfy these
requirements, but such devices are not well suited to pro-
viding a 100% duty cycle due to crosstalk constraints for
adjacent channels. Two such devices are therefore needed,
one in each of two spatial frequency planes created by the

608 / OPTICAL ENGINEERING / March 1992 / Vol. 31 No 3

e

Fig. 2 Modified presornt processor.

presort processor. Figure 2 shows that the beam combiner
at the output of the interferometer provides the necessary
Fourier transforms at planes P4y and P4, where the multi-
channel spatial light modulators SLMI and SLM2 are lo-
cated.

Since both optical segments after the beam combiner
operate identically, we describe just the straight segment in
detail. Spherical lenses L4 and Lg form a telescopic system
to display the Fourier transform of the signal f{¢) at plane
P4y, which contains the SLM that blocks or passes various
frequency components of the signal. The SLMs used in this
system each have 100 channels, arranged with a 50% duty
cycle, resulting in half the spectrum being covered by SLM1
in the straight segment while the other half of the spectrum
is covered by SLM2 in the folded segment. The width of
each channel is equivalent to a 1-MHz-frequency interval.
If a narrowband interferer is present, the appropriate acousto-
optic channels are turned off so that light corresponding to
that interferer is no longer incident on the photodetectors.
Analyses have shown that at ieast three adjacent SLM chan-
neis must be switched to provide a 25-dB notch depth for
the Gaussian incident illumination. The photodetector ou.-
put from the folded segment is then added to the photo-
detector output of the straight segment so that, in effect.
the two SLMs cover the entire bandwidth. No phase errors
are generated by path length differences between the two
segments after the beam combiner because the signal and
reference beams experience the same path lengths ip >--h
cases.

3.1 Modifications to the Presort Processor

Figure 2 also shows how we modified the optical portion
of the presort processor. To provide for adaptive operation,
we implemented a power spectrum analyzer that detects
narrowband interferers. An optical window, inserted at a
20-deg angle after the acousto-optic cell, réflects 4% of the
light. Lenses Ly2, L}3, and L4 create the Fourier transform
of the refiected signal beam at plane P, while also creating
an image of the acousto-optic cell line illumination function
in the orthogonal direction at the CCD array.

The beam passing through the optical window is dis-
placed by the splitting action of the optical window. For a
6-mm-thick window, inserted at a nominal 20-deg angle,
the beam displacement of 0.68 mm merely affects the rel-
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ative position of the probe relative to the acousto-optic cell.
as characterized by Eq. (15). and has no significant effect
on the performance of the system. Of greater significance
is that a second surface reflection from the optical window
produces a ghost beam. parallel to the first surface reflection.
which induces a fringe pattem on the spectrum. The fre-
quency of the fringe pattern is a function of the displacement
between the signals produced by the first and second surface
reflections: the contrast of the fringe pattem is highly de-
pendent on the magnitude of the second surface reflection.
Even though the second surface reflectivity was measured
at only 0.17%, the fringe contrast varied by 3.6 dB. Since
the fringe pattern is fixed in space and time, it can be
compensated for by the use of a look-up table. The need
for compensation may be eliminated altogether in some
applications because the magnitude of the interferers gen-
erally are about 30 dB above the signal spectrum and do
not typically need to be measured with a high degree of
accuracy. Wedge in the optical window, caused by the non-
parallel surfaces of the optical window, shifts the spectrum
of the signal at planes Psy and P4z . These shifts are easily
compensated for when the system is calibrated.

3.2 Electronic Modifications to the Presort
Processor

Figure 3 is a block diagram of the postprocessing electronics
that we designed and built to implement the adaptation pro-
cess. The power spectrum of the signal, detected by the
CCD array, is sequentially clocked at a 1-MHz rate into an
8-bit analog-to-digital converter that converts the spectrum
to a digital number stream. The digital numbers are com-
pared to a threshold that is adaptively set by the post-
processing electronics; alternatively, the threshold can be
set by the operator. If a digital number is greater than the
threshold, the circuit decides that a narrowband interferer
is present. The locations of the pixels for which the spectrum
exceeds threshold are identified by the threshold circuit and
clocked into the excising routine. The excising routine uses
a look-up table format to provide the location information
required to switch the appropriate SLM channels.

The adaptation mode of operation involves driving the
postprocessing electronics to a steady-state solution. Sup-
pose that switches one and two shown in the block diagram
of Fig. 3 are closed, while switch three is open. In this
mode of operation, the operator inputs the number of
narrowband interferers to be excised and the threshold search
feedback loop sets a threshold level so that the required
number of narrowband interferers are excised.

Figure 4 illustrates how the threshold is set when multiple-
narrowband interferers are present. Suppose that we require
the number of excised narrowband interferers to be no more
than three. The threshold search operates on the condition
of whether the number of narrowband interferers is greater
than or equal to the preset number of narrowband interferers.
The first time the spectrum is read out by the CCD array.
the system automatically sets the threshold to its largest
value. The number of narrowband interferers exceeding
threshold, which may be equal to zero, is then compared
to the preset number of interferers. The second time the
array is clocked out the postprocessing electronics sets the
threshold to the next step below the initial value: there are
16 equally spaced steps across the range of an 8-bit word.

! Drsplay
Coarrol for
7 . ; - y spatial hight
Spectum | CCD P oAD | | Excising modulators
y Ay }Convener ! Threshold ' Rouune |
L J - v i
\S"Ilth H
!
Threshold |
swichs K| Searcd <

+
(Threshold) K Switch 2 (Maximum
3 number of jammers)

Operator

Fig. 3 Block diagram of the postdetection electronics.

The number of narrowband interferers exceeding this thresh-
old are again counted and compared to the preset number
so that the appropriate SLM channels can be switched to
remove those narrowband interferers that exceed the thresh-
old. This adaptive process is repeated until the preset number
of narowband interferers to be excised is reached. The
threshold remains fixed until some narrowband interferers
disappear or appear in the spectrum, or a new preset number
is chosen.

For experimental purposes, we included an operator in-
teraction mode in which switches one and two in the diagram
shown in Fig. 3 are open, while switch three is closed. The
operator reduces or increases the threshold, depending on
how many narrowband interferers are to be excised. We
implemented a visual display to enhance the operation of
the system by showing the power spectrum of the signal
and the threshold level of the postprocessing electronics.
The spectrum of the signal is tapped directly off the CCD
photodetector array and drives channel one of an oscillo-
scope. The threshold, which appears as a horizontal line
across the display, drives channel two of the oscilloscope.
In this mode of operation, the operator, in effect, completes
the feedback loop. Figure 4 shows that the system has ad-
justed the threshold so that the three strongest interferers
exceed threshold; the appropriate SLMs needed to excise
these interferers can therefore be activated.

The excising algorithm is a versatile part of the post-
processing electronics. The CCD phatodetector array pro-
vides four CCD photodetector elements to sample the spatial
frequencies corresponding to one SLM channel; because
there are 200 channels, we use 800 of the elements available
in a 1024-element array. The excising algorithm, stored in
electrically programmable read-only memories, searches for
interferers that have a width of one frequency resolution
channel. If the interferer is located directly on a SLM chan-
nel, that channel plus the neighboring two channels are
switched; no more than three channels are ever switched
for one interferer. If the interferer is principally located on
two SLM channels, those two SLM channels are switched
plus the SLM channel that is the nearest neighbor to the
channel on which the most energy of the interferer is in-
cident.

In dynamic environments. narrowband interferers are not
necessarily stationary in amplitude or frequency. but they
are more likely to appear and aisappear throughout the spec-
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Fig. 4 Spectrum with narrowband interferers.

trum in a random fashion. We used a relatively slow CCD
array that has a single output video line and a | ms per
frame readout rate. The postprocessing electronics require
5.4 ms to process this information and to provide the ad-
dresses needed to notch the interferers. This response time
can be shortened by a factor of about 10 by using CCD
arrays that have multiple output video lines with faster read-
out rates and by using faster electronic components.

4 Experimental Results of Excising Narrowband
Interference

To illustrate the narrowband interference excision process,
we used a 100-ns duration pulse train with a repetition period
of 5 ps as a representative wideband signal and modulated
it onto a carnier frequency fo = 350 MHz. We then intro-
duced a narrowband interference signal, passed the com-
posite signal through the presort processor, excised the in-
terference signal, and displayed the pulse after it had been
demodulated to baseband. For these experiments the
narrowband interference was a single frequency f;. The drive
signal to the acousto-optic cell is therefore

Rey=s(t) cos(Zmfct) + Aj cos(2mfit+ &;) , an

where s(¢) is the baseband pulse signal, A; is the magnitude,
and ¢; is the phase of the interferer in the rf band.

Although the optical system has a SNR greater than 25 dB
over a 200-MHz band, the rf mixers limit the overall system
performance to a much lower figure. Since triggering the
oscilloscope to display the waveform was difficult, we elected
to overdrive the local oscillator input, thus producing a
larger signal level as well as a larger noise level at the output.
We subsequently averaged the output signal to reduce the
noise level. Since the averaging is equivalent to coherent
detection, the SNR attained in the following set of exper-
iments is larger than the actual SNR at the output of the
system.

The reference output pulse shown in Fig. 5(a) was added
to a narrowband interferer at 307 MHz to produce the com-
posite signal shown in Fig. 5(b); the pulse is completely
obscured in the composite signal. In the frequency domain
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the pulse signal produces 4 spectrum entered at 330 MHz.
resembling a sinc function with a4 20-MHz-wide mainjole
Figure 3(c) shows that the spectrum of the narrowband in-
terferer. located in the center of the second sidelobe of the
pulse. is 30 dB above the notse tloor. After the SLM chan-
nels corresponding to the frequency of the interterer were
switched. the output of the svstem was demodulated to
produce the output pulse shown in Fig. 5(d). The output
pulse has a shape similar to that of the reference pulse.
except that the rise-time overshoot. apparent in the reference
pulse. is partially removed when we excise the narrowband
interferer. This example illustrates qualitatively that the pre-
sort processor 1s capable of removing narrowband interterers
without seriously distorting the pulse shape.

There are various methods for quantitatively measunng
signal distortion. We chose the root-mean-square error cn-
terion:

12

T
rmserror={-l-J [b(1) — d(1)}? dz} . (18)
TrO

where the undistorted pulse, at the output of the system in
the absence of excision, is indicated by bft), the distorted
signal is indicated by d(z). and T, is the pulse repetition
period.

Since most of the pulse signal energy is in the mainlobe
of its corresponding sinc function in the frequency domain.
we expect the greatest pulse shape distortion to occur when
the narrowband interferer is inside the mainlobe of the sinc
function. Suppose that we vary the frequency of the narrow-
band interferer so that it passes through the mainlobe from
low to high frequencies, distorting the spectrum of the pulse
as the interferer is excised. Figure 6 shows the rms error as
a function of the frequency of the interferer. The rms error
is small when the interferer frequency is located near the
low-frequency edge of the mainlobe because the mainlobe
has a low magnitude in this region. As we increment the
frequency of the narrowband interferer through the main-
lobe, the rms error increases until the frequency reaches
332 MHz, which is approximately the center frequency of
the pulse used in this expeniment. The mms error is largest
when the interferer is centered in the mainlobe of the signal
because the SLM channels remove a considerable amount
of signal energy in addition to excising the interferer. The
error then decreases as the frequency of the interferer in-
creases until the first null of the sinc function is reached at
342 MHz.

5 Pulse Experiments

When we excise narrowband interferers, part of the energy
of the intended signal is also removed. We now explore the
nature of the pulse distortion caused by removing some of
its frequency components. Fourier series analysis shows that
all repetitive signals consist of weighted discrete frequency
components. The dc value and the fundamental frequency
reside in the mainlobe of the sinc function due to an isolated
pulse, while the higher frequency components reside in the
sidelobes of the sinc function. Therefore we expect that the
removal of the mainlobe frequency components will have
the greatest affect on the overall shape of the pulse, whereas
the removal of higher frequency components will affect
mostly pulse ripple, pulse rise time, and pulse fall time.
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Fig. 6 Root-mean-square error as a function of the interferer fre-
quency.

We begin by removing frequency components symmet-
rically about the center frequency of a 78-ns pulse signal;
this procedure simulates a situation in which the interferer
is introduced in the baseband signal and allows us to study
the effects of notching multiple interferers on pulse distor-
tion. As an example, suppose that the frequency of the
baseband interferer is f; = 18 MHz. When the signal is
brought to the IF center frequency of 350 MHz, the inter-
ferer energy is concentrated at f. = f;. or at 332 and 368 MHz.
Since the first zeros of the spectrum of the 78-ns pulse occur
at f *+ 12.8 MHz. we find that the interferer energy is con-
centrated in the first sidelobes of the sinc function associated
with the signal spectrum. When these frequency components

of the pulse are removed. the edges of the pulse become
rounded, as the simulation in Fig. 7(a) and the experimental
results of Fig. 7(b) show. As we remove frequency com-
ponents in the second sidelobe and beyond, the edges on
the pulse remain rounded and ripple is evident on the top
of the pulse due to the removal of the higher frequency
components.

Figure 8 shows the result of a computer simulation of
the rms error as a function of the frequency of the narrow-
band interferer. The rms error begins at 0.50 and increases
to 0.68 at 352 MHz. The increase in error is due to the
removal of the central frequency components, which re-
quires that only three SLM channels be switched off, whereas
the removal of the first set of symmetric frequency com-
ponents requires that six adjacent SLM channels, centered
in the mainlobe, be switched. Since the symmetrical notches
are at the highest magnitude portion of the pulse spectrum,
the rms error is large. The rms error drops rapidly as the
excision positions move away from the central frequency,
following the general shape of the sinc” spectrum produced
by the puise signal.

Figure 8 also shows the experimental results of sym-
metrically removing frequency components from the spec-
trum of a 78-ns pulse. The rms error, at the center frequency.
begins at 0.29 and increases to 0.37 at 352 MHz. The ex-
perimental rms error is generally smaller than the computer
simulation results because infinite notch depths were used
in the computer simulations. Other reasons for a departure
of the experimental resuits from the simulation results are
that the local oscillator frequency tended to drift as the
experiment data were collected, and the SNR of the system
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limited the accuracy of the data when the higher frequencies
of the pulse were removed.

The effects of excising narrowband interferers on the
pulse shape are also a function of the pulse duration. The
least distortion is expected when the pulse width is small
because the pulse spectrum is then spread over a large por-
tion of the frequency domain. The removal of energy cor-
responding to the notches needed to excise a few interferers
should therefore have little effect on the pulse shape. How-
ever, when the pulse width is large, the pulse spectrum is
narrow so that a given notch wicth represents a large fraction
of the signal spectral components. To illustrate this effect,
we repeated the frequency removal experiments using a
468-ns pulse, whose mainlobe is only 4.3 MHz wide, as
the input signal. A pulse of this duration represents a fairly
severe test because the cell duration is only 2 ps. The spec-
trum of a 468-ns-wide pulse is therefore nearly the same as
that of a narrowband interferer.
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Figures 9(a) and 9(b) illustrate the pulse distortion when
we switch the three centrai SLM channels, thus producing
the largest rms error. By notching the dc component and a
significant amount of the fundamental, we produce a result
similar to a differentiation of the pulse. The experimental
results agree with the computer simulations; the discrepancy
between the two plots is caused by the removal of slightly
less than the complete mainlobe of the sinc function in the
experimental results.

Figure 10 shows the computer simulation and expeni-
mental results of the mms error for the narrow pulse as a
function of SLM channel position. The simulations predict
that the rms error should be largest when we switch SLM
channels centered at 350 MHz because the notch, which is
3 MHz wide, removes most of the mainlobe energy. By a
similar line of reasoning, we expect the rms error to decline
quickly as the frequency of the interferer moves away from
the center frequency of the pulse. We note that the shape
of the rms error of the experimental results is similar to the
computer simulations. An exception occurs for somewhat
higher frequency valucs when the interferer is in the side-
lobes of the signal spectrum, because the simulations did
not model the noise of the system.

6 Conclusions

Frequency plane excision is one method for removing nar-
rowband interference from wideband signals. We modified
a presort processor, which uses frequency plane excision,
to provide control signals to the SLMs that perform the
notching of the interference. We added  narrowband in-
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terferer to a short puise. performed the excision. and ana-
lyzed the output pulse shape. We studied the distortion of
short pulses produced by the removal of various frequency
components of pulses having various widths and analyzed
the resulting distortion at baseband. These experiments showed
that the distortion is most severe when the excision is per-
formed in the mainlobe of the sinc function. while the dis-
tortion decreases rapidly when the excision is in the side-
lobes of the pulse. The response time could be improved
from its present value of about 5 ms by increasing the CCD
array readout rate and the speed of the postprocessing elec-
tronics.
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Multichannel acousto-optic crossbar switch

Dan Owen Harris

We analyze an acousto-optic crossbar switch architecture that can be used to implement an ¥ x N
point-to-point switch with just N hardware complexity. In our analysis, we determine that insertion loss
and cross talk are minimized if we place the output ports in the diffraction far field of the acousto-optic
cell. Using this result, we develop an optimum switch design based on Fourier optics: a Fourier transform
lens is used both to scale the output beams for efficient coupling to the output ports and to provide a
necessary optical fan-in from input to output ports. We demonstrate the performance of switch
configurations using single-mode fiber input ports in conjunction with single-mode fiber, multimode fiber,

and photodiode output ports.

Key words: Crossbar switch, photonic switch, acousto-optics.

. Introduction

Switching networks are an important part of a more
general data communications technology. As we in-
crease the power of switching networks, communica-
tions systems that service a large number of input
and output terminals become more flexible and, in
effect, more useful. In recent years, the need has
increased for switching systems that serve a larger
number of high-capacity terminals, and the limita-
tions of electronic switching techniques have become
more evident. Large electronic switching systems
have always required a high degree of complexity,
and, with the advent of fiber-optic communication,
these systems are now becoming information flow
bottlenecks. Fortunately, optical technologies are well-
suited to switching applications, exhibiting excellent
information processing and carrying capabilities that
alleviate some of the problems encountered with
presently used electronic switches.

An N x N point-to-point crossbar switch based on
the deflection of optical beams can be constructed
with just N deflectors. Deflecting architectures also
provide the potential for small insertion loss and low
cross-talk levels, even for large N. Given this high
level of performance, deflecting architectures appear
to be one of the best means of implementing photonic
switches. Acousto-optic technology is a powerful and
relatively mature technology that can be used to
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Engineering, North Carolina State University, Daniels Hall, Ra-
leigh, North Carolina 27695-7911.
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deflect optical beams. Switching architectures that
are based on acousto-optic deflection have been pro-
posed' and demonstrated.**

In Section II we briefly review the basic acousto-
optic switching architecture that we have proposed,’
while Section III contains descriptions of relevant
performance parameters. We begin Section IV with
an analysis of the best-case diffraction character for
the acousto-optic switch; the results of this analysis
indicate that Fourier domain diffraction produces
optimum performance, so we dedicate the remainder
of Section IV to the analytical characterization of a
Fourier domain switch. In Section V we discuss the
practical performance capabilities of state-of-the-art
multichannel acousto-optic cell technology and then
demonstrate switch performance for a particular
acousto-optic cell in Section V1. :

. Architecture

A conceptual drawing of the basic acousto-optic switch-
ing architecture is show in Fig. 1. In this configura-
tion, light is delivered to the switch by input ports
arranged in a linear array. Light from each input port
is collimated along the 2z axis, and each collimated
beam is incident at the Bragg angle on one channel of
a multichannel acousto-optic cell. For a point-to-
point crossbar switch, the acoustic waves are created
by the application of monotone rf signals to each of
the piezoelectric transducers; these acoustic waves
propagate along the x axis in each channel. The
acoustic wave deflects a large portion of the incident
light at an angle in the x-z plane that is proportional
to the rf addressing frequency. Therefore, to access a
given output port, we tune the rf signal to provide the
proper deflection angle. Light reaches the output

10 October 1991 / Voi. 30, No. 29 / APPLIED OPTICS 4245
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Fig. 1. Basic configuration of an acousto-optic photonic switch.

ports by passing through an optical system that
directs the optical power from each vertical input port
position onto the horizontal output axis.

In our point-to-point architecture, we stipulate
that the rf signals are to be supplied to each channel
by a single programmable rf source. Since only one
acoustic channel and one rf source are required per
input port and there is no path contention, this
point-to-point switch is nonblocking with N hardware
complexity. As N becomes large, the architecture can
provide a greatly reduced complexity compared with
conventional switching technologies, which require
O(N*?) cross points for a nonblocking point-to-point
-switch.® Our approach is similar to the strategy taken
by Wilson et al.* but in sharp contrast to the design
proposed by Stephens et al.,® which uses N fixed
oscillators. When fixed oscillators are used, they must
be connected to the acousto-optic cell transducers
through some type of electrical switching fabric,
nullifying the hardware complexity advantage of the
deflecting architecture. The architecture used by
Stephens et al. has N? hardware complexity but does
permit arbitrary signal fanout (multicasting). We
have shown that the programmable source approach
can be used to implement arbitrary signal fanout with
just O(N log N) hardware complexity.’

IIl. Switch Performance-

A. Insertion Loss

Losses in an acousto-optic switch are caused pri-
marily by reflections, acousto-optic cell diffraction
efficiency, and coupling inefficiencies at the output
ports. Reflection losses at most optical interfaces do
not exceed 0.2 dB, and these losses can be reduced
further through the use of antireflection coatings.
Maximum acousto-optic Bragg diffraction efficiencies
for cells with moderate rf bandwidths (W = 100
MHz) range from 50 to 90%, while the maximum
diffraction efficiencies for larger bandwidth cells
(W = 1000 MHz) are ~10%.}

Coupling efficiency at the output ports is highly
application dependent. When single-mode fibers are
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used to supply light at the input and collect light at
the output of an .V x N crossbar switch. the limited
numerical aperture (NA) of the output fiber will cause
the average coupling efficiency at the output ports to
be no better than O(1N}. This fan-in loss is present
with any tvpe of crossbar interconnection between
similar waveguides ahd can be explained using argu-
ments based on conservation of radiance.’

To overcome the dependence of coupling efficiency
on .V, we can use a photodiode to collect the light at
the output port. Since a photodiode has a nearly
unlimited NA, the coupling efficiency is identical for
almost any approach angle. A convenient way to use
photodiodes to collect light is to incorporate them into
a multielement array. In some cases, however, we
may find that cross talk among photodiode array
elements is prohibitively high. In such cases, we may
use large-core, large-numerical-aperture multimode
fibers to collect light at the output ports and then
carry the optical energy to discrete photodiodes.

An additional factor that can significantly affect
output port coupling efficiency is the amplitude pro-
file of the acoustic wave. Acoustic-wave propagation
is subject to the same type of diffraction effect that
occurs in optical propagation,’® and the nonunifor-
mity of the acoustic-beam profile distorts the output
spot and tends to decrease coupling efficiency.

B. Cross Taik

In an acousto-optic photonic switch, leakage of optical
power into inappropriate output ports is due to
optical and acoustical as well as electrical effects.
Optical cross talk is caused by the diffraction-induced
spreading and eventual overlapping of light beams
along the output axis. This diffractive spreading
depends on the input beam profile as well as character-
istics of the optical system between the acousto-optic
cell and the output axis.

Acoustic cross talk occurs because the acoustic
waves diffract and spread into adjacent channels. In
essence, acoustic energy from a primary channel
leaks into adjacent channels, deflecting some of the
light in these adjacent channels to the output port
that corresponds to the primary channel. Most multi-
channel acousto-optic cells are designed so that acous-
tic cross-talk levels are at least 3040 dB below the
primary acoustic-wave levels.!'?

Electrical cross talk originates from the crosscou-
pling of rf signals among the transducers of the
multichannel cell. The primary applied signal and
cross-coupled rf energy to a transducer produce a
multifrequency electrical input to that channel. The
presence of these multiple frequencies generates cross
talk at other ports that correspond to the extraneous
frequencies present in the channel and also at ports
that represent frequencies that are linear combina-
tions of the primary frequency and the extraneous
frequencies. The latter cross talk is produced by
intermodulation beams that result from multiple
deflections within the channel.*® As noted above, in
applications where photodiode arrays are used, electri-



cal cross coupling among array elements can be a
significant source of cross talk.

Assuming the incoherent addition of light that
originates from the different input ports in the switch.
we express the signal-to-cross-talk ratio (SCR) for a
direct detection system as

: P
SCR = = 1

2P

ot

where P, represents the optical power collected at
output port ¢ that is intended for port . Cross talk at
a given output port from the various optical, acousti-
cal, and electrical effects will also originate from
different input ports, which implies that cross talk
from these three effects will add incoherently. There-
fore we analyze the three sources of cross talk
separately and calculate the overall SCR, using the
equation

TR S .
SCR, * SCR. * SCR, @

SCR =
where SCR,, SCR,, and SCR, are the SCR’s resulting
from optical, acoustical, and electrical phenomena,
respectively.

C. Signal Bandwidth

The fundamental cause of distortion in the acousto-
optic switch is dispersion within the optical elements.
For a switch that uses standard lenses and free-space
propagation, the primary source of dispersion-related
distortion is the acousto-optic cell itself. For operat-
ing wavelengths in the single-mode fiber-optic range
of 1300-1550 nm, we find that typical acousto-optic
cells will support signal bandwidths in the terahertz
range.’

D. Reconfiguration Time

There are two basic components to reconfiguration
time: the setup time required for the rf sources and
the more fundamental acousto-optic cell reconfigura-
tion time. The reconfiguration time of the acousto-
optic cell is equivalent to the transit time, i.e., the
time required for one point on the acoustic wave to
traverse the full diameter of the input beam. The
minimum switch reconfiguration time is therefore
given as the sum of the rf source reconfiguration and
acousto-optic cell transit times and is typically of the
order of microseconds.

IV. Optimal Diffraction Character

We examine the effect of optical diffraction on switch
performance and, based on our findings, propose a
switch design that minimizes performance degrada-
tion resulting from these effects. We also derive
design equations that identify trade-off relationships
among the number of ports, transit time, and various
acousto-optic cell and optical system parameters.

A, Minimal Diffraction-Degraded Performance

Both coupling efficiency and optical cross talk are
dependent on the optical diffraction between the
acousto-optic cell and the output axis. In analyzing
the dependence of coupling efficiency and cross talk
on diffraction, we initially model the system with no
optical elemencs between Lie input and cutput ports:
in this manner, we can determine the optimal free-
space diffraction character and then design our opti-
cal system to produce this diffraction character.

To model light collimated from a single-mode fiber
input port, we use a class of truncated Gaussian
aperture functions that have amplitudes given by

‘7] | x '}
ool

where L is the width of the collimated input beam
aperture along the x axis in Fig. 1 and A determines
the intensity of the beam at the two truncation
points. Note that the beams must be truncated due to
the finite extent of elements in the optical system. We
use an efficient numerical technique based on fast
Fourier transform methods to compute the diffrac-
tion patterns’ and calculate the coupling efficiency
and optical SCR’s for the case of a photodiode array at
the output ports. We chose to represent the output
ports by photodiode array elements because such an
analysis provides insight into the general effect of
diffraction on loss and cross talk while allowing us to
calculate coupling efficiency and cross talk by a
relatively simple trapezoidal numerical integration'
of the appropriate intensity distribution over the
extent of each of the output ports.

Additional parameters necessary for the diffraction
model are shown diagrammatically in Fig. 2. To make
our analysis more general, we normalize the relevant
parameters as follows: w, = w/§, where & = 2\/L is
the width of a Ravleigh resolution element along the
output axis; s, = s‘w is the reciprocal of the output
port duty cycle; and z, = 2/D_, where D_ = L*/1.25\ is
the z-axis transition point from near-field to far-field
diffraction for a rectangular aperture.'® Accordingly,
the product w_s, represents the number of resolvable

Fig. 2. Limited deflection range of an acousto-optic cell and
containment of the output ports within it.
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Fig. 3. Plots of calculated ta) coupling efficiency and by SCR,
versus the normalized port width for various values of the normal-
ized propagation distance. In these plots, the normalized port
separation s, = 2.

elements contained within the output port separa-
tion.

In Figs. 3(a) and 3(b), we plot coupling efficiency
and worst-case SCR, versus w, at the center port of a
three-output-port switch for various values of z,. By
using three ports, we consider only a nearest-
neighbor contribution for optical cross talk. In this
example, we use A = 8 and s, = 2; calculations using
other values of A and s, produced similar results.

From the figure we see that when z, is small (i.e.,
when we are in the near-field or Fresnel diffraction
domain), both the coupling efficiency and SCR for a
fixed normalized port width increase as we increase
the propagation distance. This occurs when the out-
put axis is close to the cell, because the output port
width and separation will be much less than the
aperture width. Therefore the output port will not be
wide enough to capture the output light efficiently,
while the proximity of the ports implies that portions
of the light from the main lobes of beams defiected to
the two exterior ports will fall upon the center port,
yielding high cross-talk levels. The main-lobe width
remains fairly constant in the Fresnel domain: thus
increasing the normalized propagation distance within
the Fresnel domain will increase both the actual port
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width and separation. resulting in increased collec-
tion efficiency and lower cross talk.

As we increase z, further, we find that the coupling
efficiency and SCR, for each w, settle to steady-state
maximum values; this coupling efficiency and cross-
talk character is typical of far-field or Fourier domain
diffraction. In the Fourier domain, the basic signa-
ture of the diffraction pattern remains the same, but
the output axis scale of the pattern increases with 2z,
at the same rate as the actual port width and separa-
tion. Since the diffraction pattern signature is fixed
and the collection aperture. port separation, and
diffraction pattern scale all increase at the same rate,
we do not expect any change in coupling efficiency or
optical cross talk as we increase z,.

In a second diffraction analysis, we determine the
best value of A for our system. Figure 4 shows plots of
coupling efficiency and optical SCR versus normal-
ized port width for Fourier domain diffraction using
Gaussicn apertures with A = 2, 4, 8, and 16. The
output port configuration and duty cycle are identical
to those used in the propagation distance analysis.
From Fig. 4(a), we see that in general the coupling
efficiency decreases as A increases. In Fig. 4(b),
however, we observe that the maximum SCR, in-
creases as we increase A.

i
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Fig. 4. Plots of calculated (a) coupling efficiency and (b) SCR,
versus the normalized port width for various values of aperture
weighting parameter A. In these plots, the normalized port separa-
tions, = 2. )



To keep the optical cross talk below typical acoustic
cross-talk levels, we require SCR, to be well in excess
of 30 dB. Given the data in Fig. 4tb) we see that. to
satisfy this optical cross-talk specification, we should
truncate our input beam at intensity levels corre-
sponding to values of A = 8 or A = 16. Suppose that
we desire a coupling efficiency of no less than —0.5dB
(which is negligible relative to the best-case diffrac-
tion efficiency losses of 1-3 dB); Fig. 4(a) indicates
that we require w, = 2 to achieve this objective
regardless of the value of A. The SCR, plot in Fig. 4(b)
shows that the highest SCR, at this minimum value
of w, = 2 is produced by an aperture with A = 8 and
that the value of SCR, at this point exceeds 40 dB.
Although we could obtain even better coupling effi-
ciency and SCR, by using A = 16 and w, = 4, the
normalized output port width is larger than the
minimal value of w, = 2. As we verify empirically in
Subsection IV.B, increasing w, allows fewer ports to
be placed within the deflection range for our fixed s,.
Since the coupling loss and SCR are acceptable for
A = 8 and w, = 2, a truncation parameter of A = 8 is
preferred.

The results presented above suggest that we obtain
the best combined coupling efficiency and cross-talk
performance if we use Fourier domain diffraction and
a Gaussian aperture truncation parameter of A = 8.
By using a configuration of this type, we can expect to
obtain coupling efficiencies (neglecting NA effects)
that are better than —1 dB, with worst-case SCR,
exceeding 40 dB.

B. Fourier Domain Optical Cross-Talk

To understand better the nature of optical cross talk
for our chosen diffraction domain and aperture trun-
cation, we calculated values of optical cross talk in the
Fourier domain using A = 8 for various combinations
of output port count and normalized output port
width and separation. Some of the more important
results are summarized in Table I.

First, we observe that the cross-talk levels remain
fairly constant for a given value of the product w,s,,
which, as stated above, represents the number of
resolution elements contained within the port separa-

Table i. Caicuiated Signai-to-Cross-Talk Ratios (in decibels) for
Various Numbers of Qutput Ports and Normaitzed Values of Port Width

and Separstion
sﬂ
w, N 1 2 4 8
1 3 5.0 23.0 48.4 33.1
301 5.0 229 46.9° 313
2 3 22.4 48.1 52.6 —
301 22.3 46.5 509 —
4 3 46.8 50.9 — < -
301 449 49.1 —_— —
8 3 49.1 —_ . — —
301 46.9 —_— — —

_—

tion. Since the number of resolution elements con-
tained within the entire deflection range. and in effect
the information capacity, is equal to the time-
bandwidth product TW) of the acousto-optic cell
svstem. we find that

™

&Sl oier

N =

where w s, s is the number of resolution elements
in the output port separation required to maintain
the desired SCR,. Equation (4) is intuitively satisfy-
ing, since the maximum number of output ports is
proportional to the information capacity of the sys-
tem.

Next, we find that as w,s, increases from 1 to 4, the
SCR’s increase dramatically, ultimately reaching val-
ues above 40 dB. The improvement in the optical SCR
gained by increasing w,s, beyond 4, however, is much
less pronounced. Since increasing w,s, beyond 4
affords little additional cross-talk advantage while
serving to increase the required TW needed for a
given number of output ports, we conclude that the
optimum value of w,s, is ~4.

Finally, we see that the cross-talk levels calculated
for N = 3 are similar to those calculated for N = 301.
This means that for any value of N most of the optical
cross talk comes from the nearest-neighbor output
ports. Therefore

3CR, = _—-P._.-.}:. P t5)
provides an accurate order of magnitude approxima-
tion for optical cross-talk levels in the switch, imply-
ing that the SCR, is essentially independent of N.
Additionally, expression (5) legitimizes the generality
of results given in Figs. 3 and 4, where we consider
only nearest-neighbor optical cross-talk contribu-
tions.

C. Fourier Domain Switch Design

We can induce Fourier diffraction at a reduced propa-
gation distance from the acousto-optic cell by using a
simple lens.'" We can also scale the output beams to
match the physical size of the output ports using the
same lens. In the following sections, we derive equa-
tions that govern the design of a switch that uses a
Fourier transform lens system in the output optics.

1. Output Port Capacity

Figure 5 contains a functional diagram for the deflec-
tion plane of a Fourier domain acousto-optic switch.
The two lenses and acousto-optic cell combine to
produce a spatially offset image of the input device on
the output axis, where the magnitude of the magnifi-
cation is M, = F,/F,."" Also, the width of a Rayleigh
resolution element along the £ axis is £, = AF,/L, and
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Fig. 5. Top view of a Fourier domain acousto-optic switch.

the overall deflection range is given by

Ag = —2. 6)

where v is the velocity of sound in the acousto-optic
cell.'® From Fig. 2 we see that the number of ports
that fit within the deflection range is N = A&/s + 1.
We solve this expression for Af and substitute the
result into Eq. (6) to find that

uN = s
W

1=

(7

The collimating lens focal length F, is dictated by the
desired aperture width and the numerical aperture
(NA) of the input port device. For the purposes of this
analysis, it is convenient to quantify the NA of our
input port as sin 9, where 9 is the angle at which the
far-field intensity from the input port has decreased
to e’? of the maximum. Since we desire A = 8
truncation, we need to find the e”® intensity point on
the input beam. The distance to the e~* point on a
Gaussian beam is exactly twice as far from the
maximum intensity as the ¢”? point; thus the expres-
sion for the collimating lens focal length becomes

(8)

We rearrange Eq. (8) to find that the ratio L/
(4 sin 9F,) is equal to unity. Multiplying A¢/s in our
expression for N by this ratio, noting that T = L/v,
and making use of the expression for A£ from Eq. (6)
and the expression for £-axis magnification, we can
write the maximum number of output ports as

AM,

4.03in0+1' (9)

N=TW

Here we see that as N grows large, the number of
output ports is approximately proportional to the TW
of the acousto-optic cell system. It is interesting that
this is similar to the dependence we found in Eq. (4).
Furthermore, using the information presented above,
we can show that

488ind s - 100
v vaniay w,,s,,, f
M, &
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which implies that. if 5 15 the mimimum port separa-
tion required to mainta:n a gaiven SCR, and .V » 1.
Eq. 19! 1s in fact an analytical restatement of the
empincally dertved Eq. 14).

2. Optical Svstem

The general optical system we propose for implement-
ing a Fourier domain acousto-optic switch is shown in
Fig. 6. Here we use Fourier transform optics not only
to provide the proper diffraction character along the £
axis but also tc focus the collimated beams in the {
direction onto the £ axis. As with the rf source
selection, our approach is similar to that taken by
Wilson et al.* but significantly different from the
system demonstrated by Stephens et al.’ In the
Stephens switch, N fibers are used for each output
port—one for each input port in an N x N switch.
Each of the N? outpt fibers requires its own gradient-
index rod lens to focus the deflected light onto the
fiber core, while the N output fibers representing a
specific output port are connected by a guided-wave
power combiner.

In our optical system, we first collimate the beam
with the spherical lens L, so that the e”* diameter of
the input beam equals the transducer height H (this
is sufficient for most of the input light to interact with
the sound column). H is therefore related to the input
side of the optical system by H = 2F, sin 9. We may be
required to use a pair of cylindrical lenses (L, and L,)
between the collimating lenses and acousto-optic cell
to expand the beam in the x direction. We choose the
ratio of cylindrical lens focal lengths as

F, L
f—‘:‘m 1l

where, as before, L is the e™® aperture width required

to provide the necessary TW.
N Top View 3
yt "z cL’ z
output
collimating  beam KU randform pora
leas expander opac lenses
cell
input
pon
L
y ¢
: L2 Ly Ly Ls i
x z ’ 3 :
Side View

Fig. 6. General form of the optical aystem used in a Fourier
domain acousto-optic switch. Note that only one input port is
shown in the side view. This is done only to avoid clutter in the
diagram. The remaining input ports are implied.




For the Founer transform lens system, we may
need two separate lenses to optimize the switch
performance. The cylindrical lens in the x direction.
L,, provides the proper spot size in the € direction for
efficient coupling to the output ports. The required
focal length of the transform lens in the x direction is

F,
F‘:I'—':F'M" 112)

where M, represents the ratio of the output-to-input
port spot size that is needed for efficient coupling
along the ¢ axis. The focal length of L,, the cylindrical
lens in the y direction, is given by

F;‘F‘M;. (11

where M. is the magnitude of the optimum spot size
magnification along the { axis.

To determine the optimum value of M. for single-
mode fiber input-to-output ports, we first note that
the sine of the worst-case angle of arrival to the
output ports is half of the ratio of the overall input
port array height to the transform lens focal length
F;. Using the fact that M, is equal to F;/F,, we find
that the worst-case angle of arrival to the output port
is governed by

sin }N - 1)y .

M, (14)

sinf, =

where vy is the ratio of the center-to-center transducer
spacing to the transducer height.

We represent the { dependence of the output beam
amplitude as a Gaussian spot with the e beam
radius M,w,, where w, is the mode-field radius of both
the input and output port fibers. We then account for
an obligue approach angle 8 by multiplying the
Gaussian amplitude distribution by the phasor
exp(—j2w{ sin 8/)). To avoid NA selective losses, M is
typically much larger than unity. Using overlap inte-
grals,"” we find that the fan-in efficiency for a given
incidence angle is approximated by

2 m.fk.,‘ sin® 8
=M. —_2_-)
for M, > 1.

Expression (15) shows that the fan-in efficiency at
the output ports decreases with increasing approach
angle, implying that the worst-case fan-in efficiency
occurs for the port with the largest approach angle.
Substituting the expression for the worst-case ap-
proach angle from Eq. (14) into expression (15), we
find that the poorest fan-in efficiency in our system is

115)

whA

2
Pl = Ee’"’[ '{ o

The value of M. that maximizes the worst-case fan-in

efficiency is given by

M. = “")*')‘VAVN 17

When we use this optimum value of M. with most
commercially available single-mode fibers,® fan-in
efficiency is approxamately 1/yN for interior input
ports, falling to 0.62: vV at the largest approach angle.
Here we effectively introduce coupling loss from spot
size mismatch in the { direction to avoid NA selective
exclusion of the exterior input ports.

As mentioned in Subsection II1.A, we can use either
multimode fiber or a photodiode array element to
collect light at the output axis to increase fan-in
efficiency. The multimode optical fibers we use have
circular cores, and a good many photodiode elements
are square. Therefore the optimum optical system
design for these output port aevices yields circularly
symmetric output spots, where M, = M. Note that we
must make sure that the NA of any multimode fiber
that we use at the output ports is sufficient to
accommodate the maximum approach angle given by
Eq. (14).

An alternative means of increasing fan-in efficiency
in a single-mode fiber switch design would be to
incorporate a second reconfigurable deflector into the
output optics. In this manner, the incoming light
beams from each input port could be deflected along a
single optical axis. Since all light approaches the
output ports from a common direction, NA effects
would be neutralized, allowing fan-in efficiency to
approach unity regardless of the number of input
ports.

V. Multichannel Acousto-Optic Cell Technology

Currently, two of the more powerful multichannel
acousto-optic cell designs for switching applications
are based on the longitudinal acoustic mode in TeO,
and the shear acoustic mode in GaP. We briefly
discuss the characteristics of specific multichannel
cells that have been developed using each of these
materials and the resulting performance of a switch
that could be implemented with each technology.
The first cell is a 32-channel device tased on the
longitudinal TeO, configuration.'’**! This device has
an rf bandwidth of 200 MHz and a maximum TW of
1000. Using Eq. (4) and the optimum value of w_ s, =
4, we find that this cell would support up to 250
output ports. At the full capacity of TW = 1000, the
transit time will be ~ 5 ps. The maximum diffraction
efficiency in any one channel of this cell is ~30% at
-A = 633 nm for 1 W of applied rf power. To avoid
performance degradation owing to thermal loading,
however, we limit the maximum total power that can
be applied to the cell at any one time to 10 W. This
translates to maximum diffraction efficiencies of about
10% for a 32-input port switch. Acoustic and electri-
cal SCR for the rell are better than 30 dB for
switching applications.
A 64-channel cell constructed from GaP (Ref. 11)
has a TW of 20u. Thus we could fit about 50 output
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translation stage. The fiber 1s moved along the ¢ axis
to ernulate each output port in a muitiport array.

Our photodiode array is composed of silicon p-i-n
diodes that measure 300 x 500 um and are arranged
linearly with 550-um center-to-center spacings. Elec-
trical cross talk among the nearest-neighbor ele-
ments is specified to be less than 2%.

The rf sources that we use are based on direct
digital trequency synthesizers. The output of each
svnthesizer is a monotone signal with a programma-
ble frequency ranging from 0 to 110 MHz. The
spurious noise for the synthesizer is specified to be 40
dB below the signal level over the entire frequency
band, while the reconfiguration time is ~ 125 ns.

B. Single-Mode Fiber Output Ports

To the author's knowledge, these experiments repre-
sent the first reported demonstrations of free-space
switches that use single-mode fiber at both the input
and output ports. For the 4 x 4 single-mode system,
we use an objective with a 7.2-mm focal length to
collimate the light from the input fiber, while the two
cylindrical lenses used to expand the beam in the x
direction have focal lengths of 19 and 150 mm. The
combined effect of these three lenses produces a
collimated elliptical beam with an e™ width of 9.09
mm in the x direction and a 1.15-mm e* height in the
y direction. We align the input ports to the four
innermost channels of the eight-channel acousto-
optic cell and use a single spherical achromatic dou-
blet with a focal length of 88.9 mm for the Fourier
transform lens. This produces spots at the output
plane that are elliptically shaped, having the same
proportionality as the input beams, but the major and
minor axes are rotated 90°. Note that the relatively
large spot size in the { direction not only provides
optimum fan-in efficiency as per Eq. (17) but also
relaxes requirements for the ¢-axis alignment of the
optical system; £-axis alignment is not critical because
our rf sources are in effect continuously tunable, and
the exact £-axis location of the deflected spot can be
adjusted by slightly changing the rf addressing fre-
quency. For the experiments described here, we chose
nominal rf addressing frequencies of 59.7, 73.2. 86.7,
and 100.2 MHz for output ports A-D, respectively,
which represents an output port separation of nearly
180 pm.

The measured losses for the 4 x 4 single-mode
switching element are given in Table II. Total inser-

Table il. Measured Insertion Loss (in decibeis) for a 4 x 4 Single-Mode

Switching Element
Port »
Fan-in

Channel A B C D Loss
3 190 175 175 1835 120
£ 168 153 153 164 10.0
5 167 153 153 16.5 99
6 190 174 1753 183 119

Diffraction efficiency
loss 2.7 1.5 16 2.6 —_—

—+

tion losses ranged from 15 to 19 dB. These results
include 2 dB of reflective and absorptive loss in the
optical system. a large portion of which 1s due to 1 dB
of loss associated with the collimating objective. After
taking diffraction efficiency into account. we found
that the coupling loss for a deflected beam was
~2-2.5 dB in excess of that measured for the unde-
flected beamn. This corresponds well to theoretically
calculated acoustic-beam profile-induced losses of 1.8
2.04B."

The major cause of insertion loss in this system was
optical fan-in. The theoretical values for fanin loss
calculated from expression 113) were 9.0 dB for
channels 4 and 5 and 11.9 for channels 3 and 6, which
basically match the measured values in Table II. The
transform lens system could be made more efficient
by increasing the duty cycle of the input beams along
the y axis. At present, the ratio of input beam
separation to height is 2.5, but in the limit where this
ratio is reduced to unity (as could be approached with
a material like GaP),"” the theoretical coupling effi-
ciencies are 5.8 and 7.5 dB for the interior and
exterior channels, respectively.

Average cross-talk levels for the 4 x 4 single-mode
switching element, calculated from the measured
data for each of the 24 interconnection permutations,
are compared with signal levels in Fig. 7. Overall,
SCR'’s ranged from 36 to 43 dB. We determined that
the most significant causes of cross-talk in the single-
mode switch are extraneous beams resulting from
acoustic waves produced by cross-coupled electrical
energy between transducers as well as intermodula-
tion from the interaction of the primary and cross-
coupled acoustic waves.

We measured the reconfiguration time for the 4 x 4
single-mode switch to be 5.31 us. This measured
value is close to the theoretical prediction that in-
cludes 125 ns for synthesizer reconfiguration, 4.33 us
of transit time for an e™® diameter of 18.2 mm, plus
475 ns of delay due to 2 mm of space between the
transducer and the e™* intensity point of the colli-
mated beam.

The optical system for the 8 x 8 single-mode fiber
switching element is basically the same as that used
for the 4 x 4 version. The only difference is that the

9!
i
2
3 B siged
3 croes talk
output port
Fig. 7. Measured average output signal and cross-talk levels

relative to the input signal for 4 x 4 single-mode fiber to the
single- mode fiber switch.
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Founer transform lens for the 8 - 3 switch has a
focal length of 200 mm. The rf addressing frequencies
are 63, 68, 73. 78, 83, 88. 93. and 98 MHz for output
ports A~H, respectively, resuiting in an output port
separation of nearly 150 pm.

The interconnection permutation we chose to char-
acterize has the input port at channel 1 connected to
output port H,2t0B, 3t0 C,4toE, 5t0 A, 6t0 G, T to
F. and 8 to D. This particular permutation contains
interconnections between various combinations of
internally and externally located input and output
ports. It also has some adjacent addressing frequen-
cies applied to adjacent channels as well as some
adjacent addressing frequencies applied to well-
separated channels. This permutation produces a
wide range of losses and cross-talk levels, providing a
good indication of the upper and lower limits of 8 x 8
switch performance.

The measured signal and cross-talk levels for the
representative interconnection permutation are given
in Fig. 8. Insertion losses ranged from 21 to 25 dB,
and SCR's were between 35 and 42 dB. On average,
insertion losses were higher, while SCR's and recon-
figuration time were the same as for the 4 x 4 switch.

The primary difference in the 8 x 8 and 4 x 4
single-mode switches is related to fan-in loss. In the
8 x 8 case, the measured fan-in loss was within 1.5 dB
of the 14.6-dB theoretical value at the two interior
channels (4 and 5), while being within 0.5 dB of the
theoretical value of 17.9 dB at the exterior channels
{1 and 8). These numbers represent a fan-in loss
increase c¢f ~6 dB compared to the 4 x 4 switch,
which is basically the difference in measured inser-
tion losses between the two configurations. Unfortu-
nately, the fan-in loss experienced here was above
optimum because of design limitations imposed by
the cell aperture and rf bandwidth.” If we could
increase either the TW of the cell or the output port
duty cycle, we could theoretically achieve fan-in losses
of ~11.5 dB for the interior channels and 15 dB for
the exterior channels. This represents an increase of
only 2-3 dB in overall insertion loss compared to the
4 x 4 switch.

-

§ o0?

&

- .

32 B signal
.. 2

g cross talk

3

3

L4

5.4 28 3.C 8D 4E 7F &G W
interconnection

Fig. 8. Measured output signal and cross-talk levels relative to
the input signal for a representative interconnection permutation
of an 8 x 8 single-mode fiber to single-mode fiber switch
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C  Mulimogce Frper Output Ports

For multimode fiber output ports. we use a 9-mm
focal length objective as a collimating lens and an
achromatic transform lens with an 88.9-mm focal
length. Here no x-axis beam expansion is necessary.
and the resulting circular collimated beam has ane™*
diameter of 1.44 mm. The rf addressing frequencies
are identical to those used in the 4 x 4 single-mode
switch: 59.7, 73.2, 86.7, and 100.2 MHz for ports
A-D. respectively. resulting in an output port separa-
tion of nearly 180 um.

The measured insertion losses for the multimode
fiber output port configuration are given in Table IIIL
These losses ranged from 5 to 7 dB, which represents
significant improvement compared with the single-
mode experiment. The reflection and absorption loss
of the system inclusive of the transform lens is only
1.3 dB, with the majority of that due to a 1-dB loss
from the collimating objective; this is comparable
with the loss in the single-mode system. Diffraction
efficiency losses ranged from 2.3 to 3.5 dB, which are
higher than for the single-mode output ports pni-
marily because the multimode configuration has a
larger y-direction collimated beam diameter, meaning
that a smaller percentage of the incident light inter-
acts with the acoustic wave.

The measured coupling loss to the fiber for the
undeflected light beam was ~0.7 dB, close to the
theoretical Fresnel reflection limit of 0.35 dB. The
excess coupling losses for the deflected beams were
~1-1.5 dB, which corresponds well to calculated
losses of 1.0-1.3 dB from acoustic-wave-induced out-
put spot distortion. From Table III, we see that losses
are fairly independent of the acoustic channel, which
implies that NA selective losses are negligible. This
insignificant NA selective loss is the primary reason
for the reduction in insertion loss that results from
replacing the single-mode fiber with muitimode fiber
at the output ports.

The average signal and cross-talk levels fora 4 x 4
switching element are given in Fig. 9. The SCR’s
ranged from about 31 to 35 dB, which is considerably
worse than for the single-mode switches. The change

Table lil. Msasured insertion Loss for Multimode Output Port

Configuration (decibels)
Port

Channel A B C D

1 6.7 54 5.7 7.3

2 8.7 54 55 7.0

3 6.6 53 55 6.8

4 6.7 52 5.3 6.3

5 6.4 5.1 5.2 6.3

6 6.5 5.3 5.3 6.6

7 6.5 5.3 5.4 6.7

8 6.6 53 5.4 6.6
Diffraction

efficiency loss 33 23 25 3.5




wclative upticsl puwce

ourput port

Fig. 9. Measured average output signal and cross-talk levels
relative to the input signal for the 4 x 4 single-mode fiber to
multimode fiber switch.

is due primarily to a relative rise in optical cross-talk
levels because of the increase in the output port duty
cycle. The electrical and acoustic cross-talk levels
were practically the same as those for the 4 x 4
single-mode element. Note that the optical cross-taltk
levels are somewhat higher than what we expect from
the analyses in Sections IV. The discrepancy exists
because our analyses do not account for anomalous
scattering effects that are present in the experimental
optical system.

We measured a reconfiguration time of 1.03 us for
the multimode fiber output port switch, which coin-
cides almost exactly with the theoretical prediction
based on 125 ns of frequency synthesizer setup time,
676 ns of transit time, and 238 ns of delay corrspond-
ing to 1 mm of space between the tranducer and the
e} intensity point of the collimated beam.

These multimode output port experiments most
closely resemble the two previous acousto-optic switch
demonstrations we have cited. Insertion losses for
our switch are markedly improved compared with
those for both of the other switches. Stephens et al.’
had average insertion losses ranging from 13 to 18 dB
for a 4 x 4 switch between single-mode fiber input
ports and 200-pm core diameter multimode fiber
output ports. This is comparable with the perfor-
mance we achieved in our single-mode-to-single-mode
switch. In the demonstration by Wilson et al.,' an
8 x 8 switch between single-mode and 62.5-pm core
multimode fiber yielded overall losses ranging from
17 to 40 dB. We should mention that the use of
translation stages at the input and output ports
represents a significant difference in the present
configuration and the two systems demonstrated
previously. However, no insertion loss advantage was
gained at the output ports from using translation
stages, since the only degree of freedom is in the ¢
direction, and any £-axis misalignments that may
occur in a multifiber system can be counteracted by rf
tuning. Since we also only have one degree of freedom
at the input ports, the only real advantage that the
translation stage affords over the other systems is
exact alignment to the acoustic channel in the v
direction. Alignment in this direction, however. is not

f——,

nearly as cnitical as in the x direction and should
provide an advantage of no more than 1 or 2 dB in
terms of overall loss.

Cross-tatk levels for all three switch implementa-
tions were of the order of 30 dB below signal. but
there are differences in reconfiguration times. The
Stephens implementation had a measured reconfigu-
ration time of ~1.2 us dominated by a 1.1-us delay
due to 5-mm separation between the cotlimated beam
and the transducer. Although the transit time for
their configuration was only ~ 130 ns tas we define
it), the rfbandwidth was 120 MHz, yieldinga TW that
is only 30% less than that used in our switch. This
suggests that our design can achieve similar transit
times for comparable rf bandwidths. Their rf source
switching time of 10 ns was, however, significantly
less than the 125 ns required for our frequency
synthesizers. This reduction is advantageous when rf
reconfiguration time is dominant (typically for high rf
bandwidths). In the Wilson demonstration, voltage-
controlled oscillators were used as programmable rf
sources, and the source setup dominated the overall
reconfiguration time of 10 us. The switching time of
their system could be reduced by using a different rf
source.

D. Photodiode Array Output Ports

For the photodiode array output ports, we use a
7.2-mm focal length objective (to produce a collimated
circular beam with a 1.15-mm diameter) in conjunc-
tion with a 300-mm focal length achromatic trans-
form lens. The rf addressing frequencies are 51.5,
73.8, 86.1, and 98.4 MHz for ports A, B, C, and D,
respectively, which provides the desired output port
separation of 550 um.

The relative signal and cross-talk levels for the
photodiode array output configuration are given in
Fig. 10. Overall, insertion losses ranged from ~3 to 4
dB with no evidence of NA selective loss. The losses
here are lower than those for the multimode fiber
output ports, because the diode collection areas are
large enough that acoustic-wave profile beam spread-
ing does not cause appreciable excess loss and also

clative uphical power

output port

Fig. 10. Measured average output signal and cross-talk levels
relative to the input signal for the 4 < 4 single-mode fiber to
photodiode array switch.
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because diffraction efficiencies are shightly higher
ow1ng to a reduction in the colimated beam diameter.

Average SCR's for the photodiode array configura-
tion ranged from 20 to 25 dB, indicating that cross-
talk levels are significantly higher than for the multi-
mode fiber output ports. The reason for this increase
is the dominant electrical cross talk among nearest-
neighbor elements in the photodiode array.

Vil. Conclusion

Deflecting photonic switch architectures are attrac-
tive hecause they can be used to constructan N x N
crossbar switch with just N deflecting elements. We
have determined that the best-case loss and cross-talk
performance for an acousto-optic deflecting switch is
achieved using far-field diffraction. Such a switch can
be constructed by using a Fourier transform lens
between the acousto-optic cell and the devices that
collect the light along the output axis. With the
Fourier domain switch, the transform optics provide
the proper spot size for optimum coupling efficiency
at the output ports as well as focusing the light from
the vertical input port array onto the horizontal
output axis.

We have éxperimentally verified the performance
of several Fourier domain multichannel acousto-optic
switch configurations. We achieved insertion losses
ranging from 3 to 7 dB for connections from an array
of eight single-mode fiber input ports to output ports
consisting of either multimode fibers or a photodiode
array. When single-mode fiber output ports are used,
insertion losses jump to 15-19 dB for a 4 x 4 switch
and 21-25 dB for an 8 x 8 switch. These increased
losses are due primarily to fan-in loss. which could
potentially be eliminated by placing a sccondary
deflector into the output optics of the switch. SCR’s
were well in excess of 30 dB for both the 4 x 4 and 8 x
8 single-mode fiber switches, while hovering around
30 dB for the multimode output ports. Cross-talk for
our particular photodiode array configuration was
only of the order of 20 dB below signal because of
electrical crosstalk among the array elements. Recon-
figuration times for the experimental switches were
~ 1 us for the multimode output port configuration,
increasing to 5 us for the single-mode fiber output
port designs.

This research was supported by the U.S. Army
Research Office and BellSouth Enterprises, Inc.
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APPENDIX F

MULTICHANNEL ACOUSTO-OPTIC CROSSBAR SWITCH
WITH ARBITRARY SIGNAL FAN-OUT

Reprinted from Applied Optics

Volume 31, Pages 1684-1686, 10 April 1992
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this process can also be regarded a: 4 reproduction of the
picture of the flight of the wave train that 1s emitted by the
laser.
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We propose an N x N acousto-optic switch architecture
capable of arbitrary signal fan-out with O(N logN, hard-
ware complexity. We also investigate the impact of signal
fan-out on loss and cross talk.

Key words: Crossbar switch, photonic switch, brocdeast
network, acousto optics.

We have previously described the operation and perfor-
mance of an acousto-optic photonic switching architec-
ture.'? In our architecture we rely on Bragg diffraction of
light by monotone acoustic waves in a multichannel acousto-
optic cell. Light that passes through an acoustic channel is
efficiently deflected at an angle that is proportional to an
applied radio frequency (rf), so that we steer light to an
appropriate output port through proper selection of the rf.
Simultaneous interconnections between a single input port
and several output ports, or signal fan-out, are obtained by
superimposing two or more acoustic waves within a single
acoustic channel to provide the necessary multiple beam
deflection. In this Technical Note we introduce an acousto-
optic crossbar switching architecture that has arbitrary
signal fan-out capability; we aiso point out ways in which
the performance of this architecture deviates from our
point-to-point crossbar switch and present experimental
results that illustrate some of these differences.

As an example of the basic architecture, Fig. 1 shows a
configuration for implementing a 4 x 4 switch with arbi-
trary fan-out capability. The top four acoustic channels of
the cell have one programmable monotone rf source, and
each of the channels is aligned to one of the input ports;
these channels provide point-to-point deflection of the
input beams to one of the four primary output ports (A-D),
or to one of two auxiliary output ports. To implement signal
fan-out from one of the input ports, we first deflect the light
from that input to an auxiliary output port, which feeds the
signal back to one of the two fan-out channels. These two
far-out channels have more than one programmable rf
driver attached to their transducers, so we can create
multiple tone acoustic waves to effect the desired signal
fan-out. Note that either a photodiode or an optical fiber
can be used to collect light at the auxiliary output ports: the
output of the pkotodiode would be used to drive a laser
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source at the input of the fai-out channel. while the fiber
can directly feed the optical signal back to the fan-out
channel.

We construct an NV x N crossbar switch with arbitrary
signal fan-out by using the following algorithm. To our N x
N point-to-point crossbar, we first add inttN/2) acoustic
channels with two monotone programmable rf drivers and
int(N '2) auxiliary output ports that are used to direct light
to each of the new fan-out channels. where int(x) designates
the integer nearest to but not exceeding x. These additional
acoustic channels and output ports allow the switch to
provide interconnection permutations that require fan-out
to two outp: ~ ports. To increase our capability to include
fan-out to thre autput ports, we simply add a monotone
programmable rf driver to each of the bottom int(N/3) fan.
out channels. Aft.- three-port fan-out is implemented, we
can further enhance our capability to four-port fan-out by
adding another rf source to each of the bottom int(N/4) fan.
out channels. To achieve arbitrary signal fan-out capability,
we continue this process of adding a rf source to the bottom
inttN ) fan-out channels, for valuesof: =5, .. . | N.

After we have completed adding rf sources to the fan-out
channels as prescribed in the previous paragraph, we are
left with an N x N crossbar switch that requires int(3N/2)
acoustic channels and output ports and has a rf source
count given by

A N ok
Nis = "“(E-I + 2. mt(T’ : (n
Since int{N) < N, we can approximate Eq. (1) by using

1 A )
N”“V‘E*;:)‘ (2)

which slightly overestimates the number of rf sources. The

well-known series expansion for log, (V) is written as®
o 1 -1y

M-y ®

logiN) = 2;— N~

As N grows large. we find that the series expansion for
log,(N and the summation in approximation (2) approach
equality. Using this result for large N, we find that

1 .
Nu =N|§+log,.‘1) 14)

Approximation (4) states that the required number of
programmabie monotone rf signal sources is O(N log N).
Therefore, since the required number of acoustic channels
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Fig. 1. Acousto-optic photonic switch architecture for arbitrary
signal fan-out. The hardware complexity of this architecture
approaches O(N log V.

is only O(N), we can use our approach to implement a
crossbar switch that is capable of arbitrary signal fan-out
with just O(N log N) hardware components. well below the
typical N? hardware complexity that is required to imple-
ment an equally powerful crossbar by using other tvpes of
electrical or opticai switching architecture i for examples of
N? complexity architectures, see Refs. 4—6).

The operation and performance of our fan-out architec-
ture is similar to that of its point-to-point counterpart,i*
with a few exceptions. First, splitting an optical signal
evenly over M output ports imposes a 1/M reduction in the
power delivered to each port; also, when a fiber provides
direct feedback to the fan-out channels, the optical signal
must pass through the acousto-optic system twice, so
insertion loss—excluding splitting loss—is at least twofold
that of our point-to-point architecture. Next we note that
reconfiguration time can also be longer for the fan-out
architecture if wg do not have a controller that can simulta-
neously reconfigure the necessary rf sources. If we must
access one rf source at a time, the reconfiguration time will
increase with M:; however, the M dependence of overall
reconfiguration time for our architecture is similar to that
of any other fan-out switch. Finally, the nonlinear interac-
tion of multiple frequencies in the fan-out channels causes
additional signal losses and cross talk, the extent of which
we detail in the remainder of this Technical Note.

Nonlinear effects that occur in multifrequency acousto-
optic diffraction reduce diffraction efficiency below what is
expected when power splitting alone is considered. this re-
duction in diffraction efficiency increases the overall inser-
tion loss of the switch. When two equally strong acoustic
waves are present in a singie channel, the Bragg diffraction
efficiency for each of the deflected beams is given by’

n = qlddef '5)

In Eq. (5) n is the maximum monotone Bragg diffraction
efficiency at the specified acoustic frequency, J.t-1 is the
first-order Bessel function of the first kind, and A¢ =
Y( Pyy)' 2, where P,, is the RF power per frequency applied
to the acousto-optic cell transducer and v is constant for a
given acousto-optic cell and fixed operating wavelength.’
Multifrequency acousto-optic diffraction also gives rise to
extraneous deflected beams that result from nonlinear
intermodulation effects.™ In our switching application. the
beams that .an affect performance are typically those due to

third-order intermodulanion prcducts The dedection an-
gles associated with these intermodulation products are
linear combinations of the angles that correspond to the
corstituent acoustic waves. In switch designs where the
output ports are equally spaced. some of the intermodula-
tion beams deflect light directly to inappropriate output
ports. which contributes to cross talk at those ports. The
Hecht limit for the third-order intermodulation product
power that results from two equal-strength monotone
acoustic waves is written as

=+ .. A¢c . 6.

where J,i-1 is the third-order Bessel function of the first
kind and n is now the maximum monotone Bragg diffrac-
tion efficiency for the frequency corresponding to the
intermodulation product.

We experimentally verified switch performance degrada-
tion that results from nonlinear acousto-optic interaction.
In our experiment we characterize the diffraction effi-
ciencies and intermodulation cross talk that occur from the
application of two equally powerful monotone RF signals to
an acoustic channel in a 4 x 4 switch within a single-mode
fiber network. The apparatus we used in this experiment is
shown in Fig. 2. Light at 633 nm, suppiied to the switch by a
single-mode fiber, is collimated by a 7.2-mm focal-length
microscope objective. To achieve enough acousto-optic cell
time-bandwidth product. the input beam is expanded in the
x direction with a pair of 19- and 150-mm focal-length
cvlindrical lenses in a confocal arrangement. The resulting
collimated elliptical beam is incident on the acousto-optic
cell at the Bragg angle. The cell uses the longitudinal mode
in TeO, and has a center frequency of 80 MHz and a
bandwidth of 40 MHz: at 633 nm, v = 0.123/(mW)' *for nur
cell. Light deflected from the cell is focused onto the output
axis by a spherical lens having a focal length of 88.9 mm. We
place a single-mode fiber on a translation stage along the
output axis to collect the light at each of four possible
output port positions.

In our switch design. we specify addressing frequencies of
59.7, 73.2, 86.7, and 100.2 MHz for output ports A-D,
respectively; this results in a center-to-center spacing of
180 um along the output axis. In our experiment we apply a
two-tone RF signal to the cell with equal-strength fre-
quency components at 73.2 and 86.7 MHz; this is the signal
we would apply to access ports B and C simultaneously.
Besides the two primary deflected beams, application of this
RF signa)] also creates intermodulation beams that corre-
spond to 59.7 and 100.2 MHz; light from these beams
results in cross talk at ports Aand D.

fiber
Microscope A
obpectve N
In;
2 | ;

Cvlindncal lens Acousto- ¥

bears. expanaer e fe—— F —
Fig. 2 Top view of the apparatus that was used in the two-tone
diffraction efficiency and intermodulation experiments. Here. F 13
the focal length of the spherical lens, and Bragg incidence to the
acousto-optic cell i1s implied.
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Fig. 3. Average measured diffraction efficiencies versus applied
RF power for beams deflected to ports B and C by a two-tone RF
signal with constituent {requencies of equal strength. Diffraction
efficiency values are referenced to the maximum achievable diffrac-
tion efficiency for a monotone RF signal.

The results of diffraction efficiency and intermodulation
level measurements are shown in Figs. 3 and 4. In Fig. 3 we
plot the average of the two diffraction efficiencies for the
beams deflected to ports B and C versus applied RF power
and the corresponding theoretical predictions: these values
are quoted in decibels and are referenced to the maximum
diffraction efficiency that can be achieved when a single
monotone signal is applied to the cell. Note that the
measured efficiencies conform to theory to within a few
tenths of a decibel. The largest efficiency is ~ 35% of our
reference level, which occurs when our two-tone signal
contains 23.5 dBm of RF power at each of the two frequen-
cies. Figure 4 shows similar measurements and theoretical
calculations for the average intermodulation cross-talk
power at the two extreme ports A and D. The levels are
quoted in decibels and are againi referenced to the maxi-
mum diffraction efficiency achieved when a single mono-
tone RF signal is applied to the transducer. In many
instances, the measured intermodulation levels are ~3 dB
above the Hecht limit; the intermodulation power in excess
of our theory is most likely due to acoustic nonlinearities.!

Iniermodulstion levels (dB)

RF power tdBm)

Fig. 4. Average measured intermodulation levels versus applied
RF power; these intermodulation beams appear at ports A and D
and result from the applied RF signals that were used to collect the
data in Fig. 3. {ntermodulation levels are referenced to the maxi-
mum achievable diffraction efficiency for a monotone RF signal
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From Fig 4 we find that. as we increase the apphiec RE
power. intermodulation peam levels quicklv exceed the
30-dB cross-talk levels that we achieved in the point-to-
pont configurations ° For an applied RF power of 183
dBm or less. the graphs of diffraction efficiency gain and
intermodulation levels in Figs. 3 and 4. respectively. show
that the intermodulation beams are at least 30 dB below the
maximum monotone diffraction efficiency. while the two-
tone diffraction efficiency is reduced by more than 7 dB
relative to the monotone case. To maintain a 30-dB inter-
modulation signal-to-crosz-talk ratio for a pcin: i point
Interconnection at port A or D, our muiticasting diffraction
effictency at ports B and C must therefore be at least 7 dB
less than for the point-to-point case.

To determine the reduction in diffraction efficiency that
is necessary to maintain a 30-dB intermodulation signal-to-
cross-talk ratio for multicast interconnections, we must
find the levels of applied RF power at which the ratio of
diffraction efficiency gain to intermodulation level is equal
to 30 dB or more. Using an iterative process, we find that
the intermodulation beams are at least 30 dB below the
two-tone diffraction efficiency at RF powers of < 15.5 dBm.
Combining this information with the typical 2-3-dB diffrac-
tion efficiency losses we encounter in point-to-point config-
urations,'? we find that. to maintain a 30-dB signal-to-cross-
talk ratio for all interconnections in our multicasting
application, the worst-case diffraction efficiency losses are
12 dB or greater than those of a switch without fan-out
capability.

In conclusion, we have shown that a crossbar switch with
arbitrary fan-out capability can be implemented by using
acousto-optic technology with only OW log N) hardware
complexity. However, insertion loss and cross-talk charac-
teristics of fan-out interconnections are degraded some-
what compared to a point-to-point switch. We note that it
may be possible to alleviate increased cross talk by spacing
the output ports at irregular intervals along the output
axis, but further research is needed to determine the
practicality of this cross-talk reduction strategy.
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Sampling of Fresnel transforms
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Abstract

Domains other than the time or frequency domains arises naturally in coherently illuminated
optical systems that produce Fourier transforms. We extend the well known result that N samples
are sufficient to represent the information content in the object, image, and Fourier planes to
include any Fresnel plane of a coherently illuminated optical system, provided that we use a
specified sampling technique.

1. Introduction

In an optical Fourier transform system there is a continuum of Fresnel domains available for
implementing processing operations between the object plane and the Fourier transform plane. If
N samples (or pixels) are sufficient to accurately sample the object, we know that N samples,
whose size and spacing are scaled by the magnification, are also sufficient to sample the Fourier
transform. The question arises as to whether N samples are sufficient to accurately measure the
intensity in any of the Fresnel transform planes.

2. A Fourier Transform System

From the sampling theorem, we know that a signal whose time bandwidth product is TW
can be accurately characterized by N=2TW samples, where T is the time duration of the signal
and W is its bandwidth. The sample spacing is therefore T,=T/N=1/(2W). The corrcspondm g
quantities in an optical system is that the sampling dlstance d, for a bandlimited object having a
cutoff spatial frequency o is d,=1/(2a ). If the object has‘icngth L, the number of samplcs
required is N=L/d,,.

Consider the Fourier transform system of Figure 1. An object f(x) in the front focal plane P,
of the lens is illuminated by a plane wave of coherent light. In the object plane P, all mformanon

Representative
) Fresnel planes
Object Fourier
plane Py et 4 plane
HL2 R R BT
RY) Pl | § -&co
fix) el N F (§)
l< F—>|
Lens with
aperture A
Figure 1: A Fourier Transform System

1s confined to the region defined by the aperture L and the sample spacing is dy=L/N. In the
Fourier plane P, all information passes through an aperture 2§ . A previous study showed that
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the information capacity of

undiffracted and diffracted

_’

the system is optimized when 2& . _=L, so that the physical size of the

object and Fourier planes are equal.! A related study showed that the packing density for a
generalized imaging system is highest in either the object plane P, or the Fourier plane P,
depending on the cutoff frequency a__.> When the capacity of the system is maximized, the
packing density is the same tn both planes and the required sample spacing is also equal at both
planes. Under these conditions, the lens aperture A, as shown in Figure 1, transmits both the

light so that A=2L. Hence, the spatial extent of the Fresnel transform

at planes P, or P4 is twice that of either the object or the Fourier transform.

The increased spatial extent of the Fresnel transform would be of little concern if the sample

spacing could be increased

correspondingly, so that the number of samples required remains the

same; unfortunately this is not the case because the spatial frequency o in sorae Fresnel planes
is at least as large as o, . in the object plane. To illustrate this point, consider the impulse
response r(u) of the system in the region between planes P, and P,, as shown in Figure 2:

- - jr=(u-x)?
r(u):Lwd(x)e AD dx, (D

where d(x) is the impulse response function for a bandlimited function and D is the distance from
plane P, to the plane of observation. This integral cannot be evaluated in closed form but a
working approximation for a sampling function d(x)=sinc(x/d) is that

—jEu? .
Hu)=1€ o5 lulk6,,D,
O; else. ( 2)

Thus, the energy due to the impulse response, which is equivalent to a sampling function, is
contained within a cone whose apex angle is 20 as shown in Figure 2. The connection between

Sample represented
by d(x)

Figure 2: The Impulse of a Sample of the Object

the physical cutoff angle 6

and the cutoff spatial frequency o . is such that the boundaries of

the cone represent the raysct%at pass through =i§co at the Founier plane of Figure 1.

The proper sampling distribution for an arbitrary Fresnel plane is somewhat complicated to
solve in detail because the integrals cannot be solved in closed form, but the solution is
simplified by using the approximation given in ( 2). Consider the spatial frequency at any plane
intermediate to pla.:ies P, and P, generated by a pair of samples separated by nd,, where
1€n<(N-1), and ccntereci on the optical axis at x=0.The object distribution is therefore

f(X)=d(x—nd0/2)+d(x+nd0/2), ( 3)

sa that the intensity at a plane an arbitrary distance D from the object is
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I(u) = 2{1 + cos(2nrndgu / AD)j. (4)

From ( 4) we find that the spatial frequency o of the intensity, in a general Fresnel plane, due to
two samples in the object plane is

o - nd,
. f AD . . . . . - ( 5)
This result is subject to the constraint that nd,< L, so that the points lie within the region that
defines the object, and the very important constraint that light from the two samples overlap at

the Fresnel plane so that interference takes place.

When D is small, so that the Fresnel plane is near the object plane, the spatial frequency oy
1s produced only by two closely spaced samples. Light rays from widely spaced samples do not
overlap because 8 has a finite value. As the Fresnel plane moves away from the object plane.
the separation between the samples that produce the cutoff frequency increases correspondingly.
When n=N, the separation between samples is (N-1)d,=L and, by constructing cones for both of
the edge sample points of the object, we note that light from these two points overlap only when
D=F so that the maximum spatial frequency, in any Fresnel plane between P, and P,, is
o=L/AF=a_.

3. The Optimum Sampling Distribution for a Maximum Capacity System

As we have seen, the distribution of spatial frequencies throughout out the Fresnel plane is a
function of the relative separation between samples of the object and the absolute position of the
samples in the object. Since a typical object contains samples uniformly distributed throughout
plane P,, the Fresnel transform is the sum of the contributions from all samples, taken in a
pairwise fashion, in the object plane. As a result, low spatial frequencies are present throughout
the region lul<L in plane P, but high spatial frequencies exist only near the optical axis in a
region for which lul=d,,

The distribution of spatial frequencies as a function of the variable u in the Fresnel plane is
found by a simple extension of the graphical solution given above. Since the range of the
positions of a pair of samples in the object plane decreases linearly as the spacing between
samples increases, the range of positions in the Fresnel plane containing the corresponding
spatial frequency also decreases linearly. Hence the relationship between the maximum spatial
frequency found at any spatial position at the lens plane is simply the triangular function

L |u|]
op(u)= -—-[l -=1
4 AFL L ( 6)

The maximum spatial frequency at the lens plane is therefore a(0)=L/AF when u=0 and is
a(L)=0 when u=tL. The fact that spatial frequencies in Fresnel planes are not uniformiy
distributed as a function of spatial position suggest that we should use a nonuniform sampling
distribution at the Fresnel plane.

The optimum sampling distribution at plane P, is a dense sample spacing near the optical ‘
axis where the spatial frequencies are highest with an increase in the sample spacing as we move
away from the axis where the spatial frequencies are lower. From a sampling viewpoint, we can
represent the frequency distribution in an arbitrary Fresnel transform by a chirp function

- N2
c(u)-l+cos[—a_’-:=(L u) ] (N

as shown in Figure 3a. The frequency distribution of the chirp is identical to that of the Fresnel
transform for an arbitrary object. The chirp function has its maximum frequency at u=0 and its
minimum frequency at u=L; the rate of change is linear as required by ( 6).
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Figure 3: Optimum Sampling Spacing for the Fresnel Transform

The optimum sampling of the chirp function is found by applying the Nyquist sampling
criterion that requires two samples per highest frequency. For the chirp function ( 7), the
optimum sample spacings are shown in Figure 4b, where alternate samples are staggered in the
vertical direction for clarity. As desired, the sample spacing is small near the optical axis where
the frequencies are high in the Fresnel transform, and the sample spacing increases linearly as we
move away from the optical axis, as required by ( 7).

We now prove that the required number of samples is fixed at all Fresnel planes in the
system and develop the optimum sampling strategy in an arbitrary plane. We initially confine our
attention to the region between planes P, and P, in Figure 1. First, from the ray diagram we see
that the maximum frequency is the same at all planes because at least one pair of points in the
object plane produce a spatial frequency ag=a, in all Fresnel planes. The region of overlap
decreases linearly as D increases so that a smaller portion of the Fresnel domain must be sampled
with sample spacing d,, as we move from P, towards P,. On the other hand, the total extent of the
Fresnel transform also increases linearly as]'D increases, These features are illustrated
diagrammatically in Figure 4 which is called a space(frequency diagram because it plots the
maximum spatial frequency as a function of position in each Fresnel plane between the object
and lens planes. At the object plane the object is regularly sampled, with sample spacing d,
because the maximum spatial frequency a_ . is, in general, uniformly distributed throughout the
object. As we progress toward the plane of the lens, the space/frequency diagram becomes
trapezoidal; the central region must be uniformly sampled with sample spacing d,, while regions
where the maximum spatial frequency gradually goes to zero is nonuniformly sampled. The
optimum sampling within the two end regions is found in the same way as before by appending
chirp functions with appropriate chirp rates to the central region.
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Figure 4: Optimum Sampling for Fresnel Transform:

The number of samples N¢ in any Fresnel plane between the object and the lens plane is
found with the aid of Figure 4 which shows the trapezoidal shaped section of the
space/frequency diagram between planes P, and P,. The number of samples is the sum of the
uniformly spaced samples in the region for which f I<(L/2-8_,D) and the nonuniformly spaced
samples in the outer regions of the trapezoid:

L-20,D 46_D
Ny =g+ g — =g =N,
0 0 0 ( 8)
where 2d,, is the sample spacing for the average spatial frequency in the nonuniformly sampled
region. From ( 8) we find that the number of samples, when the optimum sampling technique is
used, is the same in all planes between the object and the lens, as was to be shown. We recognize
that the areas of all the space/frequency sections are equal, consistent with this conclusion.

The space/frequency diagram for the Fresnel planes between the lens and the Fourier plane
is the mirror image of that given in Figure 3, with the lens plane being the plane of axial
symmetry. This completes the proof that the required number of samples in all Fresnel planes in
a Fourier transform system is constant, provided that the optimum sampling procedure is used
and provided that the Fourier transform system is structured for maximum information capacity.

4. The Sampling Strategy for an Unconstrained Imaging System

We now extend these sampling results to all Fresnel plane in an imaging system having
finite magnification. Such a system is shown in Figure 5a for the situatior: where the
magnification M =-2. The ray trace for the two edge samples as as shown in Figure 5a is called a
scissors diagram; it is helpful for quickly determining the boundaries of the light as it passes
through the system and for easily locating the Fourier plane.

The triangular space/frequency section located between the object and lens planes is the
same as that at the plane where the lens was located in the Fourier transform system of Figure 1.
For finite imaging conditions, the lens is located further away from the object plane so that the
light continues to disperse between this section and the lens plane. In this region, the highest
spatial frequency o, as given by the hyperbolic function (' 5), is now less than o, because
these Fresnel planes are beyond the distance where the marginal rays first cross. TRe section of
the space/frequency distribution is still trapezoidal by virtue of the arguments given above, but
the maximum frequency in the central part of the trapezoid is smaller.

From the scissors diagram in Figure 5a, we observe that, at the plane of the lens, the angles
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subtended by the edge samples of both the object and image planes are the same, as required by
the imaging condition and by the optical invanant. Hence, there is continuity 1n the

Object Lens

. Fourier
plane plane \>plune +IMIL/2
L2 .qa
() » |
| -IMIL/2
]|

Image
plane

Object Fourier

plane

(b)

Figure 5: High Bandwidth Imaging System

space/frequency diagram across the lens plane. As we move away from the lens toward the
Fourier plane, the sections of the space/frequency diagram remain trapezoidal, and the required
sample spacing dg increases because the angle subtended by the extreme samples in the image
increases. In any of taese planes, we apply the optimum mixture of uniform/nonuniform
sampling as described above.

At the Fourier plane, the space/frequency section becomes rectangular and the sample
spacing is uniform at

28, 2AFa., AF
dF= = =-—,

N N L (9
which shows that the sample spacing in the Fourier plane is completely independent of the
spatial frequency content of the object; it is dependent only on the length of the object. As we
progress from the Fourier plane to the image plane, the space/frequency sections remain
trapezoidal, while the maximum spatial frequency continues to increase because the edge
samples of the image subtend larger angles as we proceed toward the image plane, leading to the
higher spatial frequencies. The maximum spatial frequency continues to increase until we reach
the second triangular space/frequency section, which corresponds to the second crossover plane
for the rays in the scissors diagram. From this plane to the image plane, the sections are
trapezoidal but the maximum frequency decreases linearly to its final value of o /IMI, where M
is the magnification of the system. In turn, the sample spacing at the image plan€’is also IMid, as
required by geometrical optics and the optical invariant. In a more detailed analyses, we prove
that the number of samples required in each section of Figure 5b is equal to N, as confirmed by
the fact that the areas of each of the sections are equal.3

5. Summary and Conclusions
We have showed that the highest spatial frequencies in any Fresnel transform is

concentrated near the optical axis so that the samples must be most closely spaced in this region.
We have shown that the highest possible spatial frequency may occur in one or more of four
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planes in a generalized imaging system: the object plane, the Fourier plane, the second crossover
plane, or the image plane.
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Optimum sampling of Fresnel transforms

A. VanderLugt

The opportunity to process signals in domains other than the time or frequency domains arises naturally in
coherently illuminated optical systems that produce Fourier transforms. It is weli known that N samples are
sufficient to represent the information content in the object, image, and Fourier planes. We extend these
results to show that we can accurately represent the intensity signal in any Fresne!l plane of a coherently
illuminated optical system with exactly N samples, provided that we use a specified nonuniform sampling

technique.

l. Introduction

Signal processing operations are generally per-
formed in either the time or the temporal frequency
domains. For example, spectrum analysis is a process
in which signal features are easily detected after using
the Fourier transform operation to display the fre-
quency content of the signal. Correlation is extensive-
ly used in signal detection and can be implemented in
either the time or frequency domain, the choice resting
on performance/cost considerations. Sometimes pro-
cessing is done simultaneously in both domains, such
as in radar processing to display range and Doppler
information or in displaying Wigner-Ville distribu-
tions.!

In optical processing, we associate the spatial and
spatial frequency domains of a coherently illuminated
optical system with the time and temporal frequency
domains. Inaddition to these two domains, an optical
system has a continuum of Fresnel transform domains
between the object plane and Fourier transform plane.
The properties of the Fresnel transform of a signal is a
unique mixture of the properties of the space and
frequency distributions of the signal. The Fresnel
transform resembles one or the other of these distribu-
tions depending on the location of the Fresnel plane.

The sampling theorem is an important signal pro-
cessing tool for characterizing the information content
of signals or the capacity of systems. For example,
Toraldo? used the sampling theorem to determine the
degrees of freedom in an image and the capacity of an
optical channel, as did Linfoot? in his study of optical
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images. O’Neill and Walther!3 used sampling theory
to study the importance of phase in optical systems,
and Barakat,® at about the same time, applied sam-
pling to optical diffraction theory. These authors ap-
plied the sampling theorem to either the image plane
or the aperture plane of incoherently iluminated sys-
tems. Little attention was given to sampling in the
Fourier plane of coherently illuminated systems until
the 1970s.7®# Marks et al.? subsequently applied simi-
lar analyses to space variant systems.

The required sample spacing for the image of an
object is a function of the system magnification. Geo-
metrical optics accounts for system magnification and
guarantees that the information in the image is the
same as that for the object, if the system is free of
aberrations.!® Hence, if N samples are sufficient to
represent the object accurately, we know that N sam-
ples, whose size and spacing are scaled by the magnifi-
cation, are also sufficient to represent the image accu-
rately. We show that N samples are sufficient to
represent the Fresnel transform at any plane, but only
in the condition that the sample spacings are nonuni-
formly distributed. The details of the sampling distri-
bution are dependent on the bandwidth of the object
and the particular Fresnel plane being sampled.

In Sec. I1 we use a simple optical system to illustrate
the basic principles for sampling Fresnel transforms.
In Sec. III we develop the optimum sampling distribu-
tion when the information capacity of the system is
maximized; such a system images an object at an infi-
nite conjugate plane. In Sec. IV we remove this re-
striction and derive the sampling procedure for the
completely general case of a finite conjugate imaging
system. In Sec. V we find the maximum spatial fre-
quency at any Fresnel transform plane in a generalized
imaging system.

. Fourier Transform System

In a coherently illuminated optical system we deal
with amplitude distributions which are not unfortu-

————




nately directly observable ur measurable. The sam-
pling spacings and spatial frequencies are always asso-
ciated with the intensities of optical signals, since it is
the intensity that is observed and measured. Al-
though we use amplitude distributions to calculate the
Fresnel transform, all spatial frequencies and sample
spacings discussed in this paper are those associated
with the intensity of the Fresnel transform.

From the sampling theorem, we know that a signal is
accurately represented by N = 2TW samples, where T
is the time duration of the signal and W is its band-
width. The required sample spacing is, therefore, T,
= T/N = 1/(2W). The corresponding notion in an
optical system is that the sample spacing dy for a
bandlimited object f(x), having a cutoff spatial fre-
quency @, is dop = 1/(2a,,). The number of samples
required for an object of length L is N = L/do. The
required number of samples for a 2-D object is N =
N.N,, where N, and N, are the number of samples
required in the x- and y-directions.

A. Fourier Domain

Consider the Fourier transform system, shown in
Fig. 1, which we analyze in one dimension. An object
f(x) in the front focal plane P, of the lens is illuminated
by a plane wave of coherent light. At plane P, the
information from the object is dispersed by a diffrac-
tion process to form the Fresnel transform!::

glu) = / fx) expt—j &(u - x)?]dx. 1)

where F is the distance from plane P, to plane P, and
the object is limited to length L. The lens multiplies
the Fresnel transform by a quadratic phase function
explj(x/AF)u?], where F is the focal length of the lens,
to produce h(u) at plane Pj:

h(u) = g(u) exp(j —;;—,uQ). (2)

A second Fresnel transform similar to Eq. (1) is applied
to h(u) and produces the light distribution at plane P;:

F = [ ) ex;{—j - u)z}iu. 3)

We now substitute Eq. (2) and Eq. (1) into Eq. (3) to
obtain the Fourier transform relationship!?

Fg) = f: [_' fx) exp[—j - x)z]
X exp(j ) -j — (E u) ]d
i< .27 B
= }__ f(x) exp(j F Ex)dx. )

Although the configuration shown in Fig. 1 is the sim-
plest to analyze, the Fourier transform exists in a much
wider range of conditions, such as when plane P, isata
different position relative to the lens or when using
divergent or convergent illumination.!2

In the object plane P), all information is confined to
the region defined by the aperture L. In the Fourier

—

Oyt
plane P ' ‘ p piane

;' hou '
e F——>
Lens with
aperture A

Fig. 1. Fourier transform system.

plane P,, all information passes through an aperture
2f.,. A previous study showed that the information
capacity of the system is optimized when 2¢., = L, so
that the physical size of the object and Fourier planes
are equal.” A related study showed that the packing
density, expressed in bits per unit area, for a general-
ized imaging system is highest in either plane P, or P,,
depending on the cutoff frequency a.,.2 For the spe-
cial case in which the capacity of the system is maxi-
mized, the packing density is the same in botb planes
and the required sample spacing is also equal at both
planes. Since the lens aperture A, as shown in Fig. 1,
must be large enough to transmit both the undiffract-
ed and diffracted light, we find that A = 2L. Hence
the spatial extent of the Fresnel transform at planes P,
and P; is twice that of either the object or Fourier
transform.

B. Fresnel Domains

The increased spatial extent of the Fresnel trans-
form would be of little concern if the sample spacing
could be increased correspondingly, so that the re-
quired number of samples remained the same. Unfor-
tunately, this is not the case because the spatial fre-
quency a; in some Fresnel planes is at least as large as
®co, and the spatial extent of the Fresnel transform is
larger than that of the object. To illustrate this point,
consider the general Fresnel transform r(u), due toone
sample of the object, valid in the region between planes
P, and P,, as shown in Fig. 2:

r(u) = J- d(x) ex;{—j —AL.D u- x)g]dx. (5)

where d(x) is the object sampling function and D is the
distance from plane P; to the plane of observation.
This integral cannot be evaluated in closed form, but a
good working approximation for a sampling function
d(x) = sinc(x/d,) is that!!

- X2}
rlu) = e"’("iﬁ“)’ lul = 6.D. ()
0; else.

The energy due to the sampling function is, therefore,
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represented by

Jdix \ 9“,

Fig. 2. Impulse of a sample of the object.

contained primarily within a cone whose apex angle is
26.,, asshown in Fig. 2. The physical cutoff angle 8., is
determined by the rays that pass through the cutoff
spatial frequency positions ££., at the Fourier plane of
Fig. 1.

An equally valid method for determining the spatial
frequencies at an arbitrary Fresnel plane is to use the
angular spectrum associated with f(x). In that meth-
od, we decompose f(x) into a set of orthogonal plane
waves that propagate into free space. These plane
waves interfere to establish the spatial frequencies
appropriate for the Fresnel plane in question. In this
paper, we elect to decompose f(x) into a set of orthogo-
nal sampling functions.

Suppose that the object f(x) contains N samples,
each spaced a distance d, from its neighbors. Consid-
er the light diffracted by a pair of samples in plane P,
which are separated by ndg, where1 <n < (N—1) and
which are centered on the optical axis at x = 0. This
two-sample object is, therefore, represented by

flx) = d(x ~ ndy/2) + d(+ + ndy/2), 7N

and the intensity at a plane an arbitrary distance D
from the object plane P, is found by substituting Eq.
(7) into Eq. (5) to find that

Ku) = U. f(x) ex;{—j -)‘% (u~ x)z}dx

[ " [ = ndy2) + d(x + ndy/2))

X exp[—j )—\% (u-— x)z]dx 2.
Since the sampling function for a bandlimited system
behaves as a §-function, we use the sifting theorem to
find that
exp| =i — (u - nd0/2)2] + exp[-j L w+ nd0/2)2]r
AD AD

= 2(1 + cos(2xndgu/\D)]. 9

2

(8)

Iu) =

The energy in I(u) is concentrated in the region lul <
(60D — ndy) as we more fully explore in Sec. III. From
Eq. (9) we find that the spatial frequency o, of the
intensity, in a general Fresnel plane, due to two sam-
ples in the object plane is
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nd.,
D

a = (10)
This result is subject to the constraint that ndy < L, so
that the samples lie within the region that defines the
object and that light from the two samples overlap at
the Fresnel plane so that interference takes place.

When D is small, so that the Fresnel plane is near the
object plane, inierference is produced only by two
closely spaced samples; light rays from widely spaced
samples do not overlap due to the bandlimited nature
of f(x) and the finite values of 6.,. Asthe Fresnel plane
moves away from the object plane, the separation be-
tween the samples that produce the cutoff frequency
increases correspondingly. When n = N, the separa-
tion between samples is (N — 1)dy = L and by con-
structing cones for both edge samples of the object in
Fig. 3(a), we note that light from these two samples
overlap only when D = F so that the maximum spatial
frequency, at all Fresnel planes between P, and P, is
the cutoff frequency a., = L/\F.

From this same ray diagram, we see that the Fresnel
diffraction pattern at the lens plane, therefore, has
twice the spatial extent as the object. As we just
showed, the highest spatial frequency at the Fresnel
plane is the same as that for the object. We conclude,
therefore, that we need at least 2N samples to measure
I(u) accurately, if the samples are uniformly spaced.
For 2-D objects, we require 4 times the number of
samples which increases the computational burden on
digital postprocessing operations.

{li. Optimum Sampling Distribution for a Maximum
Capacity System

The key to exploring other sampling strategies for
Fresnel transforms lies in finding the distribution of
spatial frequencies in any plane of the system. We
continue by analyzing the maximum capacity system

+L2

(a) 0 / 8¢o "’

Interior rays 4

.L,, ;5.:::.;_:_)_...,1, ..... )

Region of overlap for

maximum spaced samples

in object is just one sample
—— at the Fresnel plane

Region of overlap for
minimum spaced
samples in object

(b)

Fig. 3. Sample spacing to produce (a} mazximum frequency but
minimum overlap and (b) minimum frequency but maximum over-
lap.




described in Sec. II. The spatial frequency at anv
position in the Fresnel plane is most easily found with
the aid of a graphic construction. Suppose that the
object f(x) consists of only two samples, one fixed at x
= +L/2, while the other is free to assume any other
position in P, of Fig. 1. From Eq. (10) we note that the
spatial frequency at any plane is proportional to the
angle subtended by the two samples as measured from
the observation plane, with the restriction that the
lilght from the two samples overlaps at the observation
plane.

A. Distribution of Spatial Frequencies in a Fresnel
Dormain

As noted above, the maximum separation between
samples in plane P, creates the maximum frequency at
the Fresnel plane P; but the minimum amount of
overlap. The maximum spatial frequency is pro-
duced, in accordance with Eq. (10), where the interior
rays from the two samples cross. The region of overlap
at a Fresnel plane is found from Fig. 3(a) and from
straightforward geometrical calculations to have the
minimum value of R = L ~ (N — 1)dy = do.

From Fig. 3(b), we find that the minimum sample
spacing of dy in plane P creates the minimum frequen-
cy at the Fresnel plane P, in accordance with Eq. (10),
of ay = do/AF. The amount of overlap at the Fresnel
plane is, however, at a maximum value; the region of
overlapis R = L —d,. Aswe see from Fig. 3, the region
of overlap in the Fresnel plane P, is always centrally
located opposite the midpoint of the pair of samples.
Samples having large separations produce higher spa-
tial frequencies at the Fresnel plane, but the samples
are constrained to a small range of positions near the
optical axis in plane P;. The region of overlap in plane
P, decreases as the sample separation increases, van-
ishing when the separation approaches L as shown in
Fig. 3{a). On the other hand, closely spaced samples
can occur anywhere in plane P; so that the region of
overlapinplane Pyislarge. Asaresult of these consid-
erations, we find that low spatial frequencies are
present throughout the lu| < L region in plane P, but
high spatial frequencies exist only near the optical axis
in a region for which |ul| < d,.

We now observe an important difference regarding
the distribution of spatial frequencies in various
planes in the system. In the object plane the mghest
spatial frequeiicy can occur anywhere. Since we have
noa priori knowledge of where the highest frequencyis
localized, we sample the object uniformly. A similar
argument holds for the Fourier plane so that the infor-
mation in the Fourier plane is also uniformly sampled.
However, from the ray diagram associated with Fig. 3
for the spatial frequencies in the lens plane, we see that
all spatial frequencies are present in the Fresnel plane
only in the vicinity of u = 0 and that the spatial
frequencies at any other position in the Fresnel plane
decrease to zero as lul — L.

The distribution of spatial frequencies as a function
of the variable u in the Fresnel plane is found by a
simple extension of the graphic solution given above.

Since the range of the positions of a pair of samples in
the object plane decreases linearly as the spacing be-
tween samples increases, the range of positions in the
Fresnel plane containing the corresponding spatial fre-
quency also decreases linearly. Hence the relation-
ship between the maximum spatial frequency found at
any spatial position at the lens plane is simply the
triangular function

L ful

ad{u) = ﬁ(l—f) (11)
The spatial frequency at the lens plane, therefore, has
a maximum value a/(0) = L/AF and a minimum value
af(£L) = 0. The fact that spatial frequencies in Fres-
nel planes are not uniformly distributed as a function
of spatial position suggests that we should use a non-
uniform sampling distribution at the Fresnel plane.

B. Optimum Sample Spacing Distribution

The optimum sampling distribution at plane P, is a
dense sample spacing near the optical axis where the
spatial frequencies are highest with an increase in the
sample spacing as we move away from the axis where
the spatial frequencies are lower. From a sampling
viewpoint, wc can represent the frequency distribution
for the Fresnel transform at the lens plane by the
spatial frequency distribution associated with a chirp
function

clu)=1+ cos[é L -~ u)"’], (12)

as shown in Fig. 4(a). The chirp function has its
maximum frequency at u = 0, its minimum frequency
at u = L, and the rate of change is linear as required by
Eq. (11). The spatial frequency distribution of the
chirp as a function of the variable u is identical to that
of the Fresnel transform for an arbitrary object as
established by Eq. (11). To find the required sample
spacings, we apply the Nyquist sampling criterion that
requires two samples pe: cycle of the spatial frequency
at each position in the Fresnel plane. For the chirp
function (12), the optimum sample spacings are shown
in Fig. 4(b), where alternate samples are staggered in
the vertical direction for clarity. As desired, the sam-
ple spacing is small near the optical axis where the
spatial frequencies are high in the Fresnel transform,
and the sample spacing increases linearly as we move
away from the optical axis, as required by Eq. (11).

The minimum sample spacing is found by noting
that the phase of the chirp at u = 0 is #L?/A\F. The
width of the first half-cycle of the chirp is obtained by
decreasing the phase of the cosine by = and solving the
relationship

™ o _wL?

—H-’(L u)’ = F T (13)
for u:

u=L~\LT2\F, (14)

which is the value of the minimum sample spacing
dimin- We can rewrite Eq. (14) as
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Fig. 4. Optimum sampling spacing for the Fresnel transform: (a)
the chirp function representation of the spatial frequency distribu-
tion; (b) the sample spacing at the lens plane.
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1
SL(I- I Le

Ao

2 L
=L(1—«\’1"‘l—v"=l—v‘=do. (15)

Thus the minimum sampling spacing in any Fresnel
plane between P, and P is the same as that for the
object. As an aside, this result is characteristic of all
systems that use Fresnel transforms. It is consistent,
for example, with the fact that a synthetic aperture
radar antenna of length dj is just sufficient to sample
the chirp radar return produced by a target whose size
is do.

The maximum sample spacing is found by noting
that the phase of the chirp at u = L is zero. The width
of the next to the last half-cycle of the chirp is found by
incrementing the phase of the cosine by = and solving
the relationship

&(L—u)zsr (16)
for u:
u ’=L-\AF- (17)

The maximum sample spacing dfmax is found by sub-
tracting the value of u given by Eq. (17) from L to find
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that djmax = VAF.  As a note in passing, d,m.. is also
equal to the radius of the first dark ring of a Fresnel
zone pattern whose focal length is F.

C. Example

As an example of nonuniform sample spacing, sup-
pose that we have an object whose lengthis L = 100 mm
and whose cutoff frequency is a,, = 0.25 cycles/mm.
For this object, the line bandwidth product is LBP =
Lag, = 25, and the number of samples required is N =
50. If we were to uniformly sample the Fresnel trans-
form, we would require N = 100 samples because the
highest frequency is still a., but the length of the
Fresne! plane is 2L compared with L for the object
plane.

To illustrate the optimum sampling distribution for
the Fresnel transform, we set the parameter AF = 400
and find, from Eqs. (14) and (15), that dy = dfmin = 2
mm and that djms = 20 mm in agreement with the
results shown in Fig. 4(b). In the sampling scheme
developed here, the total number of samples needed in
the Fresnel plane is determined by multiplying the
average frequency of the chirp by the chirp length.
Since the average spatial frequency at the Fresnel
plane of length 2L is 0.125 cycles/mm, we find that N =
50. The number of samples at the Fresnel planes P,
and P; in Fig. 1 is, therefore, the same as the number
for the object plane P; or the number for the Fourier
plane P,;. This nonuniform sampling pattern is com-
pletely independent of the exact structure of the object
and, therefore, can be used in any application.

D. Space/Frequency Diagrams

We now prove that the required number of samples
is fixed at all Fresnel planes in the system and develop
the optimum sampling strategy in an arbitrary plane.
We initially confine our attention to the region be-
tween planes P; and P, in Fig. 1. First, from the ray
diagram of Fig. 3, we see that the maximum frequency
is the same at all planes because at least one pair of
samples in the object plane produces the cutoff spatial
frequency o, at each Fresnel plane. The region of
overlap decreases linearly as D increases so that a
smaller portion of the Fresnel domain must be sam-
pled with sample spacing dy as we move from P, toward
P,. On the other hand, the total spatial extent of the
Fresnel transform also increases linearly as D in-
creagses. These features are illustrated diagrammati-
cally in Fig. 5 for all the Fresnel planes betweeen P,
and Pz.

The diagram in Fig. 5 is called a space/frequency
diagram because it plots the maximum spatial fre-
quency as a function of position in each Fresnel plane
between the object and lens planes. The object must
be regularly sampled with sample spacing dy, because
the maximum spatial frequency a,, is in general uni-
formly distributed throughout the object. As we pro-
gress toward the plane of the lens, the space/frequency
diagram becomes trapezoidal; the central region must
be uniformly sampled with sample spacing do, while
regions where the spatial frequency gradually goes to
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Fig. 5. Optimum sampling for Fresnel transforms. The height
gives the value of the maximum spatial frequency as a function of
position.

zero are nonuniformly sampled. The optimum sam-
pling within the two end regions is found by appending
chirp functions with appropriate chirp rates to the
central region. The height of the space/frequency
diagram is proportional to the required sample density
at a given position in an arbitrary Fresnel plane,

The required number of samples N; in any Fresnel
plane between the object and lens plane is found with
the aid of Fig. 5. The number of samples is the sum of
the uniformly spaced samples in the region for which
lul £ (L/2 = 6.,D) and the nonuniformly spaced sam-
ples in the outer regions of the trapezoid:

L-2..D 46D L

do + 2d° 'd—°=N, (18)

IB

where 2d is the sample spacing for the average spatial
frequency in the nonuniformly sampled region. From
Eq. (18) we find that the number of samples, when the
optimum sampling technique is used, is the same in all
planes between the object and lens, as was to be shown.
We recognize that the areas of all the space/frequency
sections are equal, consistent with this conclusion.
The space/frequency diagram for the Fresnel planes
between the lens and Fourier plane is the mirror image
of that shown in Fig. 5, with the lens plane being the
plane of axial symmetry. This completes the proof
that the required number of samples in all Fresnel
planes in a Fourier transform system is constant, pro-
vided that the nonuniform sampling procedure is used
and provided that the Fourier transform system is
structured for maximum information capacity.

IV. Sampling Strategy for an Unconstrained Imaging
System

We now extend these sampling concepts to all Fres-
nel planes in an imaging system having finite magnifi-
cation. A general imaging system without the maxi-
mum capacity constraint evolves from the Fourier
transform system of Fig. 1 when the object plane is
moved away from the lens so that the image is formed
at a finite distance on the opposite side of the lens.

Foure:

Fig.6. High bandwidth imaging system: (a) the scissors diagram;
(b) the space/frequency distribution.

Such a system is shown in Fig. 6(a) for the situation
where the magnification M = 2.

We begin the analysis of the general sampling strate-
gy by tracing rays for an object that has a high cutoff
frequency. These rays are the same ones that formed
the cone of light produced by the sampling function
d(x) in Fig. 2. The ray trace for the two edge samples
as shown in Fig. 6(a) is called a scissors diagram; it is
helpful for quickly determining the boundaries of the
light as it passes through the system and for easily
locating the Fourier plane. The space/frequency dia-
gram shown in Fig. 6(b) shows the distribution of fre-
quencies at various sections throughout the system.
We first discuss the optimum sampling distribution on
the object side of the lens in Sec. IV.B, followed by a
similar analysis for those planes on the image side of
the lens in Sec. IV.B.

A. Object Side of the Lens

The triangular space/frequency section located be-
tween the object and lens planes is the same as that at
the plane where the lens was located in the Fourier
transform system of Fig. 1. For finite imaging condi-
tions, the lens is located farther away from the object
plane so that the light from each object sample contin-
ues to diverge between this section and lens plane. To
maintain an optimum sampling distribution in this
region, we must modify the sample spacing strategy
developed sofar. We begin by noting that the highest
spatial frequency ay, as given by the hyperbolic func-
tion (10), is now <ac, because these Fresnel planes are
beyond the distance where the interior rays first cross.
The angle subtended by the two edge samples of the
object, therefore, decreases below that needed to pro-
duce the cutoff spatial frequency. The section of the
space/frequency distribution is still trapezoidal, how-
ever, by virtue of the arguments given above, but the
maximum frequency in the central part of the trape-
zoid is smaller than the cutoff frequency.

A typical section of the space/frequency distribution
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in this region is shown in Fig. 7. The number of
samples Ny in a Fresnel plane between the triangular
section and plane of the lens is given by the sum of the
uniformly spaced samples in the region for which lul <
(=L/2 +8.,D) and the nonuniformly spatial samples in
the outer regions of the trapezoid:
2-L/2x8,D) of 20D

Nf—_—(i,-_+—2-&—,=T' (19)
where d; is the sample spacing in the uniformly sam-
pled region and 2d;is the average sample spacing in the
nonuniformly sampled region. We use the fact that .,
= \a, and that the sample spacing for the spatial
frequency oy is df = AD/L in Eq. (19) to find that Ny =
N, which shows that N samples are also sufficient to
represent the signal at any Fresnel plane on the object
side of the lens, even in the most general imaging
condition.

B. Image Side of the Lens

From the scissors diagram in Fig. 6(a), we observe
that, at the plane of the lens, the angles subtended by
the edge samples of both the object and image planes
are the same, as required by the imaging condition.
Hence there is continuity in the space/frequency dia-
gram across the lens plane. As we move away from the
lens toward the Fourier plane, the sections of the
space/frequency diagram remain irapezoidal, and the
required sample spacing dy increases because the angle
subtended by the extreme samples in the image in-
creases. In each of these planes, we apply the opti-
mum mixture of uniform/nonuniform sampling as de-
scribed sbove.

At the Fourier plane, the space/frequency section
becomes rectangular, and the sample spacing is

26, 2\Fa,, \F

dFs.—I—v— = N s-—L—-' (20)

which shows that the sample spacing in the Fourier
plane is completely independent of the spatial fre-
quency content of the object; it is dependent only on
the length of the object. Note that when we use a
single lens to image the object plane with finite magni-
fication, we cannot necessarily achieve the conditions
for optimum information capacity for which the object
and Fourier plane have the same size so that, in gener-
al, dr # dy. The sample spacing in the Fourier plane
may be 2do, depending on the geometry of the system,
as we explore further in Sec. V.
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As we progress from the Fourier plane to the image
plane, the space/frequency sections remain trapezoid-
al, while the maximum spatial frequency at the optical
axis continues to increase because the edge samples of
the image subtend larger angles as we proceed toward
the image plane, leading to the higher spatial frequen-
cies. The maximum spatial frequency continues to
increase until we reach ‘the second triangular space/
frequency section. From this plane to the image
plane, the sections are trapezoidal, but the maximum
frequency decreases linearly to its final value of a../
M|, where M is the magnification of the system. In
turn, the sample spacing at the image plane is IM|d, as
required by geometrical optics.

V. Maximum Spatial Frequencies

We have seen that the optimum sample spacing in
any Fresnel plane is nonuniform, generally combined
with some regions of uniform sampling. The yuestion
arises as to which planes require the most dense sample
spacings. Todevelop the answer, consider the scissors
and space/frequency diagrams given in Fig. 8, which is
the same system configuration as given in Fig. 6, except
that the object bandwidth is much narrower. The
sample size and sample spacing at the object plane are
larger than those for the wide bandwidth system, lead-
ing to a smaller diffraction angle 6, as represented by
the cones in the scissors diagram. Since the interior
rays from the edge samples do not cross on the object
side of the lens, the space/frequency sections are all
trapezoids from the object to the lens plane. Further-
more, the maximum frequency at all planes in this
region is o, where a., for the narrow bandwidth sys-
tem is less that the cutoff frequency for the wide band-
width systems discussed above. As in the wide band-
width system, there is continuity of the space/
frequency diagram across the lens plane.

On the image side of the lens, the exterior rays from
the edge sample cross, leading to the first triangular
space/frequency section shown in Fig. 8(b). Between

Lens Image

Fig. 8. Low bandwidth imaging system: (a) the scissors diagram;
(b) the space/frequency distribution.




the lens and this section, the maximum frequency
increases linearly. This relationship is visualized by
noting that, in contrast to the argument given for the
wide bandwidth system, light propagating to the edge
samples at the image does not overlap at the plane of
the lens. If we consider the Fourier plane the fulcrum
of the scissors and the edge samples at the image as the
handles, we need to close the scissors (i.e., move the
samples at the image plane closer together) until over-
lap occurs at the lens plane. Once overlap is achieved
at the lens plane, we more easily see that the continuity
of spatial frequencies across the lens plane holds. We
then open the scissors as we progress toward the first
triangular plane; at this plane the scissors are fully
open. Since the angle between the samples increases
linearly as we progress along the optical axis from the
lens to the first triangular section, so too does the
highest spatial frequency.

As we progress between the triangular sections, we
find that the spatial frequency continues to increase in
a hyperbolic fashion because the distance between the
samples is fixed at [MIL, while the distance to the
image plane decreases. From the second triangular
plane to the image, we need to again close the scissors
to achieve overlap; the maximum spatial fre juency in
these planes, therefore, decreases linearly to its final
value of a./IMl. Note that the space/frequency dia-
gram for the narrow bandwidth object as shown in Fig.
8(b) is completely nested within that of the wideband
object as shown in Fig. 6(b).

A. Fresnel Plane Containing the Highest Spatial
Frequency

We now sharpen the qualitative results obtained so
far to find the planes for which the spatial frequency is
at a maximum and to quantify the magnitude of this
frequency. First, it is clear that if the magnification is
Ml < 1, the frequency at the image plane must be
higher than that at the object plane. Based on the
general description given in Sec. IV, the maximum
spatial frequency must, therefore, be on the image side
of the lens if IM| < 1. The remaining question con-
cerns the situations when IM| = 1.

Since the maximum frequency always occurs at the
optical axis by virtue of Eq. (11), it is useful to plot the
value of the spatial frequency that occurs at the axis.
Consider the scissors diagram in the upper part of Fig.
9 for a wide bandwidth object (solid rays) and a narrow
bandwidth object (dotted rays). As an example, con-
sider a system which has an object length L = 1 mm and
is configured to provide a magnification M = 2. If the
focal length of the lens is F = 8 mm, the distance from
the object plane to the lens plane is (1 ~ I/M)F = 12
mm, and the distance from the lens to the image plane
is(1 — M)F = 24 mm. To find the path of the maxi-
mum frequency at the optical axis for each plane in the
system, we begin with the plot labeled B in the lower
part of Fig. 9. Inthis case the cutoff frequency at the
object plane is a, = 400 cycles/mm, and the maximum
frequency remains at this value until we reach the
plane at which the marginal rays first cross. From this
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i
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Fig. 9. Maximum frequency as a function of position.

plane to the lens plane the maximum frequency de-
creases following the hyperbolic curve

L

a; = K—D_' (21)
where D is the distance from the object plane to the
plane in question. From the lens plane toward the
image plane, the maximum frequency path follows a
second hyperbolic curve:

o= —% (22)
where D is now the distance from the plane in question
to the image plane. We follow this curve until we
reach the plane where the marginal rays cross for the
second time in the scisso¥s diagram. From that plane
to the image plane the maximum frequency path fol-
lows the straight line to the final value of aco/TMI .

For an object with a narrower bandwidth, such as
that shown in path C, the general behavior is the same
as that just described. From the scissors diagram, we
see that the first and second crossover planes for the
marginal rays lie closer to the lens so that the maxi-
mum frequency path spends less time on the hyperbo-
las. At a somewhat narrower object bandwidth, such
as that shown as path D, the crossover planes are both
on the image side of the lens. In this case the path of
the maximum frequency does not intersect the first
hyperbola so that the mazimum frequency is the same
at every plane between the object and lens planes as
discussedin Sec. IV.C. The maximum frequency path
then linearly increases until it intersects the hyperbola
on the image side of the lens and remains on this
hyperbola until the plane of the second crossover is
reached. The maximum frequency then decreases lin-
early until the image plane is reached.

As the object bandwidth decreases, the maximum
frequency path spends less and less time on the hyper-
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bola. This phenomenon reaches its extreme condition
for path E, the condition for which the object band-
width is zero; the object is, therefore, a simple truncat-
ed plane wave. The width of this wave remains con-
stant to within the approximation given by Eq. (6)
between the object and lens. The light then begins to
focus, reaching its smallest spatial extent in the
Fourier plane; it then expands to fill the image plane.
This result nicely illustrates that the spatial frequency
at the Fourier plane is completely independent of the
object bandwidth; it is purely a function of object
length. For example, the sample size at the object and
image planes is large for path E, whereas the sample
spacing at the Fourier plane is always given by Eq. (20).

B. Four Planes that may Contain the Maximum Frequency

For all the object bandwidths considered so far, the
maximum spatial frequency occurs at the second
crossover plane on the image side of the lens. For an
object with a much wider bandwidth, such as that
shown in path A, we find that the maximum frequency
shifts to the object side of the lens. We now consider
the general condition for which this shift occurs. The
maximum frequency on the image side of the lens must
satisfy the hyperbolic relationship given by Eq. (22).
We need to find a meneral formula to find the distance
D from the image plane at which the crossover occurs.
By tracing one of the exterior rays, we find, after con-
siderable but straightforward algebraic manipula-
tions, that the crossover distance is

-ML
=L 23)
T (
F M

which, when substituted into Eq. (22), yields the result
that the shift occurs when

., = ——A&—*—- 24)
= (1 + M

For the parameters given above, this shift occurs when

ag, = 500 cycles/mm, which is consistent with the

results shown in Fig. 9.

The maximum spatial frequency must occur in one
or more of four possible planes: the object plane;
Fourier plane; image plane; or second crossover plane
where the space/frequency diagram has a triangular
section. It is easy to prove that there are exactly two
crossover planes in any system (except for the degener-
ate case when the object bandwidth is at its lowest
value so that the two crossover planes coalesce at the
Fourier plane) and that the second crossover plane
must be on the image side of the lens. The first cross-
over plane may be on either side of the lens, depending
on the object bandwidth, and is due to the interior
marginal rays produced by two samples. The second
crossover is due to the exterior marginal rays produced
by the samples. As a note in passing, it is possible for
the maximum frequency to be the same in three of the
four planes but not at all four planes simultaneously.
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C. Smallest Maximum Spatial Frequency

It is quite simple to find the plane containing the
minimum spatial frequency at the optical axis. For
narrow bandwidth objects, the image plane contains
the minimum frequency. As the object bandwidth
increases, we find that the minimum frequency shifts
to the lens plane; tracing the interior rays on the image
side of the lens, we find that this shift occurs when

=ML
©Z (M = DAF

a (25)
The minimum frequency occurs at the lens plane for all
object bandwidths that satisfy (25).

An analysis similar to that used in connection with
Pig. 9 applies to the case when the magnification is less
than one. If M = —1%, both the scissors diagrams and
space/frequency diagrams are quite different, howev-
er, from those given in Fig. 8. We cannot, therefore,
simply read the space/frequency diagrams from right
to left. The reason is that the jaws of the scissors do
not open and close in the zame way on the object and
image sides of the lens. The central rays are always
normal to the object plane when we use collimated
illumination, whereas they pivot about the axis at the
Fourier plane on the image side of the lens.

The even more general condition in which the illu-
mination is divergent or convergent produces results
similar to those already derived. The primary differ-
ence is that the position of the Fourier plane will shift
to a new position, causing an adjustment in all the
other planes for which space/frequency sections were
shown. The object and image plane positions are, of
course, not affected by the type of illumination. The
formulas and calculations needed to describe this even
x}:aore general case are straightforward and not given

ere.

V. Summary and Conclusions

Geometrical optics ensures that the information
content in the object and image planes of an optical
system are equal; N samples are sufficient to measure
accurately the signals in these planes. It is easy to
show that the Fourier plane can be added to the list,
since all the information must pass through a restrict-
ed aperture if the object is bandlimited. In this paper,
we show that N samples are sufficient to sample a
signal in any Fresnel plane as well, provided that a
specified nonuniform sampling distribution is fol-
lowed. We show that the highest spatial frequencies
in any Fresnel transform is concentrated near the opti-
cal axis so that the samples must be most closely
spaced in this region. We have shown that the highest
spatial frequency may occur in at least one, but not
more than three, of four planes in a generalized imag-
ing system: object plane; Fourier plane; second cross-
over plane; or image plane.

This nonuniform sampling may have apphcatxon to
showing how to space the elements of arrays such as
discrete element phased arrays in the microwave re-
gion. The nonuniform sampling procedure reduces




the required number of samples by up to a factor of 4,
for the 2-D case, leading to less computations in appli-
cations such as image restoration. It is also a useful
aid in understanding how the space and spatial fre-
quency information is localized in Fresnel planes.
This work was supported by the U.S. Army Research
Office.
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ABSTRACT

In this paper we show how the Fresnel wransform helps to detect time-delayed short pulse
signals. A short pulse disperses spatially as it propagates through free space according to the
Fresnel transform. A point photodetector produces a signal whose temporal frequency is directly
proportional to the time delay between the pulses. When this signal is fed to an acousto-optic
spectrum analyzer, the frequency domain represents a time delay domain.

1. THE FRESNEL TRANSFORM

Consider the beam combining part of the heterodyne acousto-optic system shown in
Figure 1. Light diffracted by the two acousto-optic cells propagates into free space to produce a
Fresnel transform at plane P3. A short pulse s,(t) is defined as a pulse whose duration is
significantly less than the duration T=L/v of the acousto-optic cell, where L is the length of the
cell and v i1s the acoustic velocity. For a cell whose time-bandwidth product is TW, the smallest
resolvable time slot is T,=T/N=1/2W, where N=2TW is the number of resolvable elements and
W is the bandwidth of the cell. A short pulse, then, consists of a few samples of duration T;
such a pulse drives the acousto-optic cell in the lower branch of the interferometer.

The delayed signal s,(t) drives the acousto-optic cell in the upper branch of the
interferometer. To simplify the discussion, we use the Raman-Nath mode of illumination at
wavelength A. The Fresnel transform for the signal in the lower branch is!

R = [ bfie-F -2 mA0X-0" gy, o

where b(x) is an aperture weighting function, f, (t)=S](t)COS(27tfct), and 7 is the spatial coordinate
in plane P;. Similarly, the Fresnel ransform for the signal in the upper branch is

- -4 A 2
F(nny= [ b(x)fyt=F —2)e {FADXM-x gy 2

where fz(t)=52(t)cos(27tfcl)=sl(I-T)COS[ZKfC(t-‘t)]. At plane P; these two terms add coherently
and a small photodetector is placed at M o in plane P to detect the light intensity
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1(n,0=IF (N,0+F,(n,01*. The detected output signal is

8= IR0+ F (.0 H(n - ng)dn, 3

where H(n-no) describes the geometry and sensitivity of the photodetector. When we expand the

integrand of ( 3) into its component parts, we obtain tiree terms:

a0 = IR(MOF H(n - ng)dn,

(4)
[ 2
2200 = [ 1H(.0F H(n= ng)dn, (s
and
830 =2Rel[_F(n.0F (M.0H(n - ng)dn). )

The cross-product term as given by ( 6) generally contains the information of interest; the other
two terms represent unwanted signals that must be removed in the post-processing operation.

It has been shown that the optimum distance between the acousto-optic cell the Fresnel
transform plane satisfies the relationship that!
v W
AD T’ (7
in which the geometrical parameters on the left are related to the signal parameters on the right.
If D is smaller than the optimum value, the signal iuration is less than T because of insufficient
dispersion; if D is larger than the optimum value, the signal amplitude is reduced while the signal

duration is still limited to T seconds by virtue of the duration of pulse in the cell.

The edge rays associated with the pulse are st >wn by solid lines in Figure 3 and while those
associated with the delayed pulse are shown dotted. The cross-product signal g4(t) as given by
(6) does not begin until t= T and this signal ends at t = T. The length of overlap at plane P, is
therefore Lr=v(T-1). Diffraction effects extend the time of overlap somewhat, but the strongest
contribution to the cross-product output occurs for T<t<T. The sum of g,(1) and g,t) exists,
however, for 0<t<T+t.

From ( 1) and ( 2) we see that the impulse responses at plane P, has the form
F(1.0) = b(ve = L1 2)e”/FADIn—-TIDF g < p < T, (8)
and
Ey(n,1) = b(vt —vr - L/ 2)e” JHADNn=va-e=T/D% oo o o (9)
We substitute ( 8) and ( 9) into ( 3) and perform the integration by letting H(mn-n O)=6(n-n o
represent a point photodetector; we also u.e ( 7) to express result for the crossproduct term as
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g3 =2b(vi =L/ 2)b(vt—vt—L/2)cosZaWtt/ T +Po) 1<1<T, ( 10)

where ¢, is an unimportant phase. The spaual frequency generated by the Fresnel wansforms of
two pulses therefore creates a temporal frequency that is linearly proportional to the time delay
between the pulses. As the input pulses move under the aperture function b(x), the spatial
modulation is converted to temporal modulation as shown by ( 8), (9), and ( 10). The most
importart result from ( 10) is that the output of the photodetector is a cosine whose temporal
frequency is linearly proportional to t:
v2 w

AT (11)

The range of temporal frequencies is 0 < f < W as the time delay ranges over the interval 0<t<T.

2. THE FOURIER TRANSFORM OF THE FRESNEL TRANSFORM
The output of the Fresnel preprocessing system as given by ( 3) is used to drive an acousto-o
¢ spectrum analyzer. In the spectrum analyzer, the cell length is L=vT, where v is the acoustic
velocity of the cell; the time bandwidth product is TW. Since the output g(t) fron. the Fresnel
transform preprocessor is a baseband signal, we create a new signal r(t)=g(t)cos(27tfct) that
drives the acousto-optic cell of the spectrum analyzer. The output of the spectrum analyzer is?

oo ; /y_l_.}. :
G(a,t)=J_“a(x)g(t-§_§)e!2’!’w 23 gi2max g, (12

where a(x) is an aperture weighting function. The range of integration is set by either the
aperture weighting functon a(x) for the spectrum analyzer or the duration of g(t). We are most
interested in the cross product term g,(t) given by ( 6) because it contains the desired information
about the time delays between the two signals. We concentrate on the example given by ( 10)
for two impulse signals.

We set a(x)=b(x)=rect(x/L) for convenience, substitute g3(t) into ( 12), and retain only the
positive diffracted order to find that

° ] Wry, T _xy .
Gy(a,r) = 2Re{ [rect(x/ Ly ™ IeET X7 D 2mex gy
As aresult of the integration the photodetector output is proportional to
Gaer.0)” = sinc?[(& ~ &, + W e/ T)L,) + sinc> (@ - &, =Wt/ T)L,), (14)

where we assume that the maximum overlap length Lt is smaller than .. Equation ( 14) reveals

that the output of the spectrum analyzer is, for this example, a sinc-function located at the spatial
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frequencies aC+Wt/’I‘ and ocC-Wt/I‘ .
3. Calculations of the Fresnel and Fourier Transforms
We further illustrate the theory by calculating the Fresnel wansform of some short pulses for

specific time delays. Consider a system in which the acousto-optic cell has a ime duration of

T=20us, a bandwidth of W=50Mhz, and an acoustic velocity of v=0.617Km/s. The length of the
cell is L=12.34mm so that the optimum distance between planes P, and P, in Figure 1 is
D=L%ATW=305mm for A=500nm. A pulse of 20ns duration spreads light over a distance L in
plane P;, thus satisfying the condition needed to produce an output signal with the longest
possible duration.

The diffraction patterns at plane P, are calculated using the exact form of the Fresnel-
Kirchhoff equation. We model the pulse as a rectangle in plane P; its shape is not strongly
dependent on the aperture function b(x) because the pulse is much shorter than the aperture. In
Figure 3, we show the intensity I(n,,t) at the output of the Fresnel transform preprocessor for a
time delay between pulses of T=400ns. As the pulses move through the cell, the envelope takes
on the shape of the Gaussian aperture function as indicated by ( 10). At t=r, the first instant
when both pulses are in the acousto-optic cell, one edge of the transform is positioned over the
detector. At t=T/2, the transform is centered at the detector; at t=T-T, the other edge of the
transform is positioned over the detector. This moving spatial Fresnel transform is therefore
converted to a time signal g,(t) as indicated by ( 10). The modulation is 100% because the
pulses are so close that they sample nearly the same value of b(x) as they move through the ceil.
The interference pattern consists of a cosine function on a bias; the spatial frequency is
a=f/v=1.62cycles/mm as calculated frorn'( 11), yielding about 20 fringes in the interference

pattern.
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This signal is then spectrum analyzed to measure the spatial frequency and to estimate the
time delay. The total aperture function from ( 10) is approximately a Gaussian function whose
intensity is 1/e> at the aperture edges. Figure 4 shows the output of the Fourier wransform of
g5(t) at the instant when it is centered in the acousto-optic cell of the spectrum analyzer. In this
calculation we ignore the influenxe of the spatial carrier frequency o c SO that the transform is
shifted to baseband. As expected, the Fourier transform consists of the response to the aperture
function at =0 and a=1.62cycles/mm; we show only the positive spatial frequencies. The
relationship between the time delay and the spatial frequency is T=ADa/v so that the peak
response is at T=400ns as expected. The signal drops by 3dB at 400+5ns so that the time delay
can be measured with a high degree of accuracy. The accuracy of the estimate is a function of
the number of.clcments in the photodetector array and the noise in the system.

In Figure 5 we show the Fresnel transform of two pulses with the time delay increased to
8us which is 40% of the cell length and near the upper limit of useful operation. Here we see
that no interference is evident until t=8js, and the detector output initially follows the envelope
of the Gaussian aperture function since only one pulse is in the cell. The second pulse then
enters the cell and generates the spatial frequency associated with the interference pattern; the
envelope is the product of Gaussian functions separated by the spatial equivalent of 8ts (Smm).
The modulation continues until t=T and then the intensity reverts to the Gaussian envelope until
the second pulse leaves the cell at time T+t. The percentage modulation varies in time as the
puises evolve because they are spaced far enough apart so they sample different values of b(x) as
they propagate. When they are centered in the cell, the amplitudes are equal because b(-x)=b(x)
and the modulation is 100% as shown at t=14psec.The duration of g(t) is 36pLsec; we show only
the central 20 psec of the signal in Figure 5. The spatial frequency in this case is 31.8cycles/mm

which is beyond the resolution of the plotter; aliasing is therefore evident in the plot.

The spectrum of this signal is shown in Figure 6; it is similar to that described above, except

that the mainlobe width of the signal at 31.8cycles/mm (corresponding to T=8jisec) is somewhat
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greater because the time duration of the modulation in g4(t) is less and the magnitude 1s reduced
for the same reason. Nevertheless, the signal drops 3dB at 8usect6.25ns, showing that the
absolute accuracy in measuring the time delay is not significantly greater that in the previous
example. The maximum time delay that can be supported is application dependent: this result

illustrates the trend in the response.
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Time-delay detection of short pulses
by Fresnel and Fourier transformations

A. VanderlLugt, C. S. Anderson, and P. J. W. Melsa

The Fresnel transform of a signal, when used as a preprocessing step to a subsequent spectrum analysis,
helps to detect the time delay between short-pulse signals. Light from the short pulses disperses
spatially as it propagates through free space to create an interference pattern. As the pulses move
through an acousto-optic cell, a point photodetector produces a signal whose temporal frequency is
directly proportional to the time delsy between the pulses. When this signal is fed to a spectrum
analyzer, the frequency domain represents a time-delay domain.

1. Introduction

In many applications the time delay between two
signals is useful for determining the source of informa-
tion. For example, in ranging systems the pulse and
its echo constitute the two signals; the pulse may be
repeated at known time intervals to extend the
unambiguous range or to improve the measurement
accuracy. In applications such as detecting exotic
emitiars, the pulses generally have different times of
arrival at two or more antenna elements; in this case,
we may use a dualchannel or a muitichannel acousto-
optic cell to process the signals and to sort them
according to their angles of arrival. In other applica-
tions in which only a single pulse is received, a known
time difference can be induced between the primary
signal and its replica so that a single-channel acousto-
optic cell is sufficient; in this case, we are interested in
pulse detection and simply use the tine delay as an
aid for doing so.

Correlation is often used as a processing technique
to estimate the time delays of signals that have larae
time-bandwidth products.}* Alternatively, sp -
trum analysis in the form of a cepstrum may be used
to measure time delays.> In both cases, the signals
generally have a long duration so that the time-
bandwidth product is large, resulting in a high signal-
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to-noise ratio for the processed signal at the output of
the system. Short-pulse signals, however, are more
difficult to detect because, although the bandwidth of
the signals may be high, the short time duration
yields a small time-bandwidth product. Correlation
is ineffective for detecting short signals having a
small time-bandwidth product because the correla-
tion gain is small and the output signals tend to
resemble the input signals. Spectrum analysis tends
to be ineffective because the pulse energy is spread
over a wide band of frequencies in the Fourier
domain, leading to a Jow signal-to-noise ratio in that
domain. Neither time-domain nor frequency-do-
main processing therefore provides the desired detec-
tion operation.

2. Background

We briefly review, for comparison purposes, how
optical Fourier-transform techniques have been used
to estimate time delay between two signals. As an
example, consider the application in which an rf
receiver consists of two antenna elements whose
base-line distance is D,,; the received signals are s,(t)
and s.{t). Suppose that a source is located at an
angle 8 with respect to the boresight of the array. .
The rf energy arrives at antenna element 2 with time
delay 1 = (Dy,/c)sin 8 with respect to that at antenna
element 1 so that s4(¢) = s4{2 ~ 7).

We measure the angle of arrival by estimating the
time delay between the two signals. Suppose that
we produce the Fourier trensform of these received
signals in a heterodyne acousto-optic spectrum ana-
lyzer, as shown m Fig..'1.5 The final lens in the
system produces the Fourier transform of the light
¢ ~‘bution created by the acousto-optic cells in
planes ¢, and P,  The Fourier transform of the first
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Fig. 1. Heterodyne acousto-optic Fourier-transform system.

input signal is
T x
Fyla, t) = 'r a(x)fx(t -3~ ;)em(ﬂmx)dx, (1)

where a is a spatial frequency and v is the velocity of
the acoustic wave. The aperture weighting function
a(x) accounts for the illumination profile and trunca-
tion effects caused by the acousto-optic cell. We
ignor an exponential function that describes the
Bragg-angle illumination, and we assume that the rf
signal is centered at f,, the midpoint of the bandpass
of the acousto-opticcell. For sy(t) = 5,(t ~ 1) we have

Fy(a, t) = Fi(e, t)exp( j2nfytlexp(j2ravs),  (2)

so that the spectrum Fya, ) is identical to Fy(a, ?)
except for a phasor indicating that the modulator at
plane P, has shifted the temporal frequency of light in
the upper branch of the interferometer by f; and a
phase term ¢(a) = 2mavT that contains the time-delay
information used to calculate the angle of arrival.
The intensity at plane P, is the magnitude squared of
the sum of Fy(a, t) and Fy(a, ¢):

I, t) = |Fyla, 8)]%1 + cos[2nfat + b(e, £)]).. (3)

We demodulate I(«, ¢) in time and extract the phase
information by comparing the phase of the detected
frequency with that of a reference frequency.

Jernigan proposed driving a single-channel acousto-
optic cell with the sum of s(¢) and s(t — 1).” In this
case, the temporal offset frequency is zero, so that the
cepstrum is

I ) = Py, |71 + cos(ewarr)],  (4)

and the time delay is encoded as a spatial frequency in
the o« direction. Jernigan suggested scanning the
intensity at the Fourier plane with a vidicon and
analyzing the resulting temporal signal by
using the fast-Fourier-transform algorithm. In this
fashion, frequency bins correspond to time delays.
Each of the techniques discussed has drawbacks;
the first requires a quadrature demodulation scheme
and has a limited ambiguous range on the time delay
between pulses because the phase is measured mod-
ulo 2w. The second technique requires scanning the
intensity in the Fourier plane, which is basically a
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batch processing operation, followed by a fast Fourier
transform; these operations become computationally
intensive for real-time applications. The perfor-
mance of this technique is sharply reduced by the
presence of cw signals. We show in Section 3 how a
Fresnel transform can be used to preprocess signals,
before they are fed to a spectrum analyzer, to improve
the detection of the time delay associated with short-
pulse signals.

3. Fresnel Transform

In a coherently illuminated optical system a contin-
uum of Fresnel transforms exists between the space
{time) plane and the Fourier (frequency) plane of an
optical system that uses an acousto-optic cell as the
input spatial light modulator. The Fresnel trans-
form is therefore a mixed time—frequency function
whose characteristics resemble those of the time or
the frequency function, depending on the plane of
observation. At the midpoint between the two planes
the characteristics are balanced between those of the
time and the frey. -ncy functions.

Light diffracted by the two short pulses disperses
spatially as it propagates through free space accord-
ing to the Fresnel transform to create a sinusoidal
interference pattern. As the short pulses travel
through an acousto-optic cell at velocity v, so too does
the interference pattern travel at velocity v. A point
photodetector at an appropriate Fresnel-transform
plane therefore produces a signal whose temporal
frequency is directly proportional to the time delay
between the pulses. When the output signal from
the Fresnel transform preprocessor is used to drive a
spectrum analyzer, the frequency domain is mapped
into a time-delay domain.

We treat the general case in which the pulses may
be generated by a laser range finder, a time-domain
reflectometer, echoes in a communication system, a
dual-antenna collection system, or similar systems.
In all cases the shape of the_pulse is affected by the
signal source, the transmission medium, and the
frequency response of the acousto-optic cell. We
initially assume that these processes are nondisper-
sive so that delayed pulses are represented as s,(t) =
as,(t — 1), wherea is an attenuation factor and 7 is the
delay. Without loss of generality, weseta = 1.

We begin our discussion of the basic ideas by
modifying the last part of the heterodyne acousto-
optic cell configuration, as shown in Fig. 2. This
system is similar to that shown in Fig. 1, except that
we remove the light modulator from plane P, and the
final lens in the system; the light distribution at plane
P; then becomes a Fresnel transform. A short pulse
s,(t) is defined as a pulse whose duration is signifi-
cantly less than the duration T = L/v of the acousto-
optic cell; such a pulse drives the acousto-optic cell in
the lower branch of the interferometer. The delayed
signal s,(¢) drives the acousto-optic cell in the upper
branch of the interferometer.

To simplify the discussion, we use the Raman—-
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Fig. 2. Fresnel transforms of short pulses.

Nath mode and illuminate the acousto-optic cells
normal to their entrance faces with collimated light of
wavelength A. Light diffracted by the signals in each
of the acousto-optic cells propagates a distance D into,
free space, as shown in Fig. 2. The Fresnel trans-
form for the signal in the lower branch is®

-
Fint= | 605t~ TSl ~sin/ADIn - o7

(5)

where fi(t) = s,{t)cos(2wf.t), b(x) is an aperture weight-
ing function that may be different from that used in
Eq. (1) and v is the coordinate in plane Ps.  Similarly,
the Fresnel transform for the signal in the upper
branch is

“ T
Fyfm,t)= f bix), z(t ~3- E)explﬂ'(v/ AD)(n - x)?)dx,

(6)

where fy(t) = sy(t)cos(2n72) = 5,(t — )cos{2nf{t ~ 7))
At plane P; these two terms add coherently in the
region L, where they overlap.

A small photodetector is placed at 4, in plane P; to
detect the light intensity; the detected butput signal
is

glt)= f [Fy(n, t) + Fy(n, £)|2H(n ~ mo)dm,  (7)

where H(n ~ m,) describes the geometry and sensitiv-
ity of the photodetector. When we expand the inte-
grand of Eq. (7) into its component parts, we obtain
three output terms:

&it) = f |Fafn, t)|2H(n —~ mo)dm, (8)

&alt) = f [ Fo(n, £)|2H(n = mq)dn, (9)

gilt) = . o f Fon, t1F,%y, ) Hn - mﬂdn}. 1100

The cross-product term as obtained by Eq. (10)
generally contains the information of interest; the
other two terms represent unwanted signals whose
effects must be removed by postprocessing opera-
tions, as discussed in Section 6.

Because all planes to the right of the beam com-
biner are Fresnel planes, the question arises as to
which is the optimum plane at which to detect the
light. The optimum plane is found by considering
the diffraction of light owing to cw signals and to
short pulses separately. Suppose that an applied
signal has a lowest cw frequency f, which diffracts
light at an angle 8,, as shown by the solid rays in Fig.
3(a). The highest cw frequency f; diffracts light at
an angle 6,, as shown by the dashed rays in Fig. 3(a).
If the distance D between planes P, and P; is too
large, a point photodetector at the Fresnel plane P,
will not detect light over the full frequency range of
the signal.

From the diagram we see that the intersection of
the upper ray from the lowest frequency and the
lower ray from the highest frequency occurs at a
distance above the optical axis equal to

L L
1)0=——+620='§+61D.

2 (11)

Because the relationship between the diffracted angle

P~

o

~-L=v]

cw signals

(a)

Fig. 3 Geometrical interpretation of Fresnel diffraction: (a) cw
signa) representation, {b) short-pulse representation.
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and the applied frequency is 8 = Aa = f/v, we find that

vL
Nf - f)
L2
= \TW'
where W = f, — f, is the rf bandwidth of the
acousto-optic cell. Energy from all cw frequency
components of the signal are therefore detected only
if the distance D satisfies inequality (12).

For a short pulse, light is diffracted within a cone
whose upper and lower rays are shown as solid lines
in Fig. 3(b) and whose ray angles are 6, and 8,. We
express A8 = 8, — 8, in terms of the pulse length L,
and find that A8 = A /Ly.? This cone of rays covers
an interval A8D at plane P, and, as the short pulse
travels through the cell, so too does the diffracted
light travel with velocity v at plane P;. Energy from
a pulse delayed by a time interval  produces a similar
cone of rays, as shown by the dashed lines in Fig. 3(b).
For interference between any two pulses, the cone of
rays must overlap, and for any given time delay, we
want to maximize the time for which the photodetec-
tor senses the interference. By tracing the rays
associated with two pulses separated by the maxi-
mum time T, we find a second inequality for the
distance D:

D <

(12)

vL
)\( f=fi)
L2
2 N\TW
Inequalities (12) and (13) are satisfied only when the
equality holds for both. By rearranging the parame-
ters, we find that the optimum distance between the

acousto-optic cell and the Fresnel-transform plane
satisfies the relationship that®

v W
DT (14)

(13)

in which the geometrical parameters of the system on
the left-hand side of the equality are related to the
signal parameters on the right.

From the ray diagrams associated with the two
pulses in Fig. 3(b), we find that the cross-product
signal g3(¢) as obtained by Eq. (10} does not begin
until ¢ = T and cannot last beyond the time that the
first pulse leaves the cell at £ = T. In general, the
time interval is obtained by T, = vL,, where the
length of overlap L. at plane P; is obtained by the
amount of pulse dispersion minus the pulse delay:

L, = AOD — vr. (15)
When the pulse width is at its minimum value of Ly =

L/TW, L, reaches its maximum value of L, = (T’ ~ 7);
diffraction effects extend somewhat beyond the re-
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gion suggested by the cones in Fig. 3(b), but the
strongest contribution to the cross-product output
occurs for the value of L, obtained by Eq. (15). In
terms of tirre durations, the sum of g,{(¢) and g,(¢)
exists for a time interval 0 < ¢t < (T + 7), while the
cross-product term exists only during some fraction
of the time interval = < ¢ < (T ~ 1) as determined by
the overlap region L, and the velocity v.

4. Fourier Transform of the Fresnel Transform

We analyze the frequency content of the output of the
Fresnel preprocessing system as obtained by Eq. (7)
to extract the time-delay information. This spec-
trum analysis may be implemented either digitally or
optically; the choice depends on the computational
intensity for the application at hand. Here we dis-
cuss performing the Fourier transform optically as
might be required, for example, in applications in
which the time of arrival of the signal is unknown and
we wish to perform an instantaneous Fourier trans-
form over a sliding window for all time. For general-
ity, and to assist in finding the optimum processing
conditions, we assign different parameters to the
acousto-optic cells in the two systems. In the spec-
trum analyzer, the cell length is L, = v; T, where v, is
the acoustic velocity of the cell; the time-bandwidth
product is T\W,. Because the output g{¢) from the
Fresnel-transform preprocessor is a baseband signal,
we create a new rf signal r{t) = glt)cos(2nft) that
derives the acousto-optic cell of the spectrum analyzer.
The output of the spectrum analyzer is

G(a,t)=j: u)g(t-%—vg-l)

X exp[iZ'rrfc(t - ”exp( J2wan)du.

(16)

The range of integration is set by either a(u) or the
duration of g(t). We are most interested in the
cross-product term g3(t) obtained by Eq. (10) because
it contains the desired information about the time
delays between the wo signals. We concentrate first
on this signal component and treat g,(t) and g,(¢) as
obtained by Egs. (8) and (9) in Subsection 6.C.

- We substitute g(t) into Eq. (16) to find that

Gaflet, t) = 2 ReU f a(um(n, t— % - 5‘;)

T, u
X Fyp* n,t—;-—H('q Mo)

x exp[j%fc(t - %”

x exp[ j27{a — at)u]dndu}, (17)




R

where o 1s the spatial frequency equivalent of the
temporal carrier frequency /.. The integration on 7
can be performed directly by replacing the point-
photodetector response H(n — o) by 8(y — m¢) and by
applying the sifting theorem to obtain

Gylo, t) = 2 ReUm a(u)Fl('no, t - 225 - -l-‘—)

U
X Fé‘(no.t - 2;_;5 - %)exp{ﬂvfc(t - 221)]
x exp| j2m(a ~ uc)u]du}. (18)

Equation (18) is the central result of this analysis.

‘To gain insight into the behavior of Gsa, ?),
consider the response of the system to the ultimate
short pulse: an idealized impulse so that s,(¢) be-
comes 5(¢). Although we can work with Eq. (18)
directly, it is instructive to return to Eq. (10) so that
we find g;(t) as an intermediate result. We use Eqgs.
(5) and (6) to find that

* T
Finty= | ten{t - 5 - Zespljr/ D - 2,

=b(vt ~ L/2)exp|{—j(=/ND)(m — vt + L/2)*]
(19)

In a similar fashion

Fy(n, t) = blvt - vt — L/2)
x exp[~j(w/\D)n -~ vt + vt + L/2)%,
(20)
which is the same as Eq. (19) except for the effects of
the delay 7 in the aperture weighting function and in

the exponential. We use Eqs. (19) and (20) in Eq.
(10) to calculate the cross-product term:

&slt) = 2 Re( exp{ j[2wWrt /T + by(7)])
x 'r blvt - L/2b(vt — vr ~ L/2)H(m ~ me)

b exp(—j2-rrv1'q/)\D)dn), tst<sT, (21)

where ¢o(1) = (w/A\D)(Lvr — v%1? ) and where we use
relationship (14), which optimizes the system perfor-
mance. As before, we represent the photodetector
response H{m — mg) by 8(n ~ mo) and use the sifting
theorem so that

&it) = 2b(vt — L/2)b(vt — vr — L/2)
x cos[2w(Wrt/T) + &,y(7)], 1<t < T, (22

where
&yi7) = 1=/ D)L - 2molur — t777) (23]

is an unimportant phase term. From Eq. (22) we see
that the spatial aperture function b(x) of the Fresnel-
transform system imparts modulation on the tempo-
ral carrier frequency. For example, the envelope
values for the leading pulse are b(—L/2), b(0), and
b(L/2) at the corresponding times ¢ = 0,¢t = T'/2, and
t = T; the delayed pulse experiences the same modula-
tion profile at a later time. The most important
resalt from Eq. (22) is that the output of the photode-
tector at ng is a modulated carrier whose temporal
frequency is linearly proportional to

w
f= T (24)

The range of temporal frequencies is therefore 0 <
f < W as the time delay ranges over the interval 0 <
7 £ T. An interesting aspect of the Fresnel prepro-
cessor is that the required detector bandwidth is a
function only of the relative time delay, not the pulse
width.

From Eq. (22), the sign of + is ambiguous; positive
and negative values of © produce the same temporal
frequency. In applications such as range finding the
delay is known to be positive. But in an emitter-
sorting application this ambiguity means that we
cannot determine on which side of the boresight the
emitter is located. We can overcome this difficulty in
the system shown in Fig. 1 by translating one of the
cells a distance L; = v1,; where 15 is the largest
expected time delay. Although this offset reduces
the available range of time delays that are estimated,
the offset 1, is generally small for emitter sorting
unless the base-line distance is large. For example,
the maximum 1, occurs at the end-fire direction; even
for antennas located 300 m apart, the delay offset is
only 1 us, which is a small effect on the total delay
range available when the cell in the Fresnel preproces-
sor is made from TeQ, operating in the slow shear
mode. Alternatively, if the outputs of the two an-
tenna elements are summed and used to drive a single
acousto-optic cell, one of the outputs can be delayed
by a known amount to change the apparent boresight
angle.

Because the frequency of the signal g;(t) is a linear
function of the time delay between the short pulses,
we can display the time delays by feeding g4(t) to a
spectrum analyzer. We retain just the positive fre-
quencies and set a(x) = rect(x/L) and b(x) = rect(x/L)
for convenience so that Eq. (16} becomes

Gj(e, ¢) = sinc|(e — a. ¥ Wr/L)L,]
X cos[2n(f. + Wr/T)t+ (1)),
st {(T-1). (25

Equation (25) reveals that the output of the spectrum
analyzer is, for this example, a sinc function located
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at the spatial frequency o, = W= 'L with an associated
temporal frequency of f. + W=/T. The = sign in Eq.
(25) arises because g;(t) is a baseband signal so that
the spectrum is redundant about /..

From Eq. (25) we see that the first zero of the sinc
function is at a spatial frequency 1/L. with respect to
that of the centroid. Because L. = v(T - 1), we see
that the sinc function at the output of the spectrum
analyzer has its minimum width when » = 0. For
longer time delays the amount of overlap of the two
beams from the Fresnel transform system decreases,
which, in turn, causes the time duration of g4(t) to
decrease. The result is that the response in the
Fourier plane of the spectrum analyzer is both broader
and weaker. As<t-—> T, the spatial duration L. of g(t)
tends toward zero so that the frequency resolution
deteriorates.

The fact that the response is broad does not
necessarily mean that we cannot accurately find its
centroid to measure t; the fact that the response is
weak is more serious because we may reach a point at
which the - signal-to-noise ratio is inadequate. A
limit on the range of delays to || < T'/2 ensures that
the response to the shortest signal in the spectrum
analyzer is not more than 3 dB down relative to that
produced by the longest signal. In practice, this
limitation may not be severe because the time delay
associated with an acousto-optic cell represents a
considerable amount of free-space propagation time
owing to the large velocity ratio of ¢/v. For example,
an acousto-optic cell with T = 25us can handle a
dual-antenna system with a base-line distance of
Dy, = 4,000 m; this is considerably longer than those
normally used in practice.

In this analysis we thought that advantages might
accrue if the parameters associated with the acousto-
optic cells in the Fresnel- and Fourier-transform
systems are different. We address this question
here. From Egs. (13) and (15) we conclude that the
maximum signal duration produced by the Fresnel
preprocessing system is T so that the time durations
of the cells in the two systems are equal. From Eq.
{24) we conclude that the maximum bardwidth pro-
duced by the Fresnel preprocessing system is W so
that the bandwidths of the cells in the two systems
are also equal; the requirements on the acousto-optic
cells are therefore identical.

5. Simulations and Experimental Results of the Fresnel
and Fourier Transforms '

We illustrate the theory by simulating the Fresnel
transform of short pulses with specific time delays.
Consider a system in which the acousto-optic cell has
atime duration T = 20 us, a bandwidth W = 50 Mhz,
and an acoustic velocity v = 0.617km/s. Thelength
of the cell is L = 12.34 mm and the optimum distance
between planes P, and P; in Fig. 3is D = L2/\TW =
305 mm for A = 500 nm. The shortest possible pulse
of 20-ns duration therefore spreads light over a
distance L, = L in plane P; thus satisfying the
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Fig. 4. Temporal response of the Fresnel preprocessor to two
short pulses 0.4 us apart.

condition needed to produce an output signal with the
longest possible duration.

We calculated the diffraction patterns at plane P,
using the exact form of the Fresnel-Kirchhoff equa-
tion; the pulse is a rectangular function in plane P,,
and the aperture function b(x) is Gaussian with its
amplitude at the edges of the cell being 1/e!%. In
Fig. 4 we show the intensity I(n,, ¢) at the output of
the Fresnel-transform preprocessor for a time delay
between pulses of + = 400 ns. As the pulses move
through the cell, the envelope takes on the shape of
the Gaussian aperture function as indicated by Eq.
(22). Att = 7, the first instant when both pulses are
in the acousto-optic cell, one edge of the Fresnel
transform is positioned over the detector. At ¢ =
T'/2 the transform is centered at the detector; at ¢ =
T — = the other edge of the transform is positioned
over thedetector. This moving spatial Fresnel trans-
form is therefore converted to a time signal gs(t), as
indicated by Eq. (22). The modulation is nearly
100% throughout because the pulses are so close that
they sample nearly the same value of b(x) as they
move through the cell. The interference pattern
consists of a cosine function on a bias; the spatial
frequency is a = f/v = 1.62 cycles/mm as calculated
from Eq. (24), yielding ~ 20 fringes in the interfer-
ence pattern.

This signal is then spectrum analyzed to measure
the spatial frequency and to estimate the time delay.
Figure 5 shows the output of the Fourier transform of
gs(t) at the instant when it is centered in the acousto-
optic cell of the spectrum analyzer. The total aper-
ture function used in Eq. (18) at this time instant is
approximately a Gaussian function whose intensity is
1/e45 at the aperture edges. In this calculation we
ignore the influence of the spatial carrier frequency o,
so that the transform is shifted to baseband. As
expected, the Fourier transform consists ol the re-
sponse to the aperture function at « = 0 and a = 1.62
cycles/mm; we show only the positive spatial frequen-
cies in Fig. 5. Because the relationship between the
time delay and the spatial frequency is T = AoD /v, the
peak response is at T = 400 ns, as expected. The
signal drops by 3 dB at +10 ns relative to the peak so
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Fig. 5. Fourier transform of the signal produced by the Fresnel
preprocessor (. 2 cycles/mm = 0.4 us).

that the time delay can be measured with a reason-
ably high degree of accuracy. The accuracy of the
estimate is a function of the number of elements in
the photc.letector array and the noise in the system.
In Fig. 6 we show the Fresnel transform of two
pulses with the time delay increased to 8 ps, which is
40% of the cell length and near the upper limit of
useful operation. The total duration of g(t) is 36 ps;
we show only the central 20 ps of the signal in Fig. 6.
We see that the detector output follows the Gaussian
aperture function for the first 12 ps because only one
pulse isin the cell. The second pulse then enters the
cell to generate the spatial frequency associated with
the interference pattern; the envelope is the product
of Gaussian functions separated by the spatial equiv-
alent of 8 us (6 mm). The modulation continues
until ¢ = 24 us, and then the intensity reverts to the
Gaussian envelope until the second pulse leaves the
cell. The percentage modulation varies in time as
the pulses evolve because they are spaced far enough
apart so that they sample different values of b(x) as
they propagate. When they are centered in the cell,
the amplitudes are equal because &(~x) = b(x) and the
modulation is 100%, as shown at ¢ = 18 us. The
spatial frequency in this case is 32.4 cycles/mm,
which is beyond the resolution of the graphics pro-

Relative intensity

8 12 16 20 %4 28

Fig. 6. Temporal response of the Fresnel preprocessor to two
short pulses 8 us apart.
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Fig. 7. Fourier transform of signal produced by Fresnel preproces-
sor (32.4 cycles/mm = 8 us).

gram and the plotter; aliasing is therefore evident in
the plot.

The spectrum of this signal is shown in Fig. 7;it is
similar to that described above, except that the
main-lobe width of the signal at 32.4 cycles/mm
{corresponding to T = 8 us) is somewhat greater and
the magnitude is reduced because the time duration
of the modulation in g4(t) is less. The broadening of
the main lobe of the diffracted light relative to that
shown in Fig. 5 is obscured by the change of scale in
Fig. 7. From the data we find that the signal drops 3
dB at +12.5 ns relative to the centroid of the main
lobe, showing that the absolute accuracy in measur-
ing the time delay is less than in the previous
example. The maximum time delay that can be
supported is application dependent; this result illus-
trates the trend in the response.

To test the theory and to validate the simulations,
we created a short pulse of 25-ns duration and
delayed it by v = 500 ns. The acousto-optic cell
material is TeO,, operated in the slow shear mode.
The cell has a bandwidth of W = 40 MHz, and we
illuminated only the central T' = 10 us of the cell with
the Gaussian beam from a He-Ne laser. The acous-
tic velocity for the acousto-optic cellisv = 0.617 km/s
so that the distance from the cell to the optimum
Fresnel plane, as obtained by Eq. (14) for A = 632.8
pm, is D = 150 mm. According to Eq. (24), the
output of the Fresnel preprocessor should generate a
temporal frequency of f = W(z/T) = 2 MHz with an
associated spatial frequency of a = f/v = 3.25
cycles/mm. The edge rays for this pulse form an
angle A8 = 0.102 rad so that the amount of spatial
overlap, as obtained by Eq. (15), is L, = 6.17 mm.
Finally, the number of fringes that we expect under
the envelope of the interference pattern as obtained
in Eq. (22)is oL, = 20.

Figure 8(a) shows the experimental result for these
conditions. We see that the output of the Fresnel
preprocessor consists of approximately 20 well-
modulated fringes within a Gaussian envelope that
exists for 10 ps. Since the two pulses are closely
spaced relative to the width of the Gaussian illumina-
tion, the experimental results are similar to those
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Fig. 8. Experimental results: (a)temporal response of the Fres-
nel preprocessor, (b} Fourier transform of the signal produced by
the Fresnel preprocessor.

shown in Fig. 4, in which the modulation extends to
the ends of the Gaussian illumination profile. Fig-
ure 8(b) displays the output of an electronuc spectrum
analyzer when it is driven by the signal shown in Fig.
8(a). To obtain a more accurate estimate of the
temporal frequency, we repeated the drive signal to
the Fresnel preprocessor so that the resolution band-
width of the spectrum analyzer could be set to 10
kHz. Figure 8(b) shows the dc signal that is the sum
of g:(t) and g,(t) and a strong cw frequency at 1.924
MHz; this frequency s close to the calculated value of
2 MHz, with the discrepancy probably caused by a
small error in setting the distance D. The experimen-
tal results therefore illustrate all the features pre-
dicted by the analysis.

6. Bias Terms and Self-Noise

So far we have assumed that the short pulses are
isolated, without the presence of cw signals. In this
section we consider the interaction of the Fresnel
transforms of short pulses and those of cw signals
that may be present, as well as various other sources
of signal-generated noise.

2. Continuous-Wave Signals

Suppose that a single cw signal is present in the
received signal along with short pulses. We first
consider the interaction of the Fresnel transform of a
cw signal with its delayed replica. The cw signalis of
the form cos(2wfit) and, if we consider just the positive
diffracted order, the intensity at the Fresnel diffrac-
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1:0.1 piane can be expressed as

I(n, t)

- exp{jZ‘:fj(t - g - 3)

T
+ exp{ﬂﬂf;(t —T-3 - 3”

= 2[1 + cos(2nf7)].

2

(26)

In this calculation we assume that the two signals
have unit amplitude and that we can safely ignore the
effects of diffraction because the photodetector is
within the geometrical shadow region of the edges of
the acousto-optic cell. We note from Eq. (26) that
the intensity pattern is not a function of either space
or time; this interference pattern therefore does not
contribute noise to the output of the system because
its spectrum is located at f = 0 and its energy is
removed from the output signal by a bandpass filter.

B. Continuous-Wave and Short-Pulse Signals

Next, we consider the interference of a cw signal and
the Fresnel response to an impulse. The impulse
response is found from Eq. (5), for the condition that
blx) =1, as

f; B(t - ; - —)exp[—J( /\D)(n — x)?]dx

T L\?
= exp[—J(w/)\D)('q - gé" - ut+ E) ] (27)

The intensity at the Fresnel plane owing to the sum
of the cw signal and the response to an impulse is

T
enlizeft -5

. vT £2
KAV I LN

I(n,t) =

2
+ exp

1+cos[2..f( 'g :)

]: 0<t<sT, (28

=2

kil t + Ly
To\" TVt
which, when we integrate the intensity over the point
detector located at m,, produces a chirp signal:

(29)

2nW
27(f; — 2umo)t + T 2 + g

glt) = 2{1 + cos

where ¢, is an unimportant phase.

In addition to the noise contribution obtained by
Eq. (29), we encounter other contributions owing to
combinations of the cw signal and the delayed short
pulse or owing to the short pulse and the delayed cw




T

signal.  All these combinations. however. have the
same general form as that of Eq. 29: The starting
frequency of the chirps is dependent on the frequency
of the cw signal and the photode*  “tor position; the
maximum frequency range is W. Not all these fre-
guency components necessarily fall into the range of
frequencies that represents the desired time-delay
range in the spectrum analyzer and, because the
energy in these chirp signals tends to be spread over
all frequencies, this source of noise is rather easily
removed by the inherent thresholding operation at
the output of the spectrum analyzer.

C. Bias-Term Noise

So far we have ignored the contributions owing to the
bias terms g,(¢) and g,(¢) from the Fresnel-transform
preprocessor. The temporal specira of these terms
are at baseband and are collected along with the
desired cross-product signal. We therefore must
translate g5(¢) to an intermediate frequency f; so that
it is separable from the bias terms. To calculate the
value of f; introduced by the acousto-optic cell at
plane P, in Fig. 1, we find the temporal Fourier
transform of g,(¢); the second bias term g,(t) has the
same spectral content as does gy{¢). T .e required
transform i3

Gi(f) = f &i(t)exp(—~j2nft)dt, (30)

where

&ilt) = f |Fy(m, t)]2H(n = mo)dm. (31)

Normally we would substitute Eq. (5) into Eq. (31)
and then substitute Eq. (31) into Eq. (30). When we
integrate Eq. (31} over a small photodetector for
which H(n ~ me) = 8(nm — me), we .ind that g\(t) =
|Fi(ne, t}|? and we see that Eq. (5) provides little
insight for a general signal f;(t) that contains the
pulse we wish to detect.

The analysis based on simple geometrical optics
described in Section 3 is now extended to assist us
here because we are interested only in the total
frequency range of the spectral function G,(f), not
the exact form of g,(t) or Gi(f). We decompose the
band-limited signal fi(¢t) as a set of weighted cw
components so that the light amplitude leaving the
acousto-optic cell is represented by

T Nz ] T )
le-5-3)= 3 cemprmfe-3-3)]

where ¢, is the amplitude of the nth frequency
component, fo = 1/T is the smallest resolvable fre-
quency, and N; ~ N, + 1 = TW is the number of
frequencies contained in f1(¢). The geometrical inter-
pretation of Eq. (32) is that the light associated with

the »th frequency component 18 @ plane wave travel.
INE 41 an dn,,_'l(.’ tjﬁ B ‘\":f;c UWLITI FEspell Lo 1;”11’ ‘.’E.?[li.;i
axis and oscillating at a temporal irequency 7, = &f:

In the absenc2 of diffraction each plane wave has
the same length L as the acousto-optic cell so that,
after it propagates to plane P3 of Fig. 3{a), the signal is
represented as

N2
Fin,t)= 2 c,recti(n - 8,D)/L)

n=Np
x exp| j2wnfolt ~ T/7)) (33)

We use Eq. (33) in Eq. (31), perform the sifting
operation to get F(n,, ¢) and use the resuit in Eq. (30):

@ N2 M
Gl(f}z." 2 Ecncm

~x =N n=N,

x rect{(n, — 8,D)/Llrect{(ne ~ 8,0)/L)
x exp| j2m(n — mfylt — T/2)}exp(—j2nft)dt.
(34)

The product of the rec. functions at the point-
photodetector position in plane P, of Fig. 3(b) is unity
for alln and m. Hence we find that

Nz N2

Gfi= > 2 8f-(n-mf),  (35)

nuN) n=Ny

which shows that the temporal frequency content of
Gi{flexastsfor 0 < |f] < 2W.

We have already shown that the spectral content
Gi(f) of the desired cross-product term gs{t) also
exists for 0 < |f] < Wif we permit the time delay to
range over the full time interval . Hence the offset
frequency must satisfy the condition that f; =
(2W + W/2) = 2.5W so that the cross-product term
can be separated from the bias terms by bandpass
filtering. In some special cases in which the time
delay is known to be bounded, the offset may be
reduced further, as shown by Eq. (24); in no event can
fsbe less than 2W.

D. Self-Noise

A more severe, and less easily elirinated, source of
noise at the output of the spectrum analyzer is due to
the presence of cw signals having different frequen-
cies in the cross-product term. The contribution of
the cw components at plane P; owing to f;(t) is still
obtained by Eq. (33), but the contribution from the
upper branch is modified to become

N2 .
Fyn,£)= 2, cnrect{(r, - 6,,D)/L)

m=Nj

x exp{ j2wmfy(t — T/2)lexp(j2nfst). (36)
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As a result, we find that G, f) owing to cw compo-
nents is

x Nz N2
GS(t) =J. z 2 CnCm

—« n=Nj n=N)

x rect{(no — 8,.D)/L]rect|(ne — 8,.D)/L]

x expl j2m(n — mifylt ~ T/2)]

x expl j2={f = fy)tjde, (37)

and the temporal spectrum becomes

N2 M

Golf) = 2, 2 3f=fs—(n-mfy) (38

n=N) n=N)

We see that although the offset frequency f; permits
us to separate the cross-product term from the bias
terms, Gj(f) itself still contains energy from the cw
components in the received signal. This represents
a form of self-noise; we now consider methods to
remove this source of noise and thereby improve the
signal-to-noise ratio at the output of the Fourier-
transform system.

7. Spectral Subtraction

Because the self-noise is in the same frequency band
as the signal of interest, we need to find a method
other than filtering to separate the signal and the
noise. From Eqgs. (24) and (14) we see that the
frequency corresponding to a given 7 is a function of
D, which is the distance from the acousto-optic cell to
the plane of the detector in the Fresnel-transform
preprocessor. The optimum value for D, in terms of
maximizing the time duration of the detected signal,
occurs when Eq. (14) is satisfied. Suppose that we
place a photodetector at a somewhat different value of
D and at a different spatial position ;. From Egs.
(34) and (35) we see that the spectrum G,(f) owing to
the cw signals is not a function of n, provided that our
representation of the Fresnel diffraction associated
with a plane wave is reasonably accurate. A similar
argument applies to G,(f) as well as to the self-noise
generated by the cw components of ga(2).

We now have two outputs for which the cw compo-
nents produce the same spectrum, while the signals
owing to the short pulses have known relationships
according to Eq. (19). For example, if the second
detector is placed at a distance D, = 0.9D,, the cw
‘requency produced by the time delay between short
pulses will be f; = 1.1f; so that it is located at a
different spatial frequency at the output of the spec-
trum analyzer.

We sketch the basics of spectral subtraction in Fig.
9. The spectrum Gj(mg, f) for the first detector
shows the Fresnel transform of the cw signals within
the cell as well as the response to the signal owing to
the two short pulses at a frequency f corresponding to
the time delay v. The signal-to-noise ratio is —9.6
dB so that the desired response is buried in the
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self-noise (i.e., the desired signal has unit intensity
while the variance of the self-noise is 9.6 dB). The
second spectrum Gs(m,, f) shows the response from
the second detector with a somewhat different self-
noise response; in this case the signal-to-noise ratio is
—9.4 dB and the desired signal corresponding to the
same time delay v occurs at f;, = 1.1f;. Because
these twc spectra represent integration for a time
period of ~T s, the spectra owing to the self-noise
should be nearly identical. When these two spectra
are subtracted, the signals owing to the short pulses
are enhanced as shown in Fig. 9; the subtraction does
not eliminate the self-noise completely owing to the
small differences in self-noise intensity at the two
Fresnel planes. A fairly simple post-processing oper-
ation should be able to sort the delays even when
several pulses are present in the cell at the same time.

This spectral subtraction scheme may also be use-
ful to detect short pulses in a noisy background.
Suppose that a short pulse is obscured by strong cw
frequency components. By introducing an artificial,
hut known, time delay, we can predict the temporal
frequencies that a short pulse will produce at the
output of the Fourier transform system. In this
case, we do not need to sample the entire output of
the spectrum analyzer but just the two frequencies
whose values are known from the known induced
time delay. After subtraction of the spectral re-
sponses, the results are thresholded to yield the
detection of the short-pulse signal.

8. Summary and Conclusions

We have shown that the Fresnel-transform preproces-
sor has the intrinsic property of converting short
pulses into longer signals so that the interference
between the short pulse and its delayed replica pro-
duces a time-gated cw signal. This signal is then
spectrum analyzed so that the spatial frequency
domain becomes, in effect, a time-delay domain; the
time delay can be measured directly from the location
of the spectral content of the time-gated cw signal.
The self-noise generated by the remainder of the
input signal to the Fresnel preprocessor can be
significantly reduced by using a second photodetector
positioned so that its response to short pulses changes

hin M’n
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in firwt s-peqnl Lj
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Ill Ih“n lh Result of specral subtmaction
Posidon of rignal n
in second specml

Fig. 9. Spectral subtraction to remove self-noise.
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1n a prescribed way while its response to the rest of
the input signal is largely unaltered. The difference
between the spectra of these two signals reveals the
time delay between the pulses.

This research was performed under a grant from
the U.S. Army Research Office.
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Abstract

Short pulses create unique Fresnel diffraction effects as they propagate through an acousto-
optic signal processing system that produce an interference pattern. By following the detection of
the interferometric pattern with spectral analysis, we extract information about pulse width, pulse
separation, and relative time of arrival. Laboratory models of the Fresnel transform processing
system and an optical spectrum analyzer were built and tested to verify the basic concepts. Pulses
as short as the theoretical limit of 20 nanoseconds for this system and separated by as little as 60
nanoseconds or as much as 17 microseconds have detected and measured. Short pulses have also
been detected in the presence of cw signals by using a frequency-variant matched filtering

operation.
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1.0 Introduction
In a previous paper, we developed the theory for using a Fresnel preprocessing technique to

measure the time delay between two short-pulse signals and gave some preliminary results.! In
this paper we describe extensive simulations and experimental results for this technique,
including the development of techniques to detect short pulses in the presence of cw signals. This
detection scheme recognizes that the Fresnel transform of a short pulse is dependent on the plane
at which it is measured, whereas the response to cw signals are independent of the position of the
detection plane. The two types of signals are distinguished by subtracting the Fresnel transforms
from two different planes and by using frequency-variant matched filtering. Calculations of the
signal-to-noise ratio, false alarm rates and detection rates are given for both linear and nonlinear
thresholding operations. A pulse generation, detection, enhancement, and measurement system is
used to test the applicability of this technology to real time signal processing problems.

Before presenting the experimental results, we summarize the fundamental concepts
developed in Reference 1. In Figure 1 we show an acousto-optic cell of length L driven by two
short pulses separated by a time duration 7. A short pulse s(t) is defined as a pulse whose
duration is significantly less than the duration T=L/v of the acousto-optic cell, where L is the
length of the acousto-optic cell and v is the velocity of the acoustic wave. The Fresnel transform
shows that light diffracted by the two short pulses disperses spatially within an included angle
20 co 2 it propagates through free space to create a sinusoidal interference pattern at plane P,
As the short pulses travel through the cell at velocity v, so too does the interference pattern travel
at velocity v. A point photodetector at 4 Fresnel transform plane P, therefore produces a signal
whose temporal frequency is directly proportional to the time delay between the pulses. When
the output signal from the Fresnel transform preprocessor is used to drive a spectrum analyzer,
the frequency domain is mapped into a time-delay domain.

To simplify the theory, we use the Raman-Nath mode of illumination with collimated light
of wavelength A. Light diffracted by the signal in the cell propagates a distance D into free space

as shown in Figure 1. The Fresnel transform at plane P, for the first pulse in the cell is?
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oo _ —x 2
Rt = [__b(x)fie-§ - £)e /A= gy, o

where fl(t)=s(t)cos(27tfct), s(t) is the baseband representation of the pulse, fc is the midband
frequency of the cell, b(x) is the illumination function, and 1 is the coordinate at plane P,.

Similarly, the Fresnel transform at plane P, for the delayed signal is

Fy(m1)= [~ b(x)fy(t ~ - 2)e /I AOXT-2Y gy 2

where fz(t)=s(t-t)cos[21tfc(t-1:)], These two terms add coherently at plane P, in the region L‘t
where they overlap to produce the sinusoidal interference signal.

A small photodetector, placed at N o in plane P,, detects the light intensity to produce the

output signal

g®=[_IF(n,n+Fy(m,0f H(n - 10)dn, (3

where H(n-’no) describes the geometry and sensitivity of the photodetector. When we expand the

integrand of ( 3) into its component parts, we obtain three output terms:

gi(t)=["_IR(m,e)* H(n - ng)dn,

(4)
20 =" IB@HP H@n-ne)dn, (5)

and |
£3(1) =2Rel[__ R(1.0F; (n.0H(1~1o)dn). (6)
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The cross-product term as given by ( 6) generally contains the information of interest; the other

two terms represent unwanted signals whose effects must be removed by post-processing

operations.

For a short pulse, light is diffracted mainly within a cone whose semi-angle is 6 co’ where

6 co=MLO and L is the minimum width of the pulse. This cone of rays covers an interval ZBCOD
at plane P, and energy from a pulse delayed by a time interval T produces a similar cone of rays

as shown in Figure 1. The distance to the optimum Fresnel diffraction plane is given by the

relationship that!

v2

%4
DT

(N
where W=f_-f, is the rf bandwidth of the acousto-optic cell. The length of overlap Lt at plane P,

is given by the amount of pulse dispersion minus the pulse delay:

L, =26,,D~-v7. (8)

When the pulse width is at its minimum value of L,=L/TW, LT reaches its maximum value of
Lt=v(T -T) as can be seen by rearranging ( 7) and substituting it into ( 8). Diffraction effects
extend somewhat beyond the region suggested by the cones in Figure 1, but the strongest
contribution to the cross-product output occurs for the value of Lt given by ( 8). In terms of a
time duration, the cross-product term exists only during some fraction of the time interval
1<t<(T—) as determined by the overlap region L'c and by the velocity v.

The output of the Fresnel preprocessor, for a short pulse, is approximated by 1

g(t) =1b(vt =L ] )R +1b(vt — vt — L [ 2)2

+2b(vt ~ L/ 2)b(vt —vt—L/2)cos[2x(W 7t/ T)}, t<t<T, (9)

|
T ..
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where we ignore unimportant phase terms. The result ( 9) shows that the output of the

photodetector is a modulated sinusoid whose temporal frequency is linearly proportional to T

r=zr (10)

The range of temporal frequencies is therefore 0 < f < W as the time delay ranges over the
interval 0<t<T. When g(t) is fed to a spectrum analyzer, the frequency domain is mapped into a
time delay domain.

2.0 Experimental Design and Implementation

The experimental design and implementation is based on an input/output data acquisition
and control philosophy. Functions requiring multiple configurations are generally controlled via
a Macintosh® computer. In many cases the control interface also provided a means to collect
data from the test instruments. The data acquisition and control software for the computer
controlled functions are implemented using LabVIEW®2. This software package provides many
of the subfunction utilities needed to design and implement control over an IEEE-488 bus, as
well as to control the discrete and analog 1/O interfaces installed within the computer.

The experimental system is segmented into three sections from an electrical viewpoint. The
first section includes the computer and its peripherals. The second section includes those
equipments directly controllable via one of the two data acquisition and control interfaces (oscil-
loscope, spectrum analyzer, arbitrary waveform generator, and local oscillators). The third
section includes all the electronic equipment used to support and condition the signals both being
generated and collected (amplifiers, local oscillator, cables, and so forth).

From an optical viewpoint the system is divided into two distinct subsystems, the Fresnel
preprocessor and the spectral analysis subsystem. Details of these two subsystems are given in

the following sections.
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2.1 Fresnel Preprocessor
Figure 2 shows the layout of the Fresnel preprocessor. The acousto-optic cell interaction
material is TeO,, operated in the slow-shear mode, and has a bandwidth of W=50MHz, an access
time T=40us, and a propagation velocity v=0.617mm/us. For these parameters we compute the
length of the cell as L=vT=24.7mm so that the optimum distance D between the acousto-optic
cell and the point detector is found from ( 7) as 357mm. The light source is a GaAlAs,
thermoelectric cooled laser diode; its output power output is 150mw at a wavelength of 853nm.
Spherical lenses L, and L, expand the beam while cylindrical lens C; produces a line focus at the
acousto-optic cell. Cylindrical lenses C, and C5 image the line focus at the primary Fresnel
plane, while the Fresnel transform is created in the direction parallel to the acousto-optic cell by
allowing light to propagate into free space to plane P,. The detector consists of a 200pm
diameter, high-speed silicon avalanche photodiode, with its associated circuitry and mounting
hardware. Since the physical size of the detector is too large to detect the interference fringe
pattern at the primary Fresnel plane with good response, we use lens L to magnify the spatial
fringe pattern at plane P, to match the size of the detector which is located at plane P;.
2.2 Spectrum Analysis Subsystem
The spectrum analysis subsystem can be implemented either electronically or optically;, we
demonstrate both techniques. The electronic spectrum analyzer is a conventional laboratory
instrument. The layout of the optical spectral analysis system built for this application is shown
in Figure 3. The light source is a HeNe laser with an output power level of 4mw at a wavelength
of 632.8nm. Lenses L, and L, expand the beam while cylindrical lens C, produces a line focus at
the acousto-optic cell. Lens L, produces the Fourier transform of the signal at the output plane in
the horizontal direction while the lens combination C, and L, image the line focus from the cell
onto the photodetector array. The parameters of the acousto-optic cell are the same as for the one
used in the Fresnel preprocessor. The photodetector is a 128 x 8 tapped CCPD photodiode linear
array. The frequency span covered by this spectrum analyzer arrangement is 33.3MHz, using 467

photodetector elements from the array, with a frequency spacing of 71.KHz; this frequency span
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was adequate for our experimental purposes.
2.3 Data Acquisition and Control

Data acquisition and control is centralized within a Macintosh® FX computer. Two
specialized I/O cards are used; one card provides an [EEE-488 interface capability while the
other provides both digital and analog I/O capability. The IEEE-488 interface is connected to an
arbitrary function generator, a spectrum analyzer, and a programmable oscilloscope. The digital
1/0 interface is connected to two digital direct-synthesizer boards which produce the cw signals
needed to test system performance.

Flexibility of the data acquisition and control system is useful for generating art:itrary
waveforms, particularly arbitrary pulses. We created severzl virtual instrument data acquisition
and control programs utilizing a LabView®2 development environment on the computer. The
virtual instruments are designed to communicate with the arbitrary function generator by means
of a callable subfunction. This design allowed other higher-level virtual instruments, independent
of the arbitrary function generator hardware communication constraints, to create the actual
waveform needed for any particular test in terms of pulse width, pulse separation, and delay
time.

3.0 Simulations and Experimental Results

The basic design of this system allows for a straightforward simulation of the entire system.
An example of the output of the simulation program is given in Figure 4. In the upper part of
Figure 4 we show the simulated output of the Fresnel preprocessor for a pair of pulses whose
widths are 40ns and whose separation is 500ns. The output consists of an interference fringe
pattern described analytically by (9), including the effects of the Gaussian illumination b(x). The
time scale ranges from 0-2000 units, with the largest value corresponding to the largest possible
duration of the signal as given by ( 8). In the time interval denoted by 0-350 units, neither pulse
is illuminated and the output is zero. At about 350 units, the first pulse is illuminated, but there is
no evidence of fringes because both pulses must be illuminated to produce interference fringes.

At about 400 units, both pulses are illuminated, but the fringe contrast is low because the the
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second signal is illuminated by a Gaussian function whose amplitude is low at the edges of the
acousto-optic cell. As the two pulses move through the cell, the contrast increases and attains its
maximum value when they are centered under the Gaussian illumination (at 1000 units). As the
pulses continue through the acousto-optic cell, the modulation of the fringes decays because the
output of the system is symmetric about the central spatial position. In the lower part of Figure 4
we show the one sided spectrum of the simulated signal. From ( 10) we calculate that the
temporal frequency should be f=1.25MHz as confirmed by the position of the spectral line at
1.25MHz in the simulation result.

The upper part of Figure 5 shows the experimental output produced by the Fresnel
preprocessor for the same parameters used in the simulation. The correspendence of the two
results is generally good; the experimental results exhibit, of course, noise associated with the
detector and its circuitry, and have a somewhat different envelope due to the fact that the pulses
do not have perfectly sharp rise and fall times due to the finite bandwidth of the acousto-optic
cell. In the lower part of Figure 5, we show the two-sided spectrum of the experimentally
produced signal. This result is the output of a virtual spectrum analyzer implemented using
LabVIEW®2, which captured the data from an electronic spectrum analyzer. Unless otherwise
noted, all spectral data presented here use the settings as shown on the virtual instrument shown
in Figure 5. The dc content of the signal is located at a relative position of 200 and we see
spectral lines located at 200+25. Since the frequency scale is 20MHz/200 = 100kHz per division,
the frequency of the detected signal from the Fresnel preprocessor is at 1.25MHz which confirm
both the theoretical and simulation calculations.

3.1 Pulse Separation versus Frequency and Signal-to-Noise Ratio
Table 1 shows the calculated frequency and the measured frequency for various pulse

separations; the pulse width is fixed at 100ns, with the pulse separation ranging from 1ps to

16us. We see that the measured frequencies track the calculated frequencies to within an average

error of about 1% and verifies the relationship between pulse separation and frequency as given

by ( 10).
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The signal-to-noise ratio is the factor limiting the useful separation between the pulses; this
data is also included in Table 1. The noise in this instance is generated by the photodetector and
its associated circuitry. The signal-to-noise ratio changes as a function of pulse separation for
two reasons. First, as the pulse separation increases, the time duration of the sinusoidal part of
the output signal decreases as indicated by ( 8) and ( 9), this shorter signal contains less energy
and produces a lower signal-to-noise ratio. Second, as the pulse separation increases so that the
value of 1 increases, the product b(vt-L/2)b(vt-vt-L/2) of the two Gaussian illumination terms as
given by ( 9) becomes smaller.

There is also a strong relationship between the peak signal-to-noise ratio and tne pulse
width. As the pulse width is increases, for a fixed pulse separation, the peak signal-to-noise ratio
increases because the pulse intercepts more of the laser power. Very wide pulses, however, also
imply larger minimum puls= separations and eventually lead to lower signal-to-noise ratios as
discussed above in connection with Table 1. Throughout this experimental work, the signal-to-
noise ratio was obtained from a spectrumi analyzer for which the analysis bandwidth was set at
10kHz. This means that we integrated the results from 2-3 successive sets of pulses. As a result,

the signal-to-noise ratio shown is higher than the actual value at the output of the optical system

by about 4dB.
3.2 Frequency-Variant Processing

We need to distinguish the Fresnel transforms of short pulses from those produced by cw
signals, such as narrowband radio sources. When two or more cw signals propagate through the
acousto—optic cell, the difference frequency generated after square-law detection lies within the
operating bandwidth of the detector in the Fresnel preprocessor. If the difference frequency is in
the band of frequencies generated by pulses, the response to cw signals becomes a noise source
that must be removed.

The Fresnel preprocessor is a space-variant processor because the output is a function of the
detector position within a given Fresnel plane as well as being a function of the propagation

distance D as shown by ( 1) or ( 2). Recall that light diffracted by a short pulse creates a
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diverging wave front as shown in Figure 1, while light diffracted by a cw signal propagates as a
plane wave whose angle with respect to the optical axis is a function of the cw frequency. The
significance of this space-variant feature of Fresnel transforms is that the frequency detected due
to the interference of plane wavefronts does not change as a function of distance D, whereas the
frequency detected due to diverging wavefronts does change as a function of the distance D.

In our experiments we detected the Fresnel transform at two planes sepurated by a distance
AD. The distance from the acousto-optic cell to the detector plane is conveniently altered without
moving any of the components in the Fresnel preprocessor by inserting a Pechan prism between
cylindrical lenses C, and Cs in the diagram of Figure 2. This prism is non-deviating and forms an
erect image, while introducing a fixed optical path difference to alter the value of D.

We distinguish cw signals from short pulse signals by taking measurements at two di:ferent
values of D and subtiacting the spectrum of cne measurement from that of the cther. Since
spectral contributions from the cw signals are essentially the same for the two cases, they are
removed by the subtraction process. The spectral contribution from the pulses is retained,
however, because there is a known shift in the frequency of the sinusoidal interference pattern.
The ability to distinguish and remove cw signals, through the space-variant property of the
Fresnel transform requires, a frequency-variant operation on the output of the spectrum analyzer;
this is a direct result of the fact that we are detecting the signal in a Fresnel domain as opposed to
a space domain or to a Fourier domain.

3.2.1 Simulation of Frequency-Variant Processing

We performed a simulation to illustrate the basic space-variant properties of the Fresnel
preprocessor and the frequency-variant post-detection operations. Figure 6a shows a possible
spectrum over a frequency range of 20MHz, corresponding to the frequency range used
experimentally. The spectrum consists of a sequence of cw signals, with the output produced by
a pair of short pulses being located at 12MHz. Zero-mean random noise was added to this
spectrum to simulate receiver noise; the signal cannot be seen in Figure 6a because the

signal-to-noise ratio for this output is —8.3dB. A second spectrum, simulating that obtained with
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the Pechan prism in the system to produce a new Fresnel detection plane, is shown in Figure 6b.
The spectrum due to the cw signals is the same as that showr in Figure 6a, except that a new
zero-mean random noise was used to simulate noise from the second photodetector. The
simu'ated change in the distance D between measurements is 10% so that the signal due to the
short pulses is now 'ocated at 13.2MHz; the signal-to-noise ratio for this case is -8.9dB.

In Figure 6¢ we show the results of subtracting the second spectral output from that of the
first. As expected, the cw part of the spectrum, except for the noise, cancels because it 1s not a
function of the distance D; energy due to the short pulses, however, does not cancel because the
change in the distance D causes a frequency shift as predicted by ( 7) and ( 9). Evidence of the
short pulses is shown by a positive spectral line at 12MHz and a negative spectral line, due to the
subtraction process, at 13.2MHz, along with the residual spectrum from the zero-mean noise.

The most immportant result of spectral subtraction is that the signature of the short pulse
response becomes a positive/negative doublet, with the unique property that the frequency span
between the spectral lines of the positive/negative doublet is linearly related to the midband
frequency. From ( 9) and ( 7) we find that the frequency of the output of the Fresnel preprocessor

is

AD (11)

so that the differential in the frequency span as a function of D is

Af: D2 ::—-—f.

v? [—ADj‘ ~AD V2 -AD
— = —7
The frequency difference between the spectral lines of the positive/negative doublet, for fixed

values of D and AD, is therefore a linear function of the frequency. Any processing applied to the

data must therefore have a frequency variant response, because the positive/negative doublet




Dezection of Short Pulses  Wardlaw and VanderLugt 12

spectral lines are spaced close together at the low temporal frequencies of the output of the
Fresnel preprocessor and far apart at high temporal frequencies.

Two processing algorithms were applied to the simulated data. The first 1s a nonlinear dual
threshold technique implemented by applying a positive and a negative threshold directly to the
difference data shown in Figure 6c¢; the threshold level is based on the standard deviation of the
difference data. The next step is to apply an AND logic operation which requires that if a
positive spectral line at a frequency f exceeds threshold then a negative spectral line at f+Af must
also exceed threshold. We expected that this AND operation would help discriminate against
occasional isolated spectral lir.xes due to noise that exceed threshold. We refer to this entire
processing operation as the dual threshold operation.

The second algorithm is a frequency-variant matched filtesing operation applied to the data
shown in Figure 6c. The frequency-variant matched filter consists of a positive/negative doublet
whose frequency spacing is the linear function of the frequency given by ( 12). In Figure 6d we
show the result of the frequency variant matched filtering operation. A threshold based on the

standard deviation of the data shown in Figure 6d is then applied to output of the matched filter.

We tested the dual threshold and the matched filtering techniques against simulated data of
the type given in Figure 6 containing 20 signals distributed among 1000 data samples. The first
step is to determine the proper threshold level; this level is generally a function of the costs
associated with missed signals, false alarms, probability of detection, and so forth. To determine
the false alarm rate, we set the signal level equal to zero so that the output consisted of only
noise. We then applied the two algorithms to the data and measured the false alarm rate.

The data shown in Figure 7a reveals that, since the residual noise has zero mean, the false
alarm rate for the matched filter result is near the expected value of 0.5 when the threshold is set
at zero. The false alarm rate for the dual threshold technique is 0.25 as expected because the
logical AND operation requires the conjunction of two events, each of whose probability is equal
to 1/2. The probability of false alarms decreases for both techniques as the threshold level

increases. At threshold levels of l.7o'd for the dual threshold case and 2.40‘m for the matched
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filter case, where 04 and o are the standard deviations for the respective data sets, the
measured probability of false alarm is 2(107). Based on the results of this simulation, as shown
in Figure 7a, we conclude that the dual threshold technique is more robust with respect to false
alarm rate.

The other important performance criterion, however, is the probability of signal detection.
We set the threshold at the values noted above so that the probability of false alarm was the same
for both techniques. We then increased the signal level, repeating the simulation 10 times at each
threshold level; the averaged results are shown in Figure 7b. The probability of detection
increases as the signal level increases for both techniques; either technique provides a probability
of detection approaching one for signals whose levels exceeds 1.1. The output signal-to-noise
ratio at this signal level is +9.2dB for the dual-threshold case and about 3dB more for the
matched filter case. The input signal-to-noise ratio was -8.1 db for both cases; most of the
processing gain is due to the subtraction of the cw signals. Although the matched filter produces
a relatively small increase in processing gain because the space bandwidth product of the
positive/negative doublet signal is only equal to two; the 3dB additional gain is sufficient to
improve its performance significantly. From Figure 7b we see that the matched filter technique
performs uniformly better than the dual-threshold technique. The matched filter is therefore the
baseline technique in the experimental work described in the next section.
3.2.2 Experimental Results of Frequency Variant Processing

We experimentally tested the space variant property for the Fresnel transform by modifying
the Fresnel preprocessor so that the Fresnel plane distance can quickly and repeatability be
changed from one value to another. Instead of moving the detector to a new longitudinal
position, we inserted a Pechan prism in the optical path to increase its effective optical path
length by approximately 35mm, which is of the order of 10%. We measured the frequencies
produced by pulses as described in Section 3.1, but this time with and without the prism, to get
the results shown in Table 2. As predicted, the frequencies from the Fresnel preprocessor are

shifted to lower values when the prism is in the Fresnel preprocessor because the optical path is
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longer.

The input signals used in this test are two cw signals generated by local oscillators and two
pulses produced by the arbitrary function generator. The spectrum of the output from the Fresnel
preprocessor is recorded in two data files: one file contains the spectrum of the output signal
obtained without the prism, as shown in Figure 8a, and the other file contains the spectrum of the
output signal obtained with the prism, as shown in Figure 8b. The spectrum is offset so that the
dc component occurs at the relative frequency position denoted by 200; the spectra are all
symmetric about this frequency, as expected. Since the frequency span is £20MHz, one unit on
the horizontal scale represents 100kHz.The primary difference in the two spectra is that the
spectral frequency component due to the cw signal does not change in frequency when the path
length changes, whereas the spectral component due to the short pulses does change in frequency

as the path length changes, as predicted by the theory.

The cw difference frequency produced spectral lines at about £8MHz, while the short pulses
produced the higher frequency components at about £10MHz. The two types of signals are
difficult to distinguish in this display because the Fresnel transform converts the short pulse
energy into a cw signal whose frequency is a measure of the pulse separation while the cw signal
remains a cw signal. Since the cw signal exists for all time, while that of the short pulses exists
only during the time period produced by the overlap of the pulses, the spectral lines for the short
pulses are somewhat broader. The same general comments apply to the data collected when the
Fresnel plane is moved so that the optical path increased by 35mm as shown in Figure 8b. The
positions of the spectral lines due to the cw signal have not changed, while those of the short
pulses have moved to frequencies that are about 10% lower.

Spectral subtraction as described in Section 3.2.2 was applied to these experimental results
to remove the effects of the cw signal and to enhance the detection of the short pulse
information. The approach is to convert the logarithmic spectral scale, as produced by the
spectrum analyzer, to a linear scale before they are subtracted. The results of this type of linear

subtraction is shown in Figure 9a. In this case, the cw signals are removed and the spectral lines
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due to the short pulses form a positive/negative doublet. These two spectral lines are at
frequencies that differ by 10% due to the change in the distance of the Fresnel detection plane.

We note that the negative portion of the doublet has a smaller magnitude than the positive
portion. There are two reasons for this difference: the prism transmittance is not 100% and the
expanding light amplitude from the short pulses decreases as the distance to the Fresnel plane
increases as suggested by Figure 1. We did not attempt to implement any form of gain control or
equalization to correct this problem. Also, the dc frequency component is not as cleanly removed
as the cw components; the dc component is much stronger than any other spectral component (it
is saturated in the data shown in Figure 8) and small changes in the signal levels between the two
detection planes can lead to a relatively large difference after spectral subtraction. The dc
frequency can, of course, be masked from the output if necessary.

The application of a matched filter to the difference spectrum results in the output shown in
Figure 9b. The generation of this result can be envisioned by convolving the data shown in
Figure 9a with a negative/positive doublet, the convolution taking place by sliding the data over
the filter from left to right. In Figure 9b, the earliest output of the filter is at the 400 position on
the scale. The first negative response is due to the multiplication of the negative part of the
matched filter with the positive spectral line. The strongest positive output is at 300, the position
where the negative and positive part of the filter and the data overlap exactly. A weaker, negative
response is due to the overlap of the smaller negative spectral line from the data overlaps with
the positive part of the matched filter doublet.

Since the difference spectrum near the 200 position in Figure 9a is a single spectral line
resulting from incomplete subtraction of the dc spectral component, the output in Figure 9b gives
the impulse response of the matched filter (with the expected reversal of coordinates).The output
near the 100 position on the negative frequency scale is redundant, but the result shown here
illustrates that the response is the negative of that shown for the positive frequencies near the 300
position. The signal is detected by setting a threshold in the positive frequency region from 200

to 400.
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In this experimental illustration of matched filtering, we did not implement the frequency-
variant feature of the matched filter, as can be deduced by considering the response to the dc
component, because the input data set originated from the electronic spectrum analyzer. If the
spectrum were computed optically, with the results stored on a CCD array whose contents are
converted to a video signal as demonstrated in Section 3.5, the frequency-variant requirement of
the matched filter could be easily implemented by changing the spacing of the positive/negative
matched filter doublet as the data is read out from the array.

3.3 Muttiple Sets of Pulses
In some applications multiple sets of pulses may be present within the acousto-optic cell at

the same time. To test the performance of the system under this condition, we generated five
pulses within a time interval equal to about 40% of the cell transit time. By recognizing that
fringe patterns will be generated from each pulse pair, we can predict that the number of
combinations, or pulse pairs, available to generate frequencies at the output of the Fresnel
preprocessor and, therefore, at tie output of the spectrum analyzer. For our scenario, five pulses,
taken two at a time, yield 10 possible frequencies.

The values of each of these frequencies are given in Table 3 for the combinations denoted
by AB, BC, AC, CD, BD, AD, DE, CE, BE, and AE, where AB denotes the separation between
pulses A and B. As before, we note a good correlation between the frequencies predicted and
those measured. Figure 10 shows the spectrum of the output of the Fresnel preprocessor and the

ten frequencies produced by the pulses are clearly evident, with frequency spacings as given in

Table 3. The signal-to-noise ratio drops as a function of pulse separation as explained before, and

the signal-to-noise ratio for the larger separations given by AE, BE, and CE are probably too low
to be useful.
3.4 Optical Spectrum Analyzer Performance

As an alternative to using a conventional electronic spectrum analyze, we built an optical
spectrum analyzer to measure the spectrum of the output from the Fresnel preprocessor as

described in Section 2.2 and shown in Figure 3. We used a linear charge coupled photodiode
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array containing 1024, 13um x 13pum detectors to detect the spectrum. The photodetector array is
read out at a video rate that converts photodetector position to time and is displayed on an
oscilloscope. Each element on the photodetector array corresponds to a particular frequency. If
the array is read out and displayed on an oscilloscope, the conversion factor from time to
frequency is 0.156MHz/ps.

We fed the output from the Fresnel preprocessor to both the electronic and optical spectrum
analyzers for comparison and show the results in Figure 11. The optical spectrum analyzer shows
evidence of fixed pattern noise caused by clocking out the results from the photodetector array.
This noise source is usually removed, in an operational system, by subtracting it from the output
to recover the true data. The analysis bandwidths of both spectrum analyzers were set at 3KHz to
obtain these results.

The optical spectrum analyzer, although perhaps not needed in all applications, is ideally
suited for implementing the frequency-variant matched filtering described in Section 3.2 because
it calculates the Fourier transform continuously and because it can implement the filter as the
data is transmitted over the video output line .

4.0 Summary and Conclusions

We detected and distinguished pulses whose durations are as short as 20ns, which is at the
theoretical limit for the 50MHz bandwidth of the experimental system, and separated by as little
as 60 nanoseconds or as much as 17 microseconds. As the pulse duration increases, the time
duration of the output of the Fresnel preprocessor decreases and its spectrum broadens. We
enhanced the frequencies generated due to short pulse interactions while simultaneously de-
emphasizing the frequencies generated by cw waveforms. We also tested the interactions among
multiple pairs of pulses. Again, the frequencies that were measured correlated well with our
developed theory.

We showed that two detector positions allowed us to separate short pulses from cw signals
by using a frequency-variant matched filtering operation. Future work might consider how an

array of photodetector elements, with each element at a different Fresnel plane should increase
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the discriminatory power of the system. Another improvement would be to implement a refined
version of the frequency-variant matched filter to more nearly match the signal waveforms and to

implement the processing in real-time as the video data is clocked out of the photodetector array

of the optical spectrum processing subsystem.
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Figure Caption List

Figure 1: Diffraction caused by two short pulses
Figure 2: Fresnel transform preprocessor

Figure 3: Optical spectrum analyzer

Figure 4: Results of the Fresnel processing using a simulation program

Figure 5: Experimental results verifying the simulation

Figure 6: Simulation of spectral subtraction to detect short pulses

Figure 7:Simulation results for the dual threshold and the matched filter approaches;

(a) False alarm rates, and (b) Probability of detection
Figure 8: Spectrum for two short pulses and two cw signals:

(a) without Pechan prism, (b) with Pechan prism

Figure 9: Spectral subtraction: (a) Logarithmic subtraction, (b) Linear subtraction

Figure 10: Spectrum of the output of the interferometric system when five pulses are present

Figure 11: Comparison of electronic and optical spectrum analyzers:

(a) Electronic spectrum analyzer, (b) Optical spectrum analyzer
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Pulse separation { Calculated frequencyl Measured frequency] SNR
(microseconds) (MHz) (MHz) (dB)
1 1.25 1.3 41
2 2.5 2.58 40
4 b 5.03 34
6 1.5 7.58 27
8 10 10.13 19
10 12.5 12.68 14
12 15 15.15 12
14 17.5 17.63 9
16 20 20.1 3

Table 1: Calculated and measured frequency, along with SNR versus pulse separation.

Pulse separation | Measured frequency-} Measured frequency{ Average SNR

(microseconds) | without prism (MHz)l with prism (MHz) (dB)
1 1.31 1.13 37
2 2.56 2.25 34.5
3 3.81 3.44 32
4 5.01 4.63 29
5 6.31 575 26.5
6 7.56 6.88 24
7 8.81 8.06 20
8 10.1 9.25 16
9 11.3 10.5 14

Table 2: Measured frequency for system with and without prism

Pulse pair |} Pulse separation { Calculated frequencyj Measured frequencyj] SNR

(microseconds) (MHz) (MHz) (dB)
AB 1 1.25 1.25 38
BC 2 2.5 2.56 35
AC 3 3.75 3.75 33
CD 4 -5 5.06 31
BD 6 7.5 7.56 25
AD 7.5 8.75 8.81 20
DE 8 10 10.13 18
CE . 12 15 15.13 12
BE 14 17.5 17.69 10
AE 15 18.75 18.88 8

Table 3: Calculated and measured frequency, along with SNR, for multiple pulses.
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Design relationships for acousto-optic scanning

systems

A.VanderLugt and A. M. Bardos

We develop the general scanning relationships of an acousto-optic system by using both a purely
geometnic-optics and a physical-optics approach: each approach provides usefu! insights into the scanning
relationships. The diffraction approach reveals that there are four basic scanning configurations: a long
or short chirp scanner, either aperture or repetition-rate limited. The throughput rate for a scanner is
always maximized if we use the short-chirp-scanning, repetition-rate-limited mode of operation. The
maximum rate may be achieved with other configurations. but at the expense of a decrease in some of the
other performance parameters. Examples are given of how these design relationships are used.

. Introduction

When acousto-optic cells are driven by a sinusoidal
signal, light is deflected at an angle proportional to
the frequency of the signal and a lens can be used to
focus the deflected light wave to a point. Scauning
of the light at the focal plane is achieved by control-
ling the frequency of the applied signal. Although
the basic concepts of acousto-optic scanning are docu-
mented,!-!! the design of an acousto-optic scanner
often represents a compromise in performance among
several parameters such as spot size, number of
samples per scan line, scan duty cycle, sample rate,
and throughput rate. In this paper we describe a
basic scanning system in which an acousto-optic cell
is used to scan light along a line and develop the
relationships that govern its performance. Although
we concentrate on line-scanning applications, the
results are also useful in signal-processing applica-
tions that use chirp signals.

In Section II, we review the basic parameters
associated with acousto-optic cells in terms of the
random-access scanning mode of operation. In Sec-
tion I1I we develop the general scanning relationships
from a purely geometric viewpoint, whereas the same
results are developed in Section IV, using a physical-
optics approach; each approach provides useful in-
sights into the scanning relationships. In particu-
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lar, the diffraction view reveals that there are four
basic scanning configurations: a long or short chirp
scan, either aperture or repetition-rate limited. The
throughput rate for a scanner is always maximized if
we use the short-scan, repetition-rate-limited mode of
operation. The maximum rate may be achieved in
other configurations, but at the expense of a decrease
in some of the other performance parameters.
Examples of how these design relationships are used
are given in Section 5. In Section 6 we consider the
effects of using a truncated Gaussian illumination
instead of the uniform illumination that was used
throughout our analyses to obtain closed-form solu-
tions for the design relationships.

. Background

Acousto-optic cells diffract light at an angle that is, to
a good approximation, a linear function of the input
frequency. Figure 1 shows the connections among
the diffraction angle, the spatial frequency, the tempo-
ral frequency, and the acoustic wavelength. For a
given acoustic velocity v and drive frequency f, the
acoustic wavelength is A = v/f. Because the spatial
frequency within the cell is @ = 1/A, the relationship
between spatial and temporal frequencies becomes

a=1/\=flv. (1)

The diffraction angle is connected to the spatial and
temporal frequencies by

B =M.\ =Aa=Av, (2)

which nicely ties together the important parameters.
The acousto-optic cell. when driven by a cw fre-
quency, behaves as a random-access beam deflector




= = Diffracuion angle

= Acoustic waveiength

cost2 Ay

Fig. 1. Relationships among wave]ength‘ spatial frequency. and
diffraction angle.

that addresses a specific position at the focal plane of
alens. Figure 2 shows an acousto-optic cell at plane
P, that has an acoustic velocityv andalength L = vT.
We drive the cell with a signal f(¢) = cos(2nfyt) to
access the kth spot position in the scan line. This
signal produces a positive diffracted order whose
Fourier transform is

< . 217
F. (gt = f_ Jex,t) exp(J ﬁf.x)dx, 3

where f.(x,t) = rect(x/L) expl[ j2nfi(t — x/v ~ T/2)],
£ is the coordinate in the Fourier plane, and F is the
focal length of the lens. The Fourier transform of
fox, t)is

F.(&t) = fLL/,, exp[ﬂfrfk (t -3 }exp u,-éx)

= expl j2uf,(t — T/2)) smc{(éj - é) l )

where we ignore amplitude-scaling factors. From
Eq. (4) we find that the lens focuses light at the
spatial position

& = (\F/v)f, (5)

at plane P;. This result shows that the spot position
is linearly proportiona! to the applied frequency.
The first zero of the sinc function occurs at

£=d, = \F/L. (6)

We use dy as both a measure of the spot size and as
the Nyquist sampling distance at plane P,.

We can also use cw frequencies to scan a light beam
along a line in a stepwise fashion. A continuous

Wave—front til1 6; is
proportional tof;

fin= cos(27q’,l)
Fig.2. Acousto-optic scanner.

scanning action provided by a chirp drive signal,
however, provides higher line-scan rates. Figure 3
shows an acousto-optic cell driven by a signal whose
frequency increases linearly from f, to f; in a time
duration T.. This frequency modulation signal, called
a chirp signal, is characterized by

c(t) = cosi2nfit + wat®); 0<t=<T, (7

where a is the chirp rate, expressed in hertz per
second. From Eq. (7) we see that the instantaneous
frequency fi(t) is
! 2nfit 2
fit) = o at( wfit + wat?)
=f +at; 0<t<T. 8

Because the instantaneous frequency of the chirp
sweeps over the bandwidth W = f, — f; of the
acousto-optic cell in the time interval T,, the chirp
rateais

a=W/T,
= -W/T,

for upchirp signals
for downchirp signals. 9

The instantaneous frequency at the end of the acousto-
optic cell is f,; the frequency at the beginning of the
cell is

Lh=f+aT
=f,+ WTIT.. (10)

In the example shown the chirp frequency is increas-
ing in time, which is generally called the upchirp
condition; the chirp frequency may also decrease in
time, which is generally called the downchirp condi-
tion.

The behavior of the scanning action produced by
the cell can be explained by using the elementary
diffraction theory and geometric ray tracing, or by
using a diffraction integral. Each method provides
useful insights into the scanning phenomena; we
begin with the ray-tracing approach.

©
A

Stant of <
wavefthn"p [ LIIW 51('_)
: ) Y
!
; ’ 6»
-Lf2
' |

c(l)=eos(2xf,l+m3)

[

End of Chirp i
waveform £l T

Fig. 3. Linear scanning with chirp waveform.
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Hl. Linear Scanning with Chirp Waveforms:
The Ray-Tracing Approach

The ray-tracing approach helps us to visualize where
light from the acousto-optic cell is focused in the
optical system and illustrates that a chirp signal in an
acousto-optic cell produces a result similar to thatof a
laterally moving lens. Consider a ray trace for a
stationary chirp segment that has just filled the
acousto-optic cell, as shown in Fig. 3. The basic
diffraction theory shows that the instantaneous fre-
quency in the small region near the end of the cell
produces an undiffracted waveform, indicated by a
ray traveling parallel to the optical axis, along with
positive and negative diffracted waveforms, indicated
by rays that each make an angle 6, with respect to the
undiffracted light. The diffraction angle is related to
the spatial frequency a, and the temporal frequency f,
according to Eq. (2):

8, = a\ = \f,/v. (11)

A similar relationship holds for the region near the
beginning of the cell:

A Nf, + WT/T,)
eb=abA=—;)&=—f;——————- (12)

When we trace the rays associated with the positive
diffracted orders of each subregion within the cell, we
find that they intersect at a distance D from the cell.

For the small-diffraction angles produced by the
acousto-optic cell, the included angle between the
extreme rays is

A8 =86, — 6, = \WT/vT,, (13
so that the distance to the plane of focus is
D = L/A8 = v*T,/AW. (14)

From Eq. (14) we find a relationship, frequently used
in optical signal processing, between the chirp rate ¢
and the radius of curvature D of the chirp wave front
within the cell. By rearranging the factors, we find
that

vi/\D = W/T, = a. (18

The key geometric parameters of the acoustic signal,
such as v, A, and D, are on the left of the relationship,
whereas the key drive-signal parameters, such as W
and T, are on the right.

The spot size, found from the fundamental diffrac-
tion relationship given by Eq. (3), isdg = A/A6, where
A6 is the angle between two converging rays:!?

dy = N A8 = vT./TW. (16)

For a given chirp duration, the spot size is inversely
proportional to the time-bandwidth product of the
cell.

The scanning velocity is most easily calculated by
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noting that the spot position. as a tuncuion of time. is
£ = -L.2 + Do)
A+ WET)

=-L2+D———. (n

where we used the general form of Eq. (12) to produce
Eq.(17). The scanning velocity v, is then

] D AW
Y = vT,

We use the value of D from Eq. (14) in Eq. (18) to find
that

(18)

VT AW
vy = AW UTL. =v. (19)
The scanning velocity is therefore always equal to the
acoustic velocity and cannot be controlled by any of
the signal parameters.

The length of the scan line is equal to the product of
the scan velocity and the active scanning time.
Scanning begins at ¢ = T and continues until¢ = T, so
that the active scan-time interval is (T. — T). The
length of the scan line is therefore

L,=v(T.-T)=(T./T - 1)L, (20)

so that the scan line is longer than the length of the
acousto-optic cell. The number of samples in a scan
lineis
L, viT.-D T
M=—=”——=(1- F)TW, (21)

so that, if T. > T, the number of samples in a scan
line approaches the time-bandwidth product of the
cell.

IV. Linear Scanning with Chirp Waveforms:
The Diffraction Approach

To control the scanning velocity, we must introduce a
lens to the right of the acousto-opticceill. To analyze
this condition we turn to the diffraction approach; in
the process, we develop some new analytical tools and
provide other useful insights. Furthermore, we can
now more fully address the effects produced by the
temporal characteristics of the chirp waveform.

In Fig. 4 we show a condition for which the
acousto-optic cell aperture is small compared with the

Chirp main

T

e
i

Fig. 4. Chirp train and its associated frequency—time relation-
ship.

h

f

—




chirp period. The chirp duration T, is the time
between the lowest and highest frequencies of the
chirp: the difference between the lowest and highest
frequencies is the bandwidth W = £, — f, of the cell.
The chirp-repetition period T. is the time interval
between a given point on one chirp segment and a
similar point on the next chirp segment, e.g., the time
between the highest frequencies in the two segments.
The repetitive nature of the chirp train. shown in Fig.
4, is expressed by a time convolution of the chirp
signal with an impulse train:

fi) =cys D 8t - nT,)

n=~-x

= cos(2nf\t + mat?) » 2 3t - nT). (22)

n=—a

We consider the general case in which T. may be
larger than, comparable with, or even less than the
aperture time T of the acousto-optic cell. We classify
scanners according to two criteria: the active aper-
ture time and the active scan time. If T, = T, the
active aperture time is governed by the time duration
of the acousto-optic cell. We refer to this condition
as the long-chirp scanner. If T. < T, the active
aperture time is governed by the duration of the
chirp. We refer to this condition as the short-chirp
scanner. For long-chirp scanning, the active scan
time is T, = T, — T, as we noted in Section IV. For
short-chirp scanning, the active scan time T, = T —
T.. These two scan times can be combined to give a
single active scan time of T, = |T - T,|.

Figure 4 shows that T, must be greater than T,
when we use a voltage-controlled oscillator to gener-
ate the chip signal, because the signal does not return
instantaneously from f; to fi. A part of the chirp
train is therefore not available for active scanning.
We can, however, arrange for the chirp waveforms to
overlap to an arbitrary extent by impulsing a surface
acoustic-wave device that produces a chirp waveform
at arbitrary repetition intervals. The active scan
time is either T or T,, whichever is shorter. If the
active scan time is T',, the system is aperture limited.
If the active scan time is T, the system is repetition-
rate imited. There are therclur~ four hasic scan-
ning configurations: a long or short chirp scan,
either aperture or repetition-rate limited.

A. Long-Chirp, Aperture-Limited Scanner

The optical arrangement for a long-chirp, aperture-
limited scanner is essentially the same as that shown
in Fig. 2, except that the acousto-optic cell is now
driven by a chirp signal represented by Eq. (7). For
this exercise, we select the negative diffracted order
whose amplitude just after the acousto-optic cell is

. ! T x.
f-x, 1) = rect(x/L) exp|~j | 2uf; |t - 5 - ;)
T x\?
+M(t-§-— , T<t<T, (23
\ v

where the scan time starts at ¢t = T and ends wnen the
trailing edge of the chirp segment arrives at the
transducer. For the moment we assume that the
lens is in contact with the acousto-optic cell; we show
how to handle a finite separation later in this section.
The positive lens is represented by the phase response

h(x)=exp‘j—)j,x2|v (24)
so that the light distribution to the right of the lens is

. [ T «x
r-x, 1) = rect(x/L) exp| ~j 2vfl{, -5t

2

+m(t—z-5

-
2 e“(jﬁxz ’

T<t<T. (25

The light distribution at any plane a distance D,to the
right of the lens is given by the Fresnel transform of
ro(x, t)

]

F(,¢t) = f; r_(x,t) exp{—j -;—TD—f(g - xPldx. (26)

We substitute Eq. (25) into Eq. (26) to find that

. T «x

F(g¢t) = erect(x/L) exp—j|2nf, ‘t -5
i Z x2 .,h, 2\
+1rat-2—v exp(‘]u’,xl)

dr,

X exp[—j K—Z—f(g - x)?
T<t<T,. (27
We use Eq. (15) in Eq. (27) to find that
F(&, t) = expl—~j2nfyt — T/2)]

x [ rect(z/L) exp( j2mfyx/v)

vt T x\?
i v ] e i
»ﬂ 2 qw 2
X exp| j 1% exp—JEf(g—x)dx
) L/2 w2l 11
= exp(jo) [, i -5 5,
2mfoe = T/2) £ Ml
X explJ A D +Df+ U ’

T<t=<(T.-T), (28

where we collect all phase factors that are not func-
tions of x into . Note that the chirp ratea = W/T,
is positive when we use the upchirp mode, as we do
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here. and negative when we use the downchirp mode
of modulation.

The focal position occurs where the light intensity
is highest; this condition arises when the integral has
its maximum value. The integral from Eq. (28)
clearly has its maximum value when the integrand is
set equal to one. Let us begin, however, by setting
the value of the exponential that is quadratic in
equal toone. The first condition necessary to obtain
focus is therefore that

1 1 1-0 29)
F D™D~ (
or that
D, = DF 30
=D =F (30)

When Eq. (30) is satisfied, Eq. (28) produces the
spatial light distribution at the focal plane given by

L2 2m vt -T/2) & A
F(‘g’,t)——f_l_’zexp_] x ——5—-—+b—f+—v—}dx
_ [v(t—T/2)L+ §(D—F)L+f1_11
=EsneT D NFD v’

T<t<T. 3D

The position of this scanning spot at any instant in
time is found by setting the argument of the sinc
function equal to zero, which is equivalent to setting
the value of the exponential in Eq. (28) that is linear
inx equal to 1:

f.DF

3 vt - T/2)F
&= “uD-F

D-F

v T<t<T. (32

The spot position at the beginning of scan. when ¢ =
T,is

MNDF  u(TI2)F

“Y=-o-P D-F' (33)

whereas the spot position at the end of scan, whent =
T, is

\\DF v(T, - T/2)F
="wo-B —D-F =~ @
so that the length of scan is
v(T.- T
Ls=‘:§e"§b,= D-F . (35)

The scanning velocity is readily obtained from Eg.
(32) as

b= —= - (36)

4062 APPLIED OPTICS / Vol. 31, No. 20 / 10 July 1992

_

The scanning velocity v, has the same or opposite
direction as v, depending on the value D of the
wave-front radius of curvature. If we take the veloc-
ity of the acoustic wave as positive, the rules are as
follows:

1. When D is positive and greater than F, as for
the case analyzed in this section, v, is negative so that
the spot moves in the negative x direction. In this
case, the chirp signal in the acousto-optic cell is
equivalent to a negative lens whose focal length is
longer than that of the positive lens. The light
therefore focuses at a plane to the right of the lens
because Eq. (30) shows that Dy is positive.

2. When D is negative, the scanning spot moves in
the positive x direction. In this case, the focal length
of the chirp is positive, the net result, as confirmed by
Eq. (30), is equivalent to that of two positive lenses
working together.

3. When D is positive and less than F, the scan-
ning velocity is positive. Therefore the spot moves
in the same direction as v, but the light does not focus
anywhere to the right of the lens. In this case the
focal length of the chirp is equivalent to a negative
lens whose focal length is shorter than that of the
positive lens, and Eq. (30) confirms that D, is nega-
tive,

The rules are illustrated in Fig. 5. The negative
diffracted order satisfies the first rule. The value of
D is positive, which is equivalent to stating that the
focal power of the chirp is negative, so the scan plane
lies to the right of the plane at which the undiffracted
light is focused. As the chirp signal flows through
the acousto-optic cell the ray angles increase in the
negative direction, leading to a negative scan velocity.
The start of the scan position as seen from Eq. (33) is
negative, as is the end of the scan position as seen
from Eq. (34).

The positive diffracted order satisfies the second
rule. The value of D is negative, which equivalent to
stating that the focal power of the chirp is positive, so
the scan plane lies to the left of the plane at which the
undiffracted light is focused. As the chirp signal
flows through the acousto-optical cell, the ray angies
increase in the positive direction, leading to a positive
scan velocity. The start of the scan position as seen
from Eq. (33) is positive, as is the end of the scan

Scan plane for
positve diffracted
order {positive velocity)

Scan plane for
neganve diffracted order
.~ (neganve velocity)

fl)y=cosi2nfit + nat)

Plane of
undiffracred
light

Fig. 5 Relationship of scanning action for upchirp signals.




position. as seen from Eq. (34). The positive dif-
fracted order exists for all values of D because the
equivalent focal length of two positive lenses must be
positive.

Rule 3 applies to a special case for the negative
diffracted order and states that the light mav not
focus for certain values of D. For example. as the
value of D approaches F, the negative power caused
by the chirp signal subtracts from the positive power
of the lens. and the focal plane for the negative
diffracted order recedes to infinity. When D = Fthe
two focal powers cancel exactly and the focal plane is
at infinity. As we stated in the third rule. the
negative diffracted order does not focus at any piane
to the right of the lens if D is positive and less than F;
instead. it generates a virtual scan plane.

When we drive the acousto-optic cell with a
downchirp signal of the form

c(t) = cos(2rfyt — wat?), (37

instead of with the upchirp signal as given by Eq. (7).
The same general results apply except that we inter-
change f, and f, to account for the different starting
frequency and replace D by —D to account for the
downchirp nature of ¢ (¢). The roles of the two scan
planes shown in Fig. 5 are now interchanged, so the
negative diffracted order focuses to the left of the
positive diffracted order. As we expected the scan
velocities also have opposite signs, so the spots scan
toward the optical axis instead of away from the
optical axis. The choice of the upchirp or downchirp
mode conveniently allows the system designer to
select the scanning direction.

Equation (36) shows that we can control the scan-
ning velocity by selecting the value of the focal length
of thelens. For a desired scan velocity, the required
focal length of the lens is

D

F=irim

(38)

The signs of D and v, can combine, according to the
rules, only to cause the focal length of the lens to be
positive. As v — v, the lens focal length is infinite, as
we discussed in Section 3.

The size of the scanning spot is obtained from Egs.
(16) and (30):

A ADF

b= 1D~ D-FL

(39)

As the chirp radius of curvature D — =x the spot siz::
tends to a value of dy = AF/L, as we expected, because
the chirp waveform then contributes no power to the
system and the lens alone acts on the diffracted light.

The number of resolvable elements or samples in
the scan line is

v(T, - TIL|

D ! (40)

YL
Tdy |

“

Weuse Eq. 115/ in Eq. 140) to find that
Ly
M={1—T,TW. 41

just as we found from the geometric anaivsis.
The scan duty cycle is defined as the ratio of the
active scan time divided by the repetition period:

U= mind?,, T,y T.-T 0
= T = T, 149)

The sample rate at which samples are recorded is
given by the ratio of the scan velocity to the spot size:

R Ty 43
s“do—Tc . ( )

The throughput rate is the average number of sam-
ples recorded per unit time and is the product of the
sample rate and the scan duty cycle,

T\\T .
R, =UR, = I—E!TrW. (44)

where we have used Egs. (42) and (43) to produce Eq.
(44).

If the acousto-optic cell and the lens are not in
contact, as suggested by Fig. 5, we can use the
thin-lens formula to find the equivalent position of
the plane at which the light is focused. If the
separation between two thin lenses having powers
K, = 1/F, and K, = 1/F, is d ), the equivalent power
of the combination is!?

Keq = Kl + Kg - dngle. (45)

We associate the power of the chirp signal in the
acousto-optic cell with K|, so that X, = 1/D. and the
lens power with K,. The net power of the combina-
tion gives the distance to the scan plane from the
acousto-optic cell as D; = 1/K,.

B. Short-Chirp, Aperture-Limited Scanner

In the short-chirp scanner for which T, is less than T,
the active aperture time is limited by the chirp
duration T.. Suppose that one of the chirp signals in
the chirp train is completely within the acousto-optic
cell, asshownin Fig. 6. Some of the design relation-
ships from Eq. (31) onward are modified somewhat in
this case. For example, the start of the scan time is
T. and the end of the scan time is T ~ T, whereas the
integrations are over a spatial range L, = vT.. We

Spotdissoivine
< sanane

| - Acuve
N < scan line
=\ | P Spottorming

i scan hine

T

Fig. 6. High duty cycle scanner.
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study the diffraction phenomenon as the chirp transi-
tions into and out of the cell at the end of this section.
The new form of Eq. 131) is

L-to2 ¢ 2mxive=Ti2) £ M

Fen=[ [ el j o v g
L gt T2L &D - PL fL
= smct- D FD v

T. <t s(T~T.), 146)

where we ignore unessential amplitude and phase
factors. As before, the position of the scanning spot
at any instant in time is found by setting the argu-
ment of the sinc function equal to zero, from which
we find that

M\DF  u(t - T/2)F
"vD-F D-F
T.<t<(T-T,). 4D

The spot position of the beginning of scan, when ¢ =
T.,is

_ MDF  u(TJDF
Y=-yD-mH D-F (48)

and the spot position of the end of scan, whent = T -
T.,is

(-T- T.|F
_ MDF YlaT e s
“=w-» "Dp-F = W
so that the length of scan is
v(T - TOF]

The scanning velocity is still given by Eq. (36), but the
spot size is slightly different:

N ADF
L/D,” D-FL,’

which is similar to Eq. (39), except that L is replaced
by L. because the spot size is now determined by the
length of the chirp, not the length of the acousto-optic
cell. The number of samples in the scan line is

L, |w(T~TJ)L]
M=g=—

(52)

We use Eq. (15) in Eq. (52) to find that the number of
samples in the scan line is

, T,
M=(1—?)TW‘ (53)
Because the chirp duration is less than the cell
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duration. the maximum number ot samples as set by
the time-bandwidth product ot the acousto-optic cell
is not obtained.

The scan duty cycle for this configuration is

U T-T. B
= T . 134)
and the sample rate is
Ry=—"=W 55)
d, ‘

which is the maximum achievable sample rate. The
throughput rate is

'"’ ( (56)

which is obtained in a fashion similar to that used to
produce Eq. (44).

In Fig. 6 we show the situation where at least one
period of a chirp signal is fully in the acousto-optic cell
and the scanning spots are therefore well formed.
We now examine the scanning spot shape and posi-
tion as the chirp segments enter and leave the cell.
The light from these transition times is located in
regions just before and just after the scan line. To
account for the spot-forming condition, we modify the
limits of integration in Eq. (28):

-Li2+ut .'n'xz 1 1 1
F, t>=f_L,2 exvj—)\-{ }}

t —
y exp[jom[u( DT/2) N £ N ﬁ]}dx

0<t<T, (57

which is applicable for a chirp waveform as it just
enters the cell. The limits of integration show that
the integral is over a small spatial region when ¢ is
small and that the region of integration increases
linearlyfor 0 < ¢ < T.. As before, we set the value of
Dy so that the quadratic term in x is equal to unity,
leaving the integral

—Li2+0t 22mx vt —TI2) & A
F(g,t=f_m expl_;-—[———T— +Ef+ —Ul]]dx

[v(t-T/2) £ M
-vtsmcl—-—-+—+—

D, vt/\},

0<t<T, (58

where we have ignored unimportant constants.

The behavior of this sinc function. whose argument
is quadratic in the time variable, has some interesting
features that are exhibited in the dashed-line region
of Fig. 6 where the spot is first formed:

1. The amplitude of the sinc is small for small
values of ¢, as we expected from a consideration of the




region of integration. and reaches a limit that is
proportional to vT. when the chirp in the cell is fully
illuminated.

2. The centroid of the spat as a function of time is
located at

_ \N\DF
TTuD-F

vit - T'DF
D-F

0<t=<T.
(59}
just as in Eq. (47) but with a slightly different time

interval of validity. The spot position when the
chirp enters the cell is

_ MiDF  v-TI2F 0
“Wb-B D-F 60)
and its position when it is fully in the cell is
MADFE  u(TI2Q)F
(61)

ST W-Fh_D-F

By comparing Egs. (60) and (61) with Eqs. (48) and
(49), we see that the end positions of the scanning
spot produced by the chirp as it enters the cell are
displaced a distance L, below the corresponding posi-
tions of the active scan line.

3. The most interesting feature of the sinc func-
tion is that the spot size changes its size continuously
as the chirp enters the cell. The spot size is deter-
mined by finding the position of the first zero of the
sinc function relative to its centroid. This distance
is

AD
A§=d0=—‘—/,

~ 0<t<T. (62)

From Eq. (58) we see that the sinc function is
infinitely broad when ¢t = 0, but its amplitude is zero.
As time increases, the spot moves toward the active
scanning region and its size decreases while its ampli-
tude increases. The rate at which the spot size
decreases as the centroid moves closer to the begin-
ning of the active scan position is just sufficient to
keep the light from spilling into the active scanning
region prematurely. When the chirp has fully en-
tered thecell at t = T, the spot has full resolution, and
the active scanning begins as the chirp travels through
the remainder of the acousto-optic cell.

As the chirp segment leaves the cell, the spot
dissolves in an order that is a reversal of its formation.
The spot gradually loses intensity as its broadens
until it reaches the end of the spot-dissolving scan
line shown in Fig. 6.

C. Long-Chirp, Repetition-Rate-Limited Scanner

To achieve a high throughput rate, we need a high
scan duty cycle; Eq. (42) shows that we want the
active scan time to equal the repetition period of the
chirp train. Suppose that we use a surface acoustic
device to generate a chirp segment whenever it is
driven by an impulse function. By controlling the

time of the impulses. we produce chirp segments with
any desired repetition period T.. Depending on the
ratio of the chirp period to the chirp duration. one or
more overlapping chirp segments may be in the cel at
the same time. If the response of the cell is linear.
the chirp signals do not interfere and the only effect of
the overlapping chirps is to lower the useful diffrac-
tion efficiency. Because the chirp signal is on a
carrier frequency, a nonlinear response from the cell
produces higher-order terms that are easily elimi-
nated by spatial filters.

In this section we assume that the chirp segments
overlapsothat T, < T, and so that 7, > 7. The
system parameter that is changed is the scan length,
which through a line of analysis similar to that given
in Subsection IV.A., is

T.F|
lq=m—§thf;~ (63)

The spot size is still determined by the cell aperture
because T, > T

dy = ADF 64
" TD-PL’ o4
so that the number of samples in a scan line s

M = (T,/T)TW, (65)

which achieves its maximum value when T, = T..
The scan duty cycle for this configuration is

i (Ts, Tr) Tr
p=201e Y S 66)

as we expected. The sample rate and the through-
put rate are equal in this configuration at

R-UR—!U"—TW 67
;= S_?(;_Tl: . (67)

As before, we see that the throughput rate is maxi-
mized only when T, = T. To achieve this condition,
we consider the final of the four basic configurations.

D. Short-Chirp, Repetition-Rate-Limited Scanner

In this configuration the chirp segments also overlap
so that T, < T,. and we assume that T, < T. The
scan length, found through a line of analysis similar
to that given in Subsection IV.C., is

. | vTF
“=Dp-F

L= 'ge_ (68)

The spot size is now determined by the active scan
aperture L, = yT, so that

ADF

b= 5TFRL

{69)
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so that the number of sampiles in a scan line is

M=TW (70}

which achieves its maximum value when T, = T.
The scan duty cycle for this configuration is

min (7, T,) T,
T, T T,

as we expected. The sample rate and the through-
put rate are equal in this configuration at

=

= 1. (71)

(72)

In this configuration, the throughput rate is maxi-
mized independently of the values of T, or T,, pro-
vided that the constraints necessary to implement the
short-chirp, repetition-rate-limited scanner are satis-
fied.

E. Summary of Scanner Performance Criteria

Table 1 gives a summary of the important perfor-
mance parameters of the four basic scanning configu-
rations and is a useful aid in beginning a design. For
example, some applications require a high through-
put rate R, The maximum rate of W samples per
second can always be achieved with a short-chirp
scanner that is repetition-rate limited. The number
of samples per line, however, is always less than TW
because the highest ratio of T'./T, for such a repetition-
rate-limited scanner, is 1/2. In contrast, we can
achieve TW spots per scan line with either of the
long-chirp scanners, but only with a reduction in the
throughput rate.

To appreciate the relationships among the design
parameters more fully, we use two graphic represen-
tations. The graph of Fig. 7(a) shows the number of
samples per scan line M, normalized to its maximum
value of TW, as a function of the ratios T/T. and

0.5
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Repeution
lumuted

0

0S

[ N

T,

Repention to-Charp-Tune Rato (<f‘ )

Long Churp
Celkto-Churp-Time Rauo .{-,

@

Shoent Churp

tT, aT‘)

Fig. 7. Normalized plots:

05 1

Lon

(b} throughput rate.

g Chirp

(o)

Shon Chirp
Celkto-Chirp-Time Ratio ()

ta) number of samples per scan,

Table 1. Acousto-Optic Scanner Parameters
Long Chirp Short Chirp
Tez=T) (Te<
Repetition- Aperture Lim- Repetition-
Aperture Limited Rate Limited ited Rate Limited
Parameter T.-T<T) T.-T>T) T.+T. 2T (T-+T, <
Active scan time, min(T,, T,) T.-T T.-T T-T. T-T.
Active aperture time, min(T, T.) T T T. T.
Scan length (L,) (T, ~ TF vT.E (T - TC)F! vT.F |
D-F ' D-F " D-F | D-FI
Spot size (do) ADF \DF ADF \DF
DL D-FL DFIL DFL
Number of samples 1 ~TIT)TW (T, TOTW (1-T./DTW (T./TTW
per line (M)
Scan duty cycle T. - TT, 1 (T -TJHIT, 1
{U = min(T,,T,)/T,]
Sample rate (R,) (T/TIW (TITOW w w
Throughput rate (R,) (W =TITNTIT)W (TITOW UT - THT W w
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T. T.. The verucal line passing through T T. = 11s
the dividing line between the long-chirp and short-
chirp configurations. The horizontal dashed line for
which T. = T, is the boundarv between those configu-
rations in which the chirp signals do or do not
overlap. The diagonal lines passing through the
points (0. 1), t1, @), and (2. 1} represent the bound-
aries between the repetition-rate-limited configura-
tions tbelow the diagonal lines) and the aperture-
limited conditions tabove the diagonal lines).

The loct of the constant number of samples per
scan line, normalized by TW, are shown for each of
the four basic configurations. The normalized val-
ues are given along the top and right-hand sides of
Fig. 7(a). We note that the largest number is ob-
tained by using a long-chirp scanner for which the
ratio T/T. is small; the scanning may be either
aperture or repetition-race limited. When T/T. = 1
the number of samples reaches its minimum value,
because the active scan time is at its minimum value
and only one spot can be formed in each scan line.
For aperture-limited short-chirp scanners the num-
ber of samples per scan line is reciprocally related to
the ratio T/T,, whereas the lines for repetition-rate-
limited short-chirp scanners have slopes whose val-
ues are equal to the normalized values themselves.

The graph of Fig. 7(b) shows the throughput rate
R,, normalized by its maximum value of W samples
pet second. The throughput rate is not a function of
the ratio 7./T, for repetition-rate-limited, long-chirp
scanaers, as shown in the lower left-hand part of Fig.
7(b). According to Eq. (44) the normalized through-
put rate follows parabolic curves when the scanner
becomes aperture limited, as shown in the upper
left-hand part of Fig. 7(b). Aperture-limited short-
chirp scanners have throughput rates that follow
straight line segments, as shown in the upper right-
hand part of Fig. 7(b), whereas the normalized
throughput rate is fixed at unity for all repetition-rate-
limited short-chirp scanners, as shown in the lower
right-hand part of Fig. 7(b).

V. Examples of an Acousto-Optic Recording System

Using the results summarized in Table 1 and Fig. 7,
we provide some sample designs in this section. The
parameters for these designs are given in Table 2.

A. Example 1

Suppose that we design a relatively low-performance
system, such as a facsimile scanner or recorder. In

this case a large number of samples per scan line 1s
tvpically more important than a high throughput
rate. We therefore select an acousto-optic cell, such
as one made from slow shear-wave tellurium dioxide
material. that has a large ume-bandwidth product
ifor example. T = 50 ps and W = 40 MHz so that
TW = 2000). Because the required throughput rate
for a tvpical facsimile is well under 1 MHz. the
normalized throughput rate 1s much less than 0.025;
because the chirp period is nearly equal to the chirp
duration (T, = T.), onlv a small data buffer is needed.
This scanner-recorder configuration is represented
by point P, in the graphs of Fig. 7.

B. Example2

Suppose that the requicements are the same as in the
first example, but we need to operate at a much
higher throughput rate of 30 x 10° samples per
second. If we use the same acousto-optical cell as
before, the normalized throughput rate is 0.75. For
long-chirp scanning, Fig. 7(b) shows that the operat-
ing point is at Po. The architecture represented by
point P,, however. requires a fourfold overlap of
chirps, thus complicating the driver and lowering
diffraction efficiency. A better solution is found at
point P; by using an 8.3-us, 120-MHz acousto-optic
cell, which operates as an aperture-limited, long-
chirp scanner with a normalized throughput rate of
0.25 to provide a normalized number of samples per
scan line of 0.5. The number of samples per line is
the same in the two alternatives {(0.25)(50 us)(40
MHz) = 500 as compared with (0.5%(8.3 wns)(120
MH2) = 500]. An even better solution for these
requirements may be to use ju-. 30 MHz of the
40-MHz bandwidth of the slow shear-wave cell and to
operate with short-chirp scannii.g at point P,, where
the scan duty cycle is 100% and where the normalized
number of samples is 0.48, to provide (0.48)%(50 ps)(30
MHz) = 720 samples per scan line.

The graphs of Fig. 7, coupled with the data from
Table 1, provide the information needed to quickly
sort through the possible scanning solutions for a
particular problem. For example, the two scanning
configurations shown by P; and Pg in Fig. 7 provide
the same number of .amples per scan line, but the
solution at Ps has a normalized throughput rate of
only 0.875 as compared with a normalized rate of one
for the solution at P,

Tabi. 2. Examples of Various Scanning Configurations

Throughput Samples Location

Scanner Type T(us) W (MHz, T. T Rate Scan Line in Fig. 7
Long chirp, aperture limited 50 40 > 40T T. « W = TW P,
Long chirp, aperture limited 50 T 40 H T, 0.75 W 025 TW P,
Long chirp, aperture limited 8.3 120 2T T. 025 W 05TW Py
Short chirp, repetition limited 50 30 iT T, w 048 TW P,
Short chirp, aperture limited 50 40 =T T. 0.875 W 043 TW P;
Short chirp, repetition limited 50 40 +~T T. w 043 TW Ps

e
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Fig. 8. Spot sizes for various illumination profiles.

Vi. Other Considerations

In the anatyses given so far, we have assumed uni-
form illumination of the acousto-optical cell so that
the design relationships can be clearly stated in closed
form. In practice, the acousto-optic cell is usually
illuminated by a laser beam that has a Gaussian
intensity weighting so that the spot size, for a given
aperture, is greater than that for a uniform illuminat-
ing beam.!* Figure 8 shows the spot sizes for a
uniform illumination and for Gaussian illuminations
that are truncated at the edges of the cell where the
intensity drops to 1/e?, 1/e4, and 1/e€ of the central
value. We use the half-power response of the spot
distribution as a convenient measure of the spot size.
The spot sizes for these Gaussian illuminations,
normalized by the spot size produced by a uniform
beam, have increased by a factor of G, where G is
equal to 1.17 for the 1/e? illumination, 1.36 for the
1/et illumination, and 1.56 for the 1/ef illumination.
All the relationships developed in the previous sec-
tions are still valid except that the spot size dy must
be multiplied by G, whereas the number of samples
per scan line M, the sample rate R,, and the through-
put rate R, must all be divided by G.

Summary

The rich variety of conditions under which an acousto-
optic scanner can be implemented and the interlock-
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ing nature of the performance parameters often lead
to ad hoc solutions in which conflicts arise among the
required performance specifications. In this paper
we consider all possible scanning configurations and
classify them into four basic types. A consistent set
of design relationships for each of the scanning
configurations has been developed and presented in
both tabular and graphic forms from which a prelimi-
nary design is obtained. The specific solution is
found by applying the appropriate design equations.

This research was supported by the U.S. Army
Research Office.
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Interference and Fresnel Diffraction

B.D. Guenther and A. VanderLugt, Senior Member, IEEE

Abstract— A surprising number of traditional topics, such as
the Rayleigh resolution criterion, spatial filtering, bandlimited
signals, the sampling theorem, phase contrast microscopy, and
white light holography can be explained using simple interfer-
ence theory. These basic resuits are then easily extended to the
N-source case to introduce diffraction theory, and facilitates
the teaching of the elements of modern optics to junior- and
senior-level students.

1. INTRODUCTION

N TEACHING applied physics and engineering students

the fundamentals of physical optics, we find that they are
sometimes overwhelmed by the Fresnel-Kirchhoff integral
when it is used as an introduction to diffraction theory.
Because students more easily understand the concept of inter-
ference fringes produced by two overlapping waves, we find
that extending our discussion of interference phenomena to
three sources and, ultimately, to N sources provides useful
insights into diffraction phenomena and heips students visu-
alize results produced by the Fresnel-Kirchhoff diffraction
integral. In this paper, we illustrate how we blend the theories
of interference and Fresnel diffraction phenomena.

We begin with the solution to the scalar wave equation
because students are generally familiar with it from courses
in physics, applied mathematics, mechanics, or electromag-
netism. The propagating wave is a solution of the scalar wave
equation:

1 8%E

R 0
The harmonic wave solutior: to the wave equation is of the
form:

ViE =

E(z,t) = Egcos(wt — kz) )]

where w is the radian frequency of light, z is the direction
of propagation, and k = 2w /). Consider the interference
between two waves with equal magnitudes but with different
frequencies w; and w», propagating along the z direction. The
resulting wave is obtained by a simple algebraic addition of
the two waves:

E(z,t) = Ep cos(wt ~ ky2)+ Ep cos(wat — k22z)
= Egcosf(wt — kz) + (Awt - Akz))

+ Egcos{(wt — kz) ~ (Awt — Akz)] 3)

where Aw = wy — w; and Ak = ky — k; are the difference
values, while w and k are the mean values.
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By virtue of a trigonometric identity, we write the resultait
amplitude modulated wave as:

E(z,t) = 2Eg cos(wt — kz) cos(Awt — Akz). (4)

Because the two waves are at slightly different frequencies,
their relative phase difference is a function of time. The
time-dependent phase causes the two waves to alternately
add constructively and destructively, creating the amplitude
moduiation that is a periodic series of maxima due to con-
structive interference shown by (4). The amplitude modulation
of the carrier wave is a wave of frequency Aw, called the
beat frequency, and propagation constant Ak propagating at
a velocity of:

Aw
= x5 &)

This velocity is called the group velocity. The modulation is
on a carrier wave of frequency

u

1
w= -é-(wl +uwq) . 6)
and propagation constant k traveling at a velocity
w
v= -E- . (7)

This velocity we recognize as the phase velocity of the
carrier wave. In a nondispersive medium, the group and phase
velocity are identical.

If the two waves have unequal magnitudes, (3) becomes:

®

The intensity I(z,t) is the squared magnitude of the wave
E(z,t):

E(z,t) = Ej cos{wyt — k12) + E; cos(wat — ke2z).

I(z,t) = E(z,t)E*(2,t). 9

Any observation or measurement of the intensity must account
for the finite bandwidth of the detector. We illustrate this
by substituting (8) into (9), to find that the observable is
proportional to:
G(z,t) = ([E1cos(wit — k12) + E; cos(wat ~ ke2)]
x (Ey cos(unt — ky2) + E3 cos{wat — ka22)|")
= (E? cos®(wyt — k1z) + E? cos®(wat — kpz)
+ 2E, E3 cos(wit — ky z) cos(wat — k:z))

= <Ef{—;— + % cos(2wt — 2k;z)}

1
+E§{E +

o]

cos(2uwat — kaz)}
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+ 75152{1' cos[(au +walt - (k; + I\.o)z]
- cosf(wg = wy)t ~ (kg — kl)z]}>. (10)

The bandwidths of all physical detectors are too narrow to
detect the frequency of light so that the observable becomes:

1
Gle,t) = 5 B} + 3 B}
+ <2£1E1{-;— cos[(u; +wo )t ~ (ky + kg)z]

- cosf(wq = wr)t — (k2 — k1)z]}>. (11)

The last term of (11) time averages to zero if the beat

frequency Aw = wy —~ w) is much larger than the bandwidth

of the detector. In this case, the observable:
1 1

G(z) = E.E§+ ?Eg

is simply the sum of the intensities of the individual waves 2ngd

has no temporal variation. On the other hand, if the frcquenc:es ]

differ by less than the bandwidth of the detector, we observe
the temporal fluctuation due to the envelope of the third term
of (11). If the frequencies of the two waves are identical, we
apply trigonometric identities to (11) to find that the observable
1S

1 .
-5- Eg + E; E3.
This result is the same, to within a scaling factor, as would be
obtained from (8) had we ignored the temporal oscillations of
the light. Hence, when the light is monochromatic, we often
express the amplitude of the sum of two complex valued waves
simply as:

Glz,t) = —;—E? + 13)

E(z) = E\(z) + Ea(2) (14)
where we suppress the cosinusoidal time dependence of the
propagating wave. In addition to suppressing the temporal part
of the electromagnetic wave, we find that the use of complex
notation reduces the mathematical complexity of many prob-
fems. This notation is consistent with that used for the transfer
functions for lenses, prisms, aind other optical elements. As an
example of this procedure, consider the interference between
two plane waves which are now represented in the paraxiai
approximation by:

E(z) = e~ikh= 4 gmikéaz (15)

where 8, and 6, are the angles that a ray normal to the

wavefront makes with respect to the z-axis. The intensity at

any plane at which these waves overlap is simply:
z) = le—jkolz + e—jko,zlﬁ

= 2{1 + cos(k(6r — 62)z}} (16)

so that the observed pattern is sinusoidal in intensity.

lnterference
fringe patiern
Cyhindncatly ix)
SXPAINAUNE wave

T
Lo

.

Fig. 1. One-dimensional representation of the two-source geometry.

1I. Two SOURCES

aving illustrated how two plane waves interfere to produce
inusoidal intensity pgttern, we consider the interference

figigin, by the expanding wave:
oA 1

— 8

\/"1:

~Jkr

(amn

propagating from plane P, towards plane P;. The square root
in the denominator of (17) results from solving the problem
in one-dimension. For the source at the origin, we have:

r= D\/ 1+ (z/D)? (18)
and we use the binomial expansion tc obtain:
E(z) = Eoe-i(kDHb)e—J'(k/?D):’ (19)

where z is the coordinate in plane P,, and D is the distance
between the planes. The magnitude Ey of the wave is nonnega-
tive, in accordance with the usual method of incorporating ail
phase information in the exponential as the factor ¢. The first
exponential factor simply indicates the number of wavelengths
between planes P, and P, and is ignored in subsequent
discussions. The detailed derivation of the approximation need
not be given to the student initially, as it provides little
additional physical insight. The basis for the approximation
is given in several texts and can be covered later, if dcsnred
(11-3}.

The field at P, when the two sources have equal magnitudes
and are in phase is:

E(z) = Epe~i(k/2D)" | B o=ilk/2D)z~d1)! (20)

where d; is the distance between the sources, and Ey is the
magnitudes at plane P, of the wave due to the source. The
intensity at plane P, is:

I(z) = E(2)E"(z) = |E(2)®

= 2} + 2 Re[EJeshs/20ikt=="/20] (1)
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so that the normalized intensity is:

I(r)

0 =1+ COS{UC/D)Id[

(k/2D)d3) (22)
where -Io = E3. The first term of (22) is the sum of the
intensities produced by the individoal sources; this sum is a
spatially uniform intensity, called the bias. The second term is
a spatially varying cosine distribution, called the fringe pattern.
It has a spatial frequency a given by the partial derivative of
the phase with respect to the spatial variable z:

‘ 1 9 [kxd, ] dy

D

(e))

The spatial frequency of the fringe pattern, expressed in
units of cycles/mm, therefore increases as the separation d
between the sources increases and as the observation distance
D decreases. The ratio dy /D is the angular size of the source
as seen from the viewing screen.

The phase of the fringe pattern is:

rds

“=-3p"
The physical interpretation of the phase is that it specifies the
relative position of the maximum intensity in the observation
plane. The principal maximum occurs when the argument of
the cosine is equal to zero, i.c., where 2zd; — d? = 0. The
principal maximum, therefore, occurs at z; = d;/2, which
is directly opposite the midpoint between the two sources,
as shown in Fig. 1. Other intensity maxima occur when the
phase is an integer muitiple of 2.
If the light from the two sources have arbitrary phases ¢g
and ¢, the entire fringe pattern in plane P is shifted according
to the phase difference, ¢ — ¢o, and the principal maximum

(29)

moves to:
_di  d1—do
n= 9 T %D (25)

The variation of the fringe intensity is measured by the fringe
visibility:
Imax = Imin 2EoE,

Y= T T Iin ~ B3+ ED (26)
Maximum fringe visibility is achieved when the two sources
are spatially and temporally cohérent and have equal magni-
tudes; the visibility is not a function of the phase difference
between the two sources. The two-source model, therefore,
provides the basics for understanding topics such as interfer-
ence, photoelectric mixing spectroscopy, and the coherence
function.

III. THREE SOURCES

The traditional approach is to proceed directly from the two-
source geometry to the N-source case. We find that pausing
to examine a three-source geometry provides a wealth of
additional insights that helps bridge the gap between the two-
source and /N -source cases. We use the three-source geometry
to illustrate techniques such as Zernike’s method of measuring
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Fig. 2. One-dimensional representation of the three-source geometry.

small optical path differences, phase and magnitude spatial
filtering, and white-light holographic fringe formation.

The three-source geometry is shown in Fig. 2. To anticipate
the transition to the /V-source case, we subscript the sources
surrounding the central source with + indexes. The intensity
at the observation plane is now the squared magnitude of the
sum of three terms: -

I(z:) = IE_le-_j[k(z+d-.)2/2D+¢-1] + Eoe"[“”/20+h]

+B, e lE-dn)?/2D 40, |

@

where d; and d_ are the distances between the sources. An

expansion of this equation yields the central result:

I(z) = (E2, + E§ + E3,)

+2EoE, coslkzdyy /D ~ kdZ, /2D ~ ¢4y + o]

+2E_,E coslkz(d4y + d_1)/D

~ k(d3, - d%,)/2D + 61 ~ $41]

+2E_Eqcoslkzd_1/D + kd* /2D + ¢_, - ¢o]
(28

If we set any one of the three source magnitudes to zero, the
result reduces to (22) as expected.

We now show how the variation of the phase of the
individual sources modifies the intensity. For simplicity, we
assume that dyy; = d_y = d and E,, = E; ="-Ey. The
relative intensity at plane P; is then:

I (-"-') 2
=3+ 2cosfkzd/D — kd*/2D - $41 + o]

+ 2 coslkzd/D + kd?/2D + ¢_1 — ¢o)

+2cos{2kzd/D + ¢-1 — P41} 29
The first term of (29) is a bias of uniform intensity. The
second and third terms describe a fringe pattern produced by
interference between adjacent sources; we call this the fun-
damental fringe pattern. The last term we label the harmonic
fringe pattern; it contains twice the spatial frequency of the
fundamental fringe because the outer sources are twice as far
apart as adjacent sources. A periodic intensity variation along
the 2z direction can be understood by finding the maximum
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and minimum values of (29) at various planes along the z-
axis. This aids in the development of a physical understanding
of Fresnel zones.

Zemike used three equally spaced slits 10 form a high-
accuracy interferometer for precisely measuring the phase of
an unknown sample covering the central slit [4]. The device
was initially designed as a tool for measuring the phase shifts
produced by thin layers of materiais used in phase-contrast
microscopes. In Zemike’s interferometer, the slit spacings
are equal and the phases of the outer slits are the same:
d41 = b1, SO that &4y — ¢ = b1 — P9 = ¢. To maximize
the fringe visibility, the central slit is usually made twice as
wide as the outer slits. Using these parameters in (29) yieids
a relative intensity at plane P; of:

I(z)

t—

= 3+ dcos{kd? /2D + ¢) coslkzd/ D) + cos|2kzd/ D).
0

(30)

A fundamental fringe pattern occurs in a z-plane for which
|cos(kd?/2D + ¢)| = 1, or when kd?/2D + ¢ = n=, where
n is an integer. The harmonic fringe pattern occurs whenever
cos(kd?/2D + ¢) = 0, or when kd?/2D + ¢ = (2n + 1)7 /2.
We first locate the fundamental and harmonic planes whea
the phases of the waves passing through the three slits are
identical so that ¢ = 0.

d?

Do =13
D & 31
B TR v

where Dgg and D,q are the distances from the slit plane to the
fundamental and harmonic planes when the phase difference
is zero. The fringe patterns in these two planes are shown in
Fig. 3(a).

The next step is to place the test sample phase material over
the central slit. The visibility of the fringe patterns are now
modified; we illustrate the harmonic fringe pattern in Fig. 3(b)
for a /100 phase shift. We sce that a relatively small phase
change in the material produces an easily discernible variation
in the envelope of the fringe pattern. The new locations of the
fundamental and harmonic planes, where the fringe envelopes
are flat as shown in Fig. 3(a), are given by:

e
RNCERR
D= —% 42

(n+i-2)a
The unknown phase ¢ of the material is calculated by using
‘the positions of the four planes:

20 1 1 1 1

—_— = e - —— _— - . 33

d [Dm 01} + [Do(, Do] @3
The accuracy of this three-slit interferometer is based simply
on the ability to locate planes having intensity fringes whose
envelopes are flat. Mean errors as low as £0.0017A in the
measurement of the phase of the samples have been reported

(4], 15}

\
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Fig. 3. lnterference fringes: (a) The fundamentai fringe pattern located at
plane Dgo and the harmonic fringe paitern located at plane Dy, (b) The
harmonic fringe pattern, showing reduced contrast caused by a A/100 phase
shift in the material.

IV. DIFFRACTION BY THE SOURCE

So far, we have ignored the shape of the diffracting sources.
It is convenient, as a transition to diffraction theory and signal
processing application using the Fourier transform, to consider
a source whose amplitude distribution is:

sin{wz/dg)

ey = sinc{z/dg)

g(z) = (39)

where dy is the distance to the first zero of the sinc function.
The Fourier transform of this single-point object is created by
a lens L of focal length F', as shown in Fig. 4, and is defined
as:

x

6@ = [ g da

-0

(3%

where £ is the physical coordinate in plane P;. We define a
spatial frequency variable o = £/A\F and associate this vari-
able with the spatial frequency generated by the interference
of two waves as given by (16). We substitute (34) into (35)

re———
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sinct x / dg)

Fig. 4. The Fourier transform of a source whose amplitude in
plane Py is sinc(r/dg).

and calculate the Fourier transform of the object as:

-

GE) = / sinc(z /do)e *¢=F dz

= rect(£do/AF) (36)

where we ignore scaling constants. The rect function is defined
as:

rect(x):{l; el < %, 67)

0; else.

From (36) and (37), we find that the light distribution in the
Fourier plane is a plane wave that is sharply cutoff at:

_AF
= %
or at acs = 1/(2dy) which is called the cutoff spatial
frequency.

S feo (38)

A. Bandlimited Signals and the Sampling Theorem

Our approach to diffraction theory offers an opportunity
to introduce students to the basics of sampling theory. The
Whittaker—Shannon theorem for accurately representing a
bandlimited signal by a sequence of sample functions states
that the highest spatial frequency present must be sampled at
least twice per cycle. The relationship that dg = 1/(2a,),
where dp is the distance between the samples, fulfills this
requirement. The limited extent of the frequency distribution
G(a) shows that sinc(z/do) is a bandlimited signal of band-
width ac,. This suggests that we can represent an arbitrary
bandlimited signal g(z) as a sum of weighted sample functions
of the form given by (34):

9(z) = rect(z/L) i ane’® sinc[(z — ndy)/do] (39)

ns—oo

where the ¢, and ¢, are magnitude and phase coefficients,
the spacing between the sample functions is dop. and the
rect function defines the length of the signal. The signal
representation in (39) is equivalent to extending the three-
source result given in Section Il to an N = L/dy sample
representation of a one-dimensional signal, in which each
sample is equivalent to a source having magnitude a,. By
virtue of the shift theorem, the Fourier transform of an arbitrary
object consisting of many weighted sample functions, is simply

"““
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the sum of a set of weighted plane waves:

fe. o
Gla) = rect{a/2aq,) Z q,elt?Tndooton)

==

(40

where rect(a/2a.,) shows that the transform is bounded the
frequency interval la| < ag,. These plane waves interfere
in the Fourier plane in a fashion similar to that discussed
in Section II. Thus, G(a) can be considered either as a
summation of the primitive interference patierns produced by
plane waves from the individual samples in g(x) or as the
diffraction produced by g{z) taken as a whole. In this way,
we show that interference and diffraction are closely related
and that the distinction between them is largely arbitrary. By
simple ray tracing, we find that the light from all samples of
9(z) in plane P, pass through an aperture in the Fourier plane
bounded by la] < a.,. The entire signal, as well as each
sample, is therefore strictly bandlimited [6).

An alternative representation of the signal is by means of
weighted cosine functions in which the signal is represented,
after using the Euler formula, by: -

gla) =rect(x/L) T bae®meoTte) fce, (1)

n=-=0o

where b, and ¢, are the weights, a¢ is the minimum re-
solvable spatial frequency, and c.c. represents the complex
conjugate. The similarity of (41) to (40) suggests that the
Fourier transform of g(z) has the same form as (39):

G(a) = rect(a/20c) i bae?*sinc[(a — nag)L] (42)

n=-—og

where we again ignore scaling factors.

These two basic ways of representing signals in the space
and frequency planes are useful in discussing a wide range
of topics in optics. It emphasizes that all planes in an optical
system are essentially space planes, and which one we prefer
to cail the frequency plane is largely a matter of choice.

B. Rayleigh Resolution Criterion

We show students how the Rayleigh resolution criterion
can be easily developed from (41) and (42). In this ‘case, we
associate the input signal length L with the width of the (one-
dimensional) entrance pupil of the telescope. According to
Rayleigh's criterion, the angular resolution of the telescope is
¢o = A/L. The image of a star, from conventional diffraction
theory, has an intensity sinc2(§L/MF) so that two stars are
resolved if they are separated by a distance o = AF/L at the
focal plane [7]. When we associate the aperture in plane P of
Fig. 4 with the entrance pupil of a telescope and identify plane
P, as the image plane, we also find that dy = ¢oF = AF/L
in accordance with (39). Additional insights can be gained by
noting that the cutoff diffraction angle 8, in Fig. 4 is 0, =
tan~1(£.o/F) = tan~}(A@co) 2 Acr, for small angles. Thus,
the maximum half-angle through which light can be scattered
by a bandlimited signal g(z) having sample spacing do is
simply A/2do.
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Fig. 5. Spatial filtering system. The spatiat filter H{a) is located in
plane P,

C. Abbe's Resolution Criterion and Spatial Filiering

We use the three-source geometry to illustrate the basic
principles of optical spatial filtering {8], [9]. Suppose that the
object has a relative intensity I(z) = 3/2 + 2 cos(2ra,r) +
1/2cos(2rayz) with an associated amplitude g¢g(z) =
(1 + cos(2rayz)], defined for {z| < L/2, and is illuminated
at plane P, by coherent light of wavelength A, as illustrated
in Fig. 5. The light amplitude at the Fourier plane P, is, from
(35), equal to:

G(a) = sinc[(a + a;) L]+ %sinc(a[,)-i- -%—sinc[(a -~ ay)L]
(43)

which consists of sinc functions centered at @ = —a;, 0,
and +ay. The connection between G(a), viewed as a three-
source signal, and the signal g(z) is similar to the interference
patterns discussed in Section 11 In terms of signal processing,
we consider G(or) the spectrum of g{z).

The spectrum G(a) can be modified by a spatial filter whose
complex-valued transmittance is H{a). Abbe, with his theory
of image formation by a coherently illuminated microscope,
showed how false detail can arise when the spatial frequency
spectrum of an object is altered [10]. As an example, suppose
that we apply a spatial filter H(a) of the form:

_JL lef£ar/2;
H{a) = {0, elsewhere.

This filter allows only the sinc function from (43) located at
a = 0 to pass; it is called a lowpass filter. The filtered output
is created at plane P3 by lens L, in Fig. 5, which provides a
second Fourier transform, and has intensity I{x) = 1 and there
is no evidence of a spatial fringe pattern. As a second example,
suppose that the filter H(a) in plane P; of Fig. 5 passes only
two of the sinc functions from (43). If one of the outer sources
is removed by the filter, the result from (43) is that:

(44)

I{z) = —Z— + cos(2rayx + ) (45)

where v is the residual phase. The image is now significantly
altered relative to the object; the fundamental {requency has
reduced fringe visibility and the harmonic frequency has been
eliminated altogether. Finally, if we remove just the central
order from the spectrum of (43), we find that the intensity at
the output is:

I(z) = ’;‘[1 + cos(drayx)| (46)

revealing that the fundamental frequency is absent in the
filtered image.

The spatial filter may also change the phase of the sources in
plane P,. Suppose that the outer sinc functions are modified
by a filter of the form:

17
ete+l,

near a = ay
H(a) =< 1. neara =0 47
| e°-', neara = -a,.

The intensity distribution at plane P; is now highly dependent
on the values of ¢, and ¢_,. If ¢,1 = —é_1, the result
is equivalent to multiplying G(a) by a linear phase function
so that the fringe structure in plane Pj is simply shifted. If,
however ¢y, # @), we need to examine (29) more closely
to determine the nature of the output. The third and fourth
terms can be combiied to form the expression:

4{cos[kd2/2D + Sratdy ; -1 _ ¢o] }

d41 —¢-1]' (48)

r
. cos[2kza/ D- 5

The fringe pattern described by this term has the same spatial
frequency as the fringe pattern observed from two sources with
a separation of d. Here, however, we encounter a curious situ-
ation in which the amplitude of the fringe pattern is modulated
by a cosinusoidal function which equals zero whenever:

$a1+ 1
2

Without loss of generality, we set ¢o = 0 and associate the
focal distance F' with D. The requircment for a zero amplitude
fundamental fringe pattern is now that:

2rd?
SF =t - ool (50)

kd?/2D + —bo=t. ()

It is clear that the fundamental can be completely eliminated
at the output when ¢, and ¢, satisfy (50). As a note
in passing, it was this spatial fiitering homework problem
that reminded us of Zernike’s three-slit interferometer and
stimulated our more general study of three-source phenomena.

E. Phase Contrast Microscopy [11]

We connect Zernike’s phase contrast microscopy with spa-
tial filtering and, at the same time, introduce additional insight
into the N-source case. Zernike noted that the transmittance of
a phase object can be represented in one-dimensional notation
as exp| j¢(z)). If the maximum phase deviation of the object is
small so that ¢(x) < 1, we can use a power series expansion
to show that exp [j¢(z)] = 1 + j@(z). Zernike noted that
light due to the constant is focused near a = 0 in the Fourier
domain, whereas light due to ¢(z) is distributed throughout
plane P; in Fig. 5. A phase shift of #/2 at @ = O in plane
P, can be introduced by a phase plate whose transmission is
represented by H(a):

™% ol < +
= ' = 7 51
Hla) { 1; else. D
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Fig. 6. Fresnel diffraction from three sinc(r/dg) sources located in
plane P,

This phase shift causes the amplitude in plane P; to become
7{1 + #(z)] so that the intensity is approximately 1 + 2¢(z);
the phase object is, therefore, rendered visible. To generalize
Zemike’s procedure, we can decompose g(z) into a sequence
of N/2 sine waves. The Fourier transform is then a sequence
of sinc functions as given by (42). In the Fourier plane, there is
a strong sinc(a L) function located at o = 0 due to the constant
in g(x). As in Zernike’s original method, a # /2 phase shift
at a = 0 produces bright background against which the phase
information appears dark whereas a —m/2 phase shift pro-
duces dark background against which the phase information
appears bright.

F. White-Light Holography

We introduce students to white-light holography with the aid
of Figs. 5 and 6. A sinusoidal grating in plane P, of Fig. 5 is
illuminated by white light so that three polychromatic sources
are formed at plane P, according to (43). As we see from
Fig. 6, light from the separate sources do not overlap in the
region between planes P, and P;. It is in this region that one or
more beams can be spatially modulated in magnitude or phase
or both by an object. The white-light fringe pattern formed at
plane P; of Fig. 6 is now modulated by light diffracted from
the object to produce a white light hologram.

V. CONCLUSIONS

The mathematics associated with diffraction theory can be
simplified and the physical aspects of diffraction emphasized
through an analysis of interference from three sources. The
examples presented are designed to stimulate the reader to in-
corporate a three-source discussion in the teaching of physical
optics.
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Abstract
We :ntroduce "subsampled convolution” and convolution with an "aggregate kernel” as
computationally efficient techniques for discrete convolution of the free-space propagation kernel
with generalized and rectangular aperture functions, respeciively, in computing near-field
diffraction patterns. We develop FFT-based algorithms for implementing subsampled and
aggregate kernel convolution, then demonstrate the memory and execution time economy of these

techniques through computational examples.
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1. Introduction

Analysis and simulation of optical systems often requires calculation of diffraction patterns.
Since a closed form solution for diffraction from an arbitrary aperture is not always possible,
numerical evaluation of diffraction patterns is sometimes necessary. In the far-field, the diffracted
light is accurately described by the Fourier transform of the input aperture;! efficient numerical
calculation of the Fourier transform is easily achieved through the use of Fast Fourier Transform
(FFT) algorithms.2 Methodologies for calculating near-field diffraction patterns for arbitrary
apertures are more complicated, however. Various techniques for calculating near-field diffraction
patterns are available,!-3 with numerous approaches for reducing numerical computational
complexity (e.g., refs. 4 and 5).

In this paper, we investigate algorithms based on the well-known concept of subsampling
to implement efficient numerical convolution for calculating near-field diffraction patterns. We
begin with background in Section 2, discussing numerical convolution based on the Fresnel-
Kirchhoff equation for determining near-field diffraction. In section 3, we propose subsampled
convolution and convolution with an aggregate kernel to efficiently calculate diffraction pattern
sequences for generalized and rectangular apertures, respectively. Section 4 describes FFT-based
implementations of the efficient convolution algorithms, while performance of the algorithms is
verified in Section § through two computational examples.

2. Background

The two-dimensional physical model for near-field diffraction is shown in Figure 1. A
plane wave of monochromatic light with wavelength A propagates along the z-axis and encounters
an aperture with amplitude weighting a(x). The amplitude distribution of the light along the &-axis

in the output plane may be written as

£& = [aloh& - xax,
- M)
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where h(x) is the free-space propagation kemnel.!
We use the free-space propagation kemel as derived from the Fresnel-Kirchhoff

equation!-3, which is given by
h(x) = 1 [r+z]ex [_ _2_72]
jarl 2r Pl
r= \122 +12 . )

To solve equation (1) numerically, we sample the continuous functions a(x) and h(x), then

where

convolve the resulting discrete sequences. With conventional discrete convolution techniques, we
sample both the aperture and kernel functions at the same rate; according to the Nyquist criterion,
the function with the largest spatial bandwidth dictates the minimum sampling rate, 8 which in turn
affects array size and computation time.

In typical applications, aperture weighting is described by Gaussian? or Hermite-Gaussian®
functions; these weighting functions are generally truncated in practical applications due to the
finite extent of elements in optical systems.?® We have plotted the envelope of the spatial frequency
spectrum of a truncated Gaussian aperture in Figure 2, along with the spectrum of a Fresnel-
Kirchhoff kemel; for this particular example, the aperture a(x)=exp[-4x%/(L/2)?]rect(x/L), while
z=L and A=L/40 in the kernel. The high frequency content of the kernel is much more significant
than that of the aperture weighting function, implying that the Nyquist sampling rate is greater for
the kernel. Therefore, the Nyquist rate of the kernel function determines the array sizes and
computation time for the discrete convolution of these two functions.

One distressing outcome of sampling both the aperture and kernel at the Nyquist rate of the
kernel is that the resulting output will also be sampled at the Nyquist rate of the kernel, even
though it can be sufficiently represented at a lower sampling rate closer to that required for the

aperture. This occurs because the convclution of two functions in the space domain produces a
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spectrum which is the product of the two input spectrums; as is illustrated in Figure 2, the output
spectrum closely resembles that of the aperture, with the high frequency components significantly
reduced from those of the kernel. Ultimately, by sampling both the aperture and kernel at the
kernel Nyquist rate and convolving, we calculate more values of the output sequence than are
necessary, wasting computer memory and needlessly increasing computation time.
3. Efficient Discrete Convolution by Suosampling

In this section, we develop algorithms which circumvent calculation of extrarieous output
samples for convolution of aperture and kernel sequences with mismatched bandwidths. If we
sample both the kernel h(x) and aperture a(x) at the Nyquist rate for the kernel 1/x,, then according
to arguments in the previous section, we 1 se little information if we subsample the convolution of
the two functions at a lower sampling rate 1/€, which is close to the required aperture rate. If the
input aperture is encoded in Nap sample points and E/x,=m, where m is a positive integer, we

write the subsampled convolution as
Ng,-1
f&y+ pxo) = Y atkxg)h(I€q + pxo = kxp) .
k=0 &)

Here, p is an integer between 0 and m-1 which represents the location of the first subsampled pcint
in the output sequence. If Nap is an integer multiple of m, equation (3) is equivalent to

N, 0

m-1

fUE+px)=Y, Y atk’Ey +ixg)h[(1~ k)& +(p-ixp].
i=0 k=0 )]

At this point, we introduce 2 new notation for subsampled arrays such that the argument
corresponds to the & index of the sequence while a subscript identifies the x index [e.g.,

ai(k)za(k§O+ixO)]. Using this notation, equation (4) can be rewritten as
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_p.ll..l

m-l m
=Y, Yakdh, (-k)
i=0 k'=0 (5
or, alternatively,
m-1
=Y a0k, i),
i=0 (6)
where * denotes convolution. According to equation (6), we may represent the subsampled output
function as the sum of m discrete convolu:icas between aperture and kernel functions which are
subsampled at a rate of 1/§; we call this technique subsampled convolution. Note that fp(l) is
exactly the sequence we would obtain by subsampling the discrete convolution between an aperture
and kernel sampled at x; therefore, the results of subsampled calculations will always agree
completely with those computed by standard convolution techniques.
For the special case of a tectangular aperture, we may simplify .absampled convolution
further. If the sample spacing & is chosen such that ag(j)=a, (j)=...=ay, ..,/ for all j, then equation

(6) becomes

m-1
IAOE %(l)*[zhp_;(l)] .

i=0 (7)
Here, we have collapsed m subsampled kernel functions into a single sequence which we call the
aggregate kernel, and we require only a single convolution between functions sampled a 1/,
4. FFT methods

To evaluate discrete convolutions, we invoke the convolution theorem and apply FFT
algorithms; this approach, which is commonly used in digital signal processing applications,
implements an efficient circular convolution.!9 To guarantee that the results of circular convolution
are identical to those of the direct convolutions of equations (6) and {7), we must “pad” our

aperture and kernel arrays with zeros so that the number of sampled points per array in the

computation (N..) equals the sum of nonzero points in the discrete aperture (N,) and kernel (N})
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functions.?2 We write this constraint as
N c= N a +N k- (8 )
The finite size of N} causes an abrupt cutoff in the kernel function which is physically
inaccurate. As is shown in Figure 3, this is equivalent to hard-limiting the cone of rays that
emanate from each point in the aperture function; hence, the output calculation is accurate only for

points on the &-axis that have a contribution from all points in the input aperture. Using this fact

with equation (8), we find that the number of usable points in the output sequence (N) is given by
Na=Nk_Na=Nc_2Na' (9)

The FFT-based implementation of equation (6) is written as

m-1
L= FFT'I{ZFFT[a,-(l)] X FFT[hP_,-(l)]} :

i=0 (10)
With equation (10), we can use arrays that are N./m points in length to perform the calculations;
this smaller array size reduces both memory requirements and computational complexity.

To determine the reduction in computational complexity afforded by equation (10), we first
note that a single FFT requires Nlog,N complex multiplications.!© For conventional FFT-based
convolution we require two N -point FFT operations, an N.-point complex multiplication, then an
N-point inverse FFT, resulting in a computational complexity cf

C=3N_log,(N.)+ N, . (11)

In the algorithm of equation (10), we are required to perform 2m (N/m)-point FFT’s, m (NJ/m)-
point multiplies, then an (N /m)-point inverse FFT. For this calculation, our computational

complexity is reduced to
c, =2ty logz[-ly—c—]+ N,.
m m

5C

(12)
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For the typical case where 1 <<m <<< N, we find that ratio of the two computational

complexities is approximately

Ce 2
c 3 (13)
When the aggregate kemnel method of equation (7) is implemented with FFT-based
convolution, we can calculate the diffraction pattem as
1 m-1
f,() = FFT"X FFT{ao(0)x ¥, FFI{A,_i(D)]} .
i=0 (14)

Since we now represent the diffracted light distribution with a single convolution of two arrays

which are N /m points long, our computational complexity is only

Cdk = 3-&10g2[—&]+ '-N_C' ’

and the resulting ratio of complexities for 1 <<m <<<N_ is

Ca 1
C m (16)

We can extend the methods described above to calculate the diffraction pattern resulting
from a two-dimensional input aperture. For the conventional convolution, we would use the same
approach except we would need to calculate two-dimensional FFT's and multiply two-dimensional
arrays together. Given that a two dimensional FFT requires 2N2log2N muitiplications! !, we find
that for conventional convolution, a two-dimensional diffraction pattern calculation requires

C’ =6N2log,(N, )+ N? an
multiplications. Using the subsampled convolution technique, the computational complexity is

reduced to
2
. =2mt2\2 1og2[ﬁ’£]+iv-c- .
m m m (18)




Harris: Efficient computation of near-field diffraction patterns 8

For the case where 1 << m << N, we find that the ratio of the two computational complexities

becomes
4
Ce 2

C 3m

14

(19)
which is equivalent to the one-dimensional aperture ratio scaled by 1/m. For the aggregate kernel
method, the two-dimensional computational complexity is given by
2 2
L SR
m m (20)

and the ratio with C' for 1 << m << N, reduces to

C m (21)
which is again scaled by 1/m as compared to a one-dimensional calculation.
5. Computational examples
To illustrate the power of subsampled convolution and the aggregate kernel, we offer two
computational examples. In Figure 4, we plot a portion of half of the symmetric normalized
intensity pattern due to plane wave diffraction from an aperture with a truncated Gaussian
amplitude weighting function; for this particular calculation, we use parameters identical to those
used to compute the frequency domain functions of Figure 2. The solid line in Figure 4 represents
the diffraction pattern calculated from the conventional FFT-based convolution technique while the
circles are points calculated using our subsampled convolution method. For the conventional
calculation, m=E/xy=1, N =1024, N,=80, Ny=944, and all of the 360 plotted points are drawn
from the N,=864 usable points described in Section 4; in the subsampled calculation m=4,
resulting in values of N.=256, N,=20, Nj=236, with all 80 plotted points drawn from the

N,=216 usable points.

Here, subsampled convolution sufficiently tracks the mainlobe of the diffraction pattern
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(0 £ x < 1/2) and the envelope of the sidelobes in the region L/2 < x <L. As we increase x, the
sidelobe width increases, allowing subsampled convolution to track the sidelobe signature
reasonably well when x 2 L. For some purposes, we might consider the portion of the pattern
between L/2 and L to be undersampled (even though it appears to meet the Nyquist criterion for the
conventional convolution output) because it does not track sidelobe structure exactly; hence, the
subsampled calculation might not not be sufficient for applications where one is attempting to
predict the correct number of maxima and minima in the shadow region of L/2 < x < L. The high
frequency oscillations in this region are relatively small in magnitude, however, so most of the
diffraction pattern information is retained in the subsampled output. Therefore, subsampled
convolution is appropriate for many applications, in particular those which require calculating
average intensity levels over finite apertures.

Even though little information is lost when we use subsampled convolution, we have a
significant economy of computational resources. The array size (and in turn, memory usage) is
only one-fourth of that for conventional FFT-based convolution, while the execution time of the
computer program used to calculate the subsampled convolution was 63% of that required for a
similar program using the conventional technique.

The pattern shown in Figure 5 represents plane wave diffraction from a rectangular aperture
a(x) = rect(x/L) and is calculated using an aggregate kernel; all other conditions are identical to
those used in the calculations of Figure 4. Comparing Figures 4 and S, we see that the quality of
the diffraction pattern represented by the aggregate kernel is identical to that of subsampled
convolution. The required memory usage for subsampled and aggregate kernel convolution is also
the same, but the computational efficiency of the aggregate kernel method is much better: the
execution time of the aggregate kernel program is just 29% of that required for conventional FFT-

based convolution.
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6. Conclusions

We have introduced the method of subsampled convolution for calculating the near-field
diffraction patterns that result from plane wave illumination of arbitrary aperture functions. For
typical applications, this method provides adequate representation of the diffraction pattern while
requiring significantly less memory and computation time than conventional discrete convolution
techniques. Convolution with an aggregate kernel may be used for rectangular aperture functions
to reduce computation time even further.

The author wishes to thank P. Melsa for helpful discussions concerning FFT
implementations, Z.-J. He for computing diffraction patterns to validate algorithm performance,
and reviewers for constructive comments regarding manuscript revision.

This work was performed while the author was with North Carolina State University and
The University of Alabama in Huntsville, and was supported in part by the U. S. Army Research

Office and BellSouth Enterprises, Inc.
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Figure Captions
Figure 1. Diagrammatic representation of the physical model used for near-field diffraction.

Figure 2. Spectrums of input aperture, Fresnel-Kirchhoff kernel, and resulting output pattern.
Here, the aperture is Gaussian and truncated at the e amplitude level, the propagation
distance along z is equal to the aperture width, and the wavelength is 1/40 of the aperture
width. Note that for clarity, we plot only the envelope of the oscillatory aperture and output

spectrums in the high {requency region.

Figure 3. The finite size of the kemnel yields the same effect as limiting the cone of rays which
emanate from each point in the sampled aperture function. To arrive at a correct output
distribution, there must be a contribution from each point in the input aperture. Therefore,

accurate calculations exist only on the shaded portion of the output axis, a distance equal to

the kemel length less the aperture length.

Figure 4. Calculated diffraction pattern resulting from convolution of the aperture and kernel used
to generate the spatial frequency plots in Figure 2. Solid line represents conventional FFI-

based convolution while circles denote subsampled convolution with m=4.

Figure 5. Calculated diffraction pattern resulting from convolution of the kernel used for
frequency plots in Figure 2 with a rectangular apertwie. Solid line represents conventional

FFT-based convolution while circles denote aggregate kermel convoi stion with m=4.
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